input: touchscreen: add touch screen of gslx680 for rk3399-firefly-edp
[firefly-linux-kernel-4.4.55.git] / drivers / macintosh / windfarm_pm121.c
1 /*
2  * Windfarm PowerMac thermal control. iMac G5 iSight
3  *
4  * (c) Copyright 2007 Étienne Bersac <bersace@gmail.com>
5  *
6  * Bits & pieces from windfarm_pm81.c by (c) Copyright 2005 Benjamin
7  * Herrenschmidt, IBM Corp. <benh@kernel.crashing.org>
8  *
9  * Released under the term of the GNU GPL v2.
10  *
11  *
12  *
13  * PowerMac12,1
14  * ============
15  *
16  *
17  * The algorithm used is the PID control algorithm, used the same way
18  * the published Darwin code does, using the same values that are
19  * present in the Darwin 8.10 snapshot property lists (note however
20  * that none of the code has been re-used, it's a complete
21  * re-implementation
22  *
23  * There is two models using PowerMac12,1. Model 2 is iMac G5 iSight
24  * 17" while Model 3 is iMac G5 20". They do have both the same
25  * controls with a tiny difference. The control-ids of hard-drive-fan
26  * and cpu-fan is swapped.
27  *
28  *
29  * Target Correction :
30  *
31  * controls have a target correction calculated as :
32  *
33  * new_min = ((((average_power * slope) >> 16) + offset) >> 16) + min_value
34  * new_value = max(new_value, max(new_min, 0))
35  *
36  * OD Fan control correction.
37  *
38  * # model_id: 2
39  *   offset             : -19563152
40  *   slope              :  1956315
41  *
42  * # model_id: 3
43  *   offset             : -15650652
44  *   slope              :  1565065
45  *
46  * HD Fan control correction.
47  *
48  * # model_id: 2
49  *   offset             : -15650652
50  *   slope              :  1565065
51  *
52  * # model_id: 3
53  *   offset             : -19563152
54  *   slope              :  1956315
55  *
56  * CPU Fan control correction.
57  *
58  * # model_id: 2
59  *   offset             : -25431900
60  *   slope              :  2543190
61  *
62  * # model_id: 3
63  *   offset             : -15650652
64  *   slope              :  1565065
65  *
66  *
67  * Target rubber-banding :
68  *
69  * Some controls have a target correction which depends on another
70  * control value. The correction is computed in the following way :
71  *
72  * new_min = ref_value * slope + offset
73  *
74  * ref_value is the value of the reference control. If new_min is
75  * greater than 0, then we correct the target value using :
76  *
77  * new_target = max (new_target, new_min >> 16)
78  *
79  *
80  * # model_id : 2
81  *   control    : cpu-fan
82  *   ref        : optical-drive-fan
83  *   offset     : -15650652
84  *   slope      : 1565065
85  *
86  * # model_id : 3
87  *   control    : optical-drive-fan
88  *   ref        : hard-drive-fan
89  *   offset     : -32768000
90  *   slope      : 65536
91  *
92  *
93  * In order to have the moste efficient correction with those
94  * dependencies, we must trigger HD loop before OD loop before CPU
95  * loop.
96  *
97  *
98  * The various control loops found in Darwin config file are:
99  *
100  * HD Fan control loop.
101  *
102  * # model_id: 2
103  *   control        : hard-drive-fan
104  *   sensor         : hard-drive-temp
105  *   PID params     : G_d = 0x00000000
106  *                    G_p = 0x002D70A3
107  *                    G_r = 0x00019999
108  *                    History = 2 entries
109  *                    Input target = 0x370000
110  *                    Interval = 5s
111  *
112  * # model_id: 3
113  *   control        : hard-drive-fan
114  *   sensor         : hard-drive-temp
115  *   PID params     : G_d = 0x00000000
116  *                    G_p = 0x002170A3
117  *                    G_r = 0x00019999
118  *                    History = 2 entries
119  *                    Input target = 0x370000
120  *                    Interval = 5s
121  *
122  * OD Fan control loop.
123  *
124  * # model_id: 2
125  *   control        : optical-drive-fan
126  *   sensor         : optical-drive-temp
127  *   PID params     : G_d = 0x00000000
128  *                    G_p = 0x001FAE14
129  *                    G_r = 0x00019999
130  *                    History = 2 entries
131  *                    Input target = 0x320000
132  *                    Interval = 5s
133  *
134  * # model_id: 3
135  *   control        : optical-drive-fan
136  *   sensor         : optical-drive-temp
137  *   PID params     : G_d = 0x00000000
138  *                    G_p = 0x001FAE14
139  *                    G_r = 0x00019999
140  *                    History = 2 entries
141  *                    Input target = 0x320000
142  *                    Interval = 5s
143  *
144  * GPU Fan control loop.
145  *
146  * # model_id: 2
147  *   control        : hard-drive-fan
148  *   sensor         : gpu-temp
149  *   PID params     : G_d = 0x00000000
150  *                    G_p = 0x002A6666
151  *                    G_r = 0x00019999
152  *                    History = 2 entries
153  *                    Input target = 0x5A0000
154  *                    Interval = 5s
155  *
156  * # model_id: 3
157  *   control        : cpu-fan
158  *   sensor         : gpu-temp
159  *   PID params     : G_d = 0x00000000
160  *                    G_p = 0x0010CCCC
161  *                    G_r = 0x00019999
162  *                    History = 2 entries
163  *                    Input target = 0x500000
164  *                    Interval = 5s
165  *
166  * KODIAK (aka northbridge) Fan control loop.
167  *
168  * # model_id: 2
169  *   control        : optical-drive-fan
170  *   sensor         : north-bridge-temp
171  *   PID params     : G_d = 0x00000000
172  *                    G_p = 0x003BD70A
173  *                    G_r = 0x00019999
174  *                    History = 2 entries
175  *                    Input target = 0x550000
176  *                    Interval = 5s
177  *
178  * # model_id: 3
179  *   control        : hard-drive-fan
180  *   sensor         : north-bridge-temp
181  *   PID params     : G_d = 0x00000000
182  *                    G_p = 0x0030F5C2
183  *                    G_r = 0x00019999
184  *                    History = 2 entries
185  *                    Input target = 0x550000
186  *                    Interval = 5s
187  *
188  * CPU Fan control loop.
189  *
190  *   control        : cpu-fan
191  *   sensors        : cpu-temp, cpu-power
192  *   PID params     : from SDB partition
193  *
194  *
195  * CPU Slew control loop.
196  *
197  *   control        : cpufreq-clamp
198  *   sensor         : cpu-temp
199  *
200  */
201
202 #undef  DEBUG
203
204 #include <linux/types.h>
205 #include <linux/errno.h>
206 #include <linux/kernel.h>
207 #include <linux/delay.h>
208 #include <linux/slab.h>
209 #include <linux/init.h>
210 #include <linux/spinlock.h>
211 #include <linux/wait.h>
212 #include <linux/kmod.h>
213 #include <linux/device.h>
214 #include <linux/platform_device.h>
215 #include <asm/prom.h>
216 #include <asm/machdep.h>
217 #include <asm/io.h>
218 #include <asm/sections.h>
219 #include <asm/smu.h>
220
221 #include "windfarm.h"
222 #include "windfarm_pid.h"
223
224 #define VERSION "0.3"
225
226 static int pm121_mach_model;    /* machine model id */
227
228 /* Controls & sensors */
229 static struct wf_sensor *sensor_cpu_power;
230 static struct wf_sensor *sensor_cpu_temp;
231 static struct wf_sensor *sensor_cpu_voltage;
232 static struct wf_sensor *sensor_cpu_current;
233 static struct wf_sensor *sensor_gpu_temp;
234 static struct wf_sensor *sensor_north_bridge_temp;
235 static struct wf_sensor *sensor_hard_drive_temp;
236 static struct wf_sensor *sensor_optical_drive_temp;
237 static struct wf_sensor *sensor_incoming_air_temp; /* unused ! */
238
239 enum {
240         FAN_CPU,
241         FAN_HD,
242         FAN_OD,
243         CPUFREQ,
244         N_CONTROLS
245 };
246 static struct wf_control *controls[N_CONTROLS] = {};
247
248 /* Set to kick the control loop into life */
249 static int pm121_all_controls_ok, pm121_all_sensors_ok, pm121_started;
250
251 enum {
252         FAILURE_FAN             = 1 << 0,
253         FAILURE_SENSOR          = 1 << 1,
254         FAILURE_OVERTEMP        = 1 << 2
255 };
256
257 /* All sys loops. Note the HD before the OD loop in order to have it
258    run before. */
259 enum {
260         LOOP_GPU,               /* control = hd or cpu, but luckily,
261                                    it doesn't matter */
262         LOOP_HD,                /* control = hd */
263         LOOP_KODIAK,            /* control = hd or od */
264         LOOP_OD,                /* control = od */
265         N_LOOPS
266 };
267
268 static const char *loop_names[N_LOOPS] = {
269         "GPU",
270         "HD",
271         "KODIAK",
272         "OD",
273 };
274
275 #define PM121_NUM_CONFIGS       2
276
277 static unsigned int pm121_failure_state;
278 static int pm121_readjust, pm121_skipping;
279 static bool pm121_overtemp;
280 static s32 average_power;
281
282 struct pm121_correction {
283         int     offset;
284         int     slope;
285 };
286
287 static struct pm121_correction corrections[N_CONTROLS][PM121_NUM_CONFIGS] = {
288         /* FAN_OD */
289         {
290                 /* MODEL 2 */
291                 { .offset       = -19563152,
292                   .slope        =  1956315
293                 },
294                 /* MODEL 3 */
295                 { .offset       = -15650652,
296                   .slope        =  1565065
297                 },
298         },
299         /* FAN_HD */
300         {
301                 /* MODEL 2 */
302                 { .offset       = -15650652,
303                   .slope        =  1565065
304                 },
305                 /* MODEL 3 */
306                 { .offset       = -19563152,
307                   .slope        =  1956315
308                 },
309         },
310         /* FAN_CPU */
311         {
312                 /* MODEL 2 */
313                 { .offset       = -25431900,
314                   .slope        =  2543190
315                 },
316                 /* MODEL 3 */
317                 { .offset       = -15650652,
318                   .slope        =  1565065
319                 },
320         },
321         /* CPUFREQ has no correction (and is not implemented at all) */
322 };
323
324 struct pm121_connection {
325         unsigned int    control_id;
326         unsigned int    ref_id;
327         struct pm121_correction correction;
328 };
329
330 static struct pm121_connection pm121_connections[] = {
331         /* MODEL 2 */
332         { .control_id   = FAN_CPU,
333           .ref_id       = FAN_OD,
334           { .offset     = -32768000,
335             .slope      =  65536
336           }
337         },
338         /* MODEL 3 */
339         { .control_id   = FAN_OD,
340           .ref_id       = FAN_HD,
341           { .offset     = -32768000,
342             .slope      =  65536
343           }
344         },
345 };
346
347 /* pointer to the current model connection */
348 static struct pm121_connection *pm121_connection;
349
350 /*
351  * ****** System Fans Control Loop ******
352  *
353  */
354
355 /* Since each loop handles only one control and we want to avoid
356  * writing virtual control, we store the control correction with the
357  * loop params. Some data are not set, there are common to all loop
358  * and thus, hardcoded.
359  */
360 struct pm121_sys_param {
361         /* purely informative since we use mach_model-2 as index */
362         int                     model_id;
363         struct wf_sensor        **sensor; /* use sensor_id instead ? */
364         s32                     gp, itarget;
365         unsigned int            control_id;
366 };
367
368 static struct pm121_sys_param
369 pm121_sys_all_params[N_LOOPS][PM121_NUM_CONFIGS] = {
370         /* GPU Fan control loop */
371         {
372                 { .model_id     = 2,
373                   .sensor       = &sensor_gpu_temp,
374                   .gp           = 0x002A6666,
375                   .itarget      = 0x5A0000,
376                   .control_id   = FAN_HD,
377                 },
378                 { .model_id     = 3,
379                   .sensor       = &sensor_gpu_temp,
380                   .gp           = 0x0010CCCC,
381                   .itarget      = 0x500000,
382                   .control_id   = FAN_CPU,
383                 },
384         },
385         /* HD Fan control loop */
386         {
387                 { .model_id     = 2,
388                   .sensor       = &sensor_hard_drive_temp,
389                   .gp           = 0x002D70A3,
390                   .itarget      = 0x370000,
391                   .control_id   = FAN_HD,
392                 },
393                 { .model_id     = 3,
394                   .sensor       = &sensor_hard_drive_temp,
395                   .gp           = 0x002170A3,
396                   .itarget      = 0x370000,
397                   .control_id   = FAN_HD,
398                 },
399         },
400         /* KODIAK Fan control loop */
401         {
402                 { .model_id     = 2,
403                   .sensor       = &sensor_north_bridge_temp,
404                   .gp           = 0x003BD70A,
405                   .itarget      = 0x550000,
406                   .control_id   = FAN_OD,
407                 },
408                 { .model_id     = 3,
409                   .sensor       = &sensor_north_bridge_temp,
410                   .gp           = 0x0030F5C2,
411                   .itarget      = 0x550000,
412                   .control_id   = FAN_HD,
413                 },
414         },
415         /* OD Fan control loop */
416         {
417                 { .model_id     = 2,
418                   .sensor       = &sensor_optical_drive_temp,
419                   .gp           = 0x001FAE14,
420                   .itarget      = 0x320000,
421                   .control_id   = FAN_OD,
422                 },
423                 { .model_id     = 3,
424                   .sensor       = &sensor_optical_drive_temp,
425                   .gp           = 0x001FAE14,
426                   .itarget      = 0x320000,
427                   .control_id   = FAN_OD,
428                 },
429         },
430 };
431
432 /* the hardcoded values */
433 #define PM121_SYS_GD            0x00000000
434 #define PM121_SYS_GR            0x00019999
435 #define PM121_SYS_HISTORY_SIZE  2
436 #define PM121_SYS_INTERVAL      5
437
438 /* State data used by the system fans control loop
439  */
440 struct pm121_sys_state {
441         int                     ticks;
442         s32                     setpoint;
443         struct wf_pid_state     pid;
444 };
445
446 struct pm121_sys_state *pm121_sys_state[N_LOOPS] = {};
447
448 /*
449  * ****** CPU Fans Control Loop ******
450  *
451  */
452
453 #define PM121_CPU_INTERVAL      1
454
455 /* State data used by the cpu fans control loop
456  */
457 struct pm121_cpu_state {
458         int                     ticks;
459         s32                     setpoint;
460         struct wf_cpu_pid_state pid;
461 };
462
463 static struct pm121_cpu_state *pm121_cpu_state;
464
465
466
467 /*
468  * ***** Implementation *****
469  *
470  */
471
472 /* correction the value using the output-low-bound correction algo */
473 static s32 pm121_correct(s32 new_setpoint,
474                          unsigned int control_id,
475                          s32 min)
476 {
477         s32 new_min;
478         struct pm121_correction *correction;
479         correction = &corrections[control_id][pm121_mach_model - 2];
480
481         new_min = (average_power * correction->slope) >> 16;
482         new_min += correction->offset;
483         new_min = (new_min >> 16) + min;
484
485         return max3(new_setpoint, new_min, 0);
486 }
487
488 static s32 pm121_connect(unsigned int control_id, s32 setpoint)
489 {
490         s32 new_min, value, new_setpoint;
491
492         if (pm121_connection->control_id == control_id) {
493                 controls[control_id]->ops->get_value(controls[control_id],
494                                                      &value);
495                 new_min = value * pm121_connection->correction.slope;
496                 new_min += pm121_connection->correction.offset;
497                 if (new_min > 0) {
498                         new_setpoint = max(setpoint, (new_min >> 16));
499                         if (new_setpoint != setpoint) {
500                                 pr_debug("pm121: %s depending on %s, "
501                                          "corrected from %d to %d RPM\n",
502                                          controls[control_id]->name,
503                                          controls[pm121_connection->ref_id]->name,
504                                          (int) setpoint, (int) new_setpoint);
505                         }
506                 } else
507                         new_setpoint = setpoint;
508         }
509         /* no connection */
510         else
511                 new_setpoint = setpoint;
512
513         return new_setpoint;
514 }
515
516 /* FAN LOOPS */
517 static void pm121_create_sys_fans(int loop_id)
518 {
519         struct pm121_sys_param *param = NULL;
520         struct wf_pid_param pid_param;
521         struct wf_control *control = NULL;
522         int i;
523
524         /* First, locate the params for this model */
525         for (i = 0; i < PM121_NUM_CONFIGS; i++) {
526                 if (pm121_sys_all_params[loop_id][i].model_id == pm121_mach_model) {
527                         param = &(pm121_sys_all_params[loop_id][i]);
528                         break;
529                 }
530         }
531
532         /* No params found, put fans to max */
533         if (param == NULL) {
534                 printk(KERN_WARNING "pm121: %s fan config not found "
535                        " for this machine model\n",
536                        loop_names[loop_id]);
537                 goto fail;
538         }
539
540         control = controls[param->control_id];
541
542         /* Alloc & initialize state */
543         pm121_sys_state[loop_id] = kmalloc(sizeof(struct pm121_sys_state),
544                                            GFP_KERNEL);
545         if (pm121_sys_state[loop_id] == NULL) {
546                 printk(KERN_WARNING "pm121: Memory allocation error\n");
547                 goto fail;
548         }
549         pm121_sys_state[loop_id]->ticks = 1;
550
551         /* Fill PID params */
552         pid_param.gd            = PM121_SYS_GD;
553         pid_param.gp            = param->gp;
554         pid_param.gr            = PM121_SYS_GR;
555         pid_param.interval      = PM121_SYS_INTERVAL;
556         pid_param.history_len   = PM121_SYS_HISTORY_SIZE;
557         pid_param.itarget       = param->itarget;
558         if(control)
559         {
560                 pid_param.min           = control->ops->get_min(control);
561                 pid_param.max           = control->ops->get_max(control);
562         } else {
563                 /*
564                  * This is probably not the right!?
565                  * Perhaps goto fail  if control == NULL  above?
566                  */
567                 pid_param.min           = 0;
568                 pid_param.max           = 0;
569         }
570
571         wf_pid_init(&pm121_sys_state[loop_id]->pid, &pid_param);
572
573         pr_debug("pm121: %s Fan control loop initialized.\n"
574                  "       itarged=%d.%03d, min=%d RPM, max=%d RPM\n",
575                  loop_names[loop_id], FIX32TOPRINT(pid_param.itarget),
576                  pid_param.min, pid_param.max);
577         return;
578
579  fail:
580         /* note that this is not optimal since another loop may still
581            control the same control */
582         printk(KERN_WARNING "pm121: failed to set up %s loop "
583                "setting \"%s\" to max speed.\n",
584                loop_names[loop_id], control ? control->name : "uninitialized value");
585
586         if (control)
587                 wf_control_set_max(control);
588 }
589
590 static void pm121_sys_fans_tick(int loop_id)
591 {
592         struct pm121_sys_param *param;
593         struct pm121_sys_state *st;
594         struct wf_sensor *sensor;
595         struct wf_control *control;
596         s32 temp, new_setpoint;
597         int rc;
598
599         param = &(pm121_sys_all_params[loop_id][pm121_mach_model-2]);
600         st = pm121_sys_state[loop_id];
601         sensor = *(param->sensor);
602         control = controls[param->control_id];
603
604         if (--st->ticks != 0) {
605                 if (pm121_readjust)
606                         goto readjust;
607                 return;
608         }
609         st->ticks = PM121_SYS_INTERVAL;
610
611         rc = sensor->ops->get_value(sensor, &temp);
612         if (rc) {
613                 printk(KERN_WARNING "windfarm: %s sensor error %d\n",
614                        sensor->name, rc);
615                 pm121_failure_state |= FAILURE_SENSOR;
616                 return;
617         }
618
619         pr_debug("pm121: %s Fan tick ! %s: %d.%03d\n",
620                  loop_names[loop_id], sensor->name,
621                  FIX32TOPRINT(temp));
622
623         new_setpoint = wf_pid_run(&st->pid, temp);
624
625         /* correction */
626         new_setpoint = pm121_correct(new_setpoint,
627                                      param->control_id,
628                                      st->pid.param.min);
629         /* linked corretion */
630         new_setpoint = pm121_connect(param->control_id, new_setpoint);
631
632         if (new_setpoint == st->setpoint)
633                 return;
634         st->setpoint = new_setpoint;
635         pr_debug("pm121: %s corrected setpoint: %d RPM\n",
636                  control->name, (int)new_setpoint);
637  readjust:
638         if (control && pm121_failure_state == 0) {
639                 rc = control->ops->set_value(control, st->setpoint);
640                 if (rc) {
641                         printk(KERN_WARNING "windfarm: %s fan error %d\n",
642                                control->name, rc);
643                         pm121_failure_state |= FAILURE_FAN;
644                 }
645         }
646 }
647
648
649 /* CPU LOOP */
650 static void pm121_create_cpu_fans(void)
651 {
652         struct wf_cpu_pid_param pid_param;
653         const struct smu_sdbp_header *hdr;
654         struct smu_sdbp_cpupiddata *piddata;
655         struct smu_sdbp_fvt *fvt;
656         struct wf_control *fan_cpu;
657         s32 tmax, tdelta, maxpow, powadj;
658
659         fan_cpu = controls[FAN_CPU];
660
661         /* First, locate the PID params in SMU SBD */
662         hdr = smu_get_sdb_partition(SMU_SDB_CPUPIDDATA_ID, NULL);
663         if (hdr == 0) {
664                 printk(KERN_WARNING "pm121: CPU PID fan config not found.\n");
665                 goto fail;
666         }
667         piddata = (struct smu_sdbp_cpupiddata *)&hdr[1];
668
669         /* Get the FVT params for operating point 0 (the only supported one
670          * for now) in order to get tmax
671          */
672         hdr = smu_get_sdb_partition(SMU_SDB_FVT_ID, NULL);
673         if (hdr) {
674                 fvt = (struct smu_sdbp_fvt *)&hdr[1];
675                 tmax = ((s32)fvt->maxtemp) << 16;
676         } else
677                 tmax = 0x5e0000; /* 94 degree default */
678
679         /* Alloc & initialize state */
680         pm121_cpu_state = kmalloc(sizeof(struct pm121_cpu_state),
681                                   GFP_KERNEL);
682         if (pm121_cpu_state == NULL)
683                 goto fail;
684         pm121_cpu_state->ticks = 1;
685
686         /* Fill PID params */
687         pid_param.interval = PM121_CPU_INTERVAL;
688         pid_param.history_len = piddata->history_len;
689         if (pid_param.history_len > WF_CPU_PID_MAX_HISTORY) {
690                 printk(KERN_WARNING "pm121: History size overflow on "
691                        "CPU control loop (%d)\n", piddata->history_len);
692                 pid_param.history_len = WF_CPU_PID_MAX_HISTORY;
693         }
694         pid_param.gd = piddata->gd;
695         pid_param.gp = piddata->gp;
696         pid_param.gr = piddata->gr / pid_param.history_len;
697
698         tdelta = ((s32)piddata->target_temp_delta) << 16;
699         maxpow = ((s32)piddata->max_power) << 16;
700         powadj = ((s32)piddata->power_adj) << 16;
701
702         pid_param.tmax = tmax;
703         pid_param.ttarget = tmax - tdelta;
704         pid_param.pmaxadj = maxpow - powadj;
705
706         pid_param.min = fan_cpu->ops->get_min(fan_cpu);
707         pid_param.max = fan_cpu->ops->get_max(fan_cpu);
708
709         wf_cpu_pid_init(&pm121_cpu_state->pid, &pid_param);
710
711         pr_debug("pm121: CPU Fan control initialized.\n");
712         pr_debug("       ttarged=%d.%03d, tmax=%d.%03d, min=%d RPM, max=%d RPM,\n",
713                  FIX32TOPRINT(pid_param.ttarget), FIX32TOPRINT(pid_param.tmax),
714                  pid_param.min, pid_param.max);
715
716         return;
717
718  fail:
719         printk(KERN_WARNING "pm121: CPU fan config not found, max fan speed\n");
720
721         if (controls[CPUFREQ])
722                 wf_control_set_max(controls[CPUFREQ]);
723         if (fan_cpu)
724                 wf_control_set_max(fan_cpu);
725 }
726
727
728 static void pm121_cpu_fans_tick(struct pm121_cpu_state *st)
729 {
730         s32 new_setpoint, temp, power;
731         struct wf_control *fan_cpu = NULL;
732         int rc;
733
734         if (--st->ticks != 0) {
735                 if (pm121_readjust)
736                         goto readjust;
737                 return;
738         }
739         st->ticks = PM121_CPU_INTERVAL;
740
741         fan_cpu = controls[FAN_CPU];
742
743         rc = sensor_cpu_temp->ops->get_value(sensor_cpu_temp, &temp);
744         if (rc) {
745                 printk(KERN_WARNING "pm121: CPU temp sensor error %d\n",
746                        rc);
747                 pm121_failure_state |= FAILURE_SENSOR;
748                 return;
749         }
750
751         rc = sensor_cpu_power->ops->get_value(sensor_cpu_power, &power);
752         if (rc) {
753                 printk(KERN_WARNING "pm121: CPU power sensor error %d\n",
754                        rc);
755                 pm121_failure_state |= FAILURE_SENSOR;
756                 return;
757         }
758
759         pr_debug("pm121: CPU Fans tick ! CPU temp: %d.%03d°C, power: %d.%03d\n",
760                  FIX32TOPRINT(temp), FIX32TOPRINT(power));
761
762         if (temp > st->pid.param.tmax)
763                 pm121_failure_state |= FAILURE_OVERTEMP;
764
765         new_setpoint = wf_cpu_pid_run(&st->pid, power, temp);
766
767         /* correction */
768         new_setpoint = pm121_correct(new_setpoint,
769                                      FAN_CPU,
770                                      st->pid.param.min);
771
772         /* connected correction */
773         new_setpoint = pm121_connect(FAN_CPU, new_setpoint);
774
775         if (st->setpoint == new_setpoint)
776                 return;
777         st->setpoint = new_setpoint;
778         pr_debug("pm121: CPU corrected setpoint: %d RPM\n", (int)new_setpoint);
779
780  readjust:
781         if (fan_cpu && pm121_failure_state == 0) {
782                 rc = fan_cpu->ops->set_value(fan_cpu, st->setpoint);
783                 if (rc) {
784                         printk(KERN_WARNING "pm121: %s fan error %d\n",
785                                fan_cpu->name, rc);
786                         pm121_failure_state |= FAILURE_FAN;
787                 }
788         }
789 }
790
791 /*
792  * ****** Common ******
793  *
794  */
795
796 static void pm121_tick(void)
797 {
798         unsigned int last_failure = pm121_failure_state;
799         unsigned int new_failure;
800         s32 total_power;
801         int i;
802
803         if (!pm121_started) {
804                 pr_debug("pm121: creating control loops !\n");
805                 for (i = 0; i < N_LOOPS; i++)
806                         pm121_create_sys_fans(i);
807
808                 pm121_create_cpu_fans();
809                 pm121_started = 1;
810         }
811
812         /* skipping ticks */
813         if (pm121_skipping && --pm121_skipping)
814                 return;
815
816         /* compute average power */
817         total_power = 0;
818         for (i = 0; i < pm121_cpu_state->pid.param.history_len; i++)
819                 total_power += pm121_cpu_state->pid.powers[i];
820
821         average_power = total_power / pm121_cpu_state->pid.param.history_len;
822
823
824         pm121_failure_state = 0;
825         for (i = 0 ; i < N_LOOPS; i++) {
826                 if (pm121_sys_state[i])
827                         pm121_sys_fans_tick(i);
828         }
829
830         if (pm121_cpu_state)
831                 pm121_cpu_fans_tick(pm121_cpu_state);
832
833         pm121_readjust = 0;
834         new_failure = pm121_failure_state & ~last_failure;
835
836         /* If entering failure mode, clamp cpufreq and ramp all
837          * fans to full speed.
838          */
839         if (pm121_failure_state && !last_failure) {
840                 for (i = 0; i < N_CONTROLS; i++) {
841                         if (controls[i])
842                                 wf_control_set_max(controls[i]);
843                 }
844         }
845
846         /* If leaving failure mode, unclamp cpufreq and readjust
847          * all fans on next iteration
848          */
849         if (!pm121_failure_state && last_failure) {
850                 if (controls[CPUFREQ])
851                         wf_control_set_min(controls[CPUFREQ]);
852                 pm121_readjust = 1;
853         }
854
855         /* Overtemp condition detected, notify and start skipping a couple
856          * ticks to let the temperature go down
857          */
858         if (new_failure & FAILURE_OVERTEMP) {
859                 wf_set_overtemp();
860                 pm121_skipping = 2;
861                 pm121_overtemp = true;
862         }
863
864         /* We only clear the overtemp condition if overtemp is cleared
865          * _and_ no other failure is present. Since a sensor error will
866          * clear the overtemp condition (can't measure temperature) at
867          * the control loop levels, but we don't want to keep it clear
868          * here in this case
869          */
870         if (!pm121_failure_state && pm121_overtemp) {
871                 wf_clear_overtemp();
872                 pm121_overtemp = false;
873         }
874 }
875
876
877 static struct wf_control* pm121_register_control(struct wf_control *ct,
878                                                  const char *match,
879                                                  unsigned int id)
880 {
881         if (controls[id] == NULL && !strcmp(ct->name, match)) {
882                 if (wf_get_control(ct) == 0)
883                         controls[id] = ct;
884         }
885         return controls[id];
886 }
887
888 static void pm121_new_control(struct wf_control *ct)
889 {
890         int all = 1;
891
892         if (pm121_all_controls_ok)
893                 return;
894
895         all = pm121_register_control(ct, "optical-drive-fan", FAN_OD) && all;
896         all = pm121_register_control(ct, "hard-drive-fan", FAN_HD) && all;
897         all = pm121_register_control(ct, "cpu-fan", FAN_CPU) && all;
898         all = pm121_register_control(ct, "cpufreq-clamp", CPUFREQ) && all;
899
900         if (all)
901                 pm121_all_controls_ok = 1;
902 }
903
904
905
906
907 static struct wf_sensor* pm121_register_sensor(struct wf_sensor *sensor,
908                                                const char *match,
909                                                struct wf_sensor **var)
910 {
911         if (*var == NULL && !strcmp(sensor->name, match)) {
912                 if (wf_get_sensor(sensor) == 0)
913                         *var = sensor;
914         }
915         return *var;
916 }
917
918 static void pm121_new_sensor(struct wf_sensor *sr)
919 {
920         int all = 1;
921
922         if (pm121_all_sensors_ok)
923                 return;
924
925         all = pm121_register_sensor(sr, "cpu-temp",
926                                     &sensor_cpu_temp) && all;
927         all = pm121_register_sensor(sr, "cpu-current",
928                                     &sensor_cpu_current) && all;
929         all = pm121_register_sensor(sr, "cpu-voltage",
930                                     &sensor_cpu_voltage) && all;
931         all = pm121_register_sensor(sr, "cpu-power",
932                                     &sensor_cpu_power) && all;
933         all = pm121_register_sensor(sr, "hard-drive-temp",
934                                     &sensor_hard_drive_temp) && all;
935         all = pm121_register_sensor(sr, "optical-drive-temp",
936                                     &sensor_optical_drive_temp) && all;
937         all = pm121_register_sensor(sr, "incoming-air-temp",
938                                     &sensor_incoming_air_temp) && all;
939         all = pm121_register_sensor(sr, "north-bridge-temp",
940                                     &sensor_north_bridge_temp) && all;
941         all = pm121_register_sensor(sr, "gpu-temp",
942                                     &sensor_gpu_temp) && all;
943
944         if (all)
945                 pm121_all_sensors_ok = 1;
946 }
947
948
949
950 static int pm121_notify(struct notifier_block *self,
951                         unsigned long event, void *data)
952 {
953         switch (event) {
954         case WF_EVENT_NEW_CONTROL:
955                 pr_debug("pm121: new control %s detected\n",
956                          ((struct wf_control *)data)->name);
957                 pm121_new_control(data);
958                 break;
959         case WF_EVENT_NEW_SENSOR:
960                 pr_debug("pm121: new sensor %s detected\n",
961                          ((struct wf_sensor *)data)->name);
962                 pm121_new_sensor(data);
963                 break;
964         case WF_EVENT_TICK:
965                 if (pm121_all_controls_ok && pm121_all_sensors_ok)
966                         pm121_tick();
967                 break;
968         }
969
970         return 0;
971 }
972
973 static struct notifier_block pm121_events = {
974         .notifier_call  = pm121_notify,
975 };
976
977 static int pm121_init_pm(void)
978 {
979         const struct smu_sdbp_header *hdr;
980
981         hdr = smu_get_sdb_partition(SMU_SDB_SENSORTREE_ID, NULL);
982         if (hdr != 0) {
983                 struct smu_sdbp_sensortree *st =
984                         (struct smu_sdbp_sensortree *)&hdr[1];
985                 pm121_mach_model = st->model_id;
986         }
987
988         pm121_connection = &pm121_connections[pm121_mach_model - 2];
989
990         printk(KERN_INFO "pm121: Initializing for iMac G5 iSight model ID %d\n",
991                pm121_mach_model);
992
993         return 0;
994 }
995
996
997 static int pm121_probe(struct platform_device *ddev)
998 {
999         wf_register_client(&pm121_events);
1000
1001         return 0;
1002 }
1003
1004 static int pm121_remove(struct platform_device *ddev)
1005 {
1006         wf_unregister_client(&pm121_events);
1007         return 0;
1008 }
1009
1010 static struct platform_driver pm121_driver = {
1011         .probe = pm121_probe,
1012         .remove = pm121_remove,
1013         .driver = {
1014                 .name = "windfarm",
1015                 .bus = &platform_bus_type,
1016         },
1017 };
1018
1019
1020 static int __init pm121_init(void)
1021 {
1022         int rc = -ENODEV;
1023
1024         if (of_machine_is_compatible("PowerMac12,1"))
1025                 rc = pm121_init_pm();
1026
1027         if (rc == 0) {
1028                 request_module("windfarm_smu_controls");
1029                 request_module("windfarm_smu_sensors");
1030                 request_module("windfarm_smu_sat");
1031                 request_module("windfarm_lm75_sensor");
1032                 request_module("windfarm_max6690_sensor");
1033                 request_module("windfarm_cpufreq_clamp");
1034                 platform_driver_register(&pm121_driver);
1035         }
1036
1037         return rc;
1038 }
1039
1040 static void __exit pm121_exit(void)
1041 {
1042
1043         platform_driver_unregister(&pm121_driver);
1044 }
1045
1046
1047 module_init(pm121_init);
1048 module_exit(pm121_exit);
1049
1050 MODULE_AUTHOR("Étienne Bersac <bersace@gmail.com>");
1051 MODULE_DESCRIPTION("Thermal control logic for iMac G5 (iSight)");
1052 MODULE_LICENSE("GPL");
1053