Merge branch 'irq-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel...
[firefly-linux-kernel-4.4.55.git] / drivers / lightnvm / rrpc.c
1 /*
2  * Copyright (C) 2015 IT University of Copenhagen
3  * Initial release: Matias Bjorling <m@bjorling.me>
4  *
5  * This program is free software; you can redistribute it and/or
6  * modify it under the terms of the GNU General Public License version
7  * 2 as published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope that it will be useful, but
10  * WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
12  * General Public License for more details.
13  *
14  * Implementation of a Round-robin page-based Hybrid FTL for Open-channel SSDs.
15  */
16
17 #include "rrpc.h"
18
19 static struct kmem_cache *rrpc_gcb_cache, *rrpc_rq_cache;
20 static DECLARE_RWSEM(rrpc_lock);
21
22 static int rrpc_submit_io(struct rrpc *rrpc, struct bio *bio,
23                                 struct nvm_rq *rqd, unsigned long flags);
24
25 #define rrpc_for_each_lun(rrpc, rlun, i) \
26                 for ((i) = 0, rlun = &(rrpc)->luns[0]; \
27                         (i) < (rrpc)->nr_luns; (i)++, rlun = &(rrpc)->luns[(i)])
28
29 static void rrpc_page_invalidate(struct rrpc *rrpc, struct rrpc_addr *a)
30 {
31         struct rrpc_block *rblk = a->rblk;
32         unsigned int pg_offset;
33
34         lockdep_assert_held(&rrpc->rev_lock);
35
36         if (a->addr == ADDR_EMPTY || !rblk)
37                 return;
38
39         spin_lock(&rblk->lock);
40
41         div_u64_rem(a->addr, rrpc->dev->pgs_per_blk, &pg_offset);
42         WARN_ON(test_and_set_bit(pg_offset, rblk->invalid_pages));
43         rblk->nr_invalid_pages++;
44
45         spin_unlock(&rblk->lock);
46
47         rrpc->rev_trans_map[a->addr - rrpc->poffset].addr = ADDR_EMPTY;
48 }
49
50 static void rrpc_invalidate_range(struct rrpc *rrpc, sector_t slba,
51                                                                 unsigned len)
52 {
53         sector_t i;
54
55         spin_lock(&rrpc->rev_lock);
56         for (i = slba; i < slba + len; i++) {
57                 struct rrpc_addr *gp = &rrpc->trans_map[i];
58
59                 rrpc_page_invalidate(rrpc, gp);
60                 gp->rblk = NULL;
61         }
62         spin_unlock(&rrpc->rev_lock);
63 }
64
65 static struct nvm_rq *rrpc_inflight_laddr_acquire(struct rrpc *rrpc,
66                                         sector_t laddr, unsigned int pages)
67 {
68         struct nvm_rq *rqd;
69         struct rrpc_inflight_rq *inf;
70
71         rqd = mempool_alloc(rrpc->rq_pool, GFP_ATOMIC);
72         if (!rqd)
73                 return ERR_PTR(-ENOMEM);
74
75         inf = rrpc_get_inflight_rq(rqd);
76         if (rrpc_lock_laddr(rrpc, laddr, pages, inf)) {
77                 mempool_free(rqd, rrpc->rq_pool);
78                 return NULL;
79         }
80
81         return rqd;
82 }
83
84 static void rrpc_inflight_laddr_release(struct rrpc *rrpc, struct nvm_rq *rqd)
85 {
86         struct rrpc_inflight_rq *inf = rrpc_get_inflight_rq(rqd);
87
88         rrpc_unlock_laddr(rrpc, inf);
89
90         mempool_free(rqd, rrpc->rq_pool);
91 }
92
93 static void rrpc_discard(struct rrpc *rrpc, struct bio *bio)
94 {
95         sector_t slba = bio->bi_iter.bi_sector / NR_PHY_IN_LOG;
96         sector_t len = bio->bi_iter.bi_size / RRPC_EXPOSED_PAGE_SIZE;
97         struct nvm_rq *rqd;
98
99         do {
100                 rqd = rrpc_inflight_laddr_acquire(rrpc, slba, len);
101                 schedule();
102         } while (!rqd);
103
104         if (IS_ERR(rqd)) {
105                 pr_err("rrpc: unable to acquire inflight IO\n");
106                 bio_io_error(bio);
107                 return;
108         }
109
110         rrpc_invalidate_range(rrpc, slba, len);
111         rrpc_inflight_laddr_release(rrpc, rqd);
112 }
113
114 static int block_is_full(struct rrpc *rrpc, struct rrpc_block *rblk)
115 {
116         return (rblk->next_page == rrpc->dev->pgs_per_blk);
117 }
118
119 static u64 block_to_addr(struct rrpc *rrpc, struct rrpc_block *rblk)
120 {
121         struct nvm_block *blk = rblk->parent;
122
123         return blk->id * rrpc->dev->pgs_per_blk;
124 }
125
126 static struct ppa_addr linear_to_generic_addr(struct nvm_dev *dev,
127                                                         struct ppa_addr r)
128 {
129         struct ppa_addr l;
130         int secs, pgs, blks, luns;
131         sector_t ppa = r.ppa;
132
133         l.ppa = 0;
134
135         div_u64_rem(ppa, dev->sec_per_pg, &secs);
136         l.g.sec = secs;
137
138         sector_div(ppa, dev->sec_per_pg);
139         div_u64_rem(ppa, dev->sec_per_blk, &pgs);
140         l.g.pg = pgs;
141
142         sector_div(ppa, dev->pgs_per_blk);
143         div_u64_rem(ppa, dev->blks_per_lun, &blks);
144         l.g.blk = blks;
145
146         sector_div(ppa, dev->blks_per_lun);
147         div_u64_rem(ppa, dev->luns_per_chnl, &luns);
148         l.g.lun = luns;
149
150         sector_div(ppa, dev->luns_per_chnl);
151         l.g.ch = ppa;
152
153         return l;
154 }
155
156 static struct ppa_addr rrpc_ppa_to_gaddr(struct nvm_dev *dev, u64 addr)
157 {
158         struct ppa_addr paddr;
159
160         paddr.ppa = addr;
161         return linear_to_generic_addr(dev, paddr);
162 }
163
164 /* requires lun->lock taken */
165 static void rrpc_set_lun_cur(struct rrpc_lun *rlun, struct rrpc_block *rblk)
166 {
167         struct rrpc *rrpc = rlun->rrpc;
168
169         BUG_ON(!rblk);
170
171         if (rlun->cur) {
172                 spin_lock(&rlun->cur->lock);
173                 WARN_ON(!block_is_full(rrpc, rlun->cur));
174                 spin_unlock(&rlun->cur->lock);
175         }
176         rlun->cur = rblk;
177 }
178
179 static struct rrpc_block *rrpc_get_blk(struct rrpc *rrpc, struct rrpc_lun *rlun,
180                                                         unsigned long flags)
181 {
182         struct nvm_block *blk;
183         struct rrpc_block *rblk;
184
185         blk = nvm_get_blk(rrpc->dev, rlun->parent, flags);
186         if (!blk)
187                 return NULL;
188
189         rblk = &rlun->blocks[blk->id];
190         blk->priv = rblk;
191
192         bitmap_zero(rblk->invalid_pages, rrpc->dev->pgs_per_blk);
193         rblk->next_page = 0;
194         rblk->nr_invalid_pages = 0;
195         atomic_set(&rblk->data_cmnt_size, 0);
196
197         return rblk;
198 }
199
200 static void rrpc_put_blk(struct rrpc *rrpc, struct rrpc_block *rblk)
201 {
202         nvm_put_blk(rrpc->dev, rblk->parent);
203 }
204
205 static void rrpc_put_blks(struct rrpc *rrpc)
206 {
207         struct rrpc_lun *rlun;
208         int i;
209
210         for (i = 0; i < rrpc->nr_luns; i++) {
211                 rlun = &rrpc->luns[i];
212                 if (rlun->cur)
213                         rrpc_put_blk(rrpc, rlun->cur);
214                 if (rlun->gc_cur)
215                         rrpc_put_blk(rrpc, rlun->gc_cur);
216         }
217 }
218
219 static struct rrpc_lun *get_next_lun(struct rrpc *rrpc)
220 {
221         int next = atomic_inc_return(&rrpc->next_lun);
222
223         return &rrpc->luns[next % rrpc->nr_luns];
224 }
225
226 static void rrpc_gc_kick(struct rrpc *rrpc)
227 {
228         struct rrpc_lun *rlun;
229         unsigned int i;
230
231         for (i = 0; i < rrpc->nr_luns; i++) {
232                 rlun = &rrpc->luns[i];
233                 queue_work(rrpc->krqd_wq, &rlun->ws_gc);
234         }
235 }
236
237 /*
238  * timed GC every interval.
239  */
240 static void rrpc_gc_timer(unsigned long data)
241 {
242         struct rrpc *rrpc = (struct rrpc *)data;
243
244         rrpc_gc_kick(rrpc);
245         mod_timer(&rrpc->gc_timer, jiffies + msecs_to_jiffies(10));
246 }
247
248 static void rrpc_end_sync_bio(struct bio *bio)
249 {
250         struct completion *waiting = bio->bi_private;
251
252         if (bio->bi_error)
253                 pr_err("nvm: gc request failed (%u).\n", bio->bi_error);
254
255         complete(waiting);
256 }
257
258 /*
259  * rrpc_move_valid_pages -- migrate live data off the block
260  * @rrpc: the 'rrpc' structure
261  * @block: the block from which to migrate live pages
262  *
263  * Description:
264  *   GC algorithms may call this function to migrate remaining live
265  *   pages off the block prior to erasing it. This function blocks
266  *   further execution until the operation is complete.
267  */
268 static int rrpc_move_valid_pages(struct rrpc *rrpc, struct rrpc_block *rblk)
269 {
270         struct request_queue *q = rrpc->dev->q;
271         struct rrpc_rev_addr *rev;
272         struct nvm_rq *rqd;
273         struct bio *bio;
274         struct page *page;
275         int slot;
276         int nr_pgs_per_blk = rrpc->dev->pgs_per_blk;
277         u64 phys_addr;
278         DECLARE_COMPLETION_ONSTACK(wait);
279
280         if (bitmap_full(rblk->invalid_pages, nr_pgs_per_blk))
281                 return 0;
282
283         bio = bio_alloc(GFP_NOIO, 1);
284         if (!bio) {
285                 pr_err("nvm: could not alloc bio to gc\n");
286                 return -ENOMEM;
287         }
288
289         page = mempool_alloc(rrpc->page_pool, GFP_NOIO);
290
291         while ((slot = find_first_zero_bit(rblk->invalid_pages,
292                                             nr_pgs_per_blk)) < nr_pgs_per_blk) {
293
294                 /* Lock laddr */
295                 phys_addr = (rblk->parent->id * nr_pgs_per_blk) + slot;
296
297 try:
298                 spin_lock(&rrpc->rev_lock);
299                 /* Get logical address from physical to logical table */
300                 rev = &rrpc->rev_trans_map[phys_addr - rrpc->poffset];
301                 /* already updated by previous regular write */
302                 if (rev->addr == ADDR_EMPTY) {
303                         spin_unlock(&rrpc->rev_lock);
304                         continue;
305                 }
306
307                 rqd = rrpc_inflight_laddr_acquire(rrpc, rev->addr, 1);
308                 if (IS_ERR_OR_NULL(rqd)) {
309                         spin_unlock(&rrpc->rev_lock);
310                         schedule();
311                         goto try;
312                 }
313
314                 spin_unlock(&rrpc->rev_lock);
315
316                 /* Perform read to do GC */
317                 bio->bi_iter.bi_sector = rrpc_get_sector(rev->addr);
318                 bio->bi_rw = READ;
319                 bio->bi_private = &wait;
320                 bio->bi_end_io = rrpc_end_sync_bio;
321
322                 /* TODO: may fail when EXP_PG_SIZE > PAGE_SIZE */
323                 bio_add_pc_page(q, bio, page, RRPC_EXPOSED_PAGE_SIZE, 0);
324
325                 if (rrpc_submit_io(rrpc, bio, rqd, NVM_IOTYPE_GC)) {
326                         pr_err("rrpc: gc read failed.\n");
327                         rrpc_inflight_laddr_release(rrpc, rqd);
328                         goto finished;
329                 }
330                 wait_for_completion_io(&wait);
331
332                 bio_reset(bio);
333                 reinit_completion(&wait);
334
335                 bio->bi_iter.bi_sector = rrpc_get_sector(rev->addr);
336                 bio->bi_rw = WRITE;
337                 bio->bi_private = &wait;
338                 bio->bi_end_io = rrpc_end_sync_bio;
339
340                 bio_add_pc_page(q, bio, page, RRPC_EXPOSED_PAGE_SIZE, 0);
341
342                 /* turn the command around and write the data back to a new
343                  * address
344                  */
345                 if (rrpc_submit_io(rrpc, bio, rqd, NVM_IOTYPE_GC)) {
346                         pr_err("rrpc: gc write failed.\n");
347                         rrpc_inflight_laddr_release(rrpc, rqd);
348                         goto finished;
349                 }
350                 wait_for_completion_io(&wait);
351
352                 rrpc_inflight_laddr_release(rrpc, rqd);
353
354                 bio_reset(bio);
355         }
356
357 finished:
358         mempool_free(page, rrpc->page_pool);
359         bio_put(bio);
360
361         if (!bitmap_full(rblk->invalid_pages, nr_pgs_per_blk)) {
362                 pr_err("nvm: failed to garbage collect block\n");
363                 return -EIO;
364         }
365
366         return 0;
367 }
368
369 static void rrpc_block_gc(struct work_struct *work)
370 {
371         struct rrpc_block_gc *gcb = container_of(work, struct rrpc_block_gc,
372                                                                         ws_gc);
373         struct rrpc *rrpc = gcb->rrpc;
374         struct rrpc_block *rblk = gcb->rblk;
375         struct nvm_dev *dev = rrpc->dev;
376
377         pr_debug("nvm: block '%lu' being reclaimed\n", rblk->parent->id);
378
379         if (rrpc_move_valid_pages(rrpc, rblk))
380                 goto done;
381
382         nvm_erase_blk(dev, rblk->parent);
383         rrpc_put_blk(rrpc, rblk);
384 done:
385         mempool_free(gcb, rrpc->gcb_pool);
386 }
387
388 /* the block with highest number of invalid pages, will be in the beginning
389  * of the list
390  */
391 static struct rrpc_block *rblock_max_invalid(struct rrpc_block *ra,
392                                                         struct rrpc_block *rb)
393 {
394         if (ra->nr_invalid_pages == rb->nr_invalid_pages)
395                 return ra;
396
397         return (ra->nr_invalid_pages < rb->nr_invalid_pages) ? rb : ra;
398 }
399
400 /* linearly find the block with highest number of invalid pages
401  * requires lun->lock
402  */
403 static struct rrpc_block *block_prio_find_max(struct rrpc_lun *rlun)
404 {
405         struct list_head *prio_list = &rlun->prio_list;
406         struct rrpc_block *rblock, *max;
407
408         BUG_ON(list_empty(prio_list));
409
410         max = list_first_entry(prio_list, struct rrpc_block, prio);
411         list_for_each_entry(rblock, prio_list, prio)
412                 max = rblock_max_invalid(max, rblock);
413
414         return max;
415 }
416
417 static void rrpc_lun_gc(struct work_struct *work)
418 {
419         struct rrpc_lun *rlun = container_of(work, struct rrpc_lun, ws_gc);
420         struct rrpc *rrpc = rlun->rrpc;
421         struct nvm_lun *lun = rlun->parent;
422         struct rrpc_block_gc *gcb;
423         unsigned int nr_blocks_need;
424
425         nr_blocks_need = rrpc->dev->blks_per_lun / GC_LIMIT_INVERSE;
426
427         if (nr_blocks_need < rrpc->nr_luns)
428                 nr_blocks_need = rrpc->nr_luns;
429
430         spin_lock(&lun->lock);
431         while (nr_blocks_need > lun->nr_free_blocks &&
432                                         !list_empty(&rlun->prio_list)) {
433                 struct rrpc_block *rblock = block_prio_find_max(rlun);
434                 struct nvm_block *block = rblock->parent;
435
436                 if (!rblock->nr_invalid_pages)
437                         break;
438
439                 list_del_init(&rblock->prio);
440
441                 BUG_ON(!block_is_full(rrpc, rblock));
442
443                 pr_debug("rrpc: selected block '%lu' for GC\n", block->id);
444
445                 gcb = mempool_alloc(rrpc->gcb_pool, GFP_ATOMIC);
446                 if (!gcb)
447                         break;
448
449                 gcb->rrpc = rrpc;
450                 gcb->rblk = rblock;
451                 INIT_WORK(&gcb->ws_gc, rrpc_block_gc);
452
453                 queue_work(rrpc->kgc_wq, &gcb->ws_gc);
454
455                 nr_blocks_need--;
456         }
457         spin_unlock(&lun->lock);
458
459         /* TODO: Hint that request queue can be started again */
460 }
461
462 static void rrpc_gc_queue(struct work_struct *work)
463 {
464         struct rrpc_block_gc *gcb = container_of(work, struct rrpc_block_gc,
465                                                                         ws_gc);
466         struct rrpc *rrpc = gcb->rrpc;
467         struct rrpc_block *rblk = gcb->rblk;
468         struct nvm_lun *lun = rblk->parent->lun;
469         struct rrpc_lun *rlun = &rrpc->luns[lun->id - rrpc->lun_offset];
470
471         spin_lock(&rlun->lock);
472         list_add_tail(&rblk->prio, &rlun->prio_list);
473         spin_unlock(&rlun->lock);
474
475         mempool_free(gcb, rrpc->gcb_pool);
476         pr_debug("nvm: block '%lu' is full, allow GC (sched)\n",
477                                                         rblk->parent->id);
478 }
479
480 static const struct block_device_operations rrpc_fops = {
481         .owner          = THIS_MODULE,
482 };
483
484 static struct rrpc_lun *rrpc_get_lun_rr(struct rrpc *rrpc, int is_gc)
485 {
486         unsigned int i;
487         struct rrpc_lun *rlun, *max_free;
488
489         if (!is_gc)
490                 return get_next_lun(rrpc);
491
492         /* during GC, we don't care about RR, instead we want to make
493          * sure that we maintain evenness between the block luns.
494          */
495         max_free = &rrpc->luns[0];
496         /* prevent GC-ing lun from devouring pages of a lun with
497          * little free blocks. We don't take the lock as we only need an
498          * estimate.
499          */
500         rrpc_for_each_lun(rrpc, rlun, i) {
501                 if (rlun->parent->nr_free_blocks >
502                                         max_free->parent->nr_free_blocks)
503                         max_free = rlun;
504         }
505
506         return max_free;
507 }
508
509 static struct rrpc_addr *rrpc_update_map(struct rrpc *rrpc, sector_t laddr,
510                                         struct rrpc_block *rblk, u64 paddr)
511 {
512         struct rrpc_addr *gp;
513         struct rrpc_rev_addr *rev;
514
515         BUG_ON(laddr >= rrpc->nr_pages);
516
517         gp = &rrpc->trans_map[laddr];
518         spin_lock(&rrpc->rev_lock);
519         if (gp->rblk)
520                 rrpc_page_invalidate(rrpc, gp);
521
522         gp->addr = paddr;
523         gp->rblk = rblk;
524
525         rev = &rrpc->rev_trans_map[gp->addr - rrpc->poffset];
526         rev->addr = laddr;
527         spin_unlock(&rrpc->rev_lock);
528
529         return gp;
530 }
531
532 static u64 rrpc_alloc_addr(struct rrpc *rrpc, struct rrpc_block *rblk)
533 {
534         u64 addr = ADDR_EMPTY;
535
536         spin_lock(&rblk->lock);
537         if (block_is_full(rrpc, rblk))
538                 goto out;
539
540         addr = block_to_addr(rrpc, rblk) + rblk->next_page;
541
542         rblk->next_page++;
543 out:
544         spin_unlock(&rblk->lock);
545         return addr;
546 }
547
548 /* Simple round-robin Logical to physical address translation.
549  *
550  * Retrieve the mapping using the active append point. Then update the ap for
551  * the next write to the disk.
552  *
553  * Returns rrpc_addr with the physical address and block. Remember to return to
554  * rrpc->addr_cache when request is finished.
555  */
556 static struct rrpc_addr *rrpc_map_page(struct rrpc *rrpc, sector_t laddr,
557                                                                 int is_gc)
558 {
559         struct rrpc_lun *rlun;
560         struct rrpc_block *rblk;
561         struct nvm_lun *lun;
562         u64 paddr;
563
564         rlun = rrpc_get_lun_rr(rrpc, is_gc);
565         lun = rlun->parent;
566
567         if (!is_gc && lun->nr_free_blocks < rrpc->nr_luns * 4)
568                 return NULL;
569
570         spin_lock(&rlun->lock);
571
572         rblk = rlun->cur;
573 retry:
574         paddr = rrpc_alloc_addr(rrpc, rblk);
575
576         if (paddr == ADDR_EMPTY) {
577                 rblk = rrpc_get_blk(rrpc, rlun, 0);
578                 if (rblk) {
579                         rrpc_set_lun_cur(rlun, rblk);
580                         goto retry;
581                 }
582
583                 if (is_gc) {
584                         /* retry from emergency gc block */
585                         paddr = rrpc_alloc_addr(rrpc, rlun->gc_cur);
586                         if (paddr == ADDR_EMPTY) {
587                                 rblk = rrpc_get_blk(rrpc, rlun, 1);
588                                 if (!rblk) {
589                                         pr_err("rrpc: no more blocks");
590                                         goto err;
591                                 }
592
593                                 rlun->gc_cur = rblk;
594                                 paddr = rrpc_alloc_addr(rrpc, rlun->gc_cur);
595                         }
596                         rblk = rlun->gc_cur;
597                 }
598         }
599
600         spin_unlock(&rlun->lock);
601         return rrpc_update_map(rrpc, laddr, rblk, paddr);
602 err:
603         spin_unlock(&rlun->lock);
604         return NULL;
605 }
606
607 static void rrpc_run_gc(struct rrpc *rrpc, struct rrpc_block *rblk)
608 {
609         struct rrpc_block_gc *gcb;
610
611         gcb = mempool_alloc(rrpc->gcb_pool, GFP_ATOMIC);
612         if (!gcb) {
613                 pr_err("rrpc: unable to queue block for gc.");
614                 return;
615         }
616
617         gcb->rrpc = rrpc;
618         gcb->rblk = rblk;
619
620         INIT_WORK(&gcb->ws_gc, rrpc_gc_queue);
621         queue_work(rrpc->kgc_wq, &gcb->ws_gc);
622 }
623
624 static void rrpc_end_io_write(struct rrpc *rrpc, struct rrpc_rq *rrqd,
625                                                 sector_t laddr, uint8_t npages)
626 {
627         struct rrpc_addr *p;
628         struct rrpc_block *rblk;
629         struct nvm_lun *lun;
630         int cmnt_size, i;
631
632         for (i = 0; i < npages; i++) {
633                 p = &rrpc->trans_map[laddr + i];
634                 rblk = p->rblk;
635                 lun = rblk->parent->lun;
636
637                 cmnt_size = atomic_inc_return(&rblk->data_cmnt_size);
638                 if (unlikely(cmnt_size == rrpc->dev->pgs_per_blk))
639                         rrpc_run_gc(rrpc, rblk);
640         }
641 }
642
643 static int rrpc_end_io(struct nvm_rq *rqd, int error)
644 {
645         struct rrpc *rrpc = container_of(rqd->ins, struct rrpc, instance);
646         struct rrpc_rq *rrqd = nvm_rq_to_pdu(rqd);
647         uint8_t npages = rqd->nr_pages;
648         sector_t laddr = rrpc_get_laddr(rqd->bio) - npages;
649
650         if (bio_data_dir(rqd->bio) == WRITE)
651                 rrpc_end_io_write(rrpc, rrqd, laddr, npages);
652
653         if (rrqd->flags & NVM_IOTYPE_GC)
654                 return 0;
655
656         rrpc_unlock_rq(rrpc, rqd);
657         bio_put(rqd->bio);
658
659         if (npages > 1)
660                 nvm_dev_dma_free(rrpc->dev, rqd->ppa_list, rqd->dma_ppa_list);
661         if (rqd->metadata)
662                 nvm_dev_dma_free(rrpc->dev, rqd->metadata, rqd->dma_metadata);
663
664         mempool_free(rqd, rrpc->rq_pool);
665
666         return 0;
667 }
668
669 static int rrpc_read_ppalist_rq(struct rrpc *rrpc, struct bio *bio,
670                         struct nvm_rq *rqd, unsigned long flags, int npages)
671 {
672         struct rrpc_inflight_rq *r = rrpc_get_inflight_rq(rqd);
673         struct rrpc_addr *gp;
674         sector_t laddr = rrpc_get_laddr(bio);
675         int is_gc = flags & NVM_IOTYPE_GC;
676         int i;
677
678         if (!is_gc && rrpc_lock_rq(rrpc, bio, rqd)) {
679                 nvm_dev_dma_free(rrpc->dev, rqd->ppa_list, rqd->dma_ppa_list);
680                 return NVM_IO_REQUEUE;
681         }
682
683         for (i = 0; i < npages; i++) {
684                 /* We assume that mapping occurs at 4KB granularity */
685                 BUG_ON(!(laddr + i >= 0 && laddr + i < rrpc->nr_pages));
686                 gp = &rrpc->trans_map[laddr + i];
687
688                 if (gp->rblk) {
689                         rqd->ppa_list[i] = rrpc_ppa_to_gaddr(rrpc->dev,
690                                                                 gp->addr);
691                 } else {
692                         BUG_ON(is_gc);
693                         rrpc_unlock_laddr(rrpc, r);
694                         nvm_dev_dma_free(rrpc->dev, rqd->ppa_list,
695                                                         rqd->dma_ppa_list);
696                         return NVM_IO_DONE;
697                 }
698         }
699
700         rqd->opcode = NVM_OP_HBREAD;
701
702         return NVM_IO_OK;
703 }
704
705 static int rrpc_read_rq(struct rrpc *rrpc, struct bio *bio, struct nvm_rq *rqd,
706                                                         unsigned long flags)
707 {
708         struct rrpc_rq *rrqd = nvm_rq_to_pdu(rqd);
709         int is_gc = flags & NVM_IOTYPE_GC;
710         sector_t laddr = rrpc_get_laddr(bio);
711         struct rrpc_addr *gp;
712
713         if (!is_gc && rrpc_lock_rq(rrpc, bio, rqd))
714                 return NVM_IO_REQUEUE;
715
716         BUG_ON(!(laddr >= 0 && laddr < rrpc->nr_pages));
717         gp = &rrpc->trans_map[laddr];
718
719         if (gp->rblk) {
720                 rqd->ppa_addr = rrpc_ppa_to_gaddr(rrpc->dev, gp->addr);
721         } else {
722                 BUG_ON(is_gc);
723                 rrpc_unlock_rq(rrpc, rqd);
724                 return NVM_IO_DONE;
725         }
726
727         rqd->opcode = NVM_OP_HBREAD;
728         rrqd->addr = gp;
729
730         return NVM_IO_OK;
731 }
732
733 static int rrpc_write_ppalist_rq(struct rrpc *rrpc, struct bio *bio,
734                         struct nvm_rq *rqd, unsigned long flags, int npages)
735 {
736         struct rrpc_inflight_rq *r = rrpc_get_inflight_rq(rqd);
737         struct rrpc_addr *p;
738         sector_t laddr = rrpc_get_laddr(bio);
739         int is_gc = flags & NVM_IOTYPE_GC;
740         int i;
741
742         if (!is_gc && rrpc_lock_rq(rrpc, bio, rqd)) {
743                 nvm_dev_dma_free(rrpc->dev, rqd->ppa_list, rqd->dma_ppa_list);
744                 return NVM_IO_REQUEUE;
745         }
746
747         for (i = 0; i < npages; i++) {
748                 /* We assume that mapping occurs at 4KB granularity */
749                 p = rrpc_map_page(rrpc, laddr + i, is_gc);
750                 if (!p) {
751                         BUG_ON(is_gc);
752                         rrpc_unlock_laddr(rrpc, r);
753                         nvm_dev_dma_free(rrpc->dev, rqd->ppa_list,
754                                                         rqd->dma_ppa_list);
755                         rrpc_gc_kick(rrpc);
756                         return NVM_IO_REQUEUE;
757                 }
758
759                 rqd->ppa_list[i] = rrpc_ppa_to_gaddr(rrpc->dev,
760                                                                 p->addr);
761         }
762
763         rqd->opcode = NVM_OP_HBWRITE;
764
765         return NVM_IO_OK;
766 }
767
768 static int rrpc_write_rq(struct rrpc *rrpc, struct bio *bio,
769                                 struct nvm_rq *rqd, unsigned long flags)
770 {
771         struct rrpc_rq *rrqd = nvm_rq_to_pdu(rqd);
772         struct rrpc_addr *p;
773         int is_gc = flags & NVM_IOTYPE_GC;
774         sector_t laddr = rrpc_get_laddr(bio);
775
776         if (!is_gc && rrpc_lock_rq(rrpc, bio, rqd))
777                 return NVM_IO_REQUEUE;
778
779         p = rrpc_map_page(rrpc, laddr, is_gc);
780         if (!p) {
781                 BUG_ON(is_gc);
782                 rrpc_unlock_rq(rrpc, rqd);
783                 rrpc_gc_kick(rrpc);
784                 return NVM_IO_REQUEUE;
785         }
786
787         rqd->ppa_addr = rrpc_ppa_to_gaddr(rrpc->dev, p->addr);
788         rqd->opcode = NVM_OP_HBWRITE;
789         rrqd->addr = p;
790
791         return NVM_IO_OK;
792 }
793
794 static int rrpc_setup_rq(struct rrpc *rrpc, struct bio *bio,
795                         struct nvm_rq *rqd, unsigned long flags, uint8_t npages)
796 {
797         if (npages > 1) {
798                 rqd->ppa_list = nvm_dev_dma_alloc(rrpc->dev, GFP_KERNEL,
799                                                         &rqd->dma_ppa_list);
800                 if (!rqd->ppa_list) {
801                         pr_err("rrpc: not able to allocate ppa list\n");
802                         return NVM_IO_ERR;
803                 }
804
805                 if (bio_rw(bio) == WRITE)
806                         return rrpc_write_ppalist_rq(rrpc, bio, rqd, flags,
807                                                                         npages);
808
809                 return rrpc_read_ppalist_rq(rrpc, bio, rqd, flags, npages);
810         }
811
812         if (bio_rw(bio) == WRITE)
813                 return rrpc_write_rq(rrpc, bio, rqd, flags);
814
815         return rrpc_read_rq(rrpc, bio, rqd, flags);
816 }
817
818 static int rrpc_submit_io(struct rrpc *rrpc, struct bio *bio,
819                                 struct nvm_rq *rqd, unsigned long flags)
820 {
821         int err;
822         struct rrpc_rq *rrq = nvm_rq_to_pdu(rqd);
823         uint8_t nr_pages = rrpc_get_pages(bio);
824         int bio_size = bio_sectors(bio) << 9;
825
826         if (bio_size < rrpc->dev->sec_size)
827                 return NVM_IO_ERR;
828         else if (bio_size > rrpc->dev->max_rq_size)
829                 return NVM_IO_ERR;
830
831         err = rrpc_setup_rq(rrpc, bio, rqd, flags, nr_pages);
832         if (err)
833                 return err;
834
835         bio_get(bio);
836         rqd->bio = bio;
837         rqd->ins = &rrpc->instance;
838         rqd->nr_pages = nr_pages;
839         rrq->flags = flags;
840
841         err = nvm_submit_io(rrpc->dev, rqd);
842         if (err) {
843                 pr_err("rrpc: I/O submission failed: %d\n", err);
844                 return NVM_IO_ERR;
845         }
846
847         return NVM_IO_OK;
848 }
849
850 static blk_qc_t rrpc_make_rq(struct request_queue *q, struct bio *bio)
851 {
852         struct rrpc *rrpc = q->queuedata;
853         struct nvm_rq *rqd;
854         int err;
855
856         if (bio->bi_rw & REQ_DISCARD) {
857                 rrpc_discard(rrpc, bio);
858                 return BLK_QC_T_NONE;
859         }
860
861         rqd = mempool_alloc(rrpc->rq_pool, GFP_KERNEL);
862         if (!rqd) {
863                 pr_err_ratelimited("rrpc: not able to queue bio.");
864                 bio_io_error(bio);
865                 return BLK_QC_T_NONE;
866         }
867         memset(rqd, 0, sizeof(struct nvm_rq));
868
869         err = rrpc_submit_io(rrpc, bio, rqd, NVM_IOTYPE_NONE);
870         switch (err) {
871         case NVM_IO_OK:
872                 return BLK_QC_T_NONE;
873         case NVM_IO_ERR:
874                 bio_io_error(bio);
875                 break;
876         case NVM_IO_DONE:
877                 bio_endio(bio);
878                 break;
879         case NVM_IO_REQUEUE:
880                 spin_lock(&rrpc->bio_lock);
881                 bio_list_add(&rrpc->requeue_bios, bio);
882                 spin_unlock(&rrpc->bio_lock);
883                 queue_work(rrpc->kgc_wq, &rrpc->ws_requeue);
884                 break;
885         }
886
887         mempool_free(rqd, rrpc->rq_pool);
888         return BLK_QC_T_NONE;
889 }
890
891 static void rrpc_requeue(struct work_struct *work)
892 {
893         struct rrpc *rrpc = container_of(work, struct rrpc, ws_requeue);
894         struct bio_list bios;
895         struct bio *bio;
896
897         bio_list_init(&bios);
898
899         spin_lock(&rrpc->bio_lock);
900         bio_list_merge(&bios, &rrpc->requeue_bios);
901         bio_list_init(&rrpc->requeue_bios);
902         spin_unlock(&rrpc->bio_lock);
903
904         while ((bio = bio_list_pop(&bios)))
905                 rrpc_make_rq(rrpc->disk->queue, bio);
906 }
907
908 static void rrpc_gc_free(struct rrpc *rrpc)
909 {
910         struct rrpc_lun *rlun;
911         int i;
912
913         if (rrpc->krqd_wq)
914                 destroy_workqueue(rrpc->krqd_wq);
915
916         if (rrpc->kgc_wq)
917                 destroy_workqueue(rrpc->kgc_wq);
918
919         if (!rrpc->luns)
920                 return;
921
922         for (i = 0; i < rrpc->nr_luns; i++) {
923                 rlun = &rrpc->luns[i];
924
925                 if (!rlun->blocks)
926                         break;
927                 vfree(rlun->blocks);
928         }
929 }
930
931 static int rrpc_gc_init(struct rrpc *rrpc)
932 {
933         rrpc->krqd_wq = alloc_workqueue("rrpc-lun", WQ_MEM_RECLAIM|WQ_UNBOUND,
934                                                                 rrpc->nr_luns);
935         if (!rrpc->krqd_wq)
936                 return -ENOMEM;
937
938         rrpc->kgc_wq = alloc_workqueue("rrpc-bg", WQ_MEM_RECLAIM, 1);
939         if (!rrpc->kgc_wq)
940                 return -ENOMEM;
941
942         setup_timer(&rrpc->gc_timer, rrpc_gc_timer, (unsigned long)rrpc);
943
944         return 0;
945 }
946
947 static void rrpc_map_free(struct rrpc *rrpc)
948 {
949         vfree(rrpc->rev_trans_map);
950         vfree(rrpc->trans_map);
951 }
952
953 static int rrpc_l2p_update(u64 slba, u32 nlb, __le64 *entries, void *private)
954 {
955         struct rrpc *rrpc = (struct rrpc *)private;
956         struct nvm_dev *dev = rrpc->dev;
957         struct rrpc_addr *addr = rrpc->trans_map + slba;
958         struct rrpc_rev_addr *raddr = rrpc->rev_trans_map;
959         sector_t max_pages = dev->total_pages * (dev->sec_size >> 9);
960         u64 elba = slba + nlb;
961         u64 i;
962
963         if (unlikely(elba > dev->total_pages)) {
964                 pr_err("nvm: L2P data from device is out of bounds!\n");
965                 return -EINVAL;
966         }
967
968         for (i = 0; i < nlb; i++) {
969                 u64 pba = le64_to_cpu(entries[i]);
970                 /* LNVM treats address-spaces as silos, LBA and PBA are
971                  * equally large and zero-indexed.
972                  */
973                 if (unlikely(pba >= max_pages && pba != U64_MAX)) {
974                         pr_err("nvm: L2P data entry is out of bounds!\n");
975                         return -EINVAL;
976                 }
977
978                 /* Address zero is a special one. The first page on a disk is
979                  * protected. As it often holds internal device boot
980                  * information.
981                  */
982                 if (!pba)
983                         continue;
984
985                 addr[i].addr = pba;
986                 raddr[pba].addr = slba + i;
987         }
988
989         return 0;
990 }
991
992 static int rrpc_map_init(struct rrpc *rrpc)
993 {
994         struct nvm_dev *dev = rrpc->dev;
995         sector_t i;
996         int ret;
997
998         rrpc->trans_map = vzalloc(sizeof(struct rrpc_addr) * rrpc->nr_pages);
999         if (!rrpc->trans_map)
1000                 return -ENOMEM;
1001
1002         rrpc->rev_trans_map = vmalloc(sizeof(struct rrpc_rev_addr)
1003                                                         * rrpc->nr_pages);
1004         if (!rrpc->rev_trans_map)
1005                 return -ENOMEM;
1006
1007         for (i = 0; i < rrpc->nr_pages; i++) {
1008                 struct rrpc_addr *p = &rrpc->trans_map[i];
1009                 struct rrpc_rev_addr *r = &rrpc->rev_trans_map[i];
1010
1011                 p->addr = ADDR_EMPTY;
1012                 r->addr = ADDR_EMPTY;
1013         }
1014
1015         if (!dev->ops->get_l2p_tbl)
1016                 return 0;
1017
1018         /* Bring up the mapping table from device */
1019         ret = dev->ops->get_l2p_tbl(dev, 0, dev->total_pages,
1020                                                         rrpc_l2p_update, rrpc);
1021         if (ret) {
1022                 pr_err("nvm: rrpc: could not read L2P table.\n");
1023                 return -EINVAL;
1024         }
1025
1026         return 0;
1027 }
1028
1029
1030 /* Minimum pages needed within a lun */
1031 #define PAGE_POOL_SIZE 16
1032 #define ADDR_POOL_SIZE 64
1033
1034 static int rrpc_core_init(struct rrpc *rrpc)
1035 {
1036         down_write(&rrpc_lock);
1037         if (!rrpc_gcb_cache) {
1038                 rrpc_gcb_cache = kmem_cache_create("rrpc_gcb",
1039                                 sizeof(struct rrpc_block_gc), 0, 0, NULL);
1040                 if (!rrpc_gcb_cache) {
1041                         up_write(&rrpc_lock);
1042                         return -ENOMEM;
1043                 }
1044
1045                 rrpc_rq_cache = kmem_cache_create("rrpc_rq",
1046                                 sizeof(struct nvm_rq) + sizeof(struct rrpc_rq),
1047                                 0, 0, NULL);
1048                 if (!rrpc_rq_cache) {
1049                         kmem_cache_destroy(rrpc_gcb_cache);
1050                         up_write(&rrpc_lock);
1051                         return -ENOMEM;
1052                 }
1053         }
1054         up_write(&rrpc_lock);
1055
1056         rrpc->page_pool = mempool_create_page_pool(PAGE_POOL_SIZE, 0);
1057         if (!rrpc->page_pool)
1058                 return -ENOMEM;
1059
1060         rrpc->gcb_pool = mempool_create_slab_pool(rrpc->dev->nr_luns,
1061                                                                 rrpc_gcb_cache);
1062         if (!rrpc->gcb_pool)
1063                 return -ENOMEM;
1064
1065         rrpc->rq_pool = mempool_create_slab_pool(64, rrpc_rq_cache);
1066         if (!rrpc->rq_pool)
1067                 return -ENOMEM;
1068
1069         spin_lock_init(&rrpc->inflights.lock);
1070         INIT_LIST_HEAD(&rrpc->inflights.reqs);
1071
1072         return 0;
1073 }
1074
1075 static void rrpc_core_free(struct rrpc *rrpc)
1076 {
1077         mempool_destroy(rrpc->page_pool);
1078         mempool_destroy(rrpc->gcb_pool);
1079         mempool_destroy(rrpc->rq_pool);
1080 }
1081
1082 static void rrpc_luns_free(struct rrpc *rrpc)
1083 {
1084         kfree(rrpc->luns);
1085 }
1086
1087 static int rrpc_luns_init(struct rrpc *rrpc, int lun_begin, int lun_end)
1088 {
1089         struct nvm_dev *dev = rrpc->dev;
1090         struct rrpc_lun *rlun;
1091         int i, j;
1092
1093         spin_lock_init(&rrpc->rev_lock);
1094
1095         rrpc->luns = kcalloc(rrpc->nr_luns, sizeof(struct rrpc_lun),
1096                                                                 GFP_KERNEL);
1097         if (!rrpc->luns)
1098                 return -ENOMEM;
1099
1100         /* 1:1 mapping */
1101         for (i = 0; i < rrpc->nr_luns; i++) {
1102                 struct nvm_lun *lun = dev->mt->get_lun(dev, lun_begin + i);
1103
1104                 if (dev->pgs_per_blk >
1105                                 MAX_INVALID_PAGES_STORAGE * BITS_PER_LONG) {
1106                         pr_err("rrpc: number of pages per block too high.");
1107                         goto err;
1108                 }
1109
1110                 rlun = &rrpc->luns[i];
1111                 rlun->rrpc = rrpc;
1112                 rlun->parent = lun;
1113                 INIT_LIST_HEAD(&rlun->prio_list);
1114                 INIT_WORK(&rlun->ws_gc, rrpc_lun_gc);
1115                 spin_lock_init(&rlun->lock);
1116
1117                 rrpc->total_blocks += dev->blks_per_lun;
1118                 rrpc->nr_pages += dev->sec_per_lun;
1119
1120                 rlun->blocks = vzalloc(sizeof(struct rrpc_block) *
1121                                                 rrpc->dev->blks_per_lun);
1122                 if (!rlun->blocks)
1123                         goto err;
1124
1125                 for (j = 0; j < rrpc->dev->blks_per_lun; j++) {
1126                         struct rrpc_block *rblk = &rlun->blocks[j];
1127                         struct nvm_block *blk = &lun->blocks[j];
1128
1129                         rblk->parent = blk;
1130                         INIT_LIST_HEAD(&rblk->prio);
1131                         spin_lock_init(&rblk->lock);
1132                 }
1133         }
1134
1135         return 0;
1136 err:
1137         return -ENOMEM;
1138 }
1139
1140 static void rrpc_free(struct rrpc *rrpc)
1141 {
1142         rrpc_gc_free(rrpc);
1143         rrpc_map_free(rrpc);
1144         rrpc_core_free(rrpc);
1145         rrpc_luns_free(rrpc);
1146
1147         kfree(rrpc);
1148 }
1149
1150 static void rrpc_exit(void *private)
1151 {
1152         struct rrpc *rrpc = private;
1153
1154         del_timer(&rrpc->gc_timer);
1155
1156         flush_workqueue(rrpc->krqd_wq);
1157         flush_workqueue(rrpc->kgc_wq);
1158
1159         rrpc_free(rrpc);
1160 }
1161
1162 static sector_t rrpc_capacity(void *private)
1163 {
1164         struct rrpc *rrpc = private;
1165         struct nvm_dev *dev = rrpc->dev;
1166         sector_t reserved, provisioned;
1167
1168         /* cur, gc, and two emergency blocks for each lun */
1169         reserved = rrpc->nr_luns * dev->max_pages_per_blk * 4;
1170         provisioned = rrpc->nr_pages - reserved;
1171
1172         if (reserved > rrpc->nr_pages) {
1173                 pr_err("rrpc: not enough space available to expose storage.\n");
1174                 return 0;
1175         }
1176
1177         sector_div(provisioned, 10);
1178         return provisioned * 9 * NR_PHY_IN_LOG;
1179 }
1180
1181 /*
1182  * Looks up the logical address from reverse trans map and check if its valid by
1183  * comparing the logical to physical address with the physical address.
1184  * Returns 0 on free, otherwise 1 if in use
1185  */
1186 static void rrpc_block_map_update(struct rrpc *rrpc, struct rrpc_block *rblk)
1187 {
1188         struct nvm_dev *dev = rrpc->dev;
1189         int offset;
1190         struct rrpc_addr *laddr;
1191         u64 paddr, pladdr;
1192
1193         for (offset = 0; offset < dev->pgs_per_blk; offset++) {
1194                 paddr = block_to_addr(rrpc, rblk) + offset;
1195
1196                 pladdr = rrpc->rev_trans_map[paddr].addr;
1197                 if (pladdr == ADDR_EMPTY)
1198                         continue;
1199
1200                 laddr = &rrpc->trans_map[pladdr];
1201
1202                 if (paddr == laddr->addr) {
1203                         laddr->rblk = rblk;
1204                 } else {
1205                         set_bit(offset, rblk->invalid_pages);
1206                         rblk->nr_invalid_pages++;
1207                 }
1208         }
1209 }
1210
1211 static int rrpc_blocks_init(struct rrpc *rrpc)
1212 {
1213         struct rrpc_lun *rlun;
1214         struct rrpc_block *rblk;
1215         int lun_iter, blk_iter;
1216
1217         for (lun_iter = 0; lun_iter < rrpc->nr_luns; lun_iter++) {
1218                 rlun = &rrpc->luns[lun_iter];
1219
1220                 for (blk_iter = 0; blk_iter < rrpc->dev->blks_per_lun;
1221                                                                 blk_iter++) {
1222                         rblk = &rlun->blocks[blk_iter];
1223                         rrpc_block_map_update(rrpc, rblk);
1224                 }
1225         }
1226
1227         return 0;
1228 }
1229
1230 static int rrpc_luns_configure(struct rrpc *rrpc)
1231 {
1232         struct rrpc_lun *rlun;
1233         struct rrpc_block *rblk;
1234         int i;
1235
1236         for (i = 0; i < rrpc->nr_luns; i++) {
1237                 rlun = &rrpc->luns[i];
1238
1239                 rblk = rrpc_get_blk(rrpc, rlun, 0);
1240                 if (!rblk)
1241                         goto err;
1242
1243                 rrpc_set_lun_cur(rlun, rblk);
1244
1245                 /* Emergency gc block */
1246                 rblk = rrpc_get_blk(rrpc, rlun, 1);
1247                 if (!rblk)
1248                         goto err;
1249                 rlun->gc_cur = rblk;
1250         }
1251
1252         return 0;
1253 err:
1254         rrpc_put_blks(rrpc);
1255         return -EINVAL;
1256 }
1257
1258 static struct nvm_tgt_type tt_rrpc;
1259
1260 static void *rrpc_init(struct nvm_dev *dev, struct gendisk *tdisk,
1261                                                 int lun_begin, int lun_end)
1262 {
1263         struct request_queue *bqueue = dev->q;
1264         struct request_queue *tqueue = tdisk->queue;
1265         struct rrpc *rrpc;
1266         int ret;
1267
1268         if (!(dev->identity.dom & NVM_RSP_L2P)) {
1269                 pr_err("nvm: rrpc: device does not support l2p (%x)\n",
1270                                                         dev->identity.dom);
1271                 return ERR_PTR(-EINVAL);
1272         }
1273
1274         rrpc = kzalloc(sizeof(struct rrpc), GFP_KERNEL);
1275         if (!rrpc)
1276                 return ERR_PTR(-ENOMEM);
1277
1278         rrpc->instance.tt = &tt_rrpc;
1279         rrpc->dev = dev;
1280         rrpc->disk = tdisk;
1281
1282         bio_list_init(&rrpc->requeue_bios);
1283         spin_lock_init(&rrpc->bio_lock);
1284         INIT_WORK(&rrpc->ws_requeue, rrpc_requeue);
1285
1286         rrpc->nr_luns = lun_end - lun_begin + 1;
1287
1288         /* simple round-robin strategy */
1289         atomic_set(&rrpc->next_lun, -1);
1290
1291         ret = rrpc_luns_init(rrpc, lun_begin, lun_end);
1292         if (ret) {
1293                 pr_err("nvm: rrpc: could not initialize luns\n");
1294                 goto err;
1295         }
1296
1297         rrpc->poffset = dev->sec_per_lun * lun_begin;
1298         rrpc->lun_offset = lun_begin;
1299
1300         ret = rrpc_core_init(rrpc);
1301         if (ret) {
1302                 pr_err("nvm: rrpc: could not initialize core\n");
1303                 goto err;
1304         }
1305
1306         ret = rrpc_map_init(rrpc);
1307         if (ret) {
1308                 pr_err("nvm: rrpc: could not initialize maps\n");
1309                 goto err;
1310         }
1311
1312         ret = rrpc_blocks_init(rrpc);
1313         if (ret) {
1314                 pr_err("nvm: rrpc: could not initialize state for blocks\n");
1315                 goto err;
1316         }
1317
1318         ret = rrpc_luns_configure(rrpc);
1319         if (ret) {
1320                 pr_err("nvm: rrpc: not enough blocks available in LUNs.\n");
1321                 goto err;
1322         }
1323
1324         ret = rrpc_gc_init(rrpc);
1325         if (ret) {
1326                 pr_err("nvm: rrpc: could not initialize gc\n");
1327                 goto err;
1328         }
1329
1330         /* inherit the size from the underlying device */
1331         blk_queue_logical_block_size(tqueue, queue_physical_block_size(bqueue));
1332         blk_queue_max_hw_sectors(tqueue, queue_max_hw_sectors(bqueue));
1333
1334         pr_info("nvm: rrpc initialized with %u luns and %llu pages.\n",
1335                         rrpc->nr_luns, (unsigned long long)rrpc->nr_pages);
1336
1337         mod_timer(&rrpc->gc_timer, jiffies + msecs_to_jiffies(10));
1338
1339         return rrpc;
1340 err:
1341         rrpc_free(rrpc);
1342         return ERR_PTR(ret);
1343 }
1344
1345 /* round robin, page-based FTL, and cost-based GC */
1346 static struct nvm_tgt_type tt_rrpc = {
1347         .name           = "rrpc",
1348         .version        = {1, 0, 0},
1349
1350         .make_rq        = rrpc_make_rq,
1351         .capacity       = rrpc_capacity,
1352         .end_io         = rrpc_end_io,
1353
1354         .init           = rrpc_init,
1355         .exit           = rrpc_exit,
1356 };
1357
1358 static int __init rrpc_module_init(void)
1359 {
1360         return nvm_register_target(&tt_rrpc);
1361 }
1362
1363 static void rrpc_module_exit(void)
1364 {
1365         nvm_unregister_target(&tt_rrpc);
1366 }
1367
1368 module_init(rrpc_module_init);
1369 module_exit(rrpc_module_exit);
1370 MODULE_LICENSE("GPL v2");
1371 MODULE_DESCRIPTION("Block-Device Target for Open-Channel SSDs");