soc: rockchip: add cpuinfo support
[firefly-linux-kernel-4.4.55.git] / drivers / hv / hv_balloon.c
1 /*
2  * Copyright (c) 2012, Microsoft Corporation.
3  *
4  * Author:
5  *   K. Y. Srinivasan <kys@microsoft.com>
6  *
7  * This program is free software; you can redistribute it and/or modify it
8  * under the terms of the GNU General Public License version 2 as published
9  * by the Free Software Foundation.
10  *
11  * This program is distributed in the hope that it will be useful, but
12  * WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
14  * NON INFRINGEMENT.  See the GNU General Public License for more
15  * details.
16  *
17  */
18
19 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
20
21 #include <linux/kernel.h>
22 #include <linux/jiffies.h>
23 #include <linux/mman.h>
24 #include <linux/delay.h>
25 #include <linux/init.h>
26 #include <linux/module.h>
27 #include <linux/slab.h>
28 #include <linux/kthread.h>
29 #include <linux/completion.h>
30 #include <linux/memory_hotplug.h>
31 #include <linux/memory.h>
32 #include <linux/notifier.h>
33 #include <linux/percpu_counter.h>
34
35 #include <linux/hyperv.h>
36
37 /*
38  * We begin with definitions supporting the Dynamic Memory protocol
39  * with the host.
40  *
41  * Begin protocol definitions.
42  */
43
44
45
46 /*
47  * Protocol versions. The low word is the minor version, the high word the major
48  * version.
49  *
50  * History:
51  * Initial version 1.0
52  * Changed to 0.1 on 2009/03/25
53  * Changes to 0.2 on 2009/05/14
54  * Changes to 0.3 on 2009/12/03
55  * Changed to 1.0 on 2011/04/05
56  */
57
58 #define DYNMEM_MAKE_VERSION(Major, Minor) ((__u32)(((Major) << 16) | (Minor)))
59 #define DYNMEM_MAJOR_VERSION(Version) ((__u32)(Version) >> 16)
60 #define DYNMEM_MINOR_VERSION(Version) ((__u32)(Version) & 0xff)
61
62 enum {
63         DYNMEM_PROTOCOL_VERSION_1 = DYNMEM_MAKE_VERSION(0, 3),
64         DYNMEM_PROTOCOL_VERSION_2 = DYNMEM_MAKE_VERSION(1, 0),
65         DYNMEM_PROTOCOL_VERSION_3 = DYNMEM_MAKE_VERSION(2, 0),
66
67         DYNMEM_PROTOCOL_VERSION_WIN7 = DYNMEM_PROTOCOL_VERSION_1,
68         DYNMEM_PROTOCOL_VERSION_WIN8 = DYNMEM_PROTOCOL_VERSION_2,
69         DYNMEM_PROTOCOL_VERSION_WIN10 = DYNMEM_PROTOCOL_VERSION_3,
70
71         DYNMEM_PROTOCOL_VERSION_CURRENT = DYNMEM_PROTOCOL_VERSION_WIN10
72 };
73
74
75
76 /*
77  * Message Types
78  */
79
80 enum dm_message_type {
81         /*
82          * Version 0.3
83          */
84         DM_ERROR                        = 0,
85         DM_VERSION_REQUEST              = 1,
86         DM_VERSION_RESPONSE             = 2,
87         DM_CAPABILITIES_REPORT          = 3,
88         DM_CAPABILITIES_RESPONSE        = 4,
89         DM_STATUS_REPORT                = 5,
90         DM_BALLOON_REQUEST              = 6,
91         DM_BALLOON_RESPONSE             = 7,
92         DM_UNBALLOON_REQUEST            = 8,
93         DM_UNBALLOON_RESPONSE           = 9,
94         DM_MEM_HOT_ADD_REQUEST          = 10,
95         DM_MEM_HOT_ADD_RESPONSE         = 11,
96         DM_VERSION_03_MAX               = 11,
97         /*
98          * Version 1.0.
99          */
100         DM_INFO_MESSAGE                 = 12,
101         DM_VERSION_1_MAX                = 12
102 };
103
104
105 /*
106  * Structures defining the dynamic memory management
107  * protocol.
108  */
109
110 union dm_version {
111         struct {
112                 __u16 minor_version;
113                 __u16 major_version;
114         };
115         __u32 version;
116 } __packed;
117
118
119 union dm_caps {
120         struct {
121                 __u64 balloon:1;
122                 __u64 hot_add:1;
123                 /*
124                  * To support guests that may have alignment
125                  * limitations on hot-add, the guest can specify
126                  * its alignment requirements; a value of n
127                  * represents an alignment of 2^n in mega bytes.
128                  */
129                 __u64 hot_add_alignment:4;
130                 __u64 reservedz:58;
131         } cap_bits;
132         __u64 caps;
133 } __packed;
134
135 union dm_mem_page_range {
136         struct  {
137                 /*
138                  * The PFN number of the first page in the range.
139                  * 40 bits is the architectural limit of a PFN
140                  * number for AMD64.
141                  */
142                 __u64 start_page:40;
143                 /*
144                  * The number of pages in the range.
145                  */
146                 __u64 page_cnt:24;
147         } finfo;
148         __u64  page_range;
149 } __packed;
150
151
152
153 /*
154  * The header for all dynamic memory messages:
155  *
156  * type: Type of the message.
157  * size: Size of the message in bytes; including the header.
158  * trans_id: The guest is responsible for manufacturing this ID.
159  */
160
161 struct dm_header {
162         __u16 type;
163         __u16 size;
164         __u32 trans_id;
165 } __packed;
166
167 /*
168  * A generic message format for dynamic memory.
169  * Specific message formats are defined later in the file.
170  */
171
172 struct dm_message {
173         struct dm_header hdr;
174         __u8 data[]; /* enclosed message */
175 } __packed;
176
177
178 /*
179  * Specific message types supporting the dynamic memory protocol.
180  */
181
182 /*
183  * Version negotiation message. Sent from the guest to the host.
184  * The guest is free to try different versions until the host
185  * accepts the version.
186  *
187  * dm_version: The protocol version requested.
188  * is_last_attempt: If TRUE, this is the last version guest will request.
189  * reservedz: Reserved field, set to zero.
190  */
191
192 struct dm_version_request {
193         struct dm_header hdr;
194         union dm_version version;
195         __u32 is_last_attempt:1;
196         __u32 reservedz:31;
197 } __packed;
198
199 /*
200  * Version response message; Host to Guest and indicates
201  * if the host has accepted the version sent by the guest.
202  *
203  * is_accepted: If TRUE, host has accepted the version and the guest
204  * should proceed to the next stage of the protocol. FALSE indicates that
205  * guest should re-try with a different version.
206  *
207  * reservedz: Reserved field, set to zero.
208  */
209
210 struct dm_version_response {
211         struct dm_header hdr;
212         __u64 is_accepted:1;
213         __u64 reservedz:63;
214 } __packed;
215
216 /*
217  * Message reporting capabilities. This is sent from the guest to the
218  * host.
219  */
220
221 struct dm_capabilities {
222         struct dm_header hdr;
223         union dm_caps caps;
224         __u64 min_page_cnt;
225         __u64 max_page_number;
226 } __packed;
227
228 /*
229  * Response to the capabilities message. This is sent from the host to the
230  * guest. This message notifies if the host has accepted the guest's
231  * capabilities. If the host has not accepted, the guest must shutdown
232  * the service.
233  *
234  * is_accepted: Indicates if the host has accepted guest's capabilities.
235  * reservedz: Must be 0.
236  */
237
238 struct dm_capabilities_resp_msg {
239         struct dm_header hdr;
240         __u64 is_accepted:1;
241         __u64 reservedz:63;
242 } __packed;
243
244 /*
245  * This message is used to report memory pressure from the guest.
246  * This message is not part of any transaction and there is no
247  * response to this message.
248  *
249  * num_avail: Available memory in pages.
250  * num_committed: Committed memory in pages.
251  * page_file_size: The accumulated size of all page files
252  *                 in the system in pages.
253  * zero_free: The nunber of zero and free pages.
254  * page_file_writes: The writes to the page file in pages.
255  * io_diff: An indicator of file cache efficiency or page file activity,
256  *          calculated as File Cache Page Fault Count - Page Read Count.
257  *          This value is in pages.
258  *
259  * Some of these metrics are Windows specific and fortunately
260  * the algorithm on the host side that computes the guest memory
261  * pressure only uses num_committed value.
262  */
263
264 struct dm_status {
265         struct dm_header hdr;
266         __u64 num_avail;
267         __u64 num_committed;
268         __u64 page_file_size;
269         __u64 zero_free;
270         __u32 page_file_writes;
271         __u32 io_diff;
272 } __packed;
273
274
275 /*
276  * Message to ask the guest to allocate memory - balloon up message.
277  * This message is sent from the host to the guest. The guest may not be
278  * able to allocate as much memory as requested.
279  *
280  * num_pages: number of pages to allocate.
281  */
282
283 struct dm_balloon {
284         struct dm_header hdr;
285         __u32 num_pages;
286         __u32 reservedz;
287 } __packed;
288
289
290 /*
291  * Balloon response message; this message is sent from the guest
292  * to the host in response to the balloon message.
293  *
294  * reservedz: Reserved; must be set to zero.
295  * more_pages: If FALSE, this is the last message of the transaction.
296  * if TRUE there will atleast one more message from the guest.
297  *
298  * range_count: The number of ranges in the range array.
299  *
300  * range_array: An array of page ranges returned to the host.
301  *
302  */
303
304 struct dm_balloon_response {
305         struct dm_header hdr;
306         __u32 reservedz;
307         __u32 more_pages:1;
308         __u32 range_count:31;
309         union dm_mem_page_range range_array[];
310 } __packed;
311
312 /*
313  * Un-balloon message; this message is sent from the host
314  * to the guest to give guest more memory.
315  *
316  * more_pages: If FALSE, this is the last message of the transaction.
317  * if TRUE there will atleast one more message from the guest.
318  *
319  * reservedz: Reserved; must be set to zero.
320  *
321  * range_count: The number of ranges in the range array.
322  *
323  * range_array: An array of page ranges returned to the host.
324  *
325  */
326
327 struct dm_unballoon_request {
328         struct dm_header hdr;
329         __u32 more_pages:1;
330         __u32 reservedz:31;
331         __u32 range_count;
332         union dm_mem_page_range range_array[];
333 } __packed;
334
335 /*
336  * Un-balloon response message; this message is sent from the guest
337  * to the host in response to an unballoon request.
338  *
339  */
340
341 struct dm_unballoon_response {
342         struct dm_header hdr;
343 } __packed;
344
345
346 /*
347  * Hot add request message. Message sent from the host to the guest.
348  *
349  * mem_range: Memory range to hot add.
350  *
351  * On Linux we currently don't support this since we cannot hot add
352  * arbitrary granularity of memory.
353  */
354
355 struct dm_hot_add {
356         struct dm_header hdr;
357         union dm_mem_page_range range;
358 } __packed;
359
360 /*
361  * Hot add response message.
362  * This message is sent by the guest to report the status of a hot add request.
363  * If page_count is less than the requested page count, then the host should
364  * assume all further hot add requests will fail, since this indicates that
365  * the guest has hit an upper physical memory barrier.
366  *
367  * Hot adds may also fail due to low resources; in this case, the guest must
368  * not complete this message until the hot add can succeed, and the host must
369  * not send a new hot add request until the response is sent.
370  * If VSC fails to hot add memory DYNMEM_NUMBER_OF_UNSUCCESSFUL_HOTADD_ATTEMPTS
371  * times it fails the request.
372  *
373  *
374  * page_count: number of pages that were successfully hot added.
375  *
376  * result: result of the operation 1: success, 0: failure.
377  *
378  */
379
380 struct dm_hot_add_response {
381         struct dm_header hdr;
382         __u32 page_count;
383         __u32 result;
384 } __packed;
385
386 /*
387  * Types of information sent from host to the guest.
388  */
389
390 enum dm_info_type {
391         INFO_TYPE_MAX_PAGE_CNT = 0,
392         MAX_INFO_TYPE
393 };
394
395
396 /*
397  * Header for the information message.
398  */
399
400 struct dm_info_header {
401         enum dm_info_type type;
402         __u32 data_size;
403 } __packed;
404
405 /*
406  * This message is sent from the host to the guest to pass
407  * some relevant information (win8 addition).
408  *
409  * reserved: no used.
410  * info_size: size of the information blob.
411  * info: information blob.
412  */
413
414 struct dm_info_msg {
415         struct dm_header hdr;
416         __u32 reserved;
417         __u32 info_size;
418         __u8  info[];
419 };
420
421 /*
422  * End protocol definitions.
423  */
424
425 /*
426  * State to manage hot adding memory into the guest.
427  * The range start_pfn : end_pfn specifies the range
428  * that the host has asked us to hot add. The range
429  * start_pfn : ha_end_pfn specifies the range that we have
430  * currently hot added. We hot add in multiples of 128M
431  * chunks; it is possible that we may not be able to bring
432  * online all the pages in the region. The range
433  * covered_end_pfn defines the pages that can
434  * be brough online.
435  */
436
437 struct hv_hotadd_state {
438         struct list_head list;
439         unsigned long start_pfn;
440         unsigned long covered_end_pfn;
441         unsigned long ha_end_pfn;
442         unsigned long end_pfn;
443 };
444
445 struct balloon_state {
446         __u32 num_pages;
447         struct work_struct wrk;
448 };
449
450 struct hot_add_wrk {
451         union dm_mem_page_range ha_page_range;
452         union dm_mem_page_range ha_region_range;
453         struct work_struct wrk;
454 };
455
456 static bool hot_add = true;
457 static bool do_hot_add;
458 /*
459  * Delay reporting memory pressure by
460  * the specified number of seconds.
461  */
462 static uint pressure_report_delay = 45;
463
464 /*
465  * The last time we posted a pressure report to host.
466  */
467 static unsigned long last_post_time;
468
469 module_param(hot_add, bool, (S_IRUGO | S_IWUSR));
470 MODULE_PARM_DESC(hot_add, "If set attempt memory hot_add");
471
472 module_param(pressure_report_delay, uint, (S_IRUGO | S_IWUSR));
473 MODULE_PARM_DESC(pressure_report_delay, "Delay in secs in reporting pressure");
474 static atomic_t trans_id = ATOMIC_INIT(0);
475
476 static int dm_ring_size = (5 * PAGE_SIZE);
477
478 /*
479  * Driver specific state.
480  */
481
482 enum hv_dm_state {
483         DM_INITIALIZING = 0,
484         DM_INITIALIZED,
485         DM_BALLOON_UP,
486         DM_BALLOON_DOWN,
487         DM_HOT_ADD,
488         DM_INIT_ERROR
489 };
490
491
492 static __u8 recv_buffer[PAGE_SIZE];
493 static __u8 *send_buffer;
494 #define PAGES_IN_2M     512
495 #define HA_CHUNK (32 * 1024)
496
497 struct hv_dynmem_device {
498         struct hv_device *dev;
499         enum hv_dm_state state;
500         struct completion host_event;
501         struct completion config_event;
502
503         /*
504          * Number of pages we have currently ballooned out.
505          */
506         unsigned int num_pages_ballooned;
507         unsigned int num_pages_onlined;
508         unsigned int num_pages_added;
509
510         /*
511          * State to manage the ballooning (up) operation.
512          */
513         struct balloon_state balloon_wrk;
514
515         /*
516          * State to execute the "hot-add" operation.
517          */
518         struct hot_add_wrk ha_wrk;
519
520         /*
521          * This state tracks if the host has specified a hot-add
522          * region.
523          */
524         bool host_specified_ha_region;
525
526         /*
527          * State to synchronize hot-add.
528          */
529         struct completion  ol_waitevent;
530         bool ha_waiting;
531         /*
532          * This thread handles hot-add
533          * requests from the host as well as notifying
534          * the host with regards to memory pressure in
535          * the guest.
536          */
537         struct task_struct *thread;
538
539         struct mutex ha_region_mutex;
540
541         /*
542          * A list of hot-add regions.
543          */
544         struct list_head ha_region_list;
545
546         /*
547          * We start with the highest version we can support
548          * and downgrade based on the host; we save here the
549          * next version to try.
550          */
551         __u32 next_version;
552 };
553
554 static struct hv_dynmem_device dm_device;
555
556 static void post_status(struct hv_dynmem_device *dm);
557
558 #ifdef CONFIG_MEMORY_HOTPLUG
559 static int hv_memory_notifier(struct notifier_block *nb, unsigned long val,
560                               void *v)
561 {
562         struct memory_notify *mem = (struct memory_notify *)v;
563
564         switch (val) {
565         case MEM_GOING_ONLINE:
566                 mutex_lock(&dm_device.ha_region_mutex);
567                 break;
568
569         case MEM_ONLINE:
570                 dm_device.num_pages_onlined += mem->nr_pages;
571         case MEM_CANCEL_ONLINE:
572                 if (val == MEM_ONLINE ||
573                     mutex_is_locked(&dm_device.ha_region_mutex))
574                         mutex_unlock(&dm_device.ha_region_mutex);
575                 if (dm_device.ha_waiting) {
576                         dm_device.ha_waiting = false;
577                         complete(&dm_device.ol_waitevent);
578                 }
579                 break;
580
581         case MEM_OFFLINE:
582                 mutex_lock(&dm_device.ha_region_mutex);
583                 dm_device.num_pages_onlined -= mem->nr_pages;
584                 mutex_unlock(&dm_device.ha_region_mutex);
585                 break;
586         case MEM_GOING_OFFLINE:
587         case MEM_CANCEL_OFFLINE:
588                 break;
589         }
590         return NOTIFY_OK;
591 }
592
593 static struct notifier_block hv_memory_nb = {
594         .notifier_call = hv_memory_notifier,
595         .priority = 0
596 };
597
598
599 static void hv_bring_pgs_online(unsigned long start_pfn, unsigned long size)
600 {
601         int i;
602
603         for (i = 0; i < size; i++) {
604                 struct page *pg;
605                 pg = pfn_to_page(start_pfn + i);
606                 __online_page_set_limits(pg);
607                 __online_page_increment_counters(pg);
608                 __online_page_free(pg);
609         }
610 }
611
612 static void hv_mem_hot_add(unsigned long start, unsigned long size,
613                                 unsigned long pfn_count,
614                                 struct hv_hotadd_state *has)
615 {
616         int ret = 0;
617         int i, nid;
618         unsigned long start_pfn;
619         unsigned long processed_pfn;
620         unsigned long total_pfn = pfn_count;
621
622         for (i = 0; i < (size/HA_CHUNK); i++) {
623                 start_pfn = start + (i * HA_CHUNK);
624                 has->ha_end_pfn +=  HA_CHUNK;
625
626                 if (total_pfn > HA_CHUNK) {
627                         processed_pfn = HA_CHUNK;
628                         total_pfn -= HA_CHUNK;
629                 } else {
630                         processed_pfn = total_pfn;
631                         total_pfn = 0;
632                 }
633
634                 has->covered_end_pfn +=  processed_pfn;
635
636                 init_completion(&dm_device.ol_waitevent);
637                 dm_device.ha_waiting = true;
638
639                 mutex_unlock(&dm_device.ha_region_mutex);
640                 nid = memory_add_physaddr_to_nid(PFN_PHYS(start_pfn));
641                 ret = add_memory(nid, PFN_PHYS((start_pfn)),
642                                 (HA_CHUNK << PAGE_SHIFT));
643
644                 if (ret) {
645                         pr_info("hot_add memory failed error is %d\n", ret);
646                         if (ret == -EEXIST) {
647                                 /*
648                                  * This error indicates that the error
649                                  * is not a transient failure. This is the
650                                  * case where the guest's physical address map
651                                  * precludes hot adding memory. Stop all further
652                                  * memory hot-add.
653                                  */
654                                 do_hot_add = false;
655                         }
656                         has->ha_end_pfn -= HA_CHUNK;
657                         has->covered_end_pfn -=  processed_pfn;
658                         mutex_lock(&dm_device.ha_region_mutex);
659                         break;
660                 }
661
662                 /*
663                  * Wait for the memory block to be onlined.
664                  * Since the hot add has succeeded, it is ok to
665                  * proceed even if the pages in the hot added region
666                  * have not been "onlined" within the allowed time.
667                  */
668                 wait_for_completion_timeout(&dm_device.ol_waitevent, 5*HZ);
669                 mutex_lock(&dm_device.ha_region_mutex);
670                 post_status(&dm_device);
671         }
672
673         return;
674 }
675
676 static void hv_online_page(struct page *pg)
677 {
678         struct list_head *cur;
679         struct hv_hotadd_state *has;
680         unsigned long cur_start_pgp;
681         unsigned long cur_end_pgp;
682
683         list_for_each(cur, &dm_device.ha_region_list) {
684                 has = list_entry(cur, struct hv_hotadd_state, list);
685                 cur_start_pgp = (unsigned long)pfn_to_page(has->start_pfn);
686                 cur_end_pgp = (unsigned long)pfn_to_page(has->covered_end_pfn);
687
688                 if (((unsigned long)pg >= cur_start_pgp) &&
689                         ((unsigned long)pg < cur_end_pgp)) {
690                         /*
691                          * This frame is currently backed; online the
692                          * page.
693                          */
694                         __online_page_set_limits(pg);
695                         __online_page_increment_counters(pg);
696                         __online_page_free(pg);
697                 }
698         }
699 }
700
701 static bool pfn_covered(unsigned long start_pfn, unsigned long pfn_cnt)
702 {
703         struct list_head *cur;
704         struct hv_hotadd_state *has;
705         unsigned long residual, new_inc;
706
707         if (list_empty(&dm_device.ha_region_list))
708                 return false;
709
710         list_for_each(cur, &dm_device.ha_region_list) {
711                 has = list_entry(cur, struct hv_hotadd_state, list);
712
713                 /*
714                  * If the pfn range we are dealing with is not in the current
715                  * "hot add block", move on.
716                  */
717                 if ((start_pfn >= has->end_pfn))
718                         continue;
719                 /*
720                  * If the current hot add-request extends beyond
721                  * our current limit; extend it.
722                  */
723                 if ((start_pfn + pfn_cnt) > has->end_pfn) {
724                         residual = (start_pfn + pfn_cnt - has->end_pfn);
725                         /*
726                          * Extend the region by multiples of HA_CHUNK.
727                          */
728                         new_inc = (residual / HA_CHUNK) * HA_CHUNK;
729                         if (residual % HA_CHUNK)
730                                 new_inc += HA_CHUNK;
731
732                         has->end_pfn += new_inc;
733                 }
734
735                 /*
736                  * If the current start pfn is not where the covered_end
737                  * is, update it.
738                  */
739
740                 if (has->covered_end_pfn != start_pfn)
741                         has->covered_end_pfn = start_pfn;
742
743                 return true;
744
745         }
746
747         return false;
748 }
749
750 static unsigned long handle_pg_range(unsigned long pg_start,
751                                         unsigned long pg_count)
752 {
753         unsigned long start_pfn = pg_start;
754         unsigned long pfn_cnt = pg_count;
755         unsigned long size;
756         struct list_head *cur;
757         struct hv_hotadd_state *has;
758         unsigned long pgs_ol = 0;
759         unsigned long old_covered_state;
760
761         if (list_empty(&dm_device.ha_region_list))
762                 return 0;
763
764         list_for_each(cur, &dm_device.ha_region_list) {
765                 has = list_entry(cur, struct hv_hotadd_state, list);
766
767                 /*
768                  * If the pfn range we are dealing with is not in the current
769                  * "hot add block", move on.
770                  */
771                 if ((start_pfn >= has->end_pfn))
772                         continue;
773
774                 old_covered_state = has->covered_end_pfn;
775
776                 if (start_pfn < has->ha_end_pfn) {
777                         /*
778                          * This is the case where we are backing pages
779                          * in an already hot added region. Bring
780                          * these pages online first.
781                          */
782                         pgs_ol = has->ha_end_pfn - start_pfn;
783                         if (pgs_ol > pfn_cnt)
784                                 pgs_ol = pfn_cnt;
785
786                         /*
787                          * Check if the corresponding memory block is already
788                          * online by checking its last previously backed page.
789                          * In case it is we need to bring rest (which was not
790                          * backed previously) online too.
791                          */
792                         if (start_pfn > has->start_pfn &&
793                             !PageReserved(pfn_to_page(start_pfn - 1)))
794                                 hv_bring_pgs_online(start_pfn, pgs_ol);
795
796                         has->covered_end_pfn +=  pgs_ol;
797                         pfn_cnt -= pgs_ol;
798                 }
799
800                 if ((has->ha_end_pfn < has->end_pfn) && (pfn_cnt > 0)) {
801                         /*
802                          * We have some residual hot add range
803                          * that needs to be hot added; hot add
804                          * it now. Hot add a multiple of
805                          * of HA_CHUNK that fully covers the pages
806                          * we have.
807                          */
808                         size = (has->end_pfn - has->ha_end_pfn);
809                         if (pfn_cnt <= size) {
810                                 size = ((pfn_cnt / HA_CHUNK) * HA_CHUNK);
811                                 if (pfn_cnt % HA_CHUNK)
812                                         size += HA_CHUNK;
813                         } else {
814                                 pfn_cnt = size;
815                         }
816                         hv_mem_hot_add(has->ha_end_pfn, size, pfn_cnt, has);
817                 }
818                 /*
819                  * If we managed to online any pages that were given to us,
820                  * we declare success.
821                  */
822                 return has->covered_end_pfn - old_covered_state;
823
824         }
825
826         return 0;
827 }
828
829 static unsigned long process_hot_add(unsigned long pg_start,
830                                         unsigned long pfn_cnt,
831                                         unsigned long rg_start,
832                                         unsigned long rg_size)
833 {
834         struct hv_hotadd_state *ha_region = NULL;
835
836         if (pfn_cnt == 0)
837                 return 0;
838
839         if (!dm_device.host_specified_ha_region)
840                 if (pfn_covered(pg_start, pfn_cnt))
841                         goto do_pg_range;
842
843         /*
844          * If the host has specified a hot-add range; deal with it first.
845          */
846
847         if (rg_size != 0) {
848                 ha_region = kzalloc(sizeof(struct hv_hotadd_state), GFP_KERNEL);
849                 if (!ha_region)
850                         return 0;
851
852                 INIT_LIST_HEAD(&ha_region->list);
853
854                 list_add_tail(&ha_region->list, &dm_device.ha_region_list);
855                 ha_region->start_pfn = rg_start;
856                 ha_region->ha_end_pfn = rg_start;
857                 ha_region->covered_end_pfn = pg_start;
858                 ha_region->end_pfn = rg_start + rg_size;
859         }
860
861 do_pg_range:
862         /*
863          * Process the page range specified; bringing them
864          * online if possible.
865          */
866         return handle_pg_range(pg_start, pfn_cnt);
867 }
868
869 #endif
870
871 static void hot_add_req(struct work_struct *dummy)
872 {
873         struct dm_hot_add_response resp;
874 #ifdef CONFIG_MEMORY_HOTPLUG
875         unsigned long pg_start, pfn_cnt;
876         unsigned long rg_start, rg_sz;
877 #endif
878         struct hv_dynmem_device *dm = &dm_device;
879
880         memset(&resp, 0, sizeof(struct dm_hot_add_response));
881         resp.hdr.type = DM_MEM_HOT_ADD_RESPONSE;
882         resp.hdr.size = sizeof(struct dm_hot_add_response);
883
884 #ifdef CONFIG_MEMORY_HOTPLUG
885         mutex_lock(&dm_device.ha_region_mutex);
886         pg_start = dm->ha_wrk.ha_page_range.finfo.start_page;
887         pfn_cnt = dm->ha_wrk.ha_page_range.finfo.page_cnt;
888
889         rg_start = dm->ha_wrk.ha_region_range.finfo.start_page;
890         rg_sz = dm->ha_wrk.ha_region_range.finfo.page_cnt;
891
892         if ((rg_start == 0) && (!dm->host_specified_ha_region)) {
893                 unsigned long region_size;
894                 unsigned long region_start;
895
896                 /*
897                  * The host has not specified the hot-add region.
898                  * Based on the hot-add page range being specified,
899                  * compute a hot-add region that can cover the pages
900                  * that need to be hot-added while ensuring the alignment
901                  * and size requirements of Linux as it relates to hot-add.
902                  */
903                 region_start = pg_start;
904                 region_size = (pfn_cnt / HA_CHUNK) * HA_CHUNK;
905                 if (pfn_cnt % HA_CHUNK)
906                         region_size += HA_CHUNK;
907
908                 region_start = (pg_start / HA_CHUNK) * HA_CHUNK;
909
910                 rg_start = region_start;
911                 rg_sz = region_size;
912         }
913
914         if (do_hot_add)
915                 resp.page_count = process_hot_add(pg_start, pfn_cnt,
916                                                 rg_start, rg_sz);
917
918         dm->num_pages_added += resp.page_count;
919         mutex_unlock(&dm_device.ha_region_mutex);
920 #endif
921         /*
922          * The result field of the response structure has the
923          * following semantics:
924          *
925          * 1. If all or some pages hot-added: Guest should return success.
926          *
927          * 2. If no pages could be hot-added:
928          *
929          * If the guest returns success, then the host
930          * will not attempt any further hot-add operations. This
931          * signifies a permanent failure.
932          *
933          * If the guest returns failure, then this failure will be
934          * treated as a transient failure and the host may retry the
935          * hot-add operation after some delay.
936          */
937         if (resp.page_count > 0)
938                 resp.result = 1;
939         else if (!do_hot_add)
940                 resp.result = 1;
941         else
942                 resp.result = 0;
943
944         if (!do_hot_add || (resp.page_count == 0))
945                 pr_info("Memory hot add failed\n");
946
947         dm->state = DM_INITIALIZED;
948         resp.hdr.trans_id = atomic_inc_return(&trans_id);
949         vmbus_sendpacket(dm->dev->channel, &resp,
950                         sizeof(struct dm_hot_add_response),
951                         (unsigned long)NULL,
952                         VM_PKT_DATA_INBAND, 0);
953 }
954
955 static void process_info(struct hv_dynmem_device *dm, struct dm_info_msg *msg)
956 {
957         struct dm_info_header *info_hdr;
958
959         info_hdr = (struct dm_info_header *)msg->info;
960
961         switch (info_hdr->type) {
962         case INFO_TYPE_MAX_PAGE_CNT:
963                 pr_info("Received INFO_TYPE_MAX_PAGE_CNT\n");
964                 pr_info("Data Size is %d\n", info_hdr->data_size);
965                 break;
966         default:
967                 pr_info("Received Unknown type: %d\n", info_hdr->type);
968         }
969 }
970
971 static unsigned long compute_balloon_floor(void)
972 {
973         unsigned long min_pages;
974 #define MB2PAGES(mb) ((mb) << (20 - PAGE_SHIFT))
975         /* Simple continuous piecewiese linear function:
976          *  max MiB -> min MiB  gradient
977          *       0         0
978          *      16        16
979          *      32        24
980          *     128        72    (1/2)
981          *     512       168    (1/4)
982          *    2048       360    (1/8)
983          *    8192       744    (1/16)
984          *   32768      1512    (1/32)
985          */
986         if (totalram_pages < MB2PAGES(128))
987                 min_pages = MB2PAGES(8) + (totalram_pages >> 1);
988         else if (totalram_pages < MB2PAGES(512))
989                 min_pages = MB2PAGES(40) + (totalram_pages >> 2);
990         else if (totalram_pages < MB2PAGES(2048))
991                 min_pages = MB2PAGES(104) + (totalram_pages >> 3);
992         else if (totalram_pages < MB2PAGES(8192))
993                 min_pages = MB2PAGES(232) + (totalram_pages >> 4);
994         else
995                 min_pages = MB2PAGES(488) + (totalram_pages >> 5);
996 #undef MB2PAGES
997         return min_pages;
998 }
999
1000 /*
1001  * Post our status as it relates memory pressure to the
1002  * host. Host expects the guests to post this status
1003  * periodically at 1 second intervals.
1004  *
1005  * The metrics specified in this protocol are very Windows
1006  * specific and so we cook up numbers here to convey our memory
1007  * pressure.
1008  */
1009
1010 static void post_status(struct hv_dynmem_device *dm)
1011 {
1012         struct dm_status status;
1013         struct sysinfo val;
1014         unsigned long now = jiffies;
1015         unsigned long last_post = last_post_time;
1016
1017         if (pressure_report_delay > 0) {
1018                 --pressure_report_delay;
1019                 return;
1020         }
1021
1022         if (!time_after(now, (last_post_time + HZ)))
1023                 return;
1024
1025         si_meminfo(&val);
1026         memset(&status, 0, sizeof(struct dm_status));
1027         status.hdr.type = DM_STATUS_REPORT;
1028         status.hdr.size = sizeof(struct dm_status);
1029         status.hdr.trans_id = atomic_inc_return(&trans_id);
1030
1031         /*
1032          * The host expects the guest to report free and committed memory.
1033          * Furthermore, the host expects the pressure information to include
1034          * the ballooned out pages. For a given amount of memory that we are
1035          * managing we need to compute a floor below which we should not
1036          * balloon. Compute this and add it to the pressure report.
1037          * We also need to report all offline pages (num_pages_added -
1038          * num_pages_onlined) as committed to the host, otherwise it can try
1039          * asking us to balloon them out.
1040          */
1041         status.num_avail = val.freeram;
1042         status.num_committed = vm_memory_committed() +
1043                 dm->num_pages_ballooned +
1044                 (dm->num_pages_added > dm->num_pages_onlined ?
1045                  dm->num_pages_added - dm->num_pages_onlined : 0) +
1046                 compute_balloon_floor();
1047
1048         /*
1049          * If our transaction ID is no longer current, just don't
1050          * send the status. This can happen if we were interrupted
1051          * after we picked our transaction ID.
1052          */
1053         if (status.hdr.trans_id != atomic_read(&trans_id))
1054                 return;
1055
1056         /*
1057          * If the last post time that we sampled has changed,
1058          * we have raced, don't post the status.
1059          */
1060         if (last_post != last_post_time)
1061                 return;
1062
1063         last_post_time = jiffies;
1064         vmbus_sendpacket(dm->dev->channel, &status,
1065                                 sizeof(struct dm_status),
1066                                 (unsigned long)NULL,
1067                                 VM_PKT_DATA_INBAND, 0);
1068
1069 }
1070
1071 static void free_balloon_pages(struct hv_dynmem_device *dm,
1072                          union dm_mem_page_range *range_array)
1073 {
1074         int num_pages = range_array->finfo.page_cnt;
1075         __u64 start_frame = range_array->finfo.start_page;
1076         struct page *pg;
1077         int i;
1078
1079         for (i = 0; i < num_pages; i++) {
1080                 pg = pfn_to_page(i + start_frame);
1081                 __free_page(pg);
1082                 dm->num_pages_ballooned--;
1083         }
1084 }
1085
1086
1087
1088 static unsigned int alloc_balloon_pages(struct hv_dynmem_device *dm,
1089                                         unsigned int num_pages,
1090                                         struct dm_balloon_response *bl_resp,
1091                                         int alloc_unit)
1092 {
1093         unsigned int i = 0;
1094         struct page *pg;
1095
1096         if (num_pages < alloc_unit)
1097                 return 0;
1098
1099         for (i = 0; (i * alloc_unit) < num_pages; i++) {
1100                 if (bl_resp->hdr.size + sizeof(union dm_mem_page_range) >
1101                         PAGE_SIZE)
1102                         return i * alloc_unit;
1103
1104                 /*
1105                  * We execute this code in a thread context. Furthermore,
1106                  * we don't want the kernel to try too hard.
1107                  */
1108                 pg = alloc_pages(GFP_HIGHUSER | __GFP_NORETRY |
1109                                 __GFP_NOMEMALLOC | __GFP_NOWARN,
1110                                 get_order(alloc_unit << PAGE_SHIFT));
1111
1112                 if (!pg)
1113                         return i * alloc_unit;
1114
1115                 dm->num_pages_ballooned += alloc_unit;
1116
1117                 /*
1118                  * If we allocatted 2M pages; split them so we
1119                  * can free them in any order we get.
1120                  */
1121
1122                 if (alloc_unit != 1)
1123                         split_page(pg, get_order(alloc_unit << PAGE_SHIFT));
1124
1125                 bl_resp->range_count++;
1126                 bl_resp->range_array[i].finfo.start_page =
1127                         page_to_pfn(pg);
1128                 bl_resp->range_array[i].finfo.page_cnt = alloc_unit;
1129                 bl_resp->hdr.size += sizeof(union dm_mem_page_range);
1130
1131         }
1132
1133         return num_pages;
1134 }
1135
1136
1137
1138 static void balloon_up(struct work_struct *dummy)
1139 {
1140         unsigned int num_pages = dm_device.balloon_wrk.num_pages;
1141         unsigned int num_ballooned = 0;
1142         struct dm_balloon_response *bl_resp;
1143         int alloc_unit;
1144         int ret;
1145         bool done = false;
1146         int i;
1147         struct sysinfo val;
1148         unsigned long floor;
1149
1150         /* The host balloons pages in 2M granularity. */
1151         WARN_ON_ONCE(num_pages % PAGES_IN_2M != 0);
1152
1153         /*
1154          * We will attempt 2M allocations. However, if we fail to
1155          * allocate 2M chunks, we will go back to 4k allocations.
1156          */
1157         alloc_unit = 512;
1158
1159         si_meminfo(&val);
1160         floor = compute_balloon_floor();
1161
1162         /* Refuse to balloon below the floor, keep the 2M granularity. */
1163         if (val.freeram < num_pages || val.freeram - num_pages < floor) {
1164                 num_pages = val.freeram > floor ? (val.freeram - floor) : 0;
1165                 num_pages -= num_pages % PAGES_IN_2M;
1166         }
1167
1168         while (!done) {
1169                 bl_resp = (struct dm_balloon_response *)send_buffer;
1170                 memset(send_buffer, 0, PAGE_SIZE);
1171                 bl_resp->hdr.type = DM_BALLOON_RESPONSE;
1172                 bl_resp->hdr.size = sizeof(struct dm_balloon_response);
1173                 bl_resp->more_pages = 1;
1174
1175
1176                 num_pages -= num_ballooned;
1177                 num_ballooned = alloc_balloon_pages(&dm_device, num_pages,
1178                                                     bl_resp, alloc_unit);
1179
1180                 if (alloc_unit != 1 && num_ballooned == 0) {
1181                         alloc_unit = 1;
1182                         continue;
1183                 }
1184
1185                 if (num_ballooned == 0 || num_ballooned == num_pages) {
1186                         bl_resp->more_pages = 0;
1187                         done = true;
1188                         dm_device.state = DM_INITIALIZED;
1189                 }
1190
1191                 /*
1192                  * We are pushing a lot of data through the channel;
1193                  * deal with transient failures caused because of the
1194                  * lack of space in the ring buffer.
1195                  */
1196
1197                 do {
1198                         bl_resp->hdr.trans_id = atomic_inc_return(&trans_id);
1199                         ret = vmbus_sendpacket(dm_device.dev->channel,
1200                                                 bl_resp,
1201                                                 bl_resp->hdr.size,
1202                                                 (unsigned long)NULL,
1203                                                 VM_PKT_DATA_INBAND, 0);
1204
1205                         if (ret == -EAGAIN)
1206                                 msleep(20);
1207                         post_status(&dm_device);
1208                 } while (ret == -EAGAIN);
1209
1210                 if (ret) {
1211                         /*
1212                          * Free up the memory we allocatted.
1213                          */
1214                         pr_info("Balloon response failed\n");
1215
1216                         for (i = 0; i < bl_resp->range_count; i++)
1217                                 free_balloon_pages(&dm_device,
1218                                                  &bl_resp->range_array[i]);
1219
1220                         done = true;
1221                 }
1222         }
1223
1224 }
1225
1226 static void balloon_down(struct hv_dynmem_device *dm,
1227                         struct dm_unballoon_request *req)
1228 {
1229         union dm_mem_page_range *range_array = req->range_array;
1230         int range_count = req->range_count;
1231         struct dm_unballoon_response resp;
1232         int i;
1233
1234         for (i = 0; i < range_count; i++) {
1235                 free_balloon_pages(dm, &range_array[i]);
1236                 complete(&dm_device.config_event);
1237         }
1238
1239         if (req->more_pages == 1)
1240                 return;
1241
1242         memset(&resp, 0, sizeof(struct dm_unballoon_response));
1243         resp.hdr.type = DM_UNBALLOON_RESPONSE;
1244         resp.hdr.trans_id = atomic_inc_return(&trans_id);
1245         resp.hdr.size = sizeof(struct dm_unballoon_response);
1246
1247         vmbus_sendpacket(dm_device.dev->channel, &resp,
1248                                 sizeof(struct dm_unballoon_response),
1249                                 (unsigned long)NULL,
1250                                 VM_PKT_DATA_INBAND, 0);
1251
1252         dm->state = DM_INITIALIZED;
1253 }
1254
1255 static void balloon_onchannelcallback(void *context);
1256
1257 static int dm_thread_func(void *dm_dev)
1258 {
1259         struct hv_dynmem_device *dm = dm_dev;
1260
1261         while (!kthread_should_stop()) {
1262                 wait_for_completion_interruptible_timeout(
1263                                                 &dm_device.config_event, 1*HZ);
1264                 /*
1265                  * The host expects us to post information on the memory
1266                  * pressure every second.
1267                  */
1268                 reinit_completion(&dm_device.config_event);
1269                 post_status(dm);
1270         }
1271
1272         return 0;
1273 }
1274
1275
1276 static void version_resp(struct hv_dynmem_device *dm,
1277                         struct dm_version_response *vresp)
1278 {
1279         struct dm_version_request version_req;
1280         int ret;
1281
1282         if (vresp->is_accepted) {
1283                 /*
1284                  * We are done; wakeup the
1285                  * context waiting for version
1286                  * negotiation.
1287                  */
1288                 complete(&dm->host_event);
1289                 return;
1290         }
1291         /*
1292          * If there are more versions to try, continue
1293          * with negotiations; if not
1294          * shutdown the service since we are not able
1295          * to negotiate a suitable version number
1296          * with the host.
1297          */
1298         if (dm->next_version == 0)
1299                 goto version_error;
1300
1301         memset(&version_req, 0, sizeof(struct dm_version_request));
1302         version_req.hdr.type = DM_VERSION_REQUEST;
1303         version_req.hdr.size = sizeof(struct dm_version_request);
1304         version_req.hdr.trans_id = atomic_inc_return(&trans_id);
1305         version_req.version.version = dm->next_version;
1306
1307         /*
1308          * Set the next version to try in case current version fails.
1309          * Win7 protocol ought to be the last one to try.
1310          */
1311         switch (version_req.version.version) {
1312         case DYNMEM_PROTOCOL_VERSION_WIN8:
1313                 dm->next_version = DYNMEM_PROTOCOL_VERSION_WIN7;
1314                 version_req.is_last_attempt = 0;
1315                 break;
1316         default:
1317                 dm->next_version = 0;
1318                 version_req.is_last_attempt = 1;
1319         }
1320
1321         ret = vmbus_sendpacket(dm->dev->channel, &version_req,
1322                                 sizeof(struct dm_version_request),
1323                                 (unsigned long)NULL,
1324                                 VM_PKT_DATA_INBAND, 0);
1325
1326         if (ret)
1327                 goto version_error;
1328
1329         return;
1330
1331 version_error:
1332         dm->state = DM_INIT_ERROR;
1333         complete(&dm->host_event);
1334 }
1335
1336 static void cap_resp(struct hv_dynmem_device *dm,
1337                         struct dm_capabilities_resp_msg *cap_resp)
1338 {
1339         if (!cap_resp->is_accepted) {
1340                 pr_info("Capabilities not accepted by host\n");
1341                 dm->state = DM_INIT_ERROR;
1342         }
1343         complete(&dm->host_event);
1344 }
1345
1346 static void balloon_onchannelcallback(void *context)
1347 {
1348         struct hv_device *dev = context;
1349         u32 recvlen;
1350         u64 requestid;
1351         struct dm_message *dm_msg;
1352         struct dm_header *dm_hdr;
1353         struct hv_dynmem_device *dm = hv_get_drvdata(dev);
1354         struct dm_balloon *bal_msg;
1355         struct dm_hot_add *ha_msg;
1356         union dm_mem_page_range *ha_pg_range;
1357         union dm_mem_page_range *ha_region;
1358
1359         memset(recv_buffer, 0, sizeof(recv_buffer));
1360         vmbus_recvpacket(dev->channel, recv_buffer,
1361                          PAGE_SIZE, &recvlen, &requestid);
1362
1363         if (recvlen > 0) {
1364                 dm_msg = (struct dm_message *)recv_buffer;
1365                 dm_hdr = &dm_msg->hdr;
1366
1367                 switch (dm_hdr->type) {
1368                 case DM_VERSION_RESPONSE:
1369                         version_resp(dm,
1370                                  (struct dm_version_response *)dm_msg);
1371                         break;
1372
1373                 case DM_CAPABILITIES_RESPONSE:
1374                         cap_resp(dm,
1375                                  (struct dm_capabilities_resp_msg *)dm_msg);
1376                         break;
1377
1378                 case DM_BALLOON_REQUEST:
1379                         if (dm->state == DM_BALLOON_UP)
1380                                 pr_warn("Currently ballooning\n");
1381                         bal_msg = (struct dm_balloon *)recv_buffer;
1382                         dm->state = DM_BALLOON_UP;
1383                         dm_device.balloon_wrk.num_pages = bal_msg->num_pages;
1384                         schedule_work(&dm_device.balloon_wrk.wrk);
1385                         break;
1386
1387                 case DM_UNBALLOON_REQUEST:
1388                         dm->state = DM_BALLOON_DOWN;
1389                         balloon_down(dm,
1390                                  (struct dm_unballoon_request *)recv_buffer);
1391                         break;
1392
1393                 case DM_MEM_HOT_ADD_REQUEST:
1394                         if (dm->state == DM_HOT_ADD)
1395                                 pr_warn("Currently hot-adding\n");
1396                         dm->state = DM_HOT_ADD;
1397                         ha_msg = (struct dm_hot_add *)recv_buffer;
1398                         if (ha_msg->hdr.size == sizeof(struct dm_hot_add)) {
1399                                 /*
1400                                  * This is a normal hot-add request specifying
1401                                  * hot-add memory.
1402                                  */
1403                                 ha_pg_range = &ha_msg->range;
1404                                 dm->ha_wrk.ha_page_range = *ha_pg_range;
1405                                 dm->ha_wrk.ha_region_range.page_range = 0;
1406                         } else {
1407                                 /*
1408                                  * Host is specifying that we first hot-add
1409                                  * a region and then partially populate this
1410                                  * region.
1411                                  */
1412                                 dm->host_specified_ha_region = true;
1413                                 ha_pg_range = &ha_msg->range;
1414                                 ha_region = &ha_pg_range[1];
1415                                 dm->ha_wrk.ha_page_range = *ha_pg_range;
1416                                 dm->ha_wrk.ha_region_range = *ha_region;
1417                         }
1418                         schedule_work(&dm_device.ha_wrk.wrk);
1419                         break;
1420
1421                 case DM_INFO_MESSAGE:
1422                         process_info(dm, (struct dm_info_msg *)dm_msg);
1423                         break;
1424
1425                 default:
1426                         pr_err("Unhandled message: type: %d\n", dm_hdr->type);
1427
1428                 }
1429         }
1430
1431 }
1432
1433 static int balloon_probe(struct hv_device *dev,
1434                         const struct hv_vmbus_device_id *dev_id)
1435 {
1436         int ret;
1437         unsigned long t;
1438         struct dm_version_request version_req;
1439         struct dm_capabilities cap_msg;
1440
1441         do_hot_add = hot_add;
1442
1443         /*
1444          * First allocate a send buffer.
1445          */
1446
1447         send_buffer = kmalloc(PAGE_SIZE, GFP_KERNEL);
1448         if (!send_buffer)
1449                 return -ENOMEM;
1450
1451         ret = vmbus_open(dev->channel, dm_ring_size, dm_ring_size, NULL, 0,
1452                         balloon_onchannelcallback, dev);
1453
1454         if (ret)
1455                 goto probe_error0;
1456
1457         dm_device.dev = dev;
1458         dm_device.state = DM_INITIALIZING;
1459         dm_device.next_version = DYNMEM_PROTOCOL_VERSION_WIN8;
1460         init_completion(&dm_device.host_event);
1461         init_completion(&dm_device.config_event);
1462         INIT_LIST_HEAD(&dm_device.ha_region_list);
1463         mutex_init(&dm_device.ha_region_mutex);
1464         INIT_WORK(&dm_device.balloon_wrk.wrk, balloon_up);
1465         INIT_WORK(&dm_device.ha_wrk.wrk, hot_add_req);
1466         dm_device.host_specified_ha_region = false;
1467
1468         dm_device.thread =
1469                  kthread_run(dm_thread_func, &dm_device, "hv_balloon");
1470         if (IS_ERR(dm_device.thread)) {
1471                 ret = PTR_ERR(dm_device.thread);
1472                 goto probe_error1;
1473         }
1474
1475 #ifdef CONFIG_MEMORY_HOTPLUG
1476         set_online_page_callback(&hv_online_page);
1477         register_memory_notifier(&hv_memory_nb);
1478 #endif
1479
1480         hv_set_drvdata(dev, &dm_device);
1481         /*
1482          * Initiate the hand shake with the host and negotiate
1483          * a version that the host can support. We start with the
1484          * highest version number and go down if the host cannot
1485          * support it.
1486          */
1487         memset(&version_req, 0, sizeof(struct dm_version_request));
1488         version_req.hdr.type = DM_VERSION_REQUEST;
1489         version_req.hdr.size = sizeof(struct dm_version_request);
1490         version_req.hdr.trans_id = atomic_inc_return(&trans_id);
1491         version_req.version.version = DYNMEM_PROTOCOL_VERSION_WIN10;
1492         version_req.is_last_attempt = 0;
1493
1494         ret = vmbus_sendpacket(dev->channel, &version_req,
1495                                 sizeof(struct dm_version_request),
1496                                 (unsigned long)NULL,
1497                                 VM_PKT_DATA_INBAND, 0);
1498         if (ret)
1499                 goto probe_error2;
1500
1501         t = wait_for_completion_timeout(&dm_device.host_event, 5*HZ);
1502         if (t == 0) {
1503                 ret = -ETIMEDOUT;
1504                 goto probe_error2;
1505         }
1506
1507         /*
1508          * If we could not negotiate a compatible version with the host
1509          * fail the probe function.
1510          */
1511         if (dm_device.state == DM_INIT_ERROR) {
1512                 ret = -ETIMEDOUT;
1513                 goto probe_error2;
1514         }
1515         /*
1516          * Now submit our capabilities to the host.
1517          */
1518         memset(&cap_msg, 0, sizeof(struct dm_capabilities));
1519         cap_msg.hdr.type = DM_CAPABILITIES_REPORT;
1520         cap_msg.hdr.size = sizeof(struct dm_capabilities);
1521         cap_msg.hdr.trans_id = atomic_inc_return(&trans_id);
1522
1523         cap_msg.caps.cap_bits.balloon = 1;
1524         cap_msg.caps.cap_bits.hot_add = 1;
1525
1526         /*
1527          * Specify our alignment requirements as it relates
1528          * memory hot-add. Specify 128MB alignment.
1529          */
1530         cap_msg.caps.cap_bits.hot_add_alignment = 7;
1531
1532         /*
1533          * Currently the host does not use these
1534          * values and we set them to what is done in the
1535          * Windows driver.
1536          */
1537         cap_msg.min_page_cnt = 0;
1538         cap_msg.max_page_number = -1;
1539
1540         ret = vmbus_sendpacket(dev->channel, &cap_msg,
1541                                 sizeof(struct dm_capabilities),
1542                                 (unsigned long)NULL,
1543                                 VM_PKT_DATA_INBAND, 0);
1544         if (ret)
1545                 goto probe_error2;
1546
1547         t = wait_for_completion_timeout(&dm_device.host_event, 5*HZ);
1548         if (t == 0) {
1549                 ret = -ETIMEDOUT;
1550                 goto probe_error2;
1551         }
1552
1553         /*
1554          * If the host does not like our capabilities,
1555          * fail the probe function.
1556          */
1557         if (dm_device.state == DM_INIT_ERROR) {
1558                 ret = -ETIMEDOUT;
1559                 goto probe_error2;
1560         }
1561
1562         dm_device.state = DM_INITIALIZED;
1563
1564         return 0;
1565
1566 probe_error2:
1567 #ifdef CONFIG_MEMORY_HOTPLUG
1568         restore_online_page_callback(&hv_online_page);
1569 #endif
1570         kthread_stop(dm_device.thread);
1571
1572 probe_error1:
1573         vmbus_close(dev->channel);
1574 probe_error0:
1575         kfree(send_buffer);
1576         return ret;
1577 }
1578
1579 static int balloon_remove(struct hv_device *dev)
1580 {
1581         struct hv_dynmem_device *dm = hv_get_drvdata(dev);
1582         struct list_head *cur, *tmp;
1583         struct hv_hotadd_state *has;
1584
1585         if (dm->num_pages_ballooned != 0)
1586                 pr_warn("Ballooned pages: %d\n", dm->num_pages_ballooned);
1587
1588         cancel_work_sync(&dm->balloon_wrk.wrk);
1589         cancel_work_sync(&dm->ha_wrk.wrk);
1590
1591         vmbus_close(dev->channel);
1592         kthread_stop(dm->thread);
1593         kfree(send_buffer);
1594 #ifdef CONFIG_MEMORY_HOTPLUG
1595         restore_online_page_callback(&hv_online_page);
1596         unregister_memory_notifier(&hv_memory_nb);
1597 #endif
1598         list_for_each_safe(cur, tmp, &dm->ha_region_list) {
1599                 has = list_entry(cur, struct hv_hotadd_state, list);
1600                 list_del(&has->list);
1601                 kfree(has);
1602         }
1603
1604         return 0;
1605 }
1606
1607 static const struct hv_vmbus_device_id id_table[] = {
1608         /* Dynamic Memory Class ID */
1609         /* 525074DC-8985-46e2-8057-A307DC18A502 */
1610         { HV_DM_GUID, },
1611         { },
1612 };
1613
1614 MODULE_DEVICE_TABLE(vmbus, id_table);
1615
1616 static  struct hv_driver balloon_drv = {
1617         .name = "hv_balloon",
1618         .id_table = id_table,
1619         .probe =  balloon_probe,
1620         .remove =  balloon_remove,
1621 };
1622
1623 static int __init init_balloon_drv(void)
1624 {
1625
1626         return vmbus_driver_register(&balloon_drv);
1627 }
1628
1629 module_init(init_balloon_drv);
1630
1631 MODULE_DESCRIPTION("Hyper-V Balloon");
1632 MODULE_LICENSE("GPL");