Merge tag 'lsk-v4.4-16.07-android'
[firefly-linux-kernel-4.4.55.git] / drivers / gpu / drm / i915 / intel_dp.c
1 /*
2  * Copyright © 2008 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *    Keith Packard <keithp@keithp.com>
25  *
26  */
27
28 #include <linux/i2c.h>
29 #include <linux/slab.h>
30 #include <linux/export.h>
31 #include <linux/notifier.h>
32 #include <linux/reboot.h>
33 #include <drm/drmP.h>
34 #include <drm/drm_atomic_helper.h>
35 #include <drm/drm_crtc.h>
36 #include <drm/drm_crtc_helper.h>
37 #include <drm/drm_edid.h>
38 #include "intel_drv.h"
39 #include <drm/i915_drm.h>
40 #include "i915_drv.h"
41
42 #define DP_LINK_CHECK_TIMEOUT   (10 * 1000)
43
44 /* Compliance test status bits  */
45 #define INTEL_DP_RESOLUTION_SHIFT_MASK  0
46 #define INTEL_DP_RESOLUTION_PREFERRED   (1 << INTEL_DP_RESOLUTION_SHIFT_MASK)
47 #define INTEL_DP_RESOLUTION_STANDARD    (2 << INTEL_DP_RESOLUTION_SHIFT_MASK)
48 #define INTEL_DP_RESOLUTION_FAILSAFE    (3 << INTEL_DP_RESOLUTION_SHIFT_MASK)
49
50 struct dp_link_dpll {
51         int clock;
52         struct dpll dpll;
53 };
54
55 static const struct dp_link_dpll gen4_dpll[] = {
56         { 162000,
57                 { .p1 = 2, .p2 = 10, .n = 2, .m1 = 23, .m2 = 8 } },
58         { 270000,
59                 { .p1 = 1, .p2 = 10, .n = 1, .m1 = 14, .m2 = 2 } }
60 };
61
62 static const struct dp_link_dpll pch_dpll[] = {
63         { 162000,
64                 { .p1 = 2, .p2 = 10, .n = 1, .m1 = 12, .m2 = 9 } },
65         { 270000,
66                 { .p1 = 1, .p2 = 10, .n = 2, .m1 = 14, .m2 = 8 } }
67 };
68
69 static const struct dp_link_dpll vlv_dpll[] = {
70         { 162000,
71                 { .p1 = 3, .p2 = 2, .n = 5, .m1 = 3, .m2 = 81 } },
72         { 270000,
73                 { .p1 = 2, .p2 = 2, .n = 1, .m1 = 2, .m2 = 27 } }
74 };
75
76 /*
77  * CHV supports eDP 1.4 that have  more link rates.
78  * Below only provides the fixed rate but exclude variable rate.
79  */
80 static const struct dp_link_dpll chv_dpll[] = {
81         /*
82          * CHV requires to program fractional division for m2.
83          * m2 is stored in fixed point format using formula below
84          * (m2_int << 22) | m2_fraction
85          */
86         { 162000,       /* m2_int = 32, m2_fraction = 1677722 */
87                 { .p1 = 4, .p2 = 2, .n = 1, .m1 = 2, .m2 = 0x819999a } },
88         { 270000,       /* m2_int = 27, m2_fraction = 0 */
89                 { .p1 = 4, .p2 = 1, .n = 1, .m1 = 2, .m2 = 0x6c00000 } },
90         { 540000,       /* m2_int = 27, m2_fraction = 0 */
91                 { .p1 = 2, .p2 = 1, .n = 1, .m1 = 2, .m2 = 0x6c00000 } }
92 };
93
94 static const int bxt_rates[] = { 162000, 216000, 243000, 270000,
95                                   324000, 432000, 540000 };
96 static const int skl_rates[] = { 162000, 216000, 270000,
97                                   324000, 432000, 540000 };
98 static const int default_rates[] = { 162000, 270000, 540000 };
99
100 /**
101  * is_edp - is the given port attached to an eDP panel (either CPU or PCH)
102  * @intel_dp: DP struct
103  *
104  * If a CPU or PCH DP output is attached to an eDP panel, this function
105  * will return true, and false otherwise.
106  */
107 static bool is_edp(struct intel_dp *intel_dp)
108 {
109         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
110
111         return intel_dig_port->base.type == INTEL_OUTPUT_EDP;
112 }
113
114 static struct drm_device *intel_dp_to_dev(struct intel_dp *intel_dp)
115 {
116         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
117
118         return intel_dig_port->base.base.dev;
119 }
120
121 static struct intel_dp *intel_attached_dp(struct drm_connector *connector)
122 {
123         return enc_to_intel_dp(&intel_attached_encoder(connector)->base);
124 }
125
126 static void intel_dp_link_down(struct intel_dp *intel_dp);
127 static bool edp_panel_vdd_on(struct intel_dp *intel_dp);
128 static void edp_panel_vdd_off(struct intel_dp *intel_dp, bool sync);
129 static void vlv_init_panel_power_sequencer(struct intel_dp *intel_dp);
130 static void vlv_steal_power_sequencer(struct drm_device *dev,
131                                       enum pipe pipe);
132
133 static unsigned int intel_dp_unused_lane_mask(int lane_count)
134 {
135         return ~((1 << lane_count) - 1) & 0xf;
136 }
137
138 static int
139 intel_dp_max_link_bw(struct intel_dp  *intel_dp)
140 {
141         int max_link_bw = intel_dp->dpcd[DP_MAX_LINK_RATE];
142
143         switch (max_link_bw) {
144         case DP_LINK_BW_1_62:
145         case DP_LINK_BW_2_7:
146         case DP_LINK_BW_5_4:
147                 break;
148         default:
149                 WARN(1, "invalid max DP link bw val %x, using 1.62Gbps\n",
150                      max_link_bw);
151                 max_link_bw = DP_LINK_BW_1_62;
152                 break;
153         }
154         return max_link_bw;
155 }
156
157 static u8 intel_dp_max_lane_count(struct intel_dp *intel_dp)
158 {
159         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
160         struct drm_device *dev = intel_dig_port->base.base.dev;
161         u8 source_max, sink_max;
162
163         source_max = 4;
164         if (HAS_DDI(dev) && intel_dig_port->port == PORT_A &&
165             (intel_dig_port->saved_port_bits & DDI_A_4_LANES) == 0)
166                 source_max = 2;
167
168         sink_max = drm_dp_max_lane_count(intel_dp->dpcd);
169
170         return min(source_max, sink_max);
171 }
172
173 /*
174  * The units on the numbers in the next two are... bizarre.  Examples will
175  * make it clearer; this one parallels an example in the eDP spec.
176  *
177  * intel_dp_max_data_rate for one lane of 2.7GHz evaluates as:
178  *
179  *     270000 * 1 * 8 / 10 == 216000
180  *
181  * The actual data capacity of that configuration is 2.16Gbit/s, so the
182  * units are decakilobits.  ->clock in a drm_display_mode is in kilohertz -
183  * or equivalently, kilopixels per second - so for 1680x1050R it'd be
184  * 119000.  At 18bpp that's 2142000 kilobits per second.
185  *
186  * Thus the strange-looking division by 10 in intel_dp_link_required, to
187  * get the result in decakilobits instead of kilobits.
188  */
189
190 static int
191 intel_dp_link_required(int pixel_clock, int bpp)
192 {
193         return (pixel_clock * bpp + 9) / 10;
194 }
195
196 static int
197 intel_dp_max_data_rate(int max_link_clock, int max_lanes)
198 {
199         return (max_link_clock * max_lanes * 8) / 10;
200 }
201
202 static enum drm_mode_status
203 intel_dp_mode_valid(struct drm_connector *connector,
204                     struct drm_display_mode *mode)
205 {
206         struct intel_dp *intel_dp = intel_attached_dp(connector);
207         struct intel_connector *intel_connector = to_intel_connector(connector);
208         struct drm_display_mode *fixed_mode = intel_connector->panel.fixed_mode;
209         int target_clock = mode->clock;
210         int max_rate, mode_rate, max_lanes, max_link_clock;
211
212         if (is_edp(intel_dp) && fixed_mode) {
213                 if (mode->hdisplay > fixed_mode->hdisplay)
214                         return MODE_PANEL;
215
216                 if (mode->vdisplay > fixed_mode->vdisplay)
217                         return MODE_PANEL;
218
219                 target_clock = fixed_mode->clock;
220         }
221
222         max_link_clock = intel_dp_max_link_rate(intel_dp);
223         max_lanes = intel_dp_max_lane_count(intel_dp);
224
225         max_rate = intel_dp_max_data_rate(max_link_clock, max_lanes);
226         mode_rate = intel_dp_link_required(target_clock, 18);
227
228         if (mode_rate > max_rate)
229                 return MODE_CLOCK_HIGH;
230
231         if (mode->clock < 10000)
232                 return MODE_CLOCK_LOW;
233
234         if (mode->flags & DRM_MODE_FLAG_DBLCLK)
235                 return MODE_H_ILLEGAL;
236
237         return MODE_OK;
238 }
239
240 uint32_t intel_dp_pack_aux(const uint8_t *src, int src_bytes)
241 {
242         int     i;
243         uint32_t v = 0;
244
245         if (src_bytes > 4)
246                 src_bytes = 4;
247         for (i = 0; i < src_bytes; i++)
248                 v |= ((uint32_t) src[i]) << ((3-i) * 8);
249         return v;
250 }
251
252 static void intel_dp_unpack_aux(uint32_t src, uint8_t *dst, int dst_bytes)
253 {
254         int i;
255         if (dst_bytes > 4)
256                 dst_bytes = 4;
257         for (i = 0; i < dst_bytes; i++)
258                 dst[i] = src >> ((3-i) * 8);
259 }
260
261 static void
262 intel_dp_init_panel_power_sequencer(struct drm_device *dev,
263                                     struct intel_dp *intel_dp);
264 static void
265 intel_dp_init_panel_power_sequencer_registers(struct drm_device *dev,
266                                               struct intel_dp *intel_dp);
267
268 static void pps_lock(struct intel_dp *intel_dp)
269 {
270         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
271         struct intel_encoder *encoder = &intel_dig_port->base;
272         struct drm_device *dev = encoder->base.dev;
273         struct drm_i915_private *dev_priv = dev->dev_private;
274         enum intel_display_power_domain power_domain;
275
276         /*
277          * See vlv_power_sequencer_reset() why we need
278          * a power domain reference here.
279          */
280         power_domain = intel_display_port_aux_power_domain(encoder);
281         intel_display_power_get(dev_priv, power_domain);
282
283         mutex_lock(&dev_priv->pps_mutex);
284 }
285
286 static void pps_unlock(struct intel_dp *intel_dp)
287 {
288         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
289         struct intel_encoder *encoder = &intel_dig_port->base;
290         struct drm_device *dev = encoder->base.dev;
291         struct drm_i915_private *dev_priv = dev->dev_private;
292         enum intel_display_power_domain power_domain;
293
294         mutex_unlock(&dev_priv->pps_mutex);
295
296         power_domain = intel_display_port_aux_power_domain(encoder);
297         intel_display_power_put(dev_priv, power_domain);
298 }
299
300 static void
301 vlv_power_sequencer_kick(struct intel_dp *intel_dp)
302 {
303         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
304         struct drm_device *dev = intel_dig_port->base.base.dev;
305         struct drm_i915_private *dev_priv = dev->dev_private;
306         enum pipe pipe = intel_dp->pps_pipe;
307         bool pll_enabled, release_cl_override = false;
308         enum dpio_phy phy = DPIO_PHY(pipe);
309         enum dpio_channel ch = vlv_pipe_to_channel(pipe);
310         uint32_t DP;
311
312         if (WARN(I915_READ(intel_dp->output_reg) & DP_PORT_EN,
313                  "skipping pipe %c power seqeuncer kick due to port %c being active\n",
314                  pipe_name(pipe), port_name(intel_dig_port->port)))
315                 return;
316
317         DRM_DEBUG_KMS("kicking pipe %c power sequencer for port %c\n",
318                       pipe_name(pipe), port_name(intel_dig_port->port));
319
320         /* Preserve the BIOS-computed detected bit. This is
321          * supposed to be read-only.
322          */
323         DP = I915_READ(intel_dp->output_reg) & DP_DETECTED;
324         DP |= DP_VOLTAGE_0_4 | DP_PRE_EMPHASIS_0;
325         DP |= DP_PORT_WIDTH(1);
326         DP |= DP_LINK_TRAIN_PAT_1;
327
328         if (IS_CHERRYVIEW(dev))
329                 DP |= DP_PIPE_SELECT_CHV(pipe);
330         else if (pipe == PIPE_B)
331                 DP |= DP_PIPEB_SELECT;
332
333         pll_enabled = I915_READ(DPLL(pipe)) & DPLL_VCO_ENABLE;
334
335         /*
336          * The DPLL for the pipe must be enabled for this to work.
337          * So enable temporarily it if it's not already enabled.
338          */
339         if (!pll_enabled) {
340                 release_cl_override = IS_CHERRYVIEW(dev) &&
341                         !chv_phy_powergate_ch(dev_priv, phy, ch, true);
342
343                 vlv_force_pll_on(dev, pipe, IS_CHERRYVIEW(dev) ?
344                                  &chv_dpll[0].dpll : &vlv_dpll[0].dpll);
345         }
346
347         /*
348          * Similar magic as in intel_dp_enable_port().
349          * We _must_ do this port enable + disable trick
350          * to make this power seqeuencer lock onto the port.
351          * Otherwise even VDD force bit won't work.
352          */
353         I915_WRITE(intel_dp->output_reg, DP);
354         POSTING_READ(intel_dp->output_reg);
355
356         I915_WRITE(intel_dp->output_reg, DP | DP_PORT_EN);
357         POSTING_READ(intel_dp->output_reg);
358
359         I915_WRITE(intel_dp->output_reg, DP & ~DP_PORT_EN);
360         POSTING_READ(intel_dp->output_reg);
361
362         if (!pll_enabled) {
363                 vlv_force_pll_off(dev, pipe);
364
365                 if (release_cl_override)
366                         chv_phy_powergate_ch(dev_priv, phy, ch, false);
367         }
368 }
369
370 static enum pipe
371 vlv_power_sequencer_pipe(struct intel_dp *intel_dp)
372 {
373         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
374         struct drm_device *dev = intel_dig_port->base.base.dev;
375         struct drm_i915_private *dev_priv = dev->dev_private;
376         struct intel_encoder *encoder;
377         unsigned int pipes = (1 << PIPE_A) | (1 << PIPE_B);
378         enum pipe pipe;
379
380         lockdep_assert_held(&dev_priv->pps_mutex);
381
382         /* We should never land here with regular DP ports */
383         WARN_ON(!is_edp(intel_dp));
384
385         if (intel_dp->pps_pipe != INVALID_PIPE)
386                 return intel_dp->pps_pipe;
387
388         /*
389          * We don't have power sequencer currently.
390          * Pick one that's not used by other ports.
391          */
392         list_for_each_entry(encoder, &dev->mode_config.encoder_list,
393                             base.head) {
394                 struct intel_dp *tmp;
395
396                 if (encoder->type != INTEL_OUTPUT_EDP)
397                         continue;
398
399                 tmp = enc_to_intel_dp(&encoder->base);
400
401                 if (tmp->pps_pipe != INVALID_PIPE)
402                         pipes &= ~(1 << tmp->pps_pipe);
403         }
404
405         /*
406          * Didn't find one. This should not happen since there
407          * are two power sequencers and up to two eDP ports.
408          */
409         if (WARN_ON(pipes == 0))
410                 pipe = PIPE_A;
411         else
412                 pipe = ffs(pipes) - 1;
413
414         vlv_steal_power_sequencer(dev, pipe);
415         intel_dp->pps_pipe = pipe;
416
417         DRM_DEBUG_KMS("picked pipe %c power sequencer for port %c\n",
418                       pipe_name(intel_dp->pps_pipe),
419                       port_name(intel_dig_port->port));
420
421         /* init power sequencer on this pipe and port */
422         intel_dp_init_panel_power_sequencer(dev, intel_dp);
423         intel_dp_init_panel_power_sequencer_registers(dev, intel_dp);
424
425         /*
426          * Even vdd force doesn't work until we've made
427          * the power sequencer lock in on the port.
428          */
429         vlv_power_sequencer_kick(intel_dp);
430
431         return intel_dp->pps_pipe;
432 }
433
434 typedef bool (*vlv_pipe_check)(struct drm_i915_private *dev_priv,
435                                enum pipe pipe);
436
437 static bool vlv_pipe_has_pp_on(struct drm_i915_private *dev_priv,
438                                enum pipe pipe)
439 {
440         return I915_READ(VLV_PIPE_PP_STATUS(pipe)) & PP_ON;
441 }
442
443 static bool vlv_pipe_has_vdd_on(struct drm_i915_private *dev_priv,
444                                 enum pipe pipe)
445 {
446         return I915_READ(VLV_PIPE_PP_CONTROL(pipe)) & EDP_FORCE_VDD;
447 }
448
449 static bool vlv_pipe_any(struct drm_i915_private *dev_priv,
450                          enum pipe pipe)
451 {
452         return true;
453 }
454
455 static enum pipe
456 vlv_initial_pps_pipe(struct drm_i915_private *dev_priv,
457                      enum port port,
458                      vlv_pipe_check pipe_check)
459 {
460         enum pipe pipe;
461
462         for (pipe = PIPE_A; pipe <= PIPE_B; pipe++) {
463                 u32 port_sel = I915_READ(VLV_PIPE_PP_ON_DELAYS(pipe)) &
464                         PANEL_PORT_SELECT_MASK;
465
466                 if (port_sel != PANEL_PORT_SELECT_VLV(port))
467                         continue;
468
469                 if (!pipe_check(dev_priv, pipe))
470                         continue;
471
472                 return pipe;
473         }
474
475         return INVALID_PIPE;
476 }
477
478 static void
479 vlv_initial_power_sequencer_setup(struct intel_dp *intel_dp)
480 {
481         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
482         struct drm_device *dev = intel_dig_port->base.base.dev;
483         struct drm_i915_private *dev_priv = dev->dev_private;
484         enum port port = intel_dig_port->port;
485
486         lockdep_assert_held(&dev_priv->pps_mutex);
487
488         /* try to find a pipe with this port selected */
489         /* first pick one where the panel is on */
490         intel_dp->pps_pipe = vlv_initial_pps_pipe(dev_priv, port,
491                                                   vlv_pipe_has_pp_on);
492         /* didn't find one? pick one where vdd is on */
493         if (intel_dp->pps_pipe == INVALID_PIPE)
494                 intel_dp->pps_pipe = vlv_initial_pps_pipe(dev_priv, port,
495                                                           vlv_pipe_has_vdd_on);
496         /* didn't find one? pick one with just the correct port */
497         if (intel_dp->pps_pipe == INVALID_PIPE)
498                 intel_dp->pps_pipe = vlv_initial_pps_pipe(dev_priv, port,
499                                                           vlv_pipe_any);
500
501         /* didn't find one? just let vlv_power_sequencer_pipe() pick one when needed */
502         if (intel_dp->pps_pipe == INVALID_PIPE) {
503                 DRM_DEBUG_KMS("no initial power sequencer for port %c\n",
504                               port_name(port));
505                 return;
506         }
507
508         DRM_DEBUG_KMS("initial power sequencer for port %c: pipe %c\n",
509                       port_name(port), pipe_name(intel_dp->pps_pipe));
510
511         intel_dp_init_panel_power_sequencer(dev, intel_dp);
512         intel_dp_init_panel_power_sequencer_registers(dev, intel_dp);
513 }
514
515 void vlv_power_sequencer_reset(struct drm_i915_private *dev_priv)
516 {
517         struct drm_device *dev = dev_priv->dev;
518         struct intel_encoder *encoder;
519
520         if (WARN_ON(!IS_VALLEYVIEW(dev)))
521                 return;
522
523         /*
524          * We can't grab pps_mutex here due to deadlock with power_domain
525          * mutex when power_domain functions are called while holding pps_mutex.
526          * That also means that in order to use pps_pipe the code needs to
527          * hold both a power domain reference and pps_mutex, and the power domain
528          * reference get/put must be done while _not_ holding pps_mutex.
529          * pps_{lock,unlock}() do these steps in the correct order, so one
530          * should use them always.
531          */
532
533         list_for_each_entry(encoder, &dev->mode_config.encoder_list, base.head) {
534                 struct intel_dp *intel_dp;
535
536                 if (encoder->type != INTEL_OUTPUT_EDP)
537                         continue;
538
539                 intel_dp = enc_to_intel_dp(&encoder->base);
540                 intel_dp->pps_pipe = INVALID_PIPE;
541         }
542 }
543
544 static u32 _pp_ctrl_reg(struct intel_dp *intel_dp)
545 {
546         struct drm_device *dev = intel_dp_to_dev(intel_dp);
547
548         if (IS_BROXTON(dev))
549                 return BXT_PP_CONTROL(0);
550         else if (HAS_PCH_SPLIT(dev))
551                 return PCH_PP_CONTROL;
552         else
553                 return VLV_PIPE_PP_CONTROL(vlv_power_sequencer_pipe(intel_dp));
554 }
555
556 static u32 _pp_stat_reg(struct intel_dp *intel_dp)
557 {
558         struct drm_device *dev = intel_dp_to_dev(intel_dp);
559
560         if (IS_BROXTON(dev))
561                 return BXT_PP_STATUS(0);
562         else if (HAS_PCH_SPLIT(dev))
563                 return PCH_PP_STATUS;
564         else
565                 return VLV_PIPE_PP_STATUS(vlv_power_sequencer_pipe(intel_dp));
566 }
567
568 /* Reboot notifier handler to shutdown panel power to guarantee T12 timing
569    This function only applicable when panel PM state is not to be tracked */
570 static int edp_notify_handler(struct notifier_block *this, unsigned long code,
571                               void *unused)
572 {
573         struct intel_dp *intel_dp = container_of(this, typeof(* intel_dp),
574                                                  edp_notifier);
575         struct drm_device *dev = intel_dp_to_dev(intel_dp);
576         struct drm_i915_private *dev_priv = dev->dev_private;
577
578         if (!is_edp(intel_dp) || code != SYS_RESTART)
579                 return 0;
580
581         pps_lock(intel_dp);
582
583         if (IS_VALLEYVIEW(dev)) {
584                 enum pipe pipe = vlv_power_sequencer_pipe(intel_dp);
585                 u32 pp_ctrl_reg, pp_div_reg;
586                 u32 pp_div;
587
588                 pp_ctrl_reg = VLV_PIPE_PP_CONTROL(pipe);
589                 pp_div_reg  = VLV_PIPE_PP_DIVISOR(pipe);
590                 pp_div = I915_READ(pp_div_reg);
591                 pp_div &= PP_REFERENCE_DIVIDER_MASK;
592
593                 /* 0x1F write to PP_DIV_REG sets max cycle delay */
594                 I915_WRITE(pp_div_reg, pp_div | 0x1F);
595                 I915_WRITE(pp_ctrl_reg, PANEL_UNLOCK_REGS | PANEL_POWER_OFF);
596                 msleep(intel_dp->panel_power_cycle_delay);
597         }
598
599         pps_unlock(intel_dp);
600
601         return 0;
602 }
603
604 static bool edp_have_panel_power(struct intel_dp *intel_dp)
605 {
606         struct drm_device *dev = intel_dp_to_dev(intel_dp);
607         struct drm_i915_private *dev_priv = dev->dev_private;
608
609         lockdep_assert_held(&dev_priv->pps_mutex);
610
611         if (IS_VALLEYVIEW(dev) &&
612             intel_dp->pps_pipe == INVALID_PIPE)
613                 return false;
614
615         return (I915_READ(_pp_stat_reg(intel_dp)) & PP_ON) != 0;
616 }
617
618 static bool edp_have_panel_vdd(struct intel_dp *intel_dp)
619 {
620         struct drm_device *dev = intel_dp_to_dev(intel_dp);
621         struct drm_i915_private *dev_priv = dev->dev_private;
622
623         lockdep_assert_held(&dev_priv->pps_mutex);
624
625         if (IS_VALLEYVIEW(dev) &&
626             intel_dp->pps_pipe == INVALID_PIPE)
627                 return false;
628
629         return I915_READ(_pp_ctrl_reg(intel_dp)) & EDP_FORCE_VDD;
630 }
631
632 static void
633 intel_dp_check_edp(struct intel_dp *intel_dp)
634 {
635         struct drm_device *dev = intel_dp_to_dev(intel_dp);
636         struct drm_i915_private *dev_priv = dev->dev_private;
637
638         if (!is_edp(intel_dp))
639                 return;
640
641         if (!edp_have_panel_power(intel_dp) && !edp_have_panel_vdd(intel_dp)) {
642                 WARN(1, "eDP powered off while attempting aux channel communication.\n");
643                 DRM_DEBUG_KMS("Status 0x%08x Control 0x%08x\n",
644                               I915_READ(_pp_stat_reg(intel_dp)),
645                               I915_READ(_pp_ctrl_reg(intel_dp)));
646         }
647 }
648
649 static uint32_t
650 intel_dp_aux_wait_done(struct intel_dp *intel_dp, bool has_aux_irq)
651 {
652         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
653         struct drm_device *dev = intel_dig_port->base.base.dev;
654         struct drm_i915_private *dev_priv = dev->dev_private;
655         uint32_t ch_ctl = intel_dp->aux_ch_ctl_reg;
656         uint32_t status;
657         bool done;
658
659 #define C (((status = I915_READ_NOTRACE(ch_ctl)) & DP_AUX_CH_CTL_SEND_BUSY) == 0)
660         if (has_aux_irq)
661                 done = wait_event_timeout(dev_priv->gmbus_wait_queue, C,
662                                           msecs_to_jiffies_timeout(10));
663         else
664                 done = wait_for_atomic(C, 10) == 0;
665         if (!done)
666                 DRM_ERROR("dp aux hw did not signal timeout (has irq: %i)!\n",
667                           has_aux_irq);
668 #undef C
669
670         return status;
671 }
672
673 static uint32_t i9xx_get_aux_clock_divider(struct intel_dp *intel_dp, int index)
674 {
675         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
676         struct drm_device *dev = intel_dig_port->base.base.dev;
677
678         /*
679          * The clock divider is based off the hrawclk, and would like to run at
680          * 2MHz.  So, take the hrawclk value and divide by 2 and use that
681          */
682         return index ? 0 : intel_hrawclk(dev) / 2;
683 }
684
685 static uint32_t ilk_get_aux_clock_divider(struct intel_dp *intel_dp, int index)
686 {
687         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
688         struct drm_device *dev = intel_dig_port->base.base.dev;
689         struct drm_i915_private *dev_priv = dev->dev_private;
690
691         if (index)
692                 return 0;
693
694         if (intel_dig_port->port == PORT_A) {
695                 return DIV_ROUND_UP(dev_priv->cdclk_freq, 2000);
696
697         } else {
698                 return DIV_ROUND_UP(intel_pch_rawclk(dev), 2);
699         }
700 }
701
702 static uint32_t hsw_get_aux_clock_divider(struct intel_dp *intel_dp, int index)
703 {
704         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
705         struct drm_device *dev = intel_dig_port->base.base.dev;
706         struct drm_i915_private *dev_priv = dev->dev_private;
707
708         if (intel_dig_port->port == PORT_A) {
709                 if (index)
710                         return 0;
711                 return DIV_ROUND_CLOSEST(dev_priv->cdclk_freq, 2000);
712         } else if (dev_priv->pch_id == INTEL_PCH_LPT_DEVICE_ID_TYPE) {
713                 /* Workaround for non-ULT HSW */
714                 switch (index) {
715                 case 0: return 63;
716                 case 1: return 72;
717                 default: return 0;
718                 }
719         } else  {
720                 return index ? 0 : DIV_ROUND_UP(intel_pch_rawclk(dev), 2);
721         }
722 }
723
724 static uint32_t vlv_get_aux_clock_divider(struct intel_dp *intel_dp, int index)
725 {
726         return index ? 0 : 100;
727 }
728
729 static uint32_t skl_get_aux_clock_divider(struct intel_dp *intel_dp, int index)
730 {
731         /*
732          * SKL doesn't need us to program the AUX clock divider (Hardware will
733          * derive the clock from CDCLK automatically). We still implement the
734          * get_aux_clock_divider vfunc to plug-in into the existing code.
735          */
736         return index ? 0 : 1;
737 }
738
739 static uint32_t i9xx_get_aux_send_ctl(struct intel_dp *intel_dp,
740                                       bool has_aux_irq,
741                                       int send_bytes,
742                                       uint32_t aux_clock_divider)
743 {
744         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
745         struct drm_device *dev = intel_dig_port->base.base.dev;
746         uint32_t precharge, timeout;
747
748         if (IS_GEN6(dev))
749                 precharge = 3;
750         else
751                 precharge = 5;
752
753         if (IS_BROADWELL(dev) && intel_dp->aux_ch_ctl_reg == DPA_AUX_CH_CTL)
754                 timeout = DP_AUX_CH_CTL_TIME_OUT_600us;
755         else
756                 timeout = DP_AUX_CH_CTL_TIME_OUT_400us;
757
758         return DP_AUX_CH_CTL_SEND_BUSY |
759                DP_AUX_CH_CTL_DONE |
760                (has_aux_irq ? DP_AUX_CH_CTL_INTERRUPT : 0) |
761                DP_AUX_CH_CTL_TIME_OUT_ERROR |
762                timeout |
763                DP_AUX_CH_CTL_RECEIVE_ERROR |
764                (send_bytes << DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT) |
765                (precharge << DP_AUX_CH_CTL_PRECHARGE_2US_SHIFT) |
766                (aux_clock_divider << DP_AUX_CH_CTL_BIT_CLOCK_2X_SHIFT);
767 }
768
769 static uint32_t skl_get_aux_send_ctl(struct intel_dp *intel_dp,
770                                       bool has_aux_irq,
771                                       int send_bytes,
772                                       uint32_t unused)
773 {
774         return DP_AUX_CH_CTL_SEND_BUSY |
775                DP_AUX_CH_CTL_DONE |
776                (has_aux_irq ? DP_AUX_CH_CTL_INTERRUPT : 0) |
777                DP_AUX_CH_CTL_TIME_OUT_ERROR |
778                DP_AUX_CH_CTL_TIME_OUT_1600us |
779                DP_AUX_CH_CTL_RECEIVE_ERROR |
780                (send_bytes << DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT) |
781                DP_AUX_CH_CTL_SYNC_PULSE_SKL(32);
782 }
783
784 static int
785 intel_dp_aux_ch(struct intel_dp *intel_dp,
786                 const uint8_t *send, int send_bytes,
787                 uint8_t *recv, int recv_size)
788 {
789         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
790         struct drm_device *dev = intel_dig_port->base.base.dev;
791         struct drm_i915_private *dev_priv = dev->dev_private;
792         uint32_t ch_ctl = intel_dp->aux_ch_ctl_reg;
793         uint32_t ch_data = ch_ctl + 4;
794         uint32_t aux_clock_divider;
795         int i, ret, recv_bytes;
796         uint32_t status;
797         int try, clock = 0;
798         bool has_aux_irq = HAS_AUX_IRQ(dev);
799         bool vdd;
800
801         pps_lock(intel_dp);
802
803         /*
804          * We will be called with VDD already enabled for dpcd/edid/oui reads.
805          * In such cases we want to leave VDD enabled and it's up to upper layers
806          * to turn it off. But for eg. i2c-dev access we need to turn it on/off
807          * ourselves.
808          */
809         vdd = edp_panel_vdd_on(intel_dp);
810
811         /* dp aux is extremely sensitive to irq latency, hence request the
812          * lowest possible wakeup latency and so prevent the cpu from going into
813          * deep sleep states.
814          */
815         pm_qos_update_request(&dev_priv->pm_qos, 0);
816
817         intel_dp_check_edp(intel_dp);
818
819         /* Try to wait for any previous AUX channel activity */
820         for (try = 0; try < 3; try++) {
821                 status = I915_READ_NOTRACE(ch_ctl);
822                 if ((status & DP_AUX_CH_CTL_SEND_BUSY) == 0)
823                         break;
824                 msleep(1);
825         }
826
827         if (try == 3) {
828                 static u32 last_status = -1;
829                 const u32 status = I915_READ(ch_ctl);
830
831                 if (status != last_status) {
832                         WARN(1, "dp_aux_ch not started status 0x%08x\n",
833                              status);
834                         last_status = status;
835                 }
836
837                 ret = -EBUSY;
838                 goto out;
839         }
840
841         /* Only 5 data registers! */
842         if (WARN_ON(send_bytes > 20 || recv_size > 20)) {
843                 ret = -E2BIG;
844                 goto out;
845         }
846
847         while ((aux_clock_divider = intel_dp->get_aux_clock_divider(intel_dp, clock++))) {
848                 u32 send_ctl = intel_dp->get_aux_send_ctl(intel_dp,
849                                                           has_aux_irq,
850                                                           send_bytes,
851                                                           aux_clock_divider);
852
853                 /* Must try at least 3 times according to DP spec */
854                 for (try = 0; try < 5; try++) {
855                         /* Load the send data into the aux channel data registers */
856                         for (i = 0; i < send_bytes; i += 4)
857                                 I915_WRITE(ch_data + i,
858                                            intel_dp_pack_aux(send + i,
859                                                              send_bytes - i));
860
861                         /* Send the command and wait for it to complete */
862                         I915_WRITE(ch_ctl, send_ctl);
863
864                         status = intel_dp_aux_wait_done(intel_dp, has_aux_irq);
865
866                         /* Clear done status and any errors */
867                         I915_WRITE(ch_ctl,
868                                    status |
869                                    DP_AUX_CH_CTL_DONE |
870                                    DP_AUX_CH_CTL_TIME_OUT_ERROR |
871                                    DP_AUX_CH_CTL_RECEIVE_ERROR);
872
873                         if (status & DP_AUX_CH_CTL_TIME_OUT_ERROR)
874                                 continue;
875
876                         /* DP CTS 1.2 Core Rev 1.1, 4.2.1.1 & 4.2.1.2
877                          *   400us delay required for errors and timeouts
878                          *   Timeout errors from the HW already meet this
879                          *   requirement so skip to next iteration
880                          */
881                         if (status & DP_AUX_CH_CTL_RECEIVE_ERROR) {
882                                 usleep_range(400, 500);
883                                 continue;
884                         }
885                         if (status & DP_AUX_CH_CTL_DONE)
886                                 goto done;
887                 }
888         }
889
890         if ((status & DP_AUX_CH_CTL_DONE) == 0) {
891                 DRM_ERROR("dp_aux_ch not done status 0x%08x\n", status);
892                 ret = -EBUSY;
893                 goto out;
894         }
895
896 done:
897         /* Check for timeout or receive error.
898          * Timeouts occur when the sink is not connected
899          */
900         if (status & DP_AUX_CH_CTL_RECEIVE_ERROR) {
901                 DRM_ERROR("dp_aux_ch receive error status 0x%08x\n", status);
902                 ret = -EIO;
903                 goto out;
904         }
905
906         /* Timeouts occur when the device isn't connected, so they're
907          * "normal" -- don't fill the kernel log with these */
908         if (status & DP_AUX_CH_CTL_TIME_OUT_ERROR) {
909                 DRM_DEBUG_KMS("dp_aux_ch timeout status 0x%08x\n", status);
910                 ret = -ETIMEDOUT;
911                 goto out;
912         }
913
914         /* Unload any bytes sent back from the other side */
915         recv_bytes = ((status & DP_AUX_CH_CTL_MESSAGE_SIZE_MASK) >>
916                       DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT);
917         if (recv_bytes > recv_size)
918                 recv_bytes = recv_size;
919
920         for (i = 0; i < recv_bytes; i += 4)
921                 intel_dp_unpack_aux(I915_READ(ch_data + i),
922                                     recv + i, recv_bytes - i);
923
924         ret = recv_bytes;
925 out:
926         pm_qos_update_request(&dev_priv->pm_qos, PM_QOS_DEFAULT_VALUE);
927
928         if (vdd)
929                 edp_panel_vdd_off(intel_dp, false);
930
931         pps_unlock(intel_dp);
932
933         return ret;
934 }
935
936 #define BARE_ADDRESS_SIZE       3
937 #define HEADER_SIZE             (BARE_ADDRESS_SIZE + 1)
938 static ssize_t
939 intel_dp_aux_transfer(struct drm_dp_aux *aux, struct drm_dp_aux_msg *msg)
940 {
941         struct intel_dp *intel_dp = container_of(aux, struct intel_dp, aux);
942         uint8_t txbuf[20], rxbuf[20];
943         size_t txsize, rxsize;
944         int ret;
945
946         txbuf[0] = (msg->request << 4) |
947                 ((msg->address >> 16) & 0xf);
948         txbuf[1] = (msg->address >> 8) & 0xff;
949         txbuf[2] = msg->address & 0xff;
950         txbuf[3] = msg->size - 1;
951
952         switch (msg->request & ~DP_AUX_I2C_MOT) {
953         case DP_AUX_NATIVE_WRITE:
954         case DP_AUX_I2C_WRITE:
955         case DP_AUX_I2C_WRITE_STATUS_UPDATE:
956                 txsize = msg->size ? HEADER_SIZE + msg->size : BARE_ADDRESS_SIZE;
957                 rxsize = 2; /* 0 or 1 data bytes */
958
959                 if (WARN_ON(txsize > 20))
960                         return -E2BIG;
961
962                 memcpy(txbuf + HEADER_SIZE, msg->buffer, msg->size);
963
964                 ret = intel_dp_aux_ch(intel_dp, txbuf, txsize, rxbuf, rxsize);
965                 if (ret > 0) {
966                         msg->reply = rxbuf[0] >> 4;
967
968                         if (ret > 1) {
969                                 /* Number of bytes written in a short write. */
970                                 ret = clamp_t(int, rxbuf[1], 0, msg->size);
971                         } else {
972                                 /* Return payload size. */
973                                 ret = msg->size;
974                         }
975                 }
976                 break;
977
978         case DP_AUX_NATIVE_READ:
979         case DP_AUX_I2C_READ:
980                 txsize = msg->size ? HEADER_SIZE : BARE_ADDRESS_SIZE;
981                 rxsize = msg->size + 1;
982
983                 if (WARN_ON(rxsize > 20))
984                         return -E2BIG;
985
986                 ret = intel_dp_aux_ch(intel_dp, txbuf, txsize, rxbuf, rxsize);
987                 if (ret > 0) {
988                         msg->reply = rxbuf[0] >> 4;
989                         /*
990                          * Assume happy day, and copy the data. The caller is
991                          * expected to check msg->reply before touching it.
992                          *
993                          * Return payload size.
994                          */
995                         ret--;
996                         memcpy(msg->buffer, rxbuf + 1, ret);
997                 }
998                 break;
999
1000         default:
1001                 ret = -EINVAL;
1002                 break;
1003         }
1004
1005         return ret;
1006 }
1007
1008 static void
1009 intel_dp_aux_init(struct intel_dp *intel_dp, struct intel_connector *connector)
1010 {
1011         struct drm_device *dev = intel_dp_to_dev(intel_dp);
1012         struct drm_i915_private *dev_priv = dev->dev_private;
1013         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
1014         enum port port = intel_dig_port->port;
1015         struct ddi_vbt_port_info *info = &dev_priv->vbt.ddi_port_info[port];
1016         const char *name = NULL;
1017         uint32_t porte_aux_ctl_reg = DPA_AUX_CH_CTL;
1018         int ret;
1019
1020         /* On SKL we don't have Aux for port E so we rely on VBT to set
1021          * a proper alternate aux channel.
1022          */
1023         if (IS_SKYLAKE(dev) && port == PORT_E) {
1024                 switch (info->alternate_aux_channel) {
1025                 case DP_AUX_B:
1026                         porte_aux_ctl_reg = DPB_AUX_CH_CTL;
1027                         break;
1028                 case DP_AUX_C:
1029                         porte_aux_ctl_reg = DPC_AUX_CH_CTL;
1030                         break;
1031                 case DP_AUX_D:
1032                         porte_aux_ctl_reg = DPD_AUX_CH_CTL;
1033                         break;
1034                 case DP_AUX_A:
1035                 default:
1036                         porte_aux_ctl_reg = DPA_AUX_CH_CTL;
1037                 }
1038         }
1039
1040         switch (port) {
1041         case PORT_A:
1042                 intel_dp->aux_ch_ctl_reg = DPA_AUX_CH_CTL;
1043                 name = "DPDDC-A";
1044                 break;
1045         case PORT_B:
1046                 intel_dp->aux_ch_ctl_reg = PCH_DPB_AUX_CH_CTL;
1047                 name = "DPDDC-B";
1048                 break;
1049         case PORT_C:
1050                 intel_dp->aux_ch_ctl_reg = PCH_DPC_AUX_CH_CTL;
1051                 name = "DPDDC-C";
1052                 break;
1053         case PORT_D:
1054                 intel_dp->aux_ch_ctl_reg = PCH_DPD_AUX_CH_CTL;
1055                 name = "DPDDC-D";
1056                 break;
1057         case PORT_E:
1058                 intel_dp->aux_ch_ctl_reg = porte_aux_ctl_reg;
1059                 name = "DPDDC-E";
1060                 break;
1061         default:
1062                 BUG();
1063         }
1064
1065         /*
1066          * The AUX_CTL register is usually DP_CTL + 0x10.
1067          *
1068          * On Haswell and Broadwell though:
1069          *   - Both port A DDI_BUF_CTL and DDI_AUX_CTL are on the CPU
1070          *   - Port B/C/D AUX channels are on the PCH, DDI_BUF_CTL on the CPU
1071          *
1072          * Skylake moves AUX_CTL back next to DDI_BUF_CTL, on the CPU.
1073          */
1074         if (!IS_HASWELL(dev) && !IS_BROADWELL(dev) && port != PORT_E)
1075                 intel_dp->aux_ch_ctl_reg = intel_dp->output_reg + 0x10;
1076
1077         intel_dp->aux.name = name;
1078         intel_dp->aux.dev = dev->dev;
1079         intel_dp->aux.transfer = intel_dp_aux_transfer;
1080
1081         DRM_DEBUG_KMS("registering %s bus for %s\n", name,
1082                       connector->base.kdev->kobj.name);
1083
1084         ret = drm_dp_aux_register(&intel_dp->aux);
1085         if (ret < 0) {
1086                 DRM_ERROR("drm_dp_aux_register() for %s failed (%d)\n",
1087                           name, ret);
1088                 return;
1089         }
1090
1091         ret = sysfs_create_link(&connector->base.kdev->kobj,
1092                                 &intel_dp->aux.ddc.dev.kobj,
1093                                 intel_dp->aux.ddc.dev.kobj.name);
1094         if (ret < 0) {
1095                 DRM_ERROR("sysfs_create_link() for %s failed (%d)\n", name, ret);
1096                 drm_dp_aux_unregister(&intel_dp->aux);
1097         }
1098 }
1099
1100 static void
1101 intel_dp_connector_unregister(struct intel_connector *intel_connector)
1102 {
1103         struct intel_dp *intel_dp = intel_attached_dp(&intel_connector->base);
1104
1105         if (!intel_connector->mst_port)
1106                 sysfs_remove_link(&intel_connector->base.kdev->kobj,
1107                                   intel_dp->aux.ddc.dev.kobj.name);
1108         intel_connector_unregister(intel_connector);
1109 }
1110
1111 static void
1112 skl_edp_set_pll_config(struct intel_crtc_state *pipe_config)
1113 {
1114         u32 ctrl1;
1115
1116         memset(&pipe_config->dpll_hw_state, 0,
1117                sizeof(pipe_config->dpll_hw_state));
1118
1119         pipe_config->ddi_pll_sel = SKL_DPLL0;
1120         pipe_config->dpll_hw_state.cfgcr1 = 0;
1121         pipe_config->dpll_hw_state.cfgcr2 = 0;
1122
1123         ctrl1 = DPLL_CTRL1_OVERRIDE(SKL_DPLL0);
1124         switch (pipe_config->port_clock / 2) {
1125         case 81000:
1126                 ctrl1 |= DPLL_CTRL1_LINK_RATE(DPLL_CTRL1_LINK_RATE_810,
1127                                               SKL_DPLL0);
1128                 break;
1129         case 135000:
1130                 ctrl1 |= DPLL_CTRL1_LINK_RATE(DPLL_CTRL1_LINK_RATE_1350,
1131                                               SKL_DPLL0);
1132                 break;
1133         case 270000:
1134                 ctrl1 |= DPLL_CTRL1_LINK_RATE(DPLL_CTRL1_LINK_RATE_2700,
1135                                               SKL_DPLL0);
1136                 break;
1137         case 162000:
1138                 ctrl1 |= DPLL_CTRL1_LINK_RATE(DPLL_CTRL1_LINK_RATE_1620,
1139                                               SKL_DPLL0);
1140                 break;
1141         /* TBD: For DP link rates 2.16 GHz and 4.32 GHz, VCO is 8640 which
1142         results in CDCLK change. Need to handle the change of CDCLK by
1143         disabling pipes and re-enabling them */
1144         case 108000:
1145                 ctrl1 |= DPLL_CTRL1_LINK_RATE(DPLL_CTRL1_LINK_RATE_1080,
1146                                               SKL_DPLL0);
1147                 break;
1148         case 216000:
1149                 ctrl1 |= DPLL_CTRL1_LINK_RATE(DPLL_CTRL1_LINK_RATE_2160,
1150                                               SKL_DPLL0);
1151                 break;
1152
1153         }
1154         pipe_config->dpll_hw_state.ctrl1 = ctrl1;
1155 }
1156
1157 void
1158 hsw_dp_set_ddi_pll_sel(struct intel_crtc_state *pipe_config)
1159 {
1160         memset(&pipe_config->dpll_hw_state, 0,
1161                sizeof(pipe_config->dpll_hw_state));
1162
1163         switch (pipe_config->port_clock / 2) {
1164         case 81000:
1165                 pipe_config->ddi_pll_sel = PORT_CLK_SEL_LCPLL_810;
1166                 break;
1167         case 135000:
1168                 pipe_config->ddi_pll_sel = PORT_CLK_SEL_LCPLL_1350;
1169                 break;
1170         case 270000:
1171                 pipe_config->ddi_pll_sel = PORT_CLK_SEL_LCPLL_2700;
1172                 break;
1173         }
1174 }
1175
1176 static int
1177 intel_dp_sink_rates(struct intel_dp *intel_dp, const int **sink_rates)
1178 {
1179         if (intel_dp->num_sink_rates) {
1180                 *sink_rates = intel_dp->sink_rates;
1181                 return intel_dp->num_sink_rates;
1182         }
1183
1184         *sink_rates = default_rates;
1185
1186         return (intel_dp_max_link_bw(intel_dp) >> 3) + 1;
1187 }
1188
1189 static bool intel_dp_source_supports_hbr2(struct drm_device *dev)
1190 {
1191         /* WaDisableHBR2:skl */
1192         if (IS_SKYLAKE(dev) && INTEL_REVID(dev) <= SKL_REVID_B0)
1193                 return false;
1194
1195         if ((IS_HASWELL(dev) && !IS_HSW_ULX(dev)) || IS_BROADWELL(dev) ||
1196             (INTEL_INFO(dev)->gen >= 9))
1197                 return true;
1198         else
1199                 return false;
1200 }
1201
1202 static int
1203 intel_dp_source_rates(struct drm_device *dev, const int **source_rates)
1204 {
1205         int size;
1206
1207         if (IS_BROXTON(dev)) {
1208                 *source_rates = bxt_rates;
1209                 size = ARRAY_SIZE(bxt_rates);
1210         } else if (IS_SKYLAKE(dev)) {
1211                 *source_rates = skl_rates;
1212                 size = ARRAY_SIZE(skl_rates);
1213         } else {
1214                 *source_rates = default_rates;
1215                 size = ARRAY_SIZE(default_rates);
1216         }
1217
1218         /* This depends on the fact that 5.4 is last value in the array */
1219         if (!intel_dp_source_supports_hbr2(dev))
1220                 size--;
1221
1222         return size;
1223 }
1224
1225 static void
1226 intel_dp_set_clock(struct intel_encoder *encoder,
1227                    struct intel_crtc_state *pipe_config)
1228 {
1229         struct drm_device *dev = encoder->base.dev;
1230         const struct dp_link_dpll *divisor = NULL;
1231         int i, count = 0;
1232
1233         if (IS_G4X(dev)) {
1234                 divisor = gen4_dpll;
1235                 count = ARRAY_SIZE(gen4_dpll);
1236         } else if (HAS_PCH_SPLIT(dev)) {
1237                 divisor = pch_dpll;
1238                 count = ARRAY_SIZE(pch_dpll);
1239         } else if (IS_CHERRYVIEW(dev)) {
1240                 divisor = chv_dpll;
1241                 count = ARRAY_SIZE(chv_dpll);
1242         } else if (IS_VALLEYVIEW(dev)) {
1243                 divisor = vlv_dpll;
1244                 count = ARRAY_SIZE(vlv_dpll);
1245         }
1246
1247         if (divisor && count) {
1248                 for (i = 0; i < count; i++) {
1249                         if (pipe_config->port_clock == divisor[i].clock) {
1250                                 pipe_config->dpll = divisor[i].dpll;
1251                                 pipe_config->clock_set = true;
1252                                 break;
1253                         }
1254                 }
1255         }
1256 }
1257
1258 static int intersect_rates(const int *source_rates, int source_len,
1259                            const int *sink_rates, int sink_len,
1260                            int *common_rates)
1261 {
1262         int i = 0, j = 0, k = 0;
1263
1264         while (i < source_len && j < sink_len) {
1265                 if (source_rates[i] == sink_rates[j]) {
1266                         if (WARN_ON(k >= DP_MAX_SUPPORTED_RATES))
1267                                 return k;
1268                         common_rates[k] = source_rates[i];
1269                         ++k;
1270                         ++i;
1271                         ++j;
1272                 } else if (source_rates[i] < sink_rates[j]) {
1273                         ++i;
1274                 } else {
1275                         ++j;
1276                 }
1277         }
1278         return k;
1279 }
1280
1281 static int intel_dp_common_rates(struct intel_dp *intel_dp,
1282                                  int *common_rates)
1283 {
1284         struct drm_device *dev = intel_dp_to_dev(intel_dp);
1285         const int *source_rates, *sink_rates;
1286         int source_len, sink_len;
1287
1288         sink_len = intel_dp_sink_rates(intel_dp, &sink_rates);
1289         source_len = intel_dp_source_rates(dev, &source_rates);
1290
1291         return intersect_rates(source_rates, source_len,
1292                                sink_rates, sink_len,
1293                                common_rates);
1294 }
1295
1296 static void snprintf_int_array(char *str, size_t len,
1297                                const int *array, int nelem)
1298 {
1299         int i;
1300
1301         str[0] = '\0';
1302
1303         for (i = 0; i < nelem; i++) {
1304                 int r = snprintf(str, len, "%s%d", i ? ", " : "", array[i]);
1305                 if (r >= len)
1306                         return;
1307                 str += r;
1308                 len -= r;
1309         }
1310 }
1311
1312 static void intel_dp_print_rates(struct intel_dp *intel_dp)
1313 {
1314         struct drm_device *dev = intel_dp_to_dev(intel_dp);
1315         const int *source_rates, *sink_rates;
1316         int source_len, sink_len, common_len;
1317         int common_rates[DP_MAX_SUPPORTED_RATES];
1318         char str[128]; /* FIXME: too big for stack? */
1319
1320         if ((drm_debug & DRM_UT_KMS) == 0)
1321                 return;
1322
1323         source_len = intel_dp_source_rates(dev, &source_rates);
1324         snprintf_int_array(str, sizeof(str), source_rates, source_len);
1325         DRM_DEBUG_KMS("source rates: %s\n", str);
1326
1327         sink_len = intel_dp_sink_rates(intel_dp, &sink_rates);
1328         snprintf_int_array(str, sizeof(str), sink_rates, sink_len);
1329         DRM_DEBUG_KMS("sink rates: %s\n", str);
1330
1331         common_len = intel_dp_common_rates(intel_dp, common_rates);
1332         snprintf_int_array(str, sizeof(str), common_rates, common_len);
1333         DRM_DEBUG_KMS("common rates: %s\n", str);
1334 }
1335
1336 static int rate_to_index(int find, const int *rates)
1337 {
1338         int i = 0;
1339
1340         for (i = 0; i < DP_MAX_SUPPORTED_RATES; ++i)
1341                 if (find == rates[i])
1342                         break;
1343
1344         return i;
1345 }
1346
1347 int
1348 intel_dp_max_link_rate(struct intel_dp *intel_dp)
1349 {
1350         int rates[DP_MAX_SUPPORTED_RATES] = {};
1351         int len;
1352
1353         len = intel_dp_common_rates(intel_dp, rates);
1354         if (WARN_ON(len <= 0))
1355                 return 162000;
1356
1357         return rates[rate_to_index(0, rates) - 1];
1358 }
1359
1360 int intel_dp_rate_select(struct intel_dp *intel_dp, int rate)
1361 {
1362         return rate_to_index(rate, intel_dp->sink_rates);
1363 }
1364
1365 static void intel_dp_compute_rate(struct intel_dp *intel_dp, int port_clock,
1366                                   uint8_t *link_bw, uint8_t *rate_select)
1367 {
1368         if (intel_dp->num_sink_rates) {
1369                 *link_bw = 0;
1370                 *rate_select =
1371                         intel_dp_rate_select(intel_dp, port_clock);
1372         } else {
1373                 *link_bw = drm_dp_link_rate_to_bw_code(port_clock);
1374                 *rate_select = 0;
1375         }
1376 }
1377
1378 bool
1379 intel_dp_compute_config(struct intel_encoder *encoder,
1380                         struct intel_crtc_state *pipe_config)
1381 {
1382         struct drm_device *dev = encoder->base.dev;
1383         struct drm_i915_private *dev_priv = dev->dev_private;
1384         struct drm_display_mode *adjusted_mode = &pipe_config->base.adjusted_mode;
1385         struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
1386         enum port port = dp_to_dig_port(intel_dp)->port;
1387         struct intel_crtc *intel_crtc = to_intel_crtc(pipe_config->base.crtc);
1388         struct intel_connector *intel_connector = intel_dp->attached_connector;
1389         int lane_count, clock;
1390         int min_lane_count = 1;
1391         int max_lane_count = intel_dp_max_lane_count(intel_dp);
1392         /* Conveniently, the link BW constants become indices with a shift...*/
1393         int min_clock = 0;
1394         int max_clock;
1395         int bpp, mode_rate;
1396         int link_avail, link_clock;
1397         int common_rates[DP_MAX_SUPPORTED_RATES] = {};
1398         int common_len;
1399         uint8_t link_bw, rate_select;
1400
1401         common_len = intel_dp_common_rates(intel_dp, common_rates);
1402
1403         /* No common link rates between source and sink */
1404         WARN_ON(common_len <= 0);
1405
1406         max_clock = common_len - 1;
1407
1408         if (HAS_PCH_SPLIT(dev) && !HAS_DDI(dev) && port != PORT_A)
1409                 pipe_config->has_pch_encoder = true;
1410
1411         pipe_config->has_dp_encoder = true;
1412         pipe_config->has_drrs = false;
1413         pipe_config->has_audio = intel_dp->has_audio && port != PORT_A;
1414
1415         if (is_edp(intel_dp) && intel_connector->panel.fixed_mode) {
1416                 intel_fixed_panel_mode(intel_connector->panel.fixed_mode,
1417                                        adjusted_mode);
1418
1419                 if (INTEL_INFO(dev)->gen >= 9) {
1420                         int ret;
1421                         ret = skl_update_scaler_crtc(pipe_config);
1422                         if (ret)
1423                                 return ret;
1424                 }
1425
1426                 if (!HAS_PCH_SPLIT(dev))
1427                         intel_gmch_panel_fitting(intel_crtc, pipe_config,
1428                                                  intel_connector->panel.fitting_mode);
1429                 else
1430                         intel_pch_panel_fitting(intel_crtc, pipe_config,
1431                                                 intel_connector->panel.fitting_mode);
1432         }
1433
1434         if (adjusted_mode->flags & DRM_MODE_FLAG_DBLCLK)
1435                 return false;
1436
1437         DRM_DEBUG_KMS("DP link computation with max lane count %i "
1438                       "max bw %d pixel clock %iKHz\n",
1439                       max_lane_count, common_rates[max_clock],
1440                       adjusted_mode->crtc_clock);
1441
1442         /* Walk through all bpp values. Luckily they're all nicely spaced with 2
1443          * bpc in between. */
1444         bpp = pipe_config->pipe_bpp;
1445         if (is_edp(intel_dp)) {
1446
1447                 /* Get bpp from vbt only for panels that dont have bpp in edid */
1448                 if (intel_connector->base.display_info.bpc == 0 &&
1449                         (dev_priv->vbt.edp_bpp && dev_priv->vbt.edp_bpp < bpp)) {
1450                         DRM_DEBUG_KMS("clamping bpp for eDP panel to BIOS-provided %i\n",
1451                                       dev_priv->vbt.edp_bpp);
1452                         bpp = dev_priv->vbt.edp_bpp;
1453                 }
1454
1455                 /*
1456                  * Use the maximum clock and number of lanes the eDP panel
1457                  * advertizes being capable of. The panels are generally
1458                  * designed to support only a single clock and lane
1459                  * configuration, and typically these values correspond to the
1460                  * native resolution of the panel.
1461                  */
1462                 min_lane_count = max_lane_count;
1463                 min_clock = max_clock;
1464         }
1465
1466         for (; bpp >= 6*3; bpp -= 2*3) {
1467                 mode_rate = intel_dp_link_required(adjusted_mode->crtc_clock,
1468                                                    bpp);
1469
1470                 for (clock = min_clock; clock <= max_clock; clock++) {
1471                         for (lane_count = min_lane_count;
1472                                 lane_count <= max_lane_count;
1473                                 lane_count <<= 1) {
1474
1475                                 link_clock = common_rates[clock];
1476                                 link_avail = intel_dp_max_data_rate(link_clock,
1477                                                                     lane_count);
1478
1479                                 if (mode_rate <= link_avail) {
1480                                         goto found;
1481                                 }
1482                         }
1483                 }
1484         }
1485
1486         return false;
1487
1488 found:
1489         if (intel_dp->color_range_auto) {
1490                 /*
1491                  * See:
1492                  * CEA-861-E - 5.1 Default Encoding Parameters
1493                  * VESA DisplayPort Ver.1.2a - 5.1.1.1 Video Colorimetry
1494                  */
1495                 pipe_config->limited_color_range =
1496                         bpp != 18 && drm_match_cea_mode(adjusted_mode) > 1;
1497         } else {
1498                 pipe_config->limited_color_range =
1499                         intel_dp->limited_color_range;
1500         }
1501
1502         pipe_config->lane_count = lane_count;
1503
1504         pipe_config->pipe_bpp = bpp;
1505         pipe_config->port_clock = common_rates[clock];
1506
1507         intel_dp_compute_rate(intel_dp, pipe_config->port_clock,
1508                               &link_bw, &rate_select);
1509
1510         DRM_DEBUG_KMS("DP link bw %02x rate select %02x lane count %d clock %d bpp %d\n",
1511                       link_bw, rate_select, pipe_config->lane_count,
1512                       pipe_config->port_clock, bpp);
1513         DRM_DEBUG_KMS("DP link bw required %i available %i\n",
1514                       mode_rate, link_avail);
1515
1516         intel_link_compute_m_n(bpp, lane_count,
1517                                adjusted_mode->crtc_clock,
1518                                pipe_config->port_clock,
1519                                &pipe_config->dp_m_n);
1520
1521         if (intel_connector->panel.downclock_mode != NULL &&
1522                 dev_priv->drrs.type == SEAMLESS_DRRS_SUPPORT) {
1523                         pipe_config->has_drrs = true;
1524                         intel_link_compute_m_n(bpp, lane_count,
1525                                 intel_connector->panel.downclock_mode->clock,
1526                                 pipe_config->port_clock,
1527                                 &pipe_config->dp_m2_n2);
1528         }
1529
1530         if (IS_SKYLAKE(dev) && is_edp(intel_dp))
1531                 skl_edp_set_pll_config(pipe_config);
1532         else if (IS_BROXTON(dev))
1533                 /* handled in ddi */;
1534         else if (IS_HASWELL(dev) || IS_BROADWELL(dev))
1535                 hsw_dp_set_ddi_pll_sel(pipe_config);
1536         else
1537                 intel_dp_set_clock(encoder, pipe_config);
1538
1539         return true;
1540 }
1541
1542 static void ironlake_set_pll_cpu_edp(struct intel_dp *intel_dp)
1543 {
1544         struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
1545         struct intel_crtc *crtc = to_intel_crtc(dig_port->base.base.crtc);
1546         struct drm_device *dev = crtc->base.dev;
1547         struct drm_i915_private *dev_priv = dev->dev_private;
1548         u32 dpa_ctl;
1549
1550         DRM_DEBUG_KMS("eDP PLL enable for clock %d\n",
1551                       crtc->config->port_clock);
1552         dpa_ctl = I915_READ(DP_A);
1553         dpa_ctl &= ~DP_PLL_FREQ_MASK;
1554
1555         if (crtc->config->port_clock == 162000) {
1556                 /* For a long time we've carried around a ILK-DevA w/a for the
1557                  * 160MHz clock. If we're really unlucky, it's still required.
1558                  */
1559                 DRM_DEBUG_KMS("160MHz cpu eDP clock, might need ilk devA w/a\n");
1560                 dpa_ctl |= DP_PLL_FREQ_160MHZ;
1561                 intel_dp->DP |= DP_PLL_FREQ_160MHZ;
1562         } else {
1563                 dpa_ctl |= DP_PLL_FREQ_270MHZ;
1564                 intel_dp->DP |= DP_PLL_FREQ_270MHZ;
1565         }
1566
1567         I915_WRITE(DP_A, dpa_ctl);
1568
1569         POSTING_READ(DP_A);
1570         udelay(500);
1571 }
1572
1573 void intel_dp_set_link_params(struct intel_dp *intel_dp,
1574                               const struct intel_crtc_state *pipe_config)
1575 {
1576         intel_dp->link_rate = pipe_config->port_clock;
1577         intel_dp->lane_count = pipe_config->lane_count;
1578 }
1579
1580 static void intel_dp_prepare(struct intel_encoder *encoder)
1581 {
1582         struct drm_device *dev = encoder->base.dev;
1583         struct drm_i915_private *dev_priv = dev->dev_private;
1584         struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
1585         enum port port = dp_to_dig_port(intel_dp)->port;
1586         struct intel_crtc *crtc = to_intel_crtc(encoder->base.crtc);
1587         const struct drm_display_mode *adjusted_mode = &crtc->config->base.adjusted_mode;
1588
1589         intel_dp_set_link_params(intel_dp, crtc->config);
1590
1591         /*
1592          * There are four kinds of DP registers:
1593          *
1594          *      IBX PCH
1595          *      SNB CPU
1596          *      IVB CPU
1597          *      CPT PCH
1598          *
1599          * IBX PCH and CPU are the same for almost everything,
1600          * except that the CPU DP PLL is configured in this
1601          * register
1602          *
1603          * CPT PCH is quite different, having many bits moved
1604          * to the TRANS_DP_CTL register instead. That
1605          * configuration happens (oddly) in ironlake_pch_enable
1606          */
1607
1608         /* Preserve the BIOS-computed detected bit. This is
1609          * supposed to be read-only.
1610          */
1611         intel_dp->DP = I915_READ(intel_dp->output_reg) & DP_DETECTED;
1612
1613         /* Handle DP bits in common between all three register formats */
1614         intel_dp->DP |= DP_VOLTAGE_0_4 | DP_PRE_EMPHASIS_0;
1615         intel_dp->DP |= DP_PORT_WIDTH(crtc->config->lane_count);
1616
1617         if (crtc->config->has_audio)
1618                 intel_dp->DP |= DP_AUDIO_OUTPUT_ENABLE;
1619
1620         /* Split out the IBX/CPU vs CPT settings */
1621
1622         if (IS_GEN7(dev) && port == PORT_A) {
1623                 if (adjusted_mode->flags & DRM_MODE_FLAG_PHSYNC)
1624                         intel_dp->DP |= DP_SYNC_HS_HIGH;
1625                 if (adjusted_mode->flags & DRM_MODE_FLAG_PVSYNC)
1626                         intel_dp->DP |= DP_SYNC_VS_HIGH;
1627                 intel_dp->DP |= DP_LINK_TRAIN_OFF_CPT;
1628
1629                 if (drm_dp_enhanced_frame_cap(intel_dp->dpcd))
1630                         intel_dp->DP |= DP_ENHANCED_FRAMING;
1631
1632                 intel_dp->DP |= crtc->pipe << 29;
1633         } else if (HAS_PCH_CPT(dev) && port != PORT_A) {
1634                 u32 trans_dp;
1635
1636                 intel_dp->DP |= DP_LINK_TRAIN_OFF_CPT;
1637
1638                 trans_dp = I915_READ(TRANS_DP_CTL(crtc->pipe));
1639                 if (drm_dp_enhanced_frame_cap(intel_dp->dpcd))
1640                         trans_dp |= TRANS_DP_ENH_FRAMING;
1641                 else
1642                         trans_dp &= ~TRANS_DP_ENH_FRAMING;
1643                 I915_WRITE(TRANS_DP_CTL(crtc->pipe), trans_dp);
1644         } else {
1645                 if (!HAS_PCH_SPLIT(dev) && !IS_VALLEYVIEW(dev) &&
1646                     crtc->config->limited_color_range)
1647                         intel_dp->DP |= DP_COLOR_RANGE_16_235;
1648
1649                 if (adjusted_mode->flags & DRM_MODE_FLAG_PHSYNC)
1650                         intel_dp->DP |= DP_SYNC_HS_HIGH;
1651                 if (adjusted_mode->flags & DRM_MODE_FLAG_PVSYNC)
1652                         intel_dp->DP |= DP_SYNC_VS_HIGH;
1653                 intel_dp->DP |= DP_LINK_TRAIN_OFF;
1654
1655                 if (drm_dp_enhanced_frame_cap(intel_dp->dpcd))
1656                         intel_dp->DP |= DP_ENHANCED_FRAMING;
1657
1658                 if (IS_CHERRYVIEW(dev))
1659                         intel_dp->DP |= DP_PIPE_SELECT_CHV(crtc->pipe);
1660                 else if (crtc->pipe == PIPE_B)
1661                         intel_dp->DP |= DP_PIPEB_SELECT;
1662         }
1663 }
1664
1665 #define IDLE_ON_MASK            (PP_ON | PP_SEQUENCE_MASK | 0                     | PP_SEQUENCE_STATE_MASK)
1666 #define IDLE_ON_VALUE           (PP_ON | PP_SEQUENCE_NONE | 0                     | PP_SEQUENCE_STATE_ON_IDLE)
1667
1668 #define IDLE_OFF_MASK           (PP_ON | PP_SEQUENCE_MASK | 0                     | 0)
1669 #define IDLE_OFF_VALUE          (0     | PP_SEQUENCE_NONE | 0                     | 0)
1670
1671 #define IDLE_CYCLE_MASK         (PP_ON | PP_SEQUENCE_MASK | PP_CYCLE_DELAY_ACTIVE | PP_SEQUENCE_STATE_MASK)
1672 #define IDLE_CYCLE_VALUE        (0     | PP_SEQUENCE_NONE | 0                     | PP_SEQUENCE_STATE_OFF_IDLE)
1673
1674 static void wait_panel_status(struct intel_dp *intel_dp,
1675                                        u32 mask,
1676                                        u32 value)
1677 {
1678         struct drm_device *dev = intel_dp_to_dev(intel_dp);
1679         struct drm_i915_private *dev_priv = dev->dev_private;
1680         u32 pp_stat_reg, pp_ctrl_reg;
1681
1682         lockdep_assert_held(&dev_priv->pps_mutex);
1683
1684         pp_stat_reg = _pp_stat_reg(intel_dp);
1685         pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
1686
1687         DRM_DEBUG_KMS("mask %08x value %08x status %08x control %08x\n",
1688                         mask, value,
1689                         I915_READ(pp_stat_reg),
1690                         I915_READ(pp_ctrl_reg));
1691
1692         if (_wait_for((I915_READ(pp_stat_reg) & mask) == value, 5000, 10)) {
1693                 DRM_ERROR("Panel status timeout: status %08x control %08x\n",
1694                                 I915_READ(pp_stat_reg),
1695                                 I915_READ(pp_ctrl_reg));
1696         }
1697
1698         DRM_DEBUG_KMS("Wait complete\n");
1699 }
1700
1701 static void wait_panel_on(struct intel_dp *intel_dp)
1702 {
1703         DRM_DEBUG_KMS("Wait for panel power on\n");
1704         wait_panel_status(intel_dp, IDLE_ON_MASK, IDLE_ON_VALUE);
1705 }
1706
1707 static void wait_panel_off(struct intel_dp *intel_dp)
1708 {
1709         DRM_DEBUG_KMS("Wait for panel power off time\n");
1710         wait_panel_status(intel_dp, IDLE_OFF_MASK, IDLE_OFF_VALUE);
1711 }
1712
1713 static void wait_panel_power_cycle(struct intel_dp *intel_dp)
1714 {
1715         DRM_DEBUG_KMS("Wait for panel power cycle\n");
1716
1717         /* When we disable the VDD override bit last we have to do the manual
1718          * wait. */
1719         wait_remaining_ms_from_jiffies(intel_dp->last_power_cycle,
1720                                        intel_dp->panel_power_cycle_delay);
1721
1722         wait_panel_status(intel_dp, IDLE_CYCLE_MASK, IDLE_CYCLE_VALUE);
1723 }
1724
1725 static void wait_backlight_on(struct intel_dp *intel_dp)
1726 {
1727         wait_remaining_ms_from_jiffies(intel_dp->last_power_on,
1728                                        intel_dp->backlight_on_delay);
1729 }
1730
1731 static void edp_wait_backlight_off(struct intel_dp *intel_dp)
1732 {
1733         wait_remaining_ms_from_jiffies(intel_dp->last_backlight_off,
1734                                        intel_dp->backlight_off_delay);
1735 }
1736
1737 /* Read the current pp_control value, unlocking the register if it
1738  * is locked
1739  */
1740
1741 static  u32 ironlake_get_pp_control(struct intel_dp *intel_dp)
1742 {
1743         struct drm_device *dev = intel_dp_to_dev(intel_dp);
1744         struct drm_i915_private *dev_priv = dev->dev_private;
1745         u32 control;
1746
1747         lockdep_assert_held(&dev_priv->pps_mutex);
1748
1749         control = I915_READ(_pp_ctrl_reg(intel_dp));
1750         if (!IS_BROXTON(dev)) {
1751                 control &= ~PANEL_UNLOCK_MASK;
1752                 control |= PANEL_UNLOCK_REGS;
1753         }
1754         return control;
1755 }
1756
1757 /*
1758  * Must be paired with edp_panel_vdd_off().
1759  * Must hold pps_mutex around the whole on/off sequence.
1760  * Can be nested with intel_edp_panel_vdd_{on,off}() calls.
1761  */
1762 static bool edp_panel_vdd_on(struct intel_dp *intel_dp)
1763 {
1764         struct drm_device *dev = intel_dp_to_dev(intel_dp);
1765         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
1766         struct intel_encoder *intel_encoder = &intel_dig_port->base;
1767         struct drm_i915_private *dev_priv = dev->dev_private;
1768         enum intel_display_power_domain power_domain;
1769         u32 pp;
1770         u32 pp_stat_reg, pp_ctrl_reg;
1771         bool need_to_disable = !intel_dp->want_panel_vdd;
1772
1773         lockdep_assert_held(&dev_priv->pps_mutex);
1774
1775         if (!is_edp(intel_dp))
1776                 return false;
1777
1778         cancel_delayed_work(&intel_dp->panel_vdd_work);
1779         intel_dp->want_panel_vdd = true;
1780
1781         if (edp_have_panel_vdd(intel_dp))
1782                 return need_to_disable;
1783
1784         power_domain = intel_display_port_aux_power_domain(intel_encoder);
1785         intel_display_power_get(dev_priv, power_domain);
1786
1787         DRM_DEBUG_KMS("Turning eDP port %c VDD on\n",
1788                       port_name(intel_dig_port->port));
1789
1790         if (!edp_have_panel_power(intel_dp))
1791                 wait_panel_power_cycle(intel_dp);
1792
1793         pp = ironlake_get_pp_control(intel_dp);
1794         pp |= EDP_FORCE_VDD;
1795
1796         pp_stat_reg = _pp_stat_reg(intel_dp);
1797         pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
1798
1799         I915_WRITE(pp_ctrl_reg, pp);
1800         POSTING_READ(pp_ctrl_reg);
1801         DRM_DEBUG_KMS("PP_STATUS: 0x%08x PP_CONTROL: 0x%08x\n",
1802                         I915_READ(pp_stat_reg), I915_READ(pp_ctrl_reg));
1803         /*
1804          * If the panel wasn't on, delay before accessing aux channel
1805          */
1806         if (!edp_have_panel_power(intel_dp)) {
1807                 DRM_DEBUG_KMS("eDP port %c panel power wasn't enabled\n",
1808                               port_name(intel_dig_port->port));
1809                 msleep(intel_dp->panel_power_up_delay);
1810         }
1811
1812         return need_to_disable;
1813 }
1814
1815 /*
1816  * Must be paired with intel_edp_panel_vdd_off() or
1817  * intel_edp_panel_off().
1818  * Nested calls to these functions are not allowed since
1819  * we drop the lock. Caller must use some higher level
1820  * locking to prevent nested calls from other threads.
1821  */
1822 void intel_edp_panel_vdd_on(struct intel_dp *intel_dp)
1823 {
1824         bool vdd;
1825
1826         if (!is_edp(intel_dp))
1827                 return;
1828
1829         pps_lock(intel_dp);
1830         vdd = edp_panel_vdd_on(intel_dp);
1831         pps_unlock(intel_dp);
1832
1833         I915_STATE_WARN(!vdd, "eDP port %c VDD already requested on\n",
1834              port_name(dp_to_dig_port(intel_dp)->port));
1835 }
1836
1837 static void edp_panel_vdd_off_sync(struct intel_dp *intel_dp)
1838 {
1839         struct drm_device *dev = intel_dp_to_dev(intel_dp);
1840         struct drm_i915_private *dev_priv = dev->dev_private;
1841         struct intel_digital_port *intel_dig_port =
1842                 dp_to_dig_port(intel_dp);
1843         struct intel_encoder *intel_encoder = &intel_dig_port->base;
1844         enum intel_display_power_domain power_domain;
1845         u32 pp;
1846         u32 pp_stat_reg, pp_ctrl_reg;
1847
1848         lockdep_assert_held(&dev_priv->pps_mutex);
1849
1850         WARN_ON(intel_dp->want_panel_vdd);
1851
1852         if (!edp_have_panel_vdd(intel_dp))
1853                 return;
1854
1855         DRM_DEBUG_KMS("Turning eDP port %c VDD off\n",
1856                       port_name(intel_dig_port->port));
1857
1858         pp = ironlake_get_pp_control(intel_dp);
1859         pp &= ~EDP_FORCE_VDD;
1860
1861         pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
1862         pp_stat_reg = _pp_stat_reg(intel_dp);
1863
1864         I915_WRITE(pp_ctrl_reg, pp);
1865         POSTING_READ(pp_ctrl_reg);
1866
1867         /* Make sure sequencer is idle before allowing subsequent activity */
1868         DRM_DEBUG_KMS("PP_STATUS: 0x%08x PP_CONTROL: 0x%08x\n",
1869         I915_READ(pp_stat_reg), I915_READ(pp_ctrl_reg));
1870
1871         if ((pp & POWER_TARGET_ON) == 0)
1872                 intel_dp->last_power_cycle = jiffies;
1873
1874         power_domain = intel_display_port_aux_power_domain(intel_encoder);
1875         intel_display_power_put(dev_priv, power_domain);
1876 }
1877
1878 static void edp_panel_vdd_work(struct work_struct *__work)
1879 {
1880         struct intel_dp *intel_dp = container_of(to_delayed_work(__work),
1881                                                  struct intel_dp, panel_vdd_work);
1882
1883         pps_lock(intel_dp);
1884         if (!intel_dp->want_panel_vdd)
1885                 edp_panel_vdd_off_sync(intel_dp);
1886         pps_unlock(intel_dp);
1887 }
1888
1889 static void edp_panel_vdd_schedule_off(struct intel_dp *intel_dp)
1890 {
1891         unsigned long delay;
1892
1893         /*
1894          * Queue the timer to fire a long time from now (relative to the power
1895          * down delay) to keep the panel power up across a sequence of
1896          * operations.
1897          */
1898         delay = msecs_to_jiffies(intel_dp->panel_power_cycle_delay * 5);
1899         schedule_delayed_work(&intel_dp->panel_vdd_work, delay);
1900 }
1901
1902 /*
1903  * Must be paired with edp_panel_vdd_on().
1904  * Must hold pps_mutex around the whole on/off sequence.
1905  * Can be nested with intel_edp_panel_vdd_{on,off}() calls.
1906  */
1907 static void edp_panel_vdd_off(struct intel_dp *intel_dp, bool sync)
1908 {
1909         struct drm_i915_private *dev_priv =
1910                 intel_dp_to_dev(intel_dp)->dev_private;
1911
1912         lockdep_assert_held(&dev_priv->pps_mutex);
1913
1914         if (!is_edp(intel_dp))
1915                 return;
1916
1917         I915_STATE_WARN(!intel_dp->want_panel_vdd, "eDP port %c VDD not forced on",
1918              port_name(dp_to_dig_port(intel_dp)->port));
1919
1920         intel_dp->want_panel_vdd = false;
1921
1922         if (sync)
1923                 edp_panel_vdd_off_sync(intel_dp);
1924         else
1925                 edp_panel_vdd_schedule_off(intel_dp);
1926 }
1927
1928 static void edp_panel_on(struct intel_dp *intel_dp)
1929 {
1930         struct drm_device *dev = intel_dp_to_dev(intel_dp);
1931         struct drm_i915_private *dev_priv = dev->dev_private;
1932         u32 pp;
1933         u32 pp_ctrl_reg;
1934
1935         lockdep_assert_held(&dev_priv->pps_mutex);
1936
1937         if (!is_edp(intel_dp))
1938                 return;
1939
1940         DRM_DEBUG_KMS("Turn eDP port %c panel power on\n",
1941                       port_name(dp_to_dig_port(intel_dp)->port));
1942
1943         if (WARN(edp_have_panel_power(intel_dp),
1944                  "eDP port %c panel power already on\n",
1945                  port_name(dp_to_dig_port(intel_dp)->port)))
1946                 return;
1947
1948         wait_panel_power_cycle(intel_dp);
1949
1950         pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
1951         pp = ironlake_get_pp_control(intel_dp);
1952         if (IS_GEN5(dev)) {
1953                 /* ILK workaround: disable reset around power sequence */
1954                 pp &= ~PANEL_POWER_RESET;
1955                 I915_WRITE(pp_ctrl_reg, pp);
1956                 POSTING_READ(pp_ctrl_reg);
1957         }
1958
1959         pp |= POWER_TARGET_ON;
1960         if (!IS_GEN5(dev))
1961                 pp |= PANEL_POWER_RESET;
1962
1963         I915_WRITE(pp_ctrl_reg, pp);
1964         POSTING_READ(pp_ctrl_reg);
1965
1966         wait_panel_on(intel_dp);
1967         intel_dp->last_power_on = jiffies;
1968
1969         if (IS_GEN5(dev)) {
1970                 pp |= PANEL_POWER_RESET; /* restore panel reset bit */
1971                 I915_WRITE(pp_ctrl_reg, pp);
1972                 POSTING_READ(pp_ctrl_reg);
1973         }
1974 }
1975
1976 void intel_edp_panel_on(struct intel_dp *intel_dp)
1977 {
1978         if (!is_edp(intel_dp))
1979                 return;
1980
1981         pps_lock(intel_dp);
1982         edp_panel_on(intel_dp);
1983         pps_unlock(intel_dp);
1984 }
1985
1986
1987 static void edp_panel_off(struct intel_dp *intel_dp)
1988 {
1989         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
1990         struct intel_encoder *intel_encoder = &intel_dig_port->base;
1991         struct drm_device *dev = intel_dp_to_dev(intel_dp);
1992         struct drm_i915_private *dev_priv = dev->dev_private;
1993         enum intel_display_power_domain power_domain;
1994         u32 pp;
1995         u32 pp_ctrl_reg;
1996
1997         lockdep_assert_held(&dev_priv->pps_mutex);
1998
1999         if (!is_edp(intel_dp))
2000                 return;
2001
2002         DRM_DEBUG_KMS("Turn eDP port %c panel power off\n",
2003                       port_name(dp_to_dig_port(intel_dp)->port));
2004
2005         WARN(!intel_dp->want_panel_vdd, "Need eDP port %c VDD to turn off panel\n",
2006              port_name(dp_to_dig_port(intel_dp)->port));
2007
2008         pp = ironlake_get_pp_control(intel_dp);
2009         /* We need to switch off panel power _and_ force vdd, for otherwise some
2010          * panels get very unhappy and cease to work. */
2011         pp &= ~(POWER_TARGET_ON | PANEL_POWER_RESET | EDP_FORCE_VDD |
2012                 EDP_BLC_ENABLE);
2013
2014         pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
2015
2016         intel_dp->want_panel_vdd = false;
2017
2018         I915_WRITE(pp_ctrl_reg, pp);
2019         POSTING_READ(pp_ctrl_reg);
2020
2021         intel_dp->last_power_cycle = jiffies;
2022         wait_panel_off(intel_dp);
2023
2024         /* We got a reference when we enabled the VDD. */
2025         power_domain = intel_display_port_aux_power_domain(intel_encoder);
2026         intel_display_power_put(dev_priv, power_domain);
2027 }
2028
2029 void intel_edp_panel_off(struct intel_dp *intel_dp)
2030 {
2031         if (!is_edp(intel_dp))
2032                 return;
2033
2034         pps_lock(intel_dp);
2035         edp_panel_off(intel_dp);
2036         pps_unlock(intel_dp);
2037 }
2038
2039 /* Enable backlight in the panel power control. */
2040 static void _intel_edp_backlight_on(struct intel_dp *intel_dp)
2041 {
2042         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
2043         struct drm_device *dev = intel_dig_port->base.base.dev;
2044         struct drm_i915_private *dev_priv = dev->dev_private;
2045         u32 pp;
2046         u32 pp_ctrl_reg;
2047
2048         /*
2049          * If we enable the backlight right away following a panel power
2050          * on, we may see slight flicker as the panel syncs with the eDP
2051          * link.  So delay a bit to make sure the image is solid before
2052          * allowing it to appear.
2053          */
2054         wait_backlight_on(intel_dp);
2055
2056         pps_lock(intel_dp);
2057
2058         pp = ironlake_get_pp_control(intel_dp);
2059         pp |= EDP_BLC_ENABLE;
2060
2061         pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
2062
2063         I915_WRITE(pp_ctrl_reg, pp);
2064         POSTING_READ(pp_ctrl_reg);
2065
2066         pps_unlock(intel_dp);
2067 }
2068
2069 /* Enable backlight PWM and backlight PP control. */
2070 void intel_edp_backlight_on(struct intel_dp *intel_dp)
2071 {
2072         if (!is_edp(intel_dp))
2073                 return;
2074
2075         DRM_DEBUG_KMS("\n");
2076
2077         intel_panel_enable_backlight(intel_dp->attached_connector);
2078         _intel_edp_backlight_on(intel_dp);
2079 }
2080
2081 /* Disable backlight in the panel power control. */
2082 static void _intel_edp_backlight_off(struct intel_dp *intel_dp)
2083 {
2084         struct drm_device *dev = intel_dp_to_dev(intel_dp);
2085         struct drm_i915_private *dev_priv = dev->dev_private;
2086         u32 pp;
2087         u32 pp_ctrl_reg;
2088
2089         if (!is_edp(intel_dp))
2090                 return;
2091
2092         pps_lock(intel_dp);
2093
2094         pp = ironlake_get_pp_control(intel_dp);
2095         pp &= ~EDP_BLC_ENABLE;
2096
2097         pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
2098
2099         I915_WRITE(pp_ctrl_reg, pp);
2100         POSTING_READ(pp_ctrl_reg);
2101
2102         pps_unlock(intel_dp);
2103
2104         intel_dp->last_backlight_off = jiffies;
2105         edp_wait_backlight_off(intel_dp);
2106 }
2107
2108 /* Disable backlight PP control and backlight PWM. */
2109 void intel_edp_backlight_off(struct intel_dp *intel_dp)
2110 {
2111         if (!is_edp(intel_dp))
2112                 return;
2113
2114         DRM_DEBUG_KMS("\n");
2115
2116         _intel_edp_backlight_off(intel_dp);
2117         intel_panel_disable_backlight(intel_dp->attached_connector);
2118 }
2119
2120 /*
2121  * Hook for controlling the panel power control backlight through the bl_power
2122  * sysfs attribute. Take care to handle multiple calls.
2123  */
2124 static void intel_edp_backlight_power(struct intel_connector *connector,
2125                                       bool enable)
2126 {
2127         struct intel_dp *intel_dp = intel_attached_dp(&connector->base);
2128         bool is_enabled;
2129
2130         pps_lock(intel_dp);
2131         is_enabled = ironlake_get_pp_control(intel_dp) & EDP_BLC_ENABLE;
2132         pps_unlock(intel_dp);
2133
2134         if (is_enabled == enable)
2135                 return;
2136
2137         DRM_DEBUG_KMS("panel power control backlight %s\n",
2138                       enable ? "enable" : "disable");
2139
2140         if (enable)
2141                 _intel_edp_backlight_on(intel_dp);
2142         else
2143                 _intel_edp_backlight_off(intel_dp);
2144 }
2145
2146 static void ironlake_edp_pll_on(struct intel_dp *intel_dp)
2147 {
2148         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
2149         struct drm_crtc *crtc = intel_dig_port->base.base.crtc;
2150         struct drm_device *dev = crtc->dev;
2151         struct drm_i915_private *dev_priv = dev->dev_private;
2152         u32 dpa_ctl;
2153
2154         assert_pipe_disabled(dev_priv,
2155                              to_intel_crtc(crtc)->pipe);
2156
2157         DRM_DEBUG_KMS("\n");
2158         dpa_ctl = I915_READ(DP_A);
2159         WARN(dpa_ctl & DP_PLL_ENABLE, "dp pll on, should be off\n");
2160         WARN(dpa_ctl & DP_PORT_EN, "dp port still on, should be off\n");
2161
2162         /* We don't adjust intel_dp->DP while tearing down the link, to
2163          * facilitate link retraining (e.g. after hotplug). Hence clear all
2164          * enable bits here to ensure that we don't enable too much. */
2165         intel_dp->DP &= ~(DP_PORT_EN | DP_AUDIO_OUTPUT_ENABLE);
2166         intel_dp->DP |= DP_PLL_ENABLE;
2167         I915_WRITE(DP_A, intel_dp->DP);
2168         POSTING_READ(DP_A);
2169         udelay(200);
2170 }
2171
2172 static void ironlake_edp_pll_off(struct intel_dp *intel_dp)
2173 {
2174         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
2175         struct drm_crtc *crtc = intel_dig_port->base.base.crtc;
2176         struct drm_device *dev = crtc->dev;
2177         struct drm_i915_private *dev_priv = dev->dev_private;
2178         u32 dpa_ctl;
2179
2180         assert_pipe_disabled(dev_priv,
2181                              to_intel_crtc(crtc)->pipe);
2182
2183         dpa_ctl = I915_READ(DP_A);
2184         WARN((dpa_ctl & DP_PLL_ENABLE) == 0,
2185              "dp pll off, should be on\n");
2186         WARN(dpa_ctl & DP_PORT_EN, "dp port still on, should be off\n");
2187
2188         /* We can't rely on the value tracked for the DP register in
2189          * intel_dp->DP because link_down must not change that (otherwise link
2190          * re-training will fail. */
2191         dpa_ctl &= ~DP_PLL_ENABLE;
2192         I915_WRITE(DP_A, dpa_ctl);
2193         POSTING_READ(DP_A);
2194         udelay(200);
2195 }
2196
2197 /* If the sink supports it, try to set the power state appropriately */
2198 void intel_dp_sink_dpms(struct intel_dp *intel_dp, int mode)
2199 {
2200         int ret, i;
2201
2202         /* Should have a valid DPCD by this point */
2203         if (intel_dp->dpcd[DP_DPCD_REV] < 0x11)
2204                 return;
2205
2206         if (mode != DRM_MODE_DPMS_ON) {
2207                 ret = drm_dp_dpcd_writeb(&intel_dp->aux, DP_SET_POWER,
2208                                          DP_SET_POWER_D3);
2209         } else {
2210                 /*
2211                  * When turning on, we need to retry for 1ms to give the sink
2212                  * time to wake up.
2213                  */
2214                 for (i = 0; i < 3; i++) {
2215                         ret = drm_dp_dpcd_writeb(&intel_dp->aux, DP_SET_POWER,
2216                                                  DP_SET_POWER_D0);
2217                         if (ret == 1)
2218                                 break;
2219                         msleep(1);
2220                 }
2221         }
2222
2223         if (ret != 1)
2224                 DRM_DEBUG_KMS("failed to %s sink power state\n",
2225                               mode == DRM_MODE_DPMS_ON ? "enable" : "disable");
2226 }
2227
2228 static bool intel_dp_get_hw_state(struct intel_encoder *encoder,
2229                                   enum pipe *pipe)
2230 {
2231         struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2232         enum port port = dp_to_dig_port(intel_dp)->port;
2233         struct drm_device *dev = encoder->base.dev;
2234         struct drm_i915_private *dev_priv = dev->dev_private;
2235         enum intel_display_power_domain power_domain;
2236         u32 tmp;
2237
2238         power_domain = intel_display_port_power_domain(encoder);
2239         if (!intel_display_power_is_enabled(dev_priv, power_domain))
2240                 return false;
2241
2242         tmp = I915_READ(intel_dp->output_reg);
2243
2244         if (!(tmp & DP_PORT_EN))
2245                 return false;
2246
2247         if (IS_GEN7(dev) && port == PORT_A) {
2248                 *pipe = PORT_TO_PIPE_CPT(tmp);
2249         } else if (HAS_PCH_CPT(dev) && port != PORT_A) {
2250                 enum pipe p;
2251
2252                 for_each_pipe(dev_priv, p) {
2253                         u32 trans_dp = I915_READ(TRANS_DP_CTL(p));
2254                         if (TRANS_DP_PIPE_TO_PORT(trans_dp) == port) {
2255                                 *pipe = p;
2256                                 return true;
2257                         }
2258                 }
2259
2260                 DRM_DEBUG_KMS("No pipe for dp port 0x%x found\n",
2261                               intel_dp->output_reg);
2262         } else if (IS_CHERRYVIEW(dev)) {
2263                 *pipe = DP_PORT_TO_PIPE_CHV(tmp);
2264         } else {
2265                 *pipe = PORT_TO_PIPE(tmp);
2266         }
2267
2268         return true;
2269 }
2270
2271 static void intel_dp_get_config(struct intel_encoder *encoder,
2272                                 struct intel_crtc_state *pipe_config)
2273 {
2274         struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2275         u32 tmp, flags = 0;
2276         struct drm_device *dev = encoder->base.dev;
2277         struct drm_i915_private *dev_priv = dev->dev_private;
2278         enum port port = dp_to_dig_port(intel_dp)->port;
2279         struct intel_crtc *crtc = to_intel_crtc(encoder->base.crtc);
2280         int dotclock;
2281
2282         tmp = I915_READ(intel_dp->output_reg);
2283
2284         pipe_config->has_audio = tmp & DP_AUDIO_OUTPUT_ENABLE && port != PORT_A;
2285
2286         if (HAS_PCH_CPT(dev) && port != PORT_A) {
2287                 u32 trans_dp = I915_READ(TRANS_DP_CTL(crtc->pipe));
2288
2289                 if (trans_dp & TRANS_DP_HSYNC_ACTIVE_HIGH)
2290                         flags |= DRM_MODE_FLAG_PHSYNC;
2291                 else
2292                         flags |= DRM_MODE_FLAG_NHSYNC;
2293
2294                 if (trans_dp & TRANS_DP_VSYNC_ACTIVE_HIGH)
2295                         flags |= DRM_MODE_FLAG_PVSYNC;
2296                 else
2297                         flags |= DRM_MODE_FLAG_NVSYNC;
2298         } else {
2299                 if (tmp & DP_SYNC_HS_HIGH)
2300                         flags |= DRM_MODE_FLAG_PHSYNC;
2301                 else
2302                         flags |= DRM_MODE_FLAG_NHSYNC;
2303
2304                 if (tmp & DP_SYNC_VS_HIGH)
2305                         flags |= DRM_MODE_FLAG_PVSYNC;
2306                 else
2307                         flags |= DRM_MODE_FLAG_NVSYNC;
2308         }
2309
2310         pipe_config->base.adjusted_mode.flags |= flags;
2311
2312         if (!HAS_PCH_SPLIT(dev) && !IS_VALLEYVIEW(dev) &&
2313             tmp & DP_COLOR_RANGE_16_235)
2314                 pipe_config->limited_color_range = true;
2315
2316         pipe_config->has_dp_encoder = true;
2317
2318         pipe_config->lane_count =
2319                 ((tmp & DP_PORT_WIDTH_MASK) >> DP_PORT_WIDTH_SHIFT) + 1;
2320
2321         intel_dp_get_m_n(crtc, pipe_config);
2322
2323         if (port == PORT_A) {
2324                 if ((I915_READ(DP_A) & DP_PLL_FREQ_MASK) == DP_PLL_FREQ_160MHZ)
2325                         pipe_config->port_clock = 162000;
2326                 else
2327                         pipe_config->port_clock = 270000;
2328         }
2329
2330         dotclock = intel_dotclock_calculate(pipe_config->port_clock,
2331                                             &pipe_config->dp_m_n);
2332
2333         if (HAS_PCH_SPLIT(dev_priv->dev) && port != PORT_A)
2334                 ironlake_check_encoder_dotclock(pipe_config, dotclock);
2335
2336         pipe_config->base.adjusted_mode.crtc_clock = dotclock;
2337
2338         if (is_edp(intel_dp) && dev_priv->vbt.edp_bpp &&
2339             pipe_config->pipe_bpp > dev_priv->vbt.edp_bpp) {
2340                 /*
2341                  * This is a big fat ugly hack.
2342                  *
2343                  * Some machines in UEFI boot mode provide us a VBT that has 18
2344                  * bpp and 1.62 GHz link bandwidth for eDP, which for reasons
2345                  * unknown we fail to light up. Yet the same BIOS boots up with
2346                  * 24 bpp and 2.7 GHz link. Use the same bpp as the BIOS uses as
2347                  * max, not what it tells us to use.
2348                  *
2349                  * Note: This will still be broken if the eDP panel is not lit
2350                  * up by the BIOS, and thus we can't get the mode at module
2351                  * load.
2352                  */
2353                 DRM_DEBUG_KMS("pipe has %d bpp for eDP panel, overriding BIOS-provided max %d bpp\n",
2354                               pipe_config->pipe_bpp, dev_priv->vbt.edp_bpp);
2355                 dev_priv->vbt.edp_bpp = pipe_config->pipe_bpp;
2356         }
2357 }
2358
2359 static void intel_disable_dp(struct intel_encoder *encoder)
2360 {
2361         struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2362         struct drm_device *dev = encoder->base.dev;
2363         struct intel_crtc *crtc = to_intel_crtc(encoder->base.crtc);
2364
2365         if (crtc->config->has_audio)
2366                 intel_audio_codec_disable(encoder);
2367
2368         if (HAS_PSR(dev) && !HAS_DDI(dev))
2369                 intel_psr_disable(intel_dp);
2370
2371         /* Make sure the panel is off before trying to change the mode. But also
2372          * ensure that we have vdd while we switch off the panel. */
2373         intel_edp_panel_vdd_on(intel_dp);
2374         intel_edp_backlight_off(intel_dp);
2375         intel_dp_sink_dpms(intel_dp, DRM_MODE_DPMS_OFF);
2376         intel_edp_panel_off(intel_dp);
2377
2378         /* disable the port before the pipe on g4x */
2379         if (INTEL_INFO(dev)->gen < 5)
2380                 intel_dp_link_down(intel_dp);
2381 }
2382
2383 static void ilk_post_disable_dp(struct intel_encoder *encoder)
2384 {
2385         struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2386         enum port port = dp_to_dig_port(intel_dp)->port;
2387
2388         intel_dp_link_down(intel_dp);
2389         if (port == PORT_A)
2390                 ironlake_edp_pll_off(intel_dp);
2391 }
2392
2393 static void vlv_post_disable_dp(struct intel_encoder *encoder)
2394 {
2395         struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2396
2397         intel_dp_link_down(intel_dp);
2398 }
2399
2400 static void chv_data_lane_soft_reset(struct intel_encoder *encoder,
2401                                      bool reset)
2402 {
2403         struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
2404         enum dpio_channel ch = vlv_dport_to_channel(enc_to_dig_port(&encoder->base));
2405         struct intel_crtc *crtc = to_intel_crtc(encoder->base.crtc);
2406         enum pipe pipe = crtc->pipe;
2407         uint32_t val;
2408
2409         val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW0(ch));
2410         if (reset)
2411                 val &= ~(DPIO_PCS_TX_LANE2_RESET | DPIO_PCS_TX_LANE1_RESET);
2412         else
2413                 val |= DPIO_PCS_TX_LANE2_RESET | DPIO_PCS_TX_LANE1_RESET;
2414         vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW0(ch), val);
2415
2416         if (crtc->config->lane_count > 2) {
2417                 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW0(ch));
2418                 if (reset)
2419                         val &= ~(DPIO_PCS_TX_LANE2_RESET | DPIO_PCS_TX_LANE1_RESET);
2420                 else
2421                         val |= DPIO_PCS_TX_LANE2_RESET | DPIO_PCS_TX_LANE1_RESET;
2422                 vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW0(ch), val);
2423         }
2424
2425         val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW1(ch));
2426         val |= CHV_PCS_REQ_SOFTRESET_EN;
2427         if (reset)
2428                 val &= ~DPIO_PCS_CLK_SOFT_RESET;
2429         else
2430                 val |= DPIO_PCS_CLK_SOFT_RESET;
2431         vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW1(ch), val);
2432
2433         if (crtc->config->lane_count > 2) {
2434                 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW1(ch));
2435                 val |= CHV_PCS_REQ_SOFTRESET_EN;
2436                 if (reset)
2437                         val &= ~DPIO_PCS_CLK_SOFT_RESET;
2438                 else
2439                         val |= DPIO_PCS_CLK_SOFT_RESET;
2440                 vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW1(ch), val);
2441         }
2442 }
2443
2444 static void chv_post_disable_dp(struct intel_encoder *encoder)
2445 {
2446         struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2447         struct drm_device *dev = encoder->base.dev;
2448         struct drm_i915_private *dev_priv = dev->dev_private;
2449
2450         intel_dp_link_down(intel_dp);
2451
2452         mutex_lock(&dev_priv->sb_lock);
2453
2454         /* Assert data lane reset */
2455         chv_data_lane_soft_reset(encoder, true);
2456
2457         mutex_unlock(&dev_priv->sb_lock);
2458 }
2459
2460 static void
2461 _intel_dp_set_link_train(struct intel_dp *intel_dp,
2462                          uint32_t *DP,
2463                          uint8_t dp_train_pat)
2464 {
2465         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
2466         struct drm_device *dev = intel_dig_port->base.base.dev;
2467         struct drm_i915_private *dev_priv = dev->dev_private;
2468         enum port port = intel_dig_port->port;
2469
2470         if (HAS_DDI(dev)) {
2471                 uint32_t temp = I915_READ(DP_TP_CTL(port));
2472
2473                 if (dp_train_pat & DP_LINK_SCRAMBLING_DISABLE)
2474                         temp |= DP_TP_CTL_SCRAMBLE_DISABLE;
2475                 else
2476                         temp &= ~DP_TP_CTL_SCRAMBLE_DISABLE;
2477
2478                 temp &= ~DP_TP_CTL_LINK_TRAIN_MASK;
2479                 switch (dp_train_pat & DP_TRAINING_PATTERN_MASK) {
2480                 case DP_TRAINING_PATTERN_DISABLE:
2481                         temp |= DP_TP_CTL_LINK_TRAIN_NORMAL;
2482
2483                         break;
2484                 case DP_TRAINING_PATTERN_1:
2485                         temp |= DP_TP_CTL_LINK_TRAIN_PAT1;
2486                         break;
2487                 case DP_TRAINING_PATTERN_2:
2488                         temp |= DP_TP_CTL_LINK_TRAIN_PAT2;
2489                         break;
2490                 case DP_TRAINING_PATTERN_3:
2491                         temp |= DP_TP_CTL_LINK_TRAIN_PAT3;
2492                         break;
2493                 }
2494                 I915_WRITE(DP_TP_CTL(port), temp);
2495
2496         } else if ((IS_GEN7(dev) && port == PORT_A) ||
2497                    (HAS_PCH_CPT(dev) && port != PORT_A)) {
2498                 *DP &= ~DP_LINK_TRAIN_MASK_CPT;
2499
2500                 switch (dp_train_pat & DP_TRAINING_PATTERN_MASK) {
2501                 case DP_TRAINING_PATTERN_DISABLE:
2502                         *DP |= DP_LINK_TRAIN_OFF_CPT;
2503                         break;
2504                 case DP_TRAINING_PATTERN_1:
2505                         *DP |= DP_LINK_TRAIN_PAT_1_CPT;
2506                         break;
2507                 case DP_TRAINING_PATTERN_2:
2508                         *DP |= DP_LINK_TRAIN_PAT_2_CPT;
2509                         break;
2510                 case DP_TRAINING_PATTERN_3:
2511                         DRM_ERROR("DP training pattern 3 not supported\n");
2512                         *DP |= DP_LINK_TRAIN_PAT_2_CPT;
2513                         break;
2514                 }
2515
2516         } else {
2517                 if (IS_CHERRYVIEW(dev))
2518                         *DP &= ~DP_LINK_TRAIN_MASK_CHV;
2519                 else
2520                         *DP &= ~DP_LINK_TRAIN_MASK;
2521
2522                 switch (dp_train_pat & DP_TRAINING_PATTERN_MASK) {
2523                 case DP_TRAINING_PATTERN_DISABLE:
2524                         *DP |= DP_LINK_TRAIN_OFF;
2525                         break;
2526                 case DP_TRAINING_PATTERN_1:
2527                         *DP |= DP_LINK_TRAIN_PAT_1;
2528                         break;
2529                 case DP_TRAINING_PATTERN_2:
2530                         *DP |= DP_LINK_TRAIN_PAT_2;
2531                         break;
2532                 case DP_TRAINING_PATTERN_3:
2533                         if (IS_CHERRYVIEW(dev)) {
2534                                 *DP |= DP_LINK_TRAIN_PAT_3_CHV;
2535                         } else {
2536                                 DRM_ERROR("DP training pattern 3 not supported\n");
2537                                 *DP |= DP_LINK_TRAIN_PAT_2;
2538                         }
2539                         break;
2540                 }
2541         }
2542 }
2543
2544 static void intel_dp_enable_port(struct intel_dp *intel_dp)
2545 {
2546         struct drm_device *dev = intel_dp_to_dev(intel_dp);
2547         struct drm_i915_private *dev_priv = dev->dev_private;
2548
2549         /* enable with pattern 1 (as per spec) */
2550         _intel_dp_set_link_train(intel_dp, &intel_dp->DP,
2551                                  DP_TRAINING_PATTERN_1);
2552
2553         I915_WRITE(intel_dp->output_reg, intel_dp->DP);
2554         POSTING_READ(intel_dp->output_reg);
2555
2556         /*
2557          * Magic for VLV/CHV. We _must_ first set up the register
2558          * without actually enabling the port, and then do another
2559          * write to enable the port. Otherwise link training will
2560          * fail when the power sequencer is freshly used for this port.
2561          */
2562         intel_dp->DP |= DP_PORT_EN;
2563
2564         I915_WRITE(intel_dp->output_reg, intel_dp->DP);
2565         POSTING_READ(intel_dp->output_reg);
2566 }
2567
2568 static void intel_enable_dp(struct intel_encoder *encoder)
2569 {
2570         struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2571         struct drm_device *dev = encoder->base.dev;
2572         struct drm_i915_private *dev_priv = dev->dev_private;
2573         struct intel_crtc *crtc = to_intel_crtc(encoder->base.crtc);
2574         uint32_t dp_reg = I915_READ(intel_dp->output_reg);
2575
2576         if (WARN_ON(dp_reg & DP_PORT_EN))
2577                 return;
2578
2579         pps_lock(intel_dp);
2580
2581         if (IS_VALLEYVIEW(dev))
2582                 vlv_init_panel_power_sequencer(intel_dp);
2583
2584         intel_dp_enable_port(intel_dp);
2585
2586         edp_panel_vdd_on(intel_dp);
2587         edp_panel_on(intel_dp);
2588         edp_panel_vdd_off(intel_dp, true);
2589
2590         pps_unlock(intel_dp);
2591
2592         if (IS_VALLEYVIEW(dev)) {
2593                 unsigned int lane_mask = 0x0;
2594
2595                 if (IS_CHERRYVIEW(dev))
2596                         lane_mask = intel_dp_unused_lane_mask(crtc->config->lane_count);
2597
2598                 vlv_wait_port_ready(dev_priv, dp_to_dig_port(intel_dp),
2599                                     lane_mask);
2600         }
2601
2602         intel_dp_sink_dpms(intel_dp, DRM_MODE_DPMS_ON);
2603         intel_dp_start_link_train(intel_dp);
2604         intel_dp_stop_link_train(intel_dp);
2605
2606         if (crtc->config->has_audio) {
2607                 DRM_DEBUG_DRIVER("Enabling DP audio on pipe %c\n",
2608                                  pipe_name(crtc->pipe));
2609                 intel_audio_codec_enable(encoder);
2610         }
2611 }
2612
2613 static void g4x_enable_dp(struct intel_encoder *encoder)
2614 {
2615         struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2616
2617         intel_enable_dp(encoder);
2618         intel_edp_backlight_on(intel_dp);
2619 }
2620
2621 static void vlv_enable_dp(struct intel_encoder *encoder)
2622 {
2623         struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2624
2625         intel_edp_backlight_on(intel_dp);
2626         intel_psr_enable(intel_dp);
2627 }
2628
2629 static void g4x_pre_enable_dp(struct intel_encoder *encoder)
2630 {
2631         struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2632         struct intel_digital_port *dport = dp_to_dig_port(intel_dp);
2633
2634         intel_dp_prepare(encoder);
2635
2636         /* Only ilk+ has port A */
2637         if (dport->port == PORT_A) {
2638                 ironlake_set_pll_cpu_edp(intel_dp);
2639                 ironlake_edp_pll_on(intel_dp);
2640         }
2641 }
2642
2643 static void vlv_detach_power_sequencer(struct intel_dp *intel_dp)
2644 {
2645         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
2646         struct drm_i915_private *dev_priv = intel_dig_port->base.base.dev->dev_private;
2647         enum pipe pipe = intel_dp->pps_pipe;
2648         int pp_on_reg = VLV_PIPE_PP_ON_DELAYS(pipe);
2649
2650         edp_panel_vdd_off_sync(intel_dp);
2651
2652         /*
2653          * VLV seems to get confused when multiple power seqeuencers
2654          * have the same port selected (even if only one has power/vdd
2655          * enabled). The failure manifests as vlv_wait_port_ready() failing
2656          * CHV on the other hand doesn't seem to mind having the same port
2657          * selected in multiple power seqeuencers, but let's clear the
2658          * port select always when logically disconnecting a power sequencer
2659          * from a port.
2660          */
2661         DRM_DEBUG_KMS("detaching pipe %c power sequencer from port %c\n",
2662                       pipe_name(pipe), port_name(intel_dig_port->port));
2663         I915_WRITE(pp_on_reg, 0);
2664         POSTING_READ(pp_on_reg);
2665
2666         intel_dp->pps_pipe = INVALID_PIPE;
2667 }
2668
2669 static void vlv_steal_power_sequencer(struct drm_device *dev,
2670                                       enum pipe pipe)
2671 {
2672         struct drm_i915_private *dev_priv = dev->dev_private;
2673         struct intel_encoder *encoder;
2674
2675         lockdep_assert_held(&dev_priv->pps_mutex);
2676
2677         if (WARN_ON(pipe != PIPE_A && pipe != PIPE_B))
2678                 return;
2679
2680         list_for_each_entry(encoder, &dev->mode_config.encoder_list,
2681                             base.head) {
2682                 struct intel_dp *intel_dp;
2683                 enum port port;
2684
2685                 if (encoder->type != INTEL_OUTPUT_EDP)
2686                         continue;
2687
2688                 intel_dp = enc_to_intel_dp(&encoder->base);
2689                 port = dp_to_dig_port(intel_dp)->port;
2690
2691                 if (intel_dp->pps_pipe != pipe)
2692                         continue;
2693
2694                 DRM_DEBUG_KMS("stealing pipe %c power sequencer from port %c\n",
2695                               pipe_name(pipe), port_name(port));
2696
2697                 WARN(encoder->base.crtc,
2698                      "stealing pipe %c power sequencer from active eDP port %c\n",
2699                      pipe_name(pipe), port_name(port));
2700
2701                 /* make sure vdd is off before we steal it */
2702                 vlv_detach_power_sequencer(intel_dp);
2703         }
2704 }
2705
2706 static void vlv_init_panel_power_sequencer(struct intel_dp *intel_dp)
2707 {
2708         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
2709         struct intel_encoder *encoder = &intel_dig_port->base;
2710         struct drm_device *dev = encoder->base.dev;
2711         struct drm_i915_private *dev_priv = dev->dev_private;
2712         struct intel_crtc *crtc = to_intel_crtc(encoder->base.crtc);
2713
2714         lockdep_assert_held(&dev_priv->pps_mutex);
2715
2716         if (!is_edp(intel_dp))
2717                 return;
2718
2719         if (intel_dp->pps_pipe == crtc->pipe)
2720                 return;
2721
2722         /*
2723          * If another power sequencer was being used on this
2724          * port previously make sure to turn off vdd there while
2725          * we still have control of it.
2726          */
2727         if (intel_dp->pps_pipe != INVALID_PIPE)
2728                 vlv_detach_power_sequencer(intel_dp);
2729
2730         /*
2731          * We may be stealing the power
2732          * sequencer from another port.
2733          */
2734         vlv_steal_power_sequencer(dev, crtc->pipe);
2735
2736         /* now it's all ours */
2737         intel_dp->pps_pipe = crtc->pipe;
2738
2739         DRM_DEBUG_KMS("initializing pipe %c power sequencer for port %c\n",
2740                       pipe_name(intel_dp->pps_pipe), port_name(intel_dig_port->port));
2741
2742         /* init power sequencer on this pipe and port */
2743         intel_dp_init_panel_power_sequencer(dev, intel_dp);
2744         intel_dp_init_panel_power_sequencer_registers(dev, intel_dp);
2745 }
2746
2747 static void vlv_pre_enable_dp(struct intel_encoder *encoder)
2748 {
2749         struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2750         struct intel_digital_port *dport = dp_to_dig_port(intel_dp);
2751         struct drm_device *dev = encoder->base.dev;
2752         struct drm_i915_private *dev_priv = dev->dev_private;
2753         struct intel_crtc *intel_crtc = to_intel_crtc(encoder->base.crtc);
2754         enum dpio_channel port = vlv_dport_to_channel(dport);
2755         int pipe = intel_crtc->pipe;
2756         u32 val;
2757
2758         mutex_lock(&dev_priv->sb_lock);
2759
2760         val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW8(port));
2761         val = 0;
2762         if (pipe)
2763                 val |= (1<<21);
2764         else
2765                 val &= ~(1<<21);
2766         val |= 0x001000c4;
2767         vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW8(port), val);
2768         vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW14(port), 0x00760018);
2769         vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW23(port), 0x00400888);
2770
2771         mutex_unlock(&dev_priv->sb_lock);
2772
2773         intel_enable_dp(encoder);
2774 }
2775
2776 static void vlv_dp_pre_pll_enable(struct intel_encoder *encoder)
2777 {
2778         struct intel_digital_port *dport = enc_to_dig_port(&encoder->base);
2779         struct drm_device *dev = encoder->base.dev;
2780         struct drm_i915_private *dev_priv = dev->dev_private;
2781         struct intel_crtc *intel_crtc =
2782                 to_intel_crtc(encoder->base.crtc);
2783         enum dpio_channel port = vlv_dport_to_channel(dport);
2784         int pipe = intel_crtc->pipe;
2785
2786         intel_dp_prepare(encoder);
2787
2788         /* Program Tx lane resets to default */
2789         mutex_lock(&dev_priv->sb_lock);
2790         vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW0(port),
2791                          DPIO_PCS_TX_LANE2_RESET |
2792                          DPIO_PCS_TX_LANE1_RESET);
2793         vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW1(port),
2794                          DPIO_PCS_CLK_CRI_RXEB_EIOS_EN |
2795                          DPIO_PCS_CLK_CRI_RXDIGFILTSG_EN |
2796                          (1<<DPIO_PCS_CLK_DATAWIDTH_SHIFT) |
2797                                  DPIO_PCS_CLK_SOFT_RESET);
2798
2799         /* Fix up inter-pair skew failure */
2800         vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW12(port), 0x00750f00);
2801         vlv_dpio_write(dev_priv, pipe, VLV_TX_DW11(port), 0x00001500);
2802         vlv_dpio_write(dev_priv, pipe, VLV_TX_DW14(port), 0x40400000);
2803         mutex_unlock(&dev_priv->sb_lock);
2804 }
2805
2806 static void chv_pre_enable_dp(struct intel_encoder *encoder)
2807 {
2808         struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2809         struct intel_digital_port *dport = dp_to_dig_port(intel_dp);
2810         struct drm_device *dev = encoder->base.dev;
2811         struct drm_i915_private *dev_priv = dev->dev_private;
2812         struct intel_crtc *intel_crtc =
2813                 to_intel_crtc(encoder->base.crtc);
2814         enum dpio_channel ch = vlv_dport_to_channel(dport);
2815         int pipe = intel_crtc->pipe;
2816         int data, i, stagger;
2817         u32 val;
2818
2819         mutex_lock(&dev_priv->sb_lock);
2820
2821         /* allow hardware to manage TX FIFO reset source */
2822         val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW11(ch));
2823         val &= ~DPIO_LANEDESKEW_STRAP_OVRD;
2824         vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW11(ch), val);
2825
2826         if (intel_crtc->config->lane_count > 2) {
2827                 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW11(ch));
2828                 val &= ~DPIO_LANEDESKEW_STRAP_OVRD;
2829                 vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW11(ch), val);
2830         }
2831
2832         /* Program Tx lane latency optimal setting*/
2833         for (i = 0; i < intel_crtc->config->lane_count; i++) {
2834                 /* Set the upar bit */
2835                 if (intel_crtc->config->lane_count == 1)
2836                         data = 0x0;
2837                 else
2838                         data = (i == 1) ? 0x0 : 0x1;
2839                 vlv_dpio_write(dev_priv, pipe, CHV_TX_DW14(ch, i),
2840                                 data << DPIO_UPAR_SHIFT);
2841         }
2842
2843         /* Data lane stagger programming */
2844         if (intel_crtc->config->port_clock > 270000)
2845                 stagger = 0x18;
2846         else if (intel_crtc->config->port_clock > 135000)
2847                 stagger = 0xd;
2848         else if (intel_crtc->config->port_clock > 67500)
2849                 stagger = 0x7;
2850         else if (intel_crtc->config->port_clock > 33750)
2851                 stagger = 0x4;
2852         else
2853                 stagger = 0x2;
2854
2855         val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW11(ch));
2856         val |= DPIO_TX2_STAGGER_MASK(0x1f);
2857         vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW11(ch), val);
2858
2859         if (intel_crtc->config->lane_count > 2) {
2860                 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW11(ch));
2861                 val |= DPIO_TX2_STAGGER_MASK(0x1f);
2862                 vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW11(ch), val);
2863         }
2864
2865         vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW12(ch),
2866                        DPIO_LANESTAGGER_STRAP(stagger) |
2867                        DPIO_LANESTAGGER_STRAP_OVRD |
2868                        DPIO_TX1_STAGGER_MASK(0x1f) |
2869                        DPIO_TX1_STAGGER_MULT(6) |
2870                        DPIO_TX2_STAGGER_MULT(0));
2871
2872         if (intel_crtc->config->lane_count > 2) {
2873                 vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW12(ch),
2874                                DPIO_LANESTAGGER_STRAP(stagger) |
2875                                DPIO_LANESTAGGER_STRAP_OVRD |
2876                                DPIO_TX1_STAGGER_MASK(0x1f) |
2877                                DPIO_TX1_STAGGER_MULT(7) |
2878                                DPIO_TX2_STAGGER_MULT(5));
2879         }
2880
2881         /* Deassert data lane reset */
2882         chv_data_lane_soft_reset(encoder, false);
2883
2884         mutex_unlock(&dev_priv->sb_lock);
2885
2886         intel_enable_dp(encoder);
2887
2888         /* Second common lane will stay alive on its own now */
2889         if (dport->release_cl2_override) {
2890                 chv_phy_powergate_ch(dev_priv, DPIO_PHY0, DPIO_CH1, false);
2891                 dport->release_cl2_override = false;
2892         }
2893 }
2894
2895 static void chv_dp_pre_pll_enable(struct intel_encoder *encoder)
2896 {
2897         struct intel_digital_port *dport = enc_to_dig_port(&encoder->base);
2898         struct drm_device *dev = encoder->base.dev;
2899         struct drm_i915_private *dev_priv = dev->dev_private;
2900         struct intel_crtc *intel_crtc =
2901                 to_intel_crtc(encoder->base.crtc);
2902         enum dpio_channel ch = vlv_dport_to_channel(dport);
2903         enum pipe pipe = intel_crtc->pipe;
2904         unsigned int lane_mask =
2905                 intel_dp_unused_lane_mask(intel_crtc->config->lane_count);
2906         u32 val;
2907
2908         intel_dp_prepare(encoder);
2909
2910         /*
2911          * Must trick the second common lane into life.
2912          * Otherwise we can't even access the PLL.
2913          */
2914         if (ch == DPIO_CH0 && pipe == PIPE_B)
2915                 dport->release_cl2_override =
2916                         !chv_phy_powergate_ch(dev_priv, DPIO_PHY0, DPIO_CH1, true);
2917
2918         chv_phy_powergate_lanes(encoder, true, lane_mask);
2919
2920         mutex_lock(&dev_priv->sb_lock);
2921
2922         /* Assert data lane reset */
2923         chv_data_lane_soft_reset(encoder, true);
2924
2925         /* program left/right clock distribution */
2926         if (pipe != PIPE_B) {
2927                 val = vlv_dpio_read(dev_priv, pipe, _CHV_CMN_DW5_CH0);
2928                 val &= ~(CHV_BUFLEFTENA1_MASK | CHV_BUFRIGHTENA1_MASK);
2929                 if (ch == DPIO_CH0)
2930                         val |= CHV_BUFLEFTENA1_FORCE;
2931                 if (ch == DPIO_CH1)
2932                         val |= CHV_BUFRIGHTENA1_FORCE;
2933                 vlv_dpio_write(dev_priv, pipe, _CHV_CMN_DW5_CH0, val);
2934         } else {
2935                 val = vlv_dpio_read(dev_priv, pipe, _CHV_CMN_DW1_CH1);
2936                 val &= ~(CHV_BUFLEFTENA2_MASK | CHV_BUFRIGHTENA2_MASK);
2937                 if (ch == DPIO_CH0)
2938                         val |= CHV_BUFLEFTENA2_FORCE;
2939                 if (ch == DPIO_CH1)
2940                         val |= CHV_BUFRIGHTENA2_FORCE;
2941                 vlv_dpio_write(dev_priv, pipe, _CHV_CMN_DW1_CH1, val);
2942         }
2943
2944         /* program clock channel usage */
2945         val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW8(ch));
2946         val |= CHV_PCS_USEDCLKCHANNEL_OVRRIDE;
2947         if (pipe != PIPE_B)
2948                 val &= ~CHV_PCS_USEDCLKCHANNEL;
2949         else
2950                 val |= CHV_PCS_USEDCLKCHANNEL;
2951         vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW8(ch), val);
2952
2953         if (intel_crtc->config->lane_count > 2) {
2954                 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW8(ch));
2955                 val |= CHV_PCS_USEDCLKCHANNEL_OVRRIDE;
2956                 if (pipe != PIPE_B)
2957                         val &= ~CHV_PCS_USEDCLKCHANNEL;
2958                 else
2959                         val |= CHV_PCS_USEDCLKCHANNEL;
2960                 vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW8(ch), val);
2961         }
2962
2963         /*
2964          * This a a bit weird since generally CL
2965          * matches the pipe, but here we need to
2966          * pick the CL based on the port.
2967          */
2968         val = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW19(ch));
2969         if (pipe != PIPE_B)
2970                 val &= ~CHV_CMN_USEDCLKCHANNEL;
2971         else
2972                 val |= CHV_CMN_USEDCLKCHANNEL;
2973         vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW19(ch), val);
2974
2975         mutex_unlock(&dev_priv->sb_lock);
2976 }
2977
2978 static void chv_dp_post_pll_disable(struct intel_encoder *encoder)
2979 {
2980         struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
2981         enum pipe pipe = to_intel_crtc(encoder->base.crtc)->pipe;
2982         u32 val;
2983
2984         mutex_lock(&dev_priv->sb_lock);
2985
2986         /* disable left/right clock distribution */
2987         if (pipe != PIPE_B) {
2988                 val = vlv_dpio_read(dev_priv, pipe, _CHV_CMN_DW5_CH0);
2989                 val &= ~(CHV_BUFLEFTENA1_MASK | CHV_BUFRIGHTENA1_MASK);
2990                 vlv_dpio_write(dev_priv, pipe, _CHV_CMN_DW5_CH0, val);
2991         } else {
2992                 val = vlv_dpio_read(dev_priv, pipe, _CHV_CMN_DW1_CH1);
2993                 val &= ~(CHV_BUFLEFTENA2_MASK | CHV_BUFRIGHTENA2_MASK);
2994                 vlv_dpio_write(dev_priv, pipe, _CHV_CMN_DW1_CH1, val);
2995         }
2996
2997         mutex_unlock(&dev_priv->sb_lock);
2998
2999         /*
3000          * Leave the power down bit cleared for at least one
3001          * lane so that chv_powergate_phy_ch() will power
3002          * on something when the channel is otherwise unused.
3003          * When the port is off and the override is removed
3004          * the lanes power down anyway, so otherwise it doesn't
3005          * really matter what the state of power down bits is
3006          * after this.
3007          */
3008         chv_phy_powergate_lanes(encoder, false, 0x0);
3009 }
3010
3011 /*
3012  * Native read with retry for link status and receiver capability reads for
3013  * cases where the sink may still be asleep.
3014  *
3015  * Sinks are *supposed* to come up within 1ms from an off state, but we're also
3016  * supposed to retry 3 times per the spec.
3017  */
3018 static ssize_t
3019 intel_dp_dpcd_read_wake(struct drm_dp_aux *aux, unsigned int offset,
3020                         void *buffer, size_t size)
3021 {
3022         ssize_t ret;
3023         int i;
3024
3025         /*
3026          * Sometime we just get the same incorrect byte repeated
3027          * over the entire buffer. Doing just one throw away read
3028          * initially seems to "solve" it.
3029          */
3030         drm_dp_dpcd_read(aux, DP_DPCD_REV, buffer, 1);
3031
3032         for (i = 0; i < 3; i++) {
3033                 ret = drm_dp_dpcd_read(aux, offset, buffer, size);
3034                 if (ret == size)
3035                         return ret;
3036                 msleep(1);
3037         }
3038
3039         return ret;
3040 }
3041
3042 /*
3043  * Fetch AUX CH registers 0x202 - 0x207 which contain
3044  * link status information
3045  */
3046 static bool
3047 intel_dp_get_link_status(struct intel_dp *intel_dp, uint8_t link_status[DP_LINK_STATUS_SIZE])
3048 {
3049         return intel_dp_dpcd_read_wake(&intel_dp->aux,
3050                                        DP_LANE0_1_STATUS,
3051                                        link_status,
3052                                        DP_LINK_STATUS_SIZE) == DP_LINK_STATUS_SIZE;
3053 }
3054
3055 /* These are source-specific values. */
3056 static uint8_t
3057 intel_dp_voltage_max(struct intel_dp *intel_dp)
3058 {
3059         struct drm_device *dev = intel_dp_to_dev(intel_dp);
3060         struct drm_i915_private *dev_priv = dev->dev_private;
3061         enum port port = dp_to_dig_port(intel_dp)->port;
3062
3063         if (IS_BROXTON(dev))
3064                 return DP_TRAIN_VOLTAGE_SWING_LEVEL_3;
3065         else if (INTEL_INFO(dev)->gen >= 9) {
3066                 if (dev_priv->edp_low_vswing && port == PORT_A)
3067                         return DP_TRAIN_VOLTAGE_SWING_LEVEL_3;
3068                 return DP_TRAIN_VOLTAGE_SWING_LEVEL_2;
3069         } else if (IS_VALLEYVIEW(dev))
3070                 return DP_TRAIN_VOLTAGE_SWING_LEVEL_3;
3071         else if (IS_GEN7(dev) && port == PORT_A)
3072                 return DP_TRAIN_VOLTAGE_SWING_LEVEL_2;
3073         else if (HAS_PCH_CPT(dev) && port != PORT_A)
3074                 return DP_TRAIN_VOLTAGE_SWING_LEVEL_3;
3075         else
3076                 return DP_TRAIN_VOLTAGE_SWING_LEVEL_2;
3077 }
3078
3079 static uint8_t
3080 intel_dp_pre_emphasis_max(struct intel_dp *intel_dp, uint8_t voltage_swing)
3081 {
3082         struct drm_device *dev = intel_dp_to_dev(intel_dp);
3083         enum port port = dp_to_dig_port(intel_dp)->port;
3084
3085         if (INTEL_INFO(dev)->gen >= 9) {
3086                 switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
3087                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3088                         return DP_TRAIN_PRE_EMPH_LEVEL_3;
3089                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3090                         return DP_TRAIN_PRE_EMPH_LEVEL_2;
3091                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
3092                         return DP_TRAIN_PRE_EMPH_LEVEL_1;
3093                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_3:
3094                         return DP_TRAIN_PRE_EMPH_LEVEL_0;
3095                 default:
3096                         return DP_TRAIN_PRE_EMPH_LEVEL_0;
3097                 }
3098         } else if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
3099                 switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
3100                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3101                         return DP_TRAIN_PRE_EMPH_LEVEL_3;
3102                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3103                         return DP_TRAIN_PRE_EMPH_LEVEL_2;
3104                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
3105                         return DP_TRAIN_PRE_EMPH_LEVEL_1;
3106                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_3:
3107                 default:
3108                         return DP_TRAIN_PRE_EMPH_LEVEL_0;
3109                 }
3110         } else if (IS_VALLEYVIEW(dev)) {
3111                 switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
3112                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3113                         return DP_TRAIN_PRE_EMPH_LEVEL_3;
3114                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3115                         return DP_TRAIN_PRE_EMPH_LEVEL_2;
3116                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
3117                         return DP_TRAIN_PRE_EMPH_LEVEL_1;
3118                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_3:
3119                 default:
3120                         return DP_TRAIN_PRE_EMPH_LEVEL_0;
3121                 }
3122         } else if (IS_GEN7(dev) && port == PORT_A) {
3123                 switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
3124                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3125                         return DP_TRAIN_PRE_EMPH_LEVEL_2;
3126                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3127                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
3128                         return DP_TRAIN_PRE_EMPH_LEVEL_1;
3129                 default:
3130                         return DP_TRAIN_PRE_EMPH_LEVEL_0;
3131                 }
3132         } else {
3133                 switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
3134                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3135                         return DP_TRAIN_PRE_EMPH_LEVEL_2;
3136                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3137                         return DP_TRAIN_PRE_EMPH_LEVEL_2;
3138                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
3139                         return DP_TRAIN_PRE_EMPH_LEVEL_1;
3140                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_3:
3141                 default:
3142                         return DP_TRAIN_PRE_EMPH_LEVEL_0;
3143                 }
3144         }
3145 }
3146
3147 static uint32_t vlv_signal_levels(struct intel_dp *intel_dp)
3148 {
3149         struct drm_device *dev = intel_dp_to_dev(intel_dp);
3150         struct drm_i915_private *dev_priv = dev->dev_private;
3151         struct intel_digital_port *dport = dp_to_dig_port(intel_dp);
3152         struct intel_crtc *intel_crtc =
3153                 to_intel_crtc(dport->base.base.crtc);
3154         unsigned long demph_reg_value, preemph_reg_value,
3155                 uniqtranscale_reg_value;
3156         uint8_t train_set = intel_dp->train_set[0];
3157         enum dpio_channel port = vlv_dport_to_channel(dport);
3158         int pipe = intel_crtc->pipe;
3159
3160         switch (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) {
3161         case DP_TRAIN_PRE_EMPH_LEVEL_0:
3162                 preemph_reg_value = 0x0004000;
3163                 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3164                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3165                         demph_reg_value = 0x2B405555;
3166                         uniqtranscale_reg_value = 0x552AB83A;
3167                         break;
3168                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3169                         demph_reg_value = 0x2B404040;
3170                         uniqtranscale_reg_value = 0x5548B83A;
3171                         break;
3172                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
3173                         demph_reg_value = 0x2B245555;
3174                         uniqtranscale_reg_value = 0x5560B83A;
3175                         break;
3176                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_3:
3177                         demph_reg_value = 0x2B405555;
3178                         uniqtranscale_reg_value = 0x5598DA3A;
3179                         break;
3180                 default:
3181                         return 0;
3182                 }
3183                 break;
3184         case DP_TRAIN_PRE_EMPH_LEVEL_1:
3185                 preemph_reg_value = 0x0002000;
3186                 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3187                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3188                         demph_reg_value = 0x2B404040;
3189                         uniqtranscale_reg_value = 0x5552B83A;
3190                         break;
3191                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3192                         demph_reg_value = 0x2B404848;
3193                         uniqtranscale_reg_value = 0x5580B83A;
3194                         break;
3195                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
3196                         demph_reg_value = 0x2B404040;
3197                         uniqtranscale_reg_value = 0x55ADDA3A;
3198                         break;
3199                 default:
3200                         return 0;
3201                 }
3202                 break;
3203         case DP_TRAIN_PRE_EMPH_LEVEL_2:
3204                 preemph_reg_value = 0x0000000;
3205                 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3206                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3207                         demph_reg_value = 0x2B305555;
3208                         uniqtranscale_reg_value = 0x5570B83A;
3209                         break;
3210                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3211                         demph_reg_value = 0x2B2B4040;
3212                         uniqtranscale_reg_value = 0x55ADDA3A;
3213                         break;
3214                 default:
3215                         return 0;
3216                 }
3217                 break;
3218         case DP_TRAIN_PRE_EMPH_LEVEL_3:
3219                 preemph_reg_value = 0x0006000;
3220                 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3221                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3222                         demph_reg_value = 0x1B405555;
3223                         uniqtranscale_reg_value = 0x55ADDA3A;
3224                         break;
3225                 default:
3226                         return 0;
3227                 }
3228                 break;
3229         default:
3230                 return 0;
3231         }
3232
3233         mutex_lock(&dev_priv->sb_lock);
3234         vlv_dpio_write(dev_priv, pipe, VLV_TX_DW5(port), 0x00000000);
3235         vlv_dpio_write(dev_priv, pipe, VLV_TX_DW4(port), demph_reg_value);
3236         vlv_dpio_write(dev_priv, pipe, VLV_TX_DW2(port),
3237                          uniqtranscale_reg_value);
3238         vlv_dpio_write(dev_priv, pipe, VLV_TX_DW3(port), 0x0C782040);
3239         vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW11(port), 0x00030000);
3240         vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW9(port), preemph_reg_value);
3241         vlv_dpio_write(dev_priv, pipe, VLV_TX_DW5(port), 0x80000000);
3242         mutex_unlock(&dev_priv->sb_lock);
3243
3244         return 0;
3245 }
3246
3247 static bool chv_need_uniq_trans_scale(uint8_t train_set)
3248 {
3249         return (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) == DP_TRAIN_PRE_EMPH_LEVEL_0 &&
3250                 (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) == DP_TRAIN_VOLTAGE_SWING_LEVEL_3;
3251 }
3252
3253 static uint32_t chv_signal_levels(struct intel_dp *intel_dp)
3254 {
3255         struct drm_device *dev = intel_dp_to_dev(intel_dp);
3256         struct drm_i915_private *dev_priv = dev->dev_private;
3257         struct intel_digital_port *dport = dp_to_dig_port(intel_dp);
3258         struct intel_crtc *intel_crtc = to_intel_crtc(dport->base.base.crtc);
3259         u32 deemph_reg_value, margin_reg_value, val;
3260         uint8_t train_set = intel_dp->train_set[0];
3261         enum dpio_channel ch = vlv_dport_to_channel(dport);
3262         enum pipe pipe = intel_crtc->pipe;
3263         int i;
3264
3265         switch (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) {
3266         case DP_TRAIN_PRE_EMPH_LEVEL_0:
3267                 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3268                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3269                         deemph_reg_value = 128;
3270                         margin_reg_value = 52;
3271                         break;
3272                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3273                         deemph_reg_value = 128;
3274                         margin_reg_value = 77;
3275                         break;
3276                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
3277                         deemph_reg_value = 128;
3278                         margin_reg_value = 102;
3279                         break;
3280                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_3:
3281                         deemph_reg_value = 128;
3282                         margin_reg_value = 154;
3283                         /* FIXME extra to set for 1200 */
3284                         break;
3285                 default:
3286                         return 0;
3287                 }
3288                 break;
3289         case DP_TRAIN_PRE_EMPH_LEVEL_1:
3290                 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3291                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3292                         deemph_reg_value = 85;
3293                         margin_reg_value = 78;
3294                         break;
3295                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3296                         deemph_reg_value = 85;
3297                         margin_reg_value = 116;
3298                         break;
3299                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
3300                         deemph_reg_value = 85;
3301                         margin_reg_value = 154;
3302                         break;
3303                 default:
3304                         return 0;
3305                 }
3306                 break;
3307         case DP_TRAIN_PRE_EMPH_LEVEL_2:
3308                 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3309                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3310                         deemph_reg_value = 64;
3311                         margin_reg_value = 104;
3312                         break;
3313                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3314                         deemph_reg_value = 64;
3315                         margin_reg_value = 154;
3316                         break;
3317                 default:
3318                         return 0;
3319                 }
3320                 break;
3321         case DP_TRAIN_PRE_EMPH_LEVEL_3:
3322                 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3323                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3324                         deemph_reg_value = 43;
3325                         margin_reg_value = 154;
3326                         break;
3327                 default:
3328                         return 0;
3329                 }
3330                 break;
3331         default:
3332                 return 0;
3333         }
3334
3335         mutex_lock(&dev_priv->sb_lock);
3336
3337         /* Clear calc init */
3338         val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW10(ch));
3339         val &= ~(DPIO_PCS_SWING_CALC_TX0_TX2 | DPIO_PCS_SWING_CALC_TX1_TX3);
3340         val &= ~(DPIO_PCS_TX1DEEMP_MASK | DPIO_PCS_TX2DEEMP_MASK);
3341         val |= DPIO_PCS_TX1DEEMP_9P5 | DPIO_PCS_TX2DEEMP_9P5;
3342         vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW10(ch), val);
3343
3344         if (intel_crtc->config->lane_count > 2) {
3345                 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW10(ch));
3346                 val &= ~(DPIO_PCS_SWING_CALC_TX0_TX2 | DPIO_PCS_SWING_CALC_TX1_TX3);
3347                 val &= ~(DPIO_PCS_TX1DEEMP_MASK | DPIO_PCS_TX2DEEMP_MASK);
3348                 val |= DPIO_PCS_TX1DEEMP_9P5 | DPIO_PCS_TX2DEEMP_9P5;
3349                 vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW10(ch), val);
3350         }
3351
3352         val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW9(ch));
3353         val &= ~(DPIO_PCS_TX1MARGIN_MASK | DPIO_PCS_TX2MARGIN_MASK);
3354         val |= DPIO_PCS_TX1MARGIN_000 | DPIO_PCS_TX2MARGIN_000;
3355         vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW9(ch), val);
3356
3357         if (intel_crtc->config->lane_count > 2) {
3358                 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW9(ch));
3359                 val &= ~(DPIO_PCS_TX1MARGIN_MASK | DPIO_PCS_TX2MARGIN_MASK);
3360                 val |= DPIO_PCS_TX1MARGIN_000 | DPIO_PCS_TX2MARGIN_000;
3361                 vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW9(ch), val);
3362         }
3363
3364         /* Program swing deemph */
3365         for (i = 0; i < intel_crtc->config->lane_count; i++) {
3366                 val = vlv_dpio_read(dev_priv, pipe, CHV_TX_DW4(ch, i));
3367                 val &= ~DPIO_SWING_DEEMPH9P5_MASK;
3368                 val |= deemph_reg_value << DPIO_SWING_DEEMPH9P5_SHIFT;
3369                 vlv_dpio_write(dev_priv, pipe, CHV_TX_DW4(ch, i), val);
3370         }
3371
3372         /* Program swing margin */
3373         for (i = 0; i < intel_crtc->config->lane_count; i++) {
3374                 val = vlv_dpio_read(dev_priv, pipe, CHV_TX_DW2(ch, i));
3375
3376                 val &= ~DPIO_SWING_MARGIN000_MASK;
3377                 val |= margin_reg_value << DPIO_SWING_MARGIN000_SHIFT;
3378
3379                 /*
3380                  * Supposedly this value shouldn't matter when unique transition
3381                  * scale is disabled, but in fact it does matter. Let's just
3382                  * always program the same value and hope it's OK.
3383                  */
3384                 val &= ~(0xff << DPIO_UNIQ_TRANS_SCALE_SHIFT);
3385                 val |= 0x9a << DPIO_UNIQ_TRANS_SCALE_SHIFT;
3386
3387                 vlv_dpio_write(dev_priv, pipe, CHV_TX_DW2(ch, i), val);
3388         }
3389
3390         /*
3391          * The document said it needs to set bit 27 for ch0 and bit 26
3392          * for ch1. Might be a typo in the doc.
3393          * For now, for this unique transition scale selection, set bit
3394          * 27 for ch0 and ch1.
3395          */
3396         for (i = 0; i < intel_crtc->config->lane_count; i++) {
3397                 val = vlv_dpio_read(dev_priv, pipe, CHV_TX_DW3(ch, i));
3398                 if (chv_need_uniq_trans_scale(train_set))
3399                         val |= DPIO_TX_UNIQ_TRANS_SCALE_EN;
3400                 else
3401                         val &= ~DPIO_TX_UNIQ_TRANS_SCALE_EN;
3402                 vlv_dpio_write(dev_priv, pipe, CHV_TX_DW3(ch, i), val);
3403         }
3404
3405         /* Start swing calculation */
3406         val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW10(ch));
3407         val |= DPIO_PCS_SWING_CALC_TX0_TX2 | DPIO_PCS_SWING_CALC_TX1_TX3;
3408         vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW10(ch), val);
3409
3410         if (intel_crtc->config->lane_count > 2) {
3411                 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW10(ch));
3412                 val |= DPIO_PCS_SWING_CALC_TX0_TX2 | DPIO_PCS_SWING_CALC_TX1_TX3;
3413                 vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW10(ch), val);
3414         }
3415
3416         mutex_unlock(&dev_priv->sb_lock);
3417
3418         return 0;
3419 }
3420
3421 static void
3422 intel_get_adjust_train(struct intel_dp *intel_dp,
3423                        const uint8_t link_status[DP_LINK_STATUS_SIZE])
3424 {
3425         uint8_t v = 0;
3426         uint8_t p = 0;
3427         int lane;
3428         uint8_t voltage_max;
3429         uint8_t preemph_max;
3430
3431         for (lane = 0; lane < intel_dp->lane_count; lane++) {
3432                 uint8_t this_v = drm_dp_get_adjust_request_voltage(link_status, lane);
3433                 uint8_t this_p = drm_dp_get_adjust_request_pre_emphasis(link_status, lane);
3434
3435                 if (this_v > v)
3436                         v = this_v;
3437                 if (this_p > p)
3438                         p = this_p;
3439         }
3440
3441         voltage_max = intel_dp_voltage_max(intel_dp);
3442         if (v >= voltage_max)
3443                 v = voltage_max | DP_TRAIN_MAX_SWING_REACHED;
3444
3445         preemph_max = intel_dp_pre_emphasis_max(intel_dp, v);
3446         if (p >= preemph_max)
3447                 p = preemph_max | DP_TRAIN_MAX_PRE_EMPHASIS_REACHED;
3448
3449         for (lane = 0; lane < 4; lane++)
3450                 intel_dp->train_set[lane] = v | p;
3451 }
3452
3453 static uint32_t
3454 gen4_signal_levels(uint8_t train_set)
3455 {
3456         uint32_t        signal_levels = 0;
3457
3458         switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3459         case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3460         default:
3461                 signal_levels |= DP_VOLTAGE_0_4;
3462                 break;
3463         case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3464                 signal_levels |= DP_VOLTAGE_0_6;
3465                 break;
3466         case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
3467                 signal_levels |= DP_VOLTAGE_0_8;
3468                 break;
3469         case DP_TRAIN_VOLTAGE_SWING_LEVEL_3:
3470                 signal_levels |= DP_VOLTAGE_1_2;
3471                 break;
3472         }
3473         switch (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) {
3474         case DP_TRAIN_PRE_EMPH_LEVEL_0:
3475         default:
3476                 signal_levels |= DP_PRE_EMPHASIS_0;
3477                 break;
3478         case DP_TRAIN_PRE_EMPH_LEVEL_1:
3479                 signal_levels |= DP_PRE_EMPHASIS_3_5;
3480                 break;
3481         case DP_TRAIN_PRE_EMPH_LEVEL_2:
3482                 signal_levels |= DP_PRE_EMPHASIS_6;
3483                 break;
3484         case DP_TRAIN_PRE_EMPH_LEVEL_3:
3485                 signal_levels |= DP_PRE_EMPHASIS_9_5;
3486                 break;
3487         }
3488         return signal_levels;
3489 }
3490
3491 /* Gen6's DP voltage swing and pre-emphasis control */
3492 static uint32_t
3493 gen6_edp_signal_levels(uint8_t train_set)
3494 {
3495         int signal_levels = train_set & (DP_TRAIN_VOLTAGE_SWING_MASK |
3496                                          DP_TRAIN_PRE_EMPHASIS_MASK);
3497         switch (signal_levels) {
3498         case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_0:
3499         case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_0:
3500                 return EDP_LINK_TRAIN_400_600MV_0DB_SNB_B;
3501         case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_1:
3502                 return EDP_LINK_TRAIN_400MV_3_5DB_SNB_B;
3503         case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_2:
3504         case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_2:
3505                 return EDP_LINK_TRAIN_400_600MV_6DB_SNB_B;
3506         case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_1:
3507         case DP_TRAIN_VOLTAGE_SWING_LEVEL_2 | DP_TRAIN_PRE_EMPH_LEVEL_1:
3508                 return EDP_LINK_TRAIN_600_800MV_3_5DB_SNB_B;
3509         case DP_TRAIN_VOLTAGE_SWING_LEVEL_2 | DP_TRAIN_PRE_EMPH_LEVEL_0:
3510         case DP_TRAIN_VOLTAGE_SWING_LEVEL_3 | DP_TRAIN_PRE_EMPH_LEVEL_0:
3511                 return EDP_LINK_TRAIN_800_1200MV_0DB_SNB_B;
3512         default:
3513                 DRM_DEBUG_KMS("Unsupported voltage swing/pre-emphasis level:"
3514                               "0x%x\n", signal_levels);
3515                 return EDP_LINK_TRAIN_400_600MV_0DB_SNB_B;
3516         }
3517 }
3518
3519 /* Gen7's DP voltage swing and pre-emphasis control */
3520 static uint32_t
3521 gen7_edp_signal_levels(uint8_t train_set)
3522 {
3523         int signal_levels = train_set & (DP_TRAIN_VOLTAGE_SWING_MASK |
3524                                          DP_TRAIN_PRE_EMPHASIS_MASK);
3525         switch (signal_levels) {
3526         case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_0:
3527                 return EDP_LINK_TRAIN_400MV_0DB_IVB;
3528         case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_1:
3529                 return EDP_LINK_TRAIN_400MV_3_5DB_IVB;
3530         case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_2:
3531                 return EDP_LINK_TRAIN_400MV_6DB_IVB;
3532
3533         case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_0:
3534                 return EDP_LINK_TRAIN_600MV_0DB_IVB;
3535         case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_1:
3536                 return EDP_LINK_TRAIN_600MV_3_5DB_IVB;
3537
3538         case DP_TRAIN_VOLTAGE_SWING_LEVEL_2 | DP_TRAIN_PRE_EMPH_LEVEL_0:
3539                 return EDP_LINK_TRAIN_800MV_0DB_IVB;
3540         case DP_TRAIN_VOLTAGE_SWING_LEVEL_2 | DP_TRAIN_PRE_EMPH_LEVEL_1:
3541                 return EDP_LINK_TRAIN_800MV_3_5DB_IVB;
3542
3543         default:
3544                 DRM_DEBUG_KMS("Unsupported voltage swing/pre-emphasis level:"
3545                               "0x%x\n", signal_levels);
3546                 return EDP_LINK_TRAIN_500MV_0DB_IVB;
3547         }
3548 }
3549
3550 /* Properly updates "DP" with the correct signal levels. */
3551 static void
3552 intel_dp_set_signal_levels(struct intel_dp *intel_dp, uint32_t *DP)
3553 {
3554         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
3555         enum port port = intel_dig_port->port;
3556         struct drm_device *dev = intel_dig_port->base.base.dev;
3557         uint32_t signal_levels, mask = 0;
3558         uint8_t train_set = intel_dp->train_set[0];
3559
3560         if (HAS_DDI(dev)) {
3561                 signal_levels = ddi_signal_levels(intel_dp);
3562
3563                 if (IS_BROXTON(dev))
3564                         signal_levels = 0;
3565                 else
3566                         mask = DDI_BUF_EMP_MASK;
3567         } else if (IS_CHERRYVIEW(dev)) {
3568                 signal_levels = chv_signal_levels(intel_dp);
3569         } else if (IS_VALLEYVIEW(dev)) {
3570                 signal_levels = vlv_signal_levels(intel_dp);
3571         } else if (IS_GEN7(dev) && port == PORT_A) {
3572                 signal_levels = gen7_edp_signal_levels(train_set);
3573                 mask = EDP_LINK_TRAIN_VOL_EMP_MASK_IVB;
3574         } else if (IS_GEN6(dev) && port == PORT_A) {
3575                 signal_levels = gen6_edp_signal_levels(train_set);
3576                 mask = EDP_LINK_TRAIN_VOL_EMP_MASK_SNB;
3577         } else {
3578                 signal_levels = gen4_signal_levels(train_set);
3579                 mask = DP_VOLTAGE_MASK | DP_PRE_EMPHASIS_MASK;
3580         }
3581
3582         if (mask)
3583                 DRM_DEBUG_KMS("Using signal levels %08x\n", signal_levels);
3584
3585         DRM_DEBUG_KMS("Using vswing level %d\n",
3586                 train_set & DP_TRAIN_VOLTAGE_SWING_MASK);
3587         DRM_DEBUG_KMS("Using pre-emphasis level %d\n",
3588                 (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) >>
3589                         DP_TRAIN_PRE_EMPHASIS_SHIFT);
3590
3591         *DP = (*DP & ~mask) | signal_levels;
3592 }
3593
3594 static bool
3595 intel_dp_set_link_train(struct intel_dp *intel_dp,
3596                         uint32_t *DP,
3597                         uint8_t dp_train_pat)
3598 {
3599         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
3600         struct drm_i915_private *dev_priv =
3601                 to_i915(intel_dig_port->base.base.dev);
3602         uint8_t buf[sizeof(intel_dp->train_set) + 1];
3603         int ret, len;
3604
3605         _intel_dp_set_link_train(intel_dp, DP, dp_train_pat);
3606
3607         I915_WRITE(intel_dp->output_reg, *DP);
3608         POSTING_READ(intel_dp->output_reg);
3609
3610         buf[0] = dp_train_pat;
3611         if ((dp_train_pat & DP_TRAINING_PATTERN_MASK) ==
3612             DP_TRAINING_PATTERN_DISABLE) {
3613                 /* don't write DP_TRAINING_LANEx_SET on disable */
3614                 len = 1;
3615         } else {
3616                 /* DP_TRAINING_LANEx_SET follow DP_TRAINING_PATTERN_SET */
3617                 memcpy(buf + 1, intel_dp->train_set, intel_dp->lane_count);
3618                 len = intel_dp->lane_count + 1;
3619         }
3620
3621         ret = drm_dp_dpcd_write(&intel_dp->aux, DP_TRAINING_PATTERN_SET,
3622                                 buf, len);
3623
3624         return ret == len;
3625 }
3626
3627 static bool
3628 intel_dp_reset_link_train(struct intel_dp *intel_dp, uint32_t *DP,
3629                         uint8_t dp_train_pat)
3630 {
3631         memset(intel_dp->train_set, 0, sizeof(intel_dp->train_set));
3632         intel_dp_set_signal_levels(intel_dp, DP);
3633         return intel_dp_set_link_train(intel_dp, DP, dp_train_pat);
3634 }
3635
3636 static bool
3637 intel_dp_update_link_train(struct intel_dp *intel_dp, uint32_t *DP,
3638                            const uint8_t link_status[DP_LINK_STATUS_SIZE])
3639 {
3640         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
3641         struct drm_i915_private *dev_priv =
3642                 to_i915(intel_dig_port->base.base.dev);
3643         int ret;
3644
3645         intel_get_adjust_train(intel_dp, link_status);
3646         intel_dp_set_signal_levels(intel_dp, DP);
3647
3648         I915_WRITE(intel_dp->output_reg, *DP);
3649         POSTING_READ(intel_dp->output_reg);
3650
3651         ret = drm_dp_dpcd_write(&intel_dp->aux, DP_TRAINING_LANE0_SET,
3652                                 intel_dp->train_set, intel_dp->lane_count);
3653
3654         return ret == intel_dp->lane_count;
3655 }
3656
3657 static void intel_dp_set_idle_link_train(struct intel_dp *intel_dp)
3658 {
3659         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
3660         struct drm_device *dev = intel_dig_port->base.base.dev;
3661         struct drm_i915_private *dev_priv = dev->dev_private;
3662         enum port port = intel_dig_port->port;
3663         uint32_t val;
3664
3665         if (!HAS_DDI(dev))
3666                 return;
3667
3668         val = I915_READ(DP_TP_CTL(port));
3669         val &= ~DP_TP_CTL_LINK_TRAIN_MASK;
3670         val |= DP_TP_CTL_LINK_TRAIN_IDLE;
3671         I915_WRITE(DP_TP_CTL(port), val);
3672
3673         /*
3674          * On PORT_A we can have only eDP in SST mode. There the only reason
3675          * we need to set idle transmission mode is to work around a HW issue
3676          * where we enable the pipe while not in idle link-training mode.
3677          * In this case there is requirement to wait for a minimum number of
3678          * idle patterns to be sent.
3679          */
3680         if (port == PORT_A)
3681                 return;
3682
3683         if (wait_for((I915_READ(DP_TP_STATUS(port)) & DP_TP_STATUS_IDLE_DONE),
3684                      1))
3685                 DRM_ERROR("Timed out waiting for DP idle patterns\n");
3686 }
3687
3688 /* Enable corresponding port and start training pattern 1 */
3689 static void
3690 intel_dp_link_training_clock_recovery(struct intel_dp *intel_dp)
3691 {
3692         struct drm_encoder *encoder = &dp_to_dig_port(intel_dp)->base.base;
3693         struct drm_device *dev = encoder->dev;
3694         int i;
3695         uint8_t voltage;
3696         int voltage_tries, loop_tries;
3697         uint32_t DP = intel_dp->DP;
3698         uint8_t link_config[2];
3699         uint8_t link_bw, rate_select;
3700
3701         if (HAS_DDI(dev))
3702                 intel_ddi_prepare_link_retrain(encoder);
3703
3704         intel_dp_compute_rate(intel_dp, intel_dp->link_rate,
3705                               &link_bw, &rate_select);
3706
3707         /* Write the link configuration data */
3708         link_config[0] = link_bw;
3709         link_config[1] = intel_dp->lane_count;
3710         if (drm_dp_enhanced_frame_cap(intel_dp->dpcd))
3711                 link_config[1] |= DP_LANE_COUNT_ENHANCED_FRAME_EN;
3712         drm_dp_dpcd_write(&intel_dp->aux, DP_LINK_BW_SET, link_config, 2);
3713         if (intel_dp->num_sink_rates)
3714                 drm_dp_dpcd_write(&intel_dp->aux, DP_LINK_RATE_SET,
3715                                   &rate_select, 1);
3716
3717         link_config[0] = 0;
3718         link_config[1] = DP_SET_ANSI_8B10B;
3719         drm_dp_dpcd_write(&intel_dp->aux, DP_DOWNSPREAD_CTRL, link_config, 2);
3720
3721         DP |= DP_PORT_EN;
3722
3723         /* clock recovery */
3724         if (!intel_dp_reset_link_train(intel_dp, &DP,
3725                                        DP_TRAINING_PATTERN_1 |
3726                                        DP_LINK_SCRAMBLING_DISABLE)) {
3727                 DRM_ERROR("failed to enable link training\n");
3728                 return;
3729         }
3730
3731         voltage = 0xff;
3732         voltage_tries = 0;
3733         loop_tries = 0;
3734         for (;;) {
3735                 uint8_t link_status[DP_LINK_STATUS_SIZE];
3736
3737                 drm_dp_link_train_clock_recovery_delay(intel_dp->dpcd);
3738                 if (!intel_dp_get_link_status(intel_dp, link_status)) {
3739                         DRM_ERROR("failed to get link status\n");
3740                         break;
3741                 }
3742
3743                 if (drm_dp_clock_recovery_ok(link_status, intel_dp->lane_count)) {
3744                         DRM_DEBUG_KMS("clock recovery OK\n");
3745                         break;
3746                 }
3747
3748
3749                 /* Check to see if we've tried the max voltage */
3750                 for (i = 0; i < intel_dp->lane_count; i++)
3751                         if ((intel_dp->train_set[i] & DP_TRAIN_MAX_SWING_REACHED) == 0)
3752                                 break;
3753                 if (i == intel_dp->lane_count) {
3754                         ++loop_tries;
3755                         if (loop_tries == 5) {
3756                                 DRM_ERROR("too many full retries, give up\n");
3757                                 break;
3758                         }
3759                         intel_dp_reset_link_train(intel_dp, &DP,
3760                                                   DP_TRAINING_PATTERN_1 |
3761                                                   DP_LINK_SCRAMBLING_DISABLE);
3762                         voltage_tries = 0;
3763                         continue;
3764                 }
3765
3766                 /* Check to see if we've tried the same voltage 5 times */
3767                 if ((intel_dp->train_set[0] & DP_TRAIN_VOLTAGE_SWING_MASK) == voltage) {
3768                         ++voltage_tries;
3769                         if (voltage_tries == 5) {
3770                                 DRM_ERROR("too many voltage retries, give up\n");
3771                                 break;
3772                         }
3773                 } else
3774                         voltage_tries = 0;
3775                 voltage = intel_dp->train_set[0] & DP_TRAIN_VOLTAGE_SWING_MASK;
3776
3777                 /* Update training set as requested by target */
3778                 if (!intel_dp_update_link_train(intel_dp, &DP, link_status)) {
3779                         DRM_ERROR("failed to update link training\n");
3780                         break;
3781                 }
3782         }
3783
3784         intel_dp->DP = DP;
3785 }
3786
3787 static void
3788 intel_dp_link_training_channel_equalization(struct intel_dp *intel_dp)
3789 {
3790         struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
3791         struct drm_device *dev = dig_port->base.base.dev;
3792         bool channel_eq = false;
3793         int tries, cr_tries;
3794         uint32_t DP = intel_dp->DP;
3795         uint32_t training_pattern = DP_TRAINING_PATTERN_2;
3796
3797         /*
3798          * Training Pattern 3 for HBR2 or 1.2 devices that support it.
3799          *
3800          * Intel platforms that support HBR2 also support TPS3. TPS3 support is
3801          * also mandatory for downstream devices that support HBR2.
3802          *
3803          * Due to WaDisableHBR2 SKL < B0 is the only exception where TPS3 is
3804          * supported but still not enabled.
3805          */
3806         if (intel_dp_source_supports_hbr2(dev) &&
3807             drm_dp_tps3_supported(intel_dp->dpcd))
3808                 training_pattern = DP_TRAINING_PATTERN_3;
3809         else if (intel_dp->link_rate == 540000)
3810                 DRM_ERROR("5.4 Gbps link rate without HBR2/TPS3 support\n");
3811
3812         /* channel equalization */
3813         if (!intel_dp_set_link_train(intel_dp, &DP,
3814                                      training_pattern |
3815                                      DP_LINK_SCRAMBLING_DISABLE)) {
3816                 DRM_ERROR("failed to start channel equalization\n");
3817                 return;
3818         }
3819
3820         tries = 0;
3821         cr_tries = 0;
3822         channel_eq = false;
3823         for (;;) {
3824                 uint8_t link_status[DP_LINK_STATUS_SIZE];
3825
3826                 if (cr_tries > 5) {
3827                         DRM_ERROR("failed to train DP, aborting\n");
3828                         break;
3829                 }
3830
3831                 drm_dp_link_train_channel_eq_delay(intel_dp->dpcd);
3832                 if (!intel_dp_get_link_status(intel_dp, link_status)) {
3833                         DRM_ERROR("failed to get link status\n");
3834                         break;
3835                 }
3836
3837                 /* Make sure clock is still ok */
3838                 if (!drm_dp_clock_recovery_ok(link_status,
3839                                               intel_dp->lane_count)) {
3840                         intel_dp_link_training_clock_recovery(intel_dp);
3841                         intel_dp_set_link_train(intel_dp, &DP,
3842                                                 training_pattern |
3843                                                 DP_LINK_SCRAMBLING_DISABLE);
3844                         cr_tries++;
3845                         continue;
3846                 }
3847
3848                 if (drm_dp_channel_eq_ok(link_status,
3849                                          intel_dp->lane_count)) {
3850                         channel_eq = true;
3851                         break;
3852                 }
3853
3854                 /* Try 5 times, then try clock recovery if that fails */
3855                 if (tries > 5) {
3856                         intel_dp_link_training_clock_recovery(intel_dp);
3857                         intel_dp_set_link_train(intel_dp, &DP,
3858                                                 training_pattern |
3859                                                 DP_LINK_SCRAMBLING_DISABLE);
3860                         tries = 0;
3861                         cr_tries++;
3862                         continue;
3863                 }
3864
3865                 /* Update training set as requested by target */
3866                 if (!intel_dp_update_link_train(intel_dp, &DP, link_status)) {
3867                         DRM_ERROR("failed to update link training\n");
3868                         break;
3869                 }
3870                 ++tries;
3871         }
3872
3873         intel_dp_set_idle_link_train(intel_dp);
3874
3875         intel_dp->DP = DP;
3876
3877         if (channel_eq)
3878                 DRM_DEBUG_KMS("Channel EQ done. DP Training successful\n");
3879 }
3880
3881 void intel_dp_stop_link_train(struct intel_dp *intel_dp)
3882 {
3883         intel_dp_set_link_train(intel_dp, &intel_dp->DP,
3884                                 DP_TRAINING_PATTERN_DISABLE);
3885 }
3886
3887 void
3888 intel_dp_start_link_train(struct intel_dp *intel_dp)
3889 {
3890         intel_dp_link_training_clock_recovery(intel_dp);
3891         intel_dp_link_training_channel_equalization(intel_dp);
3892 }
3893
3894 static void
3895 intel_dp_link_down(struct intel_dp *intel_dp)
3896 {
3897         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
3898         struct intel_crtc *crtc = to_intel_crtc(intel_dig_port->base.base.crtc);
3899         enum port port = intel_dig_port->port;
3900         struct drm_device *dev = intel_dig_port->base.base.dev;
3901         struct drm_i915_private *dev_priv = dev->dev_private;
3902         uint32_t DP = intel_dp->DP;
3903
3904         if (WARN_ON(HAS_DDI(dev)))
3905                 return;
3906
3907         if (WARN_ON((I915_READ(intel_dp->output_reg) & DP_PORT_EN) == 0))
3908                 return;
3909
3910         DRM_DEBUG_KMS("\n");
3911
3912         if ((IS_GEN7(dev) && port == PORT_A) ||
3913             (HAS_PCH_CPT(dev) && port != PORT_A)) {
3914                 DP &= ~DP_LINK_TRAIN_MASK_CPT;
3915                 DP |= DP_LINK_TRAIN_PAT_IDLE_CPT;
3916         } else {
3917                 if (IS_CHERRYVIEW(dev))
3918                         DP &= ~DP_LINK_TRAIN_MASK_CHV;
3919                 else
3920                         DP &= ~DP_LINK_TRAIN_MASK;
3921                 DP |= DP_LINK_TRAIN_PAT_IDLE;
3922         }
3923         I915_WRITE(intel_dp->output_reg, DP);
3924         POSTING_READ(intel_dp->output_reg);
3925
3926         DP &= ~(DP_PORT_EN | DP_AUDIO_OUTPUT_ENABLE);
3927         I915_WRITE(intel_dp->output_reg, DP);
3928         POSTING_READ(intel_dp->output_reg);
3929
3930         /*
3931          * HW workaround for IBX, we need to move the port
3932          * to transcoder A after disabling it to allow the
3933          * matching HDMI port to be enabled on transcoder A.
3934          */
3935         if (HAS_PCH_IBX(dev) && crtc->pipe == PIPE_B && port != PORT_A) {
3936                 /* always enable with pattern 1 (as per spec) */
3937                 DP &= ~(DP_PIPEB_SELECT | DP_LINK_TRAIN_MASK);
3938                 DP |= DP_PORT_EN | DP_LINK_TRAIN_PAT_1;
3939                 I915_WRITE(intel_dp->output_reg, DP);
3940                 POSTING_READ(intel_dp->output_reg);
3941
3942                 DP &= ~DP_PORT_EN;
3943                 I915_WRITE(intel_dp->output_reg, DP);
3944                 POSTING_READ(intel_dp->output_reg);
3945         }
3946
3947         msleep(intel_dp->panel_power_down_delay);
3948 }
3949
3950 static bool
3951 intel_dp_get_dpcd(struct intel_dp *intel_dp)
3952 {
3953         struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
3954         struct drm_device *dev = dig_port->base.base.dev;
3955         struct drm_i915_private *dev_priv = dev->dev_private;
3956         uint8_t rev;
3957
3958         if (intel_dp_dpcd_read_wake(&intel_dp->aux, 0x000, intel_dp->dpcd,
3959                                     sizeof(intel_dp->dpcd)) < 0)
3960                 return false; /* aux transfer failed */
3961
3962         DRM_DEBUG_KMS("DPCD: %*ph\n", (int) sizeof(intel_dp->dpcd), intel_dp->dpcd);
3963
3964         if (intel_dp->dpcd[DP_DPCD_REV] == 0)
3965                 return false; /* DPCD not present */
3966
3967         /* Check if the panel supports PSR */
3968         memset(intel_dp->psr_dpcd, 0, sizeof(intel_dp->psr_dpcd));
3969         if (is_edp(intel_dp)) {
3970                 intel_dp_dpcd_read_wake(&intel_dp->aux, DP_PSR_SUPPORT,
3971                                         intel_dp->psr_dpcd,
3972                                         sizeof(intel_dp->psr_dpcd));
3973                 if (intel_dp->psr_dpcd[0] & DP_PSR_IS_SUPPORTED) {
3974                         dev_priv->psr.sink_support = true;
3975                         DRM_DEBUG_KMS("Detected EDP PSR Panel.\n");
3976                 }
3977
3978                 if (INTEL_INFO(dev)->gen >= 9 &&
3979                         (intel_dp->psr_dpcd[0] & DP_PSR2_IS_SUPPORTED)) {
3980                         uint8_t frame_sync_cap;
3981
3982                         dev_priv->psr.sink_support = true;
3983                         intel_dp_dpcd_read_wake(&intel_dp->aux,
3984                                         DP_SINK_DEVICE_AUX_FRAME_SYNC_CAP,
3985                                         &frame_sync_cap, 1);
3986                         dev_priv->psr.aux_frame_sync = frame_sync_cap ? true : false;
3987                         /* PSR2 needs frame sync as well */
3988                         dev_priv->psr.psr2_support = dev_priv->psr.aux_frame_sync;
3989                         DRM_DEBUG_KMS("PSR2 %s on sink",
3990                                 dev_priv->psr.psr2_support ? "supported" : "not supported");
3991                 }
3992         }
3993
3994         DRM_DEBUG_KMS("Display Port TPS3 support: source %s, sink %s\n",
3995                       yesno(intel_dp_source_supports_hbr2(dev)),
3996                       yesno(drm_dp_tps3_supported(intel_dp->dpcd)));
3997
3998         /* Intermediate frequency support */
3999         if (is_edp(intel_dp) &&
4000             (intel_dp->dpcd[DP_EDP_CONFIGURATION_CAP] & DP_DPCD_DISPLAY_CONTROL_CAPABLE) &&
4001             (intel_dp_dpcd_read_wake(&intel_dp->aux, DP_EDP_DPCD_REV, &rev, 1) == 1) &&
4002             (rev >= 0x03)) { /* eDp v1.4 or higher */
4003                 __le16 sink_rates[DP_MAX_SUPPORTED_RATES];
4004                 int i;
4005
4006                 intel_dp_dpcd_read_wake(&intel_dp->aux,
4007                                 DP_SUPPORTED_LINK_RATES,
4008                                 sink_rates,
4009                                 sizeof(sink_rates));
4010
4011                 for (i = 0; i < ARRAY_SIZE(sink_rates); i++) {
4012                         int val = le16_to_cpu(sink_rates[i]);
4013
4014                         if (val == 0)
4015                                 break;
4016
4017                         /* Value read is in kHz while drm clock is saved in deca-kHz */
4018                         intel_dp->sink_rates[i] = (val * 200) / 10;
4019                 }
4020                 intel_dp->num_sink_rates = i;
4021         }
4022
4023         intel_dp_print_rates(intel_dp);
4024
4025         if (!(intel_dp->dpcd[DP_DOWNSTREAMPORT_PRESENT] &
4026               DP_DWN_STRM_PORT_PRESENT))
4027                 return true; /* native DP sink */
4028
4029         if (intel_dp->dpcd[DP_DPCD_REV] == 0x10)
4030                 return true; /* no per-port downstream info */
4031
4032         if (intel_dp_dpcd_read_wake(&intel_dp->aux, DP_DOWNSTREAM_PORT_0,
4033                                     intel_dp->downstream_ports,
4034                                     DP_MAX_DOWNSTREAM_PORTS) < 0)
4035                 return false; /* downstream port status fetch failed */
4036
4037         return true;
4038 }
4039
4040 static void
4041 intel_dp_probe_oui(struct intel_dp *intel_dp)
4042 {
4043         u8 buf[3];
4044
4045         if (!(intel_dp->dpcd[DP_DOWN_STREAM_PORT_COUNT] & DP_OUI_SUPPORT))
4046                 return;
4047
4048         if (intel_dp_dpcd_read_wake(&intel_dp->aux, DP_SINK_OUI, buf, 3) == 3)
4049                 DRM_DEBUG_KMS("Sink OUI: %02hx%02hx%02hx\n",
4050                               buf[0], buf[1], buf[2]);
4051
4052         if (intel_dp_dpcd_read_wake(&intel_dp->aux, DP_BRANCH_OUI, buf, 3) == 3)
4053                 DRM_DEBUG_KMS("Branch OUI: %02hx%02hx%02hx\n",
4054                               buf[0], buf[1], buf[2]);
4055 }
4056
4057 static bool
4058 intel_dp_probe_mst(struct intel_dp *intel_dp)
4059 {
4060         u8 buf[1];
4061
4062         if (!intel_dp->can_mst)
4063                 return false;
4064
4065         if (intel_dp->dpcd[DP_DPCD_REV] < 0x12)
4066                 return false;
4067
4068         if (intel_dp_dpcd_read_wake(&intel_dp->aux, DP_MSTM_CAP, buf, 1)) {
4069                 if (buf[0] & DP_MST_CAP) {
4070                         DRM_DEBUG_KMS("Sink is MST capable\n");
4071                         intel_dp->is_mst = true;
4072                 } else {
4073                         DRM_DEBUG_KMS("Sink is not MST capable\n");
4074                         intel_dp->is_mst = false;
4075                 }
4076         }
4077
4078         drm_dp_mst_topology_mgr_set_mst(&intel_dp->mst_mgr, intel_dp->is_mst);
4079         return intel_dp->is_mst;
4080 }
4081
4082 static int intel_dp_sink_crc_stop(struct intel_dp *intel_dp)
4083 {
4084         struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
4085         struct intel_crtc *intel_crtc = to_intel_crtc(dig_port->base.base.crtc);
4086         u8 buf;
4087         int ret = 0;
4088
4089         if (drm_dp_dpcd_readb(&intel_dp->aux, DP_TEST_SINK, &buf) < 0) {
4090                 DRM_DEBUG_KMS("Sink CRC couldn't be stopped properly\n");
4091                 ret = -EIO;
4092                 goto out;
4093         }
4094
4095         if (drm_dp_dpcd_writeb(&intel_dp->aux, DP_TEST_SINK,
4096                                buf & ~DP_TEST_SINK_START) < 0) {
4097                 DRM_DEBUG_KMS("Sink CRC couldn't be stopped properly\n");
4098                 ret = -EIO;
4099                 goto out;
4100         }
4101
4102         intel_dp->sink_crc.started = false;
4103  out:
4104         hsw_enable_ips(intel_crtc);
4105         return ret;
4106 }
4107
4108 static int intel_dp_sink_crc_start(struct intel_dp *intel_dp)
4109 {
4110         struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
4111         struct intel_crtc *intel_crtc = to_intel_crtc(dig_port->base.base.crtc);
4112         u8 buf;
4113         int ret;
4114
4115         if (intel_dp->sink_crc.started) {
4116                 ret = intel_dp_sink_crc_stop(intel_dp);
4117                 if (ret)
4118                         return ret;
4119         }
4120
4121         if (drm_dp_dpcd_readb(&intel_dp->aux, DP_TEST_SINK_MISC, &buf) < 0)
4122                 return -EIO;
4123
4124         if (!(buf & DP_TEST_CRC_SUPPORTED))
4125                 return -ENOTTY;
4126
4127         intel_dp->sink_crc.last_count = buf & DP_TEST_COUNT_MASK;
4128
4129         if (drm_dp_dpcd_readb(&intel_dp->aux, DP_TEST_SINK, &buf) < 0)
4130                 return -EIO;
4131
4132         hsw_disable_ips(intel_crtc);
4133
4134         if (drm_dp_dpcd_writeb(&intel_dp->aux, DP_TEST_SINK,
4135                                buf | DP_TEST_SINK_START) < 0) {
4136                 hsw_enable_ips(intel_crtc);
4137                 return -EIO;
4138         }
4139
4140         intel_dp->sink_crc.started = true;
4141         return 0;
4142 }
4143
4144 int intel_dp_sink_crc(struct intel_dp *intel_dp, u8 *crc)
4145 {
4146         struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
4147         struct drm_device *dev = dig_port->base.base.dev;
4148         struct intel_crtc *intel_crtc = to_intel_crtc(dig_port->base.base.crtc);
4149         u8 buf;
4150         int count, ret;
4151         int attempts = 6;
4152         bool old_equal_new;
4153
4154         ret = intel_dp_sink_crc_start(intel_dp);
4155         if (ret)
4156                 return ret;
4157
4158         do {
4159                 intel_wait_for_vblank(dev, intel_crtc->pipe);
4160
4161                 if (drm_dp_dpcd_readb(&intel_dp->aux,
4162                                       DP_TEST_SINK_MISC, &buf) < 0) {
4163                         ret = -EIO;
4164                         goto stop;
4165                 }
4166                 count = buf & DP_TEST_COUNT_MASK;
4167
4168                 /*
4169                  * Count might be reset during the loop. In this case
4170                  * last known count needs to be reset as well.
4171                  */
4172                 if (count == 0)
4173                         intel_dp->sink_crc.last_count = 0;
4174
4175                 if (drm_dp_dpcd_read(&intel_dp->aux, DP_TEST_CRC_R_CR, crc, 6) < 0) {
4176                         ret = -EIO;
4177                         goto stop;
4178                 }
4179
4180                 old_equal_new = (count == intel_dp->sink_crc.last_count &&
4181                                  !memcmp(intel_dp->sink_crc.last_crc, crc,
4182                                          6 * sizeof(u8)));
4183
4184         } while (--attempts && (count == 0 || old_equal_new));
4185
4186         intel_dp->sink_crc.last_count = buf & DP_TEST_COUNT_MASK;
4187         memcpy(intel_dp->sink_crc.last_crc, crc, 6 * sizeof(u8));
4188
4189         if (attempts == 0) {
4190                 if (old_equal_new) {
4191                         DRM_DEBUG_KMS("Unreliable Sink CRC counter: Current returned CRC is identical to the previous one\n");
4192                 } else {
4193                         DRM_ERROR("Panel is unable to calculate any CRC after 6 vblanks\n");
4194                         ret = -ETIMEDOUT;
4195                         goto stop;
4196                 }
4197         }
4198
4199 stop:
4200         intel_dp_sink_crc_stop(intel_dp);
4201         return ret;
4202 }
4203
4204 static bool
4205 intel_dp_get_sink_irq(struct intel_dp *intel_dp, u8 *sink_irq_vector)
4206 {
4207         return intel_dp_dpcd_read_wake(&intel_dp->aux,
4208                                        DP_DEVICE_SERVICE_IRQ_VECTOR,
4209                                        sink_irq_vector, 1) == 1;
4210 }
4211
4212 static bool
4213 intel_dp_get_sink_irq_esi(struct intel_dp *intel_dp, u8 *sink_irq_vector)
4214 {
4215         int ret;
4216
4217         ret = intel_dp_dpcd_read_wake(&intel_dp->aux,
4218                                              DP_SINK_COUNT_ESI,
4219                                              sink_irq_vector, 14);
4220         if (ret != 14)
4221                 return false;
4222
4223         return true;
4224 }
4225
4226 static uint8_t intel_dp_autotest_link_training(struct intel_dp *intel_dp)
4227 {
4228         uint8_t test_result = DP_TEST_ACK;
4229         return test_result;
4230 }
4231
4232 static uint8_t intel_dp_autotest_video_pattern(struct intel_dp *intel_dp)
4233 {
4234         uint8_t test_result = DP_TEST_NAK;
4235         return test_result;
4236 }
4237
4238 static uint8_t intel_dp_autotest_edid(struct intel_dp *intel_dp)
4239 {
4240         uint8_t test_result = DP_TEST_NAK;
4241         struct intel_connector *intel_connector = intel_dp->attached_connector;
4242         struct drm_connector *connector = &intel_connector->base;
4243
4244         if (intel_connector->detect_edid == NULL ||
4245             connector->edid_corrupt ||
4246             intel_dp->aux.i2c_defer_count > 6) {
4247                 /* Check EDID read for NACKs, DEFERs and corruption
4248                  * (DP CTS 1.2 Core r1.1)
4249                  *    4.2.2.4 : Failed EDID read, I2C_NAK
4250                  *    4.2.2.5 : Failed EDID read, I2C_DEFER
4251                  *    4.2.2.6 : EDID corruption detected
4252                  * Use failsafe mode for all cases
4253                  */
4254                 if (intel_dp->aux.i2c_nack_count > 0 ||
4255                         intel_dp->aux.i2c_defer_count > 0)
4256                         DRM_DEBUG_KMS("EDID read had %d NACKs, %d DEFERs\n",
4257                                       intel_dp->aux.i2c_nack_count,
4258                                       intel_dp->aux.i2c_defer_count);
4259                 intel_dp->compliance_test_data = INTEL_DP_RESOLUTION_FAILSAFE;
4260         } else {
4261                 struct edid *block = intel_connector->detect_edid;
4262
4263                 /* We have to write the checksum
4264                  * of the last block read
4265                  */
4266                 block += intel_connector->detect_edid->extensions;
4267
4268                 if (!drm_dp_dpcd_write(&intel_dp->aux,
4269                                         DP_TEST_EDID_CHECKSUM,
4270                                         &block->checksum,
4271                                         1))
4272                         DRM_DEBUG_KMS("Failed to write EDID checksum\n");
4273
4274                 test_result = DP_TEST_ACK | DP_TEST_EDID_CHECKSUM_WRITE;
4275                 intel_dp->compliance_test_data = INTEL_DP_RESOLUTION_STANDARD;
4276         }
4277
4278         /* Set test active flag here so userspace doesn't interrupt things */
4279         intel_dp->compliance_test_active = 1;
4280
4281         return test_result;
4282 }
4283
4284 static uint8_t intel_dp_autotest_phy_pattern(struct intel_dp *intel_dp)
4285 {
4286         uint8_t test_result = DP_TEST_NAK;
4287         return test_result;
4288 }
4289
4290 static void intel_dp_handle_test_request(struct intel_dp *intel_dp)
4291 {
4292         uint8_t response = DP_TEST_NAK;
4293         uint8_t rxdata = 0;
4294         int status = 0;
4295
4296         intel_dp->compliance_test_active = 0;
4297         intel_dp->compliance_test_type = 0;
4298         intel_dp->compliance_test_data = 0;
4299
4300         intel_dp->aux.i2c_nack_count = 0;
4301         intel_dp->aux.i2c_defer_count = 0;
4302
4303         status = drm_dp_dpcd_read(&intel_dp->aux, DP_TEST_REQUEST, &rxdata, 1);
4304         if (status <= 0) {
4305                 DRM_DEBUG_KMS("Could not read test request from sink\n");
4306                 goto update_status;
4307         }
4308
4309         switch (rxdata) {
4310         case DP_TEST_LINK_TRAINING:
4311                 DRM_DEBUG_KMS("LINK_TRAINING test requested\n");
4312                 intel_dp->compliance_test_type = DP_TEST_LINK_TRAINING;
4313                 response = intel_dp_autotest_link_training(intel_dp);
4314                 break;
4315         case DP_TEST_LINK_VIDEO_PATTERN:
4316                 DRM_DEBUG_KMS("TEST_PATTERN test requested\n");
4317                 intel_dp->compliance_test_type = DP_TEST_LINK_VIDEO_PATTERN;
4318                 response = intel_dp_autotest_video_pattern(intel_dp);
4319                 break;
4320         case DP_TEST_LINK_EDID_READ:
4321                 DRM_DEBUG_KMS("EDID test requested\n");
4322                 intel_dp->compliance_test_type = DP_TEST_LINK_EDID_READ;
4323                 response = intel_dp_autotest_edid(intel_dp);
4324                 break;
4325         case DP_TEST_LINK_PHY_TEST_PATTERN:
4326                 DRM_DEBUG_KMS("PHY_PATTERN test requested\n");
4327                 intel_dp->compliance_test_type = DP_TEST_LINK_PHY_TEST_PATTERN;
4328                 response = intel_dp_autotest_phy_pattern(intel_dp);
4329                 break;
4330         default:
4331                 DRM_DEBUG_KMS("Invalid test request '%02x'\n", rxdata);
4332                 break;
4333         }
4334
4335 update_status:
4336         status = drm_dp_dpcd_write(&intel_dp->aux,
4337                                    DP_TEST_RESPONSE,
4338                                    &response, 1);
4339         if (status <= 0)
4340                 DRM_DEBUG_KMS("Could not write test response to sink\n");
4341 }
4342
4343 static int
4344 intel_dp_check_mst_status(struct intel_dp *intel_dp)
4345 {
4346         bool bret;
4347
4348         if (intel_dp->is_mst) {
4349                 u8 esi[16] = { 0 };
4350                 int ret = 0;
4351                 int retry;
4352                 bool handled;
4353                 bret = intel_dp_get_sink_irq_esi(intel_dp, esi);
4354 go_again:
4355                 if (bret == true) {
4356
4357                         /* check link status - esi[10] = 0x200c */
4358                         if (intel_dp->active_mst_links &&
4359                             !drm_dp_channel_eq_ok(&esi[10], intel_dp->lane_count)) {
4360                                 DRM_DEBUG_KMS("channel EQ not ok, retraining\n");
4361                                 intel_dp_start_link_train(intel_dp);
4362                                 intel_dp_stop_link_train(intel_dp);
4363                         }
4364
4365                         DRM_DEBUG_KMS("got esi %3ph\n", esi);
4366                         ret = drm_dp_mst_hpd_irq(&intel_dp->mst_mgr, esi, &handled);
4367
4368                         if (handled) {
4369                                 for (retry = 0; retry < 3; retry++) {
4370                                         int wret;
4371                                         wret = drm_dp_dpcd_write(&intel_dp->aux,
4372                                                                  DP_SINK_COUNT_ESI+1,
4373                                                                  &esi[1], 3);
4374                                         if (wret == 3) {
4375                                                 break;
4376                                         }
4377                                 }
4378
4379                                 bret = intel_dp_get_sink_irq_esi(intel_dp, esi);
4380                                 if (bret == true) {
4381                                         DRM_DEBUG_KMS("got esi2 %3ph\n", esi);
4382                                         goto go_again;
4383                                 }
4384                         } else
4385                                 ret = 0;
4386
4387                         return ret;
4388                 } else {
4389                         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
4390                         DRM_DEBUG_KMS("failed to get ESI - device may have failed\n");
4391                         intel_dp->is_mst = false;
4392                         drm_dp_mst_topology_mgr_set_mst(&intel_dp->mst_mgr, intel_dp->is_mst);
4393                         /* send a hotplug event */
4394                         drm_kms_helper_hotplug_event(intel_dig_port->base.base.dev);
4395                 }
4396         }
4397         return -EINVAL;
4398 }
4399
4400 /*
4401  * According to DP spec
4402  * 5.1.2:
4403  *  1. Read DPCD
4404  *  2. Configure link according to Receiver Capabilities
4405  *  3. Use Link Training from 2.5.3.3 and 3.5.1.3
4406  *  4. Check link status on receipt of hot-plug interrupt
4407  */
4408 static void
4409 intel_dp_check_link_status(struct intel_dp *intel_dp)
4410 {
4411         struct drm_device *dev = intel_dp_to_dev(intel_dp);
4412         struct intel_encoder *intel_encoder = &dp_to_dig_port(intel_dp)->base;
4413         u8 sink_irq_vector;
4414         u8 link_status[DP_LINK_STATUS_SIZE];
4415
4416         WARN_ON(!drm_modeset_is_locked(&dev->mode_config.connection_mutex));
4417
4418         if (!intel_encoder->base.crtc)
4419                 return;
4420
4421         if (!to_intel_crtc(intel_encoder->base.crtc)->active)
4422                 return;
4423
4424         /* Try to read receiver status if the link appears to be up */
4425         if (!intel_dp_get_link_status(intel_dp, link_status)) {
4426                 return;
4427         }
4428
4429         /* Now read the DPCD to see if it's actually running */
4430         if (!intel_dp_get_dpcd(intel_dp)) {
4431                 return;
4432         }
4433
4434         /* Try to read the source of the interrupt */
4435         if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11 &&
4436             intel_dp_get_sink_irq(intel_dp, &sink_irq_vector)) {
4437                 /* Clear interrupt source */
4438                 drm_dp_dpcd_writeb(&intel_dp->aux,
4439                                    DP_DEVICE_SERVICE_IRQ_VECTOR,
4440                                    sink_irq_vector);
4441
4442                 if (sink_irq_vector & DP_AUTOMATED_TEST_REQUEST)
4443                         DRM_DEBUG_DRIVER("Test request in short pulse not handled\n");
4444                 if (sink_irq_vector & (DP_CP_IRQ | DP_SINK_SPECIFIC_IRQ))
4445                         DRM_DEBUG_DRIVER("CP or sink specific irq unhandled\n");
4446         }
4447
4448         if (!drm_dp_channel_eq_ok(link_status, intel_dp->lane_count)) {
4449                 DRM_DEBUG_KMS("%s: channel EQ not ok, retraining\n",
4450                               intel_encoder->base.name);
4451                 intel_dp_start_link_train(intel_dp);
4452                 intel_dp_stop_link_train(intel_dp);
4453         }
4454 }
4455
4456 /* XXX this is probably wrong for multiple downstream ports */
4457 static enum drm_connector_status
4458 intel_dp_detect_dpcd(struct intel_dp *intel_dp)
4459 {
4460         uint8_t *dpcd = intel_dp->dpcd;
4461         uint8_t type;
4462
4463         if (!intel_dp_get_dpcd(intel_dp))
4464                 return connector_status_disconnected;
4465
4466         /* if there's no downstream port, we're done */
4467         if (!(dpcd[DP_DOWNSTREAMPORT_PRESENT] & DP_DWN_STRM_PORT_PRESENT))
4468                 return connector_status_connected;
4469
4470         /* If we're HPD-aware, SINK_COUNT changes dynamically */
4471         if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11 &&
4472             intel_dp->downstream_ports[0] & DP_DS_PORT_HPD) {
4473                 uint8_t reg;
4474
4475                 if (intel_dp_dpcd_read_wake(&intel_dp->aux, DP_SINK_COUNT,
4476                                             &reg, 1) < 0)
4477                         return connector_status_unknown;
4478
4479                 return DP_GET_SINK_COUNT(reg) ? connector_status_connected
4480                                               : connector_status_disconnected;
4481         }
4482
4483         /* If no HPD, poke DDC gently */
4484         if (drm_probe_ddc(&intel_dp->aux.ddc))
4485                 return connector_status_connected;
4486
4487         /* Well we tried, say unknown for unreliable port types */
4488         if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11) {
4489                 type = intel_dp->downstream_ports[0] & DP_DS_PORT_TYPE_MASK;
4490                 if (type == DP_DS_PORT_TYPE_VGA ||
4491                     type == DP_DS_PORT_TYPE_NON_EDID)
4492                         return connector_status_unknown;
4493         } else {
4494                 type = intel_dp->dpcd[DP_DOWNSTREAMPORT_PRESENT] &
4495                         DP_DWN_STRM_PORT_TYPE_MASK;
4496                 if (type == DP_DWN_STRM_PORT_TYPE_ANALOG ||
4497                     type == DP_DWN_STRM_PORT_TYPE_OTHER)
4498                         return connector_status_unknown;
4499         }
4500
4501         /* Anything else is out of spec, warn and ignore */
4502         DRM_DEBUG_KMS("Broken DP branch device, ignoring\n");
4503         return connector_status_disconnected;
4504 }
4505
4506 static enum drm_connector_status
4507 edp_detect(struct intel_dp *intel_dp)
4508 {
4509         struct drm_device *dev = intel_dp_to_dev(intel_dp);
4510         enum drm_connector_status status;
4511
4512         status = intel_panel_detect(dev);
4513         if (status == connector_status_unknown)
4514                 status = connector_status_connected;
4515
4516         return status;
4517 }
4518
4519 static bool ibx_digital_port_connected(struct drm_i915_private *dev_priv,
4520                                        struct intel_digital_port *port)
4521 {
4522         u32 bit;
4523
4524         switch (port->port) {
4525         case PORT_A:
4526                 return true;
4527         case PORT_B:
4528                 bit = SDE_PORTB_HOTPLUG;
4529                 break;
4530         case PORT_C:
4531                 bit = SDE_PORTC_HOTPLUG;
4532                 break;
4533         case PORT_D:
4534                 bit = SDE_PORTD_HOTPLUG;
4535                 break;
4536         default:
4537                 MISSING_CASE(port->port);
4538                 return false;
4539         }
4540
4541         return I915_READ(SDEISR) & bit;
4542 }
4543
4544 static bool cpt_digital_port_connected(struct drm_i915_private *dev_priv,
4545                                        struct intel_digital_port *port)
4546 {
4547         u32 bit;
4548
4549         switch (port->port) {
4550         case PORT_A:
4551                 return true;
4552         case PORT_B:
4553                 bit = SDE_PORTB_HOTPLUG_CPT;
4554                 break;
4555         case PORT_C:
4556                 bit = SDE_PORTC_HOTPLUG_CPT;
4557                 break;
4558         case PORT_D:
4559                 bit = SDE_PORTD_HOTPLUG_CPT;
4560                 break;
4561         case PORT_E:
4562                 bit = SDE_PORTE_HOTPLUG_SPT;
4563                 break;
4564         default:
4565                 MISSING_CASE(port->port);
4566                 return false;
4567         }
4568
4569         return I915_READ(SDEISR) & bit;
4570 }
4571
4572 static bool g4x_digital_port_connected(struct drm_i915_private *dev_priv,
4573                                        struct intel_digital_port *port)
4574 {
4575         u32 bit;
4576
4577         switch (port->port) {
4578         case PORT_B:
4579                 bit = PORTB_HOTPLUG_LIVE_STATUS_G4X;
4580                 break;
4581         case PORT_C:
4582                 bit = PORTC_HOTPLUG_LIVE_STATUS_G4X;
4583                 break;
4584         case PORT_D:
4585                 bit = PORTD_HOTPLUG_LIVE_STATUS_G4X;
4586                 break;
4587         default:
4588                 MISSING_CASE(port->port);
4589                 return false;
4590         }
4591
4592         return I915_READ(PORT_HOTPLUG_STAT) & bit;
4593 }
4594
4595 static bool vlv_digital_port_connected(struct drm_i915_private *dev_priv,
4596                                        struct intel_digital_port *port)
4597 {
4598         u32 bit;
4599
4600         switch (port->port) {
4601         case PORT_B:
4602                 bit = PORTB_HOTPLUG_LIVE_STATUS_VLV;
4603                 break;
4604         case PORT_C:
4605                 bit = PORTC_HOTPLUG_LIVE_STATUS_VLV;
4606                 break;
4607         case PORT_D:
4608                 bit = PORTD_HOTPLUG_LIVE_STATUS_VLV;
4609                 break;
4610         default:
4611                 MISSING_CASE(port->port);
4612                 return false;
4613         }
4614
4615         return I915_READ(PORT_HOTPLUG_STAT) & bit;
4616 }
4617
4618 static bool bxt_digital_port_connected(struct drm_i915_private *dev_priv,
4619                                        struct intel_digital_port *intel_dig_port)
4620 {
4621         struct intel_encoder *intel_encoder = &intel_dig_port->base;
4622         enum port port;
4623         u32 bit;
4624
4625         intel_hpd_pin_to_port(intel_encoder->hpd_pin, &port);
4626         switch (port) {
4627         case PORT_A:
4628                 bit = BXT_DE_PORT_HP_DDIA;
4629                 break;
4630         case PORT_B:
4631                 bit = BXT_DE_PORT_HP_DDIB;
4632                 break;
4633         case PORT_C:
4634                 bit = BXT_DE_PORT_HP_DDIC;
4635                 break;
4636         default:
4637                 MISSING_CASE(port);
4638                 return false;
4639         }
4640
4641         return I915_READ(GEN8_DE_PORT_ISR) & bit;
4642 }
4643
4644 /*
4645  * intel_digital_port_connected - is the specified port connected?
4646  * @dev_priv: i915 private structure
4647  * @port: the port to test
4648  *
4649  * Return %true if @port is connected, %false otherwise.
4650  */
4651 bool intel_digital_port_connected(struct drm_i915_private *dev_priv,
4652                                          struct intel_digital_port *port)
4653 {
4654         if (HAS_PCH_IBX(dev_priv))
4655                 return ibx_digital_port_connected(dev_priv, port);
4656         if (HAS_PCH_SPLIT(dev_priv))
4657                 return cpt_digital_port_connected(dev_priv, port);
4658         else if (IS_BROXTON(dev_priv))
4659                 return bxt_digital_port_connected(dev_priv, port);
4660         else if (IS_VALLEYVIEW(dev_priv))
4661                 return vlv_digital_port_connected(dev_priv, port);
4662         else
4663                 return g4x_digital_port_connected(dev_priv, port);
4664 }
4665
4666 static enum drm_connector_status
4667 ironlake_dp_detect(struct intel_dp *intel_dp)
4668 {
4669         struct drm_device *dev = intel_dp_to_dev(intel_dp);
4670         struct drm_i915_private *dev_priv = dev->dev_private;
4671         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
4672
4673         if (!intel_digital_port_connected(dev_priv, intel_dig_port))
4674                 return connector_status_disconnected;
4675
4676         return intel_dp_detect_dpcd(intel_dp);
4677 }
4678
4679 static enum drm_connector_status
4680 g4x_dp_detect(struct intel_dp *intel_dp)
4681 {
4682         struct drm_device *dev = intel_dp_to_dev(intel_dp);
4683         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
4684
4685         /* Can't disconnect eDP, but you can close the lid... */
4686         if (is_edp(intel_dp)) {
4687                 enum drm_connector_status status;
4688
4689                 status = intel_panel_detect(dev);
4690                 if (status == connector_status_unknown)
4691                         status = connector_status_connected;
4692                 return status;
4693         }
4694
4695         if (!intel_digital_port_connected(dev->dev_private, intel_dig_port))
4696                 return connector_status_disconnected;
4697
4698         return intel_dp_detect_dpcd(intel_dp);
4699 }
4700
4701 static struct edid *
4702 intel_dp_get_edid(struct intel_dp *intel_dp)
4703 {
4704         struct intel_connector *intel_connector = intel_dp->attached_connector;
4705
4706         /* use cached edid if we have one */
4707         if (intel_connector->edid) {
4708                 /* invalid edid */
4709                 if (IS_ERR(intel_connector->edid))
4710                         return NULL;
4711
4712                 return drm_edid_duplicate(intel_connector->edid);
4713         } else
4714                 return drm_get_edid(&intel_connector->base,
4715                                     &intel_dp->aux.ddc);
4716 }
4717
4718 static void
4719 intel_dp_set_edid(struct intel_dp *intel_dp)
4720 {
4721         struct intel_connector *intel_connector = intel_dp->attached_connector;
4722         struct edid *edid;
4723
4724         edid = intel_dp_get_edid(intel_dp);
4725         intel_connector->detect_edid = edid;
4726
4727         if (intel_dp->force_audio != HDMI_AUDIO_AUTO)
4728                 intel_dp->has_audio = intel_dp->force_audio == HDMI_AUDIO_ON;
4729         else
4730                 intel_dp->has_audio = drm_detect_monitor_audio(edid);
4731 }
4732
4733 static void
4734 intel_dp_unset_edid(struct intel_dp *intel_dp)
4735 {
4736         struct intel_connector *intel_connector = intel_dp->attached_connector;
4737
4738         kfree(intel_connector->detect_edid);
4739         intel_connector->detect_edid = NULL;
4740
4741         intel_dp->has_audio = false;
4742 }
4743
4744 static enum drm_connector_status
4745 intel_dp_detect(struct drm_connector *connector, bool force)
4746 {
4747         struct intel_dp *intel_dp = intel_attached_dp(connector);
4748         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
4749         struct intel_encoder *intel_encoder = &intel_dig_port->base;
4750         struct drm_device *dev = connector->dev;
4751         enum drm_connector_status status;
4752         enum intel_display_power_domain power_domain;
4753         bool ret;
4754         u8 sink_irq_vector;
4755
4756         DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n",
4757                       connector->base.id, connector->name);
4758         intel_dp_unset_edid(intel_dp);
4759
4760         if (intel_dp->is_mst) {
4761                 /* MST devices are disconnected from a monitor POV */
4762                 if (intel_encoder->type != INTEL_OUTPUT_EDP)
4763                         intel_encoder->type = INTEL_OUTPUT_DISPLAYPORT;
4764                 return connector_status_disconnected;
4765         }
4766
4767         power_domain = intel_display_port_aux_power_domain(intel_encoder);
4768         intel_display_power_get(to_i915(dev), power_domain);
4769
4770         /* Can't disconnect eDP, but you can close the lid... */
4771         if (is_edp(intel_dp))
4772                 status = edp_detect(intel_dp);
4773         else if (HAS_PCH_SPLIT(dev))
4774                 status = ironlake_dp_detect(intel_dp);
4775         else
4776                 status = g4x_dp_detect(intel_dp);
4777         if (status != connector_status_connected)
4778                 goto out;
4779
4780         intel_dp_probe_oui(intel_dp);
4781
4782         ret = intel_dp_probe_mst(intel_dp);
4783         if (ret) {
4784                 /* if we are in MST mode then this connector
4785                    won't appear connected or have anything with EDID on it */
4786                 if (intel_encoder->type != INTEL_OUTPUT_EDP)
4787                         intel_encoder->type = INTEL_OUTPUT_DISPLAYPORT;
4788                 status = connector_status_disconnected;
4789                 goto out;
4790         }
4791
4792         intel_dp_set_edid(intel_dp);
4793
4794         if (intel_encoder->type != INTEL_OUTPUT_EDP)
4795                 intel_encoder->type = INTEL_OUTPUT_DISPLAYPORT;
4796         status = connector_status_connected;
4797
4798         /* Try to read the source of the interrupt */
4799         if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11 &&
4800             intel_dp_get_sink_irq(intel_dp, &sink_irq_vector)) {
4801                 /* Clear interrupt source */
4802                 drm_dp_dpcd_writeb(&intel_dp->aux,
4803                                    DP_DEVICE_SERVICE_IRQ_VECTOR,
4804                                    sink_irq_vector);
4805
4806                 if (sink_irq_vector & DP_AUTOMATED_TEST_REQUEST)
4807                         intel_dp_handle_test_request(intel_dp);
4808                 if (sink_irq_vector & (DP_CP_IRQ | DP_SINK_SPECIFIC_IRQ))
4809                         DRM_DEBUG_DRIVER("CP or sink specific irq unhandled\n");
4810         }
4811
4812 out:
4813         intel_display_power_put(to_i915(dev), power_domain);
4814         return status;
4815 }
4816
4817 static void
4818 intel_dp_force(struct drm_connector *connector)
4819 {
4820         struct intel_dp *intel_dp = intel_attached_dp(connector);
4821         struct intel_encoder *intel_encoder = &dp_to_dig_port(intel_dp)->base;
4822         struct drm_i915_private *dev_priv = to_i915(intel_encoder->base.dev);
4823         enum intel_display_power_domain power_domain;
4824
4825         DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n",
4826                       connector->base.id, connector->name);
4827         intel_dp_unset_edid(intel_dp);
4828
4829         if (connector->status != connector_status_connected)
4830                 return;
4831
4832         power_domain = intel_display_port_aux_power_domain(intel_encoder);
4833         intel_display_power_get(dev_priv, power_domain);
4834
4835         intel_dp_set_edid(intel_dp);
4836
4837         intel_display_power_put(dev_priv, power_domain);
4838
4839         if (intel_encoder->type != INTEL_OUTPUT_EDP)
4840                 intel_encoder->type = INTEL_OUTPUT_DISPLAYPORT;
4841 }
4842
4843 static int intel_dp_get_modes(struct drm_connector *connector)
4844 {
4845         struct intel_connector *intel_connector = to_intel_connector(connector);
4846         struct edid *edid;
4847
4848         edid = intel_connector->detect_edid;
4849         if (edid) {
4850                 int ret = intel_connector_update_modes(connector, edid);
4851                 if (ret)
4852                         return ret;
4853         }
4854
4855         /* if eDP has no EDID, fall back to fixed mode */
4856         if (is_edp(intel_attached_dp(connector)) &&
4857             intel_connector->panel.fixed_mode) {
4858                 struct drm_display_mode *mode;
4859
4860                 mode = drm_mode_duplicate(connector->dev,
4861                                           intel_connector->panel.fixed_mode);
4862                 if (mode) {
4863                         drm_mode_probed_add(connector, mode);
4864                         return 1;
4865                 }
4866         }
4867
4868         return 0;
4869 }
4870
4871 static bool
4872 intel_dp_detect_audio(struct drm_connector *connector)
4873 {
4874         bool has_audio = false;
4875         struct edid *edid;
4876
4877         edid = to_intel_connector(connector)->detect_edid;
4878         if (edid)
4879                 has_audio = drm_detect_monitor_audio(edid);
4880
4881         return has_audio;
4882 }
4883
4884 static int
4885 intel_dp_set_property(struct drm_connector *connector,
4886                       struct drm_property *property,
4887                       uint64_t val)
4888 {
4889         struct drm_i915_private *dev_priv = connector->dev->dev_private;
4890         struct intel_connector *intel_connector = to_intel_connector(connector);
4891         struct intel_encoder *intel_encoder = intel_attached_encoder(connector);
4892         struct intel_dp *intel_dp = enc_to_intel_dp(&intel_encoder->base);
4893         int ret;
4894
4895         ret = drm_object_property_set_value(&connector->base, property, val);
4896         if (ret)
4897                 return ret;
4898
4899         if (property == dev_priv->force_audio_property) {
4900                 int i = val;
4901                 bool has_audio;
4902
4903                 if (i == intel_dp->force_audio)
4904                         return 0;
4905
4906                 intel_dp->force_audio = i;
4907
4908                 if (i == HDMI_AUDIO_AUTO)
4909                         has_audio = intel_dp_detect_audio(connector);
4910                 else
4911                         has_audio = (i == HDMI_AUDIO_ON);
4912
4913                 if (has_audio == intel_dp->has_audio)
4914                         return 0;
4915
4916                 intel_dp->has_audio = has_audio;
4917                 goto done;
4918         }
4919
4920         if (property == dev_priv->broadcast_rgb_property) {
4921                 bool old_auto = intel_dp->color_range_auto;
4922                 bool old_range = intel_dp->limited_color_range;
4923
4924                 switch (val) {
4925                 case INTEL_BROADCAST_RGB_AUTO:
4926                         intel_dp->color_range_auto = true;
4927                         break;
4928                 case INTEL_BROADCAST_RGB_FULL:
4929                         intel_dp->color_range_auto = false;
4930                         intel_dp->limited_color_range = false;
4931                         break;
4932                 case INTEL_BROADCAST_RGB_LIMITED:
4933                         intel_dp->color_range_auto = false;
4934                         intel_dp->limited_color_range = true;
4935                         break;
4936                 default:
4937                         return -EINVAL;
4938                 }
4939
4940                 if (old_auto == intel_dp->color_range_auto &&
4941                     old_range == intel_dp->limited_color_range)
4942                         return 0;
4943
4944                 goto done;
4945         }
4946
4947         if (is_edp(intel_dp) &&
4948             property == connector->dev->mode_config.scaling_mode_property) {
4949                 if (val == DRM_MODE_SCALE_NONE) {
4950                         DRM_DEBUG_KMS("no scaling not supported\n");
4951                         return -EINVAL;
4952                 }
4953
4954                 if (intel_connector->panel.fitting_mode == val) {
4955                         /* the eDP scaling property is not changed */
4956                         return 0;
4957                 }
4958                 intel_connector->panel.fitting_mode = val;
4959
4960                 goto done;
4961         }
4962
4963         return -EINVAL;
4964
4965 done:
4966         if (intel_encoder->base.crtc)
4967                 intel_crtc_restore_mode(intel_encoder->base.crtc);
4968
4969         return 0;
4970 }
4971
4972 static void
4973 intel_dp_connector_destroy(struct drm_connector *connector)
4974 {
4975         struct intel_connector *intel_connector = to_intel_connector(connector);
4976
4977         kfree(intel_connector->detect_edid);
4978
4979         if (!IS_ERR_OR_NULL(intel_connector->edid))
4980                 kfree(intel_connector->edid);
4981
4982         /* Can't call is_edp() since the encoder may have been destroyed
4983          * already. */
4984         if (connector->connector_type == DRM_MODE_CONNECTOR_eDP)
4985                 intel_panel_fini(&intel_connector->panel);
4986
4987         drm_connector_cleanup(connector);
4988         kfree(connector);
4989 }
4990
4991 void intel_dp_encoder_destroy(struct drm_encoder *encoder)
4992 {
4993         struct intel_digital_port *intel_dig_port = enc_to_dig_port(encoder);
4994         struct intel_dp *intel_dp = &intel_dig_port->dp;
4995
4996         drm_dp_aux_unregister(&intel_dp->aux);
4997         intel_dp_mst_encoder_cleanup(intel_dig_port);
4998         if (is_edp(intel_dp)) {
4999                 cancel_delayed_work_sync(&intel_dp->panel_vdd_work);
5000                 /*
5001                  * vdd might still be enabled do to the delayed vdd off.
5002                  * Make sure vdd is actually turned off here.
5003                  */
5004                 pps_lock(intel_dp);
5005                 edp_panel_vdd_off_sync(intel_dp);
5006                 pps_unlock(intel_dp);
5007
5008                 if (intel_dp->edp_notifier.notifier_call) {
5009                         unregister_reboot_notifier(&intel_dp->edp_notifier);
5010                         intel_dp->edp_notifier.notifier_call = NULL;
5011                 }
5012         }
5013         drm_encoder_cleanup(encoder);
5014         kfree(intel_dig_port);
5015 }
5016
5017 void intel_dp_encoder_suspend(struct intel_encoder *intel_encoder)
5018 {
5019         struct intel_dp *intel_dp = enc_to_intel_dp(&intel_encoder->base);
5020
5021         if (!is_edp(intel_dp))
5022                 return;
5023
5024         /*
5025          * vdd might still be enabled do to the delayed vdd off.
5026          * Make sure vdd is actually turned off here.
5027          */
5028         cancel_delayed_work_sync(&intel_dp->panel_vdd_work);
5029         pps_lock(intel_dp);
5030         edp_panel_vdd_off_sync(intel_dp);
5031         pps_unlock(intel_dp);
5032 }
5033
5034 static void intel_edp_panel_vdd_sanitize(struct intel_dp *intel_dp)
5035 {
5036         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
5037         struct drm_device *dev = intel_dig_port->base.base.dev;
5038         struct drm_i915_private *dev_priv = dev->dev_private;
5039         enum intel_display_power_domain power_domain;
5040
5041         lockdep_assert_held(&dev_priv->pps_mutex);
5042
5043         if (!edp_have_panel_vdd(intel_dp))
5044                 return;
5045
5046         /*
5047          * The VDD bit needs a power domain reference, so if the bit is
5048          * already enabled when we boot or resume, grab this reference and
5049          * schedule a vdd off, so we don't hold on to the reference
5050          * indefinitely.
5051          */
5052         DRM_DEBUG_KMS("VDD left on by BIOS, adjusting state tracking\n");
5053         power_domain = intel_display_port_aux_power_domain(&intel_dig_port->base);
5054         intel_display_power_get(dev_priv, power_domain);
5055
5056         edp_panel_vdd_schedule_off(intel_dp);
5057 }
5058
5059 void intel_dp_encoder_reset(struct drm_encoder *encoder)
5060 {
5061         struct drm_i915_private *dev_priv = to_i915(encoder->dev);
5062         struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
5063
5064         if (!HAS_DDI(dev_priv))
5065                 intel_dp->DP = I915_READ(intel_dp->output_reg);
5066
5067         if (to_intel_encoder(encoder)->type != INTEL_OUTPUT_EDP)
5068                 return;
5069
5070         pps_lock(intel_dp);
5071
5072         /*
5073          * Read out the current power sequencer assignment,
5074          * in case the BIOS did something with it.
5075          */
5076         if (IS_VALLEYVIEW(encoder->dev))
5077                 vlv_initial_power_sequencer_setup(intel_dp);
5078
5079         intel_edp_panel_vdd_sanitize(intel_dp);
5080
5081         pps_unlock(intel_dp);
5082 }
5083
5084 static const struct drm_connector_funcs intel_dp_connector_funcs = {
5085         .dpms = drm_atomic_helper_connector_dpms,
5086         .detect = intel_dp_detect,
5087         .force = intel_dp_force,
5088         .fill_modes = drm_helper_probe_single_connector_modes,
5089         .set_property = intel_dp_set_property,
5090         .atomic_get_property = intel_connector_atomic_get_property,
5091         .destroy = intel_dp_connector_destroy,
5092         .atomic_destroy_state = drm_atomic_helper_connector_destroy_state,
5093         .atomic_duplicate_state = drm_atomic_helper_connector_duplicate_state,
5094 };
5095
5096 static const struct drm_connector_helper_funcs intel_dp_connector_helper_funcs = {
5097         .get_modes = intel_dp_get_modes,
5098         .mode_valid = intel_dp_mode_valid,
5099         .best_encoder = intel_best_encoder,
5100 };
5101
5102 static const struct drm_encoder_funcs intel_dp_enc_funcs = {
5103         .reset = intel_dp_encoder_reset,
5104         .destroy = intel_dp_encoder_destroy,
5105 };
5106
5107 enum irqreturn
5108 intel_dp_hpd_pulse(struct intel_digital_port *intel_dig_port, bool long_hpd)
5109 {
5110         struct intel_dp *intel_dp = &intel_dig_port->dp;
5111         struct intel_encoder *intel_encoder = &intel_dig_port->base;
5112         struct drm_device *dev = intel_dig_port->base.base.dev;
5113         struct drm_i915_private *dev_priv = dev->dev_private;
5114         enum intel_display_power_domain power_domain;
5115         enum irqreturn ret = IRQ_NONE;
5116
5117         if (intel_dig_port->base.type != INTEL_OUTPUT_EDP &&
5118             intel_dig_port->base.type != INTEL_OUTPUT_HDMI)
5119                 intel_dig_port->base.type = INTEL_OUTPUT_DISPLAYPORT;
5120
5121         if (long_hpd && intel_dig_port->base.type == INTEL_OUTPUT_EDP) {
5122                 /*
5123                  * vdd off can generate a long pulse on eDP which
5124                  * would require vdd on to handle it, and thus we
5125                  * would end up in an endless cycle of
5126                  * "vdd off -> long hpd -> vdd on -> detect -> vdd off -> ..."
5127                  */
5128                 DRM_DEBUG_KMS("ignoring long hpd on eDP port %c\n",
5129                               port_name(intel_dig_port->port));
5130                 return IRQ_HANDLED;
5131         }
5132
5133         DRM_DEBUG_KMS("got hpd irq on port %c - %s\n",
5134                       port_name(intel_dig_port->port),
5135                       long_hpd ? "long" : "short");
5136
5137         power_domain = intel_display_port_aux_power_domain(intel_encoder);
5138         intel_display_power_get(dev_priv, power_domain);
5139
5140         if (long_hpd) {
5141                 if (!intel_digital_port_connected(dev_priv, intel_dig_port))
5142                         goto mst_fail;
5143
5144                 if (!intel_dp_get_dpcd(intel_dp)) {
5145                         goto mst_fail;
5146                 }
5147
5148                 intel_dp_probe_oui(intel_dp);
5149
5150                 if (!intel_dp_probe_mst(intel_dp)) {
5151                         drm_modeset_lock(&dev->mode_config.connection_mutex, NULL);
5152                         intel_dp_check_link_status(intel_dp);
5153                         drm_modeset_unlock(&dev->mode_config.connection_mutex);
5154                         goto mst_fail;
5155                 }
5156         } else {
5157                 if (intel_dp->is_mst) {
5158                         if (intel_dp_check_mst_status(intel_dp) == -EINVAL)
5159                                 goto mst_fail;
5160                 }
5161
5162                 if (!intel_dp->is_mst) {
5163                         drm_modeset_lock(&dev->mode_config.connection_mutex, NULL);
5164                         intel_dp_check_link_status(intel_dp);
5165                         drm_modeset_unlock(&dev->mode_config.connection_mutex);
5166                 }
5167         }
5168
5169         ret = IRQ_HANDLED;
5170
5171         goto put_power;
5172 mst_fail:
5173         /* if we were in MST mode, and device is not there get out of MST mode */
5174         if (intel_dp->is_mst) {
5175                 DRM_DEBUG_KMS("MST device may have disappeared %d vs %d\n", intel_dp->is_mst, intel_dp->mst_mgr.mst_state);
5176                 intel_dp->is_mst = false;
5177                 drm_dp_mst_topology_mgr_set_mst(&intel_dp->mst_mgr, intel_dp->is_mst);
5178         }
5179 put_power:
5180         intel_display_power_put(dev_priv, power_domain);
5181
5182         return ret;
5183 }
5184
5185 /* Return which DP Port should be selected for Transcoder DP control */
5186 int
5187 intel_trans_dp_port_sel(struct drm_crtc *crtc)
5188 {
5189         struct drm_device *dev = crtc->dev;
5190         struct intel_encoder *intel_encoder;
5191         struct intel_dp *intel_dp;
5192
5193         for_each_encoder_on_crtc(dev, crtc, intel_encoder) {
5194                 intel_dp = enc_to_intel_dp(&intel_encoder->base);
5195
5196                 if (intel_encoder->type == INTEL_OUTPUT_DISPLAYPORT ||
5197                     intel_encoder->type == INTEL_OUTPUT_EDP)
5198                         return intel_dp->output_reg;
5199         }
5200
5201         return -1;
5202 }
5203
5204 /* check the VBT to see whether the eDP is on another port */
5205 bool intel_dp_is_edp(struct drm_device *dev, enum port port)
5206 {
5207         struct drm_i915_private *dev_priv = dev->dev_private;
5208         union child_device_config *p_child;
5209         int i;
5210         static const short port_mapping[] = {
5211                 [PORT_B] = DVO_PORT_DPB,
5212                 [PORT_C] = DVO_PORT_DPC,
5213                 [PORT_D] = DVO_PORT_DPD,
5214                 [PORT_E] = DVO_PORT_DPE,
5215         };
5216
5217         /*
5218          * eDP not supported on g4x. so bail out early just
5219          * for a bit extra safety in case the VBT is bonkers.
5220          */
5221         if (INTEL_INFO(dev)->gen < 5)
5222                 return false;
5223
5224         if (port == PORT_A)
5225                 return true;
5226
5227         if (!dev_priv->vbt.child_dev_num)
5228                 return false;
5229
5230         for (i = 0; i < dev_priv->vbt.child_dev_num; i++) {
5231                 p_child = dev_priv->vbt.child_dev + i;
5232
5233                 if (p_child->common.dvo_port == port_mapping[port] &&
5234                     (p_child->common.device_type & DEVICE_TYPE_eDP_BITS) ==
5235                     (DEVICE_TYPE_eDP & DEVICE_TYPE_eDP_BITS))
5236                         return true;
5237         }
5238         return false;
5239 }
5240
5241 void
5242 intel_dp_add_properties(struct intel_dp *intel_dp, struct drm_connector *connector)
5243 {
5244         struct intel_connector *intel_connector = to_intel_connector(connector);
5245
5246         intel_attach_force_audio_property(connector);
5247         intel_attach_broadcast_rgb_property(connector);
5248         intel_dp->color_range_auto = true;
5249
5250         if (is_edp(intel_dp)) {
5251                 drm_mode_create_scaling_mode_property(connector->dev);
5252                 drm_object_attach_property(
5253                         &connector->base,
5254                         connector->dev->mode_config.scaling_mode_property,
5255                         DRM_MODE_SCALE_ASPECT);
5256                 intel_connector->panel.fitting_mode = DRM_MODE_SCALE_ASPECT;
5257         }
5258 }
5259
5260 static void intel_dp_init_panel_power_timestamps(struct intel_dp *intel_dp)
5261 {
5262         intel_dp->last_power_cycle = jiffies;
5263         intel_dp->last_power_on = jiffies;
5264         intel_dp->last_backlight_off = jiffies;
5265 }
5266
5267 static void
5268 intel_dp_init_panel_power_sequencer(struct drm_device *dev,
5269                                     struct intel_dp *intel_dp)
5270 {
5271         struct drm_i915_private *dev_priv = dev->dev_private;
5272         struct edp_power_seq cur, vbt, spec,
5273                 *final = &intel_dp->pps_delays;
5274         u32 pp_on, pp_off, pp_div = 0, pp_ctl = 0;
5275         int pp_ctrl_reg, pp_on_reg, pp_off_reg, pp_div_reg = 0;
5276
5277         lockdep_assert_held(&dev_priv->pps_mutex);
5278
5279         /* already initialized? */
5280         if (final->t11_t12 != 0)
5281                 return;
5282
5283         if (IS_BROXTON(dev)) {
5284                 /*
5285                  * TODO: BXT has 2 sets of PPS registers.
5286                  * Correct Register for Broxton need to be identified
5287                  * using VBT. hardcoding for now
5288                  */
5289                 pp_ctrl_reg = BXT_PP_CONTROL(0);
5290                 pp_on_reg = BXT_PP_ON_DELAYS(0);
5291                 pp_off_reg = BXT_PP_OFF_DELAYS(0);
5292         } else if (HAS_PCH_SPLIT(dev)) {
5293                 pp_ctrl_reg = PCH_PP_CONTROL;
5294                 pp_on_reg = PCH_PP_ON_DELAYS;
5295                 pp_off_reg = PCH_PP_OFF_DELAYS;
5296                 pp_div_reg = PCH_PP_DIVISOR;
5297         } else {
5298                 enum pipe pipe = vlv_power_sequencer_pipe(intel_dp);
5299
5300                 pp_ctrl_reg = VLV_PIPE_PP_CONTROL(pipe);
5301                 pp_on_reg = VLV_PIPE_PP_ON_DELAYS(pipe);
5302                 pp_off_reg = VLV_PIPE_PP_OFF_DELAYS(pipe);
5303                 pp_div_reg = VLV_PIPE_PP_DIVISOR(pipe);
5304         }
5305
5306         /* Workaround: Need to write PP_CONTROL with the unlock key as
5307          * the very first thing. */
5308         pp_ctl = ironlake_get_pp_control(intel_dp);
5309
5310         pp_on = I915_READ(pp_on_reg);
5311         pp_off = I915_READ(pp_off_reg);
5312         if (!IS_BROXTON(dev)) {
5313                 I915_WRITE(pp_ctrl_reg, pp_ctl);
5314                 pp_div = I915_READ(pp_div_reg);
5315         }
5316
5317         /* Pull timing values out of registers */
5318         cur.t1_t3 = (pp_on & PANEL_POWER_UP_DELAY_MASK) >>
5319                 PANEL_POWER_UP_DELAY_SHIFT;
5320
5321         cur.t8 = (pp_on & PANEL_LIGHT_ON_DELAY_MASK) >>
5322                 PANEL_LIGHT_ON_DELAY_SHIFT;
5323
5324         cur.t9 = (pp_off & PANEL_LIGHT_OFF_DELAY_MASK) >>
5325                 PANEL_LIGHT_OFF_DELAY_SHIFT;
5326
5327         cur.t10 = (pp_off & PANEL_POWER_DOWN_DELAY_MASK) >>
5328                 PANEL_POWER_DOWN_DELAY_SHIFT;
5329
5330         if (IS_BROXTON(dev)) {
5331                 u16 tmp = (pp_ctl & BXT_POWER_CYCLE_DELAY_MASK) >>
5332                         BXT_POWER_CYCLE_DELAY_SHIFT;
5333                 if (tmp > 0)
5334                         cur.t11_t12 = (tmp - 1) * 1000;
5335                 else
5336                         cur.t11_t12 = 0;
5337         } else {
5338                 cur.t11_t12 = ((pp_div & PANEL_POWER_CYCLE_DELAY_MASK) >>
5339                        PANEL_POWER_CYCLE_DELAY_SHIFT) * 1000;
5340         }
5341
5342         DRM_DEBUG_KMS("cur t1_t3 %d t8 %d t9 %d t10 %d t11_t12 %d\n",
5343                       cur.t1_t3, cur.t8, cur.t9, cur.t10, cur.t11_t12);
5344
5345         vbt = dev_priv->vbt.edp_pps;
5346
5347         /* Upper limits from eDP 1.3 spec. Note that we use the clunky units of
5348          * our hw here, which are all in 100usec. */
5349         spec.t1_t3 = 210 * 10;
5350         spec.t8 = 50 * 10; /* no limit for t8, use t7 instead */
5351         spec.t9 = 50 * 10; /* no limit for t9, make it symmetric with t8 */
5352         spec.t10 = 500 * 10;
5353         /* This one is special and actually in units of 100ms, but zero
5354          * based in the hw (so we need to add 100 ms). But the sw vbt
5355          * table multiplies it with 1000 to make it in units of 100usec,
5356          * too. */
5357         spec.t11_t12 = (510 + 100) * 10;
5358
5359         DRM_DEBUG_KMS("vbt t1_t3 %d t8 %d t9 %d t10 %d t11_t12 %d\n",
5360                       vbt.t1_t3, vbt.t8, vbt.t9, vbt.t10, vbt.t11_t12);
5361
5362         /* Use the max of the register settings and vbt. If both are
5363          * unset, fall back to the spec limits. */
5364 #define assign_final(field)     final->field = (max(cur.field, vbt.field) == 0 ? \
5365                                        spec.field : \
5366                                        max(cur.field, vbt.field))
5367         assign_final(t1_t3);
5368         assign_final(t8);
5369         assign_final(t9);
5370         assign_final(t10);
5371         assign_final(t11_t12);
5372 #undef assign_final
5373
5374 #define get_delay(field)        (DIV_ROUND_UP(final->field, 10))
5375         intel_dp->panel_power_up_delay = get_delay(t1_t3);
5376         intel_dp->backlight_on_delay = get_delay(t8);
5377         intel_dp->backlight_off_delay = get_delay(t9);
5378         intel_dp->panel_power_down_delay = get_delay(t10);
5379         intel_dp->panel_power_cycle_delay = get_delay(t11_t12);
5380 #undef get_delay
5381
5382         DRM_DEBUG_KMS("panel power up delay %d, power down delay %d, power cycle delay %d\n",
5383                       intel_dp->panel_power_up_delay, intel_dp->panel_power_down_delay,
5384                       intel_dp->panel_power_cycle_delay);
5385
5386         DRM_DEBUG_KMS("backlight on delay %d, off delay %d\n",
5387                       intel_dp->backlight_on_delay, intel_dp->backlight_off_delay);
5388 }
5389
5390 static void
5391 intel_dp_init_panel_power_sequencer_registers(struct drm_device *dev,
5392                                               struct intel_dp *intel_dp)
5393 {
5394         struct drm_i915_private *dev_priv = dev->dev_private;
5395         u32 pp_on, pp_off, pp_div, port_sel = 0;
5396         int div = HAS_PCH_SPLIT(dev) ? intel_pch_rawclk(dev) : intel_hrawclk(dev);
5397         int pp_on_reg, pp_off_reg, pp_div_reg = 0, pp_ctrl_reg;
5398         enum port port = dp_to_dig_port(intel_dp)->port;
5399         const struct edp_power_seq *seq = &intel_dp->pps_delays;
5400
5401         lockdep_assert_held(&dev_priv->pps_mutex);
5402
5403         if (IS_BROXTON(dev)) {
5404                 /*
5405                  * TODO: BXT has 2 sets of PPS registers.
5406                  * Correct Register for Broxton need to be identified
5407                  * using VBT. hardcoding for now
5408                  */
5409                 pp_ctrl_reg = BXT_PP_CONTROL(0);
5410                 pp_on_reg = BXT_PP_ON_DELAYS(0);
5411                 pp_off_reg = BXT_PP_OFF_DELAYS(0);
5412
5413         } else if (HAS_PCH_SPLIT(dev)) {
5414                 pp_on_reg = PCH_PP_ON_DELAYS;
5415                 pp_off_reg = PCH_PP_OFF_DELAYS;
5416                 pp_div_reg = PCH_PP_DIVISOR;
5417         } else {
5418                 enum pipe pipe = vlv_power_sequencer_pipe(intel_dp);
5419
5420                 pp_on_reg = VLV_PIPE_PP_ON_DELAYS(pipe);
5421                 pp_off_reg = VLV_PIPE_PP_OFF_DELAYS(pipe);
5422                 pp_div_reg = VLV_PIPE_PP_DIVISOR(pipe);
5423         }
5424
5425         /*
5426          * And finally store the new values in the power sequencer. The
5427          * backlight delays are set to 1 because we do manual waits on them. For
5428          * T8, even BSpec recommends doing it. For T9, if we don't do this,
5429          * we'll end up waiting for the backlight off delay twice: once when we
5430          * do the manual sleep, and once when we disable the panel and wait for
5431          * the PP_STATUS bit to become zero.
5432          */
5433         pp_on = (seq->t1_t3 << PANEL_POWER_UP_DELAY_SHIFT) |
5434                 (1 << PANEL_LIGHT_ON_DELAY_SHIFT);
5435         pp_off = (1 << PANEL_LIGHT_OFF_DELAY_SHIFT) |
5436                  (seq->t10 << PANEL_POWER_DOWN_DELAY_SHIFT);
5437         /* Compute the divisor for the pp clock, simply match the Bspec
5438          * formula. */
5439         if (IS_BROXTON(dev)) {
5440                 pp_div = I915_READ(pp_ctrl_reg);
5441                 pp_div &= ~BXT_POWER_CYCLE_DELAY_MASK;
5442                 pp_div |= (DIV_ROUND_UP((seq->t11_t12 + 1), 1000)
5443                                 << BXT_POWER_CYCLE_DELAY_SHIFT);
5444         } else {
5445                 pp_div = ((100 * div)/2 - 1) << PP_REFERENCE_DIVIDER_SHIFT;
5446                 pp_div |= (DIV_ROUND_UP(seq->t11_t12, 1000)
5447                                 << PANEL_POWER_CYCLE_DELAY_SHIFT);
5448         }
5449
5450         /* Haswell doesn't have any port selection bits for the panel
5451          * power sequencer any more. */
5452         if (IS_VALLEYVIEW(dev)) {
5453                 port_sel = PANEL_PORT_SELECT_VLV(port);
5454         } else if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev)) {
5455                 if (port == PORT_A)
5456                         port_sel = PANEL_PORT_SELECT_DPA;
5457                 else
5458                         port_sel = PANEL_PORT_SELECT_DPD;
5459         }
5460
5461         pp_on |= port_sel;
5462
5463         I915_WRITE(pp_on_reg, pp_on);
5464         I915_WRITE(pp_off_reg, pp_off);
5465         if (IS_BROXTON(dev))
5466                 I915_WRITE(pp_ctrl_reg, pp_div);
5467         else
5468                 I915_WRITE(pp_div_reg, pp_div);
5469
5470         DRM_DEBUG_KMS("panel power sequencer register settings: PP_ON %#x, PP_OFF %#x, PP_DIV %#x\n",
5471                       I915_READ(pp_on_reg),
5472                       I915_READ(pp_off_reg),
5473                       IS_BROXTON(dev) ?
5474                       (I915_READ(pp_ctrl_reg) & BXT_POWER_CYCLE_DELAY_MASK) :
5475                       I915_READ(pp_div_reg));
5476 }
5477
5478 /**
5479  * intel_dp_set_drrs_state - program registers for RR switch to take effect
5480  * @dev: DRM device
5481  * @refresh_rate: RR to be programmed
5482  *
5483  * This function gets called when refresh rate (RR) has to be changed from
5484  * one frequency to another. Switches can be between high and low RR
5485  * supported by the panel or to any other RR based on media playback (in
5486  * this case, RR value needs to be passed from user space).
5487  *
5488  * The caller of this function needs to take a lock on dev_priv->drrs.
5489  */
5490 static void intel_dp_set_drrs_state(struct drm_device *dev, int refresh_rate)
5491 {
5492         struct drm_i915_private *dev_priv = dev->dev_private;
5493         struct intel_encoder *encoder;
5494         struct intel_digital_port *dig_port = NULL;
5495         struct intel_dp *intel_dp = dev_priv->drrs.dp;
5496         struct intel_crtc_state *config = NULL;
5497         struct intel_crtc *intel_crtc = NULL;
5498         enum drrs_refresh_rate_type index = DRRS_HIGH_RR;
5499
5500         if (refresh_rate <= 0) {
5501                 DRM_DEBUG_KMS("Refresh rate should be positive non-zero.\n");
5502                 return;
5503         }
5504
5505         if (intel_dp == NULL) {
5506                 DRM_DEBUG_KMS("DRRS not supported.\n");
5507                 return;
5508         }
5509
5510         /*
5511          * FIXME: This needs proper synchronization with psr state for some
5512          * platforms that cannot have PSR and DRRS enabled at the same time.
5513          */
5514
5515         dig_port = dp_to_dig_port(intel_dp);
5516         encoder = &dig_port->base;
5517         intel_crtc = to_intel_crtc(encoder->base.crtc);
5518
5519         if (!intel_crtc) {
5520                 DRM_DEBUG_KMS("DRRS: intel_crtc not initialized\n");
5521                 return;
5522         }
5523
5524         config = intel_crtc->config;
5525
5526         if (dev_priv->drrs.type < SEAMLESS_DRRS_SUPPORT) {
5527                 DRM_DEBUG_KMS("Only Seamless DRRS supported.\n");
5528                 return;
5529         }
5530
5531         if (intel_dp->attached_connector->panel.downclock_mode->vrefresh ==
5532                         refresh_rate)
5533                 index = DRRS_LOW_RR;
5534
5535         if (index == dev_priv->drrs.refresh_rate_type) {
5536                 DRM_DEBUG_KMS(
5537                         "DRRS requested for previously set RR...ignoring\n");
5538                 return;
5539         }
5540
5541         if (!intel_crtc->active) {
5542                 DRM_DEBUG_KMS("eDP encoder disabled. CRTC not Active\n");
5543                 return;
5544         }
5545
5546         if (INTEL_INFO(dev)->gen >= 8 && !IS_CHERRYVIEW(dev)) {
5547                 switch (index) {
5548                 case DRRS_HIGH_RR:
5549                         intel_dp_set_m_n(intel_crtc, M1_N1);
5550                         break;
5551                 case DRRS_LOW_RR:
5552                         intel_dp_set_m_n(intel_crtc, M2_N2);
5553                         break;
5554                 case DRRS_MAX_RR:
5555                 default:
5556                         DRM_ERROR("Unsupported refreshrate type\n");
5557                 }
5558         } else if (INTEL_INFO(dev)->gen > 6) {
5559                 u32 reg = PIPECONF(intel_crtc->config->cpu_transcoder);
5560                 u32 val;
5561
5562                 val = I915_READ(reg);
5563                 if (index > DRRS_HIGH_RR) {
5564                         if (IS_VALLEYVIEW(dev))
5565                                 val |= PIPECONF_EDP_RR_MODE_SWITCH_VLV;
5566                         else
5567                                 val |= PIPECONF_EDP_RR_MODE_SWITCH;
5568                 } else {
5569                         if (IS_VALLEYVIEW(dev))
5570                                 val &= ~PIPECONF_EDP_RR_MODE_SWITCH_VLV;
5571                         else
5572                                 val &= ~PIPECONF_EDP_RR_MODE_SWITCH;
5573                 }
5574                 I915_WRITE(reg, val);
5575         }
5576
5577         dev_priv->drrs.refresh_rate_type = index;
5578
5579         DRM_DEBUG_KMS("eDP Refresh Rate set to : %dHz\n", refresh_rate);
5580 }
5581
5582 /**
5583  * intel_edp_drrs_enable - init drrs struct if supported
5584  * @intel_dp: DP struct
5585  *
5586  * Initializes frontbuffer_bits and drrs.dp
5587  */
5588 void intel_edp_drrs_enable(struct intel_dp *intel_dp)
5589 {
5590         struct drm_device *dev = intel_dp_to_dev(intel_dp);
5591         struct drm_i915_private *dev_priv = dev->dev_private;
5592         struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
5593         struct drm_crtc *crtc = dig_port->base.base.crtc;
5594         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5595
5596         if (!intel_crtc->config->has_drrs) {
5597                 DRM_DEBUG_KMS("Panel doesn't support DRRS\n");
5598                 return;
5599         }
5600
5601         mutex_lock(&dev_priv->drrs.mutex);
5602         if (WARN_ON(dev_priv->drrs.dp)) {
5603                 DRM_ERROR("DRRS already enabled\n");
5604                 goto unlock;
5605         }
5606
5607         dev_priv->drrs.busy_frontbuffer_bits = 0;
5608
5609         dev_priv->drrs.dp = intel_dp;
5610
5611 unlock:
5612         mutex_unlock(&dev_priv->drrs.mutex);
5613 }
5614
5615 /**
5616  * intel_edp_drrs_disable - Disable DRRS
5617  * @intel_dp: DP struct
5618  *
5619  */
5620 void intel_edp_drrs_disable(struct intel_dp *intel_dp)
5621 {
5622         struct drm_device *dev = intel_dp_to_dev(intel_dp);
5623         struct drm_i915_private *dev_priv = dev->dev_private;
5624         struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
5625         struct drm_crtc *crtc = dig_port->base.base.crtc;
5626         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5627
5628         if (!intel_crtc->config->has_drrs)
5629                 return;
5630
5631         mutex_lock(&dev_priv->drrs.mutex);
5632         if (!dev_priv->drrs.dp) {
5633                 mutex_unlock(&dev_priv->drrs.mutex);
5634                 return;
5635         }
5636
5637         if (dev_priv->drrs.refresh_rate_type == DRRS_LOW_RR)
5638                 intel_dp_set_drrs_state(dev_priv->dev,
5639                         intel_dp->attached_connector->panel.
5640                         fixed_mode->vrefresh);
5641
5642         dev_priv->drrs.dp = NULL;
5643         mutex_unlock(&dev_priv->drrs.mutex);
5644
5645         cancel_delayed_work_sync(&dev_priv->drrs.work);
5646 }
5647
5648 static void intel_edp_drrs_downclock_work(struct work_struct *work)
5649 {
5650         struct drm_i915_private *dev_priv =
5651                 container_of(work, typeof(*dev_priv), drrs.work.work);
5652         struct intel_dp *intel_dp;
5653
5654         mutex_lock(&dev_priv->drrs.mutex);
5655
5656         intel_dp = dev_priv->drrs.dp;
5657
5658         if (!intel_dp)
5659                 goto unlock;
5660
5661         /*
5662          * The delayed work can race with an invalidate hence we need to
5663          * recheck.
5664          */
5665
5666         if (dev_priv->drrs.busy_frontbuffer_bits)
5667                 goto unlock;
5668
5669         if (dev_priv->drrs.refresh_rate_type != DRRS_LOW_RR)
5670                 intel_dp_set_drrs_state(dev_priv->dev,
5671                         intel_dp->attached_connector->panel.
5672                         downclock_mode->vrefresh);
5673
5674 unlock:
5675         mutex_unlock(&dev_priv->drrs.mutex);
5676 }
5677
5678 /**
5679  * intel_edp_drrs_invalidate - Disable Idleness DRRS
5680  * @dev: DRM device
5681  * @frontbuffer_bits: frontbuffer plane tracking bits
5682  *
5683  * This function gets called everytime rendering on the given planes start.
5684  * Hence DRRS needs to be Upclocked, i.e. (LOW_RR -> HIGH_RR).
5685  *
5686  * Dirty frontbuffers relevant to DRRS are tracked in busy_frontbuffer_bits.
5687  */
5688 void intel_edp_drrs_invalidate(struct drm_device *dev,
5689                 unsigned frontbuffer_bits)
5690 {
5691         struct drm_i915_private *dev_priv = dev->dev_private;
5692         struct drm_crtc *crtc;
5693         enum pipe pipe;
5694
5695         if (dev_priv->drrs.type == DRRS_NOT_SUPPORTED)
5696                 return;
5697
5698         cancel_delayed_work(&dev_priv->drrs.work);
5699
5700         mutex_lock(&dev_priv->drrs.mutex);
5701         if (!dev_priv->drrs.dp) {
5702                 mutex_unlock(&dev_priv->drrs.mutex);
5703                 return;
5704         }
5705
5706         crtc = dp_to_dig_port(dev_priv->drrs.dp)->base.base.crtc;
5707         pipe = to_intel_crtc(crtc)->pipe;
5708
5709         frontbuffer_bits &= INTEL_FRONTBUFFER_ALL_MASK(pipe);
5710         dev_priv->drrs.busy_frontbuffer_bits |= frontbuffer_bits;
5711
5712         /* invalidate means busy screen hence upclock */
5713         if (frontbuffer_bits && dev_priv->drrs.refresh_rate_type == DRRS_LOW_RR)
5714                 intel_dp_set_drrs_state(dev_priv->dev,
5715                                 dev_priv->drrs.dp->attached_connector->panel.
5716                                 fixed_mode->vrefresh);
5717
5718         mutex_unlock(&dev_priv->drrs.mutex);
5719 }
5720
5721 /**
5722  * intel_edp_drrs_flush - Restart Idleness DRRS
5723  * @dev: DRM device
5724  * @frontbuffer_bits: frontbuffer plane tracking bits
5725  *
5726  * This function gets called every time rendering on the given planes has
5727  * completed or flip on a crtc is completed. So DRRS should be upclocked
5728  * (LOW_RR -> HIGH_RR). And also Idleness detection should be started again,
5729  * if no other planes are dirty.
5730  *
5731  * Dirty frontbuffers relevant to DRRS are tracked in busy_frontbuffer_bits.
5732  */
5733 void intel_edp_drrs_flush(struct drm_device *dev,
5734                 unsigned frontbuffer_bits)
5735 {
5736         struct drm_i915_private *dev_priv = dev->dev_private;
5737         struct drm_crtc *crtc;
5738         enum pipe pipe;
5739
5740         if (dev_priv->drrs.type == DRRS_NOT_SUPPORTED)
5741                 return;
5742
5743         cancel_delayed_work(&dev_priv->drrs.work);
5744
5745         mutex_lock(&dev_priv->drrs.mutex);
5746         if (!dev_priv->drrs.dp) {
5747                 mutex_unlock(&dev_priv->drrs.mutex);
5748                 return;
5749         }
5750
5751         crtc = dp_to_dig_port(dev_priv->drrs.dp)->base.base.crtc;
5752         pipe = to_intel_crtc(crtc)->pipe;
5753
5754         frontbuffer_bits &= INTEL_FRONTBUFFER_ALL_MASK(pipe);
5755         dev_priv->drrs.busy_frontbuffer_bits &= ~frontbuffer_bits;
5756
5757         /* flush means busy screen hence upclock */
5758         if (frontbuffer_bits && dev_priv->drrs.refresh_rate_type == DRRS_LOW_RR)
5759                 intel_dp_set_drrs_state(dev_priv->dev,
5760                                 dev_priv->drrs.dp->attached_connector->panel.
5761                                 fixed_mode->vrefresh);
5762
5763         /*
5764          * flush also means no more activity hence schedule downclock, if all
5765          * other fbs are quiescent too
5766          */
5767         if (!dev_priv->drrs.busy_frontbuffer_bits)
5768                 schedule_delayed_work(&dev_priv->drrs.work,
5769                                 msecs_to_jiffies(1000));
5770         mutex_unlock(&dev_priv->drrs.mutex);
5771 }
5772
5773 /**
5774  * DOC: Display Refresh Rate Switching (DRRS)
5775  *
5776  * Display Refresh Rate Switching (DRRS) is a power conservation feature
5777  * which enables swtching between low and high refresh rates,
5778  * dynamically, based on the usage scenario. This feature is applicable
5779  * for internal panels.
5780  *
5781  * Indication that the panel supports DRRS is given by the panel EDID, which
5782  * would list multiple refresh rates for one resolution.
5783  *
5784  * DRRS is of 2 types - static and seamless.
5785  * Static DRRS involves changing refresh rate (RR) by doing a full modeset
5786  * (may appear as a blink on screen) and is used in dock-undock scenario.
5787  * Seamless DRRS involves changing RR without any visual effect to the user
5788  * and can be used during normal system usage. This is done by programming
5789  * certain registers.
5790  *
5791  * Support for static/seamless DRRS may be indicated in the VBT based on
5792  * inputs from the panel spec.
5793  *
5794  * DRRS saves power by switching to low RR based on usage scenarios.
5795  *
5796  * eDP DRRS:-
5797  *        The implementation is based on frontbuffer tracking implementation.
5798  * When there is a disturbance on the screen triggered by user activity or a
5799  * periodic system activity, DRRS is disabled (RR is changed to high RR).
5800  * When there is no movement on screen, after a timeout of 1 second, a switch
5801  * to low RR is made.
5802  *        For integration with frontbuffer tracking code,
5803  * intel_edp_drrs_invalidate() and intel_edp_drrs_flush() are called.
5804  *
5805  * DRRS can be further extended to support other internal panels and also
5806  * the scenario of video playback wherein RR is set based on the rate
5807  * requested by userspace.
5808  */
5809
5810 /**
5811  * intel_dp_drrs_init - Init basic DRRS work and mutex.
5812  * @intel_connector: eDP connector
5813  * @fixed_mode: preferred mode of panel
5814  *
5815  * This function is  called only once at driver load to initialize basic
5816  * DRRS stuff.
5817  *
5818  * Returns:
5819  * Downclock mode if panel supports it, else return NULL.
5820  * DRRS support is determined by the presence of downclock mode (apart
5821  * from VBT setting).
5822  */
5823 static struct drm_display_mode *
5824 intel_dp_drrs_init(struct intel_connector *intel_connector,
5825                 struct drm_display_mode *fixed_mode)
5826 {
5827         struct drm_connector *connector = &intel_connector->base;
5828         struct drm_device *dev = connector->dev;
5829         struct drm_i915_private *dev_priv = dev->dev_private;
5830         struct drm_display_mode *downclock_mode = NULL;
5831
5832         INIT_DELAYED_WORK(&dev_priv->drrs.work, intel_edp_drrs_downclock_work);
5833         mutex_init(&dev_priv->drrs.mutex);
5834
5835         if (INTEL_INFO(dev)->gen <= 6) {
5836                 DRM_DEBUG_KMS("DRRS supported for Gen7 and above\n");
5837                 return NULL;
5838         }
5839
5840         if (dev_priv->vbt.drrs_type != SEAMLESS_DRRS_SUPPORT) {
5841                 DRM_DEBUG_KMS("VBT doesn't support DRRS\n");
5842                 return NULL;
5843         }
5844
5845         downclock_mode = intel_find_panel_downclock
5846                                         (dev, fixed_mode, connector);
5847
5848         if (!downclock_mode) {
5849                 DRM_DEBUG_KMS("Downclock mode is not found. DRRS not supported\n");
5850                 return NULL;
5851         }
5852
5853         dev_priv->drrs.type = dev_priv->vbt.drrs_type;
5854
5855         dev_priv->drrs.refresh_rate_type = DRRS_HIGH_RR;
5856         DRM_DEBUG_KMS("seamless DRRS supported for eDP panel.\n");
5857         return downclock_mode;
5858 }
5859
5860 static bool intel_edp_init_connector(struct intel_dp *intel_dp,
5861                                      struct intel_connector *intel_connector)
5862 {
5863         struct drm_connector *connector = &intel_connector->base;
5864         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
5865         struct intel_encoder *intel_encoder = &intel_dig_port->base;
5866         struct drm_device *dev = intel_encoder->base.dev;
5867         struct drm_i915_private *dev_priv = dev->dev_private;
5868         struct drm_display_mode *fixed_mode = NULL;
5869         struct drm_display_mode *downclock_mode = NULL;
5870         bool has_dpcd;
5871         struct drm_display_mode *scan;
5872         struct edid *edid;
5873         enum pipe pipe = INVALID_PIPE;
5874
5875         if (!is_edp(intel_dp))
5876                 return true;
5877
5878         pps_lock(intel_dp);
5879         intel_edp_panel_vdd_sanitize(intel_dp);
5880         pps_unlock(intel_dp);
5881
5882         /* Cache DPCD and EDID for edp. */
5883         has_dpcd = intel_dp_get_dpcd(intel_dp);
5884
5885         if (has_dpcd) {
5886                 if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11)
5887                         dev_priv->no_aux_handshake =
5888                                 intel_dp->dpcd[DP_MAX_DOWNSPREAD] &
5889                                 DP_NO_AUX_HANDSHAKE_LINK_TRAINING;
5890         } else {
5891                 /* if this fails, presume the device is a ghost */
5892                 DRM_INFO("failed to retrieve link info, disabling eDP\n");
5893                 return false;
5894         }
5895
5896         /* We now know it's not a ghost, init power sequence regs. */
5897         pps_lock(intel_dp);
5898         intel_dp_init_panel_power_sequencer_registers(dev, intel_dp);
5899         pps_unlock(intel_dp);
5900
5901         mutex_lock(&dev->mode_config.mutex);
5902         edid = drm_get_edid(connector, &intel_dp->aux.ddc);
5903         if (edid) {
5904                 if (drm_add_edid_modes(connector, edid)) {
5905                         drm_mode_connector_update_edid_property(connector,
5906                                                                 edid);
5907                         drm_edid_to_eld(connector, edid);
5908                 } else {
5909                         kfree(edid);
5910                         edid = ERR_PTR(-EINVAL);
5911                 }
5912         } else {
5913                 edid = ERR_PTR(-ENOENT);
5914         }
5915         intel_connector->edid = edid;
5916
5917         /* prefer fixed mode from EDID if available */
5918         list_for_each_entry(scan, &connector->probed_modes, head) {
5919                 if ((scan->type & DRM_MODE_TYPE_PREFERRED)) {
5920                         fixed_mode = drm_mode_duplicate(dev, scan);
5921                         downclock_mode = intel_dp_drrs_init(
5922                                                 intel_connector, fixed_mode);
5923                         break;
5924                 }
5925         }
5926
5927         /* fallback to VBT if available for eDP */
5928         if (!fixed_mode && dev_priv->vbt.lfp_lvds_vbt_mode) {
5929                 fixed_mode = drm_mode_duplicate(dev,
5930                                         dev_priv->vbt.lfp_lvds_vbt_mode);
5931                 if (fixed_mode)
5932                         fixed_mode->type |= DRM_MODE_TYPE_PREFERRED;
5933         }
5934         mutex_unlock(&dev->mode_config.mutex);
5935
5936         if (IS_VALLEYVIEW(dev)) {
5937                 intel_dp->edp_notifier.notifier_call = edp_notify_handler;
5938                 register_reboot_notifier(&intel_dp->edp_notifier);
5939
5940                 /*
5941                  * Figure out the current pipe for the initial backlight setup.
5942                  * If the current pipe isn't valid, try the PPS pipe, and if that
5943                  * fails just assume pipe A.
5944                  */
5945                 if (IS_CHERRYVIEW(dev))
5946                         pipe = DP_PORT_TO_PIPE_CHV(intel_dp->DP);
5947                 else
5948                         pipe = PORT_TO_PIPE(intel_dp->DP);
5949
5950                 if (pipe != PIPE_A && pipe != PIPE_B)
5951                         pipe = intel_dp->pps_pipe;
5952
5953                 if (pipe != PIPE_A && pipe != PIPE_B)
5954                         pipe = PIPE_A;
5955
5956                 DRM_DEBUG_KMS("using pipe %c for initial backlight setup\n",
5957                               pipe_name(pipe));
5958         }
5959
5960         intel_panel_init(&intel_connector->panel, fixed_mode, downclock_mode);
5961         intel_connector->panel.backlight.power = intel_edp_backlight_power;
5962         intel_panel_setup_backlight(connector, pipe);
5963
5964         return true;
5965 }
5966
5967 bool
5968 intel_dp_init_connector(struct intel_digital_port *intel_dig_port,
5969                         struct intel_connector *intel_connector)
5970 {
5971         struct drm_connector *connector = &intel_connector->base;
5972         struct intel_dp *intel_dp = &intel_dig_port->dp;
5973         struct intel_encoder *intel_encoder = &intel_dig_port->base;
5974         struct drm_device *dev = intel_encoder->base.dev;
5975         struct drm_i915_private *dev_priv = dev->dev_private;
5976         enum port port = intel_dig_port->port;
5977         int type;
5978
5979         intel_dp->pps_pipe = INVALID_PIPE;
5980
5981         /* intel_dp vfuncs */
5982         if (INTEL_INFO(dev)->gen >= 9)
5983                 intel_dp->get_aux_clock_divider = skl_get_aux_clock_divider;
5984         else if (IS_VALLEYVIEW(dev))
5985                 intel_dp->get_aux_clock_divider = vlv_get_aux_clock_divider;
5986         else if (IS_HASWELL(dev) || IS_BROADWELL(dev))
5987                 intel_dp->get_aux_clock_divider = hsw_get_aux_clock_divider;
5988         else if (HAS_PCH_SPLIT(dev))
5989                 intel_dp->get_aux_clock_divider = ilk_get_aux_clock_divider;
5990         else
5991                 intel_dp->get_aux_clock_divider = i9xx_get_aux_clock_divider;
5992
5993         if (INTEL_INFO(dev)->gen >= 9)
5994                 intel_dp->get_aux_send_ctl = skl_get_aux_send_ctl;
5995         else
5996                 intel_dp->get_aux_send_ctl = i9xx_get_aux_send_ctl;
5997
5998         /* Preserve the current hw state. */
5999         intel_dp->DP = I915_READ(intel_dp->output_reg);
6000         intel_dp->attached_connector = intel_connector;
6001
6002         if (intel_dp_is_edp(dev, port))
6003                 type = DRM_MODE_CONNECTOR_eDP;
6004         else
6005                 type = DRM_MODE_CONNECTOR_DisplayPort;
6006
6007         /*
6008          * For eDP we always set the encoder type to INTEL_OUTPUT_EDP, but
6009          * for DP the encoder type can be set by the caller to
6010          * INTEL_OUTPUT_UNKNOWN for DDI, so don't rewrite it.
6011          */
6012         if (type == DRM_MODE_CONNECTOR_eDP)
6013                 intel_encoder->type = INTEL_OUTPUT_EDP;
6014
6015         /* eDP only on port B and/or C on vlv/chv */
6016         if (WARN_ON(IS_VALLEYVIEW(dev) && is_edp(intel_dp) &&
6017                     port != PORT_B && port != PORT_C))
6018                 return false;
6019
6020         DRM_DEBUG_KMS("Adding %s connector on port %c\n",
6021                         type == DRM_MODE_CONNECTOR_eDP ? "eDP" : "DP",
6022                         port_name(port));
6023
6024         drm_connector_init(dev, connector, &intel_dp_connector_funcs, type);
6025         drm_connector_helper_add(connector, &intel_dp_connector_helper_funcs);
6026
6027         connector->interlace_allowed = true;
6028         connector->doublescan_allowed = 0;
6029
6030         INIT_DELAYED_WORK(&intel_dp->panel_vdd_work,
6031                           edp_panel_vdd_work);
6032
6033         intel_connector_attach_encoder(intel_connector, intel_encoder);
6034         drm_connector_register(connector);
6035
6036         if (HAS_DDI(dev))
6037                 intel_connector->get_hw_state = intel_ddi_connector_get_hw_state;
6038         else
6039                 intel_connector->get_hw_state = intel_connector_get_hw_state;
6040         intel_connector->unregister = intel_dp_connector_unregister;
6041
6042         /* Set up the hotplug pin. */
6043         switch (port) {
6044         case PORT_A:
6045                 intel_encoder->hpd_pin = HPD_PORT_A;
6046                 break;
6047         case PORT_B:
6048                 intel_encoder->hpd_pin = HPD_PORT_B;
6049                 if (IS_BROXTON(dev_priv) && (INTEL_REVID(dev) < BXT_REVID_B0))
6050                         intel_encoder->hpd_pin = HPD_PORT_A;
6051                 break;
6052         case PORT_C:
6053                 intel_encoder->hpd_pin = HPD_PORT_C;
6054                 break;
6055         case PORT_D:
6056                 intel_encoder->hpd_pin = HPD_PORT_D;
6057                 break;
6058         case PORT_E:
6059                 intel_encoder->hpd_pin = HPD_PORT_E;
6060                 break;
6061         default:
6062                 BUG();
6063         }
6064
6065         if (is_edp(intel_dp)) {
6066                 pps_lock(intel_dp);
6067                 intel_dp_init_panel_power_timestamps(intel_dp);
6068                 if (IS_VALLEYVIEW(dev))
6069                         vlv_initial_power_sequencer_setup(intel_dp);
6070                 else
6071                         intel_dp_init_panel_power_sequencer(dev, intel_dp);
6072                 pps_unlock(intel_dp);
6073         }
6074
6075         intel_dp_aux_init(intel_dp, intel_connector);
6076
6077         /* init MST on ports that can support it */
6078         if (HAS_DP_MST(dev) &&
6079             (port == PORT_B || port == PORT_C || port == PORT_D))
6080                 intel_dp_mst_encoder_init(intel_dig_port,
6081                                           intel_connector->base.base.id);
6082
6083         if (!intel_edp_init_connector(intel_dp, intel_connector)) {
6084                 drm_dp_aux_unregister(&intel_dp->aux);
6085                 if (is_edp(intel_dp)) {
6086                         cancel_delayed_work_sync(&intel_dp->panel_vdd_work);
6087                         /*
6088                          * vdd might still be enabled do to the delayed vdd off.
6089                          * Make sure vdd is actually turned off here.
6090                          */
6091                         pps_lock(intel_dp);
6092                         edp_panel_vdd_off_sync(intel_dp);
6093                         pps_unlock(intel_dp);
6094                 }
6095                 drm_connector_unregister(connector);
6096                 drm_connector_cleanup(connector);
6097                 return false;
6098         }
6099
6100         intel_dp_add_properties(intel_dp, connector);
6101
6102         /* For G4X desktop chip, PEG_BAND_GAP_DATA 3:0 must first be written
6103          * 0xd.  Failure to do so will result in spurious interrupts being
6104          * generated on the port when a cable is not attached.
6105          */
6106         if (IS_G4X(dev) && !IS_GM45(dev)) {
6107                 u32 temp = I915_READ(PEG_BAND_GAP_DATA);
6108                 I915_WRITE(PEG_BAND_GAP_DATA, (temp & ~0xf) | 0xd);
6109         }
6110
6111         i915_debugfs_connector_add(connector);
6112
6113         return true;
6114 }
6115
6116 void
6117 intel_dp_init(struct drm_device *dev, int output_reg, enum port port)
6118 {
6119         struct drm_i915_private *dev_priv = dev->dev_private;
6120         struct intel_digital_port *intel_dig_port;
6121         struct intel_encoder *intel_encoder;
6122         struct drm_encoder *encoder;
6123         struct intel_connector *intel_connector;
6124
6125         intel_dig_port = kzalloc(sizeof(*intel_dig_port), GFP_KERNEL);
6126         if (!intel_dig_port)
6127                 return;
6128
6129         intel_connector = intel_connector_alloc();
6130         if (!intel_connector)
6131                 goto err_connector_alloc;
6132
6133         intel_encoder = &intel_dig_port->base;
6134         encoder = &intel_encoder->base;
6135
6136         drm_encoder_init(dev, &intel_encoder->base, &intel_dp_enc_funcs,
6137                          DRM_MODE_ENCODER_TMDS, NULL);
6138
6139         intel_encoder->compute_config = intel_dp_compute_config;
6140         intel_encoder->disable = intel_disable_dp;
6141         intel_encoder->get_hw_state = intel_dp_get_hw_state;
6142         intel_encoder->get_config = intel_dp_get_config;
6143         intel_encoder->suspend = intel_dp_encoder_suspend;
6144         if (IS_CHERRYVIEW(dev)) {
6145                 intel_encoder->pre_pll_enable = chv_dp_pre_pll_enable;
6146                 intel_encoder->pre_enable = chv_pre_enable_dp;
6147                 intel_encoder->enable = vlv_enable_dp;
6148                 intel_encoder->post_disable = chv_post_disable_dp;
6149                 intel_encoder->post_pll_disable = chv_dp_post_pll_disable;
6150         } else if (IS_VALLEYVIEW(dev)) {
6151                 intel_encoder->pre_pll_enable = vlv_dp_pre_pll_enable;
6152                 intel_encoder->pre_enable = vlv_pre_enable_dp;
6153                 intel_encoder->enable = vlv_enable_dp;
6154                 intel_encoder->post_disable = vlv_post_disable_dp;
6155         } else {
6156                 intel_encoder->pre_enable = g4x_pre_enable_dp;
6157                 intel_encoder->enable = g4x_enable_dp;
6158                 if (INTEL_INFO(dev)->gen >= 5)
6159                         intel_encoder->post_disable = ilk_post_disable_dp;
6160         }
6161
6162         intel_dig_port->port = port;
6163         intel_dig_port->dp.output_reg = output_reg;
6164
6165         intel_encoder->type = INTEL_OUTPUT_DISPLAYPORT;
6166         if (IS_CHERRYVIEW(dev)) {
6167                 if (port == PORT_D)
6168                         intel_encoder->crtc_mask = 1 << 2;
6169                 else
6170                         intel_encoder->crtc_mask = (1 << 0) | (1 << 1);
6171         } else {
6172                 intel_encoder->crtc_mask = (1 << 0) | (1 << 1) | (1 << 2);
6173         }
6174         intel_encoder->cloneable = 0;
6175
6176         intel_dig_port->hpd_pulse = intel_dp_hpd_pulse;
6177         dev_priv->hotplug.irq_port[port] = intel_dig_port;
6178
6179         if (!intel_dp_init_connector(intel_dig_port, intel_connector))
6180                 goto err_init_connector;
6181
6182         return;
6183
6184 err_init_connector:
6185         drm_encoder_cleanup(encoder);
6186         kfree(intel_connector);
6187 err_connector_alloc:
6188         kfree(intel_dig_port);
6189
6190         return;
6191 }
6192
6193 void intel_dp_mst_suspend(struct drm_device *dev)
6194 {
6195         struct drm_i915_private *dev_priv = dev->dev_private;
6196         int i;
6197
6198         /* disable MST */
6199         for (i = 0; i < I915_MAX_PORTS; i++) {
6200                 struct intel_digital_port *intel_dig_port = dev_priv->hotplug.irq_port[i];
6201                 if (!intel_dig_port)
6202                         continue;
6203
6204                 if (intel_dig_port->base.type == INTEL_OUTPUT_DISPLAYPORT) {
6205                         if (!intel_dig_port->dp.can_mst)
6206                                 continue;
6207                         if (intel_dig_port->dp.is_mst)
6208                                 drm_dp_mst_topology_mgr_suspend(&intel_dig_port->dp.mst_mgr);
6209                 }
6210         }
6211 }
6212
6213 void intel_dp_mst_resume(struct drm_device *dev)
6214 {
6215         struct drm_i915_private *dev_priv = dev->dev_private;
6216         int i;
6217
6218         for (i = 0; i < I915_MAX_PORTS; i++) {
6219                 struct intel_digital_port *intel_dig_port = dev_priv->hotplug.irq_port[i];
6220                 if (!intel_dig_port)
6221                         continue;
6222                 if (intel_dig_port->base.type == INTEL_OUTPUT_DISPLAYPORT) {
6223                         int ret;
6224
6225                         if (!intel_dig_port->dp.can_mst)
6226                                 continue;
6227
6228                         ret = drm_dp_mst_topology_mgr_resume(&intel_dig_port->dp.mst_mgr);
6229                         if (ret != 0) {
6230                                 intel_dp_check_mst_status(&intel_dig_port->dp);
6231                         }
6232                 }
6233         }
6234 }