Merge tag 'drm/dp-aux-for-3.15-rc1' of git://anongit.freedesktop.org/tegra/linux...
[firefly-linux-kernel-4.4.55.git] / drivers / gpu / drm / i915 / intel_dp.c
1 /*
2  * Copyright © 2008 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *    Keith Packard <keithp@keithp.com>
25  *
26  */
27
28 #include <linux/i2c.h>
29 #include <linux/slab.h>
30 #include <linux/export.h>
31 #include <drm/drmP.h>
32 #include <drm/drm_crtc.h>
33 #include <drm/drm_crtc_helper.h>
34 #include <drm/drm_edid.h>
35 #include "intel_drv.h"
36 #include <drm/i915_drm.h>
37 #include "i915_drv.h"
38
39 #define DP_LINK_CHECK_TIMEOUT   (10 * 1000)
40
41 struct dp_link_dpll {
42         int link_bw;
43         struct dpll dpll;
44 };
45
46 static const struct dp_link_dpll gen4_dpll[] = {
47         { DP_LINK_BW_1_62,
48                 { .p1 = 2, .p2 = 10, .n = 2, .m1 = 23, .m2 = 8 } },
49         { DP_LINK_BW_2_7,
50                 { .p1 = 1, .p2 = 10, .n = 1, .m1 = 14, .m2 = 2 } }
51 };
52
53 static const struct dp_link_dpll pch_dpll[] = {
54         { DP_LINK_BW_1_62,
55                 { .p1 = 2, .p2 = 10, .n = 1, .m1 = 12, .m2 = 9 } },
56         { DP_LINK_BW_2_7,
57                 { .p1 = 1, .p2 = 10, .n = 2, .m1 = 14, .m2 = 8 } }
58 };
59
60 static const struct dp_link_dpll vlv_dpll[] = {
61         { DP_LINK_BW_1_62,
62                 { .p1 = 3, .p2 = 2, .n = 5, .m1 = 3, .m2 = 81 } },
63         { DP_LINK_BW_2_7,
64                 { .p1 = 2, .p2 = 2, .n = 1, .m1 = 2, .m2 = 27 } }
65 };
66
67 /**
68  * is_edp - is the given port attached to an eDP panel (either CPU or PCH)
69  * @intel_dp: DP struct
70  *
71  * If a CPU or PCH DP output is attached to an eDP panel, this function
72  * will return true, and false otherwise.
73  */
74 static bool is_edp(struct intel_dp *intel_dp)
75 {
76         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
77
78         return intel_dig_port->base.type == INTEL_OUTPUT_EDP;
79 }
80
81 static struct drm_device *intel_dp_to_dev(struct intel_dp *intel_dp)
82 {
83         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
84
85         return intel_dig_port->base.base.dev;
86 }
87
88 static struct intel_dp *intel_attached_dp(struct drm_connector *connector)
89 {
90         return enc_to_intel_dp(&intel_attached_encoder(connector)->base);
91 }
92
93 static void intel_dp_link_down(struct intel_dp *intel_dp);
94
95 static int
96 intel_dp_max_link_bw(struct intel_dp *intel_dp)
97 {
98         int max_link_bw = intel_dp->dpcd[DP_MAX_LINK_RATE];
99
100         switch (max_link_bw) {
101         case DP_LINK_BW_1_62:
102         case DP_LINK_BW_2_7:
103                 break;
104         case DP_LINK_BW_5_4: /* 1.2 capable displays may advertise higher bw */
105                 max_link_bw = DP_LINK_BW_2_7;
106                 break;
107         default:
108                 WARN(1, "invalid max DP link bw val %x, using 1.62Gbps\n",
109                      max_link_bw);
110                 max_link_bw = DP_LINK_BW_1_62;
111                 break;
112         }
113         return max_link_bw;
114 }
115
116 /*
117  * The units on the numbers in the next two are... bizarre.  Examples will
118  * make it clearer; this one parallels an example in the eDP spec.
119  *
120  * intel_dp_max_data_rate for one lane of 2.7GHz evaluates as:
121  *
122  *     270000 * 1 * 8 / 10 == 216000
123  *
124  * The actual data capacity of that configuration is 2.16Gbit/s, so the
125  * units are decakilobits.  ->clock in a drm_display_mode is in kilohertz -
126  * or equivalently, kilopixels per second - so for 1680x1050R it'd be
127  * 119000.  At 18bpp that's 2142000 kilobits per second.
128  *
129  * Thus the strange-looking division by 10 in intel_dp_link_required, to
130  * get the result in decakilobits instead of kilobits.
131  */
132
133 static int
134 intel_dp_link_required(int pixel_clock, int bpp)
135 {
136         return (pixel_clock * bpp + 9) / 10;
137 }
138
139 static int
140 intel_dp_max_data_rate(int max_link_clock, int max_lanes)
141 {
142         return (max_link_clock * max_lanes * 8) / 10;
143 }
144
145 static enum drm_mode_status
146 intel_dp_mode_valid(struct drm_connector *connector,
147                     struct drm_display_mode *mode)
148 {
149         struct intel_dp *intel_dp = intel_attached_dp(connector);
150         struct intel_connector *intel_connector = to_intel_connector(connector);
151         struct drm_display_mode *fixed_mode = intel_connector->panel.fixed_mode;
152         int target_clock = mode->clock;
153         int max_rate, mode_rate, max_lanes, max_link_clock;
154
155         if (is_edp(intel_dp) && fixed_mode) {
156                 if (mode->hdisplay > fixed_mode->hdisplay)
157                         return MODE_PANEL;
158
159                 if (mode->vdisplay > fixed_mode->vdisplay)
160                         return MODE_PANEL;
161
162                 target_clock = fixed_mode->clock;
163         }
164
165         max_link_clock = drm_dp_bw_code_to_link_rate(intel_dp_max_link_bw(intel_dp));
166         max_lanes = drm_dp_max_lane_count(intel_dp->dpcd);
167
168         max_rate = intel_dp_max_data_rate(max_link_clock, max_lanes);
169         mode_rate = intel_dp_link_required(target_clock, 18);
170
171         if (mode_rate > max_rate)
172                 return MODE_CLOCK_HIGH;
173
174         if (mode->clock < 10000)
175                 return MODE_CLOCK_LOW;
176
177         if (mode->flags & DRM_MODE_FLAG_DBLCLK)
178                 return MODE_H_ILLEGAL;
179
180         return MODE_OK;
181 }
182
183 static uint32_t
184 pack_aux(uint8_t *src, int src_bytes)
185 {
186         int     i;
187         uint32_t v = 0;
188
189         if (src_bytes > 4)
190                 src_bytes = 4;
191         for (i = 0; i < src_bytes; i++)
192                 v |= ((uint32_t) src[i]) << ((3-i) * 8);
193         return v;
194 }
195
196 static void
197 unpack_aux(uint32_t src, uint8_t *dst, int dst_bytes)
198 {
199         int i;
200         if (dst_bytes > 4)
201                 dst_bytes = 4;
202         for (i = 0; i < dst_bytes; i++)
203                 dst[i] = src >> ((3-i) * 8);
204 }
205
206 /* hrawclock is 1/4 the FSB frequency */
207 static int
208 intel_hrawclk(struct drm_device *dev)
209 {
210         struct drm_i915_private *dev_priv = dev->dev_private;
211         uint32_t clkcfg;
212
213         /* There is no CLKCFG reg in Valleyview. VLV hrawclk is 200 MHz */
214         if (IS_VALLEYVIEW(dev))
215                 return 200;
216
217         clkcfg = I915_READ(CLKCFG);
218         switch (clkcfg & CLKCFG_FSB_MASK) {
219         case CLKCFG_FSB_400:
220                 return 100;
221         case CLKCFG_FSB_533:
222                 return 133;
223         case CLKCFG_FSB_667:
224                 return 166;
225         case CLKCFG_FSB_800:
226                 return 200;
227         case CLKCFG_FSB_1067:
228                 return 266;
229         case CLKCFG_FSB_1333:
230                 return 333;
231         /* these two are just a guess; one of them might be right */
232         case CLKCFG_FSB_1600:
233         case CLKCFG_FSB_1600_ALT:
234                 return 400;
235         default:
236                 return 133;
237         }
238 }
239
240 static void
241 intel_dp_init_panel_power_sequencer(struct drm_device *dev,
242                                     struct intel_dp *intel_dp,
243                                     struct edp_power_seq *out);
244 static void
245 intel_dp_init_panel_power_sequencer_registers(struct drm_device *dev,
246                                               struct intel_dp *intel_dp,
247                                               struct edp_power_seq *out);
248
249 static enum pipe
250 vlv_power_sequencer_pipe(struct intel_dp *intel_dp)
251 {
252         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
253         struct drm_crtc *crtc = intel_dig_port->base.base.crtc;
254         struct drm_device *dev = intel_dig_port->base.base.dev;
255         struct drm_i915_private *dev_priv = dev->dev_private;
256         enum port port = intel_dig_port->port;
257         enum pipe pipe;
258
259         /* modeset should have pipe */
260         if (crtc)
261                 return to_intel_crtc(crtc)->pipe;
262
263         /* init time, try to find a pipe with this port selected */
264         for (pipe = PIPE_A; pipe <= PIPE_B; pipe++) {
265                 u32 port_sel = I915_READ(VLV_PIPE_PP_ON_DELAYS(pipe)) &
266                         PANEL_PORT_SELECT_MASK;
267                 if (port_sel == PANEL_PORT_SELECT_DPB_VLV && port == PORT_B)
268                         return pipe;
269                 if (port_sel == PANEL_PORT_SELECT_DPC_VLV && port == PORT_C)
270                         return pipe;
271         }
272
273         /* shrug */
274         return PIPE_A;
275 }
276
277 static u32 _pp_ctrl_reg(struct intel_dp *intel_dp)
278 {
279         struct drm_device *dev = intel_dp_to_dev(intel_dp);
280
281         if (HAS_PCH_SPLIT(dev))
282                 return PCH_PP_CONTROL;
283         else
284                 return VLV_PIPE_PP_CONTROL(vlv_power_sequencer_pipe(intel_dp));
285 }
286
287 static u32 _pp_stat_reg(struct intel_dp *intel_dp)
288 {
289         struct drm_device *dev = intel_dp_to_dev(intel_dp);
290
291         if (HAS_PCH_SPLIT(dev))
292                 return PCH_PP_STATUS;
293         else
294                 return VLV_PIPE_PP_STATUS(vlv_power_sequencer_pipe(intel_dp));
295 }
296
297 static bool ironlake_edp_have_panel_power(struct intel_dp *intel_dp)
298 {
299         struct drm_device *dev = intel_dp_to_dev(intel_dp);
300         struct drm_i915_private *dev_priv = dev->dev_private;
301
302         return (I915_READ(_pp_stat_reg(intel_dp)) & PP_ON) != 0;
303 }
304
305 static bool ironlake_edp_have_panel_vdd(struct intel_dp *intel_dp)
306 {
307         struct drm_device *dev = intel_dp_to_dev(intel_dp);
308         struct drm_i915_private *dev_priv = dev->dev_private;
309
310         return (I915_READ(_pp_ctrl_reg(intel_dp)) & EDP_FORCE_VDD) != 0;
311 }
312
313 static void
314 intel_dp_check_edp(struct intel_dp *intel_dp)
315 {
316         struct drm_device *dev = intel_dp_to_dev(intel_dp);
317         struct drm_i915_private *dev_priv = dev->dev_private;
318
319         if (!is_edp(intel_dp))
320                 return;
321
322         if (!ironlake_edp_have_panel_power(intel_dp) && !ironlake_edp_have_panel_vdd(intel_dp)) {
323                 WARN(1, "eDP powered off while attempting aux channel communication.\n");
324                 DRM_DEBUG_KMS("Status 0x%08x Control 0x%08x\n",
325                               I915_READ(_pp_stat_reg(intel_dp)),
326                               I915_READ(_pp_ctrl_reg(intel_dp)));
327         }
328 }
329
330 static uint32_t
331 intel_dp_aux_wait_done(struct intel_dp *intel_dp, bool has_aux_irq)
332 {
333         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
334         struct drm_device *dev = intel_dig_port->base.base.dev;
335         struct drm_i915_private *dev_priv = dev->dev_private;
336         uint32_t ch_ctl = intel_dp->aux_ch_ctl_reg;
337         uint32_t status;
338         bool done;
339
340 #define C (((status = I915_READ_NOTRACE(ch_ctl)) & DP_AUX_CH_CTL_SEND_BUSY) == 0)
341         if (has_aux_irq)
342                 done = wait_event_timeout(dev_priv->gmbus_wait_queue, C,
343                                           msecs_to_jiffies_timeout(10));
344         else
345                 done = wait_for_atomic(C, 10) == 0;
346         if (!done)
347                 DRM_ERROR("dp aux hw did not signal timeout (has irq: %i)!\n",
348                           has_aux_irq);
349 #undef C
350
351         return status;
352 }
353
354 static uint32_t get_aux_clock_divider(struct intel_dp *intel_dp,
355                                       int index)
356 {
357         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
358         struct drm_device *dev = intel_dig_port->base.base.dev;
359         struct drm_i915_private *dev_priv = dev->dev_private;
360
361         /* The clock divider is based off the hrawclk,
362          * and would like to run at 2MHz. So, take the
363          * hrawclk value and divide by 2 and use that
364          *
365          * Note that PCH attached eDP panels should use a 125MHz input
366          * clock divider.
367          */
368         if (IS_VALLEYVIEW(dev)) {
369                 return index ? 0 : 100;
370         } else if (intel_dig_port->port == PORT_A) {
371                 if (index)
372                         return 0;
373                 if (HAS_DDI(dev))
374                         return DIV_ROUND_CLOSEST(intel_ddi_get_cdclk_freq(dev_priv), 2000);
375                 else if (IS_GEN6(dev) || IS_GEN7(dev))
376                         return 200; /* SNB & IVB eDP input clock at 400Mhz */
377                 else
378                         return 225; /* eDP input clock at 450Mhz */
379         } else if (dev_priv->pch_id == INTEL_PCH_LPT_DEVICE_ID_TYPE) {
380                 /* Workaround for non-ULT HSW */
381                 switch (index) {
382                 case 0: return 63;
383                 case 1: return 72;
384                 default: return 0;
385                 }
386         } else if (HAS_PCH_SPLIT(dev)) {
387                 return index ? 0 : DIV_ROUND_UP(intel_pch_rawclk(dev), 2);
388         } else {
389                 return index ? 0 :intel_hrawclk(dev) / 2;
390         }
391 }
392
393 static int
394 intel_dp_aux_ch(struct intel_dp *intel_dp,
395                 uint8_t *send, int send_bytes,
396                 uint8_t *recv, int recv_size)
397 {
398         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
399         struct drm_device *dev = intel_dig_port->base.base.dev;
400         struct drm_i915_private *dev_priv = dev->dev_private;
401         uint32_t ch_ctl = intel_dp->aux_ch_ctl_reg;
402         uint32_t ch_data = ch_ctl + 4;
403         uint32_t aux_clock_divider;
404         int i, ret, recv_bytes;
405         uint32_t status;
406         int try, precharge, clock = 0;
407         bool has_aux_irq = HAS_AUX_IRQ(dev);
408         uint32_t timeout;
409
410         /* dp aux is extremely sensitive to irq latency, hence request the
411          * lowest possible wakeup latency and so prevent the cpu from going into
412          * deep sleep states.
413          */
414         pm_qos_update_request(&dev_priv->pm_qos, 0);
415
416         intel_dp_check_edp(intel_dp);
417
418         if (IS_GEN6(dev))
419                 precharge = 3;
420         else
421                 precharge = 5;
422
423         if (IS_BROADWELL(dev) && ch_ctl == DPA_AUX_CH_CTL)
424                 timeout = DP_AUX_CH_CTL_TIME_OUT_600us;
425         else
426                 timeout = DP_AUX_CH_CTL_TIME_OUT_400us;
427
428         intel_aux_display_runtime_get(dev_priv);
429
430         /* Try to wait for any previous AUX channel activity */
431         for (try = 0; try < 3; try++) {
432                 status = I915_READ_NOTRACE(ch_ctl);
433                 if ((status & DP_AUX_CH_CTL_SEND_BUSY) == 0)
434                         break;
435                 msleep(1);
436         }
437
438         if (try == 3) {
439                 WARN(1, "dp_aux_ch not started status 0x%08x\n",
440                      I915_READ(ch_ctl));
441                 ret = -EBUSY;
442                 goto out;
443         }
444
445         /* Only 5 data registers! */
446         if (WARN_ON(send_bytes > 20 || recv_size > 20)) {
447                 ret = -E2BIG;
448                 goto out;
449         }
450
451         while ((aux_clock_divider = get_aux_clock_divider(intel_dp, clock++))) {
452                 /* Must try at least 3 times according to DP spec */
453                 for (try = 0; try < 5; try++) {
454                         /* Load the send data into the aux channel data registers */
455                         for (i = 0; i < send_bytes; i += 4)
456                                 I915_WRITE(ch_data + i,
457                                            pack_aux(send + i, send_bytes - i));
458
459                         /* Send the command and wait for it to complete */
460                         I915_WRITE(ch_ctl,
461                                    DP_AUX_CH_CTL_SEND_BUSY |
462                                    (has_aux_irq ? DP_AUX_CH_CTL_INTERRUPT : 0) |
463                                    timeout |
464                                    (send_bytes << DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT) |
465                                    (precharge << DP_AUX_CH_CTL_PRECHARGE_2US_SHIFT) |
466                                    (aux_clock_divider << DP_AUX_CH_CTL_BIT_CLOCK_2X_SHIFT) |
467                                    DP_AUX_CH_CTL_DONE |
468                                    DP_AUX_CH_CTL_TIME_OUT_ERROR |
469                                    DP_AUX_CH_CTL_RECEIVE_ERROR);
470
471                         status = intel_dp_aux_wait_done(intel_dp, has_aux_irq);
472
473                         /* Clear done status and any errors */
474                         I915_WRITE(ch_ctl,
475                                    status |
476                                    DP_AUX_CH_CTL_DONE |
477                                    DP_AUX_CH_CTL_TIME_OUT_ERROR |
478                                    DP_AUX_CH_CTL_RECEIVE_ERROR);
479
480                         if (status & (DP_AUX_CH_CTL_TIME_OUT_ERROR |
481                                       DP_AUX_CH_CTL_RECEIVE_ERROR))
482                                 continue;
483                         if (status & DP_AUX_CH_CTL_DONE)
484                                 break;
485                 }
486                 if (status & DP_AUX_CH_CTL_DONE)
487                         break;
488         }
489
490         if ((status & DP_AUX_CH_CTL_DONE) == 0) {
491                 DRM_ERROR("dp_aux_ch not done status 0x%08x\n", status);
492                 ret = -EBUSY;
493                 goto out;
494         }
495
496         /* Check for timeout or receive error.
497          * Timeouts occur when the sink is not connected
498          */
499         if (status & DP_AUX_CH_CTL_RECEIVE_ERROR) {
500                 DRM_ERROR("dp_aux_ch receive error status 0x%08x\n", status);
501                 ret = -EIO;
502                 goto out;
503         }
504
505         /* Timeouts occur when the device isn't connected, so they're
506          * "normal" -- don't fill the kernel log with these */
507         if (status & DP_AUX_CH_CTL_TIME_OUT_ERROR) {
508                 DRM_DEBUG_KMS("dp_aux_ch timeout status 0x%08x\n", status);
509                 ret = -ETIMEDOUT;
510                 goto out;
511         }
512
513         /* Unload any bytes sent back from the other side */
514         recv_bytes = ((status & DP_AUX_CH_CTL_MESSAGE_SIZE_MASK) >>
515                       DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT);
516         if (recv_bytes > recv_size)
517                 recv_bytes = recv_size;
518
519         for (i = 0; i < recv_bytes; i += 4)
520                 unpack_aux(I915_READ(ch_data + i),
521                            recv + i, recv_bytes - i);
522
523         ret = recv_bytes;
524 out:
525         pm_qos_update_request(&dev_priv->pm_qos, PM_QOS_DEFAULT_VALUE);
526         intel_aux_display_runtime_put(dev_priv);
527
528         return ret;
529 }
530
531 /* Write data to the aux channel in native mode */
532 static int
533 intel_dp_aux_native_write(struct intel_dp *intel_dp,
534                           uint16_t address, uint8_t *send, int send_bytes)
535 {
536         int ret;
537         uint8_t msg[20];
538         int msg_bytes;
539         uint8_t ack;
540         int retry;
541
542         if (WARN_ON(send_bytes > 16))
543                 return -E2BIG;
544
545         intel_dp_check_edp(intel_dp);
546         msg[0] = DP_AUX_NATIVE_WRITE << 4;
547         msg[1] = address >> 8;
548         msg[2] = address & 0xff;
549         msg[3] = send_bytes - 1;
550         memcpy(&msg[4], send, send_bytes);
551         msg_bytes = send_bytes + 4;
552         for (retry = 0; retry < 7; retry++) {
553                 ret = intel_dp_aux_ch(intel_dp, msg, msg_bytes, &ack, 1);
554                 if (ret < 0)
555                         return ret;
556                 ack >>= 4;
557                 if ((ack & DP_AUX_NATIVE_REPLY_MASK) == DP_AUX_NATIVE_REPLY_ACK)
558                         return send_bytes;
559                 else if ((ack & DP_AUX_NATIVE_REPLY_MASK) == DP_AUX_NATIVE_REPLY_DEFER)
560                         usleep_range(400, 500);
561                 else
562                         return -EIO;
563         }
564
565         DRM_ERROR("too many retries, giving up\n");
566         return -EIO;
567 }
568
569 /* Write a single byte to the aux channel in native mode */
570 static int
571 intel_dp_aux_native_write_1(struct intel_dp *intel_dp,
572                             uint16_t address, uint8_t byte)
573 {
574         return intel_dp_aux_native_write(intel_dp, address, &byte, 1);
575 }
576
577 /* read bytes from a native aux channel */
578 static int
579 intel_dp_aux_native_read(struct intel_dp *intel_dp,
580                          uint16_t address, uint8_t *recv, int recv_bytes)
581 {
582         uint8_t msg[4];
583         int msg_bytes;
584         uint8_t reply[20];
585         int reply_bytes;
586         uint8_t ack;
587         int ret;
588         int retry;
589
590         if (WARN_ON(recv_bytes > 19))
591                 return -E2BIG;
592
593         intel_dp_check_edp(intel_dp);
594         msg[0] = DP_AUX_NATIVE_READ << 4;
595         msg[1] = address >> 8;
596         msg[2] = address & 0xff;
597         msg[3] = recv_bytes - 1;
598
599         msg_bytes = 4;
600         reply_bytes = recv_bytes + 1;
601
602         for (retry = 0; retry < 7; retry++) {
603                 ret = intel_dp_aux_ch(intel_dp, msg, msg_bytes,
604                                       reply, reply_bytes);
605                 if (ret == 0)
606                         return -EPROTO;
607                 if (ret < 0)
608                         return ret;
609                 ack = reply[0] >> 4;
610                 if ((ack & DP_AUX_NATIVE_REPLY_MASK) == DP_AUX_NATIVE_REPLY_ACK) {
611                         memcpy(recv, reply + 1, ret - 1);
612                         return ret - 1;
613                 }
614                 else if ((ack & DP_AUX_NATIVE_REPLY_MASK) == DP_AUX_NATIVE_REPLY_DEFER)
615                         usleep_range(400, 500);
616                 else
617                         return -EIO;
618         }
619
620         DRM_ERROR("too many retries, giving up\n");
621         return -EIO;
622 }
623
624 static int
625 intel_dp_i2c_aux_ch(struct i2c_adapter *adapter, int mode,
626                     uint8_t write_byte, uint8_t *read_byte)
627 {
628         struct i2c_algo_dp_aux_data *algo_data = adapter->algo_data;
629         struct intel_dp *intel_dp = container_of(adapter,
630                                                 struct intel_dp,
631                                                 adapter);
632         uint16_t address = algo_data->address;
633         uint8_t msg[5];
634         uint8_t reply[2];
635         unsigned retry;
636         int msg_bytes;
637         int reply_bytes;
638         int ret;
639
640         ironlake_edp_panel_vdd_on(intel_dp);
641         intel_dp_check_edp(intel_dp);
642         /* Set up the command byte */
643         if (mode & MODE_I2C_READ)
644                 msg[0] = DP_AUX_I2C_READ << 4;
645         else
646                 msg[0] = DP_AUX_I2C_WRITE << 4;
647
648         if (!(mode & MODE_I2C_STOP))
649                 msg[0] |= DP_AUX_I2C_MOT << 4;
650
651         msg[1] = address >> 8;
652         msg[2] = address;
653
654         switch (mode) {
655         case MODE_I2C_WRITE:
656                 msg[3] = 0;
657                 msg[4] = write_byte;
658                 msg_bytes = 5;
659                 reply_bytes = 1;
660                 break;
661         case MODE_I2C_READ:
662                 msg[3] = 0;
663                 msg_bytes = 4;
664                 reply_bytes = 2;
665                 break;
666         default:
667                 msg_bytes = 3;
668                 reply_bytes = 1;
669                 break;
670         }
671
672         /*
673          * DP1.2 sections 2.7.7.1.5.6.1 and 2.7.7.1.6.6.1: A DP Source device is
674          * required to retry at least seven times upon receiving AUX_DEFER
675          * before giving up the AUX transaction.
676          */
677         for (retry = 0; retry < 7; retry++) {
678                 ret = intel_dp_aux_ch(intel_dp,
679                                       msg, msg_bytes,
680                                       reply, reply_bytes);
681                 if (ret < 0) {
682                         DRM_DEBUG_KMS("aux_ch failed %d\n", ret);
683                         goto out;
684                 }
685
686                 switch ((reply[0] >> 4) & DP_AUX_NATIVE_REPLY_MASK) {
687                 case DP_AUX_NATIVE_REPLY_ACK:
688                         /* I2C-over-AUX Reply field is only valid
689                          * when paired with AUX ACK.
690                          */
691                         break;
692                 case DP_AUX_NATIVE_REPLY_NACK:
693                         DRM_DEBUG_KMS("aux_ch native nack\n");
694                         ret = -EREMOTEIO;
695                         goto out;
696                 case DP_AUX_NATIVE_REPLY_DEFER:
697                         /*
698                          * For now, just give more slack to branch devices. We
699                          * could check the DPCD for I2C bit rate capabilities,
700                          * and if available, adjust the interval. We could also
701                          * be more careful with DP-to-Legacy adapters where a
702                          * long legacy cable may force very low I2C bit rates.
703                          */
704                         if (intel_dp->dpcd[DP_DOWNSTREAMPORT_PRESENT] &
705                             DP_DWN_STRM_PORT_PRESENT)
706                                 usleep_range(500, 600);
707                         else
708                                 usleep_range(300, 400);
709                         continue;
710                 default:
711                         DRM_ERROR("aux_ch invalid native reply 0x%02x\n",
712                                   reply[0]);
713                         ret = -EREMOTEIO;
714                         goto out;
715                 }
716
717                 switch ((reply[0] >> 4) & DP_AUX_I2C_REPLY_MASK) {
718                 case DP_AUX_I2C_REPLY_ACK:
719                         if (mode == MODE_I2C_READ) {
720                                 *read_byte = reply[1];
721                         }
722                         ret = reply_bytes - 1;
723                         goto out;
724                 case DP_AUX_I2C_REPLY_NACK:
725                         DRM_DEBUG_KMS("aux_i2c nack\n");
726                         ret = -EREMOTEIO;
727                         goto out;
728                 case DP_AUX_I2C_REPLY_DEFER:
729                         DRM_DEBUG_KMS("aux_i2c defer\n");
730                         udelay(100);
731                         break;
732                 default:
733                         DRM_ERROR("aux_i2c invalid reply 0x%02x\n", reply[0]);
734                         ret = -EREMOTEIO;
735                         goto out;
736                 }
737         }
738
739         DRM_ERROR("too many retries, giving up\n");
740         ret = -EREMOTEIO;
741
742 out:
743         ironlake_edp_panel_vdd_off(intel_dp, false);
744         return ret;
745 }
746
747 static int
748 intel_dp_i2c_init(struct intel_dp *intel_dp,
749                   struct intel_connector *intel_connector, const char *name)
750 {
751         int     ret;
752
753         DRM_DEBUG_KMS("i2c_init %s\n", name);
754         intel_dp->algo.running = false;
755         intel_dp->algo.address = 0;
756         intel_dp->algo.aux_ch = intel_dp_i2c_aux_ch;
757
758         memset(&intel_dp->adapter, '\0', sizeof(intel_dp->adapter));
759         intel_dp->adapter.owner = THIS_MODULE;
760         intel_dp->adapter.class = I2C_CLASS_DDC;
761         strncpy(intel_dp->adapter.name, name, sizeof(intel_dp->adapter.name) - 1);
762         intel_dp->adapter.name[sizeof(intel_dp->adapter.name) - 1] = '\0';
763         intel_dp->adapter.algo_data = &intel_dp->algo;
764         intel_dp->adapter.dev.parent = intel_connector->base.kdev;
765
766         ret = i2c_dp_aux_add_bus(&intel_dp->adapter);
767         return ret;
768 }
769
770 static void
771 intel_dp_set_clock(struct intel_encoder *encoder,
772                    struct intel_crtc_config *pipe_config, int link_bw)
773 {
774         struct drm_device *dev = encoder->base.dev;
775         const struct dp_link_dpll *divisor = NULL;
776         int i, count = 0;
777
778         if (IS_G4X(dev)) {
779                 divisor = gen4_dpll;
780                 count = ARRAY_SIZE(gen4_dpll);
781         } else if (IS_HASWELL(dev)) {
782                 /* Haswell has special-purpose DP DDI clocks. */
783         } else if (HAS_PCH_SPLIT(dev)) {
784                 divisor = pch_dpll;
785                 count = ARRAY_SIZE(pch_dpll);
786         } else if (IS_VALLEYVIEW(dev)) {
787                 divisor = vlv_dpll;
788                 count = ARRAY_SIZE(vlv_dpll);
789         }
790
791         if (divisor && count) {
792                 for (i = 0; i < count; i++) {
793                         if (link_bw == divisor[i].link_bw) {
794                                 pipe_config->dpll = divisor[i].dpll;
795                                 pipe_config->clock_set = true;
796                                 break;
797                         }
798                 }
799         }
800 }
801
802 bool
803 intel_dp_compute_config(struct intel_encoder *encoder,
804                         struct intel_crtc_config *pipe_config)
805 {
806         struct drm_device *dev = encoder->base.dev;
807         struct drm_i915_private *dev_priv = dev->dev_private;
808         struct drm_display_mode *adjusted_mode = &pipe_config->adjusted_mode;
809         struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
810         enum port port = dp_to_dig_port(intel_dp)->port;
811         struct intel_crtc *intel_crtc = encoder->new_crtc;
812         struct intel_connector *intel_connector = intel_dp->attached_connector;
813         int lane_count, clock;
814         int max_lane_count = drm_dp_max_lane_count(intel_dp->dpcd);
815         int max_clock = intel_dp_max_link_bw(intel_dp) == DP_LINK_BW_2_7 ? 1 : 0;
816         int bpp, mode_rate;
817         static int bws[2] = { DP_LINK_BW_1_62, DP_LINK_BW_2_7 };
818         int link_avail, link_clock;
819
820         if (HAS_PCH_SPLIT(dev) && !HAS_DDI(dev) && port != PORT_A)
821                 pipe_config->has_pch_encoder = true;
822
823         pipe_config->has_dp_encoder = true;
824
825         if (is_edp(intel_dp) && intel_connector->panel.fixed_mode) {
826                 intel_fixed_panel_mode(intel_connector->panel.fixed_mode,
827                                        adjusted_mode);
828                 if (!HAS_PCH_SPLIT(dev))
829                         intel_gmch_panel_fitting(intel_crtc, pipe_config,
830                                                  intel_connector->panel.fitting_mode);
831                 else
832                         intel_pch_panel_fitting(intel_crtc, pipe_config,
833                                                 intel_connector->panel.fitting_mode);
834         }
835
836         if (adjusted_mode->flags & DRM_MODE_FLAG_DBLCLK)
837                 return false;
838
839         DRM_DEBUG_KMS("DP link computation with max lane count %i "
840                       "max bw %02x pixel clock %iKHz\n",
841                       max_lane_count, bws[max_clock],
842                       adjusted_mode->crtc_clock);
843
844         /* Walk through all bpp values. Luckily they're all nicely spaced with 2
845          * bpc in between. */
846         bpp = pipe_config->pipe_bpp;
847         if (is_edp(intel_dp) && dev_priv->vbt.edp_bpp &&
848             dev_priv->vbt.edp_bpp < bpp) {
849                 DRM_DEBUG_KMS("clamping bpp for eDP panel to BIOS-provided %i\n",
850                               dev_priv->vbt.edp_bpp);
851                 bpp = dev_priv->vbt.edp_bpp;
852         }
853
854         for (; bpp >= 6*3; bpp -= 2*3) {
855                 mode_rate = intel_dp_link_required(adjusted_mode->crtc_clock,
856                                                    bpp);
857
858                 for (clock = 0; clock <= max_clock; clock++) {
859                         for (lane_count = 1; lane_count <= max_lane_count; lane_count <<= 1) {
860                                 link_clock = drm_dp_bw_code_to_link_rate(bws[clock]);
861                                 link_avail = intel_dp_max_data_rate(link_clock,
862                                                                     lane_count);
863
864                                 if (mode_rate <= link_avail) {
865                                         goto found;
866                                 }
867                         }
868                 }
869         }
870
871         return false;
872
873 found:
874         if (intel_dp->color_range_auto) {
875                 /*
876                  * See:
877                  * CEA-861-E - 5.1 Default Encoding Parameters
878                  * VESA DisplayPort Ver.1.2a - 5.1.1.1 Video Colorimetry
879                  */
880                 if (bpp != 18 && drm_match_cea_mode(adjusted_mode) > 1)
881                         intel_dp->color_range = DP_COLOR_RANGE_16_235;
882                 else
883                         intel_dp->color_range = 0;
884         }
885
886         if (intel_dp->color_range)
887                 pipe_config->limited_color_range = true;
888
889         intel_dp->link_bw = bws[clock];
890         intel_dp->lane_count = lane_count;
891         pipe_config->pipe_bpp = bpp;
892         pipe_config->port_clock = drm_dp_bw_code_to_link_rate(intel_dp->link_bw);
893
894         DRM_DEBUG_KMS("DP link bw %02x lane count %d clock %d bpp %d\n",
895                       intel_dp->link_bw, intel_dp->lane_count,
896                       pipe_config->port_clock, bpp);
897         DRM_DEBUG_KMS("DP link bw required %i available %i\n",
898                       mode_rate, link_avail);
899
900         intel_link_compute_m_n(bpp, lane_count,
901                                adjusted_mode->crtc_clock,
902                                pipe_config->port_clock,
903                                &pipe_config->dp_m_n);
904
905         intel_dp_set_clock(encoder, pipe_config, intel_dp->link_bw);
906
907         return true;
908 }
909
910 static void ironlake_set_pll_cpu_edp(struct intel_dp *intel_dp)
911 {
912         struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
913         struct intel_crtc *crtc = to_intel_crtc(dig_port->base.base.crtc);
914         struct drm_device *dev = crtc->base.dev;
915         struct drm_i915_private *dev_priv = dev->dev_private;
916         u32 dpa_ctl;
917
918         DRM_DEBUG_KMS("eDP PLL enable for clock %d\n", crtc->config.port_clock);
919         dpa_ctl = I915_READ(DP_A);
920         dpa_ctl &= ~DP_PLL_FREQ_MASK;
921
922         if (crtc->config.port_clock == 162000) {
923                 /* For a long time we've carried around a ILK-DevA w/a for the
924                  * 160MHz clock. If we're really unlucky, it's still required.
925                  */
926                 DRM_DEBUG_KMS("160MHz cpu eDP clock, might need ilk devA w/a\n");
927                 dpa_ctl |= DP_PLL_FREQ_160MHZ;
928                 intel_dp->DP |= DP_PLL_FREQ_160MHZ;
929         } else {
930                 dpa_ctl |= DP_PLL_FREQ_270MHZ;
931                 intel_dp->DP |= DP_PLL_FREQ_270MHZ;
932         }
933
934         I915_WRITE(DP_A, dpa_ctl);
935
936         POSTING_READ(DP_A);
937         udelay(500);
938 }
939
940 static void intel_dp_mode_set(struct intel_encoder *encoder)
941 {
942         struct drm_device *dev = encoder->base.dev;
943         struct drm_i915_private *dev_priv = dev->dev_private;
944         struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
945         enum port port = dp_to_dig_port(intel_dp)->port;
946         struct intel_crtc *crtc = to_intel_crtc(encoder->base.crtc);
947         struct drm_display_mode *adjusted_mode = &crtc->config.adjusted_mode;
948
949         /*
950          * There are four kinds of DP registers:
951          *
952          *      IBX PCH
953          *      SNB CPU
954          *      IVB CPU
955          *      CPT PCH
956          *
957          * IBX PCH and CPU are the same for almost everything,
958          * except that the CPU DP PLL is configured in this
959          * register
960          *
961          * CPT PCH is quite different, having many bits moved
962          * to the TRANS_DP_CTL register instead. That
963          * configuration happens (oddly) in ironlake_pch_enable
964          */
965
966         /* Preserve the BIOS-computed detected bit. This is
967          * supposed to be read-only.
968          */
969         intel_dp->DP = I915_READ(intel_dp->output_reg) & DP_DETECTED;
970
971         /* Handle DP bits in common between all three register formats */
972         intel_dp->DP |= DP_VOLTAGE_0_4 | DP_PRE_EMPHASIS_0;
973         intel_dp->DP |= DP_PORT_WIDTH(intel_dp->lane_count);
974
975         if (intel_dp->has_audio) {
976                 DRM_DEBUG_DRIVER("Enabling DP audio on pipe %c\n",
977                                  pipe_name(crtc->pipe));
978                 intel_dp->DP |= DP_AUDIO_OUTPUT_ENABLE;
979                 intel_write_eld(&encoder->base, adjusted_mode);
980         }
981
982         /* Split out the IBX/CPU vs CPT settings */
983
984         if (port == PORT_A && IS_GEN7(dev) && !IS_VALLEYVIEW(dev)) {
985                 if (adjusted_mode->flags & DRM_MODE_FLAG_PHSYNC)
986                         intel_dp->DP |= DP_SYNC_HS_HIGH;
987                 if (adjusted_mode->flags & DRM_MODE_FLAG_PVSYNC)
988                         intel_dp->DP |= DP_SYNC_VS_HIGH;
989                 intel_dp->DP |= DP_LINK_TRAIN_OFF_CPT;
990
991                 if (drm_dp_enhanced_frame_cap(intel_dp->dpcd))
992                         intel_dp->DP |= DP_ENHANCED_FRAMING;
993
994                 intel_dp->DP |= crtc->pipe << 29;
995         } else if (!HAS_PCH_CPT(dev) || port == PORT_A) {
996                 if (!HAS_PCH_SPLIT(dev) && !IS_VALLEYVIEW(dev))
997                         intel_dp->DP |= intel_dp->color_range;
998
999                 if (adjusted_mode->flags & DRM_MODE_FLAG_PHSYNC)
1000                         intel_dp->DP |= DP_SYNC_HS_HIGH;
1001                 if (adjusted_mode->flags & DRM_MODE_FLAG_PVSYNC)
1002                         intel_dp->DP |= DP_SYNC_VS_HIGH;
1003                 intel_dp->DP |= DP_LINK_TRAIN_OFF;
1004
1005                 if (drm_dp_enhanced_frame_cap(intel_dp->dpcd))
1006                         intel_dp->DP |= DP_ENHANCED_FRAMING;
1007
1008                 if (crtc->pipe == 1)
1009                         intel_dp->DP |= DP_PIPEB_SELECT;
1010         } else {
1011                 intel_dp->DP |= DP_LINK_TRAIN_OFF_CPT;
1012         }
1013
1014         if (port == PORT_A && !IS_VALLEYVIEW(dev))
1015                 ironlake_set_pll_cpu_edp(intel_dp);
1016 }
1017
1018 #define IDLE_ON_MASK            (PP_ON | 0        | PP_SEQUENCE_MASK | 0                     | PP_SEQUENCE_STATE_MASK)
1019 #define IDLE_ON_VALUE           (PP_ON | 0        | PP_SEQUENCE_NONE | 0                     | PP_SEQUENCE_STATE_ON_IDLE)
1020
1021 #define IDLE_OFF_MASK           (PP_ON | 0        | PP_SEQUENCE_MASK | 0                     | PP_SEQUENCE_STATE_MASK)
1022 #define IDLE_OFF_VALUE          (0     | 0        | PP_SEQUENCE_NONE | 0                     | PP_SEQUENCE_STATE_OFF_IDLE)
1023
1024 #define IDLE_CYCLE_MASK         (PP_ON | 0        | PP_SEQUENCE_MASK | PP_CYCLE_DELAY_ACTIVE | PP_SEQUENCE_STATE_MASK)
1025 #define IDLE_CYCLE_VALUE        (0     | 0        | PP_SEQUENCE_NONE | 0                     | PP_SEQUENCE_STATE_OFF_IDLE)
1026
1027 static void ironlake_wait_panel_status(struct intel_dp *intel_dp,
1028                                        u32 mask,
1029                                        u32 value)
1030 {
1031         struct drm_device *dev = intel_dp_to_dev(intel_dp);
1032         struct drm_i915_private *dev_priv = dev->dev_private;
1033         u32 pp_stat_reg, pp_ctrl_reg;
1034
1035         pp_stat_reg = _pp_stat_reg(intel_dp);
1036         pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
1037
1038         DRM_DEBUG_KMS("mask %08x value %08x status %08x control %08x\n",
1039                         mask, value,
1040                         I915_READ(pp_stat_reg),
1041                         I915_READ(pp_ctrl_reg));
1042
1043         if (_wait_for((I915_READ(pp_stat_reg) & mask) == value, 5000, 10)) {
1044                 DRM_ERROR("Panel status timeout: status %08x control %08x\n",
1045                                 I915_READ(pp_stat_reg),
1046                                 I915_READ(pp_ctrl_reg));
1047         }
1048
1049         DRM_DEBUG_KMS("Wait complete\n");
1050 }
1051
1052 static void ironlake_wait_panel_on(struct intel_dp *intel_dp)
1053 {
1054         DRM_DEBUG_KMS("Wait for panel power on\n");
1055         ironlake_wait_panel_status(intel_dp, IDLE_ON_MASK, IDLE_ON_VALUE);
1056 }
1057
1058 static void ironlake_wait_panel_off(struct intel_dp *intel_dp)
1059 {
1060         DRM_DEBUG_KMS("Wait for panel power off time\n");
1061         ironlake_wait_panel_status(intel_dp, IDLE_OFF_MASK, IDLE_OFF_VALUE);
1062 }
1063
1064 static void ironlake_wait_panel_power_cycle(struct intel_dp *intel_dp)
1065 {
1066         DRM_DEBUG_KMS("Wait for panel power cycle\n");
1067         ironlake_wait_panel_status(intel_dp, IDLE_CYCLE_MASK, IDLE_CYCLE_VALUE);
1068 }
1069
1070
1071 /* Read the current pp_control value, unlocking the register if it
1072  * is locked
1073  */
1074
1075 static  u32 ironlake_get_pp_control(struct intel_dp *intel_dp)
1076 {
1077         struct drm_device *dev = intel_dp_to_dev(intel_dp);
1078         struct drm_i915_private *dev_priv = dev->dev_private;
1079         u32 control;
1080
1081         control = I915_READ(_pp_ctrl_reg(intel_dp));
1082         control &= ~PANEL_UNLOCK_MASK;
1083         control |= PANEL_UNLOCK_REGS;
1084         return control;
1085 }
1086
1087 void ironlake_edp_panel_vdd_on(struct intel_dp *intel_dp)
1088 {
1089         struct drm_device *dev = intel_dp_to_dev(intel_dp);
1090         struct drm_i915_private *dev_priv = dev->dev_private;
1091         u32 pp;
1092         u32 pp_stat_reg, pp_ctrl_reg;
1093
1094         if (!is_edp(intel_dp))
1095                 return;
1096
1097         WARN(intel_dp->want_panel_vdd,
1098              "eDP VDD already requested on\n");
1099
1100         intel_dp->want_panel_vdd = true;
1101
1102         if (ironlake_edp_have_panel_vdd(intel_dp))
1103                 return;
1104
1105         intel_runtime_pm_get(dev_priv);
1106
1107         DRM_DEBUG_KMS("Turning eDP VDD on\n");
1108
1109         if (!ironlake_edp_have_panel_power(intel_dp))
1110                 ironlake_wait_panel_power_cycle(intel_dp);
1111
1112         pp = ironlake_get_pp_control(intel_dp);
1113         pp |= EDP_FORCE_VDD;
1114
1115         pp_stat_reg = _pp_stat_reg(intel_dp);
1116         pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
1117
1118         I915_WRITE(pp_ctrl_reg, pp);
1119         POSTING_READ(pp_ctrl_reg);
1120         DRM_DEBUG_KMS("PP_STATUS: 0x%08x PP_CONTROL: 0x%08x\n",
1121                         I915_READ(pp_stat_reg), I915_READ(pp_ctrl_reg));
1122         /*
1123          * If the panel wasn't on, delay before accessing aux channel
1124          */
1125         if (!ironlake_edp_have_panel_power(intel_dp)) {
1126                 DRM_DEBUG_KMS("eDP was not running\n");
1127                 msleep(intel_dp->panel_power_up_delay);
1128         }
1129 }
1130
1131 static void ironlake_panel_vdd_off_sync(struct intel_dp *intel_dp)
1132 {
1133         struct drm_device *dev = intel_dp_to_dev(intel_dp);
1134         struct drm_i915_private *dev_priv = dev->dev_private;
1135         u32 pp;
1136         u32 pp_stat_reg, pp_ctrl_reg;
1137
1138         WARN_ON(!mutex_is_locked(&dev->mode_config.mutex));
1139
1140         if (!intel_dp->want_panel_vdd && ironlake_edp_have_panel_vdd(intel_dp)) {
1141                 DRM_DEBUG_KMS("Turning eDP VDD off\n");
1142
1143                 pp = ironlake_get_pp_control(intel_dp);
1144                 pp &= ~EDP_FORCE_VDD;
1145
1146                 pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
1147                 pp_stat_reg = _pp_stat_reg(intel_dp);
1148
1149                 I915_WRITE(pp_ctrl_reg, pp);
1150                 POSTING_READ(pp_ctrl_reg);
1151
1152                 /* Make sure sequencer is idle before allowing subsequent activity */
1153                 DRM_DEBUG_KMS("PP_STATUS: 0x%08x PP_CONTROL: 0x%08x\n",
1154                 I915_READ(pp_stat_reg), I915_READ(pp_ctrl_reg));
1155
1156                 if ((pp & POWER_TARGET_ON) == 0)
1157                         msleep(intel_dp->panel_power_cycle_delay);
1158
1159                 intel_runtime_pm_put(dev_priv);
1160         }
1161 }
1162
1163 static void ironlake_panel_vdd_work(struct work_struct *__work)
1164 {
1165         struct intel_dp *intel_dp = container_of(to_delayed_work(__work),
1166                                                  struct intel_dp, panel_vdd_work);
1167         struct drm_device *dev = intel_dp_to_dev(intel_dp);
1168
1169         mutex_lock(&dev->mode_config.mutex);
1170         ironlake_panel_vdd_off_sync(intel_dp);
1171         mutex_unlock(&dev->mode_config.mutex);
1172 }
1173
1174 void ironlake_edp_panel_vdd_off(struct intel_dp *intel_dp, bool sync)
1175 {
1176         if (!is_edp(intel_dp))
1177                 return;
1178
1179         WARN(!intel_dp->want_panel_vdd, "eDP VDD not forced on");
1180
1181         intel_dp->want_panel_vdd = false;
1182
1183         if (sync) {
1184                 ironlake_panel_vdd_off_sync(intel_dp);
1185         } else {
1186                 /*
1187                  * Queue the timer to fire a long
1188                  * time from now (relative to the power down delay)
1189                  * to keep the panel power up across a sequence of operations
1190                  */
1191                 schedule_delayed_work(&intel_dp->panel_vdd_work,
1192                                       msecs_to_jiffies(intel_dp->panel_power_cycle_delay * 5));
1193         }
1194 }
1195
1196 void ironlake_edp_panel_on(struct intel_dp *intel_dp)
1197 {
1198         struct drm_device *dev = intel_dp_to_dev(intel_dp);
1199         struct drm_i915_private *dev_priv = dev->dev_private;
1200         u32 pp;
1201         u32 pp_ctrl_reg;
1202
1203         if (!is_edp(intel_dp))
1204                 return;
1205
1206         DRM_DEBUG_KMS("Turn eDP power on\n");
1207
1208         if (ironlake_edp_have_panel_power(intel_dp)) {
1209                 DRM_DEBUG_KMS("eDP power already on\n");
1210                 return;
1211         }
1212
1213         ironlake_wait_panel_power_cycle(intel_dp);
1214
1215         pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
1216         pp = ironlake_get_pp_control(intel_dp);
1217         if (IS_GEN5(dev)) {
1218                 /* ILK workaround: disable reset around power sequence */
1219                 pp &= ~PANEL_POWER_RESET;
1220                 I915_WRITE(pp_ctrl_reg, pp);
1221                 POSTING_READ(pp_ctrl_reg);
1222         }
1223
1224         pp |= POWER_TARGET_ON;
1225         if (!IS_GEN5(dev))
1226                 pp |= PANEL_POWER_RESET;
1227
1228         I915_WRITE(pp_ctrl_reg, pp);
1229         POSTING_READ(pp_ctrl_reg);
1230
1231         ironlake_wait_panel_on(intel_dp);
1232
1233         if (IS_GEN5(dev)) {
1234                 pp |= PANEL_POWER_RESET; /* restore panel reset bit */
1235                 I915_WRITE(pp_ctrl_reg, pp);
1236                 POSTING_READ(pp_ctrl_reg);
1237         }
1238 }
1239
1240 void ironlake_edp_panel_off(struct intel_dp *intel_dp)
1241 {
1242         struct drm_device *dev = intel_dp_to_dev(intel_dp);
1243         struct drm_i915_private *dev_priv = dev->dev_private;
1244         u32 pp;
1245         u32 pp_ctrl_reg;
1246
1247         if (!is_edp(intel_dp))
1248                 return;
1249
1250         DRM_DEBUG_KMS("Turn eDP power off\n");
1251
1252         pp = ironlake_get_pp_control(intel_dp);
1253         /* We need to switch off panel power _and_ force vdd, for otherwise some
1254          * panels get very unhappy and cease to work. */
1255         pp &= ~(POWER_TARGET_ON | PANEL_POWER_RESET | EDP_BLC_ENABLE);
1256
1257         pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
1258
1259         I915_WRITE(pp_ctrl_reg, pp);
1260         POSTING_READ(pp_ctrl_reg);
1261
1262         ironlake_wait_panel_off(intel_dp);
1263 }
1264
1265 void ironlake_edp_backlight_on(struct intel_dp *intel_dp)
1266 {
1267         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
1268         struct drm_device *dev = intel_dig_port->base.base.dev;
1269         struct drm_i915_private *dev_priv = dev->dev_private;
1270         u32 pp;
1271         u32 pp_ctrl_reg;
1272
1273         if (!is_edp(intel_dp))
1274                 return;
1275
1276         DRM_DEBUG_KMS("\n");
1277         /*
1278          * If we enable the backlight right away following a panel power
1279          * on, we may see slight flicker as the panel syncs with the eDP
1280          * link.  So delay a bit to make sure the image is solid before
1281          * allowing it to appear.
1282          */
1283         msleep(intel_dp->backlight_on_delay);
1284         pp = ironlake_get_pp_control(intel_dp);
1285         pp |= EDP_BLC_ENABLE;
1286
1287         pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
1288
1289         I915_WRITE(pp_ctrl_reg, pp);
1290         POSTING_READ(pp_ctrl_reg);
1291
1292         intel_panel_enable_backlight(intel_dp->attached_connector);
1293 }
1294
1295 void ironlake_edp_backlight_off(struct intel_dp *intel_dp)
1296 {
1297         struct drm_device *dev = intel_dp_to_dev(intel_dp);
1298         struct drm_i915_private *dev_priv = dev->dev_private;
1299         u32 pp;
1300         u32 pp_ctrl_reg;
1301
1302         if (!is_edp(intel_dp))
1303                 return;
1304
1305         intel_panel_disable_backlight(intel_dp->attached_connector);
1306
1307         DRM_DEBUG_KMS("\n");
1308         pp = ironlake_get_pp_control(intel_dp);
1309         pp &= ~EDP_BLC_ENABLE;
1310
1311         pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
1312
1313         I915_WRITE(pp_ctrl_reg, pp);
1314         POSTING_READ(pp_ctrl_reg);
1315         msleep(intel_dp->backlight_off_delay);
1316 }
1317
1318 static void ironlake_edp_pll_on(struct intel_dp *intel_dp)
1319 {
1320         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
1321         struct drm_crtc *crtc = intel_dig_port->base.base.crtc;
1322         struct drm_device *dev = crtc->dev;
1323         struct drm_i915_private *dev_priv = dev->dev_private;
1324         u32 dpa_ctl;
1325
1326         assert_pipe_disabled(dev_priv,
1327                              to_intel_crtc(crtc)->pipe);
1328
1329         DRM_DEBUG_KMS("\n");
1330         dpa_ctl = I915_READ(DP_A);
1331         WARN(dpa_ctl & DP_PLL_ENABLE, "dp pll on, should be off\n");
1332         WARN(dpa_ctl & DP_PORT_EN, "dp port still on, should be off\n");
1333
1334         /* We don't adjust intel_dp->DP while tearing down the link, to
1335          * facilitate link retraining (e.g. after hotplug). Hence clear all
1336          * enable bits here to ensure that we don't enable too much. */
1337         intel_dp->DP &= ~(DP_PORT_EN | DP_AUDIO_OUTPUT_ENABLE);
1338         intel_dp->DP |= DP_PLL_ENABLE;
1339         I915_WRITE(DP_A, intel_dp->DP);
1340         POSTING_READ(DP_A);
1341         udelay(200);
1342 }
1343
1344 static void ironlake_edp_pll_off(struct intel_dp *intel_dp)
1345 {
1346         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
1347         struct drm_crtc *crtc = intel_dig_port->base.base.crtc;
1348         struct drm_device *dev = crtc->dev;
1349         struct drm_i915_private *dev_priv = dev->dev_private;
1350         u32 dpa_ctl;
1351
1352         assert_pipe_disabled(dev_priv,
1353                              to_intel_crtc(crtc)->pipe);
1354
1355         dpa_ctl = I915_READ(DP_A);
1356         WARN((dpa_ctl & DP_PLL_ENABLE) == 0,
1357              "dp pll off, should be on\n");
1358         WARN(dpa_ctl & DP_PORT_EN, "dp port still on, should be off\n");
1359
1360         /* We can't rely on the value tracked for the DP register in
1361          * intel_dp->DP because link_down must not change that (otherwise link
1362          * re-training will fail. */
1363         dpa_ctl &= ~DP_PLL_ENABLE;
1364         I915_WRITE(DP_A, dpa_ctl);
1365         POSTING_READ(DP_A);
1366         udelay(200);
1367 }
1368
1369 /* If the sink supports it, try to set the power state appropriately */
1370 void intel_dp_sink_dpms(struct intel_dp *intel_dp, int mode)
1371 {
1372         int ret, i;
1373
1374         /* Should have a valid DPCD by this point */
1375         if (intel_dp->dpcd[DP_DPCD_REV] < 0x11)
1376                 return;
1377
1378         if (mode != DRM_MODE_DPMS_ON) {
1379                 ret = intel_dp_aux_native_write_1(intel_dp, DP_SET_POWER,
1380                                                   DP_SET_POWER_D3);
1381                 if (ret != 1)
1382                         DRM_DEBUG_DRIVER("failed to write sink power state\n");
1383         } else {
1384                 /*
1385                  * When turning on, we need to retry for 1ms to give the sink
1386                  * time to wake up.
1387                  */
1388                 for (i = 0; i < 3; i++) {
1389                         ret = intel_dp_aux_native_write_1(intel_dp,
1390                                                           DP_SET_POWER,
1391                                                           DP_SET_POWER_D0);
1392                         if (ret == 1)
1393                                 break;
1394                         msleep(1);
1395                 }
1396         }
1397 }
1398
1399 static bool intel_dp_get_hw_state(struct intel_encoder *encoder,
1400                                   enum pipe *pipe)
1401 {
1402         struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
1403         enum port port = dp_to_dig_port(intel_dp)->port;
1404         struct drm_device *dev = encoder->base.dev;
1405         struct drm_i915_private *dev_priv = dev->dev_private;
1406         u32 tmp = I915_READ(intel_dp->output_reg);
1407
1408         if (!(tmp & DP_PORT_EN))
1409                 return false;
1410
1411         if (port == PORT_A && IS_GEN7(dev) && !IS_VALLEYVIEW(dev)) {
1412                 *pipe = PORT_TO_PIPE_CPT(tmp);
1413         } else if (!HAS_PCH_CPT(dev) || port == PORT_A) {
1414                 *pipe = PORT_TO_PIPE(tmp);
1415         } else {
1416                 u32 trans_sel;
1417                 u32 trans_dp;
1418                 int i;
1419
1420                 switch (intel_dp->output_reg) {
1421                 case PCH_DP_B:
1422                         trans_sel = TRANS_DP_PORT_SEL_B;
1423                         break;
1424                 case PCH_DP_C:
1425                         trans_sel = TRANS_DP_PORT_SEL_C;
1426                         break;
1427                 case PCH_DP_D:
1428                         trans_sel = TRANS_DP_PORT_SEL_D;
1429                         break;
1430                 default:
1431                         return true;
1432                 }
1433
1434                 for_each_pipe(i) {
1435                         trans_dp = I915_READ(TRANS_DP_CTL(i));
1436                         if ((trans_dp & TRANS_DP_PORT_SEL_MASK) == trans_sel) {
1437                                 *pipe = i;
1438                                 return true;
1439                         }
1440                 }
1441
1442                 DRM_DEBUG_KMS("No pipe for dp port 0x%x found\n",
1443                               intel_dp->output_reg);
1444         }
1445
1446         return true;
1447 }
1448
1449 static void intel_dp_get_config(struct intel_encoder *encoder,
1450                                 struct intel_crtc_config *pipe_config)
1451 {
1452         struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
1453         u32 tmp, flags = 0;
1454         struct drm_device *dev = encoder->base.dev;
1455         struct drm_i915_private *dev_priv = dev->dev_private;
1456         enum port port = dp_to_dig_port(intel_dp)->port;
1457         struct intel_crtc *crtc = to_intel_crtc(encoder->base.crtc);
1458         int dotclock;
1459
1460         if ((port == PORT_A) || !HAS_PCH_CPT(dev)) {
1461                 tmp = I915_READ(intel_dp->output_reg);
1462                 if (tmp & DP_SYNC_HS_HIGH)
1463                         flags |= DRM_MODE_FLAG_PHSYNC;
1464                 else
1465                         flags |= DRM_MODE_FLAG_NHSYNC;
1466
1467                 if (tmp & DP_SYNC_VS_HIGH)
1468                         flags |= DRM_MODE_FLAG_PVSYNC;
1469                 else
1470                         flags |= DRM_MODE_FLAG_NVSYNC;
1471         } else {
1472                 tmp = I915_READ(TRANS_DP_CTL(crtc->pipe));
1473                 if (tmp & TRANS_DP_HSYNC_ACTIVE_HIGH)
1474                         flags |= DRM_MODE_FLAG_PHSYNC;
1475                 else
1476                         flags |= DRM_MODE_FLAG_NHSYNC;
1477
1478                 if (tmp & TRANS_DP_VSYNC_ACTIVE_HIGH)
1479                         flags |= DRM_MODE_FLAG_PVSYNC;
1480                 else
1481                         flags |= DRM_MODE_FLAG_NVSYNC;
1482         }
1483
1484         pipe_config->adjusted_mode.flags |= flags;
1485
1486         pipe_config->has_dp_encoder = true;
1487
1488         intel_dp_get_m_n(crtc, pipe_config);
1489
1490         if (port == PORT_A) {
1491                 if ((I915_READ(DP_A) & DP_PLL_FREQ_MASK) == DP_PLL_FREQ_160MHZ)
1492                         pipe_config->port_clock = 162000;
1493                 else
1494                         pipe_config->port_clock = 270000;
1495         }
1496
1497         dotclock = intel_dotclock_calculate(pipe_config->port_clock,
1498                                             &pipe_config->dp_m_n);
1499
1500         if (HAS_PCH_SPLIT(dev_priv->dev) && port != PORT_A)
1501                 ironlake_check_encoder_dotclock(pipe_config, dotclock);
1502
1503         pipe_config->adjusted_mode.crtc_clock = dotclock;
1504
1505         if (is_edp(intel_dp) && dev_priv->vbt.edp_bpp &&
1506             pipe_config->pipe_bpp > dev_priv->vbt.edp_bpp) {
1507                 /*
1508                  * This is a big fat ugly hack.
1509                  *
1510                  * Some machines in UEFI boot mode provide us a VBT that has 18
1511                  * bpp and 1.62 GHz link bandwidth for eDP, which for reasons
1512                  * unknown we fail to light up. Yet the same BIOS boots up with
1513                  * 24 bpp and 2.7 GHz link. Use the same bpp as the BIOS uses as
1514                  * max, not what it tells us to use.
1515                  *
1516                  * Note: This will still be broken if the eDP panel is not lit
1517                  * up by the BIOS, and thus we can't get the mode at module
1518                  * load.
1519                  */
1520                 DRM_DEBUG_KMS("pipe has %d bpp for eDP panel, overriding BIOS-provided max %d bpp\n",
1521                               pipe_config->pipe_bpp, dev_priv->vbt.edp_bpp);
1522                 dev_priv->vbt.edp_bpp = pipe_config->pipe_bpp;
1523         }
1524 }
1525
1526 static bool is_edp_psr(struct drm_device *dev)
1527 {
1528         struct drm_i915_private *dev_priv = dev->dev_private;
1529
1530         return dev_priv->psr.sink_support;
1531 }
1532
1533 static bool intel_edp_is_psr_enabled(struct drm_device *dev)
1534 {
1535         struct drm_i915_private *dev_priv = dev->dev_private;
1536
1537         if (!HAS_PSR(dev))
1538                 return false;
1539
1540         return I915_READ(EDP_PSR_CTL(dev)) & EDP_PSR_ENABLE;
1541 }
1542
1543 static void intel_edp_psr_write_vsc(struct intel_dp *intel_dp,
1544                                     struct edp_vsc_psr *vsc_psr)
1545 {
1546         struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
1547         struct drm_device *dev = dig_port->base.base.dev;
1548         struct drm_i915_private *dev_priv = dev->dev_private;
1549         struct intel_crtc *crtc = to_intel_crtc(dig_port->base.base.crtc);
1550         u32 ctl_reg = HSW_TVIDEO_DIP_CTL(crtc->config.cpu_transcoder);
1551         u32 data_reg = HSW_TVIDEO_DIP_VSC_DATA(crtc->config.cpu_transcoder);
1552         uint32_t *data = (uint32_t *) vsc_psr;
1553         unsigned int i;
1554
1555         /* As per BSPec (Pipe Video Data Island Packet), we need to disable
1556            the video DIP being updated before program video DIP data buffer
1557            registers for DIP being updated. */
1558         I915_WRITE(ctl_reg, 0);
1559         POSTING_READ(ctl_reg);
1560
1561         for (i = 0; i < VIDEO_DIP_VSC_DATA_SIZE; i += 4) {
1562                 if (i < sizeof(struct edp_vsc_psr))
1563                         I915_WRITE(data_reg + i, *data++);
1564                 else
1565                         I915_WRITE(data_reg + i, 0);
1566         }
1567
1568         I915_WRITE(ctl_reg, VIDEO_DIP_ENABLE_VSC_HSW);
1569         POSTING_READ(ctl_reg);
1570 }
1571
1572 static void intel_edp_psr_setup(struct intel_dp *intel_dp)
1573 {
1574         struct drm_device *dev = intel_dp_to_dev(intel_dp);
1575         struct drm_i915_private *dev_priv = dev->dev_private;
1576         struct edp_vsc_psr psr_vsc;
1577
1578         if (intel_dp->psr_setup_done)
1579                 return;
1580
1581         /* Prepare VSC packet as per EDP 1.3 spec, Table 3.10 */
1582         memset(&psr_vsc, 0, sizeof(psr_vsc));
1583         psr_vsc.sdp_header.HB0 = 0;
1584         psr_vsc.sdp_header.HB1 = 0x7;
1585         psr_vsc.sdp_header.HB2 = 0x2;
1586         psr_vsc.sdp_header.HB3 = 0x8;
1587         intel_edp_psr_write_vsc(intel_dp, &psr_vsc);
1588
1589         /* Avoid continuous PSR exit by masking memup and hpd */
1590         I915_WRITE(EDP_PSR_DEBUG_CTL(dev), EDP_PSR_DEBUG_MASK_MEMUP |
1591                    EDP_PSR_DEBUG_MASK_HPD | EDP_PSR_DEBUG_MASK_LPSP);
1592
1593         intel_dp->psr_setup_done = true;
1594 }
1595
1596 static void intel_edp_psr_enable_sink(struct intel_dp *intel_dp)
1597 {
1598         struct drm_device *dev = intel_dp_to_dev(intel_dp);
1599         struct drm_i915_private *dev_priv = dev->dev_private;
1600         uint32_t aux_clock_divider = get_aux_clock_divider(intel_dp, 0);
1601         int precharge = 0x3;
1602         int msg_size = 5;       /* Header(4) + Message(1) */
1603
1604         /* Enable PSR in sink */
1605         if (intel_dp->psr_dpcd[1] & DP_PSR_NO_TRAIN_ON_EXIT)
1606                 intel_dp_aux_native_write_1(intel_dp, DP_PSR_EN_CFG,
1607                                             DP_PSR_ENABLE &
1608                                             ~DP_PSR_MAIN_LINK_ACTIVE);
1609         else
1610                 intel_dp_aux_native_write_1(intel_dp, DP_PSR_EN_CFG,
1611                                             DP_PSR_ENABLE |
1612                                             DP_PSR_MAIN_LINK_ACTIVE);
1613
1614         /* Setup AUX registers */
1615         I915_WRITE(EDP_PSR_AUX_DATA1(dev), EDP_PSR_DPCD_COMMAND);
1616         I915_WRITE(EDP_PSR_AUX_DATA2(dev), EDP_PSR_DPCD_NORMAL_OPERATION);
1617         I915_WRITE(EDP_PSR_AUX_CTL(dev),
1618                    DP_AUX_CH_CTL_TIME_OUT_400us |
1619                    (msg_size << DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT) |
1620                    (precharge << DP_AUX_CH_CTL_PRECHARGE_2US_SHIFT) |
1621                    (aux_clock_divider << DP_AUX_CH_CTL_BIT_CLOCK_2X_SHIFT));
1622 }
1623
1624 static void intel_edp_psr_enable_source(struct intel_dp *intel_dp)
1625 {
1626         struct drm_device *dev = intel_dp_to_dev(intel_dp);
1627         struct drm_i915_private *dev_priv = dev->dev_private;
1628         uint32_t max_sleep_time = 0x1f;
1629         uint32_t idle_frames = 1;
1630         uint32_t val = 0x0;
1631         const uint32_t link_entry_time = EDP_PSR_MIN_LINK_ENTRY_TIME_8_LINES;
1632
1633         if (intel_dp->psr_dpcd[1] & DP_PSR_NO_TRAIN_ON_EXIT) {
1634                 val |= EDP_PSR_LINK_STANDBY;
1635                 val |= EDP_PSR_TP2_TP3_TIME_0us;
1636                 val |= EDP_PSR_TP1_TIME_0us;
1637                 val |= EDP_PSR_SKIP_AUX_EXIT;
1638         } else
1639                 val |= EDP_PSR_LINK_DISABLE;
1640
1641         I915_WRITE(EDP_PSR_CTL(dev), val |
1642                    IS_BROADWELL(dev) ? 0 : link_entry_time |
1643                    max_sleep_time << EDP_PSR_MAX_SLEEP_TIME_SHIFT |
1644                    idle_frames << EDP_PSR_IDLE_FRAME_SHIFT |
1645                    EDP_PSR_ENABLE);
1646 }
1647
1648 static bool intel_edp_psr_match_conditions(struct intel_dp *intel_dp)
1649 {
1650         struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
1651         struct drm_device *dev = dig_port->base.base.dev;
1652         struct drm_i915_private *dev_priv = dev->dev_private;
1653         struct drm_crtc *crtc = dig_port->base.base.crtc;
1654         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1655         struct drm_i915_gem_object *obj = to_intel_framebuffer(crtc->fb)->obj;
1656         struct intel_encoder *intel_encoder = &dp_to_dig_port(intel_dp)->base;
1657
1658         dev_priv->psr.source_ok = false;
1659
1660         if (!HAS_PSR(dev)) {
1661                 DRM_DEBUG_KMS("PSR not supported on this platform\n");
1662                 return false;
1663         }
1664
1665         if ((intel_encoder->type != INTEL_OUTPUT_EDP) ||
1666             (dig_port->port != PORT_A)) {
1667                 DRM_DEBUG_KMS("HSW ties PSR to DDI A (eDP)\n");
1668                 return false;
1669         }
1670
1671         if (!i915_enable_psr) {
1672                 DRM_DEBUG_KMS("PSR disable by flag\n");
1673                 return false;
1674         }
1675
1676         crtc = dig_port->base.base.crtc;
1677         if (crtc == NULL) {
1678                 DRM_DEBUG_KMS("crtc not active for PSR\n");
1679                 return false;
1680         }
1681
1682         intel_crtc = to_intel_crtc(crtc);
1683         if (!intel_crtc_active(crtc)) {
1684                 DRM_DEBUG_KMS("crtc not active for PSR\n");
1685                 return false;
1686         }
1687
1688         obj = to_intel_framebuffer(crtc->fb)->obj;
1689         if (obj->tiling_mode != I915_TILING_X ||
1690             obj->fence_reg == I915_FENCE_REG_NONE) {
1691                 DRM_DEBUG_KMS("PSR condition failed: fb not tiled or fenced\n");
1692                 return false;
1693         }
1694
1695         if (I915_READ(SPRCTL(intel_crtc->pipe)) & SPRITE_ENABLE) {
1696                 DRM_DEBUG_KMS("PSR condition failed: Sprite is Enabled\n");
1697                 return false;
1698         }
1699
1700         if (I915_READ(HSW_STEREO_3D_CTL(intel_crtc->config.cpu_transcoder)) &
1701             S3D_ENABLE) {
1702                 DRM_DEBUG_KMS("PSR condition failed: Stereo 3D is Enabled\n");
1703                 return false;
1704         }
1705
1706         if (intel_crtc->config.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE) {
1707                 DRM_DEBUG_KMS("PSR condition failed: Interlaced is Enabled\n");
1708                 return false;
1709         }
1710
1711         dev_priv->psr.source_ok = true;
1712         return true;
1713 }
1714
1715 static void intel_edp_psr_do_enable(struct intel_dp *intel_dp)
1716 {
1717         struct drm_device *dev = intel_dp_to_dev(intel_dp);
1718
1719         if (!intel_edp_psr_match_conditions(intel_dp) ||
1720             intel_edp_is_psr_enabled(dev))
1721                 return;
1722
1723         /* Setup PSR once */
1724         intel_edp_psr_setup(intel_dp);
1725
1726         /* Enable PSR on the panel */
1727         intel_edp_psr_enable_sink(intel_dp);
1728
1729         /* Enable PSR on the host */
1730         intel_edp_psr_enable_source(intel_dp);
1731 }
1732
1733 void intel_edp_psr_enable(struct intel_dp *intel_dp)
1734 {
1735         struct drm_device *dev = intel_dp_to_dev(intel_dp);
1736
1737         if (intel_edp_psr_match_conditions(intel_dp) &&
1738             !intel_edp_is_psr_enabled(dev))
1739                 intel_edp_psr_do_enable(intel_dp);
1740 }
1741
1742 void intel_edp_psr_disable(struct intel_dp *intel_dp)
1743 {
1744         struct drm_device *dev = intel_dp_to_dev(intel_dp);
1745         struct drm_i915_private *dev_priv = dev->dev_private;
1746
1747         if (!intel_edp_is_psr_enabled(dev))
1748                 return;
1749
1750         I915_WRITE(EDP_PSR_CTL(dev),
1751                    I915_READ(EDP_PSR_CTL(dev)) & ~EDP_PSR_ENABLE);
1752
1753         /* Wait till PSR is idle */
1754         if (_wait_for((I915_READ(EDP_PSR_STATUS_CTL(dev)) &
1755                        EDP_PSR_STATUS_STATE_MASK) == 0, 2000, 10))
1756                 DRM_ERROR("Timed out waiting for PSR Idle State\n");
1757 }
1758
1759 void intel_edp_psr_update(struct drm_device *dev)
1760 {
1761         struct intel_encoder *encoder;
1762         struct intel_dp *intel_dp = NULL;
1763
1764         list_for_each_entry(encoder, &dev->mode_config.encoder_list, base.head)
1765                 if (encoder->type == INTEL_OUTPUT_EDP) {
1766                         intel_dp = enc_to_intel_dp(&encoder->base);
1767
1768                         if (!is_edp_psr(dev))
1769                                 return;
1770
1771                         if (!intel_edp_psr_match_conditions(intel_dp))
1772                                 intel_edp_psr_disable(intel_dp);
1773                         else
1774                                 if (!intel_edp_is_psr_enabled(dev))
1775                                         intel_edp_psr_do_enable(intel_dp);
1776                 }
1777 }
1778
1779 static void intel_disable_dp(struct intel_encoder *encoder)
1780 {
1781         struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
1782         enum port port = dp_to_dig_port(intel_dp)->port;
1783         struct drm_device *dev = encoder->base.dev;
1784
1785         /* Make sure the panel is off before trying to change the mode. But also
1786          * ensure that we have vdd while we switch off the panel. */
1787         ironlake_edp_backlight_off(intel_dp);
1788         intel_dp_sink_dpms(intel_dp, DRM_MODE_DPMS_OFF);
1789         ironlake_edp_panel_off(intel_dp);
1790
1791         /* cpu edp my only be disable _after_ the cpu pipe/plane is disabled. */
1792         if (!(port == PORT_A || IS_VALLEYVIEW(dev)))
1793                 intel_dp_link_down(intel_dp);
1794 }
1795
1796 static void intel_post_disable_dp(struct intel_encoder *encoder)
1797 {
1798         struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
1799         enum port port = dp_to_dig_port(intel_dp)->port;
1800         struct drm_device *dev = encoder->base.dev;
1801
1802         if (port == PORT_A || IS_VALLEYVIEW(dev)) {
1803                 intel_dp_link_down(intel_dp);
1804                 if (!IS_VALLEYVIEW(dev))
1805                         ironlake_edp_pll_off(intel_dp);
1806         }
1807 }
1808
1809 static void intel_enable_dp(struct intel_encoder *encoder)
1810 {
1811         struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
1812         struct drm_device *dev = encoder->base.dev;
1813         struct drm_i915_private *dev_priv = dev->dev_private;
1814         uint32_t dp_reg = I915_READ(intel_dp->output_reg);
1815
1816         if (WARN_ON(dp_reg & DP_PORT_EN))
1817                 return;
1818
1819         ironlake_edp_panel_vdd_on(intel_dp);
1820         intel_dp_sink_dpms(intel_dp, DRM_MODE_DPMS_ON);
1821         intel_dp_start_link_train(intel_dp);
1822         ironlake_edp_panel_on(intel_dp);
1823         ironlake_edp_panel_vdd_off(intel_dp, true);
1824         intel_dp_complete_link_train(intel_dp);
1825         intel_dp_stop_link_train(intel_dp);
1826 }
1827
1828 static void g4x_enable_dp(struct intel_encoder *encoder)
1829 {
1830         struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
1831
1832         intel_enable_dp(encoder);
1833         ironlake_edp_backlight_on(intel_dp);
1834 }
1835
1836 static void vlv_enable_dp(struct intel_encoder *encoder)
1837 {
1838         struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
1839
1840         ironlake_edp_backlight_on(intel_dp);
1841 }
1842
1843 static void g4x_pre_enable_dp(struct intel_encoder *encoder)
1844 {
1845         struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
1846         struct intel_digital_port *dport = dp_to_dig_port(intel_dp);
1847
1848         if (dport->port == PORT_A)
1849                 ironlake_edp_pll_on(intel_dp);
1850 }
1851
1852 static void vlv_pre_enable_dp(struct intel_encoder *encoder)
1853 {
1854         struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
1855         struct intel_digital_port *dport = dp_to_dig_port(intel_dp);
1856         struct drm_device *dev = encoder->base.dev;
1857         struct drm_i915_private *dev_priv = dev->dev_private;
1858         struct intel_crtc *intel_crtc = to_intel_crtc(encoder->base.crtc);
1859         enum dpio_channel port = vlv_dport_to_channel(dport);
1860         int pipe = intel_crtc->pipe;
1861         struct edp_power_seq power_seq;
1862         u32 val;
1863
1864         mutex_lock(&dev_priv->dpio_lock);
1865
1866         val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW8(port));
1867         val = 0;
1868         if (pipe)
1869                 val |= (1<<21);
1870         else
1871                 val &= ~(1<<21);
1872         val |= 0x001000c4;
1873         vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW8(port), val);
1874         vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW14(port), 0x00760018);
1875         vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW23(port), 0x00400888);
1876
1877         mutex_unlock(&dev_priv->dpio_lock);
1878
1879         if (is_edp(intel_dp)) {
1880                 /* init power sequencer on this pipe and port */
1881                 intel_dp_init_panel_power_sequencer(dev, intel_dp, &power_seq);
1882                 intel_dp_init_panel_power_sequencer_registers(dev, intel_dp,
1883                                                               &power_seq);
1884         }
1885
1886         intel_enable_dp(encoder);
1887
1888         vlv_wait_port_ready(dev_priv, dport);
1889 }
1890
1891 static void vlv_dp_pre_pll_enable(struct intel_encoder *encoder)
1892 {
1893         struct intel_digital_port *dport = enc_to_dig_port(&encoder->base);
1894         struct drm_device *dev = encoder->base.dev;
1895         struct drm_i915_private *dev_priv = dev->dev_private;
1896         struct intel_crtc *intel_crtc =
1897                 to_intel_crtc(encoder->base.crtc);
1898         enum dpio_channel port = vlv_dport_to_channel(dport);
1899         int pipe = intel_crtc->pipe;
1900
1901         /* Program Tx lane resets to default */
1902         mutex_lock(&dev_priv->dpio_lock);
1903         vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW0(port),
1904                          DPIO_PCS_TX_LANE2_RESET |
1905                          DPIO_PCS_TX_LANE1_RESET);
1906         vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW1(port),
1907                          DPIO_PCS_CLK_CRI_RXEB_EIOS_EN |
1908                          DPIO_PCS_CLK_CRI_RXDIGFILTSG_EN |
1909                          (1<<DPIO_PCS_CLK_DATAWIDTH_SHIFT) |
1910                                  DPIO_PCS_CLK_SOFT_RESET);
1911
1912         /* Fix up inter-pair skew failure */
1913         vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW12(port), 0x00750f00);
1914         vlv_dpio_write(dev_priv, pipe, VLV_TX_DW11(port), 0x00001500);
1915         vlv_dpio_write(dev_priv, pipe, VLV_TX_DW14(port), 0x40400000);
1916         mutex_unlock(&dev_priv->dpio_lock);
1917 }
1918
1919 /*
1920  * Native read with retry for link status and receiver capability reads for
1921  * cases where the sink may still be asleep.
1922  */
1923 static bool
1924 intel_dp_aux_native_read_retry(struct intel_dp *intel_dp, uint16_t address,
1925                                uint8_t *recv, int recv_bytes)
1926 {
1927         int ret, i;
1928
1929         /*
1930          * Sinks are *supposed* to come up within 1ms from an off state,
1931          * but we're also supposed to retry 3 times per the spec.
1932          */
1933         for (i = 0; i < 3; i++) {
1934                 ret = intel_dp_aux_native_read(intel_dp, address, recv,
1935                                                recv_bytes);
1936                 if (ret == recv_bytes)
1937                         return true;
1938                 msleep(1);
1939         }
1940
1941         return false;
1942 }
1943
1944 /*
1945  * Fetch AUX CH registers 0x202 - 0x207 which contain
1946  * link status information
1947  */
1948 static bool
1949 intel_dp_get_link_status(struct intel_dp *intel_dp, uint8_t link_status[DP_LINK_STATUS_SIZE])
1950 {
1951         return intel_dp_aux_native_read_retry(intel_dp,
1952                                               DP_LANE0_1_STATUS,
1953                                               link_status,
1954                                               DP_LINK_STATUS_SIZE);
1955 }
1956
1957 /*
1958  * These are source-specific values; current Intel hardware supports
1959  * a maximum voltage of 800mV and a maximum pre-emphasis of 6dB
1960  */
1961
1962 static uint8_t
1963 intel_dp_voltage_max(struct intel_dp *intel_dp)
1964 {
1965         struct drm_device *dev = intel_dp_to_dev(intel_dp);
1966         enum port port = dp_to_dig_port(intel_dp)->port;
1967
1968         if (IS_VALLEYVIEW(dev) || IS_BROADWELL(dev))
1969                 return DP_TRAIN_VOLTAGE_SWING_1200;
1970         else if (IS_GEN7(dev) && port == PORT_A)
1971                 return DP_TRAIN_VOLTAGE_SWING_800;
1972         else if (HAS_PCH_CPT(dev) && port != PORT_A)
1973                 return DP_TRAIN_VOLTAGE_SWING_1200;
1974         else
1975                 return DP_TRAIN_VOLTAGE_SWING_800;
1976 }
1977
1978 static uint8_t
1979 intel_dp_pre_emphasis_max(struct intel_dp *intel_dp, uint8_t voltage_swing)
1980 {
1981         struct drm_device *dev = intel_dp_to_dev(intel_dp);
1982         enum port port = dp_to_dig_port(intel_dp)->port;
1983
1984         if (IS_BROADWELL(dev)) {
1985                 switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
1986                 case DP_TRAIN_VOLTAGE_SWING_400:
1987                 case DP_TRAIN_VOLTAGE_SWING_600:
1988                         return DP_TRAIN_PRE_EMPHASIS_6;
1989                 case DP_TRAIN_VOLTAGE_SWING_800:
1990                         return DP_TRAIN_PRE_EMPHASIS_3_5;
1991                 case DP_TRAIN_VOLTAGE_SWING_1200:
1992                 default:
1993                         return DP_TRAIN_PRE_EMPHASIS_0;
1994                 }
1995         } else if (IS_HASWELL(dev)) {
1996                 switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
1997                 case DP_TRAIN_VOLTAGE_SWING_400:
1998                         return DP_TRAIN_PRE_EMPHASIS_9_5;
1999                 case DP_TRAIN_VOLTAGE_SWING_600:
2000                         return DP_TRAIN_PRE_EMPHASIS_6;
2001                 case DP_TRAIN_VOLTAGE_SWING_800:
2002                         return DP_TRAIN_PRE_EMPHASIS_3_5;
2003                 case DP_TRAIN_VOLTAGE_SWING_1200:
2004                 default:
2005                         return DP_TRAIN_PRE_EMPHASIS_0;
2006                 }
2007         } else if (IS_VALLEYVIEW(dev)) {
2008                 switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
2009                 case DP_TRAIN_VOLTAGE_SWING_400:
2010                         return DP_TRAIN_PRE_EMPHASIS_9_5;
2011                 case DP_TRAIN_VOLTAGE_SWING_600:
2012                         return DP_TRAIN_PRE_EMPHASIS_6;
2013                 case DP_TRAIN_VOLTAGE_SWING_800:
2014                         return DP_TRAIN_PRE_EMPHASIS_3_5;
2015                 case DP_TRAIN_VOLTAGE_SWING_1200:
2016                 default:
2017                         return DP_TRAIN_PRE_EMPHASIS_0;
2018                 }
2019         } else if (IS_GEN7(dev) && port == PORT_A) {
2020                 switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
2021                 case DP_TRAIN_VOLTAGE_SWING_400:
2022                         return DP_TRAIN_PRE_EMPHASIS_6;
2023                 case DP_TRAIN_VOLTAGE_SWING_600:
2024                 case DP_TRAIN_VOLTAGE_SWING_800:
2025                         return DP_TRAIN_PRE_EMPHASIS_3_5;
2026                 default:
2027                         return DP_TRAIN_PRE_EMPHASIS_0;
2028                 }
2029         } else {
2030                 switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
2031                 case DP_TRAIN_VOLTAGE_SWING_400:
2032                         return DP_TRAIN_PRE_EMPHASIS_6;
2033                 case DP_TRAIN_VOLTAGE_SWING_600:
2034                         return DP_TRAIN_PRE_EMPHASIS_6;
2035                 case DP_TRAIN_VOLTAGE_SWING_800:
2036                         return DP_TRAIN_PRE_EMPHASIS_3_5;
2037                 case DP_TRAIN_VOLTAGE_SWING_1200:
2038                 default:
2039                         return DP_TRAIN_PRE_EMPHASIS_0;
2040                 }
2041         }
2042 }
2043
2044 static uint32_t intel_vlv_signal_levels(struct intel_dp *intel_dp)
2045 {
2046         struct drm_device *dev = intel_dp_to_dev(intel_dp);
2047         struct drm_i915_private *dev_priv = dev->dev_private;
2048         struct intel_digital_port *dport = dp_to_dig_port(intel_dp);
2049         struct intel_crtc *intel_crtc =
2050                 to_intel_crtc(dport->base.base.crtc);
2051         unsigned long demph_reg_value, preemph_reg_value,
2052                 uniqtranscale_reg_value;
2053         uint8_t train_set = intel_dp->train_set[0];
2054         enum dpio_channel port = vlv_dport_to_channel(dport);
2055         int pipe = intel_crtc->pipe;
2056
2057         switch (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) {
2058         case DP_TRAIN_PRE_EMPHASIS_0:
2059                 preemph_reg_value = 0x0004000;
2060                 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
2061                 case DP_TRAIN_VOLTAGE_SWING_400:
2062                         demph_reg_value = 0x2B405555;
2063                         uniqtranscale_reg_value = 0x552AB83A;
2064                         break;
2065                 case DP_TRAIN_VOLTAGE_SWING_600:
2066                         demph_reg_value = 0x2B404040;
2067                         uniqtranscale_reg_value = 0x5548B83A;
2068                         break;
2069                 case DP_TRAIN_VOLTAGE_SWING_800:
2070                         demph_reg_value = 0x2B245555;
2071                         uniqtranscale_reg_value = 0x5560B83A;
2072                         break;
2073                 case DP_TRAIN_VOLTAGE_SWING_1200:
2074                         demph_reg_value = 0x2B405555;
2075                         uniqtranscale_reg_value = 0x5598DA3A;
2076                         break;
2077                 default:
2078                         return 0;
2079                 }
2080                 break;
2081         case DP_TRAIN_PRE_EMPHASIS_3_5:
2082                 preemph_reg_value = 0x0002000;
2083                 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
2084                 case DP_TRAIN_VOLTAGE_SWING_400:
2085                         demph_reg_value = 0x2B404040;
2086                         uniqtranscale_reg_value = 0x5552B83A;
2087                         break;
2088                 case DP_TRAIN_VOLTAGE_SWING_600:
2089                         demph_reg_value = 0x2B404848;
2090                         uniqtranscale_reg_value = 0x5580B83A;
2091                         break;
2092                 case DP_TRAIN_VOLTAGE_SWING_800:
2093                         demph_reg_value = 0x2B404040;
2094                         uniqtranscale_reg_value = 0x55ADDA3A;
2095                         break;
2096                 default:
2097                         return 0;
2098                 }
2099                 break;
2100         case DP_TRAIN_PRE_EMPHASIS_6:
2101                 preemph_reg_value = 0x0000000;
2102                 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
2103                 case DP_TRAIN_VOLTAGE_SWING_400:
2104                         demph_reg_value = 0x2B305555;
2105                         uniqtranscale_reg_value = 0x5570B83A;
2106                         break;
2107                 case DP_TRAIN_VOLTAGE_SWING_600:
2108                         demph_reg_value = 0x2B2B4040;
2109                         uniqtranscale_reg_value = 0x55ADDA3A;
2110                         break;
2111                 default:
2112                         return 0;
2113                 }
2114                 break;
2115         case DP_TRAIN_PRE_EMPHASIS_9_5:
2116                 preemph_reg_value = 0x0006000;
2117                 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
2118                 case DP_TRAIN_VOLTAGE_SWING_400:
2119                         demph_reg_value = 0x1B405555;
2120                         uniqtranscale_reg_value = 0x55ADDA3A;
2121                         break;
2122                 default:
2123                         return 0;
2124                 }
2125                 break;
2126         default:
2127                 return 0;
2128         }
2129
2130         mutex_lock(&dev_priv->dpio_lock);
2131         vlv_dpio_write(dev_priv, pipe, VLV_TX_DW5(port), 0x00000000);
2132         vlv_dpio_write(dev_priv, pipe, VLV_TX_DW4(port), demph_reg_value);
2133         vlv_dpio_write(dev_priv, pipe, VLV_TX_DW2(port),
2134                          uniqtranscale_reg_value);
2135         vlv_dpio_write(dev_priv, pipe, VLV_TX_DW3(port), 0x0C782040);
2136         vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW11(port), 0x00030000);
2137         vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW9(port), preemph_reg_value);
2138         vlv_dpio_write(dev_priv, pipe, VLV_TX_DW5(port), 0x80000000);
2139         mutex_unlock(&dev_priv->dpio_lock);
2140
2141         return 0;
2142 }
2143
2144 static void
2145 intel_get_adjust_train(struct intel_dp *intel_dp,
2146                        const uint8_t link_status[DP_LINK_STATUS_SIZE])
2147 {
2148         uint8_t v = 0;
2149         uint8_t p = 0;
2150         int lane;
2151         uint8_t voltage_max;
2152         uint8_t preemph_max;
2153
2154         for (lane = 0; lane < intel_dp->lane_count; lane++) {
2155                 uint8_t this_v = drm_dp_get_adjust_request_voltage(link_status, lane);
2156                 uint8_t this_p = drm_dp_get_adjust_request_pre_emphasis(link_status, lane);
2157
2158                 if (this_v > v)
2159                         v = this_v;
2160                 if (this_p > p)
2161                         p = this_p;
2162         }
2163
2164         voltage_max = intel_dp_voltage_max(intel_dp);
2165         if (v >= voltage_max)
2166                 v = voltage_max | DP_TRAIN_MAX_SWING_REACHED;
2167
2168         preemph_max = intel_dp_pre_emphasis_max(intel_dp, v);
2169         if (p >= preemph_max)
2170                 p = preemph_max | DP_TRAIN_MAX_PRE_EMPHASIS_REACHED;
2171
2172         for (lane = 0; lane < 4; lane++)
2173                 intel_dp->train_set[lane] = v | p;
2174 }
2175
2176 static uint32_t
2177 intel_gen4_signal_levels(uint8_t train_set)
2178 {
2179         uint32_t        signal_levels = 0;
2180
2181         switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
2182         case DP_TRAIN_VOLTAGE_SWING_400:
2183         default:
2184                 signal_levels |= DP_VOLTAGE_0_4;
2185                 break;
2186         case DP_TRAIN_VOLTAGE_SWING_600:
2187                 signal_levels |= DP_VOLTAGE_0_6;
2188                 break;
2189         case DP_TRAIN_VOLTAGE_SWING_800:
2190                 signal_levels |= DP_VOLTAGE_0_8;
2191                 break;
2192         case DP_TRAIN_VOLTAGE_SWING_1200:
2193                 signal_levels |= DP_VOLTAGE_1_2;
2194                 break;
2195         }
2196         switch (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) {
2197         case DP_TRAIN_PRE_EMPHASIS_0:
2198         default:
2199                 signal_levels |= DP_PRE_EMPHASIS_0;
2200                 break;
2201         case DP_TRAIN_PRE_EMPHASIS_3_5:
2202                 signal_levels |= DP_PRE_EMPHASIS_3_5;
2203                 break;
2204         case DP_TRAIN_PRE_EMPHASIS_6:
2205                 signal_levels |= DP_PRE_EMPHASIS_6;
2206                 break;
2207         case DP_TRAIN_PRE_EMPHASIS_9_5:
2208                 signal_levels |= DP_PRE_EMPHASIS_9_5;
2209                 break;
2210         }
2211         return signal_levels;
2212 }
2213
2214 /* Gen6's DP voltage swing and pre-emphasis control */
2215 static uint32_t
2216 intel_gen6_edp_signal_levels(uint8_t train_set)
2217 {
2218         int signal_levels = train_set & (DP_TRAIN_VOLTAGE_SWING_MASK |
2219                                          DP_TRAIN_PRE_EMPHASIS_MASK);
2220         switch (signal_levels) {
2221         case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_0:
2222         case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_0:
2223                 return EDP_LINK_TRAIN_400_600MV_0DB_SNB_B;
2224         case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_3_5:
2225                 return EDP_LINK_TRAIN_400MV_3_5DB_SNB_B;
2226         case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_6:
2227         case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_6:
2228                 return EDP_LINK_TRAIN_400_600MV_6DB_SNB_B;
2229         case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_3_5:
2230         case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_3_5:
2231                 return EDP_LINK_TRAIN_600_800MV_3_5DB_SNB_B;
2232         case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_0:
2233         case DP_TRAIN_VOLTAGE_SWING_1200 | DP_TRAIN_PRE_EMPHASIS_0:
2234                 return EDP_LINK_TRAIN_800_1200MV_0DB_SNB_B;
2235         default:
2236                 DRM_DEBUG_KMS("Unsupported voltage swing/pre-emphasis level:"
2237                               "0x%x\n", signal_levels);
2238                 return EDP_LINK_TRAIN_400_600MV_0DB_SNB_B;
2239         }
2240 }
2241
2242 /* Gen7's DP voltage swing and pre-emphasis control */
2243 static uint32_t
2244 intel_gen7_edp_signal_levels(uint8_t train_set)
2245 {
2246         int signal_levels = train_set & (DP_TRAIN_VOLTAGE_SWING_MASK |
2247                                          DP_TRAIN_PRE_EMPHASIS_MASK);
2248         switch (signal_levels) {
2249         case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_0:
2250                 return EDP_LINK_TRAIN_400MV_0DB_IVB;
2251         case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_3_5:
2252                 return EDP_LINK_TRAIN_400MV_3_5DB_IVB;
2253         case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_6:
2254                 return EDP_LINK_TRAIN_400MV_6DB_IVB;
2255
2256         case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_0:
2257                 return EDP_LINK_TRAIN_600MV_0DB_IVB;
2258         case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_3_5:
2259                 return EDP_LINK_TRAIN_600MV_3_5DB_IVB;
2260
2261         case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_0:
2262                 return EDP_LINK_TRAIN_800MV_0DB_IVB;
2263         case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_3_5:
2264                 return EDP_LINK_TRAIN_800MV_3_5DB_IVB;
2265
2266         default:
2267                 DRM_DEBUG_KMS("Unsupported voltage swing/pre-emphasis level:"
2268                               "0x%x\n", signal_levels);
2269                 return EDP_LINK_TRAIN_500MV_0DB_IVB;
2270         }
2271 }
2272
2273 /* Gen7.5's (HSW) DP voltage swing and pre-emphasis control */
2274 static uint32_t
2275 intel_hsw_signal_levels(uint8_t train_set)
2276 {
2277         int signal_levels = train_set & (DP_TRAIN_VOLTAGE_SWING_MASK |
2278                                          DP_TRAIN_PRE_EMPHASIS_MASK);
2279         switch (signal_levels) {
2280         case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_0:
2281                 return DDI_BUF_EMP_400MV_0DB_HSW;
2282         case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_3_5:
2283                 return DDI_BUF_EMP_400MV_3_5DB_HSW;
2284         case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_6:
2285                 return DDI_BUF_EMP_400MV_6DB_HSW;
2286         case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_9_5:
2287                 return DDI_BUF_EMP_400MV_9_5DB_HSW;
2288
2289         case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_0:
2290                 return DDI_BUF_EMP_600MV_0DB_HSW;
2291         case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_3_5:
2292                 return DDI_BUF_EMP_600MV_3_5DB_HSW;
2293         case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_6:
2294                 return DDI_BUF_EMP_600MV_6DB_HSW;
2295
2296         case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_0:
2297                 return DDI_BUF_EMP_800MV_0DB_HSW;
2298         case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_3_5:
2299                 return DDI_BUF_EMP_800MV_3_5DB_HSW;
2300         default:
2301                 DRM_DEBUG_KMS("Unsupported voltage swing/pre-emphasis level:"
2302                               "0x%x\n", signal_levels);
2303                 return DDI_BUF_EMP_400MV_0DB_HSW;
2304         }
2305 }
2306
2307 static uint32_t
2308 intel_bdw_signal_levels(uint8_t train_set)
2309 {
2310         int signal_levels = train_set & (DP_TRAIN_VOLTAGE_SWING_MASK |
2311                                          DP_TRAIN_PRE_EMPHASIS_MASK);
2312         switch (signal_levels) {
2313         case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_0:
2314                 return DDI_BUF_EMP_400MV_0DB_BDW;       /* Sel0 */
2315         case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_3_5:
2316                 return DDI_BUF_EMP_400MV_3_5DB_BDW;     /* Sel1 */
2317         case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_6:
2318                 return DDI_BUF_EMP_400MV_6DB_BDW;       /* Sel2 */
2319
2320         case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_0:
2321                 return DDI_BUF_EMP_600MV_0DB_BDW;       /* Sel3 */
2322         case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_3_5:
2323                 return DDI_BUF_EMP_600MV_3_5DB_BDW;     /* Sel4 */
2324         case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_6:
2325                 return DDI_BUF_EMP_600MV_6DB_BDW;       /* Sel5 */
2326
2327         case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_0:
2328                 return DDI_BUF_EMP_800MV_0DB_BDW;       /* Sel6 */
2329         case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_3_5:
2330                 return DDI_BUF_EMP_800MV_3_5DB_BDW;     /* Sel7 */
2331
2332         case DP_TRAIN_VOLTAGE_SWING_1200 | DP_TRAIN_PRE_EMPHASIS_0:
2333                 return DDI_BUF_EMP_1200MV_0DB_BDW;      /* Sel8 */
2334
2335         default:
2336                 DRM_DEBUG_KMS("Unsupported voltage swing/pre-emphasis level:"
2337                               "0x%x\n", signal_levels);
2338                 return DDI_BUF_EMP_400MV_0DB_BDW;       /* Sel0 */
2339         }
2340 }
2341
2342 /* Properly updates "DP" with the correct signal levels. */
2343 static void
2344 intel_dp_set_signal_levels(struct intel_dp *intel_dp, uint32_t *DP)
2345 {
2346         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
2347         enum port port = intel_dig_port->port;
2348         struct drm_device *dev = intel_dig_port->base.base.dev;
2349         uint32_t signal_levels, mask;
2350         uint8_t train_set = intel_dp->train_set[0];
2351
2352         if (IS_BROADWELL(dev)) {
2353                 signal_levels = intel_bdw_signal_levels(train_set);
2354                 mask = DDI_BUF_EMP_MASK;
2355         } else if (IS_HASWELL(dev)) {
2356                 signal_levels = intel_hsw_signal_levels(train_set);
2357                 mask = DDI_BUF_EMP_MASK;
2358         } else if (IS_VALLEYVIEW(dev)) {
2359                 signal_levels = intel_vlv_signal_levels(intel_dp);
2360                 mask = 0;
2361         } else if (IS_GEN7(dev) && port == PORT_A) {
2362                 signal_levels = intel_gen7_edp_signal_levels(train_set);
2363                 mask = EDP_LINK_TRAIN_VOL_EMP_MASK_IVB;
2364         } else if (IS_GEN6(dev) && port == PORT_A) {
2365                 signal_levels = intel_gen6_edp_signal_levels(train_set);
2366                 mask = EDP_LINK_TRAIN_VOL_EMP_MASK_SNB;
2367         } else {
2368                 signal_levels = intel_gen4_signal_levels(train_set);
2369                 mask = DP_VOLTAGE_MASK | DP_PRE_EMPHASIS_MASK;
2370         }
2371
2372         DRM_DEBUG_KMS("Using signal levels %08x\n", signal_levels);
2373
2374         *DP = (*DP & ~mask) | signal_levels;
2375 }
2376
2377 static bool
2378 intel_dp_set_link_train(struct intel_dp *intel_dp,
2379                         uint32_t *DP,
2380                         uint8_t dp_train_pat)
2381 {
2382         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
2383         struct drm_device *dev = intel_dig_port->base.base.dev;
2384         struct drm_i915_private *dev_priv = dev->dev_private;
2385         enum port port = intel_dig_port->port;
2386         uint8_t buf[sizeof(intel_dp->train_set) + 1];
2387         int ret, len;
2388
2389         if (HAS_DDI(dev)) {
2390                 uint32_t temp = I915_READ(DP_TP_CTL(port));
2391
2392                 if (dp_train_pat & DP_LINK_SCRAMBLING_DISABLE)
2393                         temp |= DP_TP_CTL_SCRAMBLE_DISABLE;
2394                 else
2395                         temp &= ~DP_TP_CTL_SCRAMBLE_DISABLE;
2396
2397                 temp &= ~DP_TP_CTL_LINK_TRAIN_MASK;
2398                 switch (dp_train_pat & DP_TRAINING_PATTERN_MASK) {
2399                 case DP_TRAINING_PATTERN_DISABLE:
2400                         temp |= DP_TP_CTL_LINK_TRAIN_NORMAL;
2401
2402                         break;
2403                 case DP_TRAINING_PATTERN_1:
2404                         temp |= DP_TP_CTL_LINK_TRAIN_PAT1;
2405                         break;
2406                 case DP_TRAINING_PATTERN_2:
2407                         temp |= DP_TP_CTL_LINK_TRAIN_PAT2;
2408                         break;
2409                 case DP_TRAINING_PATTERN_3:
2410                         temp |= DP_TP_CTL_LINK_TRAIN_PAT3;
2411                         break;
2412                 }
2413                 I915_WRITE(DP_TP_CTL(port), temp);
2414
2415         } else if (HAS_PCH_CPT(dev) && (IS_GEN7(dev) || port != PORT_A)) {
2416                 *DP &= ~DP_LINK_TRAIN_MASK_CPT;
2417
2418                 switch (dp_train_pat & DP_TRAINING_PATTERN_MASK) {
2419                 case DP_TRAINING_PATTERN_DISABLE:
2420                         *DP |= DP_LINK_TRAIN_OFF_CPT;
2421                         break;
2422                 case DP_TRAINING_PATTERN_1:
2423                         *DP |= DP_LINK_TRAIN_PAT_1_CPT;
2424                         break;
2425                 case DP_TRAINING_PATTERN_2:
2426                         *DP |= DP_LINK_TRAIN_PAT_2_CPT;
2427                         break;
2428                 case DP_TRAINING_PATTERN_3:
2429                         DRM_ERROR("DP training pattern 3 not supported\n");
2430                         *DP |= DP_LINK_TRAIN_PAT_2_CPT;
2431                         break;
2432                 }
2433
2434         } else {
2435                 *DP &= ~DP_LINK_TRAIN_MASK;
2436
2437                 switch (dp_train_pat & DP_TRAINING_PATTERN_MASK) {
2438                 case DP_TRAINING_PATTERN_DISABLE:
2439                         *DP |= DP_LINK_TRAIN_OFF;
2440                         break;
2441                 case DP_TRAINING_PATTERN_1:
2442                         *DP |= DP_LINK_TRAIN_PAT_1;
2443                         break;
2444                 case DP_TRAINING_PATTERN_2:
2445                         *DP |= DP_LINK_TRAIN_PAT_2;
2446                         break;
2447                 case DP_TRAINING_PATTERN_3:
2448                         DRM_ERROR("DP training pattern 3 not supported\n");
2449                         *DP |= DP_LINK_TRAIN_PAT_2;
2450                         break;
2451                 }
2452         }
2453
2454         I915_WRITE(intel_dp->output_reg, *DP);
2455         POSTING_READ(intel_dp->output_reg);
2456
2457         buf[0] = dp_train_pat;
2458         if ((dp_train_pat & DP_TRAINING_PATTERN_MASK) ==
2459             DP_TRAINING_PATTERN_DISABLE) {
2460                 /* don't write DP_TRAINING_LANEx_SET on disable */
2461                 len = 1;
2462         } else {
2463                 /* DP_TRAINING_LANEx_SET follow DP_TRAINING_PATTERN_SET */
2464                 memcpy(buf + 1, intel_dp->train_set, intel_dp->lane_count);
2465                 len = intel_dp->lane_count + 1;
2466         }
2467
2468         ret = intel_dp_aux_native_write(intel_dp, DP_TRAINING_PATTERN_SET,
2469                                         buf, len);
2470
2471         return ret == len;
2472 }
2473
2474 static bool
2475 intel_dp_reset_link_train(struct intel_dp *intel_dp, uint32_t *DP,
2476                         uint8_t dp_train_pat)
2477 {
2478         memset(intel_dp->train_set, 0, sizeof(intel_dp->train_set));
2479         intel_dp_set_signal_levels(intel_dp, DP);
2480         return intel_dp_set_link_train(intel_dp, DP, dp_train_pat);
2481 }
2482
2483 static bool
2484 intel_dp_update_link_train(struct intel_dp *intel_dp, uint32_t *DP,
2485                            const uint8_t link_status[DP_LINK_STATUS_SIZE])
2486 {
2487         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
2488         struct drm_device *dev = intel_dig_port->base.base.dev;
2489         struct drm_i915_private *dev_priv = dev->dev_private;
2490         int ret;
2491
2492         intel_get_adjust_train(intel_dp, link_status);
2493         intel_dp_set_signal_levels(intel_dp, DP);
2494
2495         I915_WRITE(intel_dp->output_reg, *DP);
2496         POSTING_READ(intel_dp->output_reg);
2497
2498         ret = intel_dp_aux_native_write(intel_dp, DP_TRAINING_LANE0_SET,
2499                                         intel_dp->train_set,
2500                                         intel_dp->lane_count);
2501
2502         return ret == intel_dp->lane_count;
2503 }
2504
2505 static void intel_dp_set_idle_link_train(struct intel_dp *intel_dp)
2506 {
2507         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
2508         struct drm_device *dev = intel_dig_port->base.base.dev;
2509         struct drm_i915_private *dev_priv = dev->dev_private;
2510         enum port port = intel_dig_port->port;
2511         uint32_t val;
2512
2513         if (!HAS_DDI(dev))
2514                 return;
2515
2516         val = I915_READ(DP_TP_CTL(port));
2517         val &= ~DP_TP_CTL_LINK_TRAIN_MASK;
2518         val |= DP_TP_CTL_LINK_TRAIN_IDLE;
2519         I915_WRITE(DP_TP_CTL(port), val);
2520
2521         /*
2522          * On PORT_A we can have only eDP in SST mode. There the only reason
2523          * we need to set idle transmission mode is to work around a HW issue
2524          * where we enable the pipe while not in idle link-training mode.
2525          * In this case there is requirement to wait for a minimum number of
2526          * idle patterns to be sent.
2527          */
2528         if (port == PORT_A)
2529                 return;
2530
2531         if (wait_for((I915_READ(DP_TP_STATUS(port)) & DP_TP_STATUS_IDLE_DONE),
2532                      1))
2533                 DRM_ERROR("Timed out waiting for DP idle patterns\n");
2534 }
2535
2536 /* Enable corresponding port and start training pattern 1 */
2537 void
2538 intel_dp_start_link_train(struct intel_dp *intel_dp)
2539 {
2540         struct drm_encoder *encoder = &dp_to_dig_port(intel_dp)->base.base;
2541         struct drm_device *dev = encoder->dev;
2542         int i;
2543         uint8_t voltage;
2544         int voltage_tries, loop_tries;
2545         uint32_t DP = intel_dp->DP;
2546         uint8_t link_config[2];
2547
2548         if (HAS_DDI(dev))
2549                 intel_ddi_prepare_link_retrain(encoder);
2550
2551         /* Write the link configuration data */
2552         link_config[0] = intel_dp->link_bw;
2553         link_config[1] = intel_dp->lane_count;
2554         if (drm_dp_enhanced_frame_cap(intel_dp->dpcd))
2555                 link_config[1] |= DP_LANE_COUNT_ENHANCED_FRAME_EN;
2556         intel_dp_aux_native_write(intel_dp, DP_LINK_BW_SET, link_config, 2);
2557
2558         link_config[0] = 0;
2559         link_config[1] = DP_SET_ANSI_8B10B;
2560         intel_dp_aux_native_write(intel_dp, DP_DOWNSPREAD_CTRL, link_config, 2);
2561
2562         DP |= DP_PORT_EN;
2563
2564         /* clock recovery */
2565         if (!intel_dp_reset_link_train(intel_dp, &DP,
2566                                        DP_TRAINING_PATTERN_1 |
2567                                        DP_LINK_SCRAMBLING_DISABLE)) {
2568                 DRM_ERROR("failed to enable link training\n");
2569                 return;
2570         }
2571
2572         voltage = 0xff;
2573         voltage_tries = 0;
2574         loop_tries = 0;
2575         for (;;) {
2576                 uint8_t link_status[DP_LINK_STATUS_SIZE];
2577
2578                 drm_dp_link_train_clock_recovery_delay(intel_dp->dpcd);
2579                 if (!intel_dp_get_link_status(intel_dp, link_status)) {
2580                         DRM_ERROR("failed to get link status\n");
2581                         break;
2582                 }
2583
2584                 if (drm_dp_clock_recovery_ok(link_status, intel_dp->lane_count)) {
2585                         DRM_DEBUG_KMS("clock recovery OK\n");
2586                         break;
2587                 }
2588
2589                 /* Check to see if we've tried the max voltage */
2590                 for (i = 0; i < intel_dp->lane_count; i++)
2591                         if ((intel_dp->train_set[i] & DP_TRAIN_MAX_SWING_REACHED) == 0)
2592                                 break;
2593                 if (i == intel_dp->lane_count) {
2594                         ++loop_tries;
2595                         if (loop_tries == 5) {
2596                                 DRM_ERROR("too many full retries, give up\n");
2597                                 break;
2598                         }
2599                         intel_dp_reset_link_train(intel_dp, &DP,
2600                                                   DP_TRAINING_PATTERN_1 |
2601                                                   DP_LINK_SCRAMBLING_DISABLE);
2602                         voltage_tries = 0;
2603                         continue;
2604                 }
2605
2606                 /* Check to see if we've tried the same voltage 5 times */
2607                 if ((intel_dp->train_set[0] & DP_TRAIN_VOLTAGE_SWING_MASK) == voltage) {
2608                         ++voltage_tries;
2609                         if (voltage_tries == 5) {
2610                                 DRM_ERROR("too many voltage retries, give up\n");
2611                                 break;
2612                         }
2613                 } else
2614                         voltage_tries = 0;
2615                 voltage = intel_dp->train_set[0] & DP_TRAIN_VOLTAGE_SWING_MASK;
2616
2617                 /* Update training set as requested by target */
2618                 if (!intel_dp_update_link_train(intel_dp, &DP, link_status)) {
2619                         DRM_ERROR("failed to update link training\n");
2620                         break;
2621                 }
2622         }
2623
2624         intel_dp->DP = DP;
2625 }
2626
2627 void
2628 intel_dp_complete_link_train(struct intel_dp *intel_dp)
2629 {
2630         bool channel_eq = false;
2631         int tries, cr_tries;
2632         uint32_t DP = intel_dp->DP;
2633
2634         /* channel equalization */
2635         if (!intel_dp_set_link_train(intel_dp, &DP,
2636                                      DP_TRAINING_PATTERN_2 |
2637                                      DP_LINK_SCRAMBLING_DISABLE)) {
2638                 DRM_ERROR("failed to start channel equalization\n");
2639                 return;
2640         }
2641
2642         tries = 0;
2643         cr_tries = 0;
2644         channel_eq = false;
2645         for (;;) {
2646                 uint8_t link_status[DP_LINK_STATUS_SIZE];
2647
2648                 if (cr_tries > 5) {
2649                         DRM_ERROR("failed to train DP, aborting\n");
2650                         break;
2651                 }
2652
2653                 drm_dp_link_train_channel_eq_delay(intel_dp->dpcd);
2654                 if (!intel_dp_get_link_status(intel_dp, link_status)) {
2655                         DRM_ERROR("failed to get link status\n");
2656                         break;
2657                 }
2658
2659                 /* Make sure clock is still ok */
2660                 if (!drm_dp_clock_recovery_ok(link_status, intel_dp->lane_count)) {
2661                         intel_dp_start_link_train(intel_dp);
2662                         intel_dp_set_link_train(intel_dp, &DP,
2663                                                 DP_TRAINING_PATTERN_2 |
2664                                                 DP_LINK_SCRAMBLING_DISABLE);
2665                         cr_tries++;
2666                         continue;
2667                 }
2668
2669                 if (drm_dp_channel_eq_ok(link_status, intel_dp->lane_count)) {
2670                         channel_eq = true;
2671                         break;
2672                 }
2673
2674                 /* Try 5 times, then try clock recovery if that fails */
2675                 if (tries > 5) {
2676                         intel_dp_link_down(intel_dp);
2677                         intel_dp_start_link_train(intel_dp);
2678                         intel_dp_set_link_train(intel_dp, &DP,
2679                                                 DP_TRAINING_PATTERN_2 |
2680                                                 DP_LINK_SCRAMBLING_DISABLE);
2681                         tries = 0;
2682                         cr_tries++;
2683                         continue;
2684                 }
2685
2686                 /* Update training set as requested by target */
2687                 if (!intel_dp_update_link_train(intel_dp, &DP, link_status)) {
2688                         DRM_ERROR("failed to update link training\n");
2689                         break;
2690                 }
2691                 ++tries;
2692         }
2693
2694         intel_dp_set_idle_link_train(intel_dp);
2695
2696         intel_dp->DP = DP;
2697
2698         if (channel_eq)
2699                 DRM_DEBUG_KMS("Channel EQ done. DP Training successful\n");
2700
2701 }
2702
2703 void intel_dp_stop_link_train(struct intel_dp *intel_dp)
2704 {
2705         intel_dp_set_link_train(intel_dp, &intel_dp->DP,
2706                                 DP_TRAINING_PATTERN_DISABLE);
2707 }
2708
2709 static void
2710 intel_dp_link_down(struct intel_dp *intel_dp)
2711 {
2712         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
2713         enum port port = intel_dig_port->port;
2714         struct drm_device *dev = intel_dig_port->base.base.dev;
2715         struct drm_i915_private *dev_priv = dev->dev_private;
2716         struct intel_crtc *intel_crtc =
2717                 to_intel_crtc(intel_dig_port->base.base.crtc);
2718         uint32_t DP = intel_dp->DP;
2719
2720         /*
2721          * DDI code has a strict mode set sequence and we should try to respect
2722          * it, otherwise we might hang the machine in many different ways. So we
2723          * really should be disabling the port only on a complete crtc_disable
2724          * sequence. This function is just called under two conditions on DDI
2725          * code:
2726          * - Link train failed while doing crtc_enable, and on this case we
2727          *   really should respect the mode set sequence and wait for a
2728          *   crtc_disable.
2729          * - Someone turned the monitor off and intel_dp_check_link_status
2730          *   called us. We don't need to disable the whole port on this case, so
2731          *   when someone turns the monitor on again,
2732          *   intel_ddi_prepare_link_retrain will take care of redoing the link
2733          *   train.
2734          */
2735         if (HAS_DDI(dev))
2736                 return;
2737
2738         if (WARN_ON((I915_READ(intel_dp->output_reg) & DP_PORT_EN) == 0))
2739                 return;
2740
2741         DRM_DEBUG_KMS("\n");
2742
2743         if (HAS_PCH_CPT(dev) && (IS_GEN7(dev) || port != PORT_A)) {
2744                 DP &= ~DP_LINK_TRAIN_MASK_CPT;
2745                 I915_WRITE(intel_dp->output_reg, DP | DP_LINK_TRAIN_PAT_IDLE_CPT);
2746         } else {
2747                 DP &= ~DP_LINK_TRAIN_MASK;
2748                 I915_WRITE(intel_dp->output_reg, DP | DP_LINK_TRAIN_PAT_IDLE);
2749         }
2750         POSTING_READ(intel_dp->output_reg);
2751
2752         /* We don't really know why we're doing this */
2753         intel_wait_for_vblank(dev, intel_crtc->pipe);
2754
2755         if (HAS_PCH_IBX(dev) &&
2756             I915_READ(intel_dp->output_reg) & DP_PIPEB_SELECT) {
2757                 struct drm_crtc *crtc = intel_dig_port->base.base.crtc;
2758
2759                 /* Hardware workaround: leaving our transcoder select
2760                  * set to transcoder B while it's off will prevent the
2761                  * corresponding HDMI output on transcoder A.
2762                  *
2763                  * Combine this with another hardware workaround:
2764                  * transcoder select bit can only be cleared while the
2765                  * port is enabled.
2766                  */
2767                 DP &= ~DP_PIPEB_SELECT;
2768                 I915_WRITE(intel_dp->output_reg, DP);
2769
2770                 /* Changes to enable or select take place the vblank
2771                  * after being written.
2772                  */
2773                 if (WARN_ON(crtc == NULL)) {
2774                         /* We should never try to disable a port without a crtc
2775                          * attached. For paranoia keep the code around for a
2776                          * bit. */
2777                         POSTING_READ(intel_dp->output_reg);
2778                         msleep(50);
2779                 } else
2780                         intel_wait_for_vblank(dev, intel_crtc->pipe);
2781         }
2782
2783         DP &= ~DP_AUDIO_OUTPUT_ENABLE;
2784         I915_WRITE(intel_dp->output_reg, DP & ~DP_PORT_EN);
2785         POSTING_READ(intel_dp->output_reg);
2786         msleep(intel_dp->panel_power_down_delay);
2787 }
2788
2789 static bool
2790 intel_dp_get_dpcd(struct intel_dp *intel_dp)
2791 {
2792         struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
2793         struct drm_device *dev = dig_port->base.base.dev;
2794         struct drm_i915_private *dev_priv = dev->dev_private;
2795
2796         char dpcd_hex_dump[sizeof(intel_dp->dpcd) * 3];
2797
2798         if (intel_dp_aux_native_read_retry(intel_dp, 0x000, intel_dp->dpcd,
2799                                            sizeof(intel_dp->dpcd)) == 0)
2800                 return false; /* aux transfer failed */
2801
2802         hex_dump_to_buffer(intel_dp->dpcd, sizeof(intel_dp->dpcd),
2803                            32, 1, dpcd_hex_dump, sizeof(dpcd_hex_dump), false);
2804         DRM_DEBUG_KMS("DPCD: %s\n", dpcd_hex_dump);
2805
2806         if (intel_dp->dpcd[DP_DPCD_REV] == 0)
2807                 return false; /* DPCD not present */
2808
2809         /* Check if the panel supports PSR */
2810         memset(intel_dp->psr_dpcd, 0, sizeof(intel_dp->psr_dpcd));
2811         if (is_edp(intel_dp)) {
2812                 intel_dp_aux_native_read_retry(intel_dp, DP_PSR_SUPPORT,
2813                                                intel_dp->psr_dpcd,
2814                                                sizeof(intel_dp->psr_dpcd));
2815                 if (intel_dp->psr_dpcd[0] & DP_PSR_IS_SUPPORTED) {
2816                         dev_priv->psr.sink_support = true;
2817                         DRM_DEBUG_KMS("Detected EDP PSR Panel.\n");
2818                 }
2819         }
2820
2821         if (!(intel_dp->dpcd[DP_DOWNSTREAMPORT_PRESENT] &
2822               DP_DWN_STRM_PORT_PRESENT))
2823                 return true; /* native DP sink */
2824
2825         if (intel_dp->dpcd[DP_DPCD_REV] == 0x10)
2826                 return true; /* no per-port downstream info */
2827
2828         if (intel_dp_aux_native_read_retry(intel_dp, DP_DOWNSTREAM_PORT_0,
2829                                            intel_dp->downstream_ports,
2830                                            DP_MAX_DOWNSTREAM_PORTS) == 0)
2831                 return false; /* downstream port status fetch failed */
2832
2833         return true;
2834 }
2835
2836 static void
2837 intel_dp_probe_oui(struct intel_dp *intel_dp)
2838 {
2839         u8 buf[3];
2840
2841         if (!(intel_dp->dpcd[DP_DOWN_STREAM_PORT_COUNT] & DP_OUI_SUPPORT))
2842                 return;
2843
2844         ironlake_edp_panel_vdd_on(intel_dp);
2845
2846         if (intel_dp_aux_native_read_retry(intel_dp, DP_SINK_OUI, buf, 3))
2847                 DRM_DEBUG_KMS("Sink OUI: %02hx%02hx%02hx\n",
2848                               buf[0], buf[1], buf[2]);
2849
2850         if (intel_dp_aux_native_read_retry(intel_dp, DP_BRANCH_OUI, buf, 3))
2851                 DRM_DEBUG_KMS("Branch OUI: %02hx%02hx%02hx\n",
2852                               buf[0], buf[1], buf[2]);
2853
2854         ironlake_edp_panel_vdd_off(intel_dp, false);
2855 }
2856
2857 static bool
2858 intel_dp_get_sink_irq(struct intel_dp *intel_dp, u8 *sink_irq_vector)
2859 {
2860         int ret;
2861
2862         ret = intel_dp_aux_native_read_retry(intel_dp,
2863                                              DP_DEVICE_SERVICE_IRQ_VECTOR,
2864                                              sink_irq_vector, 1);
2865         if (!ret)
2866                 return false;
2867
2868         return true;
2869 }
2870
2871 static void
2872 intel_dp_handle_test_request(struct intel_dp *intel_dp)
2873 {
2874         /* NAK by default */
2875         intel_dp_aux_native_write_1(intel_dp, DP_TEST_RESPONSE, DP_TEST_NAK);
2876 }
2877
2878 /*
2879  * According to DP spec
2880  * 5.1.2:
2881  *  1. Read DPCD
2882  *  2. Configure link according to Receiver Capabilities
2883  *  3. Use Link Training from 2.5.3.3 and 3.5.1.3
2884  *  4. Check link status on receipt of hot-plug interrupt
2885  */
2886
2887 void
2888 intel_dp_check_link_status(struct intel_dp *intel_dp)
2889 {
2890         struct intel_encoder *intel_encoder = &dp_to_dig_port(intel_dp)->base;
2891         u8 sink_irq_vector;
2892         u8 link_status[DP_LINK_STATUS_SIZE];
2893
2894         if (!intel_encoder->connectors_active)
2895                 return;
2896
2897         if (WARN_ON(!intel_encoder->base.crtc))
2898                 return;
2899
2900         /* Try to read receiver status if the link appears to be up */
2901         if (!intel_dp_get_link_status(intel_dp, link_status)) {
2902                 return;
2903         }
2904
2905         /* Now read the DPCD to see if it's actually running */
2906         if (!intel_dp_get_dpcd(intel_dp)) {
2907                 return;
2908         }
2909
2910         /* Try to read the source of the interrupt */
2911         if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11 &&
2912             intel_dp_get_sink_irq(intel_dp, &sink_irq_vector)) {
2913                 /* Clear interrupt source */
2914                 intel_dp_aux_native_write_1(intel_dp,
2915                                             DP_DEVICE_SERVICE_IRQ_VECTOR,
2916                                             sink_irq_vector);
2917
2918                 if (sink_irq_vector & DP_AUTOMATED_TEST_REQUEST)
2919                         intel_dp_handle_test_request(intel_dp);
2920                 if (sink_irq_vector & (DP_CP_IRQ | DP_SINK_SPECIFIC_IRQ))
2921                         DRM_DEBUG_DRIVER("CP or sink specific irq unhandled\n");
2922         }
2923
2924         if (!drm_dp_channel_eq_ok(link_status, intel_dp->lane_count)) {
2925                 DRM_DEBUG_KMS("%s: channel EQ not ok, retraining\n",
2926                               drm_get_encoder_name(&intel_encoder->base));
2927                 intel_dp_start_link_train(intel_dp);
2928                 intel_dp_complete_link_train(intel_dp);
2929                 intel_dp_stop_link_train(intel_dp);
2930         }
2931 }
2932
2933 /* XXX this is probably wrong for multiple downstream ports */
2934 static enum drm_connector_status
2935 intel_dp_detect_dpcd(struct intel_dp *intel_dp)
2936 {
2937         uint8_t *dpcd = intel_dp->dpcd;
2938         uint8_t type;
2939
2940         if (!intel_dp_get_dpcd(intel_dp))
2941                 return connector_status_disconnected;
2942
2943         /* if there's no downstream port, we're done */
2944         if (!(dpcd[DP_DOWNSTREAMPORT_PRESENT] & DP_DWN_STRM_PORT_PRESENT))
2945                 return connector_status_connected;
2946
2947         /* If we're HPD-aware, SINK_COUNT changes dynamically */
2948         if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11 &&
2949             intel_dp->downstream_ports[0] & DP_DS_PORT_HPD) {
2950                 uint8_t reg;
2951                 if (!intel_dp_aux_native_read_retry(intel_dp, DP_SINK_COUNT,
2952                                                     &reg, 1))
2953                         return connector_status_unknown;
2954                 return DP_GET_SINK_COUNT(reg) ? connector_status_connected
2955                                               : connector_status_disconnected;
2956         }
2957
2958         /* If no HPD, poke DDC gently */
2959         if (drm_probe_ddc(&intel_dp->adapter))
2960                 return connector_status_connected;
2961
2962         /* Well we tried, say unknown for unreliable port types */
2963         if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11) {
2964                 type = intel_dp->downstream_ports[0] & DP_DS_PORT_TYPE_MASK;
2965                 if (type == DP_DS_PORT_TYPE_VGA ||
2966                     type == DP_DS_PORT_TYPE_NON_EDID)
2967                         return connector_status_unknown;
2968         } else {
2969                 type = intel_dp->dpcd[DP_DOWNSTREAMPORT_PRESENT] &
2970                         DP_DWN_STRM_PORT_TYPE_MASK;
2971                 if (type == DP_DWN_STRM_PORT_TYPE_ANALOG ||
2972                     type == DP_DWN_STRM_PORT_TYPE_OTHER)
2973                         return connector_status_unknown;
2974         }
2975
2976         /* Anything else is out of spec, warn and ignore */
2977         DRM_DEBUG_KMS("Broken DP branch device, ignoring\n");
2978         return connector_status_disconnected;
2979 }
2980
2981 static enum drm_connector_status
2982 ironlake_dp_detect(struct intel_dp *intel_dp)
2983 {
2984         struct drm_device *dev = intel_dp_to_dev(intel_dp);
2985         struct drm_i915_private *dev_priv = dev->dev_private;
2986         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
2987         enum drm_connector_status status;
2988
2989         /* Can't disconnect eDP, but you can close the lid... */
2990         if (is_edp(intel_dp)) {
2991                 status = intel_panel_detect(dev);
2992                 if (status == connector_status_unknown)
2993                         status = connector_status_connected;
2994                 return status;
2995         }
2996
2997         if (!ibx_digital_port_connected(dev_priv, intel_dig_port))
2998                 return connector_status_disconnected;
2999
3000         return intel_dp_detect_dpcd(intel_dp);
3001 }
3002
3003 static enum drm_connector_status
3004 g4x_dp_detect(struct intel_dp *intel_dp)
3005 {
3006         struct drm_device *dev = intel_dp_to_dev(intel_dp);
3007         struct drm_i915_private *dev_priv = dev->dev_private;
3008         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
3009         uint32_t bit;
3010
3011         /* Can't disconnect eDP, but you can close the lid... */
3012         if (is_edp(intel_dp)) {
3013                 enum drm_connector_status status;
3014
3015                 status = intel_panel_detect(dev);
3016                 if (status == connector_status_unknown)
3017                         status = connector_status_connected;
3018                 return status;
3019         }
3020
3021         if (IS_VALLEYVIEW(dev)) {
3022                 switch (intel_dig_port->port) {
3023                 case PORT_B:
3024                         bit = PORTB_HOTPLUG_LIVE_STATUS_VLV;
3025                         break;
3026                 case PORT_C:
3027                         bit = PORTC_HOTPLUG_LIVE_STATUS_VLV;
3028                         break;
3029                 case PORT_D:
3030                         bit = PORTD_HOTPLUG_LIVE_STATUS_VLV;
3031                         break;
3032                 default:
3033                         return connector_status_unknown;
3034                 }
3035         } else {
3036                 switch (intel_dig_port->port) {
3037                 case PORT_B:
3038                         bit = PORTB_HOTPLUG_LIVE_STATUS_G4X;
3039                         break;
3040                 case PORT_C:
3041                         bit = PORTC_HOTPLUG_LIVE_STATUS_G4X;
3042                         break;
3043                 case PORT_D:
3044                         bit = PORTD_HOTPLUG_LIVE_STATUS_G4X;
3045                         break;
3046                 default:
3047                         return connector_status_unknown;
3048                 }
3049         }
3050
3051         if ((I915_READ(PORT_HOTPLUG_STAT) & bit) == 0)
3052                 return connector_status_disconnected;
3053
3054         return intel_dp_detect_dpcd(intel_dp);
3055 }
3056
3057 static struct edid *
3058 intel_dp_get_edid(struct drm_connector *connector, struct i2c_adapter *adapter)
3059 {
3060         struct intel_connector *intel_connector = to_intel_connector(connector);
3061
3062         /* use cached edid if we have one */
3063         if (intel_connector->edid) {
3064                 /* invalid edid */
3065                 if (IS_ERR(intel_connector->edid))
3066                         return NULL;
3067
3068                 return drm_edid_duplicate(intel_connector->edid);
3069         }
3070
3071         return drm_get_edid(connector, adapter);
3072 }
3073
3074 static int
3075 intel_dp_get_edid_modes(struct drm_connector *connector, struct i2c_adapter *adapter)
3076 {
3077         struct intel_connector *intel_connector = to_intel_connector(connector);
3078
3079         /* use cached edid if we have one */
3080         if (intel_connector->edid) {
3081                 /* invalid edid */
3082                 if (IS_ERR(intel_connector->edid))
3083                         return 0;
3084
3085                 return intel_connector_update_modes(connector,
3086                                                     intel_connector->edid);
3087         }
3088
3089         return intel_ddc_get_modes(connector, adapter);
3090 }
3091
3092 static enum drm_connector_status
3093 intel_dp_detect(struct drm_connector *connector, bool force)
3094 {
3095         struct intel_dp *intel_dp = intel_attached_dp(connector);
3096         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
3097         struct intel_encoder *intel_encoder = &intel_dig_port->base;
3098         struct drm_device *dev = connector->dev;
3099         struct drm_i915_private *dev_priv = dev->dev_private;
3100         enum drm_connector_status status;
3101         struct edid *edid = NULL;
3102
3103         intel_runtime_pm_get(dev_priv);
3104
3105         DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n",
3106                       connector->base.id, drm_get_connector_name(connector));
3107
3108         intel_dp->has_audio = false;
3109
3110         if (HAS_PCH_SPLIT(dev))
3111                 status = ironlake_dp_detect(intel_dp);
3112         else
3113                 status = g4x_dp_detect(intel_dp);
3114
3115         if (status != connector_status_connected)
3116                 goto out;
3117
3118         intel_dp_probe_oui(intel_dp);
3119
3120         if (intel_dp->force_audio != HDMI_AUDIO_AUTO) {
3121                 intel_dp->has_audio = (intel_dp->force_audio == HDMI_AUDIO_ON);
3122         } else {
3123                 edid = intel_dp_get_edid(connector, &intel_dp->adapter);
3124                 if (edid) {
3125                         intel_dp->has_audio = drm_detect_monitor_audio(edid);
3126                         kfree(edid);
3127                 }
3128         }
3129
3130         if (intel_encoder->type != INTEL_OUTPUT_EDP)
3131                 intel_encoder->type = INTEL_OUTPUT_DISPLAYPORT;
3132         status = connector_status_connected;
3133
3134 out:
3135         intel_runtime_pm_put(dev_priv);
3136         return status;
3137 }
3138
3139 static int intel_dp_get_modes(struct drm_connector *connector)
3140 {
3141         struct intel_dp *intel_dp = intel_attached_dp(connector);
3142         struct intel_connector *intel_connector = to_intel_connector(connector);
3143         struct drm_device *dev = connector->dev;
3144         int ret;
3145
3146         /* We should parse the EDID data and find out if it has an audio sink
3147          */
3148
3149         ret = intel_dp_get_edid_modes(connector, &intel_dp->adapter);
3150         if (ret)
3151                 return ret;
3152
3153         /* if eDP has no EDID, fall back to fixed mode */
3154         if (is_edp(intel_dp) && intel_connector->panel.fixed_mode) {
3155                 struct drm_display_mode *mode;
3156                 mode = drm_mode_duplicate(dev,
3157                                           intel_connector->panel.fixed_mode);
3158                 if (mode) {
3159                         drm_mode_probed_add(connector, mode);
3160                         return 1;
3161                 }
3162         }
3163         return 0;
3164 }
3165
3166 static bool
3167 intel_dp_detect_audio(struct drm_connector *connector)
3168 {
3169         struct intel_dp *intel_dp = intel_attached_dp(connector);
3170         struct edid *edid;
3171         bool has_audio = false;
3172
3173         edid = intel_dp_get_edid(connector, &intel_dp->adapter);
3174         if (edid) {
3175                 has_audio = drm_detect_monitor_audio(edid);
3176                 kfree(edid);
3177         }
3178
3179         return has_audio;
3180 }
3181
3182 static int
3183 intel_dp_set_property(struct drm_connector *connector,
3184                       struct drm_property *property,
3185                       uint64_t val)
3186 {
3187         struct drm_i915_private *dev_priv = connector->dev->dev_private;
3188         struct intel_connector *intel_connector = to_intel_connector(connector);
3189         struct intel_encoder *intel_encoder = intel_attached_encoder(connector);
3190         struct intel_dp *intel_dp = enc_to_intel_dp(&intel_encoder->base);
3191         int ret;
3192
3193         ret = drm_object_property_set_value(&connector->base, property, val);
3194         if (ret)
3195                 return ret;
3196
3197         if (property == dev_priv->force_audio_property) {
3198                 int i = val;
3199                 bool has_audio;
3200
3201                 if (i == intel_dp->force_audio)
3202                         return 0;
3203
3204                 intel_dp->force_audio = i;
3205
3206                 if (i == HDMI_AUDIO_AUTO)
3207                         has_audio = intel_dp_detect_audio(connector);
3208                 else
3209                         has_audio = (i == HDMI_AUDIO_ON);
3210
3211                 if (has_audio == intel_dp->has_audio)
3212                         return 0;
3213
3214                 intel_dp->has_audio = has_audio;
3215                 goto done;
3216         }
3217
3218         if (property == dev_priv->broadcast_rgb_property) {
3219                 bool old_auto = intel_dp->color_range_auto;
3220                 uint32_t old_range = intel_dp->color_range;
3221
3222                 switch (val) {
3223                 case INTEL_BROADCAST_RGB_AUTO:
3224                         intel_dp->color_range_auto = true;
3225                         break;
3226                 case INTEL_BROADCAST_RGB_FULL:
3227                         intel_dp->color_range_auto = false;
3228                         intel_dp->color_range = 0;
3229                         break;
3230                 case INTEL_BROADCAST_RGB_LIMITED:
3231                         intel_dp->color_range_auto = false;
3232                         intel_dp->color_range = DP_COLOR_RANGE_16_235;
3233                         break;
3234                 default:
3235                         return -EINVAL;
3236                 }
3237
3238                 if (old_auto == intel_dp->color_range_auto &&
3239                     old_range == intel_dp->color_range)
3240                         return 0;
3241
3242                 goto done;
3243         }
3244
3245         if (is_edp(intel_dp) &&
3246             property == connector->dev->mode_config.scaling_mode_property) {
3247                 if (val == DRM_MODE_SCALE_NONE) {
3248                         DRM_DEBUG_KMS("no scaling not supported\n");
3249                         return -EINVAL;
3250                 }
3251
3252                 if (intel_connector->panel.fitting_mode == val) {
3253                         /* the eDP scaling property is not changed */
3254                         return 0;
3255                 }
3256                 intel_connector->panel.fitting_mode = val;
3257
3258                 goto done;
3259         }
3260
3261         return -EINVAL;
3262
3263 done:
3264         if (intel_encoder->base.crtc)
3265                 intel_crtc_restore_mode(intel_encoder->base.crtc);
3266
3267         return 0;
3268 }
3269
3270 static void
3271 intel_dp_connector_destroy(struct drm_connector *connector)
3272 {
3273         struct intel_connector *intel_connector = to_intel_connector(connector);
3274
3275         if (!IS_ERR_OR_NULL(intel_connector->edid))
3276                 kfree(intel_connector->edid);
3277
3278         /* Can't call is_edp() since the encoder may have been destroyed
3279          * already. */
3280         if (connector->connector_type == DRM_MODE_CONNECTOR_eDP)
3281                 intel_panel_fini(&intel_connector->panel);
3282
3283         drm_connector_cleanup(connector);
3284         kfree(connector);
3285 }
3286
3287 void intel_dp_encoder_destroy(struct drm_encoder *encoder)
3288 {
3289         struct intel_digital_port *intel_dig_port = enc_to_dig_port(encoder);
3290         struct intel_dp *intel_dp = &intel_dig_port->dp;
3291         struct drm_device *dev = intel_dp_to_dev(intel_dp);
3292
3293         i2c_del_adapter(&intel_dp->adapter);
3294         drm_encoder_cleanup(encoder);
3295         if (is_edp(intel_dp)) {
3296                 cancel_delayed_work_sync(&intel_dp->panel_vdd_work);
3297                 mutex_lock(&dev->mode_config.mutex);
3298                 ironlake_panel_vdd_off_sync(intel_dp);
3299                 mutex_unlock(&dev->mode_config.mutex);
3300         }
3301         kfree(intel_dig_port);
3302 }
3303
3304 static const struct drm_connector_funcs intel_dp_connector_funcs = {
3305         .dpms = intel_connector_dpms,
3306         .detect = intel_dp_detect,
3307         .fill_modes = drm_helper_probe_single_connector_modes,
3308         .set_property = intel_dp_set_property,
3309         .destroy = intel_dp_connector_destroy,
3310 };
3311
3312 static const struct drm_connector_helper_funcs intel_dp_connector_helper_funcs = {
3313         .get_modes = intel_dp_get_modes,
3314         .mode_valid = intel_dp_mode_valid,
3315         .best_encoder = intel_best_encoder,
3316 };
3317
3318 static const struct drm_encoder_funcs intel_dp_enc_funcs = {
3319         .destroy = intel_dp_encoder_destroy,
3320 };
3321
3322 static void
3323 intel_dp_hot_plug(struct intel_encoder *intel_encoder)
3324 {
3325         struct intel_dp *intel_dp = enc_to_intel_dp(&intel_encoder->base);
3326
3327         intel_dp_check_link_status(intel_dp);
3328 }
3329
3330 /* Return which DP Port should be selected for Transcoder DP control */
3331 int
3332 intel_trans_dp_port_sel(struct drm_crtc *crtc)
3333 {
3334         struct drm_device *dev = crtc->dev;
3335         struct intel_encoder *intel_encoder;
3336         struct intel_dp *intel_dp;
3337
3338         for_each_encoder_on_crtc(dev, crtc, intel_encoder) {
3339                 intel_dp = enc_to_intel_dp(&intel_encoder->base);
3340
3341                 if (intel_encoder->type == INTEL_OUTPUT_DISPLAYPORT ||
3342                     intel_encoder->type == INTEL_OUTPUT_EDP)
3343                         return intel_dp->output_reg;
3344         }
3345
3346         return -1;
3347 }
3348
3349 /* check the VBT to see whether the eDP is on DP-D port */
3350 bool intel_dp_is_edp(struct drm_device *dev, enum port port)
3351 {
3352         struct drm_i915_private *dev_priv = dev->dev_private;
3353         union child_device_config *p_child;
3354         int i;
3355         static const short port_mapping[] = {
3356                 [PORT_B] = PORT_IDPB,
3357                 [PORT_C] = PORT_IDPC,
3358                 [PORT_D] = PORT_IDPD,
3359         };
3360
3361         if (port == PORT_A)
3362                 return true;
3363
3364         if (!dev_priv->vbt.child_dev_num)
3365                 return false;
3366
3367         for (i = 0; i < dev_priv->vbt.child_dev_num; i++) {
3368                 p_child = dev_priv->vbt.child_dev + i;
3369
3370                 if (p_child->common.dvo_port == port_mapping[port] &&
3371                     (p_child->common.device_type & DEVICE_TYPE_eDP_BITS) ==
3372                     (DEVICE_TYPE_eDP & DEVICE_TYPE_eDP_BITS))
3373                         return true;
3374         }
3375         return false;
3376 }
3377
3378 static void
3379 intel_dp_add_properties(struct intel_dp *intel_dp, struct drm_connector *connector)
3380 {
3381         struct intel_connector *intel_connector = to_intel_connector(connector);
3382
3383         intel_attach_force_audio_property(connector);
3384         intel_attach_broadcast_rgb_property(connector);
3385         intel_dp->color_range_auto = true;
3386
3387         if (is_edp(intel_dp)) {
3388                 drm_mode_create_scaling_mode_property(connector->dev);
3389                 drm_object_attach_property(
3390                         &connector->base,
3391                         connector->dev->mode_config.scaling_mode_property,
3392                         DRM_MODE_SCALE_ASPECT);
3393                 intel_connector->panel.fitting_mode = DRM_MODE_SCALE_ASPECT;
3394         }
3395 }
3396
3397 static void
3398 intel_dp_init_panel_power_sequencer(struct drm_device *dev,
3399                                     struct intel_dp *intel_dp,
3400                                     struct edp_power_seq *out)
3401 {
3402         struct drm_i915_private *dev_priv = dev->dev_private;
3403         struct edp_power_seq cur, vbt, spec, final;
3404         u32 pp_on, pp_off, pp_div, pp;
3405         int pp_ctrl_reg, pp_on_reg, pp_off_reg, pp_div_reg;
3406
3407         if (HAS_PCH_SPLIT(dev)) {
3408                 pp_ctrl_reg = PCH_PP_CONTROL;
3409                 pp_on_reg = PCH_PP_ON_DELAYS;
3410                 pp_off_reg = PCH_PP_OFF_DELAYS;
3411                 pp_div_reg = PCH_PP_DIVISOR;
3412         } else {
3413                 enum pipe pipe = vlv_power_sequencer_pipe(intel_dp);
3414
3415                 pp_ctrl_reg = VLV_PIPE_PP_CONTROL(pipe);
3416                 pp_on_reg = VLV_PIPE_PP_ON_DELAYS(pipe);
3417                 pp_off_reg = VLV_PIPE_PP_OFF_DELAYS(pipe);
3418                 pp_div_reg = VLV_PIPE_PP_DIVISOR(pipe);
3419         }
3420
3421         /* Workaround: Need to write PP_CONTROL with the unlock key as
3422          * the very first thing. */
3423         pp = ironlake_get_pp_control(intel_dp);
3424         I915_WRITE(pp_ctrl_reg, pp);
3425
3426         pp_on = I915_READ(pp_on_reg);
3427         pp_off = I915_READ(pp_off_reg);
3428         pp_div = I915_READ(pp_div_reg);
3429
3430         /* Pull timing values out of registers */
3431         cur.t1_t3 = (pp_on & PANEL_POWER_UP_DELAY_MASK) >>
3432                 PANEL_POWER_UP_DELAY_SHIFT;
3433
3434         cur.t8 = (pp_on & PANEL_LIGHT_ON_DELAY_MASK) >>
3435                 PANEL_LIGHT_ON_DELAY_SHIFT;
3436
3437         cur.t9 = (pp_off & PANEL_LIGHT_OFF_DELAY_MASK) >>
3438                 PANEL_LIGHT_OFF_DELAY_SHIFT;
3439
3440         cur.t10 = (pp_off & PANEL_POWER_DOWN_DELAY_MASK) >>
3441                 PANEL_POWER_DOWN_DELAY_SHIFT;
3442
3443         cur.t11_t12 = ((pp_div & PANEL_POWER_CYCLE_DELAY_MASK) >>
3444                        PANEL_POWER_CYCLE_DELAY_SHIFT) * 1000;
3445
3446         DRM_DEBUG_KMS("cur t1_t3 %d t8 %d t9 %d t10 %d t11_t12 %d\n",
3447                       cur.t1_t3, cur.t8, cur.t9, cur.t10, cur.t11_t12);
3448
3449         vbt = dev_priv->vbt.edp_pps;
3450
3451         /* Upper limits from eDP 1.3 spec. Note that we use the clunky units of
3452          * our hw here, which are all in 100usec. */
3453         spec.t1_t3 = 210 * 10;
3454         spec.t8 = 50 * 10; /* no limit for t8, use t7 instead */
3455         spec.t9 = 50 * 10; /* no limit for t9, make it symmetric with t8 */
3456         spec.t10 = 500 * 10;
3457         /* This one is special and actually in units of 100ms, but zero
3458          * based in the hw (so we need to add 100 ms). But the sw vbt
3459          * table multiplies it with 1000 to make it in units of 100usec,
3460          * too. */
3461         spec.t11_t12 = (510 + 100) * 10;
3462
3463         DRM_DEBUG_KMS("vbt t1_t3 %d t8 %d t9 %d t10 %d t11_t12 %d\n",
3464                       vbt.t1_t3, vbt.t8, vbt.t9, vbt.t10, vbt.t11_t12);
3465
3466         /* Use the max of the register settings and vbt. If both are
3467          * unset, fall back to the spec limits. */
3468 #define assign_final(field)     final.field = (max(cur.field, vbt.field) == 0 ? \
3469                                        spec.field : \
3470                                        max(cur.field, vbt.field))
3471         assign_final(t1_t3);
3472         assign_final(t8);
3473         assign_final(t9);
3474         assign_final(t10);
3475         assign_final(t11_t12);
3476 #undef assign_final
3477
3478 #define get_delay(field)        (DIV_ROUND_UP(final.field, 10))
3479         intel_dp->panel_power_up_delay = get_delay(t1_t3);
3480         intel_dp->backlight_on_delay = get_delay(t8);
3481         intel_dp->backlight_off_delay = get_delay(t9);
3482         intel_dp->panel_power_down_delay = get_delay(t10);
3483         intel_dp->panel_power_cycle_delay = get_delay(t11_t12);
3484 #undef get_delay
3485
3486         DRM_DEBUG_KMS("panel power up delay %d, power down delay %d, power cycle delay %d\n",
3487                       intel_dp->panel_power_up_delay, intel_dp->panel_power_down_delay,
3488                       intel_dp->panel_power_cycle_delay);
3489
3490         DRM_DEBUG_KMS("backlight on delay %d, off delay %d\n",
3491                       intel_dp->backlight_on_delay, intel_dp->backlight_off_delay);
3492
3493         if (out)
3494                 *out = final;
3495 }
3496
3497 static void
3498 intel_dp_init_panel_power_sequencer_registers(struct drm_device *dev,
3499                                               struct intel_dp *intel_dp,
3500                                               struct edp_power_seq *seq)
3501 {
3502         struct drm_i915_private *dev_priv = dev->dev_private;
3503         u32 pp_on, pp_off, pp_div, port_sel = 0;
3504         int div = HAS_PCH_SPLIT(dev) ? intel_pch_rawclk(dev) : intel_hrawclk(dev);
3505         int pp_on_reg, pp_off_reg, pp_div_reg;
3506
3507         if (HAS_PCH_SPLIT(dev)) {
3508                 pp_on_reg = PCH_PP_ON_DELAYS;
3509                 pp_off_reg = PCH_PP_OFF_DELAYS;
3510                 pp_div_reg = PCH_PP_DIVISOR;
3511         } else {
3512                 enum pipe pipe = vlv_power_sequencer_pipe(intel_dp);
3513
3514                 pp_on_reg = VLV_PIPE_PP_ON_DELAYS(pipe);
3515                 pp_off_reg = VLV_PIPE_PP_OFF_DELAYS(pipe);
3516                 pp_div_reg = VLV_PIPE_PP_DIVISOR(pipe);
3517         }
3518
3519         /* And finally store the new values in the power sequencer. */
3520         pp_on = (seq->t1_t3 << PANEL_POWER_UP_DELAY_SHIFT) |
3521                 (seq->t8 << PANEL_LIGHT_ON_DELAY_SHIFT);
3522         pp_off = (seq->t9 << PANEL_LIGHT_OFF_DELAY_SHIFT) |
3523                  (seq->t10 << PANEL_POWER_DOWN_DELAY_SHIFT);
3524         /* Compute the divisor for the pp clock, simply match the Bspec
3525          * formula. */
3526         pp_div = ((100 * div)/2 - 1) << PP_REFERENCE_DIVIDER_SHIFT;
3527         pp_div |= (DIV_ROUND_UP(seq->t11_t12, 1000)
3528                         << PANEL_POWER_CYCLE_DELAY_SHIFT);
3529
3530         /* Haswell doesn't have any port selection bits for the panel
3531          * power sequencer any more. */
3532         if (IS_VALLEYVIEW(dev)) {
3533                 if (dp_to_dig_port(intel_dp)->port == PORT_B)
3534                         port_sel = PANEL_PORT_SELECT_DPB_VLV;
3535                 else
3536                         port_sel = PANEL_PORT_SELECT_DPC_VLV;
3537         } else if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev)) {
3538                 if (dp_to_dig_port(intel_dp)->port == PORT_A)
3539                         port_sel = PANEL_PORT_SELECT_DPA;
3540                 else
3541                         port_sel = PANEL_PORT_SELECT_DPD;
3542         }
3543
3544         pp_on |= port_sel;
3545
3546         I915_WRITE(pp_on_reg, pp_on);
3547         I915_WRITE(pp_off_reg, pp_off);
3548         I915_WRITE(pp_div_reg, pp_div);
3549
3550         DRM_DEBUG_KMS("panel power sequencer register settings: PP_ON %#x, PP_OFF %#x, PP_DIV %#x\n",
3551                       I915_READ(pp_on_reg),
3552                       I915_READ(pp_off_reg),
3553                       I915_READ(pp_div_reg));
3554 }
3555
3556 static bool intel_edp_init_connector(struct intel_dp *intel_dp,
3557                                      struct intel_connector *intel_connector)
3558 {
3559         struct drm_connector *connector = &intel_connector->base;
3560         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
3561         struct drm_device *dev = intel_dig_port->base.base.dev;
3562         struct drm_i915_private *dev_priv = dev->dev_private;
3563         struct drm_display_mode *fixed_mode = NULL;
3564         struct edp_power_seq power_seq = { 0 };
3565         bool has_dpcd;
3566         struct drm_display_mode *scan;
3567         struct edid *edid;
3568
3569         if (!is_edp(intel_dp))
3570                 return true;
3571
3572         intel_dp_init_panel_power_sequencer(dev, intel_dp, &power_seq);
3573
3574         /* Cache DPCD and EDID for edp. */
3575         ironlake_edp_panel_vdd_on(intel_dp);
3576         has_dpcd = intel_dp_get_dpcd(intel_dp);
3577         ironlake_edp_panel_vdd_off(intel_dp, false);
3578
3579         if (has_dpcd) {
3580                 if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11)
3581                         dev_priv->no_aux_handshake =
3582                                 intel_dp->dpcd[DP_MAX_DOWNSPREAD] &
3583                                 DP_NO_AUX_HANDSHAKE_LINK_TRAINING;
3584         } else {
3585                 /* if this fails, presume the device is a ghost */
3586                 DRM_INFO("failed to retrieve link info, disabling eDP\n");
3587                 return false;
3588         }
3589
3590         /* We now know it's not a ghost, init power sequence regs. */
3591         intel_dp_init_panel_power_sequencer_registers(dev, intel_dp,
3592                                                       &power_seq);
3593
3594         edid = drm_get_edid(connector, &intel_dp->adapter);
3595         if (edid) {
3596                 if (drm_add_edid_modes(connector, edid)) {
3597                         drm_mode_connector_update_edid_property(connector,
3598                                                                 edid);
3599                         drm_edid_to_eld(connector, edid);
3600                 } else {
3601                         kfree(edid);
3602                         edid = ERR_PTR(-EINVAL);
3603                 }
3604         } else {
3605                 edid = ERR_PTR(-ENOENT);
3606         }
3607         intel_connector->edid = edid;
3608
3609         /* prefer fixed mode from EDID if available */
3610         list_for_each_entry(scan, &connector->probed_modes, head) {
3611                 if ((scan->type & DRM_MODE_TYPE_PREFERRED)) {
3612                         fixed_mode = drm_mode_duplicate(dev, scan);
3613                         break;
3614                 }
3615         }
3616
3617         /* fallback to VBT if available for eDP */
3618         if (!fixed_mode && dev_priv->vbt.lfp_lvds_vbt_mode) {
3619                 fixed_mode = drm_mode_duplicate(dev,
3620                                         dev_priv->vbt.lfp_lvds_vbt_mode);
3621                 if (fixed_mode)
3622                         fixed_mode->type |= DRM_MODE_TYPE_PREFERRED;
3623         }
3624
3625         intel_panel_init(&intel_connector->panel, fixed_mode);
3626         intel_panel_setup_backlight(connector);
3627
3628         return true;
3629 }
3630
3631 bool
3632 intel_dp_init_connector(struct intel_digital_port *intel_dig_port,
3633                         struct intel_connector *intel_connector)
3634 {
3635         struct drm_connector *connector = &intel_connector->base;
3636         struct intel_dp *intel_dp = &intel_dig_port->dp;
3637         struct intel_encoder *intel_encoder = &intel_dig_port->base;
3638         struct drm_device *dev = intel_encoder->base.dev;
3639         struct drm_i915_private *dev_priv = dev->dev_private;
3640         enum port port = intel_dig_port->port;
3641         const char *name = NULL;
3642         int type, error;
3643
3644         /* Preserve the current hw state. */
3645         intel_dp->DP = I915_READ(intel_dp->output_reg);
3646         intel_dp->attached_connector = intel_connector;
3647
3648         if (intel_dp_is_edp(dev, port))
3649                 type = DRM_MODE_CONNECTOR_eDP;
3650         else
3651                 type = DRM_MODE_CONNECTOR_DisplayPort;
3652
3653         /*
3654          * For eDP we always set the encoder type to INTEL_OUTPUT_EDP, but
3655          * for DP the encoder type can be set by the caller to
3656          * INTEL_OUTPUT_UNKNOWN for DDI, so don't rewrite it.
3657          */
3658         if (type == DRM_MODE_CONNECTOR_eDP)
3659                 intel_encoder->type = INTEL_OUTPUT_EDP;
3660
3661         DRM_DEBUG_KMS("Adding %s connector on port %c\n",
3662                         type == DRM_MODE_CONNECTOR_eDP ? "eDP" : "DP",
3663                         port_name(port));
3664
3665         drm_connector_init(dev, connector, &intel_dp_connector_funcs, type);
3666         drm_connector_helper_add(connector, &intel_dp_connector_helper_funcs);
3667
3668         connector->interlace_allowed = true;
3669         connector->doublescan_allowed = 0;
3670
3671         INIT_DELAYED_WORK(&intel_dp->panel_vdd_work,
3672                           ironlake_panel_vdd_work);
3673
3674         intel_connector_attach_encoder(intel_connector, intel_encoder);
3675         drm_sysfs_connector_add(connector);
3676
3677         if (HAS_DDI(dev))
3678                 intel_connector->get_hw_state = intel_ddi_connector_get_hw_state;
3679         else
3680                 intel_connector->get_hw_state = intel_connector_get_hw_state;
3681
3682         intel_dp->aux_ch_ctl_reg = intel_dp->output_reg + 0x10;
3683         if (HAS_DDI(dev)) {
3684                 switch (intel_dig_port->port) {
3685                 case PORT_A:
3686                         intel_dp->aux_ch_ctl_reg = DPA_AUX_CH_CTL;
3687                         break;
3688                 case PORT_B:
3689                         intel_dp->aux_ch_ctl_reg = PCH_DPB_AUX_CH_CTL;
3690                         break;
3691                 case PORT_C:
3692                         intel_dp->aux_ch_ctl_reg = PCH_DPC_AUX_CH_CTL;
3693                         break;
3694                 case PORT_D:
3695                         intel_dp->aux_ch_ctl_reg = PCH_DPD_AUX_CH_CTL;
3696                         break;
3697                 default:
3698                         BUG();
3699                 }
3700         }
3701
3702         /* Set up the DDC bus. */
3703         switch (port) {
3704         case PORT_A:
3705                 intel_encoder->hpd_pin = HPD_PORT_A;
3706                 name = "DPDDC-A";
3707                 break;
3708         case PORT_B:
3709                 intel_encoder->hpd_pin = HPD_PORT_B;
3710                 name = "DPDDC-B";
3711                 break;
3712         case PORT_C:
3713                 intel_encoder->hpd_pin = HPD_PORT_C;
3714                 name = "DPDDC-C";
3715                 break;
3716         case PORT_D:
3717                 intel_encoder->hpd_pin = HPD_PORT_D;
3718                 name = "DPDDC-D";
3719                 break;
3720         default:
3721                 BUG();
3722         }
3723
3724         error = intel_dp_i2c_init(intel_dp, intel_connector, name);
3725         WARN(error, "intel_dp_i2c_init failed with error %d for port %c\n",
3726              error, port_name(port));
3727
3728         intel_dp->psr_setup_done = false;
3729
3730         if (!intel_edp_init_connector(intel_dp, intel_connector)) {
3731                 i2c_del_adapter(&intel_dp->adapter);
3732                 if (is_edp(intel_dp)) {
3733                         cancel_delayed_work_sync(&intel_dp->panel_vdd_work);
3734                         mutex_lock(&dev->mode_config.mutex);
3735                         ironlake_panel_vdd_off_sync(intel_dp);
3736                         mutex_unlock(&dev->mode_config.mutex);
3737                 }
3738                 drm_sysfs_connector_remove(connector);
3739                 drm_connector_cleanup(connector);
3740                 return false;
3741         }
3742
3743         intel_dp_add_properties(intel_dp, connector);
3744
3745         /* For G4X desktop chip, PEG_BAND_GAP_DATA 3:0 must first be written
3746          * 0xd.  Failure to do so will result in spurious interrupts being
3747          * generated on the port when a cable is not attached.
3748          */
3749         if (IS_G4X(dev) && !IS_GM45(dev)) {
3750                 u32 temp = I915_READ(PEG_BAND_GAP_DATA);
3751                 I915_WRITE(PEG_BAND_GAP_DATA, (temp & ~0xf) | 0xd);
3752         }
3753
3754         return true;
3755 }
3756
3757 void
3758 intel_dp_init(struct drm_device *dev, int output_reg, enum port port)
3759 {
3760         struct intel_digital_port *intel_dig_port;
3761         struct intel_encoder *intel_encoder;
3762         struct drm_encoder *encoder;
3763         struct intel_connector *intel_connector;
3764
3765         intel_dig_port = kzalloc(sizeof(*intel_dig_port), GFP_KERNEL);
3766         if (!intel_dig_port)
3767                 return;
3768
3769         intel_connector = kzalloc(sizeof(*intel_connector), GFP_KERNEL);
3770         if (!intel_connector) {
3771                 kfree(intel_dig_port);
3772                 return;
3773         }
3774
3775         intel_encoder = &intel_dig_port->base;
3776         encoder = &intel_encoder->base;
3777
3778         drm_encoder_init(dev, &intel_encoder->base, &intel_dp_enc_funcs,
3779                          DRM_MODE_ENCODER_TMDS);
3780
3781         intel_encoder->compute_config = intel_dp_compute_config;
3782         intel_encoder->mode_set = intel_dp_mode_set;
3783         intel_encoder->disable = intel_disable_dp;
3784         intel_encoder->post_disable = intel_post_disable_dp;
3785         intel_encoder->get_hw_state = intel_dp_get_hw_state;
3786         intel_encoder->get_config = intel_dp_get_config;
3787         if (IS_VALLEYVIEW(dev)) {
3788                 intel_encoder->pre_pll_enable = vlv_dp_pre_pll_enable;
3789                 intel_encoder->pre_enable = vlv_pre_enable_dp;
3790                 intel_encoder->enable = vlv_enable_dp;
3791         } else {
3792                 intel_encoder->pre_enable = g4x_pre_enable_dp;
3793                 intel_encoder->enable = g4x_enable_dp;
3794         }
3795
3796         intel_dig_port->port = port;
3797         intel_dig_port->dp.output_reg = output_reg;
3798
3799         intel_encoder->type = INTEL_OUTPUT_DISPLAYPORT;
3800         intel_encoder->crtc_mask = (1 << 0) | (1 << 1) | (1 << 2);
3801         intel_encoder->cloneable = false;
3802         intel_encoder->hot_plug = intel_dp_hot_plug;
3803
3804         if (!intel_dp_init_connector(intel_dig_port, intel_connector)) {
3805                 drm_encoder_cleanup(encoder);
3806                 kfree(intel_dig_port);
3807                 kfree(intel_connector);
3808         }
3809 }