Merge branches 'pm-domains' and 'pm-cpufreq'
[firefly-linux-kernel-4.4.55.git] / drivers / gpu / drm / i915 / intel_dp.c
1 /*
2  * Copyright © 2008 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *    Keith Packard <keithp@keithp.com>
25  *
26  */
27
28 #include <linux/i2c.h>
29 #include <linux/slab.h>
30 #include <linux/export.h>
31 #include <linux/notifier.h>
32 #include <linux/reboot.h>
33 #include <drm/drmP.h>
34 #include <drm/drm_atomic_helper.h>
35 #include <drm/drm_crtc.h>
36 #include <drm/drm_crtc_helper.h>
37 #include <drm/drm_edid.h>
38 #include "intel_drv.h"
39 #include <drm/i915_drm.h>
40 #include "i915_drv.h"
41
42 #define DP_LINK_CHECK_TIMEOUT   (10 * 1000)
43
44 /* Compliance test status bits  */
45 #define INTEL_DP_RESOLUTION_SHIFT_MASK  0
46 #define INTEL_DP_RESOLUTION_PREFERRED   (1 << INTEL_DP_RESOLUTION_SHIFT_MASK)
47 #define INTEL_DP_RESOLUTION_STANDARD    (2 << INTEL_DP_RESOLUTION_SHIFT_MASK)
48 #define INTEL_DP_RESOLUTION_FAILSAFE    (3 << INTEL_DP_RESOLUTION_SHIFT_MASK)
49
50 struct dp_link_dpll {
51         int clock;
52         struct dpll dpll;
53 };
54
55 static const struct dp_link_dpll gen4_dpll[] = {
56         { 162000,
57                 { .p1 = 2, .p2 = 10, .n = 2, .m1 = 23, .m2 = 8 } },
58         { 270000,
59                 { .p1 = 1, .p2 = 10, .n = 1, .m1 = 14, .m2 = 2 } }
60 };
61
62 static const struct dp_link_dpll pch_dpll[] = {
63         { 162000,
64                 { .p1 = 2, .p2 = 10, .n = 1, .m1 = 12, .m2 = 9 } },
65         { 270000,
66                 { .p1 = 1, .p2 = 10, .n = 2, .m1 = 14, .m2 = 8 } }
67 };
68
69 static const struct dp_link_dpll vlv_dpll[] = {
70         { 162000,
71                 { .p1 = 3, .p2 = 2, .n = 5, .m1 = 3, .m2 = 81 } },
72         { 270000,
73                 { .p1 = 2, .p2 = 2, .n = 1, .m1 = 2, .m2 = 27 } }
74 };
75
76 /*
77  * CHV supports eDP 1.4 that have  more link rates.
78  * Below only provides the fixed rate but exclude variable rate.
79  */
80 static const struct dp_link_dpll chv_dpll[] = {
81         /*
82          * CHV requires to program fractional division for m2.
83          * m2 is stored in fixed point format using formula below
84          * (m2_int << 22) | m2_fraction
85          */
86         { 162000,       /* m2_int = 32, m2_fraction = 1677722 */
87                 { .p1 = 4, .p2 = 2, .n = 1, .m1 = 2, .m2 = 0x819999a } },
88         { 270000,       /* m2_int = 27, m2_fraction = 0 */
89                 { .p1 = 4, .p2 = 1, .n = 1, .m1 = 2, .m2 = 0x6c00000 } },
90         { 540000,       /* m2_int = 27, m2_fraction = 0 */
91                 { .p1 = 2, .p2 = 1, .n = 1, .m1 = 2, .m2 = 0x6c00000 } }
92 };
93
94 static const int bxt_rates[] = { 162000, 216000, 243000, 270000,
95                                   324000, 432000, 540000 };
96 static const int skl_rates[] = { 162000, 216000, 270000,
97                                   324000, 432000, 540000 };
98 static const int default_rates[] = { 162000, 270000, 540000 };
99
100 /**
101  * is_edp - is the given port attached to an eDP panel (either CPU or PCH)
102  * @intel_dp: DP struct
103  *
104  * If a CPU or PCH DP output is attached to an eDP panel, this function
105  * will return true, and false otherwise.
106  */
107 static bool is_edp(struct intel_dp *intel_dp)
108 {
109         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
110
111         return intel_dig_port->base.type == INTEL_OUTPUT_EDP;
112 }
113
114 static struct drm_device *intel_dp_to_dev(struct intel_dp *intel_dp)
115 {
116         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
117
118         return intel_dig_port->base.base.dev;
119 }
120
121 static struct intel_dp *intel_attached_dp(struct drm_connector *connector)
122 {
123         return enc_to_intel_dp(&intel_attached_encoder(connector)->base);
124 }
125
126 static void intel_dp_link_down(struct intel_dp *intel_dp);
127 static bool edp_panel_vdd_on(struct intel_dp *intel_dp);
128 static void edp_panel_vdd_off(struct intel_dp *intel_dp, bool sync);
129 static void vlv_init_panel_power_sequencer(struct intel_dp *intel_dp);
130 static void vlv_steal_power_sequencer(struct drm_device *dev,
131                                       enum pipe pipe);
132
133 static unsigned int intel_dp_unused_lane_mask(int lane_count)
134 {
135         return ~((1 << lane_count) - 1) & 0xf;
136 }
137
138 static int
139 intel_dp_max_link_bw(struct intel_dp  *intel_dp)
140 {
141         int max_link_bw = intel_dp->dpcd[DP_MAX_LINK_RATE];
142
143         switch (max_link_bw) {
144         case DP_LINK_BW_1_62:
145         case DP_LINK_BW_2_7:
146         case DP_LINK_BW_5_4:
147                 break;
148         default:
149                 WARN(1, "invalid max DP link bw val %x, using 1.62Gbps\n",
150                      max_link_bw);
151                 max_link_bw = DP_LINK_BW_1_62;
152                 break;
153         }
154         return max_link_bw;
155 }
156
157 static u8 intel_dp_max_lane_count(struct intel_dp *intel_dp)
158 {
159         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
160         struct drm_device *dev = intel_dig_port->base.base.dev;
161         u8 source_max, sink_max;
162
163         source_max = 4;
164         if (HAS_DDI(dev) && intel_dig_port->port == PORT_A &&
165             (intel_dig_port->saved_port_bits & DDI_A_4_LANES) == 0)
166                 source_max = 2;
167
168         sink_max = drm_dp_max_lane_count(intel_dp->dpcd);
169
170         return min(source_max, sink_max);
171 }
172
173 /*
174  * The units on the numbers in the next two are... bizarre.  Examples will
175  * make it clearer; this one parallels an example in the eDP spec.
176  *
177  * intel_dp_max_data_rate for one lane of 2.7GHz evaluates as:
178  *
179  *     270000 * 1 * 8 / 10 == 216000
180  *
181  * The actual data capacity of that configuration is 2.16Gbit/s, so the
182  * units are decakilobits.  ->clock in a drm_display_mode is in kilohertz -
183  * or equivalently, kilopixels per second - so for 1680x1050R it'd be
184  * 119000.  At 18bpp that's 2142000 kilobits per second.
185  *
186  * Thus the strange-looking division by 10 in intel_dp_link_required, to
187  * get the result in decakilobits instead of kilobits.
188  */
189
190 static int
191 intel_dp_link_required(int pixel_clock, int bpp)
192 {
193         return (pixel_clock * bpp + 9) / 10;
194 }
195
196 static int
197 intel_dp_max_data_rate(int max_link_clock, int max_lanes)
198 {
199         return (max_link_clock * max_lanes * 8) / 10;
200 }
201
202 static enum drm_mode_status
203 intel_dp_mode_valid(struct drm_connector *connector,
204                     struct drm_display_mode *mode)
205 {
206         struct intel_dp *intel_dp = intel_attached_dp(connector);
207         struct intel_connector *intel_connector = to_intel_connector(connector);
208         struct drm_display_mode *fixed_mode = intel_connector->panel.fixed_mode;
209         int target_clock = mode->clock;
210         int max_rate, mode_rate, max_lanes, max_link_clock;
211
212         if (is_edp(intel_dp) && fixed_mode) {
213                 if (mode->hdisplay > fixed_mode->hdisplay)
214                         return MODE_PANEL;
215
216                 if (mode->vdisplay > fixed_mode->vdisplay)
217                         return MODE_PANEL;
218
219                 target_clock = fixed_mode->clock;
220         }
221
222         max_link_clock = intel_dp_max_link_rate(intel_dp);
223         max_lanes = intel_dp_max_lane_count(intel_dp);
224
225         max_rate = intel_dp_max_data_rate(max_link_clock, max_lanes);
226         mode_rate = intel_dp_link_required(target_clock, 18);
227
228         if (mode_rate > max_rate)
229                 return MODE_CLOCK_HIGH;
230
231         if (mode->clock < 10000)
232                 return MODE_CLOCK_LOW;
233
234         if (mode->flags & DRM_MODE_FLAG_DBLCLK)
235                 return MODE_H_ILLEGAL;
236
237         return MODE_OK;
238 }
239
240 uint32_t intel_dp_pack_aux(const uint8_t *src, int src_bytes)
241 {
242         int     i;
243         uint32_t v = 0;
244
245         if (src_bytes > 4)
246                 src_bytes = 4;
247         for (i = 0; i < src_bytes; i++)
248                 v |= ((uint32_t) src[i]) << ((3-i) * 8);
249         return v;
250 }
251
252 static void intel_dp_unpack_aux(uint32_t src, uint8_t *dst, int dst_bytes)
253 {
254         int i;
255         if (dst_bytes > 4)
256                 dst_bytes = 4;
257         for (i = 0; i < dst_bytes; i++)
258                 dst[i] = src >> ((3-i) * 8);
259 }
260
261 static void
262 intel_dp_init_panel_power_sequencer(struct drm_device *dev,
263                                     struct intel_dp *intel_dp);
264 static void
265 intel_dp_init_panel_power_sequencer_registers(struct drm_device *dev,
266                                               struct intel_dp *intel_dp);
267
268 static void pps_lock(struct intel_dp *intel_dp)
269 {
270         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
271         struct intel_encoder *encoder = &intel_dig_port->base;
272         struct drm_device *dev = encoder->base.dev;
273         struct drm_i915_private *dev_priv = dev->dev_private;
274         enum intel_display_power_domain power_domain;
275
276         /*
277          * See vlv_power_sequencer_reset() why we need
278          * a power domain reference here.
279          */
280         power_domain = intel_display_port_power_domain(encoder);
281         intel_display_power_get(dev_priv, power_domain);
282
283         mutex_lock(&dev_priv->pps_mutex);
284 }
285
286 static void pps_unlock(struct intel_dp *intel_dp)
287 {
288         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
289         struct intel_encoder *encoder = &intel_dig_port->base;
290         struct drm_device *dev = encoder->base.dev;
291         struct drm_i915_private *dev_priv = dev->dev_private;
292         enum intel_display_power_domain power_domain;
293
294         mutex_unlock(&dev_priv->pps_mutex);
295
296         power_domain = intel_display_port_power_domain(encoder);
297         intel_display_power_put(dev_priv, power_domain);
298 }
299
300 static void
301 vlv_power_sequencer_kick(struct intel_dp *intel_dp)
302 {
303         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
304         struct drm_device *dev = intel_dig_port->base.base.dev;
305         struct drm_i915_private *dev_priv = dev->dev_private;
306         enum pipe pipe = intel_dp->pps_pipe;
307         bool pll_enabled, release_cl_override = false;
308         enum dpio_phy phy = DPIO_PHY(pipe);
309         enum dpio_channel ch = vlv_pipe_to_channel(pipe);
310         uint32_t DP;
311
312         if (WARN(I915_READ(intel_dp->output_reg) & DP_PORT_EN,
313                  "skipping pipe %c power seqeuncer kick due to port %c being active\n",
314                  pipe_name(pipe), port_name(intel_dig_port->port)))
315                 return;
316
317         DRM_DEBUG_KMS("kicking pipe %c power sequencer for port %c\n",
318                       pipe_name(pipe), port_name(intel_dig_port->port));
319
320         /* Preserve the BIOS-computed detected bit. This is
321          * supposed to be read-only.
322          */
323         DP = I915_READ(intel_dp->output_reg) & DP_DETECTED;
324         DP |= DP_VOLTAGE_0_4 | DP_PRE_EMPHASIS_0;
325         DP |= DP_PORT_WIDTH(1);
326         DP |= DP_LINK_TRAIN_PAT_1;
327
328         if (IS_CHERRYVIEW(dev))
329                 DP |= DP_PIPE_SELECT_CHV(pipe);
330         else if (pipe == PIPE_B)
331                 DP |= DP_PIPEB_SELECT;
332
333         pll_enabled = I915_READ(DPLL(pipe)) & DPLL_VCO_ENABLE;
334
335         /*
336          * The DPLL for the pipe must be enabled for this to work.
337          * So enable temporarily it if it's not already enabled.
338          */
339         if (!pll_enabled) {
340                 release_cl_override = IS_CHERRYVIEW(dev) &&
341                         !chv_phy_powergate_ch(dev_priv, phy, ch, true);
342
343                 vlv_force_pll_on(dev, pipe, IS_CHERRYVIEW(dev) ?
344                                  &chv_dpll[0].dpll : &vlv_dpll[0].dpll);
345         }
346
347         /*
348          * Similar magic as in intel_dp_enable_port().
349          * We _must_ do this port enable + disable trick
350          * to make this power seqeuencer lock onto the port.
351          * Otherwise even VDD force bit won't work.
352          */
353         I915_WRITE(intel_dp->output_reg, DP);
354         POSTING_READ(intel_dp->output_reg);
355
356         I915_WRITE(intel_dp->output_reg, DP | DP_PORT_EN);
357         POSTING_READ(intel_dp->output_reg);
358
359         I915_WRITE(intel_dp->output_reg, DP & ~DP_PORT_EN);
360         POSTING_READ(intel_dp->output_reg);
361
362         if (!pll_enabled) {
363                 vlv_force_pll_off(dev, pipe);
364
365                 if (release_cl_override)
366                         chv_phy_powergate_ch(dev_priv, phy, ch, false);
367         }
368 }
369
370 static enum pipe
371 vlv_power_sequencer_pipe(struct intel_dp *intel_dp)
372 {
373         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
374         struct drm_device *dev = intel_dig_port->base.base.dev;
375         struct drm_i915_private *dev_priv = dev->dev_private;
376         struct intel_encoder *encoder;
377         unsigned int pipes = (1 << PIPE_A) | (1 << PIPE_B);
378         enum pipe pipe;
379
380         lockdep_assert_held(&dev_priv->pps_mutex);
381
382         /* We should never land here with regular DP ports */
383         WARN_ON(!is_edp(intel_dp));
384
385         if (intel_dp->pps_pipe != INVALID_PIPE)
386                 return intel_dp->pps_pipe;
387
388         /*
389          * We don't have power sequencer currently.
390          * Pick one that's not used by other ports.
391          */
392         list_for_each_entry(encoder, &dev->mode_config.encoder_list,
393                             base.head) {
394                 struct intel_dp *tmp;
395
396                 if (encoder->type != INTEL_OUTPUT_EDP)
397                         continue;
398
399                 tmp = enc_to_intel_dp(&encoder->base);
400
401                 if (tmp->pps_pipe != INVALID_PIPE)
402                         pipes &= ~(1 << tmp->pps_pipe);
403         }
404
405         /*
406          * Didn't find one. This should not happen since there
407          * are two power sequencers and up to two eDP ports.
408          */
409         if (WARN_ON(pipes == 0))
410                 pipe = PIPE_A;
411         else
412                 pipe = ffs(pipes) - 1;
413
414         vlv_steal_power_sequencer(dev, pipe);
415         intel_dp->pps_pipe = pipe;
416
417         DRM_DEBUG_KMS("picked pipe %c power sequencer for port %c\n",
418                       pipe_name(intel_dp->pps_pipe),
419                       port_name(intel_dig_port->port));
420
421         /* init power sequencer on this pipe and port */
422         intel_dp_init_panel_power_sequencer(dev, intel_dp);
423         intel_dp_init_panel_power_sequencer_registers(dev, intel_dp);
424
425         /*
426          * Even vdd force doesn't work until we've made
427          * the power sequencer lock in on the port.
428          */
429         vlv_power_sequencer_kick(intel_dp);
430
431         return intel_dp->pps_pipe;
432 }
433
434 typedef bool (*vlv_pipe_check)(struct drm_i915_private *dev_priv,
435                                enum pipe pipe);
436
437 static bool vlv_pipe_has_pp_on(struct drm_i915_private *dev_priv,
438                                enum pipe pipe)
439 {
440         return I915_READ(VLV_PIPE_PP_STATUS(pipe)) & PP_ON;
441 }
442
443 static bool vlv_pipe_has_vdd_on(struct drm_i915_private *dev_priv,
444                                 enum pipe pipe)
445 {
446         return I915_READ(VLV_PIPE_PP_CONTROL(pipe)) & EDP_FORCE_VDD;
447 }
448
449 static bool vlv_pipe_any(struct drm_i915_private *dev_priv,
450                          enum pipe pipe)
451 {
452         return true;
453 }
454
455 static enum pipe
456 vlv_initial_pps_pipe(struct drm_i915_private *dev_priv,
457                      enum port port,
458                      vlv_pipe_check pipe_check)
459 {
460         enum pipe pipe;
461
462         for (pipe = PIPE_A; pipe <= PIPE_B; pipe++) {
463                 u32 port_sel = I915_READ(VLV_PIPE_PP_ON_DELAYS(pipe)) &
464                         PANEL_PORT_SELECT_MASK;
465
466                 if (port_sel != PANEL_PORT_SELECT_VLV(port))
467                         continue;
468
469                 if (!pipe_check(dev_priv, pipe))
470                         continue;
471
472                 return pipe;
473         }
474
475         return INVALID_PIPE;
476 }
477
478 static void
479 vlv_initial_power_sequencer_setup(struct intel_dp *intel_dp)
480 {
481         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
482         struct drm_device *dev = intel_dig_port->base.base.dev;
483         struct drm_i915_private *dev_priv = dev->dev_private;
484         enum port port = intel_dig_port->port;
485
486         lockdep_assert_held(&dev_priv->pps_mutex);
487
488         /* try to find a pipe with this port selected */
489         /* first pick one where the panel is on */
490         intel_dp->pps_pipe = vlv_initial_pps_pipe(dev_priv, port,
491                                                   vlv_pipe_has_pp_on);
492         /* didn't find one? pick one where vdd is on */
493         if (intel_dp->pps_pipe == INVALID_PIPE)
494                 intel_dp->pps_pipe = vlv_initial_pps_pipe(dev_priv, port,
495                                                           vlv_pipe_has_vdd_on);
496         /* didn't find one? pick one with just the correct port */
497         if (intel_dp->pps_pipe == INVALID_PIPE)
498                 intel_dp->pps_pipe = vlv_initial_pps_pipe(dev_priv, port,
499                                                           vlv_pipe_any);
500
501         /* didn't find one? just let vlv_power_sequencer_pipe() pick one when needed */
502         if (intel_dp->pps_pipe == INVALID_PIPE) {
503                 DRM_DEBUG_KMS("no initial power sequencer for port %c\n",
504                               port_name(port));
505                 return;
506         }
507
508         DRM_DEBUG_KMS("initial power sequencer for port %c: pipe %c\n",
509                       port_name(port), pipe_name(intel_dp->pps_pipe));
510
511         intel_dp_init_panel_power_sequencer(dev, intel_dp);
512         intel_dp_init_panel_power_sequencer_registers(dev, intel_dp);
513 }
514
515 void vlv_power_sequencer_reset(struct drm_i915_private *dev_priv)
516 {
517         struct drm_device *dev = dev_priv->dev;
518         struct intel_encoder *encoder;
519
520         if (WARN_ON(!IS_VALLEYVIEW(dev)))
521                 return;
522
523         /*
524          * We can't grab pps_mutex here due to deadlock with power_domain
525          * mutex when power_domain functions are called while holding pps_mutex.
526          * That also means that in order to use pps_pipe the code needs to
527          * hold both a power domain reference and pps_mutex, and the power domain
528          * reference get/put must be done while _not_ holding pps_mutex.
529          * pps_{lock,unlock}() do these steps in the correct order, so one
530          * should use them always.
531          */
532
533         list_for_each_entry(encoder, &dev->mode_config.encoder_list, base.head) {
534                 struct intel_dp *intel_dp;
535
536                 if (encoder->type != INTEL_OUTPUT_EDP)
537                         continue;
538
539                 intel_dp = enc_to_intel_dp(&encoder->base);
540                 intel_dp->pps_pipe = INVALID_PIPE;
541         }
542 }
543
544 static u32 _pp_ctrl_reg(struct intel_dp *intel_dp)
545 {
546         struct drm_device *dev = intel_dp_to_dev(intel_dp);
547
548         if (IS_BROXTON(dev))
549                 return BXT_PP_CONTROL(0);
550         else if (HAS_PCH_SPLIT(dev))
551                 return PCH_PP_CONTROL;
552         else
553                 return VLV_PIPE_PP_CONTROL(vlv_power_sequencer_pipe(intel_dp));
554 }
555
556 static u32 _pp_stat_reg(struct intel_dp *intel_dp)
557 {
558         struct drm_device *dev = intel_dp_to_dev(intel_dp);
559
560         if (IS_BROXTON(dev))
561                 return BXT_PP_STATUS(0);
562         else if (HAS_PCH_SPLIT(dev))
563                 return PCH_PP_STATUS;
564         else
565                 return VLV_PIPE_PP_STATUS(vlv_power_sequencer_pipe(intel_dp));
566 }
567
568 /* Reboot notifier handler to shutdown panel power to guarantee T12 timing
569    This function only applicable when panel PM state is not to be tracked */
570 static int edp_notify_handler(struct notifier_block *this, unsigned long code,
571                               void *unused)
572 {
573         struct intel_dp *intel_dp = container_of(this, typeof(* intel_dp),
574                                                  edp_notifier);
575         struct drm_device *dev = intel_dp_to_dev(intel_dp);
576         struct drm_i915_private *dev_priv = dev->dev_private;
577
578         if (!is_edp(intel_dp) || code != SYS_RESTART)
579                 return 0;
580
581         pps_lock(intel_dp);
582
583         if (IS_VALLEYVIEW(dev)) {
584                 enum pipe pipe = vlv_power_sequencer_pipe(intel_dp);
585                 u32 pp_ctrl_reg, pp_div_reg;
586                 u32 pp_div;
587
588                 pp_ctrl_reg = VLV_PIPE_PP_CONTROL(pipe);
589                 pp_div_reg  = VLV_PIPE_PP_DIVISOR(pipe);
590                 pp_div = I915_READ(pp_div_reg);
591                 pp_div &= PP_REFERENCE_DIVIDER_MASK;
592
593                 /* 0x1F write to PP_DIV_REG sets max cycle delay */
594                 I915_WRITE(pp_div_reg, pp_div | 0x1F);
595                 I915_WRITE(pp_ctrl_reg, PANEL_UNLOCK_REGS | PANEL_POWER_OFF);
596                 msleep(intel_dp->panel_power_cycle_delay);
597         }
598
599         pps_unlock(intel_dp);
600
601         return 0;
602 }
603
604 static bool edp_have_panel_power(struct intel_dp *intel_dp)
605 {
606         struct drm_device *dev = intel_dp_to_dev(intel_dp);
607         struct drm_i915_private *dev_priv = dev->dev_private;
608
609         lockdep_assert_held(&dev_priv->pps_mutex);
610
611         if (IS_VALLEYVIEW(dev) &&
612             intel_dp->pps_pipe == INVALID_PIPE)
613                 return false;
614
615         return (I915_READ(_pp_stat_reg(intel_dp)) & PP_ON) != 0;
616 }
617
618 static bool edp_have_panel_vdd(struct intel_dp *intel_dp)
619 {
620         struct drm_device *dev = intel_dp_to_dev(intel_dp);
621         struct drm_i915_private *dev_priv = dev->dev_private;
622
623         lockdep_assert_held(&dev_priv->pps_mutex);
624
625         if (IS_VALLEYVIEW(dev) &&
626             intel_dp->pps_pipe == INVALID_PIPE)
627                 return false;
628
629         return I915_READ(_pp_ctrl_reg(intel_dp)) & EDP_FORCE_VDD;
630 }
631
632 static void
633 intel_dp_check_edp(struct intel_dp *intel_dp)
634 {
635         struct drm_device *dev = intel_dp_to_dev(intel_dp);
636         struct drm_i915_private *dev_priv = dev->dev_private;
637
638         if (!is_edp(intel_dp))
639                 return;
640
641         if (!edp_have_panel_power(intel_dp) && !edp_have_panel_vdd(intel_dp)) {
642                 WARN(1, "eDP powered off while attempting aux channel communication.\n");
643                 DRM_DEBUG_KMS("Status 0x%08x Control 0x%08x\n",
644                               I915_READ(_pp_stat_reg(intel_dp)),
645                               I915_READ(_pp_ctrl_reg(intel_dp)));
646         }
647 }
648
649 static uint32_t
650 intel_dp_aux_wait_done(struct intel_dp *intel_dp, bool has_aux_irq)
651 {
652         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
653         struct drm_device *dev = intel_dig_port->base.base.dev;
654         struct drm_i915_private *dev_priv = dev->dev_private;
655         uint32_t ch_ctl = intel_dp->aux_ch_ctl_reg;
656         uint32_t status;
657         bool done;
658
659 #define C (((status = I915_READ_NOTRACE(ch_ctl)) & DP_AUX_CH_CTL_SEND_BUSY) == 0)
660         if (has_aux_irq)
661                 done = wait_event_timeout(dev_priv->gmbus_wait_queue, C,
662                                           msecs_to_jiffies_timeout(10));
663         else
664                 done = wait_for_atomic(C, 10) == 0;
665         if (!done)
666                 DRM_ERROR("dp aux hw did not signal timeout (has irq: %i)!\n",
667                           has_aux_irq);
668 #undef C
669
670         return status;
671 }
672
673 static uint32_t i9xx_get_aux_clock_divider(struct intel_dp *intel_dp, int index)
674 {
675         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
676         struct drm_device *dev = intel_dig_port->base.base.dev;
677
678         /*
679          * The clock divider is based off the hrawclk, and would like to run at
680          * 2MHz.  So, take the hrawclk value and divide by 2 and use that
681          */
682         return index ? 0 : intel_hrawclk(dev) / 2;
683 }
684
685 static uint32_t ilk_get_aux_clock_divider(struct intel_dp *intel_dp, int index)
686 {
687         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
688         struct drm_device *dev = intel_dig_port->base.base.dev;
689         struct drm_i915_private *dev_priv = dev->dev_private;
690
691         if (index)
692                 return 0;
693
694         if (intel_dig_port->port == PORT_A) {
695                 return DIV_ROUND_UP(dev_priv->cdclk_freq, 2000);
696
697         } else {
698                 return DIV_ROUND_UP(intel_pch_rawclk(dev), 2);
699         }
700 }
701
702 static uint32_t hsw_get_aux_clock_divider(struct intel_dp *intel_dp, int index)
703 {
704         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
705         struct drm_device *dev = intel_dig_port->base.base.dev;
706         struct drm_i915_private *dev_priv = dev->dev_private;
707
708         if (intel_dig_port->port == PORT_A) {
709                 if (index)
710                         return 0;
711                 return DIV_ROUND_CLOSEST(dev_priv->cdclk_freq, 2000);
712         } else if (dev_priv->pch_id == INTEL_PCH_LPT_DEVICE_ID_TYPE) {
713                 /* Workaround for non-ULT HSW */
714                 switch (index) {
715                 case 0: return 63;
716                 case 1: return 72;
717                 default: return 0;
718                 }
719         } else  {
720                 return index ? 0 : DIV_ROUND_UP(intel_pch_rawclk(dev), 2);
721         }
722 }
723
724 static uint32_t vlv_get_aux_clock_divider(struct intel_dp *intel_dp, int index)
725 {
726         return index ? 0 : 100;
727 }
728
729 static uint32_t skl_get_aux_clock_divider(struct intel_dp *intel_dp, int index)
730 {
731         /*
732          * SKL doesn't need us to program the AUX clock divider (Hardware will
733          * derive the clock from CDCLK automatically). We still implement the
734          * get_aux_clock_divider vfunc to plug-in into the existing code.
735          */
736         return index ? 0 : 1;
737 }
738
739 static uint32_t i9xx_get_aux_send_ctl(struct intel_dp *intel_dp,
740                                       bool has_aux_irq,
741                                       int send_bytes,
742                                       uint32_t aux_clock_divider)
743 {
744         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
745         struct drm_device *dev = intel_dig_port->base.base.dev;
746         uint32_t precharge, timeout;
747
748         if (IS_GEN6(dev))
749                 precharge = 3;
750         else
751                 precharge = 5;
752
753         if (IS_BROADWELL(dev) && intel_dp->aux_ch_ctl_reg == DPA_AUX_CH_CTL)
754                 timeout = DP_AUX_CH_CTL_TIME_OUT_600us;
755         else
756                 timeout = DP_AUX_CH_CTL_TIME_OUT_400us;
757
758         return DP_AUX_CH_CTL_SEND_BUSY |
759                DP_AUX_CH_CTL_DONE |
760                (has_aux_irq ? DP_AUX_CH_CTL_INTERRUPT : 0) |
761                DP_AUX_CH_CTL_TIME_OUT_ERROR |
762                timeout |
763                DP_AUX_CH_CTL_RECEIVE_ERROR |
764                (send_bytes << DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT) |
765                (precharge << DP_AUX_CH_CTL_PRECHARGE_2US_SHIFT) |
766                (aux_clock_divider << DP_AUX_CH_CTL_BIT_CLOCK_2X_SHIFT);
767 }
768
769 static uint32_t skl_get_aux_send_ctl(struct intel_dp *intel_dp,
770                                       bool has_aux_irq,
771                                       int send_bytes,
772                                       uint32_t unused)
773 {
774         return DP_AUX_CH_CTL_SEND_BUSY |
775                DP_AUX_CH_CTL_DONE |
776                (has_aux_irq ? DP_AUX_CH_CTL_INTERRUPT : 0) |
777                DP_AUX_CH_CTL_TIME_OUT_ERROR |
778                DP_AUX_CH_CTL_TIME_OUT_1600us |
779                DP_AUX_CH_CTL_RECEIVE_ERROR |
780                (send_bytes << DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT) |
781                DP_AUX_CH_CTL_SYNC_PULSE_SKL(32);
782 }
783
784 static int
785 intel_dp_aux_ch(struct intel_dp *intel_dp,
786                 const uint8_t *send, int send_bytes,
787                 uint8_t *recv, int recv_size)
788 {
789         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
790         struct drm_device *dev = intel_dig_port->base.base.dev;
791         struct drm_i915_private *dev_priv = dev->dev_private;
792         uint32_t ch_ctl = intel_dp->aux_ch_ctl_reg;
793         uint32_t ch_data = ch_ctl + 4;
794         uint32_t aux_clock_divider;
795         int i, ret, recv_bytes;
796         uint32_t status;
797         int try, clock = 0;
798         bool has_aux_irq = HAS_AUX_IRQ(dev);
799         bool vdd;
800
801         pps_lock(intel_dp);
802
803         /*
804          * We will be called with VDD already enabled for dpcd/edid/oui reads.
805          * In such cases we want to leave VDD enabled and it's up to upper layers
806          * to turn it off. But for eg. i2c-dev access we need to turn it on/off
807          * ourselves.
808          */
809         vdd = edp_panel_vdd_on(intel_dp);
810
811         /* dp aux is extremely sensitive to irq latency, hence request the
812          * lowest possible wakeup latency and so prevent the cpu from going into
813          * deep sleep states.
814          */
815         pm_qos_update_request(&dev_priv->pm_qos, 0);
816
817         intel_dp_check_edp(intel_dp);
818
819         intel_aux_display_runtime_get(dev_priv);
820
821         /* Try to wait for any previous AUX channel activity */
822         for (try = 0; try < 3; try++) {
823                 status = I915_READ_NOTRACE(ch_ctl);
824                 if ((status & DP_AUX_CH_CTL_SEND_BUSY) == 0)
825                         break;
826                 msleep(1);
827         }
828
829         if (try == 3) {
830                 static u32 last_status = -1;
831                 const u32 status = I915_READ(ch_ctl);
832
833                 if (status != last_status) {
834                         WARN(1, "dp_aux_ch not started status 0x%08x\n",
835                              status);
836                         last_status = status;
837                 }
838
839                 ret = -EBUSY;
840                 goto out;
841         }
842
843         /* Only 5 data registers! */
844         if (WARN_ON(send_bytes > 20 || recv_size > 20)) {
845                 ret = -E2BIG;
846                 goto out;
847         }
848
849         while ((aux_clock_divider = intel_dp->get_aux_clock_divider(intel_dp, clock++))) {
850                 u32 send_ctl = intel_dp->get_aux_send_ctl(intel_dp,
851                                                           has_aux_irq,
852                                                           send_bytes,
853                                                           aux_clock_divider);
854
855                 /* Must try at least 3 times according to DP spec */
856                 for (try = 0; try < 5; try++) {
857                         /* Load the send data into the aux channel data registers */
858                         for (i = 0; i < send_bytes; i += 4)
859                                 I915_WRITE(ch_data + i,
860                                            intel_dp_pack_aux(send + i,
861                                                              send_bytes - i));
862
863                         /* Send the command and wait for it to complete */
864                         I915_WRITE(ch_ctl, send_ctl);
865
866                         status = intel_dp_aux_wait_done(intel_dp, has_aux_irq);
867
868                         /* Clear done status and any errors */
869                         I915_WRITE(ch_ctl,
870                                    status |
871                                    DP_AUX_CH_CTL_DONE |
872                                    DP_AUX_CH_CTL_TIME_OUT_ERROR |
873                                    DP_AUX_CH_CTL_RECEIVE_ERROR);
874
875                         if (status & DP_AUX_CH_CTL_TIME_OUT_ERROR)
876                                 continue;
877
878                         /* DP CTS 1.2 Core Rev 1.1, 4.2.1.1 & 4.2.1.2
879                          *   400us delay required for errors and timeouts
880                          *   Timeout errors from the HW already meet this
881                          *   requirement so skip to next iteration
882                          */
883                         if (status & DP_AUX_CH_CTL_RECEIVE_ERROR) {
884                                 usleep_range(400, 500);
885                                 continue;
886                         }
887                         if (status & DP_AUX_CH_CTL_DONE)
888                                 goto done;
889                 }
890         }
891
892         if ((status & DP_AUX_CH_CTL_DONE) == 0) {
893                 DRM_ERROR("dp_aux_ch not done status 0x%08x\n", status);
894                 ret = -EBUSY;
895                 goto out;
896         }
897
898 done:
899         /* Check for timeout or receive error.
900          * Timeouts occur when the sink is not connected
901          */
902         if (status & DP_AUX_CH_CTL_RECEIVE_ERROR) {
903                 DRM_ERROR("dp_aux_ch receive error status 0x%08x\n", status);
904                 ret = -EIO;
905                 goto out;
906         }
907
908         /* Timeouts occur when the device isn't connected, so they're
909          * "normal" -- don't fill the kernel log with these */
910         if (status & DP_AUX_CH_CTL_TIME_OUT_ERROR) {
911                 DRM_DEBUG_KMS("dp_aux_ch timeout status 0x%08x\n", status);
912                 ret = -ETIMEDOUT;
913                 goto out;
914         }
915
916         /* Unload any bytes sent back from the other side */
917         recv_bytes = ((status & DP_AUX_CH_CTL_MESSAGE_SIZE_MASK) >>
918                       DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT);
919         if (recv_bytes > recv_size)
920                 recv_bytes = recv_size;
921
922         for (i = 0; i < recv_bytes; i += 4)
923                 intel_dp_unpack_aux(I915_READ(ch_data + i),
924                                     recv + i, recv_bytes - i);
925
926         ret = recv_bytes;
927 out:
928         pm_qos_update_request(&dev_priv->pm_qos, PM_QOS_DEFAULT_VALUE);
929         intel_aux_display_runtime_put(dev_priv);
930
931         if (vdd)
932                 edp_panel_vdd_off(intel_dp, false);
933
934         pps_unlock(intel_dp);
935
936         return ret;
937 }
938
939 #define BARE_ADDRESS_SIZE       3
940 #define HEADER_SIZE             (BARE_ADDRESS_SIZE + 1)
941 static ssize_t
942 intel_dp_aux_transfer(struct drm_dp_aux *aux, struct drm_dp_aux_msg *msg)
943 {
944         struct intel_dp *intel_dp = container_of(aux, struct intel_dp, aux);
945         uint8_t txbuf[20], rxbuf[20];
946         size_t txsize, rxsize;
947         int ret;
948
949         txbuf[0] = (msg->request << 4) |
950                 ((msg->address >> 16) & 0xf);
951         txbuf[1] = (msg->address >> 8) & 0xff;
952         txbuf[2] = msg->address & 0xff;
953         txbuf[3] = msg->size - 1;
954
955         switch (msg->request & ~DP_AUX_I2C_MOT) {
956         case DP_AUX_NATIVE_WRITE:
957         case DP_AUX_I2C_WRITE:
958         case DP_AUX_I2C_WRITE_STATUS_UPDATE:
959                 txsize = msg->size ? HEADER_SIZE + msg->size : BARE_ADDRESS_SIZE;
960                 rxsize = 2; /* 0 or 1 data bytes */
961
962                 if (WARN_ON(txsize > 20))
963                         return -E2BIG;
964
965                 memcpy(txbuf + HEADER_SIZE, msg->buffer, msg->size);
966
967                 ret = intel_dp_aux_ch(intel_dp, txbuf, txsize, rxbuf, rxsize);
968                 if (ret > 0) {
969                         msg->reply = rxbuf[0] >> 4;
970
971                         if (ret > 1) {
972                                 /* Number of bytes written in a short write. */
973                                 ret = clamp_t(int, rxbuf[1], 0, msg->size);
974                         } else {
975                                 /* Return payload size. */
976                                 ret = msg->size;
977                         }
978                 }
979                 break;
980
981         case DP_AUX_NATIVE_READ:
982         case DP_AUX_I2C_READ:
983                 txsize = msg->size ? HEADER_SIZE : BARE_ADDRESS_SIZE;
984                 rxsize = msg->size + 1;
985
986                 if (WARN_ON(rxsize > 20))
987                         return -E2BIG;
988
989                 ret = intel_dp_aux_ch(intel_dp, txbuf, txsize, rxbuf, rxsize);
990                 if (ret > 0) {
991                         msg->reply = rxbuf[0] >> 4;
992                         /*
993                          * Assume happy day, and copy the data. The caller is
994                          * expected to check msg->reply before touching it.
995                          *
996                          * Return payload size.
997                          */
998                         ret--;
999                         memcpy(msg->buffer, rxbuf + 1, ret);
1000                 }
1001                 break;
1002
1003         default:
1004                 ret = -EINVAL;
1005                 break;
1006         }
1007
1008         return ret;
1009 }
1010
1011 static void
1012 intel_dp_aux_init(struct intel_dp *intel_dp, struct intel_connector *connector)
1013 {
1014         struct drm_device *dev = intel_dp_to_dev(intel_dp);
1015         struct drm_i915_private *dev_priv = dev->dev_private;
1016         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
1017         enum port port = intel_dig_port->port;
1018         struct ddi_vbt_port_info *info = &dev_priv->vbt.ddi_port_info[port];
1019         const char *name = NULL;
1020         uint32_t porte_aux_ctl_reg = DPA_AUX_CH_CTL;
1021         int ret;
1022
1023         /* On SKL we don't have Aux for port E so we rely on VBT to set
1024          * a proper alternate aux channel.
1025          */
1026         if (IS_SKYLAKE(dev) && port == PORT_E) {
1027                 switch (info->alternate_aux_channel) {
1028                 case DP_AUX_B:
1029                         porte_aux_ctl_reg = DPB_AUX_CH_CTL;
1030                         break;
1031                 case DP_AUX_C:
1032                         porte_aux_ctl_reg = DPC_AUX_CH_CTL;
1033                         break;
1034                 case DP_AUX_D:
1035                         porte_aux_ctl_reg = DPD_AUX_CH_CTL;
1036                         break;
1037                 case DP_AUX_A:
1038                 default:
1039                         porte_aux_ctl_reg = DPA_AUX_CH_CTL;
1040                 }
1041         }
1042
1043         switch (port) {
1044         case PORT_A:
1045                 intel_dp->aux_ch_ctl_reg = DPA_AUX_CH_CTL;
1046                 name = "DPDDC-A";
1047                 break;
1048         case PORT_B:
1049                 intel_dp->aux_ch_ctl_reg = PCH_DPB_AUX_CH_CTL;
1050                 name = "DPDDC-B";
1051                 break;
1052         case PORT_C:
1053                 intel_dp->aux_ch_ctl_reg = PCH_DPC_AUX_CH_CTL;
1054                 name = "DPDDC-C";
1055                 break;
1056         case PORT_D:
1057                 intel_dp->aux_ch_ctl_reg = PCH_DPD_AUX_CH_CTL;
1058                 name = "DPDDC-D";
1059                 break;
1060         case PORT_E:
1061                 intel_dp->aux_ch_ctl_reg = porte_aux_ctl_reg;
1062                 name = "DPDDC-E";
1063                 break;
1064         default:
1065                 BUG();
1066         }
1067
1068         /*
1069          * The AUX_CTL register is usually DP_CTL + 0x10.
1070          *
1071          * On Haswell and Broadwell though:
1072          *   - Both port A DDI_BUF_CTL and DDI_AUX_CTL are on the CPU
1073          *   - Port B/C/D AUX channels are on the PCH, DDI_BUF_CTL on the CPU
1074          *
1075          * Skylake moves AUX_CTL back next to DDI_BUF_CTL, on the CPU.
1076          */
1077         if (!IS_HASWELL(dev) && !IS_BROADWELL(dev) && port != PORT_E)
1078                 intel_dp->aux_ch_ctl_reg = intel_dp->output_reg + 0x10;
1079
1080         intel_dp->aux.name = name;
1081         intel_dp->aux.dev = dev->dev;
1082         intel_dp->aux.transfer = intel_dp_aux_transfer;
1083
1084         DRM_DEBUG_KMS("registering %s bus for %s\n", name,
1085                       connector->base.kdev->kobj.name);
1086
1087         ret = drm_dp_aux_register(&intel_dp->aux);
1088         if (ret < 0) {
1089                 DRM_ERROR("drm_dp_aux_register() for %s failed (%d)\n",
1090                           name, ret);
1091                 return;
1092         }
1093
1094         ret = sysfs_create_link(&connector->base.kdev->kobj,
1095                                 &intel_dp->aux.ddc.dev.kobj,
1096                                 intel_dp->aux.ddc.dev.kobj.name);
1097         if (ret < 0) {
1098                 DRM_ERROR("sysfs_create_link() for %s failed (%d)\n", name, ret);
1099                 drm_dp_aux_unregister(&intel_dp->aux);
1100         }
1101 }
1102
1103 static void
1104 intel_dp_connector_unregister(struct intel_connector *intel_connector)
1105 {
1106         struct intel_dp *intel_dp = intel_attached_dp(&intel_connector->base);
1107
1108         if (!intel_connector->mst_port)
1109                 sysfs_remove_link(&intel_connector->base.kdev->kobj,
1110                                   intel_dp->aux.ddc.dev.kobj.name);
1111         intel_connector_unregister(intel_connector);
1112 }
1113
1114 static void
1115 skl_edp_set_pll_config(struct intel_crtc_state *pipe_config)
1116 {
1117         u32 ctrl1;
1118
1119         memset(&pipe_config->dpll_hw_state, 0,
1120                sizeof(pipe_config->dpll_hw_state));
1121
1122         pipe_config->ddi_pll_sel = SKL_DPLL0;
1123         pipe_config->dpll_hw_state.cfgcr1 = 0;
1124         pipe_config->dpll_hw_state.cfgcr2 = 0;
1125
1126         ctrl1 = DPLL_CTRL1_OVERRIDE(SKL_DPLL0);
1127         switch (pipe_config->port_clock / 2) {
1128         case 81000:
1129                 ctrl1 |= DPLL_CTRL1_LINK_RATE(DPLL_CTRL1_LINK_RATE_810,
1130                                               SKL_DPLL0);
1131                 break;
1132         case 135000:
1133                 ctrl1 |= DPLL_CTRL1_LINK_RATE(DPLL_CTRL1_LINK_RATE_1350,
1134                                               SKL_DPLL0);
1135                 break;
1136         case 270000:
1137                 ctrl1 |= DPLL_CTRL1_LINK_RATE(DPLL_CTRL1_LINK_RATE_2700,
1138                                               SKL_DPLL0);
1139                 break;
1140         case 162000:
1141                 ctrl1 |= DPLL_CTRL1_LINK_RATE(DPLL_CTRL1_LINK_RATE_1620,
1142                                               SKL_DPLL0);
1143                 break;
1144         /* TBD: For DP link rates 2.16 GHz and 4.32 GHz, VCO is 8640 which
1145         results in CDCLK change. Need to handle the change of CDCLK by
1146         disabling pipes and re-enabling them */
1147         case 108000:
1148                 ctrl1 |= DPLL_CTRL1_LINK_RATE(DPLL_CTRL1_LINK_RATE_1080,
1149                                               SKL_DPLL0);
1150                 break;
1151         case 216000:
1152                 ctrl1 |= DPLL_CTRL1_LINK_RATE(DPLL_CTRL1_LINK_RATE_2160,
1153                                               SKL_DPLL0);
1154                 break;
1155
1156         }
1157         pipe_config->dpll_hw_state.ctrl1 = ctrl1;
1158 }
1159
1160 void
1161 hsw_dp_set_ddi_pll_sel(struct intel_crtc_state *pipe_config)
1162 {
1163         memset(&pipe_config->dpll_hw_state, 0,
1164                sizeof(pipe_config->dpll_hw_state));
1165
1166         switch (pipe_config->port_clock / 2) {
1167         case 81000:
1168                 pipe_config->ddi_pll_sel = PORT_CLK_SEL_LCPLL_810;
1169                 break;
1170         case 135000:
1171                 pipe_config->ddi_pll_sel = PORT_CLK_SEL_LCPLL_1350;
1172                 break;
1173         case 270000:
1174                 pipe_config->ddi_pll_sel = PORT_CLK_SEL_LCPLL_2700;
1175                 break;
1176         }
1177 }
1178
1179 static int
1180 intel_dp_sink_rates(struct intel_dp *intel_dp, const int **sink_rates)
1181 {
1182         if (intel_dp->num_sink_rates) {
1183                 *sink_rates = intel_dp->sink_rates;
1184                 return intel_dp->num_sink_rates;
1185         }
1186
1187         *sink_rates = default_rates;
1188
1189         return (intel_dp_max_link_bw(intel_dp) >> 3) + 1;
1190 }
1191
1192 static bool intel_dp_source_supports_hbr2(struct drm_device *dev)
1193 {
1194         /* WaDisableHBR2:skl */
1195         if (IS_SKYLAKE(dev) && INTEL_REVID(dev) <= SKL_REVID_B0)
1196                 return false;
1197
1198         if ((IS_HASWELL(dev) && !IS_HSW_ULX(dev)) || IS_BROADWELL(dev) ||
1199             (INTEL_INFO(dev)->gen >= 9))
1200                 return true;
1201         else
1202                 return false;
1203 }
1204
1205 static int
1206 intel_dp_source_rates(struct drm_device *dev, const int **source_rates)
1207 {
1208         int size;
1209
1210         if (IS_BROXTON(dev)) {
1211                 *source_rates = bxt_rates;
1212                 size = ARRAY_SIZE(bxt_rates);
1213         } else if (IS_SKYLAKE(dev)) {
1214                 *source_rates = skl_rates;
1215                 size = ARRAY_SIZE(skl_rates);
1216         } else {
1217                 *source_rates = default_rates;
1218                 size = ARRAY_SIZE(default_rates);
1219         }
1220
1221         /* This depends on the fact that 5.4 is last value in the array */
1222         if (!intel_dp_source_supports_hbr2(dev))
1223                 size--;
1224
1225         return size;
1226 }
1227
1228 static void
1229 intel_dp_set_clock(struct intel_encoder *encoder,
1230                    struct intel_crtc_state *pipe_config)
1231 {
1232         struct drm_device *dev = encoder->base.dev;
1233         const struct dp_link_dpll *divisor = NULL;
1234         int i, count = 0;
1235
1236         if (IS_G4X(dev)) {
1237                 divisor = gen4_dpll;
1238                 count = ARRAY_SIZE(gen4_dpll);
1239         } else if (HAS_PCH_SPLIT(dev)) {
1240                 divisor = pch_dpll;
1241                 count = ARRAY_SIZE(pch_dpll);
1242         } else if (IS_CHERRYVIEW(dev)) {
1243                 divisor = chv_dpll;
1244                 count = ARRAY_SIZE(chv_dpll);
1245         } else if (IS_VALLEYVIEW(dev)) {
1246                 divisor = vlv_dpll;
1247                 count = ARRAY_SIZE(vlv_dpll);
1248         }
1249
1250         if (divisor && count) {
1251                 for (i = 0; i < count; i++) {
1252                         if (pipe_config->port_clock == divisor[i].clock) {
1253                                 pipe_config->dpll = divisor[i].dpll;
1254                                 pipe_config->clock_set = true;
1255                                 break;
1256                         }
1257                 }
1258         }
1259 }
1260
1261 static int intersect_rates(const int *source_rates, int source_len,
1262                            const int *sink_rates, int sink_len,
1263                            int *common_rates)
1264 {
1265         int i = 0, j = 0, k = 0;
1266
1267         while (i < source_len && j < sink_len) {
1268                 if (source_rates[i] == sink_rates[j]) {
1269                         if (WARN_ON(k >= DP_MAX_SUPPORTED_RATES))
1270                                 return k;
1271                         common_rates[k] = source_rates[i];
1272                         ++k;
1273                         ++i;
1274                         ++j;
1275                 } else if (source_rates[i] < sink_rates[j]) {
1276                         ++i;
1277                 } else {
1278                         ++j;
1279                 }
1280         }
1281         return k;
1282 }
1283
1284 static int intel_dp_common_rates(struct intel_dp *intel_dp,
1285                                  int *common_rates)
1286 {
1287         struct drm_device *dev = intel_dp_to_dev(intel_dp);
1288         const int *source_rates, *sink_rates;
1289         int source_len, sink_len;
1290
1291         sink_len = intel_dp_sink_rates(intel_dp, &sink_rates);
1292         source_len = intel_dp_source_rates(dev, &source_rates);
1293
1294         return intersect_rates(source_rates, source_len,
1295                                sink_rates, sink_len,
1296                                common_rates);
1297 }
1298
1299 static void snprintf_int_array(char *str, size_t len,
1300                                const int *array, int nelem)
1301 {
1302         int i;
1303
1304         str[0] = '\0';
1305
1306         for (i = 0; i < nelem; i++) {
1307                 int r = snprintf(str, len, "%s%d", i ? ", " : "", array[i]);
1308                 if (r >= len)
1309                         return;
1310                 str += r;
1311                 len -= r;
1312         }
1313 }
1314
1315 static void intel_dp_print_rates(struct intel_dp *intel_dp)
1316 {
1317         struct drm_device *dev = intel_dp_to_dev(intel_dp);
1318         const int *source_rates, *sink_rates;
1319         int source_len, sink_len, common_len;
1320         int common_rates[DP_MAX_SUPPORTED_RATES];
1321         char str[128]; /* FIXME: too big for stack? */
1322
1323         if ((drm_debug & DRM_UT_KMS) == 0)
1324                 return;
1325
1326         source_len = intel_dp_source_rates(dev, &source_rates);
1327         snprintf_int_array(str, sizeof(str), source_rates, source_len);
1328         DRM_DEBUG_KMS("source rates: %s\n", str);
1329
1330         sink_len = intel_dp_sink_rates(intel_dp, &sink_rates);
1331         snprintf_int_array(str, sizeof(str), sink_rates, sink_len);
1332         DRM_DEBUG_KMS("sink rates: %s\n", str);
1333
1334         common_len = intel_dp_common_rates(intel_dp, common_rates);
1335         snprintf_int_array(str, sizeof(str), common_rates, common_len);
1336         DRM_DEBUG_KMS("common rates: %s\n", str);
1337 }
1338
1339 static int rate_to_index(int find, const int *rates)
1340 {
1341         int i = 0;
1342
1343         for (i = 0; i < DP_MAX_SUPPORTED_RATES; ++i)
1344                 if (find == rates[i])
1345                         break;
1346
1347         return i;
1348 }
1349
1350 int
1351 intel_dp_max_link_rate(struct intel_dp *intel_dp)
1352 {
1353         int rates[DP_MAX_SUPPORTED_RATES] = {};
1354         int len;
1355
1356         len = intel_dp_common_rates(intel_dp, rates);
1357         if (WARN_ON(len <= 0))
1358                 return 162000;
1359
1360         return rates[rate_to_index(0, rates) - 1];
1361 }
1362
1363 int intel_dp_rate_select(struct intel_dp *intel_dp, int rate)
1364 {
1365         return rate_to_index(rate, intel_dp->sink_rates);
1366 }
1367
1368 static void intel_dp_compute_rate(struct intel_dp *intel_dp, int port_clock,
1369                                   uint8_t *link_bw, uint8_t *rate_select)
1370 {
1371         if (intel_dp->num_sink_rates) {
1372                 *link_bw = 0;
1373                 *rate_select =
1374                         intel_dp_rate_select(intel_dp, port_clock);
1375         } else {
1376                 *link_bw = drm_dp_link_rate_to_bw_code(port_clock);
1377                 *rate_select = 0;
1378         }
1379 }
1380
1381 bool
1382 intel_dp_compute_config(struct intel_encoder *encoder,
1383                         struct intel_crtc_state *pipe_config)
1384 {
1385         struct drm_device *dev = encoder->base.dev;
1386         struct drm_i915_private *dev_priv = dev->dev_private;
1387         struct drm_display_mode *adjusted_mode = &pipe_config->base.adjusted_mode;
1388         struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
1389         enum port port = dp_to_dig_port(intel_dp)->port;
1390         struct intel_crtc *intel_crtc = to_intel_crtc(pipe_config->base.crtc);
1391         struct intel_connector *intel_connector = intel_dp->attached_connector;
1392         int lane_count, clock;
1393         int min_lane_count = 1;
1394         int max_lane_count = intel_dp_max_lane_count(intel_dp);
1395         /* Conveniently, the link BW constants become indices with a shift...*/
1396         int min_clock = 0;
1397         int max_clock;
1398         int bpp, mode_rate;
1399         int link_avail, link_clock;
1400         int common_rates[DP_MAX_SUPPORTED_RATES] = {};
1401         int common_len;
1402         uint8_t link_bw, rate_select;
1403
1404         common_len = intel_dp_common_rates(intel_dp, common_rates);
1405
1406         /* No common link rates between source and sink */
1407         WARN_ON(common_len <= 0);
1408
1409         max_clock = common_len - 1;
1410
1411         if (HAS_PCH_SPLIT(dev) && !HAS_DDI(dev) && port != PORT_A)
1412                 pipe_config->has_pch_encoder = true;
1413
1414         pipe_config->has_dp_encoder = true;
1415         pipe_config->has_drrs = false;
1416         pipe_config->has_audio = intel_dp->has_audio && port != PORT_A;
1417
1418         if (is_edp(intel_dp) && intel_connector->panel.fixed_mode) {
1419                 intel_fixed_panel_mode(intel_connector->panel.fixed_mode,
1420                                        adjusted_mode);
1421
1422                 if (INTEL_INFO(dev)->gen >= 9) {
1423                         int ret;
1424                         ret = skl_update_scaler_crtc(pipe_config);
1425                         if (ret)
1426                                 return ret;
1427                 }
1428
1429                 if (!HAS_PCH_SPLIT(dev))
1430                         intel_gmch_panel_fitting(intel_crtc, pipe_config,
1431                                                  intel_connector->panel.fitting_mode);
1432                 else
1433                         intel_pch_panel_fitting(intel_crtc, pipe_config,
1434                                                 intel_connector->panel.fitting_mode);
1435         }
1436
1437         if (adjusted_mode->flags & DRM_MODE_FLAG_DBLCLK)
1438                 return false;
1439
1440         DRM_DEBUG_KMS("DP link computation with max lane count %i "
1441                       "max bw %d pixel clock %iKHz\n",
1442                       max_lane_count, common_rates[max_clock],
1443                       adjusted_mode->crtc_clock);
1444
1445         /* Walk through all bpp values. Luckily they're all nicely spaced with 2
1446          * bpc in between. */
1447         bpp = pipe_config->pipe_bpp;
1448         if (is_edp(intel_dp)) {
1449
1450                 /* Get bpp from vbt only for panels that dont have bpp in edid */
1451                 if (intel_connector->base.display_info.bpc == 0 &&
1452                         (dev_priv->vbt.edp_bpp && dev_priv->vbt.edp_bpp < bpp)) {
1453                         DRM_DEBUG_KMS("clamping bpp for eDP panel to BIOS-provided %i\n",
1454                                       dev_priv->vbt.edp_bpp);
1455                         bpp = dev_priv->vbt.edp_bpp;
1456                 }
1457
1458                 /*
1459                  * Use the maximum clock and number of lanes the eDP panel
1460                  * advertizes being capable of. The panels are generally
1461                  * designed to support only a single clock and lane
1462                  * configuration, and typically these values correspond to the
1463                  * native resolution of the panel.
1464                  */
1465                 min_lane_count = max_lane_count;
1466                 min_clock = max_clock;
1467         }
1468
1469         for (; bpp >= 6*3; bpp -= 2*3) {
1470                 mode_rate = intel_dp_link_required(adjusted_mode->crtc_clock,
1471                                                    bpp);
1472
1473                 for (clock = min_clock; clock <= max_clock; clock++) {
1474                         for (lane_count = min_lane_count;
1475                                 lane_count <= max_lane_count;
1476                                 lane_count <<= 1) {
1477
1478                                 link_clock = common_rates[clock];
1479                                 link_avail = intel_dp_max_data_rate(link_clock,
1480                                                                     lane_count);
1481
1482                                 if (mode_rate <= link_avail) {
1483                                         goto found;
1484                                 }
1485                         }
1486                 }
1487         }
1488
1489         return false;
1490
1491 found:
1492         if (intel_dp->color_range_auto) {
1493                 /*
1494                  * See:
1495                  * CEA-861-E - 5.1 Default Encoding Parameters
1496                  * VESA DisplayPort Ver.1.2a - 5.1.1.1 Video Colorimetry
1497                  */
1498                 pipe_config->limited_color_range =
1499                         bpp != 18 && drm_match_cea_mode(adjusted_mode) > 1;
1500         } else {
1501                 pipe_config->limited_color_range =
1502                         intel_dp->limited_color_range;
1503         }
1504
1505         pipe_config->lane_count = lane_count;
1506
1507         pipe_config->pipe_bpp = bpp;
1508         pipe_config->port_clock = common_rates[clock];
1509
1510         intel_dp_compute_rate(intel_dp, pipe_config->port_clock,
1511                               &link_bw, &rate_select);
1512
1513         DRM_DEBUG_KMS("DP link bw %02x rate select %02x lane count %d clock %d bpp %d\n",
1514                       link_bw, rate_select, pipe_config->lane_count,
1515                       pipe_config->port_clock, bpp);
1516         DRM_DEBUG_KMS("DP link bw required %i available %i\n",
1517                       mode_rate, link_avail);
1518
1519         intel_link_compute_m_n(bpp, lane_count,
1520                                adjusted_mode->crtc_clock,
1521                                pipe_config->port_clock,
1522                                &pipe_config->dp_m_n);
1523
1524         if (intel_connector->panel.downclock_mode != NULL &&
1525                 dev_priv->drrs.type == SEAMLESS_DRRS_SUPPORT) {
1526                         pipe_config->has_drrs = true;
1527                         intel_link_compute_m_n(bpp, lane_count,
1528                                 intel_connector->panel.downclock_mode->clock,
1529                                 pipe_config->port_clock,
1530                                 &pipe_config->dp_m2_n2);
1531         }
1532
1533         if (IS_SKYLAKE(dev) && is_edp(intel_dp))
1534                 skl_edp_set_pll_config(pipe_config);
1535         else if (IS_BROXTON(dev))
1536                 /* handled in ddi */;
1537         else if (IS_HASWELL(dev) || IS_BROADWELL(dev))
1538                 hsw_dp_set_ddi_pll_sel(pipe_config);
1539         else
1540                 intel_dp_set_clock(encoder, pipe_config);
1541
1542         return true;
1543 }
1544
1545 static void ironlake_set_pll_cpu_edp(struct intel_dp *intel_dp)
1546 {
1547         struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
1548         struct intel_crtc *crtc = to_intel_crtc(dig_port->base.base.crtc);
1549         struct drm_device *dev = crtc->base.dev;
1550         struct drm_i915_private *dev_priv = dev->dev_private;
1551         u32 dpa_ctl;
1552
1553         DRM_DEBUG_KMS("eDP PLL enable for clock %d\n",
1554                       crtc->config->port_clock);
1555         dpa_ctl = I915_READ(DP_A);
1556         dpa_ctl &= ~DP_PLL_FREQ_MASK;
1557
1558         if (crtc->config->port_clock == 162000) {
1559                 /* For a long time we've carried around a ILK-DevA w/a for the
1560                  * 160MHz clock. If we're really unlucky, it's still required.
1561                  */
1562                 DRM_DEBUG_KMS("160MHz cpu eDP clock, might need ilk devA w/a\n");
1563                 dpa_ctl |= DP_PLL_FREQ_160MHZ;
1564                 intel_dp->DP |= DP_PLL_FREQ_160MHZ;
1565         } else {
1566                 dpa_ctl |= DP_PLL_FREQ_270MHZ;
1567                 intel_dp->DP |= DP_PLL_FREQ_270MHZ;
1568         }
1569
1570         I915_WRITE(DP_A, dpa_ctl);
1571
1572         POSTING_READ(DP_A);
1573         udelay(500);
1574 }
1575
1576 void intel_dp_set_link_params(struct intel_dp *intel_dp,
1577                               const struct intel_crtc_state *pipe_config)
1578 {
1579         intel_dp->link_rate = pipe_config->port_clock;
1580         intel_dp->lane_count = pipe_config->lane_count;
1581 }
1582
1583 static void intel_dp_prepare(struct intel_encoder *encoder)
1584 {
1585         struct drm_device *dev = encoder->base.dev;
1586         struct drm_i915_private *dev_priv = dev->dev_private;
1587         struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
1588         enum port port = dp_to_dig_port(intel_dp)->port;
1589         struct intel_crtc *crtc = to_intel_crtc(encoder->base.crtc);
1590         const struct drm_display_mode *adjusted_mode = &crtc->config->base.adjusted_mode;
1591
1592         intel_dp_set_link_params(intel_dp, crtc->config);
1593
1594         /*
1595          * There are four kinds of DP registers:
1596          *
1597          *      IBX PCH
1598          *      SNB CPU
1599          *      IVB CPU
1600          *      CPT PCH
1601          *
1602          * IBX PCH and CPU are the same for almost everything,
1603          * except that the CPU DP PLL is configured in this
1604          * register
1605          *
1606          * CPT PCH is quite different, having many bits moved
1607          * to the TRANS_DP_CTL register instead. That
1608          * configuration happens (oddly) in ironlake_pch_enable
1609          */
1610
1611         /* Preserve the BIOS-computed detected bit. This is
1612          * supposed to be read-only.
1613          */
1614         intel_dp->DP = I915_READ(intel_dp->output_reg) & DP_DETECTED;
1615
1616         /* Handle DP bits in common between all three register formats */
1617         intel_dp->DP |= DP_VOLTAGE_0_4 | DP_PRE_EMPHASIS_0;
1618         intel_dp->DP |= DP_PORT_WIDTH(crtc->config->lane_count);
1619
1620         if (crtc->config->has_audio)
1621                 intel_dp->DP |= DP_AUDIO_OUTPUT_ENABLE;
1622
1623         /* Split out the IBX/CPU vs CPT settings */
1624
1625         if (IS_GEN7(dev) && port == PORT_A) {
1626                 if (adjusted_mode->flags & DRM_MODE_FLAG_PHSYNC)
1627                         intel_dp->DP |= DP_SYNC_HS_HIGH;
1628                 if (adjusted_mode->flags & DRM_MODE_FLAG_PVSYNC)
1629                         intel_dp->DP |= DP_SYNC_VS_HIGH;
1630                 intel_dp->DP |= DP_LINK_TRAIN_OFF_CPT;
1631
1632                 if (drm_dp_enhanced_frame_cap(intel_dp->dpcd))
1633                         intel_dp->DP |= DP_ENHANCED_FRAMING;
1634
1635                 intel_dp->DP |= crtc->pipe << 29;
1636         } else if (HAS_PCH_CPT(dev) && port != PORT_A) {
1637                 u32 trans_dp;
1638
1639                 intel_dp->DP |= DP_LINK_TRAIN_OFF_CPT;
1640
1641                 trans_dp = I915_READ(TRANS_DP_CTL(crtc->pipe));
1642                 if (drm_dp_enhanced_frame_cap(intel_dp->dpcd))
1643                         trans_dp |= TRANS_DP_ENH_FRAMING;
1644                 else
1645                         trans_dp &= ~TRANS_DP_ENH_FRAMING;
1646                 I915_WRITE(TRANS_DP_CTL(crtc->pipe), trans_dp);
1647         } else {
1648                 if (!HAS_PCH_SPLIT(dev) && !IS_VALLEYVIEW(dev) &&
1649                     crtc->config->limited_color_range)
1650                         intel_dp->DP |= DP_COLOR_RANGE_16_235;
1651
1652                 if (adjusted_mode->flags & DRM_MODE_FLAG_PHSYNC)
1653                         intel_dp->DP |= DP_SYNC_HS_HIGH;
1654                 if (adjusted_mode->flags & DRM_MODE_FLAG_PVSYNC)
1655                         intel_dp->DP |= DP_SYNC_VS_HIGH;
1656                 intel_dp->DP |= DP_LINK_TRAIN_OFF;
1657
1658                 if (drm_dp_enhanced_frame_cap(intel_dp->dpcd))
1659                         intel_dp->DP |= DP_ENHANCED_FRAMING;
1660
1661                 if (IS_CHERRYVIEW(dev))
1662                         intel_dp->DP |= DP_PIPE_SELECT_CHV(crtc->pipe);
1663                 else if (crtc->pipe == PIPE_B)
1664                         intel_dp->DP |= DP_PIPEB_SELECT;
1665         }
1666 }
1667
1668 #define IDLE_ON_MASK            (PP_ON | PP_SEQUENCE_MASK | 0                     | PP_SEQUENCE_STATE_MASK)
1669 #define IDLE_ON_VALUE           (PP_ON | PP_SEQUENCE_NONE | 0                     | PP_SEQUENCE_STATE_ON_IDLE)
1670
1671 #define IDLE_OFF_MASK           (PP_ON | PP_SEQUENCE_MASK | 0                     | 0)
1672 #define IDLE_OFF_VALUE          (0     | PP_SEQUENCE_NONE | 0                     | 0)
1673
1674 #define IDLE_CYCLE_MASK         (PP_ON | PP_SEQUENCE_MASK | PP_CYCLE_DELAY_ACTIVE | PP_SEQUENCE_STATE_MASK)
1675 #define IDLE_CYCLE_VALUE        (0     | PP_SEQUENCE_NONE | 0                     | PP_SEQUENCE_STATE_OFF_IDLE)
1676
1677 static void wait_panel_status(struct intel_dp *intel_dp,
1678                                        u32 mask,
1679                                        u32 value)
1680 {
1681         struct drm_device *dev = intel_dp_to_dev(intel_dp);
1682         struct drm_i915_private *dev_priv = dev->dev_private;
1683         u32 pp_stat_reg, pp_ctrl_reg;
1684
1685         lockdep_assert_held(&dev_priv->pps_mutex);
1686
1687         pp_stat_reg = _pp_stat_reg(intel_dp);
1688         pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
1689
1690         DRM_DEBUG_KMS("mask %08x value %08x status %08x control %08x\n",
1691                         mask, value,
1692                         I915_READ(pp_stat_reg),
1693                         I915_READ(pp_ctrl_reg));
1694
1695         if (_wait_for((I915_READ(pp_stat_reg) & mask) == value, 5000, 10)) {
1696                 DRM_ERROR("Panel status timeout: status %08x control %08x\n",
1697                                 I915_READ(pp_stat_reg),
1698                                 I915_READ(pp_ctrl_reg));
1699         }
1700
1701         DRM_DEBUG_KMS("Wait complete\n");
1702 }
1703
1704 static void wait_panel_on(struct intel_dp *intel_dp)
1705 {
1706         DRM_DEBUG_KMS("Wait for panel power on\n");
1707         wait_panel_status(intel_dp, IDLE_ON_MASK, IDLE_ON_VALUE);
1708 }
1709
1710 static void wait_panel_off(struct intel_dp *intel_dp)
1711 {
1712         DRM_DEBUG_KMS("Wait for panel power off time\n");
1713         wait_panel_status(intel_dp, IDLE_OFF_MASK, IDLE_OFF_VALUE);
1714 }
1715
1716 static void wait_panel_power_cycle(struct intel_dp *intel_dp)
1717 {
1718         DRM_DEBUG_KMS("Wait for panel power cycle\n");
1719
1720         /* When we disable the VDD override bit last we have to do the manual
1721          * wait. */
1722         wait_remaining_ms_from_jiffies(intel_dp->last_power_cycle,
1723                                        intel_dp->panel_power_cycle_delay);
1724
1725         wait_panel_status(intel_dp, IDLE_CYCLE_MASK, IDLE_CYCLE_VALUE);
1726 }
1727
1728 static void wait_backlight_on(struct intel_dp *intel_dp)
1729 {
1730         wait_remaining_ms_from_jiffies(intel_dp->last_power_on,
1731                                        intel_dp->backlight_on_delay);
1732 }
1733
1734 static void edp_wait_backlight_off(struct intel_dp *intel_dp)
1735 {
1736         wait_remaining_ms_from_jiffies(intel_dp->last_backlight_off,
1737                                        intel_dp->backlight_off_delay);
1738 }
1739
1740 /* Read the current pp_control value, unlocking the register if it
1741  * is locked
1742  */
1743
1744 static  u32 ironlake_get_pp_control(struct intel_dp *intel_dp)
1745 {
1746         struct drm_device *dev = intel_dp_to_dev(intel_dp);
1747         struct drm_i915_private *dev_priv = dev->dev_private;
1748         u32 control;
1749
1750         lockdep_assert_held(&dev_priv->pps_mutex);
1751
1752         control = I915_READ(_pp_ctrl_reg(intel_dp));
1753         if (!IS_BROXTON(dev)) {
1754                 control &= ~PANEL_UNLOCK_MASK;
1755                 control |= PANEL_UNLOCK_REGS;
1756         }
1757         return control;
1758 }
1759
1760 /*
1761  * Must be paired with edp_panel_vdd_off().
1762  * Must hold pps_mutex around the whole on/off sequence.
1763  * Can be nested with intel_edp_panel_vdd_{on,off}() calls.
1764  */
1765 static bool edp_panel_vdd_on(struct intel_dp *intel_dp)
1766 {
1767         struct drm_device *dev = intel_dp_to_dev(intel_dp);
1768         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
1769         struct intel_encoder *intel_encoder = &intel_dig_port->base;
1770         struct drm_i915_private *dev_priv = dev->dev_private;
1771         enum intel_display_power_domain power_domain;
1772         u32 pp;
1773         u32 pp_stat_reg, pp_ctrl_reg;
1774         bool need_to_disable = !intel_dp->want_panel_vdd;
1775
1776         lockdep_assert_held(&dev_priv->pps_mutex);
1777
1778         if (!is_edp(intel_dp))
1779                 return false;
1780
1781         cancel_delayed_work(&intel_dp->panel_vdd_work);
1782         intel_dp->want_panel_vdd = true;
1783
1784         if (edp_have_panel_vdd(intel_dp))
1785                 return need_to_disable;
1786
1787         power_domain = intel_display_port_power_domain(intel_encoder);
1788         intel_display_power_get(dev_priv, power_domain);
1789
1790         DRM_DEBUG_KMS("Turning eDP port %c VDD on\n",
1791                       port_name(intel_dig_port->port));
1792
1793         if (!edp_have_panel_power(intel_dp))
1794                 wait_panel_power_cycle(intel_dp);
1795
1796         pp = ironlake_get_pp_control(intel_dp);
1797         pp |= EDP_FORCE_VDD;
1798
1799         pp_stat_reg = _pp_stat_reg(intel_dp);
1800         pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
1801
1802         I915_WRITE(pp_ctrl_reg, pp);
1803         POSTING_READ(pp_ctrl_reg);
1804         DRM_DEBUG_KMS("PP_STATUS: 0x%08x PP_CONTROL: 0x%08x\n",
1805                         I915_READ(pp_stat_reg), I915_READ(pp_ctrl_reg));
1806         /*
1807          * If the panel wasn't on, delay before accessing aux channel
1808          */
1809         if (!edp_have_panel_power(intel_dp)) {
1810                 DRM_DEBUG_KMS("eDP port %c panel power wasn't enabled\n",
1811                               port_name(intel_dig_port->port));
1812                 msleep(intel_dp->panel_power_up_delay);
1813         }
1814
1815         return need_to_disable;
1816 }
1817
1818 /*
1819  * Must be paired with intel_edp_panel_vdd_off() or
1820  * intel_edp_panel_off().
1821  * Nested calls to these functions are not allowed since
1822  * we drop the lock. Caller must use some higher level
1823  * locking to prevent nested calls from other threads.
1824  */
1825 void intel_edp_panel_vdd_on(struct intel_dp *intel_dp)
1826 {
1827         bool vdd;
1828
1829         if (!is_edp(intel_dp))
1830                 return;
1831
1832         pps_lock(intel_dp);
1833         vdd = edp_panel_vdd_on(intel_dp);
1834         pps_unlock(intel_dp);
1835
1836         I915_STATE_WARN(!vdd, "eDP port %c VDD already requested on\n",
1837              port_name(dp_to_dig_port(intel_dp)->port));
1838 }
1839
1840 static void edp_panel_vdd_off_sync(struct intel_dp *intel_dp)
1841 {
1842         struct drm_device *dev = intel_dp_to_dev(intel_dp);
1843         struct drm_i915_private *dev_priv = dev->dev_private;
1844         struct intel_digital_port *intel_dig_port =
1845                 dp_to_dig_port(intel_dp);
1846         struct intel_encoder *intel_encoder = &intel_dig_port->base;
1847         enum intel_display_power_domain power_domain;
1848         u32 pp;
1849         u32 pp_stat_reg, pp_ctrl_reg;
1850
1851         lockdep_assert_held(&dev_priv->pps_mutex);
1852
1853         WARN_ON(intel_dp->want_panel_vdd);
1854
1855         if (!edp_have_panel_vdd(intel_dp))
1856                 return;
1857
1858         DRM_DEBUG_KMS("Turning eDP port %c VDD off\n",
1859                       port_name(intel_dig_port->port));
1860
1861         pp = ironlake_get_pp_control(intel_dp);
1862         pp &= ~EDP_FORCE_VDD;
1863
1864         pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
1865         pp_stat_reg = _pp_stat_reg(intel_dp);
1866
1867         I915_WRITE(pp_ctrl_reg, pp);
1868         POSTING_READ(pp_ctrl_reg);
1869
1870         /* Make sure sequencer is idle before allowing subsequent activity */
1871         DRM_DEBUG_KMS("PP_STATUS: 0x%08x PP_CONTROL: 0x%08x\n",
1872         I915_READ(pp_stat_reg), I915_READ(pp_ctrl_reg));
1873
1874         if ((pp & POWER_TARGET_ON) == 0)
1875                 intel_dp->last_power_cycle = jiffies;
1876
1877         power_domain = intel_display_port_power_domain(intel_encoder);
1878         intel_display_power_put(dev_priv, power_domain);
1879 }
1880
1881 static void edp_panel_vdd_work(struct work_struct *__work)
1882 {
1883         struct intel_dp *intel_dp = container_of(to_delayed_work(__work),
1884                                                  struct intel_dp, panel_vdd_work);
1885
1886         pps_lock(intel_dp);
1887         if (!intel_dp->want_panel_vdd)
1888                 edp_panel_vdd_off_sync(intel_dp);
1889         pps_unlock(intel_dp);
1890 }
1891
1892 static void edp_panel_vdd_schedule_off(struct intel_dp *intel_dp)
1893 {
1894         unsigned long delay;
1895
1896         /*
1897          * Queue the timer to fire a long time from now (relative to the power
1898          * down delay) to keep the panel power up across a sequence of
1899          * operations.
1900          */
1901         delay = msecs_to_jiffies(intel_dp->panel_power_cycle_delay * 5);
1902         schedule_delayed_work(&intel_dp->panel_vdd_work, delay);
1903 }
1904
1905 /*
1906  * Must be paired with edp_panel_vdd_on().
1907  * Must hold pps_mutex around the whole on/off sequence.
1908  * Can be nested with intel_edp_panel_vdd_{on,off}() calls.
1909  */
1910 static void edp_panel_vdd_off(struct intel_dp *intel_dp, bool sync)
1911 {
1912         struct drm_i915_private *dev_priv =
1913                 intel_dp_to_dev(intel_dp)->dev_private;
1914
1915         lockdep_assert_held(&dev_priv->pps_mutex);
1916
1917         if (!is_edp(intel_dp))
1918                 return;
1919
1920         I915_STATE_WARN(!intel_dp->want_panel_vdd, "eDP port %c VDD not forced on",
1921              port_name(dp_to_dig_port(intel_dp)->port));
1922
1923         intel_dp->want_panel_vdd = false;
1924
1925         if (sync)
1926                 edp_panel_vdd_off_sync(intel_dp);
1927         else
1928                 edp_panel_vdd_schedule_off(intel_dp);
1929 }
1930
1931 static void edp_panel_on(struct intel_dp *intel_dp)
1932 {
1933         struct drm_device *dev = intel_dp_to_dev(intel_dp);
1934         struct drm_i915_private *dev_priv = dev->dev_private;
1935         u32 pp;
1936         u32 pp_ctrl_reg;
1937
1938         lockdep_assert_held(&dev_priv->pps_mutex);
1939
1940         if (!is_edp(intel_dp))
1941                 return;
1942
1943         DRM_DEBUG_KMS("Turn eDP port %c panel power on\n",
1944                       port_name(dp_to_dig_port(intel_dp)->port));
1945
1946         if (WARN(edp_have_panel_power(intel_dp),
1947                  "eDP port %c panel power already on\n",
1948                  port_name(dp_to_dig_port(intel_dp)->port)))
1949                 return;
1950
1951         wait_panel_power_cycle(intel_dp);
1952
1953         pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
1954         pp = ironlake_get_pp_control(intel_dp);
1955         if (IS_GEN5(dev)) {
1956                 /* ILK workaround: disable reset around power sequence */
1957                 pp &= ~PANEL_POWER_RESET;
1958                 I915_WRITE(pp_ctrl_reg, pp);
1959                 POSTING_READ(pp_ctrl_reg);
1960         }
1961
1962         pp |= POWER_TARGET_ON;
1963         if (!IS_GEN5(dev))
1964                 pp |= PANEL_POWER_RESET;
1965
1966         I915_WRITE(pp_ctrl_reg, pp);
1967         POSTING_READ(pp_ctrl_reg);
1968
1969         wait_panel_on(intel_dp);
1970         intel_dp->last_power_on = jiffies;
1971
1972         if (IS_GEN5(dev)) {
1973                 pp |= PANEL_POWER_RESET; /* restore panel reset bit */
1974                 I915_WRITE(pp_ctrl_reg, pp);
1975                 POSTING_READ(pp_ctrl_reg);
1976         }
1977 }
1978
1979 void intel_edp_panel_on(struct intel_dp *intel_dp)
1980 {
1981         if (!is_edp(intel_dp))
1982                 return;
1983
1984         pps_lock(intel_dp);
1985         edp_panel_on(intel_dp);
1986         pps_unlock(intel_dp);
1987 }
1988
1989
1990 static void edp_panel_off(struct intel_dp *intel_dp)
1991 {
1992         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
1993         struct intel_encoder *intel_encoder = &intel_dig_port->base;
1994         struct drm_device *dev = intel_dp_to_dev(intel_dp);
1995         struct drm_i915_private *dev_priv = dev->dev_private;
1996         enum intel_display_power_domain power_domain;
1997         u32 pp;
1998         u32 pp_ctrl_reg;
1999
2000         lockdep_assert_held(&dev_priv->pps_mutex);
2001
2002         if (!is_edp(intel_dp))
2003                 return;
2004
2005         DRM_DEBUG_KMS("Turn eDP port %c panel power off\n",
2006                       port_name(dp_to_dig_port(intel_dp)->port));
2007
2008         WARN(!intel_dp->want_panel_vdd, "Need eDP port %c VDD to turn off panel\n",
2009              port_name(dp_to_dig_port(intel_dp)->port));
2010
2011         pp = ironlake_get_pp_control(intel_dp);
2012         /* We need to switch off panel power _and_ force vdd, for otherwise some
2013          * panels get very unhappy and cease to work. */
2014         pp &= ~(POWER_TARGET_ON | PANEL_POWER_RESET | EDP_FORCE_VDD |
2015                 EDP_BLC_ENABLE);
2016
2017         pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
2018
2019         intel_dp->want_panel_vdd = false;
2020
2021         I915_WRITE(pp_ctrl_reg, pp);
2022         POSTING_READ(pp_ctrl_reg);
2023
2024         intel_dp->last_power_cycle = jiffies;
2025         wait_panel_off(intel_dp);
2026
2027         /* We got a reference when we enabled the VDD. */
2028         power_domain = intel_display_port_power_domain(intel_encoder);
2029         intel_display_power_put(dev_priv, power_domain);
2030 }
2031
2032 void intel_edp_panel_off(struct intel_dp *intel_dp)
2033 {
2034         if (!is_edp(intel_dp))
2035                 return;
2036
2037         pps_lock(intel_dp);
2038         edp_panel_off(intel_dp);
2039         pps_unlock(intel_dp);
2040 }
2041
2042 /* Enable backlight in the panel power control. */
2043 static void _intel_edp_backlight_on(struct intel_dp *intel_dp)
2044 {
2045         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
2046         struct drm_device *dev = intel_dig_port->base.base.dev;
2047         struct drm_i915_private *dev_priv = dev->dev_private;
2048         u32 pp;
2049         u32 pp_ctrl_reg;
2050
2051         /*
2052          * If we enable the backlight right away following a panel power
2053          * on, we may see slight flicker as the panel syncs with the eDP
2054          * link.  So delay a bit to make sure the image is solid before
2055          * allowing it to appear.
2056          */
2057         wait_backlight_on(intel_dp);
2058
2059         pps_lock(intel_dp);
2060
2061         pp = ironlake_get_pp_control(intel_dp);
2062         pp |= EDP_BLC_ENABLE;
2063
2064         pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
2065
2066         I915_WRITE(pp_ctrl_reg, pp);
2067         POSTING_READ(pp_ctrl_reg);
2068
2069         pps_unlock(intel_dp);
2070 }
2071
2072 /* Enable backlight PWM and backlight PP control. */
2073 void intel_edp_backlight_on(struct intel_dp *intel_dp)
2074 {
2075         if (!is_edp(intel_dp))
2076                 return;
2077
2078         DRM_DEBUG_KMS("\n");
2079
2080         intel_panel_enable_backlight(intel_dp->attached_connector);
2081         _intel_edp_backlight_on(intel_dp);
2082 }
2083
2084 /* Disable backlight in the panel power control. */
2085 static void _intel_edp_backlight_off(struct intel_dp *intel_dp)
2086 {
2087         struct drm_device *dev = intel_dp_to_dev(intel_dp);
2088         struct drm_i915_private *dev_priv = dev->dev_private;
2089         u32 pp;
2090         u32 pp_ctrl_reg;
2091
2092         if (!is_edp(intel_dp))
2093                 return;
2094
2095         pps_lock(intel_dp);
2096
2097         pp = ironlake_get_pp_control(intel_dp);
2098         pp &= ~EDP_BLC_ENABLE;
2099
2100         pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
2101
2102         I915_WRITE(pp_ctrl_reg, pp);
2103         POSTING_READ(pp_ctrl_reg);
2104
2105         pps_unlock(intel_dp);
2106
2107         intel_dp->last_backlight_off = jiffies;
2108         edp_wait_backlight_off(intel_dp);
2109 }
2110
2111 /* Disable backlight PP control and backlight PWM. */
2112 void intel_edp_backlight_off(struct intel_dp *intel_dp)
2113 {
2114         if (!is_edp(intel_dp))
2115                 return;
2116
2117         DRM_DEBUG_KMS("\n");
2118
2119         _intel_edp_backlight_off(intel_dp);
2120         intel_panel_disable_backlight(intel_dp->attached_connector);
2121 }
2122
2123 /*
2124  * Hook for controlling the panel power control backlight through the bl_power
2125  * sysfs attribute. Take care to handle multiple calls.
2126  */
2127 static void intel_edp_backlight_power(struct intel_connector *connector,
2128                                       bool enable)
2129 {
2130         struct intel_dp *intel_dp = intel_attached_dp(&connector->base);
2131         bool is_enabled;
2132
2133         pps_lock(intel_dp);
2134         is_enabled = ironlake_get_pp_control(intel_dp) & EDP_BLC_ENABLE;
2135         pps_unlock(intel_dp);
2136
2137         if (is_enabled == enable)
2138                 return;
2139
2140         DRM_DEBUG_KMS("panel power control backlight %s\n",
2141                       enable ? "enable" : "disable");
2142
2143         if (enable)
2144                 _intel_edp_backlight_on(intel_dp);
2145         else
2146                 _intel_edp_backlight_off(intel_dp);
2147 }
2148
2149 static void ironlake_edp_pll_on(struct intel_dp *intel_dp)
2150 {
2151         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
2152         struct drm_crtc *crtc = intel_dig_port->base.base.crtc;
2153         struct drm_device *dev = crtc->dev;
2154         struct drm_i915_private *dev_priv = dev->dev_private;
2155         u32 dpa_ctl;
2156
2157         assert_pipe_disabled(dev_priv,
2158                              to_intel_crtc(crtc)->pipe);
2159
2160         DRM_DEBUG_KMS("\n");
2161         dpa_ctl = I915_READ(DP_A);
2162         WARN(dpa_ctl & DP_PLL_ENABLE, "dp pll on, should be off\n");
2163         WARN(dpa_ctl & DP_PORT_EN, "dp port still on, should be off\n");
2164
2165         /* We don't adjust intel_dp->DP while tearing down the link, to
2166          * facilitate link retraining (e.g. after hotplug). Hence clear all
2167          * enable bits here to ensure that we don't enable too much. */
2168         intel_dp->DP &= ~(DP_PORT_EN | DP_AUDIO_OUTPUT_ENABLE);
2169         intel_dp->DP |= DP_PLL_ENABLE;
2170         I915_WRITE(DP_A, intel_dp->DP);
2171         POSTING_READ(DP_A);
2172         udelay(200);
2173 }
2174
2175 static void ironlake_edp_pll_off(struct intel_dp *intel_dp)
2176 {
2177         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
2178         struct drm_crtc *crtc = intel_dig_port->base.base.crtc;
2179         struct drm_device *dev = crtc->dev;
2180         struct drm_i915_private *dev_priv = dev->dev_private;
2181         u32 dpa_ctl;
2182
2183         assert_pipe_disabled(dev_priv,
2184                              to_intel_crtc(crtc)->pipe);
2185
2186         dpa_ctl = I915_READ(DP_A);
2187         WARN((dpa_ctl & DP_PLL_ENABLE) == 0,
2188              "dp pll off, should be on\n");
2189         WARN(dpa_ctl & DP_PORT_EN, "dp port still on, should be off\n");
2190
2191         /* We can't rely on the value tracked for the DP register in
2192          * intel_dp->DP because link_down must not change that (otherwise link
2193          * re-training will fail. */
2194         dpa_ctl &= ~DP_PLL_ENABLE;
2195         I915_WRITE(DP_A, dpa_ctl);
2196         POSTING_READ(DP_A);
2197         udelay(200);
2198 }
2199
2200 /* If the sink supports it, try to set the power state appropriately */
2201 void intel_dp_sink_dpms(struct intel_dp *intel_dp, int mode)
2202 {
2203         int ret, i;
2204
2205         /* Should have a valid DPCD by this point */
2206         if (intel_dp->dpcd[DP_DPCD_REV] < 0x11)
2207                 return;
2208
2209         if (mode != DRM_MODE_DPMS_ON) {
2210                 ret = drm_dp_dpcd_writeb(&intel_dp->aux, DP_SET_POWER,
2211                                          DP_SET_POWER_D3);
2212         } else {
2213                 /*
2214                  * When turning on, we need to retry for 1ms to give the sink
2215                  * time to wake up.
2216                  */
2217                 for (i = 0; i < 3; i++) {
2218                         ret = drm_dp_dpcd_writeb(&intel_dp->aux, DP_SET_POWER,
2219                                                  DP_SET_POWER_D0);
2220                         if (ret == 1)
2221                                 break;
2222                         msleep(1);
2223                 }
2224         }
2225
2226         if (ret != 1)
2227                 DRM_DEBUG_KMS("failed to %s sink power state\n",
2228                               mode == DRM_MODE_DPMS_ON ? "enable" : "disable");
2229 }
2230
2231 static bool intel_dp_get_hw_state(struct intel_encoder *encoder,
2232                                   enum pipe *pipe)
2233 {
2234         struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2235         enum port port = dp_to_dig_port(intel_dp)->port;
2236         struct drm_device *dev = encoder->base.dev;
2237         struct drm_i915_private *dev_priv = dev->dev_private;
2238         enum intel_display_power_domain power_domain;
2239         u32 tmp;
2240
2241         power_domain = intel_display_port_power_domain(encoder);
2242         if (!intel_display_power_is_enabled(dev_priv, power_domain))
2243                 return false;
2244
2245         tmp = I915_READ(intel_dp->output_reg);
2246
2247         if (!(tmp & DP_PORT_EN))
2248                 return false;
2249
2250         if (IS_GEN7(dev) && port == PORT_A) {
2251                 *pipe = PORT_TO_PIPE_CPT(tmp);
2252         } else if (HAS_PCH_CPT(dev) && port != PORT_A) {
2253                 enum pipe p;
2254
2255                 for_each_pipe(dev_priv, p) {
2256                         u32 trans_dp = I915_READ(TRANS_DP_CTL(p));
2257                         if (TRANS_DP_PIPE_TO_PORT(trans_dp) == port) {
2258                                 *pipe = p;
2259                                 return true;
2260                         }
2261                 }
2262
2263                 DRM_DEBUG_KMS("No pipe for dp port 0x%x found\n",
2264                               intel_dp->output_reg);
2265         } else if (IS_CHERRYVIEW(dev)) {
2266                 *pipe = DP_PORT_TO_PIPE_CHV(tmp);
2267         } else {
2268                 *pipe = PORT_TO_PIPE(tmp);
2269         }
2270
2271         return true;
2272 }
2273
2274 static void intel_dp_get_config(struct intel_encoder *encoder,
2275                                 struct intel_crtc_state *pipe_config)
2276 {
2277         struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2278         u32 tmp, flags = 0;
2279         struct drm_device *dev = encoder->base.dev;
2280         struct drm_i915_private *dev_priv = dev->dev_private;
2281         enum port port = dp_to_dig_port(intel_dp)->port;
2282         struct intel_crtc *crtc = to_intel_crtc(encoder->base.crtc);
2283         int dotclock;
2284
2285         tmp = I915_READ(intel_dp->output_reg);
2286
2287         pipe_config->has_audio = tmp & DP_AUDIO_OUTPUT_ENABLE && port != PORT_A;
2288
2289         if (HAS_PCH_CPT(dev) && port != PORT_A) {
2290                 u32 trans_dp = I915_READ(TRANS_DP_CTL(crtc->pipe));
2291
2292                 if (trans_dp & TRANS_DP_HSYNC_ACTIVE_HIGH)
2293                         flags |= DRM_MODE_FLAG_PHSYNC;
2294                 else
2295                         flags |= DRM_MODE_FLAG_NHSYNC;
2296
2297                 if (trans_dp & TRANS_DP_VSYNC_ACTIVE_HIGH)
2298                         flags |= DRM_MODE_FLAG_PVSYNC;
2299                 else
2300                         flags |= DRM_MODE_FLAG_NVSYNC;
2301         } else {
2302                 if (tmp & DP_SYNC_HS_HIGH)
2303                         flags |= DRM_MODE_FLAG_PHSYNC;
2304                 else
2305                         flags |= DRM_MODE_FLAG_NHSYNC;
2306
2307                 if (tmp & DP_SYNC_VS_HIGH)
2308                         flags |= DRM_MODE_FLAG_PVSYNC;
2309                 else
2310                         flags |= DRM_MODE_FLAG_NVSYNC;
2311         }
2312
2313         pipe_config->base.adjusted_mode.flags |= flags;
2314
2315         if (!HAS_PCH_SPLIT(dev) && !IS_VALLEYVIEW(dev) &&
2316             tmp & DP_COLOR_RANGE_16_235)
2317                 pipe_config->limited_color_range = true;
2318
2319         pipe_config->has_dp_encoder = true;
2320
2321         pipe_config->lane_count =
2322                 ((tmp & DP_PORT_WIDTH_MASK) >> DP_PORT_WIDTH_SHIFT) + 1;
2323
2324         intel_dp_get_m_n(crtc, pipe_config);
2325
2326         if (port == PORT_A) {
2327                 if ((I915_READ(DP_A) & DP_PLL_FREQ_MASK) == DP_PLL_FREQ_160MHZ)
2328                         pipe_config->port_clock = 162000;
2329                 else
2330                         pipe_config->port_clock = 270000;
2331         }
2332
2333         dotclock = intel_dotclock_calculate(pipe_config->port_clock,
2334                                             &pipe_config->dp_m_n);
2335
2336         if (HAS_PCH_SPLIT(dev_priv->dev) && port != PORT_A)
2337                 ironlake_check_encoder_dotclock(pipe_config, dotclock);
2338
2339         pipe_config->base.adjusted_mode.crtc_clock = dotclock;
2340
2341         if (is_edp(intel_dp) && dev_priv->vbt.edp_bpp &&
2342             pipe_config->pipe_bpp > dev_priv->vbt.edp_bpp) {
2343                 /*
2344                  * This is a big fat ugly hack.
2345                  *
2346                  * Some machines in UEFI boot mode provide us a VBT that has 18
2347                  * bpp and 1.62 GHz link bandwidth for eDP, which for reasons
2348                  * unknown we fail to light up. Yet the same BIOS boots up with
2349                  * 24 bpp and 2.7 GHz link. Use the same bpp as the BIOS uses as
2350                  * max, not what it tells us to use.
2351                  *
2352                  * Note: This will still be broken if the eDP panel is not lit
2353                  * up by the BIOS, and thus we can't get the mode at module
2354                  * load.
2355                  */
2356                 DRM_DEBUG_KMS("pipe has %d bpp for eDP panel, overriding BIOS-provided max %d bpp\n",
2357                               pipe_config->pipe_bpp, dev_priv->vbt.edp_bpp);
2358                 dev_priv->vbt.edp_bpp = pipe_config->pipe_bpp;
2359         }
2360 }
2361
2362 static void intel_disable_dp(struct intel_encoder *encoder)
2363 {
2364         struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2365         struct drm_device *dev = encoder->base.dev;
2366         struct intel_crtc *crtc = to_intel_crtc(encoder->base.crtc);
2367
2368         if (crtc->config->has_audio)
2369                 intel_audio_codec_disable(encoder);
2370
2371         if (HAS_PSR(dev) && !HAS_DDI(dev))
2372                 intel_psr_disable(intel_dp);
2373
2374         /* Make sure the panel is off before trying to change the mode. But also
2375          * ensure that we have vdd while we switch off the panel. */
2376         intel_edp_panel_vdd_on(intel_dp);
2377         intel_edp_backlight_off(intel_dp);
2378         intel_dp_sink_dpms(intel_dp, DRM_MODE_DPMS_OFF);
2379         intel_edp_panel_off(intel_dp);
2380
2381         /* disable the port before the pipe on g4x */
2382         if (INTEL_INFO(dev)->gen < 5)
2383                 intel_dp_link_down(intel_dp);
2384 }
2385
2386 static void ilk_post_disable_dp(struct intel_encoder *encoder)
2387 {
2388         struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2389         enum port port = dp_to_dig_port(intel_dp)->port;
2390
2391         intel_dp_link_down(intel_dp);
2392         if (port == PORT_A)
2393                 ironlake_edp_pll_off(intel_dp);
2394 }
2395
2396 static void vlv_post_disable_dp(struct intel_encoder *encoder)
2397 {
2398         struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2399
2400         intel_dp_link_down(intel_dp);
2401 }
2402
2403 static void chv_data_lane_soft_reset(struct intel_encoder *encoder,
2404                                      bool reset)
2405 {
2406         struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
2407         enum dpio_channel ch = vlv_dport_to_channel(enc_to_dig_port(&encoder->base));
2408         struct intel_crtc *crtc = to_intel_crtc(encoder->base.crtc);
2409         enum pipe pipe = crtc->pipe;
2410         uint32_t val;
2411
2412         val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW0(ch));
2413         if (reset)
2414                 val &= ~(DPIO_PCS_TX_LANE2_RESET | DPIO_PCS_TX_LANE1_RESET);
2415         else
2416                 val |= DPIO_PCS_TX_LANE2_RESET | DPIO_PCS_TX_LANE1_RESET;
2417         vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW0(ch), val);
2418
2419         if (crtc->config->lane_count > 2) {
2420                 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW0(ch));
2421                 if (reset)
2422                         val &= ~(DPIO_PCS_TX_LANE2_RESET | DPIO_PCS_TX_LANE1_RESET);
2423                 else
2424                         val |= DPIO_PCS_TX_LANE2_RESET | DPIO_PCS_TX_LANE1_RESET;
2425                 vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW0(ch), val);
2426         }
2427
2428         val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW1(ch));
2429         val |= CHV_PCS_REQ_SOFTRESET_EN;
2430         if (reset)
2431                 val &= ~DPIO_PCS_CLK_SOFT_RESET;
2432         else
2433                 val |= DPIO_PCS_CLK_SOFT_RESET;
2434         vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW1(ch), val);
2435
2436         if (crtc->config->lane_count > 2) {
2437                 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW1(ch));
2438                 val |= CHV_PCS_REQ_SOFTRESET_EN;
2439                 if (reset)
2440                         val &= ~DPIO_PCS_CLK_SOFT_RESET;
2441                 else
2442                         val |= DPIO_PCS_CLK_SOFT_RESET;
2443                 vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW1(ch), val);
2444         }
2445 }
2446
2447 static void chv_post_disable_dp(struct intel_encoder *encoder)
2448 {
2449         struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2450         struct drm_device *dev = encoder->base.dev;
2451         struct drm_i915_private *dev_priv = dev->dev_private;
2452
2453         intel_dp_link_down(intel_dp);
2454
2455         mutex_lock(&dev_priv->sb_lock);
2456
2457         /* Assert data lane reset */
2458         chv_data_lane_soft_reset(encoder, true);
2459
2460         mutex_unlock(&dev_priv->sb_lock);
2461 }
2462
2463 static void
2464 _intel_dp_set_link_train(struct intel_dp *intel_dp,
2465                          uint32_t *DP,
2466                          uint8_t dp_train_pat)
2467 {
2468         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
2469         struct drm_device *dev = intel_dig_port->base.base.dev;
2470         struct drm_i915_private *dev_priv = dev->dev_private;
2471         enum port port = intel_dig_port->port;
2472
2473         if (HAS_DDI(dev)) {
2474                 uint32_t temp = I915_READ(DP_TP_CTL(port));
2475
2476                 if (dp_train_pat & DP_LINK_SCRAMBLING_DISABLE)
2477                         temp |= DP_TP_CTL_SCRAMBLE_DISABLE;
2478                 else
2479                         temp &= ~DP_TP_CTL_SCRAMBLE_DISABLE;
2480
2481                 temp &= ~DP_TP_CTL_LINK_TRAIN_MASK;
2482                 switch (dp_train_pat & DP_TRAINING_PATTERN_MASK) {
2483                 case DP_TRAINING_PATTERN_DISABLE:
2484                         temp |= DP_TP_CTL_LINK_TRAIN_NORMAL;
2485
2486                         break;
2487                 case DP_TRAINING_PATTERN_1:
2488                         temp |= DP_TP_CTL_LINK_TRAIN_PAT1;
2489                         break;
2490                 case DP_TRAINING_PATTERN_2:
2491                         temp |= DP_TP_CTL_LINK_TRAIN_PAT2;
2492                         break;
2493                 case DP_TRAINING_PATTERN_3:
2494                         temp |= DP_TP_CTL_LINK_TRAIN_PAT3;
2495                         break;
2496                 }
2497                 I915_WRITE(DP_TP_CTL(port), temp);
2498
2499         } else if ((IS_GEN7(dev) && port == PORT_A) ||
2500                    (HAS_PCH_CPT(dev) && port != PORT_A)) {
2501                 *DP &= ~DP_LINK_TRAIN_MASK_CPT;
2502
2503                 switch (dp_train_pat & DP_TRAINING_PATTERN_MASK) {
2504                 case DP_TRAINING_PATTERN_DISABLE:
2505                         *DP |= DP_LINK_TRAIN_OFF_CPT;
2506                         break;
2507                 case DP_TRAINING_PATTERN_1:
2508                         *DP |= DP_LINK_TRAIN_PAT_1_CPT;
2509                         break;
2510                 case DP_TRAINING_PATTERN_2:
2511                         *DP |= DP_LINK_TRAIN_PAT_2_CPT;
2512                         break;
2513                 case DP_TRAINING_PATTERN_3:
2514                         DRM_ERROR("DP training pattern 3 not supported\n");
2515                         *DP |= DP_LINK_TRAIN_PAT_2_CPT;
2516                         break;
2517                 }
2518
2519         } else {
2520                 if (IS_CHERRYVIEW(dev))
2521                         *DP &= ~DP_LINK_TRAIN_MASK_CHV;
2522                 else
2523                         *DP &= ~DP_LINK_TRAIN_MASK;
2524
2525                 switch (dp_train_pat & DP_TRAINING_PATTERN_MASK) {
2526                 case DP_TRAINING_PATTERN_DISABLE:
2527                         *DP |= DP_LINK_TRAIN_OFF;
2528                         break;
2529                 case DP_TRAINING_PATTERN_1:
2530                         *DP |= DP_LINK_TRAIN_PAT_1;
2531                         break;
2532                 case DP_TRAINING_PATTERN_2:
2533                         *DP |= DP_LINK_TRAIN_PAT_2;
2534                         break;
2535                 case DP_TRAINING_PATTERN_3:
2536                         if (IS_CHERRYVIEW(dev)) {
2537                                 *DP |= DP_LINK_TRAIN_PAT_3_CHV;
2538                         } else {
2539                                 DRM_ERROR("DP training pattern 3 not supported\n");
2540                                 *DP |= DP_LINK_TRAIN_PAT_2;
2541                         }
2542                         break;
2543                 }
2544         }
2545 }
2546
2547 static void intel_dp_enable_port(struct intel_dp *intel_dp)
2548 {
2549         struct drm_device *dev = intel_dp_to_dev(intel_dp);
2550         struct drm_i915_private *dev_priv = dev->dev_private;
2551
2552         /* enable with pattern 1 (as per spec) */
2553         _intel_dp_set_link_train(intel_dp, &intel_dp->DP,
2554                                  DP_TRAINING_PATTERN_1);
2555
2556         I915_WRITE(intel_dp->output_reg, intel_dp->DP);
2557         POSTING_READ(intel_dp->output_reg);
2558
2559         /*
2560          * Magic for VLV/CHV. We _must_ first set up the register
2561          * without actually enabling the port, and then do another
2562          * write to enable the port. Otherwise link training will
2563          * fail when the power sequencer is freshly used for this port.
2564          */
2565         intel_dp->DP |= DP_PORT_EN;
2566
2567         I915_WRITE(intel_dp->output_reg, intel_dp->DP);
2568         POSTING_READ(intel_dp->output_reg);
2569 }
2570
2571 static void intel_enable_dp(struct intel_encoder *encoder)
2572 {
2573         struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2574         struct drm_device *dev = encoder->base.dev;
2575         struct drm_i915_private *dev_priv = dev->dev_private;
2576         struct intel_crtc *crtc = to_intel_crtc(encoder->base.crtc);
2577         uint32_t dp_reg = I915_READ(intel_dp->output_reg);
2578
2579         if (WARN_ON(dp_reg & DP_PORT_EN))
2580                 return;
2581
2582         pps_lock(intel_dp);
2583
2584         if (IS_VALLEYVIEW(dev))
2585                 vlv_init_panel_power_sequencer(intel_dp);
2586
2587         intel_dp_enable_port(intel_dp);
2588
2589         edp_panel_vdd_on(intel_dp);
2590         edp_panel_on(intel_dp);
2591         edp_panel_vdd_off(intel_dp, true);
2592
2593         pps_unlock(intel_dp);
2594
2595         if (IS_VALLEYVIEW(dev)) {
2596                 unsigned int lane_mask = 0x0;
2597
2598                 if (IS_CHERRYVIEW(dev))
2599                         lane_mask = intel_dp_unused_lane_mask(crtc->config->lane_count);
2600
2601                 vlv_wait_port_ready(dev_priv, dp_to_dig_port(intel_dp),
2602                                     lane_mask);
2603         }
2604
2605         intel_dp_sink_dpms(intel_dp, DRM_MODE_DPMS_ON);
2606         intel_dp_start_link_train(intel_dp);
2607         intel_dp_stop_link_train(intel_dp);
2608
2609         if (crtc->config->has_audio) {
2610                 DRM_DEBUG_DRIVER("Enabling DP audio on pipe %c\n",
2611                                  pipe_name(crtc->pipe));
2612                 intel_audio_codec_enable(encoder);
2613         }
2614 }
2615
2616 static void g4x_enable_dp(struct intel_encoder *encoder)
2617 {
2618         struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2619
2620         intel_enable_dp(encoder);
2621         intel_edp_backlight_on(intel_dp);
2622 }
2623
2624 static void vlv_enable_dp(struct intel_encoder *encoder)
2625 {
2626         struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2627
2628         intel_edp_backlight_on(intel_dp);
2629         intel_psr_enable(intel_dp);
2630 }
2631
2632 static void g4x_pre_enable_dp(struct intel_encoder *encoder)
2633 {
2634         struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2635         struct intel_digital_port *dport = dp_to_dig_port(intel_dp);
2636
2637         intel_dp_prepare(encoder);
2638
2639         /* Only ilk+ has port A */
2640         if (dport->port == PORT_A) {
2641                 ironlake_set_pll_cpu_edp(intel_dp);
2642                 ironlake_edp_pll_on(intel_dp);
2643         }
2644 }
2645
2646 static void vlv_detach_power_sequencer(struct intel_dp *intel_dp)
2647 {
2648         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
2649         struct drm_i915_private *dev_priv = intel_dig_port->base.base.dev->dev_private;
2650         enum pipe pipe = intel_dp->pps_pipe;
2651         int pp_on_reg = VLV_PIPE_PP_ON_DELAYS(pipe);
2652
2653         edp_panel_vdd_off_sync(intel_dp);
2654
2655         /*
2656          * VLV seems to get confused when multiple power seqeuencers
2657          * have the same port selected (even if only one has power/vdd
2658          * enabled). The failure manifests as vlv_wait_port_ready() failing
2659          * CHV on the other hand doesn't seem to mind having the same port
2660          * selected in multiple power seqeuencers, but let's clear the
2661          * port select always when logically disconnecting a power sequencer
2662          * from a port.
2663          */
2664         DRM_DEBUG_KMS("detaching pipe %c power sequencer from port %c\n",
2665                       pipe_name(pipe), port_name(intel_dig_port->port));
2666         I915_WRITE(pp_on_reg, 0);
2667         POSTING_READ(pp_on_reg);
2668
2669         intel_dp->pps_pipe = INVALID_PIPE;
2670 }
2671
2672 static void vlv_steal_power_sequencer(struct drm_device *dev,
2673                                       enum pipe pipe)
2674 {
2675         struct drm_i915_private *dev_priv = dev->dev_private;
2676         struct intel_encoder *encoder;
2677
2678         lockdep_assert_held(&dev_priv->pps_mutex);
2679
2680         if (WARN_ON(pipe != PIPE_A && pipe != PIPE_B))
2681                 return;
2682
2683         list_for_each_entry(encoder, &dev->mode_config.encoder_list,
2684                             base.head) {
2685                 struct intel_dp *intel_dp;
2686                 enum port port;
2687
2688                 if (encoder->type != INTEL_OUTPUT_EDP)
2689                         continue;
2690
2691                 intel_dp = enc_to_intel_dp(&encoder->base);
2692                 port = dp_to_dig_port(intel_dp)->port;
2693
2694                 if (intel_dp->pps_pipe != pipe)
2695                         continue;
2696
2697                 DRM_DEBUG_KMS("stealing pipe %c power sequencer from port %c\n",
2698                               pipe_name(pipe), port_name(port));
2699
2700                 WARN(encoder->base.crtc,
2701                      "stealing pipe %c power sequencer from active eDP port %c\n",
2702                      pipe_name(pipe), port_name(port));
2703
2704                 /* make sure vdd is off before we steal it */
2705                 vlv_detach_power_sequencer(intel_dp);
2706         }
2707 }
2708
2709 static void vlv_init_panel_power_sequencer(struct intel_dp *intel_dp)
2710 {
2711         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
2712         struct intel_encoder *encoder = &intel_dig_port->base;
2713         struct drm_device *dev = encoder->base.dev;
2714         struct drm_i915_private *dev_priv = dev->dev_private;
2715         struct intel_crtc *crtc = to_intel_crtc(encoder->base.crtc);
2716
2717         lockdep_assert_held(&dev_priv->pps_mutex);
2718
2719         if (!is_edp(intel_dp))
2720                 return;
2721
2722         if (intel_dp->pps_pipe == crtc->pipe)
2723                 return;
2724
2725         /*
2726          * If another power sequencer was being used on this
2727          * port previously make sure to turn off vdd there while
2728          * we still have control of it.
2729          */
2730         if (intel_dp->pps_pipe != INVALID_PIPE)
2731                 vlv_detach_power_sequencer(intel_dp);
2732
2733         /*
2734          * We may be stealing the power
2735          * sequencer from another port.
2736          */
2737         vlv_steal_power_sequencer(dev, crtc->pipe);
2738
2739         /* now it's all ours */
2740         intel_dp->pps_pipe = crtc->pipe;
2741
2742         DRM_DEBUG_KMS("initializing pipe %c power sequencer for port %c\n",
2743                       pipe_name(intel_dp->pps_pipe), port_name(intel_dig_port->port));
2744
2745         /* init power sequencer on this pipe and port */
2746         intel_dp_init_panel_power_sequencer(dev, intel_dp);
2747         intel_dp_init_panel_power_sequencer_registers(dev, intel_dp);
2748 }
2749
2750 static void vlv_pre_enable_dp(struct intel_encoder *encoder)
2751 {
2752         struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2753         struct intel_digital_port *dport = dp_to_dig_port(intel_dp);
2754         struct drm_device *dev = encoder->base.dev;
2755         struct drm_i915_private *dev_priv = dev->dev_private;
2756         struct intel_crtc *intel_crtc = to_intel_crtc(encoder->base.crtc);
2757         enum dpio_channel port = vlv_dport_to_channel(dport);
2758         int pipe = intel_crtc->pipe;
2759         u32 val;
2760
2761         mutex_lock(&dev_priv->sb_lock);
2762
2763         val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW8(port));
2764         val = 0;
2765         if (pipe)
2766                 val |= (1<<21);
2767         else
2768                 val &= ~(1<<21);
2769         val |= 0x001000c4;
2770         vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW8(port), val);
2771         vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW14(port), 0x00760018);
2772         vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW23(port), 0x00400888);
2773
2774         mutex_unlock(&dev_priv->sb_lock);
2775
2776         intel_enable_dp(encoder);
2777 }
2778
2779 static void vlv_dp_pre_pll_enable(struct intel_encoder *encoder)
2780 {
2781         struct intel_digital_port *dport = enc_to_dig_port(&encoder->base);
2782         struct drm_device *dev = encoder->base.dev;
2783         struct drm_i915_private *dev_priv = dev->dev_private;
2784         struct intel_crtc *intel_crtc =
2785                 to_intel_crtc(encoder->base.crtc);
2786         enum dpio_channel port = vlv_dport_to_channel(dport);
2787         int pipe = intel_crtc->pipe;
2788
2789         intel_dp_prepare(encoder);
2790
2791         /* Program Tx lane resets to default */
2792         mutex_lock(&dev_priv->sb_lock);
2793         vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW0(port),
2794                          DPIO_PCS_TX_LANE2_RESET |
2795                          DPIO_PCS_TX_LANE1_RESET);
2796         vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW1(port),
2797                          DPIO_PCS_CLK_CRI_RXEB_EIOS_EN |
2798                          DPIO_PCS_CLK_CRI_RXDIGFILTSG_EN |
2799                          (1<<DPIO_PCS_CLK_DATAWIDTH_SHIFT) |
2800                                  DPIO_PCS_CLK_SOFT_RESET);
2801
2802         /* Fix up inter-pair skew failure */
2803         vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW12(port), 0x00750f00);
2804         vlv_dpio_write(dev_priv, pipe, VLV_TX_DW11(port), 0x00001500);
2805         vlv_dpio_write(dev_priv, pipe, VLV_TX_DW14(port), 0x40400000);
2806         mutex_unlock(&dev_priv->sb_lock);
2807 }
2808
2809 static void chv_pre_enable_dp(struct intel_encoder *encoder)
2810 {
2811         struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2812         struct intel_digital_port *dport = dp_to_dig_port(intel_dp);
2813         struct drm_device *dev = encoder->base.dev;
2814         struct drm_i915_private *dev_priv = dev->dev_private;
2815         struct intel_crtc *intel_crtc =
2816                 to_intel_crtc(encoder->base.crtc);
2817         enum dpio_channel ch = vlv_dport_to_channel(dport);
2818         int pipe = intel_crtc->pipe;
2819         int data, i, stagger;
2820         u32 val;
2821
2822         mutex_lock(&dev_priv->sb_lock);
2823
2824         /* allow hardware to manage TX FIFO reset source */
2825         val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW11(ch));
2826         val &= ~DPIO_LANEDESKEW_STRAP_OVRD;
2827         vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW11(ch), val);
2828
2829         if (intel_crtc->config->lane_count > 2) {
2830                 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW11(ch));
2831                 val &= ~DPIO_LANEDESKEW_STRAP_OVRD;
2832                 vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW11(ch), val);
2833         }
2834
2835         /* Program Tx lane latency optimal setting*/
2836         for (i = 0; i < intel_crtc->config->lane_count; i++) {
2837                 /* Set the upar bit */
2838                 if (intel_crtc->config->lane_count == 1)
2839                         data = 0x0;
2840                 else
2841                         data = (i == 1) ? 0x0 : 0x1;
2842                 vlv_dpio_write(dev_priv, pipe, CHV_TX_DW14(ch, i),
2843                                 data << DPIO_UPAR_SHIFT);
2844         }
2845
2846         /* Data lane stagger programming */
2847         if (intel_crtc->config->port_clock > 270000)
2848                 stagger = 0x18;
2849         else if (intel_crtc->config->port_clock > 135000)
2850                 stagger = 0xd;
2851         else if (intel_crtc->config->port_clock > 67500)
2852                 stagger = 0x7;
2853         else if (intel_crtc->config->port_clock > 33750)
2854                 stagger = 0x4;
2855         else
2856                 stagger = 0x2;
2857
2858         val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW11(ch));
2859         val |= DPIO_TX2_STAGGER_MASK(0x1f);
2860         vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW11(ch), val);
2861
2862         if (intel_crtc->config->lane_count > 2) {
2863                 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW11(ch));
2864                 val |= DPIO_TX2_STAGGER_MASK(0x1f);
2865                 vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW11(ch), val);
2866         }
2867
2868         vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW12(ch),
2869                        DPIO_LANESTAGGER_STRAP(stagger) |
2870                        DPIO_LANESTAGGER_STRAP_OVRD |
2871                        DPIO_TX1_STAGGER_MASK(0x1f) |
2872                        DPIO_TX1_STAGGER_MULT(6) |
2873                        DPIO_TX2_STAGGER_MULT(0));
2874
2875         if (intel_crtc->config->lane_count > 2) {
2876                 vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW12(ch),
2877                                DPIO_LANESTAGGER_STRAP(stagger) |
2878                                DPIO_LANESTAGGER_STRAP_OVRD |
2879                                DPIO_TX1_STAGGER_MASK(0x1f) |
2880                                DPIO_TX1_STAGGER_MULT(7) |
2881                                DPIO_TX2_STAGGER_MULT(5));
2882         }
2883
2884         /* Deassert data lane reset */
2885         chv_data_lane_soft_reset(encoder, false);
2886
2887         mutex_unlock(&dev_priv->sb_lock);
2888
2889         intel_enable_dp(encoder);
2890
2891         /* Second common lane will stay alive on its own now */
2892         if (dport->release_cl2_override) {
2893                 chv_phy_powergate_ch(dev_priv, DPIO_PHY0, DPIO_CH1, false);
2894                 dport->release_cl2_override = false;
2895         }
2896 }
2897
2898 static void chv_dp_pre_pll_enable(struct intel_encoder *encoder)
2899 {
2900         struct intel_digital_port *dport = enc_to_dig_port(&encoder->base);
2901         struct drm_device *dev = encoder->base.dev;
2902         struct drm_i915_private *dev_priv = dev->dev_private;
2903         struct intel_crtc *intel_crtc =
2904                 to_intel_crtc(encoder->base.crtc);
2905         enum dpio_channel ch = vlv_dport_to_channel(dport);
2906         enum pipe pipe = intel_crtc->pipe;
2907         unsigned int lane_mask =
2908                 intel_dp_unused_lane_mask(intel_crtc->config->lane_count);
2909         u32 val;
2910
2911         intel_dp_prepare(encoder);
2912
2913         /*
2914          * Must trick the second common lane into life.
2915          * Otherwise we can't even access the PLL.
2916          */
2917         if (ch == DPIO_CH0 && pipe == PIPE_B)
2918                 dport->release_cl2_override =
2919                         !chv_phy_powergate_ch(dev_priv, DPIO_PHY0, DPIO_CH1, true);
2920
2921         chv_phy_powergate_lanes(encoder, true, lane_mask);
2922
2923         mutex_lock(&dev_priv->sb_lock);
2924
2925         /* Assert data lane reset */
2926         chv_data_lane_soft_reset(encoder, true);
2927
2928         /* program left/right clock distribution */
2929         if (pipe != PIPE_B) {
2930                 val = vlv_dpio_read(dev_priv, pipe, _CHV_CMN_DW5_CH0);
2931                 val &= ~(CHV_BUFLEFTENA1_MASK | CHV_BUFRIGHTENA1_MASK);
2932                 if (ch == DPIO_CH0)
2933                         val |= CHV_BUFLEFTENA1_FORCE;
2934                 if (ch == DPIO_CH1)
2935                         val |= CHV_BUFRIGHTENA1_FORCE;
2936                 vlv_dpio_write(dev_priv, pipe, _CHV_CMN_DW5_CH0, val);
2937         } else {
2938                 val = vlv_dpio_read(dev_priv, pipe, _CHV_CMN_DW1_CH1);
2939                 val &= ~(CHV_BUFLEFTENA2_MASK | CHV_BUFRIGHTENA2_MASK);
2940                 if (ch == DPIO_CH0)
2941                         val |= CHV_BUFLEFTENA2_FORCE;
2942                 if (ch == DPIO_CH1)
2943                         val |= CHV_BUFRIGHTENA2_FORCE;
2944                 vlv_dpio_write(dev_priv, pipe, _CHV_CMN_DW1_CH1, val);
2945         }
2946
2947         /* program clock channel usage */
2948         val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW8(ch));
2949         val |= CHV_PCS_USEDCLKCHANNEL_OVRRIDE;
2950         if (pipe != PIPE_B)
2951                 val &= ~CHV_PCS_USEDCLKCHANNEL;
2952         else
2953                 val |= CHV_PCS_USEDCLKCHANNEL;
2954         vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW8(ch), val);
2955
2956         if (intel_crtc->config->lane_count > 2) {
2957                 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW8(ch));
2958                 val |= CHV_PCS_USEDCLKCHANNEL_OVRRIDE;
2959                 if (pipe != PIPE_B)
2960                         val &= ~CHV_PCS_USEDCLKCHANNEL;
2961                 else
2962                         val |= CHV_PCS_USEDCLKCHANNEL;
2963                 vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW8(ch), val);
2964         }
2965
2966         /*
2967          * This a a bit weird since generally CL
2968          * matches the pipe, but here we need to
2969          * pick the CL based on the port.
2970          */
2971         val = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW19(ch));
2972         if (pipe != PIPE_B)
2973                 val &= ~CHV_CMN_USEDCLKCHANNEL;
2974         else
2975                 val |= CHV_CMN_USEDCLKCHANNEL;
2976         vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW19(ch), val);
2977
2978         mutex_unlock(&dev_priv->sb_lock);
2979 }
2980
2981 static void chv_dp_post_pll_disable(struct intel_encoder *encoder)
2982 {
2983         struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
2984         enum pipe pipe = to_intel_crtc(encoder->base.crtc)->pipe;
2985         u32 val;
2986
2987         mutex_lock(&dev_priv->sb_lock);
2988
2989         /* disable left/right clock distribution */
2990         if (pipe != PIPE_B) {
2991                 val = vlv_dpio_read(dev_priv, pipe, _CHV_CMN_DW5_CH0);
2992                 val &= ~(CHV_BUFLEFTENA1_MASK | CHV_BUFRIGHTENA1_MASK);
2993                 vlv_dpio_write(dev_priv, pipe, _CHV_CMN_DW5_CH0, val);
2994         } else {
2995                 val = vlv_dpio_read(dev_priv, pipe, _CHV_CMN_DW1_CH1);
2996                 val &= ~(CHV_BUFLEFTENA2_MASK | CHV_BUFRIGHTENA2_MASK);
2997                 vlv_dpio_write(dev_priv, pipe, _CHV_CMN_DW1_CH1, val);
2998         }
2999
3000         mutex_unlock(&dev_priv->sb_lock);
3001
3002         /*
3003          * Leave the power down bit cleared for at least one
3004          * lane so that chv_powergate_phy_ch() will power
3005          * on something when the channel is otherwise unused.
3006          * When the port is off and the override is removed
3007          * the lanes power down anyway, so otherwise it doesn't
3008          * really matter what the state of power down bits is
3009          * after this.
3010          */
3011         chv_phy_powergate_lanes(encoder, false, 0x0);
3012 }
3013
3014 /*
3015  * Native read with retry for link status and receiver capability reads for
3016  * cases where the sink may still be asleep.
3017  *
3018  * Sinks are *supposed* to come up within 1ms from an off state, but we're also
3019  * supposed to retry 3 times per the spec.
3020  */
3021 static ssize_t
3022 intel_dp_dpcd_read_wake(struct drm_dp_aux *aux, unsigned int offset,
3023                         void *buffer, size_t size)
3024 {
3025         ssize_t ret;
3026         int i;
3027
3028         /*
3029          * Sometime we just get the same incorrect byte repeated
3030          * over the entire buffer. Doing just one throw away read
3031          * initially seems to "solve" it.
3032          */
3033         drm_dp_dpcd_read(aux, DP_DPCD_REV, buffer, 1);
3034
3035         for (i = 0; i < 3; i++) {
3036                 ret = drm_dp_dpcd_read(aux, offset, buffer, size);
3037                 if (ret == size)
3038                         return ret;
3039                 msleep(1);
3040         }
3041
3042         return ret;
3043 }
3044
3045 /*
3046  * Fetch AUX CH registers 0x202 - 0x207 which contain
3047  * link status information
3048  */
3049 static bool
3050 intel_dp_get_link_status(struct intel_dp *intel_dp, uint8_t link_status[DP_LINK_STATUS_SIZE])
3051 {
3052         return intel_dp_dpcd_read_wake(&intel_dp->aux,
3053                                        DP_LANE0_1_STATUS,
3054                                        link_status,
3055                                        DP_LINK_STATUS_SIZE) == DP_LINK_STATUS_SIZE;
3056 }
3057
3058 /* These are source-specific values. */
3059 static uint8_t
3060 intel_dp_voltage_max(struct intel_dp *intel_dp)
3061 {
3062         struct drm_device *dev = intel_dp_to_dev(intel_dp);
3063         struct drm_i915_private *dev_priv = dev->dev_private;
3064         enum port port = dp_to_dig_port(intel_dp)->port;
3065
3066         if (IS_BROXTON(dev))
3067                 return DP_TRAIN_VOLTAGE_SWING_LEVEL_3;
3068         else if (INTEL_INFO(dev)->gen >= 9) {
3069                 if (dev_priv->edp_low_vswing && port == PORT_A)
3070                         return DP_TRAIN_VOLTAGE_SWING_LEVEL_3;
3071                 return DP_TRAIN_VOLTAGE_SWING_LEVEL_2;
3072         } else if (IS_VALLEYVIEW(dev))
3073                 return DP_TRAIN_VOLTAGE_SWING_LEVEL_3;
3074         else if (IS_GEN7(dev) && port == PORT_A)
3075                 return DP_TRAIN_VOLTAGE_SWING_LEVEL_2;
3076         else if (HAS_PCH_CPT(dev) && port != PORT_A)
3077                 return DP_TRAIN_VOLTAGE_SWING_LEVEL_3;
3078         else
3079                 return DP_TRAIN_VOLTAGE_SWING_LEVEL_2;
3080 }
3081
3082 static uint8_t
3083 intel_dp_pre_emphasis_max(struct intel_dp *intel_dp, uint8_t voltage_swing)
3084 {
3085         struct drm_device *dev = intel_dp_to_dev(intel_dp);
3086         enum port port = dp_to_dig_port(intel_dp)->port;
3087
3088         if (INTEL_INFO(dev)->gen >= 9) {
3089                 switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
3090                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3091                         return DP_TRAIN_PRE_EMPH_LEVEL_3;
3092                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3093                         return DP_TRAIN_PRE_EMPH_LEVEL_2;
3094                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
3095                         return DP_TRAIN_PRE_EMPH_LEVEL_1;
3096                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_3:
3097                         return DP_TRAIN_PRE_EMPH_LEVEL_0;
3098                 default:
3099                         return DP_TRAIN_PRE_EMPH_LEVEL_0;
3100                 }
3101         } else if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
3102                 switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
3103                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3104                         return DP_TRAIN_PRE_EMPH_LEVEL_3;
3105                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3106                         return DP_TRAIN_PRE_EMPH_LEVEL_2;
3107                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
3108                         return DP_TRAIN_PRE_EMPH_LEVEL_1;
3109                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_3:
3110                 default:
3111                         return DP_TRAIN_PRE_EMPH_LEVEL_0;
3112                 }
3113         } else if (IS_VALLEYVIEW(dev)) {
3114                 switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
3115                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3116                         return DP_TRAIN_PRE_EMPH_LEVEL_3;
3117                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3118                         return DP_TRAIN_PRE_EMPH_LEVEL_2;
3119                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
3120                         return DP_TRAIN_PRE_EMPH_LEVEL_1;
3121                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_3:
3122                 default:
3123                         return DP_TRAIN_PRE_EMPH_LEVEL_0;
3124                 }
3125         } else if (IS_GEN7(dev) && port == PORT_A) {
3126                 switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
3127                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3128                         return DP_TRAIN_PRE_EMPH_LEVEL_2;
3129                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3130                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
3131                         return DP_TRAIN_PRE_EMPH_LEVEL_1;
3132                 default:
3133                         return DP_TRAIN_PRE_EMPH_LEVEL_0;
3134                 }
3135         } else {
3136                 switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
3137                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3138                         return DP_TRAIN_PRE_EMPH_LEVEL_2;
3139                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3140                         return DP_TRAIN_PRE_EMPH_LEVEL_2;
3141                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
3142                         return DP_TRAIN_PRE_EMPH_LEVEL_1;
3143                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_3:
3144                 default:
3145                         return DP_TRAIN_PRE_EMPH_LEVEL_0;
3146                 }
3147         }
3148 }
3149
3150 static uint32_t vlv_signal_levels(struct intel_dp *intel_dp)
3151 {
3152         struct drm_device *dev = intel_dp_to_dev(intel_dp);
3153         struct drm_i915_private *dev_priv = dev->dev_private;
3154         struct intel_digital_port *dport = dp_to_dig_port(intel_dp);
3155         struct intel_crtc *intel_crtc =
3156                 to_intel_crtc(dport->base.base.crtc);
3157         unsigned long demph_reg_value, preemph_reg_value,
3158                 uniqtranscale_reg_value;
3159         uint8_t train_set = intel_dp->train_set[0];
3160         enum dpio_channel port = vlv_dport_to_channel(dport);
3161         int pipe = intel_crtc->pipe;
3162
3163         switch (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) {
3164         case DP_TRAIN_PRE_EMPH_LEVEL_0:
3165                 preemph_reg_value = 0x0004000;
3166                 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3167                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3168                         demph_reg_value = 0x2B405555;
3169                         uniqtranscale_reg_value = 0x552AB83A;
3170                         break;
3171                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3172                         demph_reg_value = 0x2B404040;
3173                         uniqtranscale_reg_value = 0x5548B83A;
3174                         break;
3175                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
3176                         demph_reg_value = 0x2B245555;
3177                         uniqtranscale_reg_value = 0x5560B83A;
3178                         break;
3179                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_3:
3180                         demph_reg_value = 0x2B405555;
3181                         uniqtranscale_reg_value = 0x5598DA3A;
3182                         break;
3183                 default:
3184                         return 0;
3185                 }
3186                 break;
3187         case DP_TRAIN_PRE_EMPH_LEVEL_1:
3188                 preemph_reg_value = 0x0002000;
3189                 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3190                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3191                         demph_reg_value = 0x2B404040;
3192                         uniqtranscale_reg_value = 0x5552B83A;
3193                         break;
3194                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3195                         demph_reg_value = 0x2B404848;
3196                         uniqtranscale_reg_value = 0x5580B83A;
3197                         break;
3198                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
3199                         demph_reg_value = 0x2B404040;
3200                         uniqtranscale_reg_value = 0x55ADDA3A;
3201                         break;
3202                 default:
3203                         return 0;
3204                 }
3205                 break;
3206         case DP_TRAIN_PRE_EMPH_LEVEL_2:
3207                 preemph_reg_value = 0x0000000;
3208                 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3209                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3210                         demph_reg_value = 0x2B305555;
3211                         uniqtranscale_reg_value = 0x5570B83A;
3212                         break;
3213                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3214                         demph_reg_value = 0x2B2B4040;
3215                         uniqtranscale_reg_value = 0x55ADDA3A;
3216                         break;
3217                 default:
3218                         return 0;
3219                 }
3220                 break;
3221         case DP_TRAIN_PRE_EMPH_LEVEL_3:
3222                 preemph_reg_value = 0x0006000;
3223                 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3224                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3225                         demph_reg_value = 0x1B405555;
3226                         uniqtranscale_reg_value = 0x55ADDA3A;
3227                         break;
3228                 default:
3229                         return 0;
3230                 }
3231                 break;
3232         default:
3233                 return 0;
3234         }
3235
3236         mutex_lock(&dev_priv->sb_lock);
3237         vlv_dpio_write(dev_priv, pipe, VLV_TX_DW5(port), 0x00000000);
3238         vlv_dpio_write(dev_priv, pipe, VLV_TX_DW4(port), demph_reg_value);
3239         vlv_dpio_write(dev_priv, pipe, VLV_TX_DW2(port),
3240                          uniqtranscale_reg_value);
3241         vlv_dpio_write(dev_priv, pipe, VLV_TX_DW3(port), 0x0C782040);
3242         vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW11(port), 0x00030000);
3243         vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW9(port), preemph_reg_value);
3244         vlv_dpio_write(dev_priv, pipe, VLV_TX_DW5(port), 0x80000000);
3245         mutex_unlock(&dev_priv->sb_lock);
3246
3247         return 0;
3248 }
3249
3250 static bool chv_need_uniq_trans_scale(uint8_t train_set)
3251 {
3252         return (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) == DP_TRAIN_PRE_EMPH_LEVEL_0 &&
3253                 (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) == DP_TRAIN_VOLTAGE_SWING_LEVEL_3;
3254 }
3255
3256 static uint32_t chv_signal_levels(struct intel_dp *intel_dp)
3257 {
3258         struct drm_device *dev = intel_dp_to_dev(intel_dp);
3259         struct drm_i915_private *dev_priv = dev->dev_private;
3260         struct intel_digital_port *dport = dp_to_dig_port(intel_dp);
3261         struct intel_crtc *intel_crtc = to_intel_crtc(dport->base.base.crtc);
3262         u32 deemph_reg_value, margin_reg_value, val;
3263         uint8_t train_set = intel_dp->train_set[0];
3264         enum dpio_channel ch = vlv_dport_to_channel(dport);
3265         enum pipe pipe = intel_crtc->pipe;
3266         int i;
3267
3268         switch (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) {
3269         case DP_TRAIN_PRE_EMPH_LEVEL_0:
3270                 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3271                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3272                         deemph_reg_value = 128;
3273                         margin_reg_value = 52;
3274                         break;
3275                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3276                         deemph_reg_value = 128;
3277                         margin_reg_value = 77;
3278                         break;
3279                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
3280                         deemph_reg_value = 128;
3281                         margin_reg_value = 102;
3282                         break;
3283                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_3:
3284                         deemph_reg_value = 128;
3285                         margin_reg_value = 154;
3286                         /* FIXME extra to set for 1200 */
3287                         break;
3288                 default:
3289                         return 0;
3290                 }
3291                 break;
3292         case DP_TRAIN_PRE_EMPH_LEVEL_1:
3293                 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3294                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3295                         deemph_reg_value = 85;
3296                         margin_reg_value = 78;
3297                         break;
3298                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3299                         deemph_reg_value = 85;
3300                         margin_reg_value = 116;
3301                         break;
3302                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
3303                         deemph_reg_value = 85;
3304                         margin_reg_value = 154;
3305                         break;
3306                 default:
3307                         return 0;
3308                 }
3309                 break;
3310         case DP_TRAIN_PRE_EMPH_LEVEL_2:
3311                 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3312                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3313                         deemph_reg_value = 64;
3314                         margin_reg_value = 104;
3315                         break;
3316                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3317                         deemph_reg_value = 64;
3318                         margin_reg_value = 154;
3319                         break;
3320                 default:
3321                         return 0;
3322                 }
3323                 break;
3324         case DP_TRAIN_PRE_EMPH_LEVEL_3:
3325                 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3326                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3327                         deemph_reg_value = 43;
3328                         margin_reg_value = 154;
3329                         break;
3330                 default:
3331                         return 0;
3332                 }
3333                 break;
3334         default:
3335                 return 0;
3336         }
3337
3338         mutex_lock(&dev_priv->sb_lock);
3339
3340         /* Clear calc init */
3341         val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW10(ch));
3342         val &= ~(DPIO_PCS_SWING_CALC_TX0_TX2 | DPIO_PCS_SWING_CALC_TX1_TX3);
3343         val &= ~(DPIO_PCS_TX1DEEMP_MASK | DPIO_PCS_TX2DEEMP_MASK);
3344         val |= DPIO_PCS_TX1DEEMP_9P5 | DPIO_PCS_TX2DEEMP_9P5;
3345         vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW10(ch), val);
3346
3347         if (intel_crtc->config->lane_count > 2) {
3348                 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW10(ch));
3349                 val &= ~(DPIO_PCS_SWING_CALC_TX0_TX2 | DPIO_PCS_SWING_CALC_TX1_TX3);
3350                 val &= ~(DPIO_PCS_TX1DEEMP_MASK | DPIO_PCS_TX2DEEMP_MASK);
3351                 val |= DPIO_PCS_TX1DEEMP_9P5 | DPIO_PCS_TX2DEEMP_9P5;
3352                 vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW10(ch), val);
3353         }
3354
3355         val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW9(ch));
3356         val &= ~(DPIO_PCS_TX1MARGIN_MASK | DPIO_PCS_TX2MARGIN_MASK);
3357         val |= DPIO_PCS_TX1MARGIN_000 | DPIO_PCS_TX2MARGIN_000;
3358         vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW9(ch), val);
3359
3360         if (intel_crtc->config->lane_count > 2) {
3361                 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW9(ch));
3362                 val &= ~(DPIO_PCS_TX1MARGIN_MASK | DPIO_PCS_TX2MARGIN_MASK);
3363                 val |= DPIO_PCS_TX1MARGIN_000 | DPIO_PCS_TX2MARGIN_000;
3364                 vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW9(ch), val);
3365         }
3366
3367         /* Program swing deemph */
3368         for (i = 0; i < intel_crtc->config->lane_count; i++) {
3369                 val = vlv_dpio_read(dev_priv, pipe, CHV_TX_DW4(ch, i));
3370                 val &= ~DPIO_SWING_DEEMPH9P5_MASK;
3371                 val |= deemph_reg_value << DPIO_SWING_DEEMPH9P5_SHIFT;
3372                 vlv_dpio_write(dev_priv, pipe, CHV_TX_DW4(ch, i), val);
3373         }
3374
3375         /* Program swing margin */
3376         for (i = 0; i < intel_crtc->config->lane_count; i++) {
3377                 val = vlv_dpio_read(dev_priv, pipe, CHV_TX_DW2(ch, i));
3378
3379                 val &= ~DPIO_SWING_MARGIN000_MASK;
3380                 val |= margin_reg_value << DPIO_SWING_MARGIN000_SHIFT;
3381
3382                 /*
3383                  * Supposedly this value shouldn't matter when unique transition
3384                  * scale is disabled, but in fact it does matter. Let's just
3385                  * always program the same value and hope it's OK.
3386                  */
3387                 val &= ~(0xff << DPIO_UNIQ_TRANS_SCALE_SHIFT);
3388                 val |= 0x9a << DPIO_UNIQ_TRANS_SCALE_SHIFT;
3389
3390                 vlv_dpio_write(dev_priv, pipe, CHV_TX_DW2(ch, i), val);
3391         }
3392
3393         /*
3394          * The document said it needs to set bit 27 for ch0 and bit 26
3395          * for ch1. Might be a typo in the doc.
3396          * For now, for this unique transition scale selection, set bit
3397          * 27 for ch0 and ch1.
3398          */
3399         for (i = 0; i < intel_crtc->config->lane_count; i++) {
3400                 val = vlv_dpio_read(dev_priv, pipe, CHV_TX_DW3(ch, i));
3401                 if (chv_need_uniq_trans_scale(train_set))
3402                         val |= DPIO_TX_UNIQ_TRANS_SCALE_EN;
3403                 else
3404                         val &= ~DPIO_TX_UNIQ_TRANS_SCALE_EN;
3405                 vlv_dpio_write(dev_priv, pipe, CHV_TX_DW3(ch, i), val);
3406         }
3407
3408         /* Start swing calculation */
3409         val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW10(ch));
3410         val |= DPIO_PCS_SWING_CALC_TX0_TX2 | DPIO_PCS_SWING_CALC_TX1_TX3;
3411         vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW10(ch), val);
3412
3413         if (intel_crtc->config->lane_count > 2) {
3414                 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW10(ch));
3415                 val |= DPIO_PCS_SWING_CALC_TX0_TX2 | DPIO_PCS_SWING_CALC_TX1_TX3;
3416                 vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW10(ch), val);
3417         }
3418
3419         mutex_unlock(&dev_priv->sb_lock);
3420
3421         return 0;
3422 }
3423
3424 static void
3425 intel_get_adjust_train(struct intel_dp *intel_dp,
3426                        const uint8_t link_status[DP_LINK_STATUS_SIZE])
3427 {
3428         uint8_t v = 0;
3429         uint8_t p = 0;
3430         int lane;
3431         uint8_t voltage_max;
3432         uint8_t preemph_max;
3433
3434         for (lane = 0; lane < intel_dp->lane_count; lane++) {
3435                 uint8_t this_v = drm_dp_get_adjust_request_voltage(link_status, lane);
3436                 uint8_t this_p = drm_dp_get_adjust_request_pre_emphasis(link_status, lane);
3437
3438                 if (this_v > v)
3439                         v = this_v;
3440                 if (this_p > p)
3441                         p = this_p;
3442         }
3443
3444         voltage_max = intel_dp_voltage_max(intel_dp);
3445         if (v >= voltage_max)
3446                 v = voltage_max | DP_TRAIN_MAX_SWING_REACHED;
3447
3448         preemph_max = intel_dp_pre_emphasis_max(intel_dp, v);
3449         if (p >= preemph_max)
3450                 p = preemph_max | DP_TRAIN_MAX_PRE_EMPHASIS_REACHED;
3451
3452         for (lane = 0; lane < 4; lane++)
3453                 intel_dp->train_set[lane] = v | p;
3454 }
3455
3456 static uint32_t
3457 gen4_signal_levels(uint8_t train_set)
3458 {
3459         uint32_t        signal_levels = 0;
3460
3461         switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3462         case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3463         default:
3464                 signal_levels |= DP_VOLTAGE_0_4;
3465                 break;
3466         case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3467                 signal_levels |= DP_VOLTAGE_0_6;
3468                 break;
3469         case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
3470                 signal_levels |= DP_VOLTAGE_0_8;
3471                 break;
3472         case DP_TRAIN_VOLTAGE_SWING_LEVEL_3:
3473                 signal_levels |= DP_VOLTAGE_1_2;
3474                 break;
3475         }
3476         switch (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) {
3477         case DP_TRAIN_PRE_EMPH_LEVEL_0:
3478         default:
3479                 signal_levels |= DP_PRE_EMPHASIS_0;
3480                 break;
3481         case DP_TRAIN_PRE_EMPH_LEVEL_1:
3482                 signal_levels |= DP_PRE_EMPHASIS_3_5;
3483                 break;
3484         case DP_TRAIN_PRE_EMPH_LEVEL_2:
3485                 signal_levels |= DP_PRE_EMPHASIS_6;
3486                 break;
3487         case DP_TRAIN_PRE_EMPH_LEVEL_3:
3488                 signal_levels |= DP_PRE_EMPHASIS_9_5;
3489                 break;
3490         }
3491         return signal_levels;
3492 }
3493
3494 /* Gen6's DP voltage swing and pre-emphasis control */
3495 static uint32_t
3496 gen6_edp_signal_levels(uint8_t train_set)
3497 {
3498         int signal_levels = train_set & (DP_TRAIN_VOLTAGE_SWING_MASK |
3499                                          DP_TRAIN_PRE_EMPHASIS_MASK);
3500         switch (signal_levels) {
3501         case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_0:
3502         case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_0:
3503                 return EDP_LINK_TRAIN_400_600MV_0DB_SNB_B;
3504         case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_1:
3505                 return EDP_LINK_TRAIN_400MV_3_5DB_SNB_B;
3506         case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_2:
3507         case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_2:
3508                 return EDP_LINK_TRAIN_400_600MV_6DB_SNB_B;
3509         case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_1:
3510         case DP_TRAIN_VOLTAGE_SWING_LEVEL_2 | DP_TRAIN_PRE_EMPH_LEVEL_1:
3511                 return EDP_LINK_TRAIN_600_800MV_3_5DB_SNB_B;
3512         case DP_TRAIN_VOLTAGE_SWING_LEVEL_2 | DP_TRAIN_PRE_EMPH_LEVEL_0:
3513         case DP_TRAIN_VOLTAGE_SWING_LEVEL_3 | DP_TRAIN_PRE_EMPH_LEVEL_0:
3514                 return EDP_LINK_TRAIN_800_1200MV_0DB_SNB_B;
3515         default:
3516                 DRM_DEBUG_KMS("Unsupported voltage swing/pre-emphasis level:"
3517                               "0x%x\n", signal_levels);
3518                 return EDP_LINK_TRAIN_400_600MV_0DB_SNB_B;
3519         }
3520 }
3521
3522 /* Gen7's DP voltage swing and pre-emphasis control */
3523 static uint32_t
3524 gen7_edp_signal_levels(uint8_t train_set)
3525 {
3526         int signal_levels = train_set & (DP_TRAIN_VOLTAGE_SWING_MASK |
3527                                          DP_TRAIN_PRE_EMPHASIS_MASK);
3528         switch (signal_levels) {
3529         case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_0:
3530                 return EDP_LINK_TRAIN_400MV_0DB_IVB;
3531         case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_1:
3532                 return EDP_LINK_TRAIN_400MV_3_5DB_IVB;
3533         case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_2:
3534                 return EDP_LINK_TRAIN_400MV_6DB_IVB;
3535
3536         case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_0:
3537                 return EDP_LINK_TRAIN_600MV_0DB_IVB;
3538         case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_1:
3539                 return EDP_LINK_TRAIN_600MV_3_5DB_IVB;
3540
3541         case DP_TRAIN_VOLTAGE_SWING_LEVEL_2 | DP_TRAIN_PRE_EMPH_LEVEL_0:
3542                 return EDP_LINK_TRAIN_800MV_0DB_IVB;
3543         case DP_TRAIN_VOLTAGE_SWING_LEVEL_2 | DP_TRAIN_PRE_EMPH_LEVEL_1:
3544                 return EDP_LINK_TRAIN_800MV_3_5DB_IVB;
3545
3546         default:
3547                 DRM_DEBUG_KMS("Unsupported voltage swing/pre-emphasis level:"
3548                               "0x%x\n", signal_levels);
3549                 return EDP_LINK_TRAIN_500MV_0DB_IVB;
3550         }
3551 }
3552
3553 /* Properly updates "DP" with the correct signal levels. */
3554 static void
3555 intel_dp_set_signal_levels(struct intel_dp *intel_dp, uint32_t *DP)
3556 {
3557         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
3558         enum port port = intel_dig_port->port;
3559         struct drm_device *dev = intel_dig_port->base.base.dev;
3560         uint32_t signal_levels, mask = 0;
3561         uint8_t train_set = intel_dp->train_set[0];
3562
3563         if (HAS_DDI(dev)) {
3564                 signal_levels = ddi_signal_levels(intel_dp);
3565
3566                 if (IS_BROXTON(dev))
3567                         signal_levels = 0;
3568                 else
3569                         mask = DDI_BUF_EMP_MASK;
3570         } else if (IS_CHERRYVIEW(dev)) {
3571                 signal_levels = chv_signal_levels(intel_dp);
3572         } else if (IS_VALLEYVIEW(dev)) {
3573                 signal_levels = vlv_signal_levels(intel_dp);
3574         } else if (IS_GEN7(dev) && port == PORT_A) {
3575                 signal_levels = gen7_edp_signal_levels(train_set);
3576                 mask = EDP_LINK_TRAIN_VOL_EMP_MASK_IVB;
3577         } else if (IS_GEN6(dev) && port == PORT_A) {
3578                 signal_levels = gen6_edp_signal_levels(train_set);
3579                 mask = EDP_LINK_TRAIN_VOL_EMP_MASK_SNB;
3580         } else {
3581                 signal_levels = gen4_signal_levels(train_set);
3582                 mask = DP_VOLTAGE_MASK | DP_PRE_EMPHASIS_MASK;
3583         }
3584
3585         if (mask)
3586                 DRM_DEBUG_KMS("Using signal levels %08x\n", signal_levels);
3587
3588         DRM_DEBUG_KMS("Using vswing level %d\n",
3589                 train_set & DP_TRAIN_VOLTAGE_SWING_MASK);
3590         DRM_DEBUG_KMS("Using pre-emphasis level %d\n",
3591                 (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) >>
3592                         DP_TRAIN_PRE_EMPHASIS_SHIFT);
3593
3594         *DP = (*DP & ~mask) | signal_levels;
3595 }
3596
3597 static bool
3598 intel_dp_set_link_train(struct intel_dp *intel_dp,
3599                         uint32_t *DP,
3600                         uint8_t dp_train_pat)
3601 {
3602         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
3603         struct drm_i915_private *dev_priv =
3604                 to_i915(intel_dig_port->base.base.dev);
3605         uint8_t buf[sizeof(intel_dp->train_set) + 1];
3606         int ret, len;
3607
3608         _intel_dp_set_link_train(intel_dp, DP, dp_train_pat);
3609
3610         I915_WRITE(intel_dp->output_reg, *DP);
3611         POSTING_READ(intel_dp->output_reg);
3612
3613         buf[0] = dp_train_pat;
3614         if ((dp_train_pat & DP_TRAINING_PATTERN_MASK) ==
3615             DP_TRAINING_PATTERN_DISABLE) {
3616                 /* don't write DP_TRAINING_LANEx_SET on disable */
3617                 len = 1;
3618         } else {
3619                 /* DP_TRAINING_LANEx_SET follow DP_TRAINING_PATTERN_SET */
3620                 memcpy(buf + 1, intel_dp->train_set, intel_dp->lane_count);
3621                 len = intel_dp->lane_count + 1;
3622         }
3623
3624         ret = drm_dp_dpcd_write(&intel_dp->aux, DP_TRAINING_PATTERN_SET,
3625                                 buf, len);
3626
3627         return ret == len;
3628 }
3629
3630 static bool
3631 intel_dp_reset_link_train(struct intel_dp *intel_dp, uint32_t *DP,
3632                         uint8_t dp_train_pat)
3633 {
3634         if (!intel_dp->train_set_valid)
3635                 memset(intel_dp->train_set, 0, sizeof(intel_dp->train_set));
3636         intel_dp_set_signal_levels(intel_dp, DP);
3637         return intel_dp_set_link_train(intel_dp, DP, dp_train_pat);
3638 }
3639
3640 static bool
3641 intel_dp_update_link_train(struct intel_dp *intel_dp, uint32_t *DP,
3642                            const uint8_t link_status[DP_LINK_STATUS_SIZE])
3643 {
3644         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
3645         struct drm_i915_private *dev_priv =
3646                 to_i915(intel_dig_port->base.base.dev);
3647         int ret;
3648
3649         intel_get_adjust_train(intel_dp, link_status);
3650         intel_dp_set_signal_levels(intel_dp, DP);
3651
3652         I915_WRITE(intel_dp->output_reg, *DP);
3653         POSTING_READ(intel_dp->output_reg);
3654
3655         ret = drm_dp_dpcd_write(&intel_dp->aux, DP_TRAINING_LANE0_SET,
3656                                 intel_dp->train_set, intel_dp->lane_count);
3657
3658         return ret == intel_dp->lane_count;
3659 }
3660
3661 static void intel_dp_set_idle_link_train(struct intel_dp *intel_dp)
3662 {
3663         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
3664         struct drm_device *dev = intel_dig_port->base.base.dev;
3665         struct drm_i915_private *dev_priv = dev->dev_private;
3666         enum port port = intel_dig_port->port;
3667         uint32_t val;
3668
3669         if (!HAS_DDI(dev))
3670                 return;
3671
3672         val = I915_READ(DP_TP_CTL(port));
3673         val &= ~DP_TP_CTL_LINK_TRAIN_MASK;
3674         val |= DP_TP_CTL_LINK_TRAIN_IDLE;
3675         I915_WRITE(DP_TP_CTL(port), val);
3676
3677         /*
3678          * On PORT_A we can have only eDP in SST mode. There the only reason
3679          * we need to set idle transmission mode is to work around a HW issue
3680          * where we enable the pipe while not in idle link-training mode.
3681          * In this case there is requirement to wait for a minimum number of
3682          * idle patterns to be sent.
3683          */
3684         if (port == PORT_A)
3685                 return;
3686
3687         if (wait_for((I915_READ(DP_TP_STATUS(port)) & DP_TP_STATUS_IDLE_DONE),
3688                      1))
3689                 DRM_ERROR("Timed out waiting for DP idle patterns\n");
3690 }
3691
3692 /* Enable corresponding port and start training pattern 1 */
3693 static void
3694 intel_dp_link_training_clock_recovery(struct intel_dp *intel_dp)
3695 {
3696         struct drm_encoder *encoder = &dp_to_dig_port(intel_dp)->base.base;
3697         struct drm_device *dev = encoder->dev;
3698         int i;
3699         uint8_t voltage;
3700         int voltage_tries, loop_tries;
3701         uint32_t DP = intel_dp->DP;
3702         uint8_t link_config[2];
3703         uint8_t link_bw, rate_select;
3704
3705         if (HAS_DDI(dev))
3706                 intel_ddi_prepare_link_retrain(encoder);
3707
3708         intel_dp_compute_rate(intel_dp, intel_dp->link_rate,
3709                               &link_bw, &rate_select);
3710
3711         /* Write the link configuration data */
3712         link_config[0] = link_bw;
3713         link_config[1] = intel_dp->lane_count;
3714         if (drm_dp_enhanced_frame_cap(intel_dp->dpcd))
3715                 link_config[1] |= DP_LANE_COUNT_ENHANCED_FRAME_EN;
3716         drm_dp_dpcd_write(&intel_dp->aux, DP_LINK_BW_SET, link_config, 2);
3717         if (intel_dp->num_sink_rates)
3718                 drm_dp_dpcd_write(&intel_dp->aux, DP_LINK_RATE_SET,
3719                                   &rate_select, 1);
3720
3721         link_config[0] = 0;
3722         link_config[1] = DP_SET_ANSI_8B10B;
3723         drm_dp_dpcd_write(&intel_dp->aux, DP_DOWNSPREAD_CTRL, link_config, 2);
3724
3725         DP |= DP_PORT_EN;
3726
3727         /* clock recovery */
3728         if (!intel_dp_reset_link_train(intel_dp, &DP,
3729                                        DP_TRAINING_PATTERN_1 |
3730                                        DP_LINK_SCRAMBLING_DISABLE)) {
3731                 DRM_ERROR("failed to enable link training\n");
3732                 return;
3733         }
3734
3735         voltage = 0xff;
3736         voltage_tries = 0;
3737         loop_tries = 0;
3738         for (;;) {
3739                 uint8_t link_status[DP_LINK_STATUS_SIZE];
3740
3741                 drm_dp_link_train_clock_recovery_delay(intel_dp->dpcd);
3742                 if (!intel_dp_get_link_status(intel_dp, link_status)) {
3743                         DRM_ERROR("failed to get link status\n");
3744                         break;
3745                 }
3746
3747                 if (drm_dp_clock_recovery_ok(link_status, intel_dp->lane_count)) {
3748                         DRM_DEBUG_KMS("clock recovery OK\n");
3749                         break;
3750                 }
3751
3752                 /*
3753                  * if we used previously trained voltage and pre-emphasis values
3754                  * and we don't get clock recovery, reset link training values
3755                  */
3756                 if (intel_dp->train_set_valid) {
3757                         DRM_DEBUG_KMS("clock recovery not ok, reset");
3758                         /* clear the flag as we are not reusing train set */
3759                         intel_dp->train_set_valid = false;
3760                         if (!intel_dp_reset_link_train(intel_dp, &DP,
3761                                                        DP_TRAINING_PATTERN_1 |
3762                                                        DP_LINK_SCRAMBLING_DISABLE)) {
3763                                 DRM_ERROR("failed to enable link training\n");
3764                                 return;
3765                         }
3766                         continue;
3767                 }
3768
3769                 /* Check to see if we've tried the max voltage */
3770                 for (i = 0; i < intel_dp->lane_count; i++)
3771                         if ((intel_dp->train_set[i] & DP_TRAIN_MAX_SWING_REACHED) == 0)
3772                                 break;
3773                 if (i == intel_dp->lane_count) {
3774                         ++loop_tries;
3775                         if (loop_tries == 5) {
3776                                 DRM_ERROR("too many full retries, give up\n");
3777                                 break;
3778                         }
3779                         intel_dp_reset_link_train(intel_dp, &DP,
3780                                                   DP_TRAINING_PATTERN_1 |
3781                                                   DP_LINK_SCRAMBLING_DISABLE);
3782                         voltage_tries = 0;
3783                         continue;
3784                 }
3785
3786                 /* Check to see if we've tried the same voltage 5 times */
3787                 if ((intel_dp->train_set[0] & DP_TRAIN_VOLTAGE_SWING_MASK) == voltage) {
3788                         ++voltage_tries;
3789                         if (voltage_tries == 5) {
3790                                 DRM_ERROR("too many voltage retries, give up\n");
3791                                 break;
3792                         }
3793                 } else
3794                         voltage_tries = 0;
3795                 voltage = intel_dp->train_set[0] & DP_TRAIN_VOLTAGE_SWING_MASK;
3796
3797                 /* Update training set as requested by target */
3798                 if (!intel_dp_update_link_train(intel_dp, &DP, link_status)) {
3799                         DRM_ERROR("failed to update link training\n");
3800                         break;
3801                 }
3802         }
3803
3804         intel_dp->DP = DP;
3805 }
3806
3807 static void
3808 intel_dp_link_training_channel_equalization(struct intel_dp *intel_dp)
3809 {
3810         struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
3811         struct drm_device *dev = dig_port->base.base.dev;
3812         bool channel_eq = false;
3813         int tries, cr_tries;
3814         uint32_t DP = intel_dp->DP;
3815         uint32_t training_pattern = DP_TRAINING_PATTERN_2;
3816
3817         /*
3818          * Training Pattern 3 for HBR2 or 1.2 devices that support it.
3819          *
3820          * Intel platforms that support HBR2 also support TPS3. TPS3 support is
3821          * also mandatory for downstream devices that support HBR2.
3822          *
3823          * Due to WaDisableHBR2 SKL < B0 is the only exception where TPS3 is
3824          * supported but still not enabled.
3825          */
3826         if (intel_dp_source_supports_hbr2(dev) &&
3827             drm_dp_tps3_supported(intel_dp->dpcd))
3828                 training_pattern = DP_TRAINING_PATTERN_3;
3829         else if (intel_dp->link_rate == 540000)
3830                 DRM_ERROR("5.4 Gbps link rate without HBR2/TPS3 support\n");
3831
3832         /* channel equalization */
3833         if (!intel_dp_set_link_train(intel_dp, &DP,
3834                                      training_pattern |
3835                                      DP_LINK_SCRAMBLING_DISABLE)) {
3836                 DRM_ERROR("failed to start channel equalization\n");
3837                 return;
3838         }
3839
3840         tries = 0;
3841         cr_tries = 0;
3842         channel_eq = false;
3843         for (;;) {
3844                 uint8_t link_status[DP_LINK_STATUS_SIZE];
3845
3846                 if (cr_tries > 5) {
3847                         DRM_ERROR("failed to train DP, aborting\n");
3848                         break;
3849                 }
3850
3851                 drm_dp_link_train_channel_eq_delay(intel_dp->dpcd);
3852                 if (!intel_dp_get_link_status(intel_dp, link_status)) {
3853                         DRM_ERROR("failed to get link status\n");
3854                         break;
3855                 }
3856
3857                 /* Make sure clock is still ok */
3858                 if (!drm_dp_clock_recovery_ok(link_status,
3859                                               intel_dp->lane_count)) {
3860                         intel_dp->train_set_valid = false;
3861                         intel_dp_link_training_clock_recovery(intel_dp);
3862                         intel_dp_set_link_train(intel_dp, &DP,
3863                                                 training_pattern |
3864                                                 DP_LINK_SCRAMBLING_DISABLE);
3865                         cr_tries++;
3866                         continue;
3867                 }
3868
3869                 if (drm_dp_channel_eq_ok(link_status,
3870                                          intel_dp->lane_count)) {
3871                         channel_eq = true;
3872                         break;
3873                 }
3874
3875                 /* Try 5 times, then try clock recovery if that fails */
3876                 if (tries > 5) {
3877                         intel_dp->train_set_valid = false;
3878                         intel_dp_link_training_clock_recovery(intel_dp);
3879                         intel_dp_set_link_train(intel_dp, &DP,
3880                                                 training_pattern |
3881                                                 DP_LINK_SCRAMBLING_DISABLE);
3882                         tries = 0;
3883                         cr_tries++;
3884                         continue;
3885                 }
3886
3887                 /* Update training set as requested by target */
3888                 if (!intel_dp_update_link_train(intel_dp, &DP, link_status)) {
3889                         DRM_ERROR("failed to update link training\n");
3890                         break;
3891                 }
3892                 ++tries;
3893         }
3894
3895         intel_dp_set_idle_link_train(intel_dp);
3896
3897         intel_dp->DP = DP;
3898
3899         if (channel_eq) {
3900                 intel_dp->train_set_valid = true;
3901                 DRM_DEBUG_KMS("Channel EQ done. DP Training successful\n");
3902         }
3903 }
3904
3905 void intel_dp_stop_link_train(struct intel_dp *intel_dp)
3906 {
3907         intel_dp_set_link_train(intel_dp, &intel_dp->DP,
3908                                 DP_TRAINING_PATTERN_DISABLE);
3909 }
3910
3911 void
3912 intel_dp_start_link_train(struct intel_dp *intel_dp)
3913 {
3914         intel_dp_link_training_clock_recovery(intel_dp);
3915         intel_dp_link_training_channel_equalization(intel_dp);
3916 }
3917
3918 static void
3919 intel_dp_link_down(struct intel_dp *intel_dp)
3920 {
3921         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
3922         struct intel_crtc *crtc = to_intel_crtc(intel_dig_port->base.base.crtc);
3923         enum port port = intel_dig_port->port;
3924         struct drm_device *dev = intel_dig_port->base.base.dev;
3925         struct drm_i915_private *dev_priv = dev->dev_private;
3926         uint32_t DP = intel_dp->DP;
3927
3928         if (WARN_ON(HAS_DDI(dev)))
3929                 return;
3930
3931         if (WARN_ON((I915_READ(intel_dp->output_reg) & DP_PORT_EN) == 0))
3932                 return;
3933
3934         DRM_DEBUG_KMS("\n");
3935
3936         if ((IS_GEN7(dev) && port == PORT_A) ||
3937             (HAS_PCH_CPT(dev) && port != PORT_A)) {
3938                 DP &= ~DP_LINK_TRAIN_MASK_CPT;
3939                 DP |= DP_LINK_TRAIN_PAT_IDLE_CPT;
3940         } else {
3941                 if (IS_CHERRYVIEW(dev))
3942                         DP &= ~DP_LINK_TRAIN_MASK_CHV;
3943                 else
3944                         DP &= ~DP_LINK_TRAIN_MASK;
3945                 DP |= DP_LINK_TRAIN_PAT_IDLE;
3946         }
3947         I915_WRITE(intel_dp->output_reg, DP);
3948         POSTING_READ(intel_dp->output_reg);
3949
3950         DP &= ~(DP_PORT_EN | DP_AUDIO_OUTPUT_ENABLE);
3951         I915_WRITE(intel_dp->output_reg, DP);
3952         POSTING_READ(intel_dp->output_reg);
3953
3954         /*
3955          * HW workaround for IBX, we need to move the port
3956          * to transcoder A after disabling it to allow the
3957          * matching HDMI port to be enabled on transcoder A.
3958          */
3959         if (HAS_PCH_IBX(dev) && crtc->pipe == PIPE_B && port != PORT_A) {
3960                 /* always enable with pattern 1 (as per spec) */
3961                 DP &= ~(DP_PIPEB_SELECT | DP_LINK_TRAIN_MASK);
3962                 DP |= DP_PORT_EN | DP_LINK_TRAIN_PAT_1;
3963                 I915_WRITE(intel_dp->output_reg, DP);
3964                 POSTING_READ(intel_dp->output_reg);
3965
3966                 DP &= ~DP_PORT_EN;
3967                 I915_WRITE(intel_dp->output_reg, DP);
3968                 POSTING_READ(intel_dp->output_reg);
3969         }
3970
3971         msleep(intel_dp->panel_power_down_delay);
3972 }
3973
3974 static bool
3975 intel_dp_get_dpcd(struct intel_dp *intel_dp)
3976 {
3977         struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
3978         struct drm_device *dev = dig_port->base.base.dev;
3979         struct drm_i915_private *dev_priv = dev->dev_private;
3980         uint8_t rev;
3981
3982         if (intel_dp_dpcd_read_wake(&intel_dp->aux, 0x000, intel_dp->dpcd,
3983                                     sizeof(intel_dp->dpcd)) < 0)
3984                 return false; /* aux transfer failed */
3985
3986         DRM_DEBUG_KMS("DPCD: %*ph\n", (int) sizeof(intel_dp->dpcd), intel_dp->dpcd);
3987
3988         if (intel_dp->dpcd[DP_DPCD_REV] == 0)
3989                 return false; /* DPCD not present */
3990
3991         /* Check if the panel supports PSR */
3992         memset(intel_dp->psr_dpcd, 0, sizeof(intel_dp->psr_dpcd));
3993         if (is_edp(intel_dp)) {
3994                 intel_dp_dpcd_read_wake(&intel_dp->aux, DP_PSR_SUPPORT,
3995                                         intel_dp->psr_dpcd,
3996                                         sizeof(intel_dp->psr_dpcd));
3997                 if (intel_dp->psr_dpcd[0] & DP_PSR_IS_SUPPORTED) {
3998                         dev_priv->psr.sink_support = true;
3999                         DRM_DEBUG_KMS("Detected EDP PSR Panel.\n");
4000                 }
4001
4002                 if (INTEL_INFO(dev)->gen >= 9 &&
4003                         (intel_dp->psr_dpcd[0] & DP_PSR2_IS_SUPPORTED)) {
4004                         uint8_t frame_sync_cap;
4005
4006                         dev_priv->psr.sink_support = true;
4007                         intel_dp_dpcd_read_wake(&intel_dp->aux,
4008                                         DP_SINK_DEVICE_AUX_FRAME_SYNC_CAP,
4009                                         &frame_sync_cap, 1);
4010                         dev_priv->psr.aux_frame_sync = frame_sync_cap ? true : false;
4011                         /* PSR2 needs frame sync as well */
4012                         dev_priv->psr.psr2_support = dev_priv->psr.aux_frame_sync;
4013                         DRM_DEBUG_KMS("PSR2 %s on sink",
4014                                 dev_priv->psr.psr2_support ? "supported" : "not supported");
4015                 }
4016         }
4017
4018         DRM_DEBUG_KMS("Display Port TPS3 support: source %s, sink %s\n",
4019                       yesno(intel_dp_source_supports_hbr2(dev)),
4020                       yesno(drm_dp_tps3_supported(intel_dp->dpcd)));
4021
4022         /* Intermediate frequency support */
4023         if (is_edp(intel_dp) &&
4024             (intel_dp->dpcd[DP_EDP_CONFIGURATION_CAP] & DP_DPCD_DISPLAY_CONTROL_CAPABLE) &&
4025             (intel_dp_dpcd_read_wake(&intel_dp->aux, DP_EDP_DPCD_REV, &rev, 1) == 1) &&
4026             (rev >= 0x03)) { /* eDp v1.4 or higher */
4027                 __le16 sink_rates[DP_MAX_SUPPORTED_RATES];
4028                 int i;
4029
4030                 intel_dp_dpcd_read_wake(&intel_dp->aux,
4031                                 DP_SUPPORTED_LINK_RATES,
4032                                 sink_rates,
4033                                 sizeof(sink_rates));
4034
4035                 for (i = 0; i < ARRAY_SIZE(sink_rates); i++) {
4036                         int val = le16_to_cpu(sink_rates[i]);
4037
4038                         if (val == 0)
4039                                 break;
4040
4041                         /* Value read is in kHz while drm clock is saved in deca-kHz */
4042                         intel_dp->sink_rates[i] = (val * 200) / 10;
4043                 }
4044                 intel_dp->num_sink_rates = i;
4045         }
4046
4047         intel_dp_print_rates(intel_dp);
4048
4049         if (!(intel_dp->dpcd[DP_DOWNSTREAMPORT_PRESENT] &
4050               DP_DWN_STRM_PORT_PRESENT))
4051                 return true; /* native DP sink */
4052
4053         if (intel_dp->dpcd[DP_DPCD_REV] == 0x10)
4054                 return true; /* no per-port downstream info */
4055
4056         if (intel_dp_dpcd_read_wake(&intel_dp->aux, DP_DOWNSTREAM_PORT_0,
4057                                     intel_dp->downstream_ports,
4058                                     DP_MAX_DOWNSTREAM_PORTS) < 0)
4059                 return false; /* downstream port status fetch failed */
4060
4061         return true;
4062 }
4063
4064 static void
4065 intel_dp_probe_oui(struct intel_dp *intel_dp)
4066 {
4067         u8 buf[3];
4068
4069         if (!(intel_dp->dpcd[DP_DOWN_STREAM_PORT_COUNT] & DP_OUI_SUPPORT))
4070                 return;
4071
4072         if (intel_dp_dpcd_read_wake(&intel_dp->aux, DP_SINK_OUI, buf, 3) == 3)
4073                 DRM_DEBUG_KMS("Sink OUI: %02hx%02hx%02hx\n",
4074                               buf[0], buf[1], buf[2]);
4075
4076         if (intel_dp_dpcd_read_wake(&intel_dp->aux, DP_BRANCH_OUI, buf, 3) == 3)
4077                 DRM_DEBUG_KMS("Branch OUI: %02hx%02hx%02hx\n",
4078                               buf[0], buf[1], buf[2]);
4079 }
4080
4081 static bool
4082 intel_dp_probe_mst(struct intel_dp *intel_dp)
4083 {
4084         u8 buf[1];
4085
4086         if (!intel_dp->can_mst)
4087                 return false;
4088
4089         if (intel_dp->dpcd[DP_DPCD_REV] < 0x12)
4090                 return false;
4091
4092         if (intel_dp_dpcd_read_wake(&intel_dp->aux, DP_MSTM_CAP, buf, 1)) {
4093                 if (buf[0] & DP_MST_CAP) {
4094                         DRM_DEBUG_KMS("Sink is MST capable\n");
4095                         intel_dp->is_mst = true;
4096                 } else {
4097                         DRM_DEBUG_KMS("Sink is not MST capable\n");
4098                         intel_dp->is_mst = false;
4099                 }
4100         }
4101
4102         drm_dp_mst_topology_mgr_set_mst(&intel_dp->mst_mgr, intel_dp->is_mst);
4103         return intel_dp->is_mst;
4104 }
4105
4106 static int intel_dp_sink_crc_stop(struct intel_dp *intel_dp)
4107 {
4108         struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
4109         struct intel_crtc *intel_crtc = to_intel_crtc(dig_port->base.base.crtc);
4110         u8 buf;
4111         int ret = 0;
4112
4113         if (drm_dp_dpcd_readb(&intel_dp->aux, DP_TEST_SINK, &buf) < 0) {
4114                 DRM_DEBUG_KMS("Sink CRC couldn't be stopped properly\n");
4115                 ret = -EIO;
4116                 goto out;
4117         }
4118
4119         if (drm_dp_dpcd_writeb(&intel_dp->aux, DP_TEST_SINK,
4120                                buf & ~DP_TEST_SINK_START) < 0) {
4121                 DRM_DEBUG_KMS("Sink CRC couldn't be stopped properly\n");
4122                 ret = -EIO;
4123                 goto out;
4124         }
4125
4126         intel_dp->sink_crc.started = false;
4127  out:
4128         hsw_enable_ips(intel_crtc);
4129         return ret;
4130 }
4131
4132 static int intel_dp_sink_crc_start(struct intel_dp *intel_dp)
4133 {
4134         struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
4135         struct intel_crtc *intel_crtc = to_intel_crtc(dig_port->base.base.crtc);
4136         u8 buf;
4137         int ret;
4138
4139         if (intel_dp->sink_crc.started) {
4140                 ret = intel_dp_sink_crc_stop(intel_dp);
4141                 if (ret)
4142                         return ret;
4143         }
4144
4145         if (drm_dp_dpcd_readb(&intel_dp->aux, DP_TEST_SINK_MISC, &buf) < 0)
4146                 return -EIO;
4147
4148         if (!(buf & DP_TEST_CRC_SUPPORTED))
4149                 return -ENOTTY;
4150
4151         intel_dp->sink_crc.last_count = buf & DP_TEST_COUNT_MASK;
4152
4153         if (drm_dp_dpcd_readb(&intel_dp->aux, DP_TEST_SINK, &buf) < 0)
4154                 return -EIO;
4155
4156         hsw_disable_ips(intel_crtc);
4157
4158         if (drm_dp_dpcd_writeb(&intel_dp->aux, DP_TEST_SINK,
4159                                buf | DP_TEST_SINK_START) < 0) {
4160                 hsw_enable_ips(intel_crtc);
4161                 return -EIO;
4162         }
4163
4164         intel_dp->sink_crc.started = true;
4165         return 0;
4166 }
4167
4168 int intel_dp_sink_crc(struct intel_dp *intel_dp, u8 *crc)
4169 {
4170         struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
4171         struct drm_device *dev = dig_port->base.base.dev;
4172         struct intel_crtc *intel_crtc = to_intel_crtc(dig_port->base.base.crtc);
4173         u8 buf;
4174         int count, ret;
4175         int attempts = 6;
4176         bool old_equal_new;
4177
4178         ret = intel_dp_sink_crc_start(intel_dp);
4179         if (ret)
4180                 return ret;
4181
4182         do {
4183                 intel_wait_for_vblank(dev, intel_crtc->pipe);
4184
4185                 if (drm_dp_dpcd_readb(&intel_dp->aux,
4186                                       DP_TEST_SINK_MISC, &buf) < 0) {
4187                         ret = -EIO;
4188                         goto stop;
4189                 }
4190                 count = buf & DP_TEST_COUNT_MASK;
4191
4192                 /*
4193                  * Count might be reset during the loop. In this case
4194                  * last known count needs to be reset as well.
4195                  */
4196                 if (count == 0)
4197                         intel_dp->sink_crc.last_count = 0;
4198
4199                 if (drm_dp_dpcd_read(&intel_dp->aux, DP_TEST_CRC_R_CR, crc, 6) < 0) {
4200                         ret = -EIO;
4201                         goto stop;
4202                 }
4203
4204                 old_equal_new = (count == intel_dp->sink_crc.last_count &&
4205                                  !memcmp(intel_dp->sink_crc.last_crc, crc,
4206                                          6 * sizeof(u8)));
4207
4208         } while (--attempts && (count == 0 || old_equal_new));
4209
4210         intel_dp->sink_crc.last_count = buf & DP_TEST_COUNT_MASK;
4211         memcpy(intel_dp->sink_crc.last_crc, crc, 6 * sizeof(u8));
4212
4213         if (attempts == 0) {
4214                 if (old_equal_new) {
4215                         DRM_DEBUG_KMS("Unreliable Sink CRC counter: Current returned CRC is identical to the previous one\n");
4216                 } else {
4217                         DRM_ERROR("Panel is unable to calculate any CRC after 6 vblanks\n");
4218                         ret = -ETIMEDOUT;
4219                         goto stop;
4220                 }
4221         }
4222
4223 stop:
4224         intel_dp_sink_crc_stop(intel_dp);
4225         return ret;
4226 }
4227
4228 static bool
4229 intel_dp_get_sink_irq(struct intel_dp *intel_dp, u8 *sink_irq_vector)
4230 {
4231         return intel_dp_dpcd_read_wake(&intel_dp->aux,
4232                                        DP_DEVICE_SERVICE_IRQ_VECTOR,
4233                                        sink_irq_vector, 1) == 1;
4234 }
4235
4236 static bool
4237 intel_dp_get_sink_irq_esi(struct intel_dp *intel_dp, u8 *sink_irq_vector)
4238 {
4239         int ret;
4240
4241         ret = intel_dp_dpcd_read_wake(&intel_dp->aux,
4242                                              DP_SINK_COUNT_ESI,
4243                                              sink_irq_vector, 14);
4244         if (ret != 14)
4245                 return false;
4246
4247         return true;
4248 }
4249
4250 static uint8_t intel_dp_autotest_link_training(struct intel_dp *intel_dp)
4251 {
4252         uint8_t test_result = DP_TEST_ACK;
4253         return test_result;
4254 }
4255
4256 static uint8_t intel_dp_autotest_video_pattern(struct intel_dp *intel_dp)
4257 {
4258         uint8_t test_result = DP_TEST_NAK;
4259         return test_result;
4260 }
4261
4262 static uint8_t intel_dp_autotest_edid(struct intel_dp *intel_dp)
4263 {
4264         uint8_t test_result = DP_TEST_NAK;
4265         struct intel_connector *intel_connector = intel_dp->attached_connector;
4266         struct drm_connector *connector = &intel_connector->base;
4267
4268         if (intel_connector->detect_edid == NULL ||
4269             connector->edid_corrupt ||
4270             intel_dp->aux.i2c_defer_count > 6) {
4271                 /* Check EDID read for NACKs, DEFERs and corruption
4272                  * (DP CTS 1.2 Core r1.1)
4273                  *    4.2.2.4 : Failed EDID read, I2C_NAK
4274                  *    4.2.2.5 : Failed EDID read, I2C_DEFER
4275                  *    4.2.2.6 : EDID corruption detected
4276                  * Use failsafe mode for all cases
4277                  */
4278                 if (intel_dp->aux.i2c_nack_count > 0 ||
4279                         intel_dp->aux.i2c_defer_count > 0)
4280                         DRM_DEBUG_KMS("EDID read had %d NACKs, %d DEFERs\n",
4281                                       intel_dp->aux.i2c_nack_count,
4282                                       intel_dp->aux.i2c_defer_count);
4283                 intel_dp->compliance_test_data = INTEL_DP_RESOLUTION_FAILSAFE;
4284         } else {
4285                 struct edid *block = intel_connector->detect_edid;
4286
4287                 /* We have to write the checksum
4288                  * of the last block read
4289                  */
4290                 block += intel_connector->detect_edid->extensions;
4291
4292                 if (!drm_dp_dpcd_write(&intel_dp->aux,
4293                                         DP_TEST_EDID_CHECKSUM,
4294                                         &block->checksum,
4295                                         1))
4296                         DRM_DEBUG_KMS("Failed to write EDID checksum\n");
4297
4298                 test_result = DP_TEST_ACK | DP_TEST_EDID_CHECKSUM_WRITE;
4299                 intel_dp->compliance_test_data = INTEL_DP_RESOLUTION_STANDARD;
4300         }
4301
4302         /* Set test active flag here so userspace doesn't interrupt things */
4303         intel_dp->compliance_test_active = 1;
4304
4305         return test_result;
4306 }
4307
4308 static uint8_t intel_dp_autotest_phy_pattern(struct intel_dp *intel_dp)
4309 {
4310         uint8_t test_result = DP_TEST_NAK;
4311         return test_result;
4312 }
4313
4314 static void intel_dp_handle_test_request(struct intel_dp *intel_dp)
4315 {
4316         uint8_t response = DP_TEST_NAK;
4317         uint8_t rxdata = 0;
4318         int status = 0;
4319
4320         intel_dp->compliance_test_active = 0;
4321         intel_dp->compliance_test_type = 0;
4322         intel_dp->compliance_test_data = 0;
4323
4324         intel_dp->aux.i2c_nack_count = 0;
4325         intel_dp->aux.i2c_defer_count = 0;
4326
4327         status = drm_dp_dpcd_read(&intel_dp->aux, DP_TEST_REQUEST, &rxdata, 1);
4328         if (status <= 0) {
4329                 DRM_DEBUG_KMS("Could not read test request from sink\n");
4330                 goto update_status;
4331         }
4332
4333         switch (rxdata) {
4334         case DP_TEST_LINK_TRAINING:
4335                 DRM_DEBUG_KMS("LINK_TRAINING test requested\n");
4336                 intel_dp->compliance_test_type = DP_TEST_LINK_TRAINING;
4337                 response = intel_dp_autotest_link_training(intel_dp);
4338                 break;
4339         case DP_TEST_LINK_VIDEO_PATTERN:
4340                 DRM_DEBUG_KMS("TEST_PATTERN test requested\n");
4341                 intel_dp->compliance_test_type = DP_TEST_LINK_VIDEO_PATTERN;
4342                 response = intel_dp_autotest_video_pattern(intel_dp);
4343                 break;
4344         case DP_TEST_LINK_EDID_READ:
4345                 DRM_DEBUG_KMS("EDID test requested\n");
4346                 intel_dp->compliance_test_type = DP_TEST_LINK_EDID_READ;
4347                 response = intel_dp_autotest_edid(intel_dp);
4348                 break;
4349         case DP_TEST_LINK_PHY_TEST_PATTERN:
4350                 DRM_DEBUG_KMS("PHY_PATTERN test requested\n");
4351                 intel_dp->compliance_test_type = DP_TEST_LINK_PHY_TEST_PATTERN;
4352                 response = intel_dp_autotest_phy_pattern(intel_dp);
4353                 break;
4354         default:
4355                 DRM_DEBUG_KMS("Invalid test request '%02x'\n", rxdata);
4356                 break;
4357         }
4358
4359 update_status:
4360         status = drm_dp_dpcd_write(&intel_dp->aux,
4361                                    DP_TEST_RESPONSE,
4362                                    &response, 1);
4363         if (status <= 0)
4364                 DRM_DEBUG_KMS("Could not write test response to sink\n");
4365 }
4366
4367 static int
4368 intel_dp_check_mst_status(struct intel_dp *intel_dp)
4369 {
4370         bool bret;
4371
4372         if (intel_dp->is_mst) {
4373                 u8 esi[16] = { 0 };
4374                 int ret = 0;
4375                 int retry;
4376                 bool handled;
4377                 bret = intel_dp_get_sink_irq_esi(intel_dp, esi);
4378 go_again:
4379                 if (bret == true) {
4380
4381                         /* check link status - esi[10] = 0x200c */
4382                         if (intel_dp->active_mst_links &&
4383                             !drm_dp_channel_eq_ok(&esi[10], intel_dp->lane_count)) {
4384                                 DRM_DEBUG_KMS("channel EQ not ok, retraining\n");
4385                                 intel_dp_start_link_train(intel_dp);
4386                                 intel_dp_stop_link_train(intel_dp);
4387                         }
4388
4389                         DRM_DEBUG_KMS("got esi %3ph\n", esi);
4390                         ret = drm_dp_mst_hpd_irq(&intel_dp->mst_mgr, esi, &handled);
4391
4392                         if (handled) {
4393                                 for (retry = 0; retry < 3; retry++) {
4394                                         int wret;
4395                                         wret = drm_dp_dpcd_write(&intel_dp->aux,
4396                                                                  DP_SINK_COUNT_ESI+1,
4397                                                                  &esi[1], 3);
4398                                         if (wret == 3) {
4399                                                 break;
4400                                         }
4401                                 }
4402
4403                                 bret = intel_dp_get_sink_irq_esi(intel_dp, esi);
4404                                 if (bret == true) {
4405                                         DRM_DEBUG_KMS("got esi2 %3ph\n", esi);
4406                                         goto go_again;
4407                                 }
4408                         } else
4409                                 ret = 0;
4410
4411                         return ret;
4412                 } else {
4413                         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
4414                         DRM_DEBUG_KMS("failed to get ESI - device may have failed\n");
4415                         intel_dp->is_mst = false;
4416                         drm_dp_mst_topology_mgr_set_mst(&intel_dp->mst_mgr, intel_dp->is_mst);
4417                         /* send a hotplug event */
4418                         drm_kms_helper_hotplug_event(intel_dig_port->base.base.dev);
4419                 }
4420         }
4421         return -EINVAL;
4422 }
4423
4424 /*
4425  * According to DP spec
4426  * 5.1.2:
4427  *  1. Read DPCD
4428  *  2. Configure link according to Receiver Capabilities
4429  *  3. Use Link Training from 2.5.3.3 and 3.5.1.3
4430  *  4. Check link status on receipt of hot-plug interrupt
4431  */
4432 static void
4433 intel_dp_check_link_status(struct intel_dp *intel_dp)
4434 {
4435         struct drm_device *dev = intel_dp_to_dev(intel_dp);
4436         struct intel_encoder *intel_encoder = &dp_to_dig_port(intel_dp)->base;
4437         u8 sink_irq_vector;
4438         u8 link_status[DP_LINK_STATUS_SIZE];
4439
4440         WARN_ON(!drm_modeset_is_locked(&dev->mode_config.connection_mutex));
4441
4442         if (!intel_encoder->base.crtc)
4443                 return;
4444
4445         if (!to_intel_crtc(intel_encoder->base.crtc)->active)
4446                 return;
4447
4448         /* Try to read receiver status if the link appears to be up */
4449         if (!intel_dp_get_link_status(intel_dp, link_status)) {
4450                 return;
4451         }
4452
4453         /* Now read the DPCD to see if it's actually running */
4454         if (!intel_dp_get_dpcd(intel_dp)) {
4455                 return;
4456         }
4457
4458         /* Try to read the source of the interrupt */
4459         if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11 &&
4460             intel_dp_get_sink_irq(intel_dp, &sink_irq_vector)) {
4461                 /* Clear interrupt source */
4462                 drm_dp_dpcd_writeb(&intel_dp->aux,
4463                                    DP_DEVICE_SERVICE_IRQ_VECTOR,
4464                                    sink_irq_vector);
4465
4466                 if (sink_irq_vector & DP_AUTOMATED_TEST_REQUEST)
4467                         DRM_DEBUG_DRIVER("Test request in short pulse not handled\n");
4468                 if (sink_irq_vector & (DP_CP_IRQ | DP_SINK_SPECIFIC_IRQ))
4469                         DRM_DEBUG_DRIVER("CP or sink specific irq unhandled\n");
4470         }
4471
4472         if (!drm_dp_channel_eq_ok(link_status, intel_dp->lane_count)) {
4473                 DRM_DEBUG_KMS("%s: channel EQ not ok, retraining\n",
4474                               intel_encoder->base.name);
4475                 intel_dp_start_link_train(intel_dp);
4476                 intel_dp_stop_link_train(intel_dp);
4477         }
4478 }
4479
4480 /* XXX this is probably wrong for multiple downstream ports */
4481 static enum drm_connector_status
4482 intel_dp_detect_dpcd(struct intel_dp *intel_dp)
4483 {
4484         uint8_t *dpcd = intel_dp->dpcd;
4485         uint8_t type;
4486
4487         if (!intel_dp_get_dpcd(intel_dp))
4488                 return connector_status_disconnected;
4489
4490         /* if there's no downstream port, we're done */
4491         if (!(dpcd[DP_DOWNSTREAMPORT_PRESENT] & DP_DWN_STRM_PORT_PRESENT))
4492                 return connector_status_connected;
4493
4494         /* If we're HPD-aware, SINK_COUNT changes dynamically */
4495         if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11 &&
4496             intel_dp->downstream_ports[0] & DP_DS_PORT_HPD) {
4497                 uint8_t reg;
4498
4499                 if (intel_dp_dpcd_read_wake(&intel_dp->aux, DP_SINK_COUNT,
4500                                             &reg, 1) < 0)
4501                         return connector_status_unknown;
4502
4503                 return DP_GET_SINK_COUNT(reg) ? connector_status_connected
4504                                               : connector_status_disconnected;
4505         }
4506
4507         /* If no HPD, poke DDC gently */
4508         if (drm_probe_ddc(&intel_dp->aux.ddc))
4509                 return connector_status_connected;
4510
4511         /* Well we tried, say unknown for unreliable port types */
4512         if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11) {
4513                 type = intel_dp->downstream_ports[0] & DP_DS_PORT_TYPE_MASK;
4514                 if (type == DP_DS_PORT_TYPE_VGA ||
4515                     type == DP_DS_PORT_TYPE_NON_EDID)
4516                         return connector_status_unknown;
4517         } else {
4518                 type = intel_dp->dpcd[DP_DOWNSTREAMPORT_PRESENT] &
4519                         DP_DWN_STRM_PORT_TYPE_MASK;
4520                 if (type == DP_DWN_STRM_PORT_TYPE_ANALOG ||
4521                     type == DP_DWN_STRM_PORT_TYPE_OTHER)
4522                         return connector_status_unknown;
4523         }
4524
4525         /* Anything else is out of spec, warn and ignore */
4526         DRM_DEBUG_KMS("Broken DP branch device, ignoring\n");
4527         return connector_status_disconnected;
4528 }
4529
4530 static enum drm_connector_status
4531 edp_detect(struct intel_dp *intel_dp)
4532 {
4533         struct drm_device *dev = intel_dp_to_dev(intel_dp);
4534         enum drm_connector_status status;
4535
4536         status = intel_panel_detect(dev);
4537         if (status == connector_status_unknown)
4538                 status = connector_status_connected;
4539
4540         return status;
4541 }
4542
4543 static bool ibx_digital_port_connected(struct drm_i915_private *dev_priv,
4544                                        struct intel_digital_port *port)
4545 {
4546         u32 bit;
4547
4548         switch (port->port) {
4549         case PORT_A:
4550                 return true;
4551         case PORT_B:
4552                 bit = SDE_PORTB_HOTPLUG;
4553                 break;
4554         case PORT_C:
4555                 bit = SDE_PORTC_HOTPLUG;
4556                 break;
4557         case PORT_D:
4558                 bit = SDE_PORTD_HOTPLUG;
4559                 break;
4560         default:
4561                 MISSING_CASE(port->port);
4562                 return false;
4563         }
4564
4565         return I915_READ(SDEISR) & bit;
4566 }
4567
4568 static bool cpt_digital_port_connected(struct drm_i915_private *dev_priv,
4569                                        struct intel_digital_port *port)
4570 {
4571         u32 bit;
4572
4573         switch (port->port) {
4574         case PORT_A:
4575                 return true;
4576         case PORT_B:
4577                 bit = SDE_PORTB_HOTPLUG_CPT;
4578                 break;
4579         case PORT_C:
4580                 bit = SDE_PORTC_HOTPLUG_CPT;
4581                 break;
4582         case PORT_D:
4583                 bit = SDE_PORTD_HOTPLUG_CPT;
4584                 break;
4585         case PORT_E:
4586                 bit = SDE_PORTE_HOTPLUG_SPT;
4587                 break;
4588         default:
4589                 MISSING_CASE(port->port);
4590                 return false;
4591         }
4592
4593         return I915_READ(SDEISR) & bit;
4594 }
4595
4596 static bool g4x_digital_port_connected(struct drm_i915_private *dev_priv,
4597                                        struct intel_digital_port *port)
4598 {
4599         u32 bit;
4600
4601         switch (port->port) {
4602         case PORT_B:
4603                 bit = PORTB_HOTPLUG_LIVE_STATUS_G4X;
4604                 break;
4605         case PORT_C:
4606                 bit = PORTC_HOTPLUG_LIVE_STATUS_G4X;
4607                 break;
4608         case PORT_D:
4609                 bit = PORTD_HOTPLUG_LIVE_STATUS_G4X;
4610                 break;
4611         default:
4612                 MISSING_CASE(port->port);
4613                 return false;
4614         }
4615
4616         return I915_READ(PORT_HOTPLUG_STAT) & bit;
4617 }
4618
4619 static bool vlv_digital_port_connected(struct drm_i915_private *dev_priv,
4620                                        struct intel_digital_port *port)
4621 {
4622         u32 bit;
4623
4624         switch (port->port) {
4625         case PORT_B:
4626                 bit = PORTB_HOTPLUG_LIVE_STATUS_VLV;
4627                 break;
4628         case PORT_C:
4629                 bit = PORTC_HOTPLUG_LIVE_STATUS_VLV;
4630                 break;
4631         case PORT_D:
4632                 bit = PORTD_HOTPLUG_LIVE_STATUS_VLV;
4633                 break;
4634         default:
4635                 MISSING_CASE(port->port);
4636                 return false;
4637         }
4638
4639         return I915_READ(PORT_HOTPLUG_STAT) & bit;
4640 }
4641
4642 static bool bxt_digital_port_connected(struct drm_i915_private *dev_priv,
4643                                        struct intel_digital_port *intel_dig_port)
4644 {
4645         struct intel_encoder *intel_encoder = &intel_dig_port->base;
4646         enum port port;
4647         u32 bit;
4648
4649         intel_hpd_pin_to_port(intel_encoder->hpd_pin, &port);
4650         switch (port) {
4651         case PORT_A:
4652                 bit = BXT_DE_PORT_HP_DDIA;
4653                 break;
4654         case PORT_B:
4655                 bit = BXT_DE_PORT_HP_DDIB;
4656                 break;
4657         case PORT_C:
4658                 bit = BXT_DE_PORT_HP_DDIC;
4659                 break;
4660         default:
4661                 MISSING_CASE(port);
4662                 return false;
4663         }
4664
4665         return I915_READ(GEN8_DE_PORT_ISR) & bit;
4666 }
4667
4668 /*
4669  * intel_digital_port_connected - is the specified port connected?
4670  * @dev_priv: i915 private structure
4671  * @port: the port to test
4672  *
4673  * Return %true if @port is connected, %false otherwise.
4674  */
4675 bool intel_digital_port_connected(struct drm_i915_private *dev_priv,
4676                                          struct intel_digital_port *port)
4677 {
4678         if (HAS_PCH_IBX(dev_priv))
4679                 return ibx_digital_port_connected(dev_priv, port);
4680         if (HAS_PCH_SPLIT(dev_priv))
4681                 return cpt_digital_port_connected(dev_priv, port);
4682         else if (IS_BROXTON(dev_priv))
4683                 return bxt_digital_port_connected(dev_priv, port);
4684         else if (IS_VALLEYVIEW(dev_priv))
4685                 return vlv_digital_port_connected(dev_priv, port);
4686         else
4687                 return g4x_digital_port_connected(dev_priv, port);
4688 }
4689
4690 static enum drm_connector_status
4691 ironlake_dp_detect(struct intel_dp *intel_dp)
4692 {
4693         struct drm_device *dev = intel_dp_to_dev(intel_dp);
4694         struct drm_i915_private *dev_priv = dev->dev_private;
4695         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
4696
4697         if (!intel_digital_port_connected(dev_priv, intel_dig_port))
4698                 return connector_status_disconnected;
4699
4700         return intel_dp_detect_dpcd(intel_dp);
4701 }
4702
4703 static enum drm_connector_status
4704 g4x_dp_detect(struct intel_dp *intel_dp)
4705 {
4706         struct drm_device *dev = intel_dp_to_dev(intel_dp);
4707         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
4708
4709         /* Can't disconnect eDP, but you can close the lid... */
4710         if (is_edp(intel_dp)) {
4711                 enum drm_connector_status status;
4712
4713                 status = intel_panel_detect(dev);
4714                 if (status == connector_status_unknown)
4715                         status = connector_status_connected;
4716                 return status;
4717         }
4718
4719         if (!intel_digital_port_connected(dev->dev_private, intel_dig_port))
4720                 return connector_status_disconnected;
4721
4722         return intel_dp_detect_dpcd(intel_dp);
4723 }
4724
4725 static struct edid *
4726 intel_dp_get_edid(struct intel_dp *intel_dp)
4727 {
4728         struct intel_connector *intel_connector = intel_dp->attached_connector;
4729
4730         /* use cached edid if we have one */
4731         if (intel_connector->edid) {
4732                 /* invalid edid */
4733                 if (IS_ERR(intel_connector->edid))
4734                         return NULL;
4735
4736                 return drm_edid_duplicate(intel_connector->edid);
4737         } else
4738                 return drm_get_edid(&intel_connector->base,
4739                                     &intel_dp->aux.ddc);
4740 }
4741
4742 static void
4743 intel_dp_set_edid(struct intel_dp *intel_dp)
4744 {
4745         struct intel_connector *intel_connector = intel_dp->attached_connector;
4746         struct edid *edid;
4747
4748         edid = intel_dp_get_edid(intel_dp);
4749         intel_connector->detect_edid = edid;
4750
4751         if (intel_dp->force_audio != HDMI_AUDIO_AUTO)
4752                 intel_dp->has_audio = intel_dp->force_audio == HDMI_AUDIO_ON;
4753         else
4754                 intel_dp->has_audio = drm_detect_monitor_audio(edid);
4755 }
4756
4757 static void
4758 intel_dp_unset_edid(struct intel_dp *intel_dp)
4759 {
4760         struct intel_connector *intel_connector = intel_dp->attached_connector;
4761
4762         kfree(intel_connector->detect_edid);
4763         intel_connector->detect_edid = NULL;
4764
4765         intel_dp->has_audio = false;
4766 }
4767
4768 static enum intel_display_power_domain
4769 intel_dp_power_get(struct intel_dp *dp)
4770 {
4771         struct intel_encoder *encoder = &dp_to_dig_port(dp)->base;
4772         enum intel_display_power_domain power_domain;
4773
4774         power_domain = intel_display_port_power_domain(encoder);
4775         intel_display_power_get(to_i915(encoder->base.dev), power_domain);
4776
4777         return power_domain;
4778 }
4779
4780 static void
4781 intel_dp_power_put(struct intel_dp *dp,
4782                    enum intel_display_power_domain power_domain)
4783 {
4784         struct intel_encoder *encoder = &dp_to_dig_port(dp)->base;
4785         intel_display_power_put(to_i915(encoder->base.dev), power_domain);
4786 }
4787
4788 static enum drm_connector_status
4789 intel_dp_detect(struct drm_connector *connector, bool force)
4790 {
4791         struct intel_dp *intel_dp = intel_attached_dp(connector);
4792         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
4793         struct intel_encoder *intel_encoder = &intel_dig_port->base;
4794         struct drm_device *dev = connector->dev;
4795         enum drm_connector_status status;
4796         enum intel_display_power_domain power_domain;
4797         bool ret;
4798         u8 sink_irq_vector;
4799
4800         DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n",
4801                       connector->base.id, connector->name);
4802         intel_dp_unset_edid(intel_dp);
4803
4804         if (intel_dp->is_mst) {
4805                 /* MST devices are disconnected from a monitor POV */
4806                 if (intel_encoder->type != INTEL_OUTPUT_EDP)
4807                         intel_encoder->type = INTEL_OUTPUT_DISPLAYPORT;
4808                 return connector_status_disconnected;
4809         }
4810
4811         power_domain = intel_dp_power_get(intel_dp);
4812
4813         /* Can't disconnect eDP, but you can close the lid... */
4814         if (is_edp(intel_dp))
4815                 status = edp_detect(intel_dp);
4816         else if (HAS_PCH_SPLIT(dev))
4817                 status = ironlake_dp_detect(intel_dp);
4818         else
4819                 status = g4x_dp_detect(intel_dp);
4820         if (status != connector_status_connected)
4821                 goto out;
4822
4823         intel_dp_probe_oui(intel_dp);
4824
4825         ret = intel_dp_probe_mst(intel_dp);
4826         if (ret) {
4827                 /* if we are in MST mode then this connector
4828                    won't appear connected or have anything with EDID on it */
4829                 if (intel_encoder->type != INTEL_OUTPUT_EDP)
4830                         intel_encoder->type = INTEL_OUTPUT_DISPLAYPORT;
4831                 status = connector_status_disconnected;
4832                 goto out;
4833         }
4834
4835         intel_dp_set_edid(intel_dp);
4836
4837         if (intel_encoder->type != INTEL_OUTPUT_EDP)
4838                 intel_encoder->type = INTEL_OUTPUT_DISPLAYPORT;
4839         status = connector_status_connected;
4840
4841         /* Try to read the source of the interrupt */
4842         if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11 &&
4843             intel_dp_get_sink_irq(intel_dp, &sink_irq_vector)) {
4844                 /* Clear interrupt source */
4845                 drm_dp_dpcd_writeb(&intel_dp->aux,
4846                                    DP_DEVICE_SERVICE_IRQ_VECTOR,
4847                                    sink_irq_vector);
4848
4849                 if (sink_irq_vector & DP_AUTOMATED_TEST_REQUEST)
4850                         intel_dp_handle_test_request(intel_dp);
4851                 if (sink_irq_vector & (DP_CP_IRQ | DP_SINK_SPECIFIC_IRQ))
4852                         DRM_DEBUG_DRIVER("CP or sink specific irq unhandled\n");
4853         }
4854
4855 out:
4856         intel_dp_power_put(intel_dp, power_domain);
4857         return status;
4858 }
4859
4860 static void
4861 intel_dp_force(struct drm_connector *connector)
4862 {
4863         struct intel_dp *intel_dp = intel_attached_dp(connector);
4864         struct intel_encoder *intel_encoder = &dp_to_dig_port(intel_dp)->base;
4865         enum intel_display_power_domain power_domain;
4866
4867         DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n",
4868                       connector->base.id, connector->name);
4869         intel_dp_unset_edid(intel_dp);
4870
4871         if (connector->status != connector_status_connected)
4872                 return;
4873
4874         power_domain = intel_dp_power_get(intel_dp);
4875
4876         intel_dp_set_edid(intel_dp);
4877
4878         intel_dp_power_put(intel_dp, power_domain);
4879
4880         if (intel_encoder->type != INTEL_OUTPUT_EDP)
4881                 intel_encoder->type = INTEL_OUTPUT_DISPLAYPORT;
4882 }
4883
4884 static int intel_dp_get_modes(struct drm_connector *connector)
4885 {
4886         struct intel_connector *intel_connector = to_intel_connector(connector);
4887         struct edid *edid;
4888
4889         edid = intel_connector->detect_edid;
4890         if (edid) {
4891                 int ret = intel_connector_update_modes(connector, edid);
4892                 if (ret)
4893                         return ret;
4894         }
4895
4896         /* if eDP has no EDID, fall back to fixed mode */
4897         if (is_edp(intel_attached_dp(connector)) &&
4898             intel_connector->panel.fixed_mode) {
4899                 struct drm_display_mode *mode;
4900
4901                 mode = drm_mode_duplicate(connector->dev,
4902                                           intel_connector->panel.fixed_mode);
4903                 if (mode) {
4904                         drm_mode_probed_add(connector, mode);
4905                         return 1;
4906                 }
4907         }
4908
4909         return 0;
4910 }
4911
4912 static bool
4913 intel_dp_detect_audio(struct drm_connector *connector)
4914 {
4915         bool has_audio = false;
4916         struct edid *edid;
4917
4918         edid = to_intel_connector(connector)->detect_edid;
4919         if (edid)
4920                 has_audio = drm_detect_monitor_audio(edid);
4921
4922         return has_audio;
4923 }
4924
4925 static int
4926 intel_dp_set_property(struct drm_connector *connector,
4927                       struct drm_property *property,
4928                       uint64_t val)
4929 {
4930         struct drm_i915_private *dev_priv = connector->dev->dev_private;
4931         struct intel_connector *intel_connector = to_intel_connector(connector);
4932         struct intel_encoder *intel_encoder = intel_attached_encoder(connector);
4933         struct intel_dp *intel_dp = enc_to_intel_dp(&intel_encoder->base);
4934         int ret;
4935
4936         ret = drm_object_property_set_value(&connector->base, property, val);
4937         if (ret)
4938                 return ret;
4939
4940         if (property == dev_priv->force_audio_property) {
4941                 int i = val;
4942                 bool has_audio;
4943
4944                 if (i == intel_dp->force_audio)
4945                         return 0;
4946
4947                 intel_dp->force_audio = i;
4948
4949                 if (i == HDMI_AUDIO_AUTO)
4950                         has_audio = intel_dp_detect_audio(connector);
4951                 else
4952                         has_audio = (i == HDMI_AUDIO_ON);
4953
4954                 if (has_audio == intel_dp->has_audio)
4955                         return 0;
4956
4957                 intel_dp->has_audio = has_audio;
4958                 goto done;
4959         }
4960
4961         if (property == dev_priv->broadcast_rgb_property) {
4962                 bool old_auto = intel_dp->color_range_auto;
4963                 bool old_range = intel_dp->limited_color_range;
4964
4965                 switch (val) {
4966                 case INTEL_BROADCAST_RGB_AUTO:
4967                         intel_dp->color_range_auto = true;
4968                         break;
4969                 case INTEL_BROADCAST_RGB_FULL:
4970                         intel_dp->color_range_auto = false;
4971                         intel_dp->limited_color_range = false;
4972                         break;
4973                 case INTEL_BROADCAST_RGB_LIMITED:
4974                         intel_dp->color_range_auto = false;
4975                         intel_dp->limited_color_range = true;
4976                         break;
4977                 default:
4978                         return -EINVAL;
4979                 }
4980
4981                 if (old_auto == intel_dp->color_range_auto &&
4982                     old_range == intel_dp->limited_color_range)
4983                         return 0;
4984
4985                 goto done;
4986         }
4987
4988         if (is_edp(intel_dp) &&
4989             property == connector->dev->mode_config.scaling_mode_property) {
4990                 if (val == DRM_MODE_SCALE_NONE) {
4991                         DRM_DEBUG_KMS("no scaling not supported\n");
4992                         return -EINVAL;
4993                 }
4994
4995                 if (intel_connector->panel.fitting_mode == val) {
4996                         /* the eDP scaling property is not changed */
4997                         return 0;
4998                 }
4999                 intel_connector->panel.fitting_mode = val;
5000
5001                 goto done;
5002         }
5003
5004         return -EINVAL;
5005
5006 done:
5007         if (intel_encoder->base.crtc)
5008                 intel_crtc_restore_mode(intel_encoder->base.crtc);
5009
5010         return 0;
5011 }
5012
5013 static void
5014 intel_dp_connector_destroy(struct drm_connector *connector)
5015 {
5016         struct intel_connector *intel_connector = to_intel_connector(connector);
5017
5018         kfree(intel_connector->detect_edid);
5019
5020         if (!IS_ERR_OR_NULL(intel_connector->edid))
5021                 kfree(intel_connector->edid);
5022
5023         /* Can't call is_edp() since the encoder may have been destroyed
5024          * already. */
5025         if (connector->connector_type == DRM_MODE_CONNECTOR_eDP)
5026                 intel_panel_fini(&intel_connector->panel);
5027
5028         drm_connector_cleanup(connector);
5029         kfree(connector);
5030 }
5031
5032 void intel_dp_encoder_destroy(struct drm_encoder *encoder)
5033 {
5034         struct intel_digital_port *intel_dig_port = enc_to_dig_port(encoder);
5035         struct intel_dp *intel_dp = &intel_dig_port->dp;
5036
5037         drm_dp_aux_unregister(&intel_dp->aux);
5038         intel_dp_mst_encoder_cleanup(intel_dig_port);
5039         if (is_edp(intel_dp)) {
5040                 cancel_delayed_work_sync(&intel_dp->panel_vdd_work);
5041                 /*
5042                  * vdd might still be enabled do to the delayed vdd off.
5043                  * Make sure vdd is actually turned off here.
5044                  */
5045                 pps_lock(intel_dp);
5046                 edp_panel_vdd_off_sync(intel_dp);
5047                 pps_unlock(intel_dp);
5048
5049                 if (intel_dp->edp_notifier.notifier_call) {
5050                         unregister_reboot_notifier(&intel_dp->edp_notifier);
5051                         intel_dp->edp_notifier.notifier_call = NULL;
5052                 }
5053         }
5054         drm_encoder_cleanup(encoder);
5055         kfree(intel_dig_port);
5056 }
5057
5058 static void intel_dp_encoder_suspend(struct intel_encoder *intel_encoder)
5059 {
5060         struct intel_dp *intel_dp = enc_to_intel_dp(&intel_encoder->base);
5061
5062         if (!is_edp(intel_dp))
5063                 return;
5064
5065         /*
5066          * vdd might still be enabled do to the delayed vdd off.
5067          * Make sure vdd is actually turned off here.
5068          */
5069         cancel_delayed_work_sync(&intel_dp->panel_vdd_work);
5070         pps_lock(intel_dp);
5071         edp_panel_vdd_off_sync(intel_dp);
5072         pps_unlock(intel_dp);
5073 }
5074
5075 static void intel_edp_panel_vdd_sanitize(struct intel_dp *intel_dp)
5076 {
5077         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
5078         struct drm_device *dev = intel_dig_port->base.base.dev;
5079         struct drm_i915_private *dev_priv = dev->dev_private;
5080         enum intel_display_power_domain power_domain;
5081
5082         lockdep_assert_held(&dev_priv->pps_mutex);
5083
5084         if (!edp_have_panel_vdd(intel_dp))
5085                 return;
5086
5087         /*
5088          * The VDD bit needs a power domain reference, so if the bit is
5089          * already enabled when we boot or resume, grab this reference and
5090          * schedule a vdd off, so we don't hold on to the reference
5091          * indefinitely.
5092          */
5093         DRM_DEBUG_KMS("VDD left on by BIOS, adjusting state tracking\n");
5094         power_domain = intel_display_port_power_domain(&intel_dig_port->base);
5095         intel_display_power_get(dev_priv, power_domain);
5096
5097         edp_panel_vdd_schedule_off(intel_dp);
5098 }
5099
5100 static void intel_dp_encoder_reset(struct drm_encoder *encoder)
5101 {
5102         struct intel_dp *intel_dp;
5103
5104         if (to_intel_encoder(encoder)->type != INTEL_OUTPUT_EDP)
5105                 return;
5106
5107         intel_dp = enc_to_intel_dp(encoder);
5108
5109         pps_lock(intel_dp);
5110
5111         /*
5112          * Read out the current power sequencer assignment,
5113          * in case the BIOS did something with it.
5114          */
5115         if (IS_VALLEYVIEW(encoder->dev))
5116                 vlv_initial_power_sequencer_setup(intel_dp);
5117
5118         intel_edp_panel_vdd_sanitize(intel_dp);
5119
5120         pps_unlock(intel_dp);
5121 }
5122
5123 static const struct drm_connector_funcs intel_dp_connector_funcs = {
5124         .dpms = drm_atomic_helper_connector_dpms,
5125         .detect = intel_dp_detect,
5126         .force = intel_dp_force,
5127         .fill_modes = drm_helper_probe_single_connector_modes,
5128         .set_property = intel_dp_set_property,
5129         .atomic_get_property = intel_connector_atomic_get_property,
5130         .destroy = intel_dp_connector_destroy,
5131         .atomic_destroy_state = drm_atomic_helper_connector_destroy_state,
5132         .atomic_duplicate_state = drm_atomic_helper_connector_duplicate_state,
5133 };
5134
5135 static const struct drm_connector_helper_funcs intel_dp_connector_helper_funcs = {
5136         .get_modes = intel_dp_get_modes,
5137         .mode_valid = intel_dp_mode_valid,
5138         .best_encoder = intel_best_encoder,
5139 };
5140
5141 static const struct drm_encoder_funcs intel_dp_enc_funcs = {
5142         .reset = intel_dp_encoder_reset,
5143         .destroy = intel_dp_encoder_destroy,
5144 };
5145
5146 enum irqreturn
5147 intel_dp_hpd_pulse(struct intel_digital_port *intel_dig_port, bool long_hpd)
5148 {
5149         struct intel_dp *intel_dp = &intel_dig_port->dp;
5150         struct intel_encoder *intel_encoder = &intel_dig_port->base;
5151         struct drm_device *dev = intel_dig_port->base.base.dev;
5152         struct drm_i915_private *dev_priv = dev->dev_private;
5153         enum intel_display_power_domain power_domain;
5154         enum irqreturn ret = IRQ_NONE;
5155
5156         if (intel_dig_port->base.type != INTEL_OUTPUT_EDP)
5157                 intel_dig_port->base.type = INTEL_OUTPUT_DISPLAYPORT;
5158
5159         if (long_hpd && intel_dig_port->base.type == INTEL_OUTPUT_EDP) {
5160                 /*
5161                  * vdd off can generate a long pulse on eDP which
5162                  * would require vdd on to handle it, and thus we
5163                  * would end up in an endless cycle of
5164                  * "vdd off -> long hpd -> vdd on -> detect -> vdd off -> ..."
5165                  */
5166                 DRM_DEBUG_KMS("ignoring long hpd on eDP port %c\n",
5167                               port_name(intel_dig_port->port));
5168                 return IRQ_HANDLED;
5169         }
5170
5171         DRM_DEBUG_KMS("got hpd irq on port %c - %s\n",
5172                       port_name(intel_dig_port->port),
5173                       long_hpd ? "long" : "short");
5174
5175         power_domain = intel_display_port_power_domain(intel_encoder);
5176         intel_display_power_get(dev_priv, power_domain);
5177
5178         if (long_hpd) {
5179                 /* indicate that we need to restart link training */
5180                 intel_dp->train_set_valid = false;
5181
5182                 if (!intel_digital_port_connected(dev_priv, intel_dig_port))
5183                         goto mst_fail;
5184
5185                 if (!intel_dp_get_dpcd(intel_dp)) {
5186                         goto mst_fail;
5187                 }
5188
5189                 intel_dp_probe_oui(intel_dp);
5190
5191                 if (!intel_dp_probe_mst(intel_dp)) {
5192                         drm_modeset_lock(&dev->mode_config.connection_mutex, NULL);
5193                         intel_dp_check_link_status(intel_dp);
5194                         drm_modeset_unlock(&dev->mode_config.connection_mutex);
5195                         goto mst_fail;
5196                 }
5197         } else {
5198                 if (intel_dp->is_mst) {
5199                         if (intel_dp_check_mst_status(intel_dp) == -EINVAL)
5200                                 goto mst_fail;
5201                 }
5202
5203                 if (!intel_dp->is_mst) {
5204                         drm_modeset_lock(&dev->mode_config.connection_mutex, NULL);
5205                         intel_dp_check_link_status(intel_dp);
5206                         drm_modeset_unlock(&dev->mode_config.connection_mutex);
5207                 }
5208         }
5209
5210         ret = IRQ_HANDLED;
5211
5212         goto put_power;
5213 mst_fail:
5214         /* if we were in MST mode, and device is not there get out of MST mode */
5215         if (intel_dp->is_mst) {
5216                 DRM_DEBUG_KMS("MST device may have disappeared %d vs %d\n", intel_dp->is_mst, intel_dp->mst_mgr.mst_state);
5217                 intel_dp->is_mst = false;
5218                 drm_dp_mst_topology_mgr_set_mst(&intel_dp->mst_mgr, intel_dp->is_mst);
5219         }
5220 put_power:
5221         intel_display_power_put(dev_priv, power_domain);
5222
5223         return ret;
5224 }
5225
5226 /* Return which DP Port should be selected for Transcoder DP control */
5227 int
5228 intel_trans_dp_port_sel(struct drm_crtc *crtc)
5229 {
5230         struct drm_device *dev = crtc->dev;
5231         struct intel_encoder *intel_encoder;
5232         struct intel_dp *intel_dp;
5233
5234         for_each_encoder_on_crtc(dev, crtc, intel_encoder) {
5235                 intel_dp = enc_to_intel_dp(&intel_encoder->base);
5236
5237                 if (intel_encoder->type == INTEL_OUTPUT_DISPLAYPORT ||
5238                     intel_encoder->type == INTEL_OUTPUT_EDP)
5239                         return intel_dp->output_reg;
5240         }
5241
5242         return -1;
5243 }
5244
5245 /* check the VBT to see whether the eDP is on another port */
5246 bool intel_dp_is_edp(struct drm_device *dev, enum port port)
5247 {
5248         struct drm_i915_private *dev_priv = dev->dev_private;
5249         union child_device_config *p_child;
5250         int i;
5251         static const short port_mapping[] = {
5252                 [PORT_B] = DVO_PORT_DPB,
5253                 [PORT_C] = DVO_PORT_DPC,
5254                 [PORT_D] = DVO_PORT_DPD,
5255                 [PORT_E] = DVO_PORT_DPE,
5256         };
5257
5258         /*
5259          * eDP not supported on g4x. so bail out early just
5260          * for a bit extra safety in case the VBT is bonkers.
5261          */
5262         if (INTEL_INFO(dev)->gen < 5)
5263                 return false;
5264
5265         if (port == PORT_A)
5266                 return true;
5267
5268         if (!dev_priv->vbt.child_dev_num)
5269                 return false;
5270
5271         for (i = 0; i < dev_priv->vbt.child_dev_num; i++) {
5272                 p_child = dev_priv->vbt.child_dev + i;
5273
5274                 if (p_child->common.dvo_port == port_mapping[port] &&
5275                     (p_child->common.device_type & DEVICE_TYPE_eDP_BITS) ==
5276                     (DEVICE_TYPE_eDP & DEVICE_TYPE_eDP_BITS))
5277                         return true;
5278         }
5279         return false;
5280 }
5281
5282 void
5283 intel_dp_add_properties(struct intel_dp *intel_dp, struct drm_connector *connector)
5284 {
5285         struct intel_connector *intel_connector = to_intel_connector(connector);
5286
5287         intel_attach_force_audio_property(connector);
5288         intel_attach_broadcast_rgb_property(connector);
5289         intel_dp->color_range_auto = true;
5290
5291         if (is_edp(intel_dp)) {
5292                 drm_mode_create_scaling_mode_property(connector->dev);
5293                 drm_object_attach_property(
5294                         &connector->base,
5295                         connector->dev->mode_config.scaling_mode_property,
5296                         DRM_MODE_SCALE_ASPECT);
5297                 intel_connector->panel.fitting_mode = DRM_MODE_SCALE_ASPECT;
5298         }
5299 }
5300
5301 static void intel_dp_init_panel_power_timestamps(struct intel_dp *intel_dp)
5302 {
5303         intel_dp->last_power_cycle = jiffies;
5304         intel_dp->last_power_on = jiffies;
5305         intel_dp->last_backlight_off = jiffies;
5306 }
5307
5308 static void
5309 intel_dp_init_panel_power_sequencer(struct drm_device *dev,
5310                                     struct intel_dp *intel_dp)
5311 {
5312         struct drm_i915_private *dev_priv = dev->dev_private;
5313         struct edp_power_seq cur, vbt, spec,
5314                 *final = &intel_dp->pps_delays;
5315         u32 pp_on, pp_off, pp_div = 0, pp_ctl = 0;
5316         int pp_ctrl_reg, pp_on_reg, pp_off_reg, pp_div_reg = 0;
5317
5318         lockdep_assert_held(&dev_priv->pps_mutex);
5319
5320         /* already initialized? */
5321         if (final->t11_t12 != 0)
5322                 return;
5323
5324         if (IS_BROXTON(dev)) {
5325                 /*
5326                  * TODO: BXT has 2 sets of PPS registers.
5327                  * Correct Register for Broxton need to be identified
5328                  * using VBT. hardcoding for now
5329                  */
5330                 pp_ctrl_reg = BXT_PP_CONTROL(0);
5331                 pp_on_reg = BXT_PP_ON_DELAYS(0);
5332                 pp_off_reg = BXT_PP_OFF_DELAYS(0);
5333         } else if (HAS_PCH_SPLIT(dev)) {
5334                 pp_ctrl_reg = PCH_PP_CONTROL;
5335                 pp_on_reg = PCH_PP_ON_DELAYS;
5336                 pp_off_reg = PCH_PP_OFF_DELAYS;
5337                 pp_div_reg = PCH_PP_DIVISOR;
5338         } else {
5339                 enum pipe pipe = vlv_power_sequencer_pipe(intel_dp);
5340
5341                 pp_ctrl_reg = VLV_PIPE_PP_CONTROL(pipe);
5342                 pp_on_reg = VLV_PIPE_PP_ON_DELAYS(pipe);
5343                 pp_off_reg = VLV_PIPE_PP_OFF_DELAYS(pipe);
5344                 pp_div_reg = VLV_PIPE_PP_DIVISOR(pipe);
5345         }
5346
5347         /* Workaround: Need to write PP_CONTROL with the unlock key as
5348          * the very first thing. */
5349         pp_ctl = ironlake_get_pp_control(intel_dp);
5350
5351         pp_on = I915_READ(pp_on_reg);
5352         pp_off = I915_READ(pp_off_reg);
5353         if (!IS_BROXTON(dev)) {
5354                 I915_WRITE(pp_ctrl_reg, pp_ctl);
5355                 pp_div = I915_READ(pp_div_reg);
5356         }
5357
5358         /* Pull timing values out of registers */
5359         cur.t1_t3 = (pp_on & PANEL_POWER_UP_DELAY_MASK) >>
5360                 PANEL_POWER_UP_DELAY_SHIFT;
5361
5362         cur.t8 = (pp_on & PANEL_LIGHT_ON_DELAY_MASK) >>
5363                 PANEL_LIGHT_ON_DELAY_SHIFT;
5364
5365         cur.t9 = (pp_off & PANEL_LIGHT_OFF_DELAY_MASK) >>
5366                 PANEL_LIGHT_OFF_DELAY_SHIFT;
5367
5368         cur.t10 = (pp_off & PANEL_POWER_DOWN_DELAY_MASK) >>
5369                 PANEL_POWER_DOWN_DELAY_SHIFT;
5370
5371         if (IS_BROXTON(dev)) {
5372                 u16 tmp = (pp_ctl & BXT_POWER_CYCLE_DELAY_MASK) >>
5373                         BXT_POWER_CYCLE_DELAY_SHIFT;
5374                 if (tmp > 0)
5375                         cur.t11_t12 = (tmp - 1) * 1000;
5376                 else
5377                         cur.t11_t12 = 0;
5378         } else {
5379                 cur.t11_t12 = ((pp_div & PANEL_POWER_CYCLE_DELAY_MASK) >>
5380                        PANEL_POWER_CYCLE_DELAY_SHIFT) * 1000;
5381         }
5382
5383         DRM_DEBUG_KMS("cur t1_t3 %d t8 %d t9 %d t10 %d t11_t12 %d\n",
5384                       cur.t1_t3, cur.t8, cur.t9, cur.t10, cur.t11_t12);
5385
5386         vbt = dev_priv->vbt.edp_pps;
5387
5388         /* Upper limits from eDP 1.3 spec. Note that we use the clunky units of
5389          * our hw here, which are all in 100usec. */
5390         spec.t1_t3 = 210 * 10;
5391         spec.t8 = 50 * 10; /* no limit for t8, use t7 instead */
5392         spec.t9 = 50 * 10; /* no limit for t9, make it symmetric with t8 */
5393         spec.t10 = 500 * 10;
5394         /* This one is special and actually in units of 100ms, but zero
5395          * based in the hw (so we need to add 100 ms). But the sw vbt
5396          * table multiplies it with 1000 to make it in units of 100usec,
5397          * too. */
5398         spec.t11_t12 = (510 + 100) * 10;
5399
5400         DRM_DEBUG_KMS("vbt t1_t3 %d t8 %d t9 %d t10 %d t11_t12 %d\n",
5401                       vbt.t1_t3, vbt.t8, vbt.t9, vbt.t10, vbt.t11_t12);
5402
5403         /* Use the max of the register settings and vbt. If both are
5404          * unset, fall back to the spec limits. */
5405 #define assign_final(field)     final->field = (max(cur.field, vbt.field) == 0 ? \
5406                                        spec.field : \
5407                                        max(cur.field, vbt.field))
5408         assign_final(t1_t3);
5409         assign_final(t8);
5410         assign_final(t9);
5411         assign_final(t10);
5412         assign_final(t11_t12);
5413 #undef assign_final
5414
5415 #define get_delay(field)        (DIV_ROUND_UP(final->field, 10))
5416         intel_dp->panel_power_up_delay = get_delay(t1_t3);
5417         intel_dp->backlight_on_delay = get_delay(t8);
5418         intel_dp->backlight_off_delay = get_delay(t9);
5419         intel_dp->panel_power_down_delay = get_delay(t10);
5420         intel_dp->panel_power_cycle_delay = get_delay(t11_t12);
5421 #undef get_delay
5422
5423         DRM_DEBUG_KMS("panel power up delay %d, power down delay %d, power cycle delay %d\n",
5424                       intel_dp->panel_power_up_delay, intel_dp->panel_power_down_delay,
5425                       intel_dp->panel_power_cycle_delay);
5426
5427         DRM_DEBUG_KMS("backlight on delay %d, off delay %d\n",
5428                       intel_dp->backlight_on_delay, intel_dp->backlight_off_delay);
5429 }
5430
5431 static void
5432 intel_dp_init_panel_power_sequencer_registers(struct drm_device *dev,
5433                                               struct intel_dp *intel_dp)
5434 {
5435         struct drm_i915_private *dev_priv = dev->dev_private;
5436         u32 pp_on, pp_off, pp_div, port_sel = 0;
5437         int div = HAS_PCH_SPLIT(dev) ? intel_pch_rawclk(dev) : intel_hrawclk(dev);
5438         int pp_on_reg, pp_off_reg, pp_div_reg = 0, pp_ctrl_reg;
5439         enum port port = dp_to_dig_port(intel_dp)->port;
5440         const struct edp_power_seq *seq = &intel_dp->pps_delays;
5441
5442         lockdep_assert_held(&dev_priv->pps_mutex);
5443
5444         if (IS_BROXTON(dev)) {
5445                 /*
5446                  * TODO: BXT has 2 sets of PPS registers.
5447                  * Correct Register for Broxton need to be identified
5448                  * using VBT. hardcoding for now
5449                  */
5450                 pp_ctrl_reg = BXT_PP_CONTROL(0);
5451                 pp_on_reg = BXT_PP_ON_DELAYS(0);
5452                 pp_off_reg = BXT_PP_OFF_DELAYS(0);
5453
5454         } else if (HAS_PCH_SPLIT(dev)) {
5455                 pp_on_reg = PCH_PP_ON_DELAYS;
5456                 pp_off_reg = PCH_PP_OFF_DELAYS;
5457                 pp_div_reg = PCH_PP_DIVISOR;
5458         } else {
5459                 enum pipe pipe = vlv_power_sequencer_pipe(intel_dp);
5460
5461                 pp_on_reg = VLV_PIPE_PP_ON_DELAYS(pipe);
5462                 pp_off_reg = VLV_PIPE_PP_OFF_DELAYS(pipe);
5463                 pp_div_reg = VLV_PIPE_PP_DIVISOR(pipe);
5464         }
5465
5466         /*
5467          * And finally store the new values in the power sequencer. The
5468          * backlight delays are set to 1 because we do manual waits on them. For
5469          * T8, even BSpec recommends doing it. For T9, if we don't do this,
5470          * we'll end up waiting for the backlight off delay twice: once when we
5471          * do the manual sleep, and once when we disable the panel and wait for
5472          * the PP_STATUS bit to become zero.
5473          */
5474         pp_on = (seq->t1_t3 << PANEL_POWER_UP_DELAY_SHIFT) |
5475                 (1 << PANEL_LIGHT_ON_DELAY_SHIFT);
5476         pp_off = (1 << PANEL_LIGHT_OFF_DELAY_SHIFT) |
5477                  (seq->t10 << PANEL_POWER_DOWN_DELAY_SHIFT);
5478         /* Compute the divisor for the pp clock, simply match the Bspec
5479          * formula. */
5480         if (IS_BROXTON(dev)) {
5481                 pp_div = I915_READ(pp_ctrl_reg);
5482                 pp_div &= ~BXT_POWER_CYCLE_DELAY_MASK;
5483                 pp_div |= (DIV_ROUND_UP((seq->t11_t12 + 1), 1000)
5484                                 << BXT_POWER_CYCLE_DELAY_SHIFT);
5485         } else {
5486                 pp_div = ((100 * div)/2 - 1) << PP_REFERENCE_DIVIDER_SHIFT;
5487                 pp_div |= (DIV_ROUND_UP(seq->t11_t12, 1000)
5488                                 << PANEL_POWER_CYCLE_DELAY_SHIFT);
5489         }
5490
5491         /* Haswell doesn't have any port selection bits for the panel
5492          * power sequencer any more. */
5493         if (IS_VALLEYVIEW(dev)) {
5494                 port_sel = PANEL_PORT_SELECT_VLV(port);
5495         } else if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev)) {
5496                 if (port == PORT_A)
5497                         port_sel = PANEL_PORT_SELECT_DPA;
5498                 else
5499                         port_sel = PANEL_PORT_SELECT_DPD;
5500         }
5501
5502         pp_on |= port_sel;
5503
5504         I915_WRITE(pp_on_reg, pp_on);
5505         I915_WRITE(pp_off_reg, pp_off);
5506         if (IS_BROXTON(dev))
5507                 I915_WRITE(pp_ctrl_reg, pp_div);
5508         else
5509                 I915_WRITE(pp_div_reg, pp_div);
5510
5511         DRM_DEBUG_KMS("panel power sequencer register settings: PP_ON %#x, PP_OFF %#x, PP_DIV %#x\n",
5512                       I915_READ(pp_on_reg),
5513                       I915_READ(pp_off_reg),
5514                       IS_BROXTON(dev) ?
5515                       (I915_READ(pp_ctrl_reg) & BXT_POWER_CYCLE_DELAY_MASK) :
5516                       I915_READ(pp_div_reg));
5517 }
5518
5519 /**
5520  * intel_dp_set_drrs_state - program registers for RR switch to take effect
5521  * @dev: DRM device
5522  * @refresh_rate: RR to be programmed
5523  *
5524  * This function gets called when refresh rate (RR) has to be changed from
5525  * one frequency to another. Switches can be between high and low RR
5526  * supported by the panel or to any other RR based on media playback (in
5527  * this case, RR value needs to be passed from user space).
5528  *
5529  * The caller of this function needs to take a lock on dev_priv->drrs.
5530  */
5531 static void intel_dp_set_drrs_state(struct drm_device *dev, int refresh_rate)
5532 {
5533         struct drm_i915_private *dev_priv = dev->dev_private;
5534         struct intel_encoder *encoder;
5535         struct intel_digital_port *dig_port = NULL;
5536         struct intel_dp *intel_dp = dev_priv->drrs.dp;
5537         struct intel_crtc_state *config = NULL;
5538         struct intel_crtc *intel_crtc = NULL;
5539         enum drrs_refresh_rate_type index = DRRS_HIGH_RR;
5540
5541         if (refresh_rate <= 0) {
5542                 DRM_DEBUG_KMS("Refresh rate should be positive non-zero.\n");
5543                 return;
5544         }
5545
5546         if (intel_dp == NULL) {
5547                 DRM_DEBUG_KMS("DRRS not supported.\n");
5548                 return;
5549         }
5550
5551         /*
5552          * FIXME: This needs proper synchronization with psr state for some
5553          * platforms that cannot have PSR and DRRS enabled at the same time.
5554          */
5555
5556         dig_port = dp_to_dig_port(intel_dp);
5557         encoder = &dig_port->base;
5558         intel_crtc = to_intel_crtc(encoder->base.crtc);
5559
5560         if (!intel_crtc) {
5561                 DRM_DEBUG_KMS("DRRS: intel_crtc not initialized\n");
5562                 return;
5563         }
5564
5565         config = intel_crtc->config;
5566
5567         if (dev_priv->drrs.type < SEAMLESS_DRRS_SUPPORT) {
5568                 DRM_DEBUG_KMS("Only Seamless DRRS supported.\n");
5569                 return;
5570         }
5571
5572         if (intel_dp->attached_connector->panel.downclock_mode->vrefresh ==
5573                         refresh_rate)
5574                 index = DRRS_LOW_RR;
5575
5576         if (index == dev_priv->drrs.refresh_rate_type) {
5577                 DRM_DEBUG_KMS(
5578                         "DRRS requested for previously set RR...ignoring\n");
5579                 return;
5580         }
5581
5582         if (!intel_crtc->active) {
5583                 DRM_DEBUG_KMS("eDP encoder disabled. CRTC not Active\n");
5584                 return;
5585         }
5586
5587         if (INTEL_INFO(dev)->gen >= 8 && !IS_CHERRYVIEW(dev)) {
5588                 switch (index) {
5589                 case DRRS_HIGH_RR:
5590                         intel_dp_set_m_n(intel_crtc, M1_N1);
5591                         break;
5592                 case DRRS_LOW_RR:
5593                         intel_dp_set_m_n(intel_crtc, M2_N2);
5594                         break;
5595                 case DRRS_MAX_RR:
5596                 default:
5597                         DRM_ERROR("Unsupported refreshrate type\n");
5598                 }
5599         } else if (INTEL_INFO(dev)->gen > 6) {
5600                 u32 reg = PIPECONF(intel_crtc->config->cpu_transcoder);
5601                 u32 val;
5602
5603                 val = I915_READ(reg);
5604                 if (index > DRRS_HIGH_RR) {
5605                         if (IS_VALLEYVIEW(dev))
5606                                 val |= PIPECONF_EDP_RR_MODE_SWITCH_VLV;
5607                         else
5608                                 val |= PIPECONF_EDP_RR_MODE_SWITCH;
5609                 } else {
5610                         if (IS_VALLEYVIEW(dev))
5611                                 val &= ~PIPECONF_EDP_RR_MODE_SWITCH_VLV;
5612                         else
5613                                 val &= ~PIPECONF_EDP_RR_MODE_SWITCH;
5614                 }
5615                 I915_WRITE(reg, val);
5616         }
5617
5618         dev_priv->drrs.refresh_rate_type = index;
5619
5620         DRM_DEBUG_KMS("eDP Refresh Rate set to : %dHz\n", refresh_rate);
5621 }
5622
5623 /**
5624  * intel_edp_drrs_enable - init drrs struct if supported
5625  * @intel_dp: DP struct
5626  *
5627  * Initializes frontbuffer_bits and drrs.dp
5628  */
5629 void intel_edp_drrs_enable(struct intel_dp *intel_dp)
5630 {
5631         struct drm_device *dev = intel_dp_to_dev(intel_dp);
5632         struct drm_i915_private *dev_priv = dev->dev_private;
5633         struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
5634         struct drm_crtc *crtc = dig_port->base.base.crtc;
5635         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5636
5637         if (!intel_crtc->config->has_drrs) {
5638                 DRM_DEBUG_KMS("Panel doesn't support DRRS\n");
5639                 return;
5640         }
5641
5642         mutex_lock(&dev_priv->drrs.mutex);
5643         if (WARN_ON(dev_priv->drrs.dp)) {
5644                 DRM_ERROR("DRRS already enabled\n");
5645                 goto unlock;
5646         }
5647
5648         dev_priv->drrs.busy_frontbuffer_bits = 0;
5649
5650         dev_priv->drrs.dp = intel_dp;
5651
5652 unlock:
5653         mutex_unlock(&dev_priv->drrs.mutex);
5654 }
5655
5656 /**
5657  * intel_edp_drrs_disable - Disable DRRS
5658  * @intel_dp: DP struct
5659  *
5660  */
5661 void intel_edp_drrs_disable(struct intel_dp *intel_dp)
5662 {
5663         struct drm_device *dev = intel_dp_to_dev(intel_dp);
5664         struct drm_i915_private *dev_priv = dev->dev_private;
5665         struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
5666         struct drm_crtc *crtc = dig_port->base.base.crtc;
5667         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5668
5669         if (!intel_crtc->config->has_drrs)
5670                 return;
5671
5672         mutex_lock(&dev_priv->drrs.mutex);
5673         if (!dev_priv->drrs.dp) {
5674                 mutex_unlock(&dev_priv->drrs.mutex);
5675                 return;
5676         }
5677
5678         if (dev_priv->drrs.refresh_rate_type == DRRS_LOW_RR)
5679                 intel_dp_set_drrs_state(dev_priv->dev,
5680                         intel_dp->attached_connector->panel.
5681                         fixed_mode->vrefresh);
5682
5683         dev_priv->drrs.dp = NULL;
5684         mutex_unlock(&dev_priv->drrs.mutex);
5685
5686         cancel_delayed_work_sync(&dev_priv->drrs.work);
5687 }
5688
5689 static void intel_edp_drrs_downclock_work(struct work_struct *work)
5690 {
5691         struct drm_i915_private *dev_priv =
5692                 container_of(work, typeof(*dev_priv), drrs.work.work);
5693         struct intel_dp *intel_dp;
5694
5695         mutex_lock(&dev_priv->drrs.mutex);
5696
5697         intel_dp = dev_priv->drrs.dp;
5698
5699         if (!intel_dp)
5700                 goto unlock;
5701
5702         /*
5703          * The delayed work can race with an invalidate hence we need to
5704          * recheck.
5705          */
5706
5707         if (dev_priv->drrs.busy_frontbuffer_bits)
5708                 goto unlock;
5709
5710         if (dev_priv->drrs.refresh_rate_type != DRRS_LOW_RR)
5711                 intel_dp_set_drrs_state(dev_priv->dev,
5712                         intel_dp->attached_connector->panel.
5713                         downclock_mode->vrefresh);
5714
5715 unlock:
5716         mutex_unlock(&dev_priv->drrs.mutex);
5717 }
5718
5719 /**
5720  * intel_edp_drrs_invalidate - Disable Idleness DRRS
5721  * @dev: DRM device
5722  * @frontbuffer_bits: frontbuffer plane tracking bits
5723  *
5724  * This function gets called everytime rendering on the given planes start.
5725  * Hence DRRS needs to be Upclocked, i.e. (LOW_RR -> HIGH_RR).
5726  *
5727  * Dirty frontbuffers relevant to DRRS are tracked in busy_frontbuffer_bits.
5728  */
5729 void intel_edp_drrs_invalidate(struct drm_device *dev,
5730                 unsigned frontbuffer_bits)
5731 {
5732         struct drm_i915_private *dev_priv = dev->dev_private;
5733         struct drm_crtc *crtc;
5734         enum pipe pipe;
5735
5736         if (dev_priv->drrs.type == DRRS_NOT_SUPPORTED)
5737                 return;
5738
5739         cancel_delayed_work(&dev_priv->drrs.work);
5740
5741         mutex_lock(&dev_priv->drrs.mutex);
5742         if (!dev_priv->drrs.dp) {
5743                 mutex_unlock(&dev_priv->drrs.mutex);
5744                 return;
5745         }
5746
5747         crtc = dp_to_dig_port(dev_priv->drrs.dp)->base.base.crtc;
5748         pipe = to_intel_crtc(crtc)->pipe;
5749
5750         frontbuffer_bits &= INTEL_FRONTBUFFER_ALL_MASK(pipe);
5751         dev_priv->drrs.busy_frontbuffer_bits |= frontbuffer_bits;
5752
5753         /* invalidate means busy screen hence upclock */
5754         if (frontbuffer_bits && dev_priv->drrs.refresh_rate_type == DRRS_LOW_RR)
5755                 intel_dp_set_drrs_state(dev_priv->dev,
5756                                 dev_priv->drrs.dp->attached_connector->panel.
5757                                 fixed_mode->vrefresh);
5758
5759         mutex_unlock(&dev_priv->drrs.mutex);
5760 }
5761
5762 /**
5763  * intel_edp_drrs_flush - Restart Idleness DRRS
5764  * @dev: DRM device
5765  * @frontbuffer_bits: frontbuffer plane tracking bits
5766  *
5767  * This function gets called every time rendering on the given planes has
5768  * completed or flip on a crtc is completed. So DRRS should be upclocked
5769  * (LOW_RR -> HIGH_RR). And also Idleness detection should be started again,
5770  * if no other planes are dirty.
5771  *
5772  * Dirty frontbuffers relevant to DRRS are tracked in busy_frontbuffer_bits.
5773  */
5774 void intel_edp_drrs_flush(struct drm_device *dev,
5775                 unsigned frontbuffer_bits)
5776 {
5777         struct drm_i915_private *dev_priv = dev->dev_private;
5778         struct drm_crtc *crtc;
5779         enum pipe pipe;
5780
5781         if (dev_priv->drrs.type == DRRS_NOT_SUPPORTED)
5782                 return;
5783
5784         cancel_delayed_work(&dev_priv->drrs.work);
5785
5786         mutex_lock(&dev_priv->drrs.mutex);
5787         if (!dev_priv->drrs.dp) {
5788                 mutex_unlock(&dev_priv->drrs.mutex);
5789                 return;
5790         }
5791
5792         crtc = dp_to_dig_port(dev_priv->drrs.dp)->base.base.crtc;
5793         pipe = to_intel_crtc(crtc)->pipe;
5794
5795         frontbuffer_bits &= INTEL_FRONTBUFFER_ALL_MASK(pipe);
5796         dev_priv->drrs.busy_frontbuffer_bits &= ~frontbuffer_bits;
5797
5798         /* flush means busy screen hence upclock */
5799         if (frontbuffer_bits && dev_priv->drrs.refresh_rate_type == DRRS_LOW_RR)
5800                 intel_dp_set_drrs_state(dev_priv->dev,
5801                                 dev_priv->drrs.dp->attached_connector->panel.
5802                                 fixed_mode->vrefresh);
5803
5804         /*
5805          * flush also means no more activity hence schedule downclock, if all
5806          * other fbs are quiescent too
5807          */
5808         if (!dev_priv->drrs.busy_frontbuffer_bits)
5809                 schedule_delayed_work(&dev_priv->drrs.work,
5810                                 msecs_to_jiffies(1000));
5811         mutex_unlock(&dev_priv->drrs.mutex);
5812 }
5813
5814 /**
5815  * DOC: Display Refresh Rate Switching (DRRS)
5816  *
5817  * Display Refresh Rate Switching (DRRS) is a power conservation feature
5818  * which enables swtching between low and high refresh rates,
5819  * dynamically, based on the usage scenario. This feature is applicable
5820  * for internal panels.
5821  *
5822  * Indication that the panel supports DRRS is given by the panel EDID, which
5823  * would list multiple refresh rates for one resolution.
5824  *
5825  * DRRS is of 2 types - static and seamless.
5826  * Static DRRS involves changing refresh rate (RR) by doing a full modeset
5827  * (may appear as a blink on screen) and is used in dock-undock scenario.
5828  * Seamless DRRS involves changing RR without any visual effect to the user
5829  * and can be used during normal system usage. This is done by programming
5830  * certain registers.
5831  *
5832  * Support for static/seamless DRRS may be indicated in the VBT based on
5833  * inputs from the panel spec.
5834  *
5835  * DRRS saves power by switching to low RR based on usage scenarios.
5836  *
5837  * eDP DRRS:-
5838  *        The implementation is based on frontbuffer tracking implementation.
5839  * When there is a disturbance on the screen triggered by user activity or a
5840  * periodic system activity, DRRS is disabled (RR is changed to high RR).
5841  * When there is no movement on screen, after a timeout of 1 second, a switch
5842  * to low RR is made.
5843  *        For integration with frontbuffer tracking code,
5844  * intel_edp_drrs_invalidate() and intel_edp_drrs_flush() are called.
5845  *
5846  * DRRS can be further extended to support other internal panels and also
5847  * the scenario of video playback wherein RR is set based on the rate
5848  * requested by userspace.
5849  */
5850
5851 /**
5852  * intel_dp_drrs_init - Init basic DRRS work and mutex.
5853  * @intel_connector: eDP connector
5854  * @fixed_mode: preferred mode of panel
5855  *
5856  * This function is  called only once at driver load to initialize basic
5857  * DRRS stuff.
5858  *
5859  * Returns:
5860  * Downclock mode if panel supports it, else return NULL.
5861  * DRRS support is determined by the presence of downclock mode (apart
5862  * from VBT setting).
5863  */
5864 static struct drm_display_mode *
5865 intel_dp_drrs_init(struct intel_connector *intel_connector,
5866                 struct drm_display_mode *fixed_mode)
5867 {
5868         struct drm_connector *connector = &intel_connector->base;
5869         struct drm_device *dev = connector->dev;
5870         struct drm_i915_private *dev_priv = dev->dev_private;
5871         struct drm_display_mode *downclock_mode = NULL;
5872
5873         INIT_DELAYED_WORK(&dev_priv->drrs.work, intel_edp_drrs_downclock_work);
5874         mutex_init(&dev_priv->drrs.mutex);
5875
5876         if (INTEL_INFO(dev)->gen <= 6) {
5877                 DRM_DEBUG_KMS("DRRS supported for Gen7 and above\n");
5878                 return NULL;
5879         }
5880
5881         if (dev_priv->vbt.drrs_type != SEAMLESS_DRRS_SUPPORT) {
5882                 DRM_DEBUG_KMS("VBT doesn't support DRRS\n");
5883                 return NULL;
5884         }
5885
5886         downclock_mode = intel_find_panel_downclock
5887                                         (dev, fixed_mode, connector);
5888
5889         if (!downclock_mode) {
5890                 DRM_DEBUG_KMS("Downclock mode is not found. DRRS not supported\n");
5891                 return NULL;
5892         }
5893
5894         dev_priv->drrs.type = dev_priv->vbt.drrs_type;
5895
5896         dev_priv->drrs.refresh_rate_type = DRRS_HIGH_RR;
5897         DRM_DEBUG_KMS("seamless DRRS supported for eDP panel.\n");
5898         return downclock_mode;
5899 }
5900
5901 static bool intel_edp_init_connector(struct intel_dp *intel_dp,
5902                                      struct intel_connector *intel_connector)
5903 {
5904         struct drm_connector *connector = &intel_connector->base;
5905         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
5906         struct intel_encoder *intel_encoder = &intel_dig_port->base;
5907         struct drm_device *dev = intel_encoder->base.dev;
5908         struct drm_i915_private *dev_priv = dev->dev_private;
5909         struct drm_display_mode *fixed_mode = NULL;
5910         struct drm_display_mode *downclock_mode = NULL;
5911         bool has_dpcd;
5912         struct drm_display_mode *scan;
5913         struct edid *edid;
5914         enum pipe pipe = INVALID_PIPE;
5915
5916         if (!is_edp(intel_dp))
5917                 return true;
5918
5919         pps_lock(intel_dp);
5920         intel_edp_panel_vdd_sanitize(intel_dp);
5921         pps_unlock(intel_dp);
5922
5923         /* Cache DPCD and EDID for edp. */
5924         has_dpcd = intel_dp_get_dpcd(intel_dp);
5925
5926         if (has_dpcd) {
5927                 if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11)
5928                         dev_priv->no_aux_handshake =
5929                                 intel_dp->dpcd[DP_MAX_DOWNSPREAD] &
5930                                 DP_NO_AUX_HANDSHAKE_LINK_TRAINING;
5931         } else {
5932                 /* if this fails, presume the device is a ghost */
5933                 DRM_INFO("failed to retrieve link info, disabling eDP\n");
5934                 return false;
5935         }
5936
5937         /* We now know it's not a ghost, init power sequence regs. */
5938         pps_lock(intel_dp);
5939         intel_dp_init_panel_power_sequencer_registers(dev, intel_dp);
5940         pps_unlock(intel_dp);
5941
5942         mutex_lock(&dev->mode_config.mutex);
5943         edid = drm_get_edid(connector, &intel_dp->aux.ddc);
5944         if (edid) {
5945                 if (drm_add_edid_modes(connector, edid)) {
5946                         drm_mode_connector_update_edid_property(connector,
5947                                                                 edid);
5948                         drm_edid_to_eld(connector, edid);
5949                 } else {
5950                         kfree(edid);
5951                         edid = ERR_PTR(-EINVAL);
5952                 }
5953         } else {
5954                 edid = ERR_PTR(-ENOENT);
5955         }
5956         intel_connector->edid = edid;
5957
5958         /* prefer fixed mode from EDID if available */
5959         list_for_each_entry(scan, &connector->probed_modes, head) {
5960                 if ((scan->type & DRM_MODE_TYPE_PREFERRED)) {
5961                         fixed_mode = drm_mode_duplicate(dev, scan);
5962                         downclock_mode = intel_dp_drrs_init(
5963                                                 intel_connector, fixed_mode);
5964                         break;
5965                 }
5966         }
5967
5968         /* fallback to VBT if available for eDP */
5969         if (!fixed_mode && dev_priv->vbt.lfp_lvds_vbt_mode) {
5970                 fixed_mode = drm_mode_duplicate(dev,
5971                                         dev_priv->vbt.lfp_lvds_vbt_mode);
5972                 if (fixed_mode)
5973                         fixed_mode->type |= DRM_MODE_TYPE_PREFERRED;
5974         }
5975         mutex_unlock(&dev->mode_config.mutex);
5976
5977         if (IS_VALLEYVIEW(dev)) {
5978                 intel_dp->edp_notifier.notifier_call = edp_notify_handler;
5979                 register_reboot_notifier(&intel_dp->edp_notifier);
5980
5981                 /*
5982                  * Figure out the current pipe for the initial backlight setup.
5983                  * If the current pipe isn't valid, try the PPS pipe, and if that
5984                  * fails just assume pipe A.
5985                  */
5986                 if (IS_CHERRYVIEW(dev))
5987                         pipe = DP_PORT_TO_PIPE_CHV(intel_dp->DP);
5988                 else
5989                         pipe = PORT_TO_PIPE(intel_dp->DP);
5990
5991                 if (pipe != PIPE_A && pipe != PIPE_B)
5992                         pipe = intel_dp->pps_pipe;
5993
5994                 if (pipe != PIPE_A && pipe != PIPE_B)
5995                         pipe = PIPE_A;
5996
5997                 DRM_DEBUG_KMS("using pipe %c for initial backlight setup\n",
5998                               pipe_name(pipe));
5999         }
6000
6001         intel_panel_init(&intel_connector->panel, fixed_mode, downclock_mode);
6002         intel_connector->panel.backlight.power = intel_edp_backlight_power;
6003         intel_panel_setup_backlight(connector, pipe);
6004
6005         return true;
6006 }
6007
6008 bool
6009 intel_dp_init_connector(struct intel_digital_port *intel_dig_port,
6010                         struct intel_connector *intel_connector)
6011 {
6012         struct drm_connector *connector = &intel_connector->base;
6013         struct intel_dp *intel_dp = &intel_dig_port->dp;
6014         struct intel_encoder *intel_encoder = &intel_dig_port->base;
6015         struct drm_device *dev = intel_encoder->base.dev;
6016         struct drm_i915_private *dev_priv = dev->dev_private;
6017         enum port port = intel_dig_port->port;
6018         int type;
6019
6020         intel_dp->pps_pipe = INVALID_PIPE;
6021
6022         /* intel_dp vfuncs */
6023         if (INTEL_INFO(dev)->gen >= 9)
6024                 intel_dp->get_aux_clock_divider = skl_get_aux_clock_divider;
6025         else if (IS_VALLEYVIEW(dev))
6026                 intel_dp->get_aux_clock_divider = vlv_get_aux_clock_divider;
6027         else if (IS_HASWELL(dev) || IS_BROADWELL(dev))
6028                 intel_dp->get_aux_clock_divider = hsw_get_aux_clock_divider;
6029         else if (HAS_PCH_SPLIT(dev))
6030                 intel_dp->get_aux_clock_divider = ilk_get_aux_clock_divider;
6031         else
6032                 intel_dp->get_aux_clock_divider = i9xx_get_aux_clock_divider;
6033
6034         if (INTEL_INFO(dev)->gen >= 9)
6035                 intel_dp->get_aux_send_ctl = skl_get_aux_send_ctl;
6036         else
6037                 intel_dp->get_aux_send_ctl = i9xx_get_aux_send_ctl;
6038
6039         /* Preserve the current hw state. */
6040         intel_dp->DP = I915_READ(intel_dp->output_reg);
6041         intel_dp->attached_connector = intel_connector;
6042
6043         if (intel_dp_is_edp(dev, port))
6044                 type = DRM_MODE_CONNECTOR_eDP;
6045         else
6046                 type = DRM_MODE_CONNECTOR_DisplayPort;
6047
6048         /*
6049          * For eDP we always set the encoder type to INTEL_OUTPUT_EDP, but
6050          * for DP the encoder type can be set by the caller to
6051          * INTEL_OUTPUT_UNKNOWN for DDI, so don't rewrite it.
6052          */
6053         if (type == DRM_MODE_CONNECTOR_eDP)
6054                 intel_encoder->type = INTEL_OUTPUT_EDP;
6055
6056         /* eDP only on port B and/or C on vlv/chv */
6057         if (WARN_ON(IS_VALLEYVIEW(dev) && is_edp(intel_dp) &&
6058                     port != PORT_B && port != PORT_C))
6059                 return false;
6060
6061         DRM_DEBUG_KMS("Adding %s connector on port %c\n",
6062                         type == DRM_MODE_CONNECTOR_eDP ? "eDP" : "DP",
6063                         port_name(port));
6064
6065         drm_connector_init(dev, connector, &intel_dp_connector_funcs, type);
6066         drm_connector_helper_add(connector, &intel_dp_connector_helper_funcs);
6067
6068         connector->interlace_allowed = true;
6069         connector->doublescan_allowed = 0;
6070
6071         INIT_DELAYED_WORK(&intel_dp->panel_vdd_work,
6072                           edp_panel_vdd_work);
6073
6074         intel_connector_attach_encoder(intel_connector, intel_encoder);
6075         drm_connector_register(connector);
6076
6077         if (HAS_DDI(dev))
6078                 intel_connector->get_hw_state = intel_ddi_connector_get_hw_state;
6079         else
6080                 intel_connector->get_hw_state = intel_connector_get_hw_state;
6081         intel_connector->unregister = intel_dp_connector_unregister;
6082
6083         /* Set up the hotplug pin. */
6084         switch (port) {
6085         case PORT_A:
6086                 intel_encoder->hpd_pin = HPD_PORT_A;
6087                 break;
6088         case PORT_B:
6089                 intel_encoder->hpd_pin = HPD_PORT_B;
6090                 if (IS_BROXTON(dev_priv) && (INTEL_REVID(dev) < BXT_REVID_B0))
6091                         intel_encoder->hpd_pin = HPD_PORT_A;
6092                 break;
6093         case PORT_C:
6094                 intel_encoder->hpd_pin = HPD_PORT_C;
6095                 break;
6096         case PORT_D:
6097                 intel_encoder->hpd_pin = HPD_PORT_D;
6098                 break;
6099         case PORT_E:
6100                 intel_encoder->hpd_pin = HPD_PORT_E;
6101                 break;
6102         default:
6103                 BUG();
6104         }
6105
6106         if (is_edp(intel_dp)) {
6107                 pps_lock(intel_dp);
6108                 intel_dp_init_panel_power_timestamps(intel_dp);
6109                 if (IS_VALLEYVIEW(dev))
6110                         vlv_initial_power_sequencer_setup(intel_dp);
6111                 else
6112                         intel_dp_init_panel_power_sequencer(dev, intel_dp);
6113                 pps_unlock(intel_dp);
6114         }
6115
6116         intel_dp_aux_init(intel_dp, intel_connector);
6117
6118         /* init MST on ports that can support it */
6119         if (HAS_DP_MST(dev) &&
6120             (port == PORT_B || port == PORT_C || port == PORT_D))
6121                 intel_dp_mst_encoder_init(intel_dig_port,
6122                                           intel_connector->base.base.id);
6123
6124         if (!intel_edp_init_connector(intel_dp, intel_connector)) {
6125                 drm_dp_aux_unregister(&intel_dp->aux);
6126                 if (is_edp(intel_dp)) {
6127                         cancel_delayed_work_sync(&intel_dp->panel_vdd_work);
6128                         /*
6129                          * vdd might still be enabled do to the delayed vdd off.
6130                          * Make sure vdd is actually turned off here.
6131                          */
6132                         pps_lock(intel_dp);
6133                         edp_panel_vdd_off_sync(intel_dp);
6134                         pps_unlock(intel_dp);
6135                 }
6136                 drm_connector_unregister(connector);
6137                 drm_connector_cleanup(connector);
6138                 return false;
6139         }
6140
6141         intel_dp_add_properties(intel_dp, connector);
6142
6143         /* For G4X desktop chip, PEG_BAND_GAP_DATA 3:0 must first be written
6144          * 0xd.  Failure to do so will result in spurious interrupts being
6145          * generated on the port when a cable is not attached.
6146          */
6147         if (IS_G4X(dev) && !IS_GM45(dev)) {
6148                 u32 temp = I915_READ(PEG_BAND_GAP_DATA);
6149                 I915_WRITE(PEG_BAND_GAP_DATA, (temp & ~0xf) | 0xd);
6150         }
6151
6152         i915_debugfs_connector_add(connector);
6153
6154         return true;
6155 }
6156
6157 void
6158 intel_dp_init(struct drm_device *dev, int output_reg, enum port port)
6159 {
6160         struct drm_i915_private *dev_priv = dev->dev_private;
6161         struct intel_digital_port *intel_dig_port;
6162         struct intel_encoder *intel_encoder;
6163         struct drm_encoder *encoder;
6164         struct intel_connector *intel_connector;
6165
6166         intel_dig_port = kzalloc(sizeof(*intel_dig_port), GFP_KERNEL);
6167         if (!intel_dig_port)
6168                 return;
6169
6170         intel_connector = intel_connector_alloc();
6171         if (!intel_connector)
6172                 goto err_connector_alloc;
6173
6174         intel_encoder = &intel_dig_port->base;
6175         encoder = &intel_encoder->base;
6176
6177         drm_encoder_init(dev, &intel_encoder->base, &intel_dp_enc_funcs,
6178                          DRM_MODE_ENCODER_TMDS);
6179
6180         intel_encoder->compute_config = intel_dp_compute_config;
6181         intel_encoder->disable = intel_disable_dp;
6182         intel_encoder->get_hw_state = intel_dp_get_hw_state;
6183         intel_encoder->get_config = intel_dp_get_config;
6184         intel_encoder->suspend = intel_dp_encoder_suspend;
6185         if (IS_CHERRYVIEW(dev)) {
6186                 intel_encoder->pre_pll_enable = chv_dp_pre_pll_enable;
6187                 intel_encoder->pre_enable = chv_pre_enable_dp;
6188                 intel_encoder->enable = vlv_enable_dp;
6189                 intel_encoder->post_disable = chv_post_disable_dp;
6190                 intel_encoder->post_pll_disable = chv_dp_post_pll_disable;
6191         } else if (IS_VALLEYVIEW(dev)) {
6192                 intel_encoder->pre_pll_enable = vlv_dp_pre_pll_enable;
6193                 intel_encoder->pre_enable = vlv_pre_enable_dp;
6194                 intel_encoder->enable = vlv_enable_dp;
6195                 intel_encoder->post_disable = vlv_post_disable_dp;
6196         } else {
6197                 intel_encoder->pre_enable = g4x_pre_enable_dp;
6198                 intel_encoder->enable = g4x_enable_dp;
6199                 if (INTEL_INFO(dev)->gen >= 5)
6200                         intel_encoder->post_disable = ilk_post_disable_dp;
6201         }
6202
6203         intel_dig_port->port = port;
6204         intel_dig_port->dp.output_reg = output_reg;
6205
6206         intel_encoder->type = INTEL_OUTPUT_DISPLAYPORT;
6207         if (IS_CHERRYVIEW(dev)) {
6208                 if (port == PORT_D)
6209                         intel_encoder->crtc_mask = 1 << 2;
6210                 else
6211                         intel_encoder->crtc_mask = (1 << 0) | (1 << 1);
6212         } else {
6213                 intel_encoder->crtc_mask = (1 << 0) | (1 << 1) | (1 << 2);
6214         }
6215         intel_encoder->cloneable = 0;
6216
6217         intel_dig_port->hpd_pulse = intel_dp_hpd_pulse;
6218         dev_priv->hotplug.irq_port[port] = intel_dig_port;
6219
6220         if (!intel_dp_init_connector(intel_dig_port, intel_connector))
6221                 goto err_init_connector;
6222
6223         return;
6224
6225 err_init_connector:
6226         drm_encoder_cleanup(encoder);
6227         kfree(intel_connector);
6228 err_connector_alloc:
6229         kfree(intel_dig_port);
6230
6231         return;
6232 }
6233
6234 void intel_dp_mst_suspend(struct drm_device *dev)
6235 {
6236         struct drm_i915_private *dev_priv = dev->dev_private;
6237         int i;
6238
6239         /* disable MST */
6240         for (i = 0; i < I915_MAX_PORTS; i++) {
6241                 struct intel_digital_port *intel_dig_port = dev_priv->hotplug.irq_port[i];
6242                 if (!intel_dig_port)
6243                         continue;
6244
6245                 if (intel_dig_port->base.type == INTEL_OUTPUT_DISPLAYPORT) {
6246                         if (!intel_dig_port->dp.can_mst)
6247                                 continue;
6248                         if (intel_dig_port->dp.is_mst)
6249                                 drm_dp_mst_topology_mgr_suspend(&intel_dig_port->dp.mst_mgr);
6250                 }
6251         }
6252 }
6253
6254 void intel_dp_mst_resume(struct drm_device *dev)
6255 {
6256         struct drm_i915_private *dev_priv = dev->dev_private;
6257         int i;
6258
6259         for (i = 0; i < I915_MAX_PORTS; i++) {
6260                 struct intel_digital_port *intel_dig_port = dev_priv->hotplug.irq_port[i];
6261                 if (!intel_dig_port)
6262                         continue;
6263                 if (intel_dig_port->base.type == INTEL_OUTPUT_DISPLAYPORT) {
6264                         int ret;
6265
6266                         if (!intel_dig_port->dp.can_mst)
6267                                 continue;
6268
6269                         ret = drm_dp_mst_topology_mgr_resume(&intel_dig_port->dp.mst_mgr);
6270                         if (ret != 0) {
6271                                 intel_dp_check_mst_status(&intel_dig_port->dp);
6272                         }
6273                 }
6274         }
6275 }