drm/i915: Get rid of dpms handling.
[firefly-linux-kernel-4.4.55.git] / drivers / gpu / drm / i915 / intel_display.c
1 /*
2  * Copyright © 2006-2007 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21  * DEALINGS IN THE SOFTWARE.
22  *
23  * Authors:
24  *      Eric Anholt <eric@anholt.net>
25  */
26
27 #include <linux/dmi.h>
28 #include <linux/module.h>
29 #include <linux/input.h>
30 #include <linux/i2c.h>
31 #include <linux/kernel.h>
32 #include <linux/slab.h>
33 #include <linux/vgaarb.h>
34 #include <drm/drm_edid.h>
35 #include <drm/drmP.h>
36 #include "intel_drv.h"
37 #include <drm/i915_drm.h>
38 #include "i915_drv.h"
39 #include "i915_trace.h"
40 #include <drm/drm_atomic.h>
41 #include <drm/drm_atomic_helper.h>
42 #include <drm/drm_dp_helper.h>
43 #include <drm/drm_crtc_helper.h>
44 #include <drm/drm_plane_helper.h>
45 #include <drm/drm_rect.h>
46 #include <linux/dma_remapping.h>
47
48 /* Primary plane formats for gen <= 3 */
49 static const uint32_t i8xx_primary_formats[] = {
50         DRM_FORMAT_C8,
51         DRM_FORMAT_RGB565,
52         DRM_FORMAT_XRGB1555,
53         DRM_FORMAT_XRGB8888,
54 };
55
56 /* Primary plane formats for gen >= 4 */
57 static const uint32_t i965_primary_formats[] = {
58         DRM_FORMAT_C8,
59         DRM_FORMAT_RGB565,
60         DRM_FORMAT_XRGB8888,
61         DRM_FORMAT_XBGR8888,
62         DRM_FORMAT_XRGB2101010,
63         DRM_FORMAT_XBGR2101010,
64 };
65
66 static const uint32_t skl_primary_formats[] = {
67         DRM_FORMAT_C8,
68         DRM_FORMAT_RGB565,
69         DRM_FORMAT_XRGB8888,
70         DRM_FORMAT_XBGR8888,
71         DRM_FORMAT_ARGB8888,
72         DRM_FORMAT_ABGR8888,
73         DRM_FORMAT_XRGB2101010,
74         DRM_FORMAT_XBGR2101010,
75 };
76
77 /* Cursor formats */
78 static const uint32_t intel_cursor_formats[] = {
79         DRM_FORMAT_ARGB8888,
80 };
81
82 static void intel_crtc_update_cursor(struct drm_crtc *crtc, bool on);
83
84 static void i9xx_crtc_clock_get(struct intel_crtc *crtc,
85                                 struct intel_crtc_state *pipe_config);
86 static void ironlake_pch_clock_get(struct intel_crtc *crtc,
87                                    struct intel_crtc_state *pipe_config);
88
89 static int intel_framebuffer_init(struct drm_device *dev,
90                                   struct intel_framebuffer *ifb,
91                                   struct drm_mode_fb_cmd2 *mode_cmd,
92                                   struct drm_i915_gem_object *obj);
93 static void i9xx_set_pipeconf(struct intel_crtc *intel_crtc);
94 static void intel_set_pipe_timings(struct intel_crtc *intel_crtc);
95 static void intel_cpu_transcoder_set_m_n(struct intel_crtc *crtc,
96                                          struct intel_link_m_n *m_n,
97                                          struct intel_link_m_n *m2_n2);
98 static void ironlake_set_pipeconf(struct drm_crtc *crtc);
99 static void haswell_set_pipeconf(struct drm_crtc *crtc);
100 static void intel_set_pipe_csc(struct drm_crtc *crtc);
101 static void vlv_prepare_pll(struct intel_crtc *crtc,
102                             const struct intel_crtc_state *pipe_config);
103 static void chv_prepare_pll(struct intel_crtc *crtc,
104                             const struct intel_crtc_state *pipe_config);
105 static void intel_begin_crtc_commit(struct drm_crtc *, struct drm_crtc_state *);
106 static void intel_finish_crtc_commit(struct drm_crtc *, struct drm_crtc_state *);
107 static void skl_init_scalers(struct drm_device *dev, struct intel_crtc *intel_crtc,
108         struct intel_crtc_state *crtc_state);
109 static int i9xx_get_refclk(const struct intel_crtc_state *crtc_state,
110                            int num_connectors);
111 static void intel_modeset_setup_hw_state(struct drm_device *dev);
112
113 typedef struct {
114         int     min, max;
115 } intel_range_t;
116
117 typedef struct {
118         int     dot_limit;
119         int     p2_slow, p2_fast;
120 } intel_p2_t;
121
122 typedef struct intel_limit intel_limit_t;
123 struct intel_limit {
124         intel_range_t   dot, vco, n, m, m1, m2, p, p1;
125         intel_p2_t          p2;
126 };
127
128 int
129 intel_pch_rawclk(struct drm_device *dev)
130 {
131         struct drm_i915_private *dev_priv = dev->dev_private;
132
133         WARN_ON(!HAS_PCH_SPLIT(dev));
134
135         return I915_READ(PCH_RAWCLK_FREQ) & RAWCLK_FREQ_MASK;
136 }
137
138 static inline u32 /* units of 100MHz */
139 intel_fdi_link_freq(struct drm_device *dev)
140 {
141         if (IS_GEN5(dev)) {
142                 struct drm_i915_private *dev_priv = dev->dev_private;
143                 return (I915_READ(FDI_PLL_BIOS_0) & FDI_PLL_FB_CLOCK_MASK) + 2;
144         } else
145                 return 27;
146 }
147
148 static const intel_limit_t intel_limits_i8xx_dac = {
149         .dot = { .min = 25000, .max = 350000 },
150         .vco = { .min = 908000, .max = 1512000 },
151         .n = { .min = 2, .max = 16 },
152         .m = { .min = 96, .max = 140 },
153         .m1 = { .min = 18, .max = 26 },
154         .m2 = { .min = 6, .max = 16 },
155         .p = { .min = 4, .max = 128 },
156         .p1 = { .min = 2, .max = 33 },
157         .p2 = { .dot_limit = 165000,
158                 .p2_slow = 4, .p2_fast = 2 },
159 };
160
161 static const intel_limit_t intel_limits_i8xx_dvo = {
162         .dot = { .min = 25000, .max = 350000 },
163         .vco = { .min = 908000, .max = 1512000 },
164         .n = { .min = 2, .max = 16 },
165         .m = { .min = 96, .max = 140 },
166         .m1 = { .min = 18, .max = 26 },
167         .m2 = { .min = 6, .max = 16 },
168         .p = { .min = 4, .max = 128 },
169         .p1 = { .min = 2, .max = 33 },
170         .p2 = { .dot_limit = 165000,
171                 .p2_slow = 4, .p2_fast = 4 },
172 };
173
174 static const intel_limit_t intel_limits_i8xx_lvds = {
175         .dot = { .min = 25000, .max = 350000 },
176         .vco = { .min = 908000, .max = 1512000 },
177         .n = { .min = 2, .max = 16 },
178         .m = { .min = 96, .max = 140 },
179         .m1 = { .min = 18, .max = 26 },
180         .m2 = { .min = 6, .max = 16 },
181         .p = { .min = 4, .max = 128 },
182         .p1 = { .min = 1, .max = 6 },
183         .p2 = { .dot_limit = 165000,
184                 .p2_slow = 14, .p2_fast = 7 },
185 };
186
187 static const intel_limit_t intel_limits_i9xx_sdvo = {
188         .dot = { .min = 20000, .max = 400000 },
189         .vco = { .min = 1400000, .max = 2800000 },
190         .n = { .min = 1, .max = 6 },
191         .m = { .min = 70, .max = 120 },
192         .m1 = { .min = 8, .max = 18 },
193         .m2 = { .min = 3, .max = 7 },
194         .p = { .min = 5, .max = 80 },
195         .p1 = { .min = 1, .max = 8 },
196         .p2 = { .dot_limit = 200000,
197                 .p2_slow = 10, .p2_fast = 5 },
198 };
199
200 static const intel_limit_t intel_limits_i9xx_lvds = {
201         .dot = { .min = 20000, .max = 400000 },
202         .vco = { .min = 1400000, .max = 2800000 },
203         .n = { .min = 1, .max = 6 },
204         .m = { .min = 70, .max = 120 },
205         .m1 = { .min = 8, .max = 18 },
206         .m2 = { .min = 3, .max = 7 },
207         .p = { .min = 7, .max = 98 },
208         .p1 = { .min = 1, .max = 8 },
209         .p2 = { .dot_limit = 112000,
210                 .p2_slow = 14, .p2_fast = 7 },
211 };
212
213
214 static const intel_limit_t intel_limits_g4x_sdvo = {
215         .dot = { .min = 25000, .max = 270000 },
216         .vco = { .min = 1750000, .max = 3500000},
217         .n = { .min = 1, .max = 4 },
218         .m = { .min = 104, .max = 138 },
219         .m1 = { .min = 17, .max = 23 },
220         .m2 = { .min = 5, .max = 11 },
221         .p = { .min = 10, .max = 30 },
222         .p1 = { .min = 1, .max = 3},
223         .p2 = { .dot_limit = 270000,
224                 .p2_slow = 10,
225                 .p2_fast = 10
226         },
227 };
228
229 static const intel_limit_t intel_limits_g4x_hdmi = {
230         .dot = { .min = 22000, .max = 400000 },
231         .vco = { .min = 1750000, .max = 3500000},
232         .n = { .min = 1, .max = 4 },
233         .m = { .min = 104, .max = 138 },
234         .m1 = { .min = 16, .max = 23 },
235         .m2 = { .min = 5, .max = 11 },
236         .p = { .min = 5, .max = 80 },
237         .p1 = { .min = 1, .max = 8},
238         .p2 = { .dot_limit = 165000,
239                 .p2_slow = 10, .p2_fast = 5 },
240 };
241
242 static const intel_limit_t intel_limits_g4x_single_channel_lvds = {
243         .dot = { .min = 20000, .max = 115000 },
244         .vco = { .min = 1750000, .max = 3500000 },
245         .n = { .min = 1, .max = 3 },
246         .m = { .min = 104, .max = 138 },
247         .m1 = { .min = 17, .max = 23 },
248         .m2 = { .min = 5, .max = 11 },
249         .p = { .min = 28, .max = 112 },
250         .p1 = { .min = 2, .max = 8 },
251         .p2 = { .dot_limit = 0,
252                 .p2_slow = 14, .p2_fast = 14
253         },
254 };
255
256 static const intel_limit_t intel_limits_g4x_dual_channel_lvds = {
257         .dot = { .min = 80000, .max = 224000 },
258         .vco = { .min = 1750000, .max = 3500000 },
259         .n = { .min = 1, .max = 3 },
260         .m = { .min = 104, .max = 138 },
261         .m1 = { .min = 17, .max = 23 },
262         .m2 = { .min = 5, .max = 11 },
263         .p = { .min = 14, .max = 42 },
264         .p1 = { .min = 2, .max = 6 },
265         .p2 = { .dot_limit = 0,
266                 .p2_slow = 7, .p2_fast = 7
267         },
268 };
269
270 static const intel_limit_t intel_limits_pineview_sdvo = {
271         .dot = { .min = 20000, .max = 400000},
272         .vco = { .min = 1700000, .max = 3500000 },
273         /* Pineview's Ncounter is a ring counter */
274         .n = { .min = 3, .max = 6 },
275         .m = { .min = 2, .max = 256 },
276         /* Pineview only has one combined m divider, which we treat as m2. */
277         .m1 = { .min = 0, .max = 0 },
278         .m2 = { .min = 0, .max = 254 },
279         .p = { .min = 5, .max = 80 },
280         .p1 = { .min = 1, .max = 8 },
281         .p2 = { .dot_limit = 200000,
282                 .p2_slow = 10, .p2_fast = 5 },
283 };
284
285 static const intel_limit_t intel_limits_pineview_lvds = {
286         .dot = { .min = 20000, .max = 400000 },
287         .vco = { .min = 1700000, .max = 3500000 },
288         .n = { .min = 3, .max = 6 },
289         .m = { .min = 2, .max = 256 },
290         .m1 = { .min = 0, .max = 0 },
291         .m2 = { .min = 0, .max = 254 },
292         .p = { .min = 7, .max = 112 },
293         .p1 = { .min = 1, .max = 8 },
294         .p2 = { .dot_limit = 112000,
295                 .p2_slow = 14, .p2_fast = 14 },
296 };
297
298 /* Ironlake / Sandybridge
299  *
300  * We calculate clock using (register_value + 2) for N/M1/M2, so here
301  * the range value for them is (actual_value - 2).
302  */
303 static const intel_limit_t intel_limits_ironlake_dac = {
304         .dot = { .min = 25000, .max = 350000 },
305         .vco = { .min = 1760000, .max = 3510000 },
306         .n = { .min = 1, .max = 5 },
307         .m = { .min = 79, .max = 127 },
308         .m1 = { .min = 12, .max = 22 },
309         .m2 = { .min = 5, .max = 9 },
310         .p = { .min = 5, .max = 80 },
311         .p1 = { .min = 1, .max = 8 },
312         .p2 = { .dot_limit = 225000,
313                 .p2_slow = 10, .p2_fast = 5 },
314 };
315
316 static const intel_limit_t intel_limits_ironlake_single_lvds = {
317         .dot = { .min = 25000, .max = 350000 },
318         .vco = { .min = 1760000, .max = 3510000 },
319         .n = { .min = 1, .max = 3 },
320         .m = { .min = 79, .max = 118 },
321         .m1 = { .min = 12, .max = 22 },
322         .m2 = { .min = 5, .max = 9 },
323         .p = { .min = 28, .max = 112 },
324         .p1 = { .min = 2, .max = 8 },
325         .p2 = { .dot_limit = 225000,
326                 .p2_slow = 14, .p2_fast = 14 },
327 };
328
329 static const intel_limit_t intel_limits_ironlake_dual_lvds = {
330         .dot = { .min = 25000, .max = 350000 },
331         .vco = { .min = 1760000, .max = 3510000 },
332         .n = { .min = 1, .max = 3 },
333         .m = { .min = 79, .max = 127 },
334         .m1 = { .min = 12, .max = 22 },
335         .m2 = { .min = 5, .max = 9 },
336         .p = { .min = 14, .max = 56 },
337         .p1 = { .min = 2, .max = 8 },
338         .p2 = { .dot_limit = 225000,
339                 .p2_slow = 7, .p2_fast = 7 },
340 };
341
342 /* LVDS 100mhz refclk limits. */
343 static const intel_limit_t intel_limits_ironlake_single_lvds_100m = {
344         .dot = { .min = 25000, .max = 350000 },
345         .vco = { .min = 1760000, .max = 3510000 },
346         .n = { .min = 1, .max = 2 },
347         .m = { .min = 79, .max = 126 },
348         .m1 = { .min = 12, .max = 22 },
349         .m2 = { .min = 5, .max = 9 },
350         .p = { .min = 28, .max = 112 },
351         .p1 = { .min = 2, .max = 8 },
352         .p2 = { .dot_limit = 225000,
353                 .p2_slow = 14, .p2_fast = 14 },
354 };
355
356 static const intel_limit_t intel_limits_ironlake_dual_lvds_100m = {
357         .dot = { .min = 25000, .max = 350000 },
358         .vco = { .min = 1760000, .max = 3510000 },
359         .n = { .min = 1, .max = 3 },
360         .m = { .min = 79, .max = 126 },
361         .m1 = { .min = 12, .max = 22 },
362         .m2 = { .min = 5, .max = 9 },
363         .p = { .min = 14, .max = 42 },
364         .p1 = { .min = 2, .max = 6 },
365         .p2 = { .dot_limit = 225000,
366                 .p2_slow = 7, .p2_fast = 7 },
367 };
368
369 static const intel_limit_t intel_limits_vlv = {
370          /*
371           * These are the data rate limits (measured in fast clocks)
372           * since those are the strictest limits we have. The fast
373           * clock and actual rate limits are more relaxed, so checking
374           * them would make no difference.
375           */
376         .dot = { .min = 25000 * 5, .max = 270000 * 5 },
377         .vco = { .min = 4000000, .max = 6000000 },
378         .n = { .min = 1, .max = 7 },
379         .m1 = { .min = 2, .max = 3 },
380         .m2 = { .min = 11, .max = 156 },
381         .p1 = { .min = 2, .max = 3 },
382         .p2 = { .p2_slow = 2, .p2_fast = 20 }, /* slow=min, fast=max */
383 };
384
385 static const intel_limit_t intel_limits_chv = {
386         /*
387          * These are the data rate limits (measured in fast clocks)
388          * since those are the strictest limits we have.  The fast
389          * clock and actual rate limits are more relaxed, so checking
390          * them would make no difference.
391          */
392         .dot = { .min = 25000 * 5, .max = 540000 * 5},
393         .vco = { .min = 4800000, .max = 6480000 },
394         .n = { .min = 1, .max = 1 },
395         .m1 = { .min = 2, .max = 2 },
396         .m2 = { .min = 24 << 22, .max = 175 << 22 },
397         .p1 = { .min = 2, .max = 4 },
398         .p2 = { .p2_slow = 1, .p2_fast = 14 },
399 };
400
401 static const intel_limit_t intel_limits_bxt = {
402         /* FIXME: find real dot limits */
403         .dot = { .min = 0, .max = INT_MAX },
404         .vco = { .min = 4800000, .max = 6700000 },
405         .n = { .min = 1, .max = 1 },
406         .m1 = { .min = 2, .max = 2 },
407         /* FIXME: find real m2 limits */
408         .m2 = { .min = 2 << 22, .max = 255 << 22 },
409         .p1 = { .min = 2, .max = 4 },
410         .p2 = { .p2_slow = 1, .p2_fast = 20 },
411 };
412
413 static bool
414 needs_modeset(struct drm_crtc_state *state)
415 {
416         return drm_atomic_crtc_needs_modeset(state);
417 }
418
419 /**
420  * Returns whether any output on the specified pipe is of the specified type
421  */
422 bool intel_pipe_has_type(struct intel_crtc *crtc, enum intel_output_type type)
423 {
424         struct drm_device *dev = crtc->base.dev;
425         struct intel_encoder *encoder;
426
427         for_each_encoder_on_crtc(dev, &crtc->base, encoder)
428                 if (encoder->type == type)
429                         return true;
430
431         return false;
432 }
433
434 /**
435  * Returns whether any output on the specified pipe will have the specified
436  * type after a staged modeset is complete, i.e., the same as
437  * intel_pipe_has_type() but looking at encoder->new_crtc instead of
438  * encoder->crtc.
439  */
440 static bool intel_pipe_will_have_type(const struct intel_crtc_state *crtc_state,
441                                       int type)
442 {
443         struct drm_atomic_state *state = crtc_state->base.state;
444         struct drm_connector *connector;
445         struct drm_connector_state *connector_state;
446         struct intel_encoder *encoder;
447         int i, num_connectors = 0;
448
449         for_each_connector_in_state(state, connector, connector_state, i) {
450                 if (connector_state->crtc != crtc_state->base.crtc)
451                         continue;
452
453                 num_connectors++;
454
455                 encoder = to_intel_encoder(connector_state->best_encoder);
456                 if (encoder->type == type)
457                         return true;
458         }
459
460         WARN_ON(num_connectors == 0);
461
462         return false;
463 }
464
465 static const intel_limit_t *
466 intel_ironlake_limit(struct intel_crtc_state *crtc_state, int refclk)
467 {
468         struct drm_device *dev = crtc_state->base.crtc->dev;
469         const intel_limit_t *limit;
470
471         if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS)) {
472                 if (intel_is_dual_link_lvds(dev)) {
473                         if (refclk == 100000)
474                                 limit = &intel_limits_ironlake_dual_lvds_100m;
475                         else
476                                 limit = &intel_limits_ironlake_dual_lvds;
477                 } else {
478                         if (refclk == 100000)
479                                 limit = &intel_limits_ironlake_single_lvds_100m;
480                         else
481                                 limit = &intel_limits_ironlake_single_lvds;
482                 }
483         } else
484                 limit = &intel_limits_ironlake_dac;
485
486         return limit;
487 }
488
489 static const intel_limit_t *
490 intel_g4x_limit(struct intel_crtc_state *crtc_state)
491 {
492         struct drm_device *dev = crtc_state->base.crtc->dev;
493         const intel_limit_t *limit;
494
495         if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS)) {
496                 if (intel_is_dual_link_lvds(dev))
497                         limit = &intel_limits_g4x_dual_channel_lvds;
498                 else
499                         limit = &intel_limits_g4x_single_channel_lvds;
500         } else if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_HDMI) ||
501                    intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_ANALOG)) {
502                 limit = &intel_limits_g4x_hdmi;
503         } else if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_SDVO)) {
504                 limit = &intel_limits_g4x_sdvo;
505         } else /* The option is for other outputs */
506                 limit = &intel_limits_i9xx_sdvo;
507
508         return limit;
509 }
510
511 static const intel_limit_t *
512 intel_limit(struct intel_crtc_state *crtc_state, int refclk)
513 {
514         struct drm_device *dev = crtc_state->base.crtc->dev;
515         const intel_limit_t *limit;
516
517         if (IS_BROXTON(dev))
518                 limit = &intel_limits_bxt;
519         else if (HAS_PCH_SPLIT(dev))
520                 limit = intel_ironlake_limit(crtc_state, refclk);
521         else if (IS_G4X(dev)) {
522                 limit = intel_g4x_limit(crtc_state);
523         } else if (IS_PINEVIEW(dev)) {
524                 if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS))
525                         limit = &intel_limits_pineview_lvds;
526                 else
527                         limit = &intel_limits_pineview_sdvo;
528         } else if (IS_CHERRYVIEW(dev)) {
529                 limit = &intel_limits_chv;
530         } else if (IS_VALLEYVIEW(dev)) {
531                 limit = &intel_limits_vlv;
532         } else if (!IS_GEN2(dev)) {
533                 if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS))
534                         limit = &intel_limits_i9xx_lvds;
535                 else
536                         limit = &intel_limits_i9xx_sdvo;
537         } else {
538                 if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS))
539                         limit = &intel_limits_i8xx_lvds;
540                 else if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_DVO))
541                         limit = &intel_limits_i8xx_dvo;
542                 else
543                         limit = &intel_limits_i8xx_dac;
544         }
545         return limit;
546 }
547
548 /*
549  * Platform specific helpers to calculate the port PLL loopback- (clock.m),
550  * and post-divider (clock.p) values, pre- (clock.vco) and post-divided fast
551  * (clock.dot) clock rates. This fast dot clock is fed to the port's IO logic.
552  * The helpers' return value is the rate of the clock that is fed to the
553  * display engine's pipe which can be the above fast dot clock rate or a
554  * divided-down version of it.
555  */
556 /* m1 is reserved as 0 in Pineview, n is a ring counter */
557 static int pnv_calc_dpll_params(int refclk, intel_clock_t *clock)
558 {
559         clock->m = clock->m2 + 2;
560         clock->p = clock->p1 * clock->p2;
561         if (WARN_ON(clock->n == 0 || clock->p == 0))
562                 return 0;
563         clock->vco = DIV_ROUND_CLOSEST(refclk * clock->m, clock->n);
564         clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
565
566         return clock->dot;
567 }
568
569 static uint32_t i9xx_dpll_compute_m(struct dpll *dpll)
570 {
571         return 5 * (dpll->m1 + 2) + (dpll->m2 + 2);
572 }
573
574 static int i9xx_calc_dpll_params(int refclk, intel_clock_t *clock)
575 {
576         clock->m = i9xx_dpll_compute_m(clock);
577         clock->p = clock->p1 * clock->p2;
578         if (WARN_ON(clock->n + 2 == 0 || clock->p == 0))
579                 return 0;
580         clock->vco = DIV_ROUND_CLOSEST(refclk * clock->m, clock->n + 2);
581         clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
582
583         return clock->dot;
584 }
585
586 static int vlv_calc_dpll_params(int refclk, intel_clock_t *clock)
587 {
588         clock->m = clock->m1 * clock->m2;
589         clock->p = clock->p1 * clock->p2;
590         if (WARN_ON(clock->n == 0 || clock->p == 0))
591                 return 0;
592         clock->vco = DIV_ROUND_CLOSEST(refclk * clock->m, clock->n);
593         clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
594
595         return clock->dot / 5;
596 }
597
598 int chv_calc_dpll_params(int refclk, intel_clock_t *clock)
599 {
600         clock->m = clock->m1 * clock->m2;
601         clock->p = clock->p1 * clock->p2;
602         if (WARN_ON(clock->n == 0 || clock->p == 0))
603                 return 0;
604         clock->vco = DIV_ROUND_CLOSEST_ULL((uint64_t)refclk * clock->m,
605                         clock->n << 22);
606         clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
607
608         return clock->dot / 5;
609 }
610
611 #define INTELPllInvalid(s)   do { /* DRM_DEBUG(s); */ return false; } while (0)
612 /**
613  * Returns whether the given set of divisors are valid for a given refclk with
614  * the given connectors.
615  */
616
617 static bool intel_PLL_is_valid(struct drm_device *dev,
618                                const intel_limit_t *limit,
619                                const intel_clock_t *clock)
620 {
621         if (clock->n   < limit->n.min   || limit->n.max   < clock->n)
622                 INTELPllInvalid("n out of range\n");
623         if (clock->p1  < limit->p1.min  || limit->p1.max  < clock->p1)
624                 INTELPllInvalid("p1 out of range\n");
625         if (clock->m2  < limit->m2.min  || limit->m2.max  < clock->m2)
626                 INTELPllInvalid("m2 out of range\n");
627         if (clock->m1  < limit->m1.min  || limit->m1.max  < clock->m1)
628                 INTELPllInvalid("m1 out of range\n");
629
630         if (!IS_PINEVIEW(dev) && !IS_VALLEYVIEW(dev) && !IS_BROXTON(dev))
631                 if (clock->m1 <= clock->m2)
632                         INTELPllInvalid("m1 <= m2\n");
633
634         if (!IS_VALLEYVIEW(dev) && !IS_BROXTON(dev)) {
635                 if (clock->p < limit->p.min || limit->p.max < clock->p)
636                         INTELPllInvalid("p out of range\n");
637                 if (clock->m < limit->m.min || limit->m.max < clock->m)
638                         INTELPllInvalid("m out of range\n");
639         }
640
641         if (clock->vco < limit->vco.min || limit->vco.max < clock->vco)
642                 INTELPllInvalid("vco out of range\n");
643         /* XXX: We may need to be checking "Dot clock" depending on the multiplier,
644          * connector, etc., rather than just a single range.
645          */
646         if (clock->dot < limit->dot.min || limit->dot.max < clock->dot)
647                 INTELPllInvalid("dot out of range\n");
648
649         return true;
650 }
651
652 static int
653 i9xx_select_p2_div(const intel_limit_t *limit,
654                    const struct intel_crtc_state *crtc_state,
655                    int target)
656 {
657         struct drm_device *dev = crtc_state->base.crtc->dev;
658
659         if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS)) {
660                 /*
661                  * For LVDS just rely on its current settings for dual-channel.
662                  * We haven't figured out how to reliably set up different
663                  * single/dual channel state, if we even can.
664                  */
665                 if (intel_is_dual_link_lvds(dev))
666                         return limit->p2.p2_fast;
667                 else
668                         return limit->p2.p2_slow;
669         } else {
670                 if (target < limit->p2.dot_limit)
671                         return limit->p2.p2_slow;
672                 else
673                         return limit->p2.p2_fast;
674         }
675 }
676
677 static bool
678 i9xx_find_best_dpll(const intel_limit_t *limit,
679                     struct intel_crtc_state *crtc_state,
680                     int target, int refclk, intel_clock_t *match_clock,
681                     intel_clock_t *best_clock)
682 {
683         struct drm_device *dev = crtc_state->base.crtc->dev;
684         intel_clock_t clock;
685         int err = target;
686
687         memset(best_clock, 0, sizeof(*best_clock));
688
689         clock.p2 = i9xx_select_p2_div(limit, crtc_state, target);
690
691         for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
692              clock.m1++) {
693                 for (clock.m2 = limit->m2.min;
694                      clock.m2 <= limit->m2.max; clock.m2++) {
695                         if (clock.m2 >= clock.m1)
696                                 break;
697                         for (clock.n = limit->n.min;
698                              clock.n <= limit->n.max; clock.n++) {
699                                 for (clock.p1 = limit->p1.min;
700                                         clock.p1 <= limit->p1.max; clock.p1++) {
701                                         int this_err;
702
703                                         i9xx_calc_dpll_params(refclk, &clock);
704                                         if (!intel_PLL_is_valid(dev, limit,
705                                                                 &clock))
706                                                 continue;
707                                         if (match_clock &&
708                                             clock.p != match_clock->p)
709                                                 continue;
710
711                                         this_err = abs(clock.dot - target);
712                                         if (this_err < err) {
713                                                 *best_clock = clock;
714                                                 err = this_err;
715                                         }
716                                 }
717                         }
718                 }
719         }
720
721         return (err != target);
722 }
723
724 static bool
725 pnv_find_best_dpll(const intel_limit_t *limit,
726                    struct intel_crtc_state *crtc_state,
727                    int target, int refclk, intel_clock_t *match_clock,
728                    intel_clock_t *best_clock)
729 {
730         struct drm_device *dev = crtc_state->base.crtc->dev;
731         intel_clock_t clock;
732         int err = target;
733
734         memset(best_clock, 0, sizeof(*best_clock));
735
736         clock.p2 = i9xx_select_p2_div(limit, crtc_state, target);
737
738         for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
739              clock.m1++) {
740                 for (clock.m2 = limit->m2.min;
741                      clock.m2 <= limit->m2.max; clock.m2++) {
742                         for (clock.n = limit->n.min;
743                              clock.n <= limit->n.max; clock.n++) {
744                                 for (clock.p1 = limit->p1.min;
745                                         clock.p1 <= limit->p1.max; clock.p1++) {
746                                         int this_err;
747
748                                         pnv_calc_dpll_params(refclk, &clock);
749                                         if (!intel_PLL_is_valid(dev, limit,
750                                                                 &clock))
751                                                 continue;
752                                         if (match_clock &&
753                                             clock.p != match_clock->p)
754                                                 continue;
755
756                                         this_err = abs(clock.dot - target);
757                                         if (this_err < err) {
758                                                 *best_clock = clock;
759                                                 err = this_err;
760                                         }
761                                 }
762                         }
763                 }
764         }
765
766         return (err != target);
767 }
768
769 static bool
770 g4x_find_best_dpll(const intel_limit_t *limit,
771                    struct intel_crtc_state *crtc_state,
772                    int target, int refclk, intel_clock_t *match_clock,
773                    intel_clock_t *best_clock)
774 {
775         struct drm_device *dev = crtc_state->base.crtc->dev;
776         intel_clock_t clock;
777         int max_n;
778         bool found = false;
779         /* approximately equals target * 0.00585 */
780         int err_most = (target >> 8) + (target >> 9);
781
782         memset(best_clock, 0, sizeof(*best_clock));
783
784         clock.p2 = i9xx_select_p2_div(limit, crtc_state, target);
785
786         max_n = limit->n.max;
787         /* based on hardware requirement, prefer smaller n to precision */
788         for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) {
789                 /* based on hardware requirement, prefere larger m1,m2 */
790                 for (clock.m1 = limit->m1.max;
791                      clock.m1 >= limit->m1.min; clock.m1--) {
792                         for (clock.m2 = limit->m2.max;
793                              clock.m2 >= limit->m2.min; clock.m2--) {
794                                 for (clock.p1 = limit->p1.max;
795                                      clock.p1 >= limit->p1.min; clock.p1--) {
796                                         int this_err;
797
798                                         i9xx_calc_dpll_params(refclk, &clock);
799                                         if (!intel_PLL_is_valid(dev, limit,
800                                                                 &clock))
801                                                 continue;
802
803                                         this_err = abs(clock.dot - target);
804                                         if (this_err < err_most) {
805                                                 *best_clock = clock;
806                                                 err_most = this_err;
807                                                 max_n = clock.n;
808                                                 found = true;
809                                         }
810                                 }
811                         }
812                 }
813         }
814         return found;
815 }
816
817 /*
818  * Check if the calculated PLL configuration is more optimal compared to the
819  * best configuration and error found so far. Return the calculated error.
820  */
821 static bool vlv_PLL_is_optimal(struct drm_device *dev, int target_freq,
822                                const intel_clock_t *calculated_clock,
823                                const intel_clock_t *best_clock,
824                                unsigned int best_error_ppm,
825                                unsigned int *error_ppm)
826 {
827         /*
828          * For CHV ignore the error and consider only the P value.
829          * Prefer a bigger P value based on HW requirements.
830          */
831         if (IS_CHERRYVIEW(dev)) {
832                 *error_ppm = 0;
833
834                 return calculated_clock->p > best_clock->p;
835         }
836
837         if (WARN_ON_ONCE(!target_freq))
838                 return false;
839
840         *error_ppm = div_u64(1000000ULL *
841                                 abs(target_freq - calculated_clock->dot),
842                              target_freq);
843         /*
844          * Prefer a better P value over a better (smaller) error if the error
845          * is small. Ensure this preference for future configurations too by
846          * setting the error to 0.
847          */
848         if (*error_ppm < 100 && calculated_clock->p > best_clock->p) {
849                 *error_ppm = 0;
850
851                 return true;
852         }
853
854         return *error_ppm + 10 < best_error_ppm;
855 }
856
857 static bool
858 vlv_find_best_dpll(const intel_limit_t *limit,
859                    struct intel_crtc_state *crtc_state,
860                    int target, int refclk, intel_clock_t *match_clock,
861                    intel_clock_t *best_clock)
862 {
863         struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
864         struct drm_device *dev = crtc->base.dev;
865         intel_clock_t clock;
866         unsigned int bestppm = 1000000;
867         /* min update 19.2 MHz */
868         int max_n = min(limit->n.max, refclk / 19200);
869         bool found = false;
870
871         target *= 5; /* fast clock */
872
873         memset(best_clock, 0, sizeof(*best_clock));
874
875         /* based on hardware requirement, prefer smaller n to precision */
876         for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) {
877                 for (clock.p1 = limit->p1.max; clock.p1 >= limit->p1.min; clock.p1--) {
878                         for (clock.p2 = limit->p2.p2_fast; clock.p2 >= limit->p2.p2_slow;
879                              clock.p2 -= clock.p2 > 10 ? 2 : 1) {
880                                 clock.p = clock.p1 * clock.p2;
881                                 /* based on hardware requirement, prefer bigger m1,m2 values */
882                                 for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max; clock.m1++) {
883                                         unsigned int ppm;
884
885                                         clock.m2 = DIV_ROUND_CLOSEST(target * clock.p * clock.n,
886                                                                      refclk * clock.m1);
887
888                                         vlv_calc_dpll_params(refclk, &clock);
889
890                                         if (!intel_PLL_is_valid(dev, limit,
891                                                                 &clock))
892                                                 continue;
893
894                                         if (!vlv_PLL_is_optimal(dev, target,
895                                                                 &clock,
896                                                                 best_clock,
897                                                                 bestppm, &ppm))
898                                                 continue;
899
900                                         *best_clock = clock;
901                                         bestppm = ppm;
902                                         found = true;
903                                 }
904                         }
905                 }
906         }
907
908         return found;
909 }
910
911 static bool
912 chv_find_best_dpll(const intel_limit_t *limit,
913                    struct intel_crtc_state *crtc_state,
914                    int target, int refclk, intel_clock_t *match_clock,
915                    intel_clock_t *best_clock)
916 {
917         struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
918         struct drm_device *dev = crtc->base.dev;
919         unsigned int best_error_ppm;
920         intel_clock_t clock;
921         uint64_t m2;
922         int found = false;
923
924         memset(best_clock, 0, sizeof(*best_clock));
925         best_error_ppm = 1000000;
926
927         /*
928          * Based on hardware doc, the n always set to 1, and m1 always
929          * set to 2.  If requires to support 200Mhz refclk, we need to
930          * revisit this because n may not 1 anymore.
931          */
932         clock.n = 1, clock.m1 = 2;
933         target *= 5;    /* fast clock */
934
935         for (clock.p1 = limit->p1.max; clock.p1 >= limit->p1.min; clock.p1--) {
936                 for (clock.p2 = limit->p2.p2_fast;
937                                 clock.p2 >= limit->p2.p2_slow;
938                                 clock.p2 -= clock.p2 > 10 ? 2 : 1) {
939                         unsigned int error_ppm;
940
941                         clock.p = clock.p1 * clock.p2;
942
943                         m2 = DIV_ROUND_CLOSEST_ULL(((uint64_t)target * clock.p *
944                                         clock.n) << 22, refclk * clock.m1);
945
946                         if (m2 > INT_MAX/clock.m1)
947                                 continue;
948
949                         clock.m2 = m2;
950
951                         chv_calc_dpll_params(refclk, &clock);
952
953                         if (!intel_PLL_is_valid(dev, limit, &clock))
954                                 continue;
955
956                         if (!vlv_PLL_is_optimal(dev, target, &clock, best_clock,
957                                                 best_error_ppm, &error_ppm))
958                                 continue;
959
960                         *best_clock = clock;
961                         best_error_ppm = error_ppm;
962                         found = true;
963                 }
964         }
965
966         return found;
967 }
968
969 bool bxt_find_best_dpll(struct intel_crtc_state *crtc_state, int target_clock,
970                         intel_clock_t *best_clock)
971 {
972         int refclk = i9xx_get_refclk(crtc_state, 0);
973
974         return chv_find_best_dpll(intel_limit(crtc_state, refclk), crtc_state,
975                                   target_clock, refclk, NULL, best_clock);
976 }
977
978 bool intel_crtc_active(struct drm_crtc *crtc)
979 {
980         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
981
982         /* Be paranoid as we can arrive here with only partial
983          * state retrieved from the hardware during setup.
984          *
985          * We can ditch the adjusted_mode.crtc_clock check as soon
986          * as Haswell has gained clock readout/fastboot support.
987          *
988          * We can ditch the crtc->primary->fb check as soon as we can
989          * properly reconstruct framebuffers.
990          *
991          * FIXME: The intel_crtc->active here should be switched to
992          * crtc->state->active once we have proper CRTC states wired up
993          * for atomic.
994          */
995         return intel_crtc->active && crtc->primary->state->fb &&
996                 intel_crtc->config->base.adjusted_mode.crtc_clock;
997 }
998
999 enum transcoder intel_pipe_to_cpu_transcoder(struct drm_i915_private *dev_priv,
1000                                              enum pipe pipe)
1001 {
1002         struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
1003         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1004
1005         return intel_crtc->config->cpu_transcoder;
1006 }
1007
1008 static bool pipe_dsl_stopped(struct drm_device *dev, enum pipe pipe)
1009 {
1010         struct drm_i915_private *dev_priv = dev->dev_private;
1011         u32 reg = PIPEDSL(pipe);
1012         u32 line1, line2;
1013         u32 line_mask;
1014
1015         if (IS_GEN2(dev))
1016                 line_mask = DSL_LINEMASK_GEN2;
1017         else
1018                 line_mask = DSL_LINEMASK_GEN3;
1019
1020         line1 = I915_READ(reg) & line_mask;
1021         msleep(5);
1022         line2 = I915_READ(reg) & line_mask;
1023
1024         return line1 == line2;
1025 }
1026
1027 /*
1028  * intel_wait_for_pipe_off - wait for pipe to turn off
1029  * @crtc: crtc whose pipe to wait for
1030  *
1031  * After disabling a pipe, we can't wait for vblank in the usual way,
1032  * spinning on the vblank interrupt status bit, since we won't actually
1033  * see an interrupt when the pipe is disabled.
1034  *
1035  * On Gen4 and above:
1036  *   wait for the pipe register state bit to turn off
1037  *
1038  * Otherwise:
1039  *   wait for the display line value to settle (it usually
1040  *   ends up stopping at the start of the next frame).
1041  *
1042  */
1043 static void intel_wait_for_pipe_off(struct intel_crtc *crtc)
1044 {
1045         struct drm_device *dev = crtc->base.dev;
1046         struct drm_i915_private *dev_priv = dev->dev_private;
1047         enum transcoder cpu_transcoder = crtc->config->cpu_transcoder;
1048         enum pipe pipe = crtc->pipe;
1049
1050         if (INTEL_INFO(dev)->gen >= 4) {
1051                 int reg = PIPECONF(cpu_transcoder);
1052
1053                 /* Wait for the Pipe State to go off */
1054                 if (wait_for((I915_READ(reg) & I965_PIPECONF_ACTIVE) == 0,
1055                              100))
1056                         WARN(1, "pipe_off wait timed out\n");
1057         } else {
1058                 /* Wait for the display line to settle */
1059                 if (wait_for(pipe_dsl_stopped(dev, pipe), 100))
1060                         WARN(1, "pipe_off wait timed out\n");
1061         }
1062 }
1063
1064 /*
1065  * ibx_digital_port_connected - is the specified port connected?
1066  * @dev_priv: i915 private structure
1067  * @port: the port to test
1068  *
1069  * Returns true if @port is connected, false otherwise.
1070  */
1071 bool ibx_digital_port_connected(struct drm_i915_private *dev_priv,
1072                                 struct intel_digital_port *port)
1073 {
1074         u32 bit;
1075
1076         if (HAS_PCH_IBX(dev_priv->dev)) {
1077                 switch (port->port) {
1078                 case PORT_B:
1079                         bit = SDE_PORTB_HOTPLUG;
1080                         break;
1081                 case PORT_C:
1082                         bit = SDE_PORTC_HOTPLUG;
1083                         break;
1084                 case PORT_D:
1085                         bit = SDE_PORTD_HOTPLUG;
1086                         break;
1087                 default:
1088                         return true;
1089                 }
1090         } else {
1091                 switch (port->port) {
1092                 case PORT_B:
1093                         bit = SDE_PORTB_HOTPLUG_CPT;
1094                         break;
1095                 case PORT_C:
1096                         bit = SDE_PORTC_HOTPLUG_CPT;
1097                         break;
1098                 case PORT_D:
1099                         bit = SDE_PORTD_HOTPLUG_CPT;
1100                         break;
1101                 default:
1102                         return true;
1103                 }
1104         }
1105
1106         return I915_READ(SDEISR) & bit;
1107 }
1108
1109 static const char *state_string(bool enabled)
1110 {
1111         return enabled ? "on" : "off";
1112 }
1113
1114 /* Only for pre-ILK configs */
1115 void assert_pll(struct drm_i915_private *dev_priv,
1116                 enum pipe pipe, bool state)
1117 {
1118         int reg;
1119         u32 val;
1120         bool cur_state;
1121
1122         reg = DPLL(pipe);
1123         val = I915_READ(reg);
1124         cur_state = !!(val & DPLL_VCO_ENABLE);
1125         I915_STATE_WARN(cur_state != state,
1126              "PLL state assertion failure (expected %s, current %s)\n",
1127              state_string(state), state_string(cur_state));
1128 }
1129
1130 /* XXX: the dsi pll is shared between MIPI DSI ports */
1131 static void assert_dsi_pll(struct drm_i915_private *dev_priv, bool state)
1132 {
1133         u32 val;
1134         bool cur_state;
1135
1136         mutex_lock(&dev_priv->sb_lock);
1137         val = vlv_cck_read(dev_priv, CCK_REG_DSI_PLL_CONTROL);
1138         mutex_unlock(&dev_priv->sb_lock);
1139
1140         cur_state = val & DSI_PLL_VCO_EN;
1141         I915_STATE_WARN(cur_state != state,
1142              "DSI PLL state assertion failure (expected %s, current %s)\n",
1143              state_string(state), state_string(cur_state));
1144 }
1145 #define assert_dsi_pll_enabled(d) assert_dsi_pll(d, true)
1146 #define assert_dsi_pll_disabled(d) assert_dsi_pll(d, false)
1147
1148 struct intel_shared_dpll *
1149 intel_crtc_to_shared_dpll(struct intel_crtc *crtc)
1150 {
1151         struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
1152
1153         if (crtc->config->shared_dpll < 0)
1154                 return NULL;
1155
1156         return &dev_priv->shared_dplls[crtc->config->shared_dpll];
1157 }
1158
1159 /* For ILK+ */
1160 void assert_shared_dpll(struct drm_i915_private *dev_priv,
1161                         struct intel_shared_dpll *pll,
1162                         bool state)
1163 {
1164         bool cur_state;
1165         struct intel_dpll_hw_state hw_state;
1166
1167         if (WARN (!pll,
1168                   "asserting DPLL %s with no DPLL\n", state_string(state)))
1169                 return;
1170
1171         cur_state = pll->get_hw_state(dev_priv, pll, &hw_state);
1172         I915_STATE_WARN(cur_state != state,
1173              "%s assertion failure (expected %s, current %s)\n",
1174              pll->name, state_string(state), state_string(cur_state));
1175 }
1176
1177 static void assert_fdi_tx(struct drm_i915_private *dev_priv,
1178                           enum pipe pipe, bool state)
1179 {
1180         int reg;
1181         u32 val;
1182         bool cur_state;
1183         enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
1184                                                                       pipe);
1185
1186         if (HAS_DDI(dev_priv->dev)) {
1187                 /* DDI does not have a specific FDI_TX register */
1188                 reg = TRANS_DDI_FUNC_CTL(cpu_transcoder);
1189                 val = I915_READ(reg);
1190                 cur_state = !!(val & TRANS_DDI_FUNC_ENABLE);
1191         } else {
1192                 reg = FDI_TX_CTL(pipe);
1193                 val = I915_READ(reg);
1194                 cur_state = !!(val & FDI_TX_ENABLE);
1195         }
1196         I915_STATE_WARN(cur_state != state,
1197              "FDI TX state assertion failure (expected %s, current %s)\n",
1198              state_string(state), state_string(cur_state));
1199 }
1200 #define assert_fdi_tx_enabled(d, p) assert_fdi_tx(d, p, true)
1201 #define assert_fdi_tx_disabled(d, p) assert_fdi_tx(d, p, false)
1202
1203 static void assert_fdi_rx(struct drm_i915_private *dev_priv,
1204                           enum pipe pipe, bool state)
1205 {
1206         int reg;
1207         u32 val;
1208         bool cur_state;
1209
1210         reg = FDI_RX_CTL(pipe);
1211         val = I915_READ(reg);
1212         cur_state = !!(val & FDI_RX_ENABLE);
1213         I915_STATE_WARN(cur_state != state,
1214              "FDI RX state assertion failure (expected %s, current %s)\n",
1215              state_string(state), state_string(cur_state));
1216 }
1217 #define assert_fdi_rx_enabled(d, p) assert_fdi_rx(d, p, true)
1218 #define assert_fdi_rx_disabled(d, p) assert_fdi_rx(d, p, false)
1219
1220 static void assert_fdi_tx_pll_enabled(struct drm_i915_private *dev_priv,
1221                                       enum pipe pipe)
1222 {
1223         int reg;
1224         u32 val;
1225
1226         /* ILK FDI PLL is always enabled */
1227         if (INTEL_INFO(dev_priv->dev)->gen == 5)
1228                 return;
1229
1230         /* On Haswell, DDI ports are responsible for the FDI PLL setup */
1231         if (HAS_DDI(dev_priv->dev))
1232                 return;
1233
1234         reg = FDI_TX_CTL(pipe);
1235         val = I915_READ(reg);
1236         I915_STATE_WARN(!(val & FDI_TX_PLL_ENABLE), "FDI TX PLL assertion failure, should be active but is disabled\n");
1237 }
1238
1239 void assert_fdi_rx_pll(struct drm_i915_private *dev_priv,
1240                        enum pipe pipe, bool state)
1241 {
1242         int reg;
1243         u32 val;
1244         bool cur_state;
1245
1246         reg = FDI_RX_CTL(pipe);
1247         val = I915_READ(reg);
1248         cur_state = !!(val & FDI_RX_PLL_ENABLE);
1249         I915_STATE_WARN(cur_state != state,
1250              "FDI RX PLL assertion failure (expected %s, current %s)\n",
1251              state_string(state), state_string(cur_state));
1252 }
1253
1254 void assert_panel_unlocked(struct drm_i915_private *dev_priv,
1255                            enum pipe pipe)
1256 {
1257         struct drm_device *dev = dev_priv->dev;
1258         int pp_reg;
1259         u32 val;
1260         enum pipe panel_pipe = PIPE_A;
1261         bool locked = true;
1262
1263         if (WARN_ON(HAS_DDI(dev)))
1264                 return;
1265
1266         if (HAS_PCH_SPLIT(dev)) {
1267                 u32 port_sel;
1268
1269                 pp_reg = PCH_PP_CONTROL;
1270                 port_sel = I915_READ(PCH_PP_ON_DELAYS) & PANEL_PORT_SELECT_MASK;
1271
1272                 if (port_sel == PANEL_PORT_SELECT_LVDS &&
1273                     I915_READ(PCH_LVDS) & LVDS_PIPEB_SELECT)
1274                         panel_pipe = PIPE_B;
1275                 /* XXX: else fix for eDP */
1276         } else if (IS_VALLEYVIEW(dev)) {
1277                 /* presumably write lock depends on pipe, not port select */
1278                 pp_reg = VLV_PIPE_PP_CONTROL(pipe);
1279                 panel_pipe = pipe;
1280         } else {
1281                 pp_reg = PP_CONTROL;
1282                 if (I915_READ(LVDS) & LVDS_PIPEB_SELECT)
1283                         panel_pipe = PIPE_B;
1284         }
1285
1286         val = I915_READ(pp_reg);
1287         if (!(val & PANEL_POWER_ON) ||
1288             ((val & PANEL_UNLOCK_MASK) == PANEL_UNLOCK_REGS))
1289                 locked = false;
1290
1291         I915_STATE_WARN(panel_pipe == pipe && locked,
1292              "panel assertion failure, pipe %c regs locked\n",
1293              pipe_name(pipe));
1294 }
1295
1296 static void assert_cursor(struct drm_i915_private *dev_priv,
1297                           enum pipe pipe, bool state)
1298 {
1299         struct drm_device *dev = dev_priv->dev;
1300         bool cur_state;
1301
1302         if (IS_845G(dev) || IS_I865G(dev))
1303                 cur_state = I915_READ(_CURACNTR) & CURSOR_ENABLE;
1304         else
1305                 cur_state = I915_READ(CURCNTR(pipe)) & CURSOR_MODE;
1306
1307         I915_STATE_WARN(cur_state != state,
1308              "cursor on pipe %c assertion failure (expected %s, current %s)\n",
1309              pipe_name(pipe), state_string(state), state_string(cur_state));
1310 }
1311 #define assert_cursor_enabled(d, p) assert_cursor(d, p, true)
1312 #define assert_cursor_disabled(d, p) assert_cursor(d, p, false)
1313
1314 void assert_pipe(struct drm_i915_private *dev_priv,
1315                  enum pipe pipe, bool state)
1316 {
1317         int reg;
1318         u32 val;
1319         bool cur_state;
1320         enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
1321                                                                       pipe);
1322
1323         /* if we need the pipe quirk it must be always on */
1324         if ((pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) ||
1325             (pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE))
1326                 state = true;
1327
1328         if (!intel_display_power_is_enabled(dev_priv,
1329                                 POWER_DOMAIN_TRANSCODER(cpu_transcoder))) {
1330                 cur_state = false;
1331         } else {
1332                 reg = PIPECONF(cpu_transcoder);
1333                 val = I915_READ(reg);
1334                 cur_state = !!(val & PIPECONF_ENABLE);
1335         }
1336
1337         I915_STATE_WARN(cur_state != state,
1338              "pipe %c assertion failure (expected %s, current %s)\n",
1339              pipe_name(pipe), state_string(state), state_string(cur_state));
1340 }
1341
1342 static void assert_plane(struct drm_i915_private *dev_priv,
1343                          enum plane plane, bool state)
1344 {
1345         int reg;
1346         u32 val;
1347         bool cur_state;
1348
1349         reg = DSPCNTR(plane);
1350         val = I915_READ(reg);
1351         cur_state = !!(val & DISPLAY_PLANE_ENABLE);
1352         I915_STATE_WARN(cur_state != state,
1353              "plane %c assertion failure (expected %s, current %s)\n",
1354              plane_name(plane), state_string(state), state_string(cur_state));
1355 }
1356
1357 #define assert_plane_enabled(d, p) assert_plane(d, p, true)
1358 #define assert_plane_disabled(d, p) assert_plane(d, p, false)
1359
1360 static void assert_planes_disabled(struct drm_i915_private *dev_priv,
1361                                    enum pipe pipe)
1362 {
1363         struct drm_device *dev = dev_priv->dev;
1364         int reg, i;
1365         u32 val;
1366         int cur_pipe;
1367
1368         /* Primary planes are fixed to pipes on gen4+ */
1369         if (INTEL_INFO(dev)->gen >= 4) {
1370                 reg = DSPCNTR(pipe);
1371                 val = I915_READ(reg);
1372                 I915_STATE_WARN(val & DISPLAY_PLANE_ENABLE,
1373                      "plane %c assertion failure, should be disabled but not\n",
1374                      plane_name(pipe));
1375                 return;
1376         }
1377
1378         /* Need to check both planes against the pipe */
1379         for_each_pipe(dev_priv, i) {
1380                 reg = DSPCNTR(i);
1381                 val = I915_READ(reg);
1382                 cur_pipe = (val & DISPPLANE_SEL_PIPE_MASK) >>
1383                         DISPPLANE_SEL_PIPE_SHIFT;
1384                 I915_STATE_WARN((val & DISPLAY_PLANE_ENABLE) && pipe == cur_pipe,
1385                      "plane %c assertion failure, should be off on pipe %c but is still active\n",
1386                      plane_name(i), pipe_name(pipe));
1387         }
1388 }
1389
1390 static void assert_sprites_disabled(struct drm_i915_private *dev_priv,
1391                                     enum pipe pipe)
1392 {
1393         struct drm_device *dev = dev_priv->dev;
1394         int reg, sprite;
1395         u32 val;
1396
1397         if (INTEL_INFO(dev)->gen >= 9) {
1398                 for_each_sprite(dev_priv, pipe, sprite) {
1399                         val = I915_READ(PLANE_CTL(pipe, sprite));
1400                         I915_STATE_WARN(val & PLANE_CTL_ENABLE,
1401                              "plane %d assertion failure, should be off on pipe %c but is still active\n",
1402                              sprite, pipe_name(pipe));
1403                 }
1404         } else if (IS_VALLEYVIEW(dev)) {
1405                 for_each_sprite(dev_priv, pipe, sprite) {
1406                         reg = SPCNTR(pipe, sprite);
1407                         val = I915_READ(reg);
1408                         I915_STATE_WARN(val & SP_ENABLE,
1409                              "sprite %c assertion failure, should be off on pipe %c but is still active\n",
1410                              sprite_name(pipe, sprite), pipe_name(pipe));
1411                 }
1412         } else if (INTEL_INFO(dev)->gen >= 7) {
1413                 reg = SPRCTL(pipe);
1414                 val = I915_READ(reg);
1415                 I915_STATE_WARN(val & SPRITE_ENABLE,
1416                      "sprite %c assertion failure, should be off on pipe %c but is still active\n",
1417                      plane_name(pipe), pipe_name(pipe));
1418         } else if (INTEL_INFO(dev)->gen >= 5) {
1419                 reg = DVSCNTR(pipe);
1420                 val = I915_READ(reg);
1421                 I915_STATE_WARN(val & DVS_ENABLE,
1422                      "sprite %c assertion failure, should be off on pipe %c but is still active\n",
1423                      plane_name(pipe), pipe_name(pipe));
1424         }
1425 }
1426
1427 static void assert_vblank_disabled(struct drm_crtc *crtc)
1428 {
1429         if (I915_STATE_WARN_ON(drm_crtc_vblank_get(crtc) == 0))
1430                 drm_crtc_vblank_put(crtc);
1431 }
1432
1433 static void ibx_assert_pch_refclk_enabled(struct drm_i915_private *dev_priv)
1434 {
1435         u32 val;
1436         bool enabled;
1437
1438         I915_STATE_WARN_ON(!(HAS_PCH_IBX(dev_priv->dev) || HAS_PCH_CPT(dev_priv->dev)));
1439
1440         val = I915_READ(PCH_DREF_CONTROL);
1441         enabled = !!(val & (DREF_SSC_SOURCE_MASK | DREF_NONSPREAD_SOURCE_MASK |
1442                             DREF_SUPERSPREAD_SOURCE_MASK));
1443         I915_STATE_WARN(!enabled, "PCH refclk assertion failure, should be active but is disabled\n");
1444 }
1445
1446 static void assert_pch_transcoder_disabled(struct drm_i915_private *dev_priv,
1447                                            enum pipe pipe)
1448 {
1449         int reg;
1450         u32 val;
1451         bool enabled;
1452
1453         reg = PCH_TRANSCONF(pipe);
1454         val = I915_READ(reg);
1455         enabled = !!(val & TRANS_ENABLE);
1456         I915_STATE_WARN(enabled,
1457              "transcoder assertion failed, should be off on pipe %c but is still active\n",
1458              pipe_name(pipe));
1459 }
1460
1461 static bool dp_pipe_enabled(struct drm_i915_private *dev_priv,
1462                             enum pipe pipe, u32 port_sel, u32 val)
1463 {
1464         if ((val & DP_PORT_EN) == 0)
1465                 return false;
1466
1467         if (HAS_PCH_CPT(dev_priv->dev)) {
1468                 u32     trans_dp_ctl_reg = TRANS_DP_CTL(pipe);
1469                 u32     trans_dp_ctl = I915_READ(trans_dp_ctl_reg);
1470                 if ((trans_dp_ctl & TRANS_DP_PORT_SEL_MASK) != port_sel)
1471                         return false;
1472         } else if (IS_CHERRYVIEW(dev_priv->dev)) {
1473                 if ((val & DP_PIPE_MASK_CHV) != DP_PIPE_SELECT_CHV(pipe))
1474                         return false;
1475         } else {
1476                 if ((val & DP_PIPE_MASK) != (pipe << 30))
1477                         return false;
1478         }
1479         return true;
1480 }
1481
1482 static bool hdmi_pipe_enabled(struct drm_i915_private *dev_priv,
1483                               enum pipe pipe, u32 val)
1484 {
1485         if ((val & SDVO_ENABLE) == 0)
1486                 return false;
1487
1488         if (HAS_PCH_CPT(dev_priv->dev)) {
1489                 if ((val & SDVO_PIPE_SEL_MASK_CPT) != SDVO_PIPE_SEL_CPT(pipe))
1490                         return false;
1491         } else if (IS_CHERRYVIEW(dev_priv->dev)) {
1492                 if ((val & SDVO_PIPE_SEL_MASK_CHV) != SDVO_PIPE_SEL_CHV(pipe))
1493                         return false;
1494         } else {
1495                 if ((val & SDVO_PIPE_SEL_MASK) != SDVO_PIPE_SEL(pipe))
1496                         return false;
1497         }
1498         return true;
1499 }
1500
1501 static bool lvds_pipe_enabled(struct drm_i915_private *dev_priv,
1502                               enum pipe pipe, u32 val)
1503 {
1504         if ((val & LVDS_PORT_EN) == 0)
1505                 return false;
1506
1507         if (HAS_PCH_CPT(dev_priv->dev)) {
1508                 if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
1509                         return false;
1510         } else {
1511                 if ((val & LVDS_PIPE_MASK) != LVDS_PIPE(pipe))
1512                         return false;
1513         }
1514         return true;
1515 }
1516
1517 static bool adpa_pipe_enabled(struct drm_i915_private *dev_priv,
1518                               enum pipe pipe, u32 val)
1519 {
1520         if ((val & ADPA_DAC_ENABLE) == 0)
1521                 return false;
1522         if (HAS_PCH_CPT(dev_priv->dev)) {
1523                 if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
1524                         return false;
1525         } else {
1526                 if ((val & ADPA_PIPE_SELECT_MASK) != ADPA_PIPE_SELECT(pipe))
1527                         return false;
1528         }
1529         return true;
1530 }
1531
1532 static void assert_pch_dp_disabled(struct drm_i915_private *dev_priv,
1533                                    enum pipe pipe, int reg, u32 port_sel)
1534 {
1535         u32 val = I915_READ(reg);
1536         I915_STATE_WARN(dp_pipe_enabled(dev_priv, pipe, port_sel, val),
1537              "PCH DP (0x%08x) enabled on transcoder %c, should be disabled\n",
1538              reg, pipe_name(pipe));
1539
1540         I915_STATE_WARN(HAS_PCH_IBX(dev_priv->dev) && (val & DP_PORT_EN) == 0
1541              && (val & DP_PIPEB_SELECT),
1542              "IBX PCH dp port still using transcoder B\n");
1543 }
1544
1545 static void assert_pch_hdmi_disabled(struct drm_i915_private *dev_priv,
1546                                      enum pipe pipe, int reg)
1547 {
1548         u32 val = I915_READ(reg);
1549         I915_STATE_WARN(hdmi_pipe_enabled(dev_priv, pipe, val),
1550              "PCH HDMI (0x%08x) enabled on transcoder %c, should be disabled\n",
1551              reg, pipe_name(pipe));
1552
1553         I915_STATE_WARN(HAS_PCH_IBX(dev_priv->dev) && (val & SDVO_ENABLE) == 0
1554              && (val & SDVO_PIPE_B_SELECT),
1555              "IBX PCH hdmi port still using transcoder B\n");
1556 }
1557
1558 static void assert_pch_ports_disabled(struct drm_i915_private *dev_priv,
1559                                       enum pipe pipe)
1560 {
1561         int reg;
1562         u32 val;
1563
1564         assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_B, TRANS_DP_PORT_SEL_B);
1565         assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_C, TRANS_DP_PORT_SEL_C);
1566         assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_D, TRANS_DP_PORT_SEL_D);
1567
1568         reg = PCH_ADPA;
1569         val = I915_READ(reg);
1570         I915_STATE_WARN(adpa_pipe_enabled(dev_priv, pipe, val),
1571              "PCH VGA enabled on transcoder %c, should be disabled\n",
1572              pipe_name(pipe));
1573
1574         reg = PCH_LVDS;
1575         val = I915_READ(reg);
1576         I915_STATE_WARN(lvds_pipe_enabled(dev_priv, pipe, val),
1577              "PCH LVDS enabled on transcoder %c, should be disabled\n",
1578              pipe_name(pipe));
1579
1580         assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMIB);
1581         assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMIC);
1582         assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMID);
1583 }
1584
1585 static void intel_init_dpio(struct drm_device *dev)
1586 {
1587         struct drm_i915_private *dev_priv = dev->dev_private;
1588
1589         if (!IS_VALLEYVIEW(dev))
1590                 return;
1591
1592         /*
1593          * IOSF_PORT_DPIO is used for VLV x2 PHY (DP/HDMI B and C),
1594          * CHV x1 PHY (DP/HDMI D)
1595          * IOSF_PORT_DPIO_2 is used for CHV x2 PHY (DP/HDMI B and C)
1596          */
1597         if (IS_CHERRYVIEW(dev)) {
1598                 DPIO_PHY_IOSF_PORT(DPIO_PHY0) = IOSF_PORT_DPIO_2;
1599                 DPIO_PHY_IOSF_PORT(DPIO_PHY1) = IOSF_PORT_DPIO;
1600         } else {
1601                 DPIO_PHY_IOSF_PORT(DPIO_PHY0) = IOSF_PORT_DPIO;
1602         }
1603 }
1604
1605 static void vlv_enable_pll(struct intel_crtc *crtc,
1606                            const struct intel_crtc_state *pipe_config)
1607 {
1608         struct drm_device *dev = crtc->base.dev;
1609         struct drm_i915_private *dev_priv = dev->dev_private;
1610         int reg = DPLL(crtc->pipe);
1611         u32 dpll = pipe_config->dpll_hw_state.dpll;
1612
1613         assert_pipe_disabled(dev_priv, crtc->pipe);
1614
1615         /* No really, not for ILK+ */
1616         BUG_ON(!IS_VALLEYVIEW(dev_priv->dev));
1617
1618         /* PLL is protected by panel, make sure we can write it */
1619         if (IS_MOBILE(dev_priv->dev))
1620                 assert_panel_unlocked(dev_priv, crtc->pipe);
1621
1622         I915_WRITE(reg, dpll);
1623         POSTING_READ(reg);
1624         udelay(150);
1625
1626         if (wait_for(((I915_READ(reg) & DPLL_LOCK_VLV) == DPLL_LOCK_VLV), 1))
1627                 DRM_ERROR("DPLL %d failed to lock\n", crtc->pipe);
1628
1629         I915_WRITE(DPLL_MD(crtc->pipe), pipe_config->dpll_hw_state.dpll_md);
1630         POSTING_READ(DPLL_MD(crtc->pipe));
1631
1632         /* We do this three times for luck */
1633         I915_WRITE(reg, dpll);
1634         POSTING_READ(reg);
1635         udelay(150); /* wait for warmup */
1636         I915_WRITE(reg, dpll);
1637         POSTING_READ(reg);
1638         udelay(150); /* wait for warmup */
1639         I915_WRITE(reg, dpll);
1640         POSTING_READ(reg);
1641         udelay(150); /* wait for warmup */
1642 }
1643
1644 static void chv_enable_pll(struct intel_crtc *crtc,
1645                            const struct intel_crtc_state *pipe_config)
1646 {
1647         struct drm_device *dev = crtc->base.dev;
1648         struct drm_i915_private *dev_priv = dev->dev_private;
1649         int pipe = crtc->pipe;
1650         enum dpio_channel port = vlv_pipe_to_channel(pipe);
1651         u32 tmp;
1652
1653         assert_pipe_disabled(dev_priv, crtc->pipe);
1654
1655         BUG_ON(!IS_CHERRYVIEW(dev_priv->dev));
1656
1657         mutex_lock(&dev_priv->sb_lock);
1658
1659         /* Enable back the 10bit clock to display controller */
1660         tmp = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW14(port));
1661         tmp |= DPIO_DCLKP_EN;
1662         vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW14(port), tmp);
1663
1664         mutex_unlock(&dev_priv->sb_lock);
1665
1666         /*
1667          * Need to wait > 100ns between dclkp clock enable bit and PLL enable.
1668          */
1669         udelay(1);
1670
1671         /* Enable PLL */
1672         I915_WRITE(DPLL(pipe), pipe_config->dpll_hw_state.dpll);
1673
1674         /* Check PLL is locked */
1675         if (wait_for(((I915_READ(DPLL(pipe)) & DPLL_LOCK_VLV) == DPLL_LOCK_VLV), 1))
1676                 DRM_ERROR("PLL %d failed to lock\n", pipe);
1677
1678         /* not sure when this should be written */
1679         I915_WRITE(DPLL_MD(pipe), pipe_config->dpll_hw_state.dpll_md);
1680         POSTING_READ(DPLL_MD(pipe));
1681 }
1682
1683 static int intel_num_dvo_pipes(struct drm_device *dev)
1684 {
1685         struct intel_crtc *crtc;
1686         int count = 0;
1687
1688         for_each_intel_crtc(dev, crtc)
1689                 count += crtc->base.state->active &&
1690                         intel_pipe_has_type(crtc, INTEL_OUTPUT_DVO);
1691
1692         return count;
1693 }
1694
1695 static void i9xx_enable_pll(struct intel_crtc *crtc)
1696 {
1697         struct drm_device *dev = crtc->base.dev;
1698         struct drm_i915_private *dev_priv = dev->dev_private;
1699         int reg = DPLL(crtc->pipe);
1700         u32 dpll = crtc->config->dpll_hw_state.dpll;
1701
1702         assert_pipe_disabled(dev_priv, crtc->pipe);
1703
1704         /* No really, not for ILK+ */
1705         BUG_ON(INTEL_INFO(dev)->gen >= 5);
1706
1707         /* PLL is protected by panel, make sure we can write it */
1708         if (IS_MOBILE(dev) && !IS_I830(dev))
1709                 assert_panel_unlocked(dev_priv, crtc->pipe);
1710
1711         /* Enable DVO 2x clock on both PLLs if necessary */
1712         if (IS_I830(dev) && intel_num_dvo_pipes(dev) > 0) {
1713                 /*
1714                  * It appears to be important that we don't enable this
1715                  * for the current pipe before otherwise configuring the
1716                  * PLL. No idea how this should be handled if multiple
1717                  * DVO outputs are enabled simultaneosly.
1718                  */
1719                 dpll |= DPLL_DVO_2X_MODE;
1720                 I915_WRITE(DPLL(!crtc->pipe),
1721                            I915_READ(DPLL(!crtc->pipe)) | DPLL_DVO_2X_MODE);
1722         }
1723
1724         /* Wait for the clocks to stabilize. */
1725         POSTING_READ(reg);
1726         udelay(150);
1727
1728         if (INTEL_INFO(dev)->gen >= 4) {
1729                 I915_WRITE(DPLL_MD(crtc->pipe),
1730                            crtc->config->dpll_hw_state.dpll_md);
1731         } else {
1732                 /* The pixel multiplier can only be updated once the
1733                  * DPLL is enabled and the clocks are stable.
1734                  *
1735                  * So write it again.
1736                  */
1737                 I915_WRITE(reg, dpll);
1738         }
1739
1740         /* We do this three times for luck */
1741         I915_WRITE(reg, dpll);
1742         POSTING_READ(reg);
1743         udelay(150); /* wait for warmup */
1744         I915_WRITE(reg, dpll);
1745         POSTING_READ(reg);
1746         udelay(150); /* wait for warmup */
1747         I915_WRITE(reg, dpll);
1748         POSTING_READ(reg);
1749         udelay(150); /* wait for warmup */
1750 }
1751
1752 /**
1753  * i9xx_disable_pll - disable a PLL
1754  * @dev_priv: i915 private structure
1755  * @pipe: pipe PLL to disable
1756  *
1757  * Disable the PLL for @pipe, making sure the pipe is off first.
1758  *
1759  * Note!  This is for pre-ILK only.
1760  */
1761 static void i9xx_disable_pll(struct intel_crtc *crtc)
1762 {
1763         struct drm_device *dev = crtc->base.dev;
1764         struct drm_i915_private *dev_priv = dev->dev_private;
1765         enum pipe pipe = crtc->pipe;
1766
1767         /* Disable DVO 2x clock on both PLLs if necessary */
1768         if (IS_I830(dev) &&
1769             intel_pipe_has_type(crtc, INTEL_OUTPUT_DVO) &&
1770             !intel_num_dvo_pipes(dev)) {
1771                 I915_WRITE(DPLL(PIPE_B),
1772                            I915_READ(DPLL(PIPE_B)) & ~DPLL_DVO_2X_MODE);
1773                 I915_WRITE(DPLL(PIPE_A),
1774                            I915_READ(DPLL(PIPE_A)) & ~DPLL_DVO_2X_MODE);
1775         }
1776
1777         /* Don't disable pipe or pipe PLLs if needed */
1778         if ((pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) ||
1779             (pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE))
1780                 return;
1781
1782         /* Make sure the pipe isn't still relying on us */
1783         assert_pipe_disabled(dev_priv, pipe);
1784
1785         I915_WRITE(DPLL(pipe), DPLL_VGA_MODE_DIS);
1786         POSTING_READ(DPLL(pipe));
1787 }
1788
1789 static void vlv_disable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
1790 {
1791         u32 val;
1792
1793         /* Make sure the pipe isn't still relying on us */
1794         assert_pipe_disabled(dev_priv, pipe);
1795
1796         /*
1797          * Leave integrated clock source and reference clock enabled for pipe B.
1798          * The latter is needed for VGA hotplug / manual detection.
1799          */
1800         val = DPLL_VGA_MODE_DIS;
1801         if (pipe == PIPE_B)
1802                 val = DPLL_INTEGRATED_CRI_CLK_VLV | DPLL_REF_CLK_ENABLE_VLV;
1803         I915_WRITE(DPLL(pipe), val);
1804         POSTING_READ(DPLL(pipe));
1805
1806 }
1807
1808 static void chv_disable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
1809 {
1810         enum dpio_channel port = vlv_pipe_to_channel(pipe);
1811         u32 val;
1812
1813         /* Make sure the pipe isn't still relying on us */
1814         assert_pipe_disabled(dev_priv, pipe);
1815
1816         /* Set PLL en = 0 */
1817         val = DPLL_SSC_REF_CLK_CHV |
1818                 DPLL_REF_CLK_ENABLE_VLV | DPLL_VGA_MODE_DIS;
1819         if (pipe != PIPE_A)
1820                 val |= DPLL_INTEGRATED_CRI_CLK_VLV;
1821         I915_WRITE(DPLL(pipe), val);
1822         POSTING_READ(DPLL(pipe));
1823
1824         mutex_lock(&dev_priv->sb_lock);
1825
1826         /* Disable 10bit clock to display controller */
1827         val = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW14(port));
1828         val &= ~DPIO_DCLKP_EN;
1829         vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW14(port), val);
1830
1831         /* disable left/right clock distribution */
1832         if (pipe != PIPE_B) {
1833                 val = vlv_dpio_read(dev_priv, pipe, _CHV_CMN_DW5_CH0);
1834                 val &= ~(CHV_BUFLEFTENA1_MASK | CHV_BUFRIGHTENA1_MASK);
1835                 vlv_dpio_write(dev_priv, pipe, _CHV_CMN_DW5_CH0, val);
1836         } else {
1837                 val = vlv_dpio_read(dev_priv, pipe, _CHV_CMN_DW1_CH1);
1838                 val &= ~(CHV_BUFLEFTENA2_MASK | CHV_BUFRIGHTENA2_MASK);
1839                 vlv_dpio_write(dev_priv, pipe, _CHV_CMN_DW1_CH1, val);
1840         }
1841
1842         mutex_unlock(&dev_priv->sb_lock);
1843 }
1844
1845 void vlv_wait_port_ready(struct drm_i915_private *dev_priv,
1846                          struct intel_digital_port *dport,
1847                          unsigned int expected_mask)
1848 {
1849         u32 port_mask;
1850         int dpll_reg;
1851
1852         switch (dport->port) {
1853         case PORT_B:
1854                 port_mask = DPLL_PORTB_READY_MASK;
1855                 dpll_reg = DPLL(0);
1856                 break;
1857         case PORT_C:
1858                 port_mask = DPLL_PORTC_READY_MASK;
1859                 dpll_reg = DPLL(0);
1860                 expected_mask <<= 4;
1861                 break;
1862         case PORT_D:
1863                 port_mask = DPLL_PORTD_READY_MASK;
1864                 dpll_reg = DPIO_PHY_STATUS;
1865                 break;
1866         default:
1867                 BUG();
1868         }
1869
1870         if (wait_for((I915_READ(dpll_reg) & port_mask) == expected_mask, 1000))
1871                 WARN(1, "timed out waiting for port %c ready: got 0x%x, expected 0x%x\n",
1872                      port_name(dport->port), I915_READ(dpll_reg) & port_mask, expected_mask);
1873 }
1874
1875 static void intel_prepare_shared_dpll(struct intel_crtc *crtc)
1876 {
1877         struct drm_device *dev = crtc->base.dev;
1878         struct drm_i915_private *dev_priv = dev->dev_private;
1879         struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
1880
1881         if (WARN_ON(pll == NULL))
1882                 return;
1883
1884         WARN_ON(!pll->config.crtc_mask);
1885         if (pll->active == 0) {
1886                 DRM_DEBUG_DRIVER("setting up %s\n", pll->name);
1887                 WARN_ON(pll->on);
1888                 assert_shared_dpll_disabled(dev_priv, pll);
1889
1890                 pll->mode_set(dev_priv, pll);
1891         }
1892 }
1893
1894 /**
1895  * intel_enable_shared_dpll - enable PCH PLL
1896  * @dev_priv: i915 private structure
1897  * @pipe: pipe PLL to enable
1898  *
1899  * The PCH PLL needs to be enabled before the PCH transcoder, since it
1900  * drives the transcoder clock.
1901  */
1902 static void intel_enable_shared_dpll(struct intel_crtc *crtc)
1903 {
1904         struct drm_device *dev = crtc->base.dev;
1905         struct drm_i915_private *dev_priv = dev->dev_private;
1906         struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
1907
1908         if (WARN_ON(pll == NULL))
1909                 return;
1910
1911         if (WARN_ON(pll->config.crtc_mask == 0))
1912                 return;
1913
1914         DRM_DEBUG_KMS("enable %s (active %d, on? %d) for crtc %d\n",
1915                       pll->name, pll->active, pll->on,
1916                       crtc->base.base.id);
1917
1918         if (pll->active++) {
1919                 WARN_ON(!pll->on);
1920                 assert_shared_dpll_enabled(dev_priv, pll);
1921                 return;
1922         }
1923         WARN_ON(pll->on);
1924
1925         intel_display_power_get(dev_priv, POWER_DOMAIN_PLLS);
1926
1927         DRM_DEBUG_KMS("enabling %s\n", pll->name);
1928         pll->enable(dev_priv, pll);
1929         pll->on = true;
1930 }
1931
1932 static void intel_disable_shared_dpll(struct intel_crtc *crtc)
1933 {
1934         struct drm_device *dev = crtc->base.dev;
1935         struct drm_i915_private *dev_priv = dev->dev_private;
1936         struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
1937
1938         /* PCH only available on ILK+ */
1939         if (INTEL_INFO(dev)->gen < 5)
1940                 return;
1941
1942         if (pll == NULL)
1943                 return;
1944
1945         if (WARN_ON(!(pll->config.crtc_mask & (1 << drm_crtc_index(&crtc->base)))))
1946                 return;
1947
1948         DRM_DEBUG_KMS("disable %s (active %d, on? %d) for crtc %d\n",
1949                       pll->name, pll->active, pll->on,
1950                       crtc->base.base.id);
1951
1952         if (WARN_ON(pll->active == 0)) {
1953                 assert_shared_dpll_disabled(dev_priv, pll);
1954                 return;
1955         }
1956
1957         assert_shared_dpll_enabled(dev_priv, pll);
1958         WARN_ON(!pll->on);
1959         if (--pll->active)
1960                 return;
1961
1962         DRM_DEBUG_KMS("disabling %s\n", pll->name);
1963         pll->disable(dev_priv, pll);
1964         pll->on = false;
1965
1966         intel_display_power_put(dev_priv, POWER_DOMAIN_PLLS);
1967 }
1968
1969 static void ironlake_enable_pch_transcoder(struct drm_i915_private *dev_priv,
1970                                            enum pipe pipe)
1971 {
1972         struct drm_device *dev = dev_priv->dev;
1973         struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
1974         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1975         uint32_t reg, val, pipeconf_val;
1976
1977         /* PCH only available on ILK+ */
1978         BUG_ON(!HAS_PCH_SPLIT(dev));
1979
1980         /* Make sure PCH DPLL is enabled */
1981         assert_shared_dpll_enabled(dev_priv,
1982                                    intel_crtc_to_shared_dpll(intel_crtc));
1983
1984         /* FDI must be feeding us bits for PCH ports */
1985         assert_fdi_tx_enabled(dev_priv, pipe);
1986         assert_fdi_rx_enabled(dev_priv, pipe);
1987
1988         if (HAS_PCH_CPT(dev)) {
1989                 /* Workaround: Set the timing override bit before enabling the
1990                  * pch transcoder. */
1991                 reg = TRANS_CHICKEN2(pipe);
1992                 val = I915_READ(reg);
1993                 val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
1994                 I915_WRITE(reg, val);
1995         }
1996
1997         reg = PCH_TRANSCONF(pipe);
1998         val = I915_READ(reg);
1999         pipeconf_val = I915_READ(PIPECONF(pipe));
2000
2001         if (HAS_PCH_IBX(dev_priv->dev)) {
2002                 /*
2003                  * Make the BPC in transcoder be consistent with
2004                  * that in pipeconf reg. For HDMI we must use 8bpc
2005                  * here for both 8bpc and 12bpc.
2006                  */
2007                 val &= ~PIPECONF_BPC_MASK;
2008                 if (intel_pipe_has_type(intel_crtc, INTEL_OUTPUT_HDMI))
2009                         val |= PIPECONF_8BPC;
2010                 else
2011                         val |= pipeconf_val & PIPECONF_BPC_MASK;
2012         }
2013
2014         val &= ~TRANS_INTERLACE_MASK;
2015         if ((pipeconf_val & PIPECONF_INTERLACE_MASK) == PIPECONF_INTERLACED_ILK)
2016                 if (HAS_PCH_IBX(dev_priv->dev) &&
2017                     intel_pipe_has_type(intel_crtc, INTEL_OUTPUT_SDVO))
2018                         val |= TRANS_LEGACY_INTERLACED_ILK;
2019                 else
2020                         val |= TRANS_INTERLACED;
2021         else
2022                 val |= TRANS_PROGRESSIVE;
2023
2024         I915_WRITE(reg, val | TRANS_ENABLE);
2025         if (wait_for(I915_READ(reg) & TRANS_STATE_ENABLE, 100))
2026                 DRM_ERROR("failed to enable transcoder %c\n", pipe_name(pipe));
2027 }
2028
2029 static void lpt_enable_pch_transcoder(struct drm_i915_private *dev_priv,
2030                                       enum transcoder cpu_transcoder)
2031 {
2032         u32 val, pipeconf_val;
2033
2034         /* PCH only available on ILK+ */
2035         BUG_ON(!HAS_PCH_SPLIT(dev_priv->dev));
2036
2037         /* FDI must be feeding us bits for PCH ports */
2038         assert_fdi_tx_enabled(dev_priv, (enum pipe) cpu_transcoder);
2039         assert_fdi_rx_enabled(dev_priv, TRANSCODER_A);
2040
2041         /* Workaround: set timing override bit. */
2042         val = I915_READ(_TRANSA_CHICKEN2);
2043         val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
2044         I915_WRITE(_TRANSA_CHICKEN2, val);
2045
2046         val = TRANS_ENABLE;
2047         pipeconf_val = I915_READ(PIPECONF(cpu_transcoder));
2048
2049         if ((pipeconf_val & PIPECONF_INTERLACE_MASK_HSW) ==
2050             PIPECONF_INTERLACED_ILK)
2051                 val |= TRANS_INTERLACED;
2052         else
2053                 val |= TRANS_PROGRESSIVE;
2054
2055         I915_WRITE(LPT_TRANSCONF, val);
2056         if (wait_for(I915_READ(LPT_TRANSCONF) & TRANS_STATE_ENABLE, 100))
2057                 DRM_ERROR("Failed to enable PCH transcoder\n");
2058 }
2059
2060 static void ironlake_disable_pch_transcoder(struct drm_i915_private *dev_priv,
2061                                             enum pipe pipe)
2062 {
2063         struct drm_device *dev = dev_priv->dev;
2064         uint32_t reg, val;
2065
2066         /* FDI relies on the transcoder */
2067         assert_fdi_tx_disabled(dev_priv, pipe);
2068         assert_fdi_rx_disabled(dev_priv, pipe);
2069
2070         /* Ports must be off as well */
2071         assert_pch_ports_disabled(dev_priv, pipe);
2072
2073         reg = PCH_TRANSCONF(pipe);
2074         val = I915_READ(reg);
2075         val &= ~TRANS_ENABLE;
2076         I915_WRITE(reg, val);
2077         /* wait for PCH transcoder off, transcoder state */
2078         if (wait_for((I915_READ(reg) & TRANS_STATE_ENABLE) == 0, 50))
2079                 DRM_ERROR("failed to disable transcoder %c\n", pipe_name(pipe));
2080
2081         if (!HAS_PCH_IBX(dev)) {
2082                 /* Workaround: Clear the timing override chicken bit again. */
2083                 reg = TRANS_CHICKEN2(pipe);
2084                 val = I915_READ(reg);
2085                 val &= ~TRANS_CHICKEN2_TIMING_OVERRIDE;
2086                 I915_WRITE(reg, val);
2087         }
2088 }
2089
2090 static void lpt_disable_pch_transcoder(struct drm_i915_private *dev_priv)
2091 {
2092         u32 val;
2093
2094         val = I915_READ(LPT_TRANSCONF);
2095         val &= ~TRANS_ENABLE;
2096         I915_WRITE(LPT_TRANSCONF, val);
2097         /* wait for PCH transcoder off, transcoder state */
2098         if (wait_for((I915_READ(LPT_TRANSCONF) & TRANS_STATE_ENABLE) == 0, 50))
2099                 DRM_ERROR("Failed to disable PCH transcoder\n");
2100
2101         /* Workaround: clear timing override bit. */
2102         val = I915_READ(_TRANSA_CHICKEN2);
2103         val &= ~TRANS_CHICKEN2_TIMING_OVERRIDE;
2104         I915_WRITE(_TRANSA_CHICKEN2, val);
2105 }
2106
2107 /**
2108  * intel_enable_pipe - enable a pipe, asserting requirements
2109  * @crtc: crtc responsible for the pipe
2110  *
2111  * Enable @crtc's pipe, making sure that various hardware specific requirements
2112  * are met, if applicable, e.g. PLL enabled, LVDS pairs enabled, etc.
2113  */
2114 static void intel_enable_pipe(struct intel_crtc *crtc)
2115 {
2116         struct drm_device *dev = crtc->base.dev;
2117         struct drm_i915_private *dev_priv = dev->dev_private;
2118         enum pipe pipe = crtc->pipe;
2119         enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
2120                                                                       pipe);
2121         enum pipe pch_transcoder;
2122         int reg;
2123         u32 val;
2124
2125         DRM_DEBUG_KMS("enabling pipe %c\n", pipe_name(pipe));
2126
2127         assert_planes_disabled(dev_priv, pipe);
2128         assert_cursor_disabled(dev_priv, pipe);
2129         assert_sprites_disabled(dev_priv, pipe);
2130
2131         if (HAS_PCH_LPT(dev_priv->dev))
2132                 pch_transcoder = TRANSCODER_A;
2133         else
2134                 pch_transcoder = pipe;
2135
2136         /*
2137          * A pipe without a PLL won't actually be able to drive bits from
2138          * a plane.  On ILK+ the pipe PLLs are integrated, so we don't
2139          * need the check.
2140          */
2141         if (HAS_GMCH_DISPLAY(dev_priv->dev))
2142                 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DSI))
2143                         assert_dsi_pll_enabled(dev_priv);
2144                 else
2145                         assert_pll_enabled(dev_priv, pipe);
2146         else {
2147                 if (crtc->config->has_pch_encoder) {
2148                         /* if driving the PCH, we need FDI enabled */
2149                         assert_fdi_rx_pll_enabled(dev_priv, pch_transcoder);
2150                         assert_fdi_tx_pll_enabled(dev_priv,
2151                                                   (enum pipe) cpu_transcoder);
2152                 }
2153                 /* FIXME: assert CPU port conditions for SNB+ */
2154         }
2155
2156         reg = PIPECONF(cpu_transcoder);
2157         val = I915_READ(reg);
2158         if (val & PIPECONF_ENABLE) {
2159                 WARN_ON(!((pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) ||
2160                           (pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE)));
2161                 return;
2162         }
2163
2164         I915_WRITE(reg, val | PIPECONF_ENABLE);
2165         POSTING_READ(reg);
2166 }
2167
2168 /**
2169  * intel_disable_pipe - disable a pipe, asserting requirements
2170  * @crtc: crtc whose pipes is to be disabled
2171  *
2172  * Disable the pipe of @crtc, making sure that various hardware
2173  * specific requirements are met, if applicable, e.g. plane
2174  * disabled, panel fitter off, etc.
2175  *
2176  * Will wait until the pipe has shut down before returning.
2177  */
2178 static void intel_disable_pipe(struct intel_crtc *crtc)
2179 {
2180         struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
2181         enum transcoder cpu_transcoder = crtc->config->cpu_transcoder;
2182         enum pipe pipe = crtc->pipe;
2183         int reg;
2184         u32 val;
2185
2186         DRM_DEBUG_KMS("disabling pipe %c\n", pipe_name(pipe));
2187
2188         /*
2189          * Make sure planes won't keep trying to pump pixels to us,
2190          * or we might hang the display.
2191          */
2192         assert_planes_disabled(dev_priv, pipe);
2193         assert_cursor_disabled(dev_priv, pipe);
2194         assert_sprites_disabled(dev_priv, pipe);
2195
2196         reg = PIPECONF(cpu_transcoder);
2197         val = I915_READ(reg);
2198         if ((val & PIPECONF_ENABLE) == 0)
2199                 return;
2200
2201         /*
2202          * Double wide has implications for planes
2203          * so best keep it disabled when not needed.
2204          */
2205         if (crtc->config->double_wide)
2206                 val &= ~PIPECONF_DOUBLE_WIDE;
2207
2208         /* Don't disable pipe or pipe PLLs if needed */
2209         if (!(pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) &&
2210             !(pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE))
2211                 val &= ~PIPECONF_ENABLE;
2212
2213         I915_WRITE(reg, val);
2214         if ((val & PIPECONF_ENABLE) == 0)
2215                 intel_wait_for_pipe_off(crtc);
2216 }
2217
2218 static bool need_vtd_wa(struct drm_device *dev)
2219 {
2220 #ifdef CONFIG_INTEL_IOMMU
2221         if (INTEL_INFO(dev)->gen >= 6 && intel_iommu_gfx_mapped)
2222                 return true;
2223 #endif
2224         return false;
2225 }
2226
2227 unsigned int
2228 intel_tile_height(struct drm_device *dev, uint32_t pixel_format,
2229                   uint64_t fb_format_modifier)
2230 {
2231         unsigned int tile_height;
2232         uint32_t pixel_bytes;
2233
2234         switch (fb_format_modifier) {
2235         case DRM_FORMAT_MOD_NONE:
2236                 tile_height = 1;
2237                 break;
2238         case I915_FORMAT_MOD_X_TILED:
2239                 tile_height = IS_GEN2(dev) ? 16 : 8;
2240                 break;
2241         case I915_FORMAT_MOD_Y_TILED:
2242                 tile_height = 32;
2243                 break;
2244         case I915_FORMAT_MOD_Yf_TILED:
2245                 pixel_bytes = drm_format_plane_cpp(pixel_format, 0);
2246                 switch (pixel_bytes) {
2247                 default:
2248                 case 1:
2249                         tile_height = 64;
2250                         break;
2251                 case 2:
2252                 case 4:
2253                         tile_height = 32;
2254                         break;
2255                 case 8:
2256                         tile_height = 16;
2257                         break;
2258                 case 16:
2259                         WARN_ONCE(1,
2260                                   "128-bit pixels are not supported for display!");
2261                         tile_height = 16;
2262                         break;
2263                 }
2264                 break;
2265         default:
2266                 MISSING_CASE(fb_format_modifier);
2267                 tile_height = 1;
2268                 break;
2269         }
2270
2271         return tile_height;
2272 }
2273
2274 unsigned int
2275 intel_fb_align_height(struct drm_device *dev, unsigned int height,
2276                       uint32_t pixel_format, uint64_t fb_format_modifier)
2277 {
2278         return ALIGN(height, intel_tile_height(dev, pixel_format,
2279                                                fb_format_modifier));
2280 }
2281
2282 static int
2283 intel_fill_fb_ggtt_view(struct i915_ggtt_view *view, struct drm_framebuffer *fb,
2284                         const struct drm_plane_state *plane_state)
2285 {
2286         struct intel_rotation_info *info = &view->rotation_info;
2287         unsigned int tile_height, tile_pitch;
2288
2289         *view = i915_ggtt_view_normal;
2290
2291         if (!plane_state)
2292                 return 0;
2293
2294         if (!intel_rotation_90_or_270(plane_state->rotation))
2295                 return 0;
2296
2297         *view = i915_ggtt_view_rotated;
2298
2299         info->height = fb->height;
2300         info->pixel_format = fb->pixel_format;
2301         info->pitch = fb->pitches[0];
2302         info->fb_modifier = fb->modifier[0];
2303
2304         tile_height = intel_tile_height(fb->dev, fb->pixel_format,
2305                                         fb->modifier[0]);
2306         tile_pitch = PAGE_SIZE / tile_height;
2307         info->width_pages = DIV_ROUND_UP(fb->pitches[0], tile_pitch);
2308         info->height_pages = DIV_ROUND_UP(fb->height, tile_height);
2309         info->size = info->width_pages * info->height_pages * PAGE_SIZE;
2310
2311         return 0;
2312 }
2313
2314 static unsigned int intel_linear_alignment(struct drm_i915_private *dev_priv)
2315 {
2316         if (INTEL_INFO(dev_priv)->gen >= 9)
2317                 return 256 * 1024;
2318         else if (IS_BROADWATER(dev_priv) || IS_CRESTLINE(dev_priv) ||
2319                  IS_VALLEYVIEW(dev_priv))
2320                 return 128 * 1024;
2321         else if (INTEL_INFO(dev_priv)->gen >= 4)
2322                 return 4 * 1024;
2323         else
2324                 return 0;
2325 }
2326
2327 int
2328 intel_pin_and_fence_fb_obj(struct drm_plane *plane,
2329                            struct drm_framebuffer *fb,
2330                            const struct drm_plane_state *plane_state,
2331                            struct intel_engine_cs *pipelined,
2332                            struct drm_i915_gem_request **pipelined_request)
2333 {
2334         struct drm_device *dev = fb->dev;
2335         struct drm_i915_private *dev_priv = dev->dev_private;
2336         struct drm_i915_gem_object *obj = intel_fb_obj(fb);
2337         struct i915_ggtt_view view;
2338         u32 alignment;
2339         int ret;
2340
2341         WARN_ON(!mutex_is_locked(&dev->struct_mutex));
2342
2343         switch (fb->modifier[0]) {
2344         case DRM_FORMAT_MOD_NONE:
2345                 alignment = intel_linear_alignment(dev_priv);
2346                 break;
2347         case I915_FORMAT_MOD_X_TILED:
2348                 if (INTEL_INFO(dev)->gen >= 9)
2349                         alignment = 256 * 1024;
2350                 else {
2351                         /* pin() will align the object as required by fence */
2352                         alignment = 0;
2353                 }
2354                 break;
2355         case I915_FORMAT_MOD_Y_TILED:
2356         case I915_FORMAT_MOD_Yf_TILED:
2357                 if (WARN_ONCE(INTEL_INFO(dev)->gen < 9,
2358                           "Y tiling bo slipped through, driver bug!\n"))
2359                         return -EINVAL;
2360                 alignment = 1 * 1024 * 1024;
2361                 break;
2362         default:
2363                 MISSING_CASE(fb->modifier[0]);
2364                 return -EINVAL;
2365         }
2366
2367         ret = intel_fill_fb_ggtt_view(&view, fb, plane_state);
2368         if (ret)
2369                 return ret;
2370
2371         /* Note that the w/a also requires 64 PTE of padding following the
2372          * bo. We currently fill all unused PTE with the shadow page and so
2373          * we should always have valid PTE following the scanout preventing
2374          * the VT-d warning.
2375          */
2376         if (need_vtd_wa(dev) && alignment < 256 * 1024)
2377                 alignment = 256 * 1024;
2378
2379         /*
2380          * Global gtt pte registers are special registers which actually forward
2381          * writes to a chunk of system memory. Which means that there is no risk
2382          * that the register values disappear as soon as we call
2383          * intel_runtime_pm_put(), so it is correct to wrap only the
2384          * pin/unpin/fence and not more.
2385          */
2386         intel_runtime_pm_get(dev_priv);
2387
2388         dev_priv->mm.interruptible = false;
2389         ret = i915_gem_object_pin_to_display_plane(obj, alignment, pipelined,
2390                                                    pipelined_request, &view);
2391         if (ret)
2392                 goto err_interruptible;
2393
2394         /* Install a fence for tiled scan-out. Pre-i965 always needs a
2395          * fence, whereas 965+ only requires a fence if using
2396          * framebuffer compression.  For simplicity, we always install
2397          * a fence as the cost is not that onerous.
2398          */
2399         ret = i915_gem_object_get_fence(obj);
2400         if (ret)
2401                 goto err_unpin;
2402
2403         i915_gem_object_pin_fence(obj);
2404
2405         dev_priv->mm.interruptible = true;
2406         intel_runtime_pm_put(dev_priv);
2407         return 0;
2408
2409 err_unpin:
2410         i915_gem_object_unpin_from_display_plane(obj, &view);
2411 err_interruptible:
2412         dev_priv->mm.interruptible = true;
2413         intel_runtime_pm_put(dev_priv);
2414         return ret;
2415 }
2416
2417 static void intel_unpin_fb_obj(struct drm_framebuffer *fb,
2418                                const struct drm_plane_state *plane_state)
2419 {
2420         struct drm_i915_gem_object *obj = intel_fb_obj(fb);
2421         struct i915_ggtt_view view;
2422         int ret;
2423
2424         WARN_ON(!mutex_is_locked(&obj->base.dev->struct_mutex));
2425
2426         ret = intel_fill_fb_ggtt_view(&view, fb, plane_state);
2427         WARN_ONCE(ret, "Couldn't get view from plane state!");
2428
2429         i915_gem_object_unpin_fence(obj);
2430         i915_gem_object_unpin_from_display_plane(obj, &view);
2431 }
2432
2433 /* Computes the linear offset to the base tile and adjusts x, y. bytes per pixel
2434  * is assumed to be a power-of-two. */
2435 unsigned long intel_gen4_compute_page_offset(struct drm_i915_private *dev_priv,
2436                                              int *x, int *y,
2437                                              unsigned int tiling_mode,
2438                                              unsigned int cpp,
2439                                              unsigned int pitch)
2440 {
2441         if (tiling_mode != I915_TILING_NONE) {
2442                 unsigned int tile_rows, tiles;
2443
2444                 tile_rows = *y / 8;
2445                 *y %= 8;
2446
2447                 tiles = *x / (512/cpp);
2448                 *x %= 512/cpp;
2449
2450                 return tile_rows * pitch * 8 + tiles * 4096;
2451         } else {
2452                 unsigned int alignment = intel_linear_alignment(dev_priv) - 1;
2453                 unsigned int offset;
2454
2455                 offset = *y * pitch + *x * cpp;
2456                 *y = (offset & alignment) / pitch;
2457                 *x = ((offset & alignment) - *y * pitch) / cpp;
2458                 return offset & ~alignment;
2459         }
2460 }
2461
2462 static int i9xx_format_to_fourcc(int format)
2463 {
2464         switch (format) {
2465         case DISPPLANE_8BPP:
2466                 return DRM_FORMAT_C8;
2467         case DISPPLANE_BGRX555:
2468                 return DRM_FORMAT_XRGB1555;
2469         case DISPPLANE_BGRX565:
2470                 return DRM_FORMAT_RGB565;
2471         default:
2472         case DISPPLANE_BGRX888:
2473                 return DRM_FORMAT_XRGB8888;
2474         case DISPPLANE_RGBX888:
2475                 return DRM_FORMAT_XBGR8888;
2476         case DISPPLANE_BGRX101010:
2477                 return DRM_FORMAT_XRGB2101010;
2478         case DISPPLANE_RGBX101010:
2479                 return DRM_FORMAT_XBGR2101010;
2480         }
2481 }
2482
2483 static int skl_format_to_fourcc(int format, bool rgb_order, bool alpha)
2484 {
2485         switch (format) {
2486         case PLANE_CTL_FORMAT_RGB_565:
2487                 return DRM_FORMAT_RGB565;
2488         default:
2489         case PLANE_CTL_FORMAT_XRGB_8888:
2490                 if (rgb_order) {
2491                         if (alpha)
2492                                 return DRM_FORMAT_ABGR8888;
2493                         else
2494                                 return DRM_FORMAT_XBGR8888;
2495                 } else {
2496                         if (alpha)
2497                                 return DRM_FORMAT_ARGB8888;
2498                         else
2499                                 return DRM_FORMAT_XRGB8888;
2500                 }
2501         case PLANE_CTL_FORMAT_XRGB_2101010:
2502                 if (rgb_order)
2503                         return DRM_FORMAT_XBGR2101010;
2504                 else
2505                         return DRM_FORMAT_XRGB2101010;
2506         }
2507 }
2508
2509 static bool
2510 intel_alloc_initial_plane_obj(struct intel_crtc *crtc,
2511                               struct intel_initial_plane_config *plane_config)
2512 {
2513         struct drm_device *dev = crtc->base.dev;
2514         struct drm_i915_gem_object *obj = NULL;
2515         struct drm_mode_fb_cmd2 mode_cmd = { 0 };
2516         struct drm_framebuffer *fb = &plane_config->fb->base;
2517         u32 base_aligned = round_down(plane_config->base, PAGE_SIZE);
2518         u32 size_aligned = round_up(plane_config->base + plane_config->size,
2519                                     PAGE_SIZE);
2520
2521         size_aligned -= base_aligned;
2522
2523         if (plane_config->size == 0)
2524                 return false;
2525
2526         obj = i915_gem_object_create_stolen_for_preallocated(dev,
2527                                                              base_aligned,
2528                                                              base_aligned,
2529                                                              size_aligned);
2530         if (!obj)
2531                 return false;
2532
2533         obj->tiling_mode = plane_config->tiling;
2534         if (obj->tiling_mode == I915_TILING_X)
2535                 obj->stride = fb->pitches[0];
2536
2537         mode_cmd.pixel_format = fb->pixel_format;
2538         mode_cmd.width = fb->width;
2539         mode_cmd.height = fb->height;
2540         mode_cmd.pitches[0] = fb->pitches[0];
2541         mode_cmd.modifier[0] = fb->modifier[0];
2542         mode_cmd.flags = DRM_MODE_FB_MODIFIERS;
2543
2544         mutex_lock(&dev->struct_mutex);
2545         if (intel_framebuffer_init(dev, to_intel_framebuffer(fb),
2546                                    &mode_cmd, obj)) {
2547                 DRM_DEBUG_KMS("intel fb init failed\n");
2548                 goto out_unref_obj;
2549         }
2550         mutex_unlock(&dev->struct_mutex);
2551
2552         DRM_DEBUG_KMS("initial plane fb obj %p\n", obj);
2553         return true;
2554
2555 out_unref_obj:
2556         drm_gem_object_unreference(&obj->base);
2557         mutex_unlock(&dev->struct_mutex);
2558         return false;
2559 }
2560
2561 /* Update plane->state->fb to match plane->fb after driver-internal updates */
2562 static void
2563 update_state_fb(struct drm_plane *plane)
2564 {
2565         if (plane->fb == plane->state->fb)
2566                 return;
2567
2568         if (plane->state->fb)
2569                 drm_framebuffer_unreference(plane->state->fb);
2570         plane->state->fb = plane->fb;
2571         if (plane->state->fb)
2572                 drm_framebuffer_reference(plane->state->fb);
2573 }
2574
2575 static void
2576 intel_find_initial_plane_obj(struct intel_crtc *intel_crtc,
2577                              struct intel_initial_plane_config *plane_config)
2578 {
2579         struct drm_device *dev = intel_crtc->base.dev;
2580         struct drm_i915_private *dev_priv = dev->dev_private;
2581         struct drm_crtc *c;
2582         struct intel_crtc *i;
2583         struct drm_i915_gem_object *obj;
2584         struct drm_plane *primary = intel_crtc->base.primary;
2585         struct drm_plane_state *plane_state = primary->state;
2586         struct drm_framebuffer *fb;
2587
2588         if (!plane_config->fb)
2589                 return;
2590
2591         if (intel_alloc_initial_plane_obj(intel_crtc, plane_config)) {
2592                 fb = &plane_config->fb->base;
2593                 goto valid_fb;
2594         }
2595
2596         kfree(plane_config->fb);
2597
2598         /*
2599          * Failed to alloc the obj, check to see if we should share
2600          * an fb with another CRTC instead
2601          */
2602         for_each_crtc(dev, c) {
2603                 i = to_intel_crtc(c);
2604
2605                 if (c == &intel_crtc->base)
2606                         continue;
2607
2608                 if (!i->active)
2609                         continue;
2610
2611                 fb = c->primary->fb;
2612                 if (!fb)
2613                         continue;
2614
2615                 obj = intel_fb_obj(fb);
2616                 if (i915_gem_obj_ggtt_offset(obj) == plane_config->base) {
2617                         drm_framebuffer_reference(fb);
2618                         goto valid_fb;
2619                 }
2620         }
2621
2622         return;
2623
2624 valid_fb:
2625         plane_state->src_x = plane_state->src_y = 0;
2626         plane_state->src_w = fb->width << 16;
2627         plane_state->src_h = fb->height << 16;
2628
2629         plane_state->crtc_x = plane_state->src_y = 0;
2630         plane_state->crtc_w = fb->width;
2631         plane_state->crtc_h = fb->height;
2632
2633         obj = intel_fb_obj(fb);
2634         if (obj->tiling_mode != I915_TILING_NONE)
2635                 dev_priv->preserve_bios_swizzle = true;
2636
2637         drm_framebuffer_reference(fb);
2638         primary->fb = primary->state->fb = fb;
2639         primary->crtc = primary->state->crtc = &intel_crtc->base;
2640         intel_crtc->base.state->plane_mask |= (1 << drm_plane_index(primary));
2641         obj->frontbuffer_bits |= to_intel_plane(primary)->frontbuffer_bit;
2642 }
2643
2644 static void i9xx_update_primary_plane(struct drm_crtc *crtc,
2645                                       struct drm_framebuffer *fb,
2646                                       int x, int y)
2647 {
2648         struct drm_device *dev = crtc->dev;
2649         struct drm_i915_private *dev_priv = dev->dev_private;
2650         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2651         struct drm_plane *primary = crtc->primary;
2652         bool visible = to_intel_plane_state(primary->state)->visible;
2653         struct drm_i915_gem_object *obj;
2654         int plane = intel_crtc->plane;
2655         unsigned long linear_offset;
2656         u32 dspcntr;
2657         u32 reg = DSPCNTR(plane);
2658         int pixel_size;
2659
2660         if (!visible || !fb) {
2661                 I915_WRITE(reg, 0);
2662                 if (INTEL_INFO(dev)->gen >= 4)
2663                         I915_WRITE(DSPSURF(plane), 0);
2664                 else
2665                         I915_WRITE(DSPADDR(plane), 0);
2666                 POSTING_READ(reg);
2667                 return;
2668         }
2669
2670         obj = intel_fb_obj(fb);
2671         if (WARN_ON(obj == NULL))
2672                 return;
2673
2674         pixel_size = drm_format_plane_cpp(fb->pixel_format, 0);
2675
2676         dspcntr = DISPPLANE_GAMMA_ENABLE;
2677
2678         dspcntr |= DISPLAY_PLANE_ENABLE;
2679
2680         if (INTEL_INFO(dev)->gen < 4) {
2681                 if (intel_crtc->pipe == PIPE_B)
2682                         dspcntr |= DISPPLANE_SEL_PIPE_B;
2683
2684                 /* pipesrc and dspsize control the size that is scaled from,
2685                  * which should always be the user's requested size.
2686                  */
2687                 I915_WRITE(DSPSIZE(plane),
2688                            ((intel_crtc->config->pipe_src_h - 1) << 16) |
2689                            (intel_crtc->config->pipe_src_w - 1));
2690                 I915_WRITE(DSPPOS(plane), 0);
2691         } else if (IS_CHERRYVIEW(dev) && plane == PLANE_B) {
2692                 I915_WRITE(PRIMSIZE(plane),
2693                            ((intel_crtc->config->pipe_src_h - 1) << 16) |
2694                            (intel_crtc->config->pipe_src_w - 1));
2695                 I915_WRITE(PRIMPOS(plane), 0);
2696                 I915_WRITE(PRIMCNSTALPHA(plane), 0);
2697         }
2698
2699         switch (fb->pixel_format) {
2700         case DRM_FORMAT_C8:
2701                 dspcntr |= DISPPLANE_8BPP;
2702                 break;
2703         case DRM_FORMAT_XRGB1555:
2704                 dspcntr |= DISPPLANE_BGRX555;
2705                 break;
2706         case DRM_FORMAT_RGB565:
2707                 dspcntr |= DISPPLANE_BGRX565;
2708                 break;
2709         case DRM_FORMAT_XRGB8888:
2710                 dspcntr |= DISPPLANE_BGRX888;
2711                 break;
2712         case DRM_FORMAT_XBGR8888:
2713                 dspcntr |= DISPPLANE_RGBX888;
2714                 break;
2715         case DRM_FORMAT_XRGB2101010:
2716                 dspcntr |= DISPPLANE_BGRX101010;
2717                 break;
2718         case DRM_FORMAT_XBGR2101010:
2719                 dspcntr |= DISPPLANE_RGBX101010;
2720                 break;
2721         default:
2722                 BUG();
2723         }
2724
2725         if (INTEL_INFO(dev)->gen >= 4 &&
2726             obj->tiling_mode != I915_TILING_NONE)
2727                 dspcntr |= DISPPLANE_TILED;
2728
2729         if (IS_G4X(dev))
2730                 dspcntr |= DISPPLANE_TRICKLE_FEED_DISABLE;
2731
2732         linear_offset = y * fb->pitches[0] + x * pixel_size;
2733
2734         if (INTEL_INFO(dev)->gen >= 4) {
2735                 intel_crtc->dspaddr_offset =
2736                         intel_gen4_compute_page_offset(dev_priv,
2737                                                        &x, &y, obj->tiling_mode,
2738                                                        pixel_size,
2739                                                        fb->pitches[0]);
2740                 linear_offset -= intel_crtc->dspaddr_offset;
2741         } else {
2742                 intel_crtc->dspaddr_offset = linear_offset;
2743         }
2744
2745         if (crtc->primary->state->rotation == BIT(DRM_ROTATE_180)) {
2746                 dspcntr |= DISPPLANE_ROTATE_180;
2747
2748                 x += (intel_crtc->config->pipe_src_w - 1);
2749                 y += (intel_crtc->config->pipe_src_h - 1);
2750
2751                 /* Finding the last pixel of the last line of the display
2752                 data and adding to linear_offset*/
2753                 linear_offset +=
2754                         (intel_crtc->config->pipe_src_h - 1) * fb->pitches[0] +
2755                         (intel_crtc->config->pipe_src_w - 1) * pixel_size;
2756         }
2757
2758         I915_WRITE(reg, dspcntr);
2759
2760         I915_WRITE(DSPSTRIDE(plane), fb->pitches[0]);
2761         if (INTEL_INFO(dev)->gen >= 4) {
2762                 I915_WRITE(DSPSURF(plane),
2763                            i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset);
2764                 I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
2765                 I915_WRITE(DSPLINOFF(plane), linear_offset);
2766         } else
2767                 I915_WRITE(DSPADDR(plane), i915_gem_obj_ggtt_offset(obj) + linear_offset);
2768         POSTING_READ(reg);
2769 }
2770
2771 static void ironlake_update_primary_plane(struct drm_crtc *crtc,
2772                                           struct drm_framebuffer *fb,
2773                                           int x, int y)
2774 {
2775         struct drm_device *dev = crtc->dev;
2776         struct drm_i915_private *dev_priv = dev->dev_private;
2777         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2778         struct drm_plane *primary = crtc->primary;
2779         bool visible = to_intel_plane_state(primary->state)->visible;
2780         struct drm_i915_gem_object *obj;
2781         int plane = intel_crtc->plane;
2782         unsigned long linear_offset;
2783         u32 dspcntr;
2784         u32 reg = DSPCNTR(plane);
2785         int pixel_size;
2786
2787         if (!visible || !fb) {
2788                 I915_WRITE(reg, 0);
2789                 I915_WRITE(DSPSURF(plane), 0);
2790                 POSTING_READ(reg);
2791                 return;
2792         }
2793
2794         obj = intel_fb_obj(fb);
2795         if (WARN_ON(obj == NULL))
2796                 return;
2797
2798         pixel_size = drm_format_plane_cpp(fb->pixel_format, 0);
2799
2800         dspcntr = DISPPLANE_GAMMA_ENABLE;
2801
2802         dspcntr |= DISPLAY_PLANE_ENABLE;
2803
2804         if (IS_HASWELL(dev) || IS_BROADWELL(dev))
2805                 dspcntr |= DISPPLANE_PIPE_CSC_ENABLE;
2806
2807         switch (fb->pixel_format) {
2808         case DRM_FORMAT_C8:
2809                 dspcntr |= DISPPLANE_8BPP;
2810                 break;
2811         case DRM_FORMAT_RGB565:
2812                 dspcntr |= DISPPLANE_BGRX565;
2813                 break;
2814         case DRM_FORMAT_XRGB8888:
2815                 dspcntr |= DISPPLANE_BGRX888;
2816                 break;
2817         case DRM_FORMAT_XBGR8888:
2818                 dspcntr |= DISPPLANE_RGBX888;
2819                 break;
2820         case DRM_FORMAT_XRGB2101010:
2821                 dspcntr |= DISPPLANE_BGRX101010;
2822                 break;
2823         case DRM_FORMAT_XBGR2101010:
2824                 dspcntr |= DISPPLANE_RGBX101010;
2825                 break;
2826         default:
2827                 BUG();
2828         }
2829
2830         if (obj->tiling_mode != I915_TILING_NONE)
2831                 dspcntr |= DISPPLANE_TILED;
2832
2833         if (!IS_HASWELL(dev) && !IS_BROADWELL(dev))
2834                 dspcntr |= DISPPLANE_TRICKLE_FEED_DISABLE;
2835
2836         linear_offset = y * fb->pitches[0] + x * pixel_size;
2837         intel_crtc->dspaddr_offset =
2838                 intel_gen4_compute_page_offset(dev_priv,
2839                                                &x, &y, obj->tiling_mode,
2840                                                pixel_size,
2841                                                fb->pitches[0]);
2842         linear_offset -= intel_crtc->dspaddr_offset;
2843         if (crtc->primary->state->rotation == BIT(DRM_ROTATE_180)) {
2844                 dspcntr |= DISPPLANE_ROTATE_180;
2845
2846                 if (!IS_HASWELL(dev) && !IS_BROADWELL(dev)) {
2847                         x += (intel_crtc->config->pipe_src_w - 1);
2848                         y += (intel_crtc->config->pipe_src_h - 1);
2849
2850                         /* Finding the last pixel of the last line of the display
2851                         data and adding to linear_offset*/
2852                         linear_offset +=
2853                                 (intel_crtc->config->pipe_src_h - 1) * fb->pitches[0] +
2854                                 (intel_crtc->config->pipe_src_w - 1) * pixel_size;
2855                 }
2856         }
2857
2858         I915_WRITE(reg, dspcntr);
2859
2860         I915_WRITE(DSPSTRIDE(plane), fb->pitches[0]);
2861         I915_WRITE(DSPSURF(plane),
2862                    i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset);
2863         if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
2864                 I915_WRITE(DSPOFFSET(plane), (y << 16) | x);
2865         } else {
2866                 I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
2867                 I915_WRITE(DSPLINOFF(plane), linear_offset);
2868         }
2869         POSTING_READ(reg);
2870 }
2871
2872 u32 intel_fb_stride_alignment(struct drm_device *dev, uint64_t fb_modifier,
2873                               uint32_t pixel_format)
2874 {
2875         u32 bits_per_pixel = drm_format_plane_cpp(pixel_format, 0) * 8;
2876
2877         /*
2878          * The stride is either expressed as a multiple of 64 bytes
2879          * chunks for linear buffers or in number of tiles for tiled
2880          * buffers.
2881          */
2882         switch (fb_modifier) {
2883         case DRM_FORMAT_MOD_NONE:
2884                 return 64;
2885         case I915_FORMAT_MOD_X_TILED:
2886                 if (INTEL_INFO(dev)->gen == 2)
2887                         return 128;
2888                 return 512;
2889         case I915_FORMAT_MOD_Y_TILED:
2890                 /* No need to check for old gens and Y tiling since this is
2891                  * about the display engine and those will be blocked before
2892                  * we get here.
2893                  */
2894                 return 128;
2895         case I915_FORMAT_MOD_Yf_TILED:
2896                 if (bits_per_pixel == 8)
2897                         return 64;
2898                 else
2899                         return 128;
2900         default:
2901                 MISSING_CASE(fb_modifier);
2902                 return 64;
2903         }
2904 }
2905
2906 unsigned long intel_plane_obj_offset(struct intel_plane *intel_plane,
2907                                      struct drm_i915_gem_object *obj)
2908 {
2909         const struct i915_ggtt_view *view = &i915_ggtt_view_normal;
2910
2911         if (intel_rotation_90_or_270(intel_plane->base.state->rotation))
2912                 view = &i915_ggtt_view_rotated;
2913
2914         return i915_gem_obj_ggtt_offset_view(obj, view);
2915 }
2916
2917 static void skl_detach_scaler(struct intel_crtc *intel_crtc, int id)
2918 {
2919         struct drm_device *dev = intel_crtc->base.dev;
2920         struct drm_i915_private *dev_priv = dev->dev_private;
2921
2922         I915_WRITE(SKL_PS_CTRL(intel_crtc->pipe, id), 0);
2923         I915_WRITE(SKL_PS_WIN_POS(intel_crtc->pipe, id), 0);
2924         I915_WRITE(SKL_PS_WIN_SZ(intel_crtc->pipe, id), 0);
2925         DRM_DEBUG_KMS("CRTC:%d Disabled scaler id %u.%u\n",
2926                 intel_crtc->base.base.id, intel_crtc->pipe, id);
2927 }
2928
2929 /*
2930  * This function detaches (aka. unbinds) unused scalers in hardware
2931  */
2932 static void skl_detach_scalers(struct intel_crtc *intel_crtc)
2933 {
2934         struct intel_crtc_scaler_state *scaler_state;
2935         int i;
2936
2937         scaler_state = &intel_crtc->config->scaler_state;
2938
2939         /* loop through and disable scalers that aren't in use */
2940         for (i = 0; i < intel_crtc->num_scalers; i++) {
2941                 if (!scaler_state->scalers[i].in_use)
2942                         skl_detach_scaler(intel_crtc, i);
2943         }
2944 }
2945
2946 u32 skl_plane_ctl_format(uint32_t pixel_format)
2947 {
2948         switch (pixel_format) {
2949         case DRM_FORMAT_C8:
2950                 return PLANE_CTL_FORMAT_INDEXED;
2951         case DRM_FORMAT_RGB565:
2952                 return PLANE_CTL_FORMAT_RGB_565;
2953         case DRM_FORMAT_XBGR8888:
2954                 return PLANE_CTL_FORMAT_XRGB_8888 | PLANE_CTL_ORDER_RGBX;
2955         case DRM_FORMAT_XRGB8888:
2956                 return PLANE_CTL_FORMAT_XRGB_8888;
2957         /*
2958          * XXX: For ARBG/ABGR formats we default to expecting scanout buffers
2959          * to be already pre-multiplied. We need to add a knob (or a different
2960          * DRM_FORMAT) for user-space to configure that.
2961          */
2962         case DRM_FORMAT_ABGR8888:
2963                 return PLANE_CTL_FORMAT_XRGB_8888 | PLANE_CTL_ORDER_RGBX |
2964                         PLANE_CTL_ALPHA_SW_PREMULTIPLY;
2965         case DRM_FORMAT_ARGB8888:
2966                 return PLANE_CTL_FORMAT_XRGB_8888 |
2967                         PLANE_CTL_ALPHA_SW_PREMULTIPLY;
2968         case DRM_FORMAT_XRGB2101010:
2969                 return PLANE_CTL_FORMAT_XRGB_2101010;
2970         case DRM_FORMAT_XBGR2101010:
2971                 return PLANE_CTL_ORDER_RGBX | PLANE_CTL_FORMAT_XRGB_2101010;
2972         case DRM_FORMAT_YUYV:
2973                 return PLANE_CTL_FORMAT_YUV422 | PLANE_CTL_YUV422_YUYV;
2974         case DRM_FORMAT_YVYU:
2975                 return PLANE_CTL_FORMAT_YUV422 | PLANE_CTL_YUV422_YVYU;
2976         case DRM_FORMAT_UYVY:
2977                 return PLANE_CTL_FORMAT_YUV422 | PLANE_CTL_YUV422_UYVY;
2978         case DRM_FORMAT_VYUY:
2979                 return PLANE_CTL_FORMAT_YUV422 | PLANE_CTL_YUV422_VYUY;
2980         default:
2981                 MISSING_CASE(pixel_format);
2982         }
2983
2984         return 0;
2985 }
2986
2987 u32 skl_plane_ctl_tiling(uint64_t fb_modifier)
2988 {
2989         switch (fb_modifier) {
2990         case DRM_FORMAT_MOD_NONE:
2991                 break;
2992         case I915_FORMAT_MOD_X_TILED:
2993                 return PLANE_CTL_TILED_X;
2994         case I915_FORMAT_MOD_Y_TILED:
2995                 return PLANE_CTL_TILED_Y;
2996         case I915_FORMAT_MOD_Yf_TILED:
2997                 return PLANE_CTL_TILED_YF;
2998         default:
2999                 MISSING_CASE(fb_modifier);
3000         }
3001
3002         return 0;
3003 }
3004
3005 u32 skl_plane_ctl_rotation(unsigned int rotation)
3006 {
3007         switch (rotation) {
3008         case BIT(DRM_ROTATE_0):
3009                 break;
3010         /*
3011          * DRM_ROTATE_ is counter clockwise to stay compatible with Xrandr
3012          * while i915 HW rotation is clockwise, thats why this swapping.
3013          */
3014         case BIT(DRM_ROTATE_90):
3015                 return PLANE_CTL_ROTATE_270;
3016         case BIT(DRM_ROTATE_180):
3017                 return PLANE_CTL_ROTATE_180;
3018         case BIT(DRM_ROTATE_270):
3019                 return PLANE_CTL_ROTATE_90;
3020         default:
3021                 MISSING_CASE(rotation);
3022         }
3023
3024         return 0;
3025 }
3026
3027 static void skylake_update_primary_plane(struct drm_crtc *crtc,
3028                                          struct drm_framebuffer *fb,
3029                                          int x, int y)
3030 {
3031         struct drm_device *dev = crtc->dev;
3032         struct drm_i915_private *dev_priv = dev->dev_private;
3033         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3034         struct drm_plane *plane = crtc->primary;
3035         bool visible = to_intel_plane_state(plane->state)->visible;
3036         struct drm_i915_gem_object *obj;
3037         int pipe = intel_crtc->pipe;
3038         u32 plane_ctl, stride_div, stride;
3039         u32 tile_height, plane_offset, plane_size;
3040         unsigned int rotation;
3041         int x_offset, y_offset;
3042         unsigned long surf_addr;
3043         struct intel_crtc_state *crtc_state = intel_crtc->config;
3044         struct intel_plane_state *plane_state;
3045         int src_x = 0, src_y = 0, src_w = 0, src_h = 0;
3046         int dst_x = 0, dst_y = 0, dst_w = 0, dst_h = 0;
3047         int scaler_id = -1;
3048
3049         plane_state = to_intel_plane_state(plane->state);
3050
3051         if (!visible || !fb) {
3052                 I915_WRITE(PLANE_CTL(pipe, 0), 0);
3053                 I915_WRITE(PLANE_SURF(pipe, 0), 0);
3054                 POSTING_READ(PLANE_CTL(pipe, 0));
3055                 return;
3056         }
3057
3058         plane_ctl = PLANE_CTL_ENABLE |
3059                     PLANE_CTL_PIPE_GAMMA_ENABLE |
3060                     PLANE_CTL_PIPE_CSC_ENABLE;
3061
3062         plane_ctl |= skl_plane_ctl_format(fb->pixel_format);
3063         plane_ctl |= skl_plane_ctl_tiling(fb->modifier[0]);
3064         plane_ctl |= PLANE_CTL_PLANE_GAMMA_DISABLE;
3065
3066         rotation = plane->state->rotation;
3067         plane_ctl |= skl_plane_ctl_rotation(rotation);
3068
3069         obj = intel_fb_obj(fb);
3070         stride_div = intel_fb_stride_alignment(dev, fb->modifier[0],
3071                                                fb->pixel_format);
3072         surf_addr = intel_plane_obj_offset(to_intel_plane(plane), obj);
3073
3074         /*
3075          * FIXME: intel_plane_state->src, dst aren't set when transitional
3076          * update_plane helpers are called from legacy paths.
3077          * Once full atomic crtc is available, below check can be avoided.
3078          */
3079         if (drm_rect_width(&plane_state->src)) {
3080                 scaler_id = plane_state->scaler_id;
3081                 src_x = plane_state->src.x1 >> 16;
3082                 src_y = plane_state->src.y1 >> 16;
3083                 src_w = drm_rect_width(&plane_state->src) >> 16;
3084                 src_h = drm_rect_height(&plane_state->src) >> 16;
3085                 dst_x = plane_state->dst.x1;
3086                 dst_y = plane_state->dst.y1;
3087                 dst_w = drm_rect_width(&plane_state->dst);
3088                 dst_h = drm_rect_height(&plane_state->dst);
3089
3090                 WARN_ON(x != src_x || y != src_y);
3091         } else {
3092                 src_w = intel_crtc->config->pipe_src_w;
3093                 src_h = intel_crtc->config->pipe_src_h;
3094         }
3095
3096         if (intel_rotation_90_or_270(rotation)) {
3097                 /* stride = Surface height in tiles */
3098                 tile_height = intel_tile_height(dev, fb->pixel_format,
3099                                                 fb->modifier[0]);
3100                 stride = DIV_ROUND_UP(fb->height, tile_height);
3101                 x_offset = stride * tile_height - y - src_h;
3102                 y_offset = x;
3103                 plane_size = (src_w - 1) << 16 | (src_h - 1);
3104         } else {
3105                 stride = fb->pitches[0] / stride_div;
3106                 x_offset = x;
3107                 y_offset = y;
3108                 plane_size = (src_h - 1) << 16 | (src_w - 1);
3109         }
3110         plane_offset = y_offset << 16 | x_offset;
3111
3112         I915_WRITE(PLANE_CTL(pipe, 0), plane_ctl);
3113         I915_WRITE(PLANE_OFFSET(pipe, 0), plane_offset);
3114         I915_WRITE(PLANE_SIZE(pipe, 0), plane_size);
3115         I915_WRITE(PLANE_STRIDE(pipe, 0), stride);
3116
3117         if (scaler_id >= 0) {
3118                 uint32_t ps_ctrl = 0;
3119
3120                 WARN_ON(!dst_w || !dst_h);
3121                 ps_ctrl = PS_SCALER_EN | PS_PLANE_SEL(0) |
3122                         crtc_state->scaler_state.scalers[scaler_id].mode;
3123                 I915_WRITE(SKL_PS_CTRL(pipe, scaler_id), ps_ctrl);
3124                 I915_WRITE(SKL_PS_PWR_GATE(pipe, scaler_id), 0);
3125                 I915_WRITE(SKL_PS_WIN_POS(pipe, scaler_id), (dst_x << 16) | dst_y);
3126                 I915_WRITE(SKL_PS_WIN_SZ(pipe, scaler_id), (dst_w << 16) | dst_h);
3127                 I915_WRITE(PLANE_POS(pipe, 0), 0);
3128         } else {
3129                 I915_WRITE(PLANE_POS(pipe, 0), (dst_y << 16) | dst_x);
3130         }
3131
3132         I915_WRITE(PLANE_SURF(pipe, 0), surf_addr);
3133
3134         POSTING_READ(PLANE_SURF(pipe, 0));
3135 }
3136
3137 /* Assume fb object is pinned & idle & fenced and just update base pointers */
3138 static int
3139 intel_pipe_set_base_atomic(struct drm_crtc *crtc, struct drm_framebuffer *fb,
3140                            int x, int y, enum mode_set_atomic state)
3141 {
3142         struct drm_device *dev = crtc->dev;
3143         struct drm_i915_private *dev_priv = dev->dev_private;
3144
3145         if (dev_priv->fbc.disable_fbc)
3146                 dev_priv->fbc.disable_fbc(dev_priv);
3147
3148         dev_priv->display.update_primary_plane(crtc, fb, x, y);
3149
3150         return 0;
3151 }
3152
3153 static void intel_complete_page_flips(struct drm_device *dev)
3154 {
3155         struct drm_crtc *crtc;
3156
3157         for_each_crtc(dev, crtc) {
3158                 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3159                 enum plane plane = intel_crtc->plane;
3160
3161                 intel_prepare_page_flip(dev, plane);
3162                 intel_finish_page_flip_plane(dev, plane);
3163         }
3164 }
3165
3166 static void intel_update_primary_planes(struct drm_device *dev)
3167 {
3168         struct drm_i915_private *dev_priv = dev->dev_private;
3169         struct drm_crtc *crtc;
3170
3171         for_each_crtc(dev, crtc) {
3172                 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3173
3174                 drm_modeset_lock(&crtc->mutex, NULL);
3175                 /*
3176                  * FIXME: Once we have proper support for primary planes (and
3177                  * disabling them without disabling the entire crtc) allow again
3178                  * a NULL crtc->primary->fb.
3179                  */
3180                 if (intel_crtc->active && crtc->primary->fb)
3181                         dev_priv->display.update_primary_plane(crtc,
3182                                                                crtc->primary->fb,
3183                                                                crtc->x,
3184                                                                crtc->y);
3185                 drm_modeset_unlock(&crtc->mutex);
3186         }
3187 }
3188
3189 void intel_prepare_reset(struct drm_device *dev)
3190 {
3191         /* no reset support for gen2 */
3192         if (IS_GEN2(dev))
3193                 return;
3194
3195         /* reset doesn't touch the display */
3196         if (INTEL_INFO(dev)->gen >= 5 || IS_G4X(dev))
3197                 return;
3198
3199         drm_modeset_lock_all(dev);
3200         /*
3201          * Disabling the crtcs gracefully seems nicer. Also the
3202          * g33 docs say we should at least disable all the planes.
3203          */
3204         intel_display_suspend(dev);
3205 }
3206
3207 void intel_finish_reset(struct drm_device *dev)
3208 {
3209         struct drm_i915_private *dev_priv = to_i915(dev);
3210
3211         /*
3212          * Flips in the rings will be nuked by the reset,
3213          * so complete all pending flips so that user space
3214          * will get its events and not get stuck.
3215          */
3216         intel_complete_page_flips(dev);
3217
3218         /* no reset support for gen2 */
3219         if (IS_GEN2(dev))
3220                 return;
3221
3222         /* reset doesn't touch the display */
3223         if (INTEL_INFO(dev)->gen >= 5 || IS_G4X(dev)) {
3224                 /*
3225                  * Flips in the rings have been nuked by the reset,
3226                  * so update the base address of all primary
3227                  * planes to the the last fb to make sure we're
3228                  * showing the correct fb after a reset.
3229                  */
3230                 intel_update_primary_planes(dev);
3231                 return;
3232         }
3233
3234         /*
3235          * The display has been reset as well,
3236          * so need a full re-initialization.
3237          */
3238         intel_runtime_pm_disable_interrupts(dev_priv);
3239         intel_runtime_pm_enable_interrupts(dev_priv);
3240
3241         intel_modeset_init_hw(dev);
3242
3243         spin_lock_irq(&dev_priv->irq_lock);
3244         if (dev_priv->display.hpd_irq_setup)
3245                 dev_priv->display.hpd_irq_setup(dev);
3246         spin_unlock_irq(&dev_priv->irq_lock);
3247
3248         intel_display_resume(dev);
3249
3250         intel_hpd_init(dev_priv);
3251
3252         drm_modeset_unlock_all(dev);
3253 }
3254
3255 static void
3256 intel_finish_fb(struct drm_framebuffer *old_fb)
3257 {
3258         struct drm_i915_gem_object *obj = intel_fb_obj(old_fb);
3259         struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
3260         bool was_interruptible = dev_priv->mm.interruptible;
3261         int ret;
3262
3263         /* Big Hammer, we also need to ensure that any pending
3264          * MI_WAIT_FOR_EVENT inside a user batch buffer on the
3265          * current scanout is retired before unpinning the old
3266          * framebuffer. Note that we rely on userspace rendering
3267          * into the buffer attached to the pipe they are waiting
3268          * on. If not, userspace generates a GPU hang with IPEHR
3269          * point to the MI_WAIT_FOR_EVENT.
3270          *
3271          * This should only fail upon a hung GPU, in which case we
3272          * can safely continue.
3273          */
3274         dev_priv->mm.interruptible = false;
3275         ret = i915_gem_object_wait_rendering(obj, true);
3276         dev_priv->mm.interruptible = was_interruptible;
3277
3278         WARN_ON(ret);
3279 }
3280
3281 static bool intel_crtc_has_pending_flip(struct drm_crtc *crtc)
3282 {
3283         struct drm_device *dev = crtc->dev;
3284         struct drm_i915_private *dev_priv = dev->dev_private;
3285         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3286         bool pending;
3287
3288         if (i915_reset_in_progress(&dev_priv->gpu_error) ||
3289             intel_crtc->reset_counter != atomic_read(&dev_priv->gpu_error.reset_counter))
3290                 return false;
3291
3292         spin_lock_irq(&dev->event_lock);
3293         pending = to_intel_crtc(crtc)->unpin_work != NULL;
3294         spin_unlock_irq(&dev->event_lock);
3295
3296         return pending;
3297 }
3298
3299 static void intel_update_pipe_size(struct intel_crtc *crtc)
3300 {
3301         struct drm_device *dev = crtc->base.dev;
3302         struct drm_i915_private *dev_priv = dev->dev_private;
3303         const struct drm_display_mode *adjusted_mode;
3304
3305         if (!i915.fastboot)
3306                 return;
3307
3308         /*
3309          * Update pipe size and adjust fitter if needed: the reason for this is
3310          * that in compute_mode_changes we check the native mode (not the pfit
3311          * mode) to see if we can flip rather than do a full mode set. In the
3312          * fastboot case, we'll flip, but if we don't update the pipesrc and
3313          * pfit state, we'll end up with a big fb scanned out into the wrong
3314          * sized surface.
3315          *
3316          * To fix this properly, we need to hoist the checks up into
3317          * compute_mode_changes (or above), check the actual pfit state and
3318          * whether the platform allows pfit disable with pipe active, and only
3319          * then update the pipesrc and pfit state, even on the flip path.
3320          */
3321
3322         adjusted_mode = &crtc->config->base.adjusted_mode;
3323
3324         I915_WRITE(PIPESRC(crtc->pipe),
3325                    ((adjusted_mode->crtc_hdisplay - 1) << 16) |
3326                    (adjusted_mode->crtc_vdisplay - 1));
3327         if (!crtc->config->pch_pfit.enabled &&
3328             (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) ||
3329              intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))) {
3330                 I915_WRITE(PF_CTL(crtc->pipe), 0);
3331                 I915_WRITE(PF_WIN_POS(crtc->pipe), 0);
3332                 I915_WRITE(PF_WIN_SZ(crtc->pipe), 0);
3333         }
3334         crtc->config->pipe_src_w = adjusted_mode->crtc_hdisplay;
3335         crtc->config->pipe_src_h = adjusted_mode->crtc_vdisplay;
3336 }
3337
3338 static void intel_fdi_normal_train(struct drm_crtc *crtc)
3339 {
3340         struct drm_device *dev = crtc->dev;
3341         struct drm_i915_private *dev_priv = dev->dev_private;
3342         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3343         int pipe = intel_crtc->pipe;
3344         u32 reg, temp;
3345
3346         /* enable normal train */
3347         reg = FDI_TX_CTL(pipe);
3348         temp = I915_READ(reg);
3349         if (IS_IVYBRIDGE(dev)) {
3350                 temp &= ~FDI_LINK_TRAIN_NONE_IVB;
3351                 temp |= FDI_LINK_TRAIN_NONE_IVB | FDI_TX_ENHANCE_FRAME_ENABLE;
3352         } else {
3353                 temp &= ~FDI_LINK_TRAIN_NONE;
3354                 temp |= FDI_LINK_TRAIN_NONE | FDI_TX_ENHANCE_FRAME_ENABLE;
3355         }
3356         I915_WRITE(reg, temp);
3357
3358         reg = FDI_RX_CTL(pipe);
3359         temp = I915_READ(reg);
3360         if (HAS_PCH_CPT(dev)) {
3361                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3362                 temp |= FDI_LINK_TRAIN_NORMAL_CPT;
3363         } else {
3364                 temp &= ~FDI_LINK_TRAIN_NONE;
3365                 temp |= FDI_LINK_TRAIN_NONE;
3366         }
3367         I915_WRITE(reg, temp | FDI_RX_ENHANCE_FRAME_ENABLE);
3368
3369         /* wait one idle pattern time */
3370         POSTING_READ(reg);
3371         udelay(1000);
3372
3373         /* IVB wants error correction enabled */
3374         if (IS_IVYBRIDGE(dev))
3375                 I915_WRITE(reg, I915_READ(reg) | FDI_FS_ERRC_ENABLE |
3376                            FDI_FE_ERRC_ENABLE);
3377 }
3378
3379 /* The FDI link training functions for ILK/Ibexpeak. */
3380 static void ironlake_fdi_link_train(struct drm_crtc *crtc)
3381 {
3382         struct drm_device *dev = crtc->dev;
3383         struct drm_i915_private *dev_priv = dev->dev_private;
3384         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3385         int pipe = intel_crtc->pipe;
3386         u32 reg, temp, tries;
3387
3388         /* FDI needs bits from pipe first */
3389         assert_pipe_enabled(dev_priv, pipe);
3390
3391         /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
3392            for train result */
3393         reg = FDI_RX_IMR(pipe);
3394         temp = I915_READ(reg);
3395         temp &= ~FDI_RX_SYMBOL_LOCK;
3396         temp &= ~FDI_RX_BIT_LOCK;
3397         I915_WRITE(reg, temp);
3398         I915_READ(reg);
3399         udelay(150);
3400
3401         /* enable CPU FDI TX and PCH FDI RX */
3402         reg = FDI_TX_CTL(pipe);
3403         temp = I915_READ(reg);
3404         temp &= ~FDI_DP_PORT_WIDTH_MASK;
3405         temp |= FDI_DP_PORT_WIDTH(intel_crtc->config->fdi_lanes);
3406         temp &= ~FDI_LINK_TRAIN_NONE;
3407         temp |= FDI_LINK_TRAIN_PATTERN_1;
3408         I915_WRITE(reg, temp | FDI_TX_ENABLE);
3409
3410         reg = FDI_RX_CTL(pipe);
3411         temp = I915_READ(reg);
3412         temp &= ~FDI_LINK_TRAIN_NONE;
3413         temp |= FDI_LINK_TRAIN_PATTERN_1;
3414         I915_WRITE(reg, temp | FDI_RX_ENABLE);
3415
3416         POSTING_READ(reg);
3417         udelay(150);
3418
3419         /* Ironlake workaround, enable clock pointer after FDI enable*/
3420         I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
3421         I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR |
3422                    FDI_RX_PHASE_SYNC_POINTER_EN);
3423
3424         reg = FDI_RX_IIR(pipe);
3425         for (tries = 0; tries < 5; tries++) {
3426                 temp = I915_READ(reg);
3427                 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3428
3429                 if ((temp & FDI_RX_BIT_LOCK)) {
3430                         DRM_DEBUG_KMS("FDI train 1 done.\n");
3431                         I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
3432                         break;
3433                 }
3434         }
3435         if (tries == 5)
3436                 DRM_ERROR("FDI train 1 fail!\n");
3437
3438         /* Train 2 */
3439         reg = FDI_TX_CTL(pipe);
3440         temp = I915_READ(reg);
3441         temp &= ~FDI_LINK_TRAIN_NONE;
3442         temp |= FDI_LINK_TRAIN_PATTERN_2;
3443         I915_WRITE(reg, temp);
3444
3445         reg = FDI_RX_CTL(pipe);
3446         temp = I915_READ(reg);
3447         temp &= ~FDI_LINK_TRAIN_NONE;
3448         temp |= FDI_LINK_TRAIN_PATTERN_2;
3449         I915_WRITE(reg, temp);
3450
3451         POSTING_READ(reg);
3452         udelay(150);
3453
3454         reg = FDI_RX_IIR(pipe);
3455         for (tries = 0; tries < 5; tries++) {
3456                 temp = I915_READ(reg);
3457                 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3458
3459                 if (temp & FDI_RX_SYMBOL_LOCK) {
3460                         I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
3461                         DRM_DEBUG_KMS("FDI train 2 done.\n");
3462                         break;
3463                 }
3464         }
3465         if (tries == 5)
3466                 DRM_ERROR("FDI train 2 fail!\n");
3467
3468         DRM_DEBUG_KMS("FDI train done\n");
3469
3470 }
3471
3472 static const int snb_b_fdi_train_param[] = {
3473         FDI_LINK_TRAIN_400MV_0DB_SNB_B,
3474         FDI_LINK_TRAIN_400MV_6DB_SNB_B,
3475         FDI_LINK_TRAIN_600MV_3_5DB_SNB_B,
3476         FDI_LINK_TRAIN_800MV_0DB_SNB_B,
3477 };
3478
3479 /* The FDI link training functions for SNB/Cougarpoint. */
3480 static void gen6_fdi_link_train(struct drm_crtc *crtc)
3481 {
3482         struct drm_device *dev = crtc->dev;
3483         struct drm_i915_private *dev_priv = dev->dev_private;
3484         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3485         int pipe = intel_crtc->pipe;
3486         u32 reg, temp, i, retry;
3487
3488         /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
3489            for train result */
3490         reg = FDI_RX_IMR(pipe);
3491         temp = I915_READ(reg);
3492         temp &= ~FDI_RX_SYMBOL_LOCK;
3493         temp &= ~FDI_RX_BIT_LOCK;
3494         I915_WRITE(reg, temp);
3495
3496         POSTING_READ(reg);
3497         udelay(150);
3498
3499         /* enable CPU FDI TX and PCH FDI RX */
3500         reg = FDI_TX_CTL(pipe);
3501         temp = I915_READ(reg);
3502         temp &= ~FDI_DP_PORT_WIDTH_MASK;
3503         temp |= FDI_DP_PORT_WIDTH(intel_crtc->config->fdi_lanes);
3504         temp &= ~FDI_LINK_TRAIN_NONE;
3505         temp |= FDI_LINK_TRAIN_PATTERN_1;
3506         temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3507         /* SNB-B */
3508         temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
3509         I915_WRITE(reg, temp | FDI_TX_ENABLE);
3510
3511         I915_WRITE(FDI_RX_MISC(pipe),
3512                    FDI_RX_TP1_TO_TP2_48 | FDI_RX_FDI_DELAY_90);
3513
3514         reg = FDI_RX_CTL(pipe);
3515         temp = I915_READ(reg);
3516         if (HAS_PCH_CPT(dev)) {
3517                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3518                 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
3519         } else {
3520                 temp &= ~FDI_LINK_TRAIN_NONE;
3521                 temp |= FDI_LINK_TRAIN_PATTERN_1;
3522         }
3523         I915_WRITE(reg, temp | FDI_RX_ENABLE);
3524
3525         POSTING_READ(reg);
3526         udelay(150);
3527
3528         for (i = 0; i < 4; i++) {
3529                 reg = FDI_TX_CTL(pipe);
3530                 temp = I915_READ(reg);
3531                 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3532                 temp |= snb_b_fdi_train_param[i];
3533                 I915_WRITE(reg, temp);
3534
3535                 POSTING_READ(reg);
3536                 udelay(500);
3537
3538                 for (retry = 0; retry < 5; retry++) {
3539                         reg = FDI_RX_IIR(pipe);
3540                         temp = I915_READ(reg);
3541                         DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3542                         if (temp & FDI_RX_BIT_LOCK) {
3543                                 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
3544                                 DRM_DEBUG_KMS("FDI train 1 done.\n");
3545                                 break;
3546                         }
3547                         udelay(50);
3548                 }
3549                 if (retry < 5)
3550                         break;
3551         }
3552         if (i == 4)
3553                 DRM_ERROR("FDI train 1 fail!\n");
3554
3555         /* Train 2 */
3556         reg = FDI_TX_CTL(pipe);
3557         temp = I915_READ(reg);
3558         temp &= ~FDI_LINK_TRAIN_NONE;
3559         temp |= FDI_LINK_TRAIN_PATTERN_2;
3560         if (IS_GEN6(dev)) {
3561                 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3562                 /* SNB-B */
3563                 temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
3564         }
3565         I915_WRITE(reg, temp);
3566
3567         reg = FDI_RX_CTL(pipe);
3568         temp = I915_READ(reg);
3569         if (HAS_PCH_CPT(dev)) {
3570                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3571                 temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
3572         } else {
3573                 temp &= ~FDI_LINK_TRAIN_NONE;
3574                 temp |= FDI_LINK_TRAIN_PATTERN_2;
3575         }
3576         I915_WRITE(reg, temp);
3577
3578         POSTING_READ(reg);
3579         udelay(150);
3580
3581         for (i = 0; i < 4; i++) {
3582                 reg = FDI_TX_CTL(pipe);
3583                 temp = I915_READ(reg);
3584                 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3585                 temp |= snb_b_fdi_train_param[i];
3586                 I915_WRITE(reg, temp);
3587
3588                 POSTING_READ(reg);
3589                 udelay(500);
3590
3591                 for (retry = 0; retry < 5; retry++) {
3592                         reg = FDI_RX_IIR(pipe);
3593                         temp = I915_READ(reg);
3594                         DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3595                         if (temp & FDI_RX_SYMBOL_LOCK) {
3596                                 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
3597                                 DRM_DEBUG_KMS("FDI train 2 done.\n");
3598                                 break;
3599                         }
3600                         udelay(50);
3601                 }
3602                 if (retry < 5)
3603                         break;
3604         }
3605         if (i == 4)
3606                 DRM_ERROR("FDI train 2 fail!\n");
3607
3608         DRM_DEBUG_KMS("FDI train done.\n");
3609 }
3610
3611 /* Manual link training for Ivy Bridge A0 parts */
3612 static void ivb_manual_fdi_link_train(struct drm_crtc *crtc)
3613 {
3614         struct drm_device *dev = crtc->dev;
3615         struct drm_i915_private *dev_priv = dev->dev_private;
3616         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3617         int pipe = intel_crtc->pipe;
3618         u32 reg, temp, i, j;
3619
3620         /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
3621            for train result */
3622         reg = FDI_RX_IMR(pipe);
3623         temp = I915_READ(reg);
3624         temp &= ~FDI_RX_SYMBOL_LOCK;
3625         temp &= ~FDI_RX_BIT_LOCK;
3626         I915_WRITE(reg, temp);
3627
3628         POSTING_READ(reg);
3629         udelay(150);
3630
3631         DRM_DEBUG_KMS("FDI_RX_IIR before link train 0x%x\n",
3632                       I915_READ(FDI_RX_IIR(pipe)));
3633
3634         /* Try each vswing and preemphasis setting twice before moving on */
3635         for (j = 0; j < ARRAY_SIZE(snb_b_fdi_train_param) * 2; j++) {
3636                 /* disable first in case we need to retry */
3637                 reg = FDI_TX_CTL(pipe);
3638                 temp = I915_READ(reg);
3639                 temp &= ~(FDI_LINK_TRAIN_AUTO | FDI_LINK_TRAIN_NONE_IVB);
3640                 temp &= ~FDI_TX_ENABLE;
3641                 I915_WRITE(reg, temp);
3642
3643                 reg = FDI_RX_CTL(pipe);
3644                 temp = I915_READ(reg);
3645                 temp &= ~FDI_LINK_TRAIN_AUTO;
3646                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3647                 temp &= ~FDI_RX_ENABLE;
3648                 I915_WRITE(reg, temp);
3649
3650                 /* enable CPU FDI TX and PCH FDI RX */
3651                 reg = FDI_TX_CTL(pipe);
3652                 temp = I915_READ(reg);
3653                 temp &= ~FDI_DP_PORT_WIDTH_MASK;
3654                 temp |= FDI_DP_PORT_WIDTH(intel_crtc->config->fdi_lanes);
3655                 temp |= FDI_LINK_TRAIN_PATTERN_1_IVB;
3656                 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3657                 temp |= snb_b_fdi_train_param[j/2];
3658                 temp |= FDI_COMPOSITE_SYNC;
3659                 I915_WRITE(reg, temp | FDI_TX_ENABLE);
3660
3661                 I915_WRITE(FDI_RX_MISC(pipe),
3662                            FDI_RX_TP1_TO_TP2_48 | FDI_RX_FDI_DELAY_90);
3663
3664                 reg = FDI_RX_CTL(pipe);
3665                 temp = I915_READ(reg);
3666                 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
3667                 temp |= FDI_COMPOSITE_SYNC;
3668                 I915_WRITE(reg, temp | FDI_RX_ENABLE);
3669
3670                 POSTING_READ(reg);
3671                 udelay(1); /* should be 0.5us */
3672
3673                 for (i = 0; i < 4; i++) {
3674                         reg = FDI_RX_IIR(pipe);
3675                         temp = I915_READ(reg);
3676                         DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3677
3678                         if (temp & FDI_RX_BIT_LOCK ||
3679                             (I915_READ(reg) & FDI_RX_BIT_LOCK)) {
3680                                 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
3681                                 DRM_DEBUG_KMS("FDI train 1 done, level %i.\n",
3682                                               i);
3683                                 break;
3684                         }
3685                         udelay(1); /* should be 0.5us */
3686                 }
3687                 if (i == 4) {
3688                         DRM_DEBUG_KMS("FDI train 1 fail on vswing %d\n", j / 2);
3689                         continue;
3690                 }
3691
3692                 /* Train 2 */
3693                 reg = FDI_TX_CTL(pipe);
3694                 temp = I915_READ(reg);
3695                 temp &= ~FDI_LINK_TRAIN_NONE_IVB;
3696                 temp |= FDI_LINK_TRAIN_PATTERN_2_IVB;
3697                 I915_WRITE(reg, temp);
3698
3699                 reg = FDI_RX_CTL(pipe);
3700                 temp = I915_READ(reg);
3701                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3702                 temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
3703                 I915_WRITE(reg, temp);
3704
3705                 POSTING_READ(reg);
3706                 udelay(2); /* should be 1.5us */
3707
3708                 for (i = 0; i < 4; i++) {
3709                         reg = FDI_RX_IIR(pipe);
3710                         temp = I915_READ(reg);
3711                         DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3712
3713                         if (temp & FDI_RX_SYMBOL_LOCK ||
3714                             (I915_READ(reg) & FDI_RX_SYMBOL_LOCK)) {
3715                                 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
3716                                 DRM_DEBUG_KMS("FDI train 2 done, level %i.\n",
3717                                               i);
3718                                 goto train_done;
3719                         }
3720                         udelay(2); /* should be 1.5us */
3721                 }
3722                 if (i == 4)
3723                         DRM_DEBUG_KMS("FDI train 2 fail on vswing %d\n", j / 2);
3724         }
3725
3726 train_done:
3727         DRM_DEBUG_KMS("FDI train done.\n");
3728 }
3729
3730 static void ironlake_fdi_pll_enable(struct intel_crtc *intel_crtc)
3731 {
3732         struct drm_device *dev = intel_crtc->base.dev;
3733         struct drm_i915_private *dev_priv = dev->dev_private;
3734         int pipe = intel_crtc->pipe;
3735         u32 reg, temp;
3736
3737
3738         /* enable PCH FDI RX PLL, wait warmup plus DMI latency */
3739         reg = FDI_RX_CTL(pipe);
3740         temp = I915_READ(reg);
3741         temp &= ~(FDI_DP_PORT_WIDTH_MASK | (0x7 << 16));
3742         temp |= FDI_DP_PORT_WIDTH(intel_crtc->config->fdi_lanes);
3743         temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
3744         I915_WRITE(reg, temp | FDI_RX_PLL_ENABLE);
3745
3746         POSTING_READ(reg);
3747         udelay(200);
3748
3749         /* Switch from Rawclk to PCDclk */
3750         temp = I915_READ(reg);
3751         I915_WRITE(reg, temp | FDI_PCDCLK);
3752
3753         POSTING_READ(reg);
3754         udelay(200);
3755
3756         /* Enable CPU FDI TX PLL, always on for Ironlake */
3757         reg = FDI_TX_CTL(pipe);
3758         temp = I915_READ(reg);
3759         if ((temp & FDI_TX_PLL_ENABLE) == 0) {
3760                 I915_WRITE(reg, temp | FDI_TX_PLL_ENABLE);
3761
3762                 POSTING_READ(reg);
3763                 udelay(100);
3764         }
3765 }
3766
3767 static void ironlake_fdi_pll_disable(struct intel_crtc *intel_crtc)
3768 {
3769         struct drm_device *dev = intel_crtc->base.dev;
3770         struct drm_i915_private *dev_priv = dev->dev_private;
3771         int pipe = intel_crtc->pipe;
3772         u32 reg, temp;
3773
3774         /* Switch from PCDclk to Rawclk */
3775         reg = FDI_RX_CTL(pipe);
3776         temp = I915_READ(reg);
3777         I915_WRITE(reg, temp & ~FDI_PCDCLK);
3778
3779         /* Disable CPU FDI TX PLL */
3780         reg = FDI_TX_CTL(pipe);
3781         temp = I915_READ(reg);
3782         I915_WRITE(reg, temp & ~FDI_TX_PLL_ENABLE);
3783
3784         POSTING_READ(reg);
3785         udelay(100);
3786
3787         reg = FDI_RX_CTL(pipe);
3788         temp = I915_READ(reg);
3789         I915_WRITE(reg, temp & ~FDI_RX_PLL_ENABLE);
3790
3791         /* Wait for the clocks to turn off. */
3792         POSTING_READ(reg);
3793         udelay(100);
3794 }
3795
3796 static void ironlake_fdi_disable(struct drm_crtc *crtc)
3797 {
3798         struct drm_device *dev = crtc->dev;
3799         struct drm_i915_private *dev_priv = dev->dev_private;
3800         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3801         int pipe = intel_crtc->pipe;
3802         u32 reg, temp;
3803
3804         /* disable CPU FDI tx and PCH FDI rx */
3805         reg = FDI_TX_CTL(pipe);
3806         temp = I915_READ(reg);
3807         I915_WRITE(reg, temp & ~FDI_TX_ENABLE);
3808         POSTING_READ(reg);
3809
3810         reg = FDI_RX_CTL(pipe);
3811         temp = I915_READ(reg);
3812         temp &= ~(0x7 << 16);
3813         temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
3814         I915_WRITE(reg, temp & ~FDI_RX_ENABLE);
3815
3816         POSTING_READ(reg);
3817         udelay(100);
3818
3819         /* Ironlake workaround, disable clock pointer after downing FDI */
3820         if (HAS_PCH_IBX(dev))
3821                 I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
3822
3823         /* still set train pattern 1 */
3824         reg = FDI_TX_CTL(pipe);
3825         temp = I915_READ(reg);
3826         temp &= ~FDI_LINK_TRAIN_NONE;
3827         temp |= FDI_LINK_TRAIN_PATTERN_1;
3828         I915_WRITE(reg, temp);
3829
3830         reg = FDI_RX_CTL(pipe);
3831         temp = I915_READ(reg);
3832         if (HAS_PCH_CPT(dev)) {
3833                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3834                 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
3835         } else {
3836                 temp &= ~FDI_LINK_TRAIN_NONE;
3837                 temp |= FDI_LINK_TRAIN_PATTERN_1;
3838         }
3839         /* BPC in FDI rx is consistent with that in PIPECONF */
3840         temp &= ~(0x07 << 16);
3841         temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
3842         I915_WRITE(reg, temp);
3843
3844         POSTING_READ(reg);
3845         udelay(100);
3846 }
3847
3848 bool intel_has_pending_fb_unpin(struct drm_device *dev)
3849 {
3850         struct intel_crtc *crtc;
3851
3852         /* Note that we don't need to be called with mode_config.lock here
3853          * as our list of CRTC objects is static for the lifetime of the
3854          * device and so cannot disappear as we iterate. Similarly, we can
3855          * happily treat the predicates as racy, atomic checks as userspace
3856          * cannot claim and pin a new fb without at least acquring the
3857          * struct_mutex and so serialising with us.
3858          */
3859         for_each_intel_crtc(dev, crtc) {
3860                 if (atomic_read(&crtc->unpin_work_count) == 0)
3861                         continue;
3862
3863                 if (crtc->unpin_work)
3864                         intel_wait_for_vblank(dev, crtc->pipe);
3865
3866                 return true;
3867         }
3868
3869         return false;
3870 }
3871
3872 static void page_flip_completed(struct intel_crtc *intel_crtc)
3873 {
3874         struct drm_i915_private *dev_priv = to_i915(intel_crtc->base.dev);
3875         struct intel_unpin_work *work = intel_crtc->unpin_work;
3876
3877         /* ensure that the unpin work is consistent wrt ->pending. */
3878         smp_rmb();
3879         intel_crtc->unpin_work = NULL;
3880
3881         if (work->event)
3882                 drm_send_vblank_event(intel_crtc->base.dev,
3883                                       intel_crtc->pipe,
3884                                       work->event);
3885
3886         drm_crtc_vblank_put(&intel_crtc->base);
3887
3888         wake_up_all(&dev_priv->pending_flip_queue);
3889         queue_work(dev_priv->wq, &work->work);
3890
3891         trace_i915_flip_complete(intel_crtc->plane,
3892                                  work->pending_flip_obj);
3893 }
3894
3895 void intel_crtc_wait_for_pending_flips(struct drm_crtc *crtc)
3896 {
3897         struct drm_device *dev = crtc->dev;
3898         struct drm_i915_private *dev_priv = dev->dev_private;
3899
3900         WARN_ON(waitqueue_active(&dev_priv->pending_flip_queue));
3901         if (WARN_ON(wait_event_timeout(dev_priv->pending_flip_queue,
3902                                        !intel_crtc_has_pending_flip(crtc),
3903                                        60*HZ) == 0)) {
3904                 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3905
3906                 spin_lock_irq(&dev->event_lock);
3907                 if (intel_crtc->unpin_work) {
3908                         WARN_ONCE(1, "Removing stuck page flip\n");
3909                         page_flip_completed(intel_crtc);
3910                 }
3911                 spin_unlock_irq(&dev->event_lock);
3912         }
3913
3914         if (crtc->primary->fb) {
3915                 mutex_lock(&dev->struct_mutex);
3916                 intel_finish_fb(crtc->primary->fb);
3917                 mutex_unlock(&dev->struct_mutex);
3918         }
3919 }
3920
3921 /* Program iCLKIP clock to the desired frequency */
3922 static void lpt_program_iclkip(struct drm_crtc *crtc)
3923 {
3924         struct drm_device *dev = crtc->dev;
3925         struct drm_i915_private *dev_priv = dev->dev_private;
3926         int clock = to_intel_crtc(crtc)->config->base.adjusted_mode.crtc_clock;
3927         u32 divsel, phaseinc, auxdiv, phasedir = 0;
3928         u32 temp;
3929
3930         mutex_lock(&dev_priv->sb_lock);
3931
3932         /* It is necessary to ungate the pixclk gate prior to programming
3933          * the divisors, and gate it back when it is done.
3934          */
3935         I915_WRITE(PIXCLK_GATE, PIXCLK_GATE_GATE);
3936
3937         /* Disable SSCCTL */
3938         intel_sbi_write(dev_priv, SBI_SSCCTL6,
3939                         intel_sbi_read(dev_priv, SBI_SSCCTL6, SBI_ICLK) |
3940                                 SBI_SSCCTL_DISABLE,
3941                         SBI_ICLK);
3942
3943         /* 20MHz is a corner case which is out of range for the 7-bit divisor */
3944         if (clock == 20000) {
3945                 auxdiv = 1;
3946                 divsel = 0x41;
3947                 phaseinc = 0x20;
3948         } else {
3949                 /* The iCLK virtual clock root frequency is in MHz,
3950                  * but the adjusted_mode->crtc_clock in in KHz. To get the
3951                  * divisors, it is necessary to divide one by another, so we
3952                  * convert the virtual clock precision to KHz here for higher
3953                  * precision.
3954                  */
3955                 u32 iclk_virtual_root_freq = 172800 * 1000;
3956                 u32 iclk_pi_range = 64;
3957                 u32 desired_divisor, msb_divisor_value, pi_value;
3958
3959                 desired_divisor = (iclk_virtual_root_freq / clock);
3960                 msb_divisor_value = desired_divisor / iclk_pi_range;
3961                 pi_value = desired_divisor % iclk_pi_range;
3962
3963                 auxdiv = 0;
3964                 divsel = msb_divisor_value - 2;
3965                 phaseinc = pi_value;
3966         }
3967
3968         /* This should not happen with any sane values */
3969         WARN_ON(SBI_SSCDIVINTPHASE_DIVSEL(divsel) &
3970                 ~SBI_SSCDIVINTPHASE_DIVSEL_MASK);
3971         WARN_ON(SBI_SSCDIVINTPHASE_DIR(phasedir) &
3972                 ~SBI_SSCDIVINTPHASE_INCVAL_MASK);
3973
3974         DRM_DEBUG_KMS("iCLKIP clock: found settings for %dKHz refresh rate: auxdiv=%x, divsel=%x, phasedir=%x, phaseinc=%x\n",
3975                         clock,
3976                         auxdiv,
3977                         divsel,
3978                         phasedir,
3979                         phaseinc);
3980
3981         /* Program SSCDIVINTPHASE6 */
3982         temp = intel_sbi_read(dev_priv, SBI_SSCDIVINTPHASE6, SBI_ICLK);
3983         temp &= ~SBI_SSCDIVINTPHASE_DIVSEL_MASK;
3984         temp |= SBI_SSCDIVINTPHASE_DIVSEL(divsel);
3985         temp &= ~SBI_SSCDIVINTPHASE_INCVAL_MASK;
3986         temp |= SBI_SSCDIVINTPHASE_INCVAL(phaseinc);
3987         temp |= SBI_SSCDIVINTPHASE_DIR(phasedir);
3988         temp |= SBI_SSCDIVINTPHASE_PROPAGATE;
3989         intel_sbi_write(dev_priv, SBI_SSCDIVINTPHASE6, temp, SBI_ICLK);
3990
3991         /* Program SSCAUXDIV */
3992         temp = intel_sbi_read(dev_priv, SBI_SSCAUXDIV6, SBI_ICLK);
3993         temp &= ~SBI_SSCAUXDIV_FINALDIV2SEL(1);
3994         temp |= SBI_SSCAUXDIV_FINALDIV2SEL(auxdiv);
3995         intel_sbi_write(dev_priv, SBI_SSCAUXDIV6, temp, SBI_ICLK);
3996
3997         /* Enable modulator and associated divider */
3998         temp = intel_sbi_read(dev_priv, SBI_SSCCTL6, SBI_ICLK);
3999         temp &= ~SBI_SSCCTL_DISABLE;
4000         intel_sbi_write(dev_priv, SBI_SSCCTL6, temp, SBI_ICLK);
4001
4002         /* Wait for initialization time */
4003         udelay(24);
4004
4005         I915_WRITE(PIXCLK_GATE, PIXCLK_GATE_UNGATE);
4006
4007         mutex_unlock(&dev_priv->sb_lock);
4008 }
4009
4010 static void ironlake_pch_transcoder_set_timings(struct intel_crtc *crtc,
4011                                                 enum pipe pch_transcoder)
4012 {
4013         struct drm_device *dev = crtc->base.dev;
4014         struct drm_i915_private *dev_priv = dev->dev_private;
4015         enum transcoder cpu_transcoder = crtc->config->cpu_transcoder;
4016
4017         I915_WRITE(PCH_TRANS_HTOTAL(pch_transcoder),
4018                    I915_READ(HTOTAL(cpu_transcoder)));
4019         I915_WRITE(PCH_TRANS_HBLANK(pch_transcoder),
4020                    I915_READ(HBLANK(cpu_transcoder)));
4021         I915_WRITE(PCH_TRANS_HSYNC(pch_transcoder),
4022                    I915_READ(HSYNC(cpu_transcoder)));
4023
4024         I915_WRITE(PCH_TRANS_VTOTAL(pch_transcoder),
4025                    I915_READ(VTOTAL(cpu_transcoder)));
4026         I915_WRITE(PCH_TRANS_VBLANK(pch_transcoder),
4027                    I915_READ(VBLANK(cpu_transcoder)));
4028         I915_WRITE(PCH_TRANS_VSYNC(pch_transcoder),
4029                    I915_READ(VSYNC(cpu_transcoder)));
4030         I915_WRITE(PCH_TRANS_VSYNCSHIFT(pch_transcoder),
4031                    I915_READ(VSYNCSHIFT(cpu_transcoder)));
4032 }
4033
4034 static void cpt_set_fdi_bc_bifurcation(struct drm_device *dev, bool enable)
4035 {
4036         struct drm_i915_private *dev_priv = dev->dev_private;
4037         uint32_t temp;
4038
4039         temp = I915_READ(SOUTH_CHICKEN1);
4040         if (!!(temp & FDI_BC_BIFURCATION_SELECT) == enable)
4041                 return;
4042
4043         WARN_ON(I915_READ(FDI_RX_CTL(PIPE_B)) & FDI_RX_ENABLE);
4044         WARN_ON(I915_READ(FDI_RX_CTL(PIPE_C)) & FDI_RX_ENABLE);
4045
4046         temp &= ~FDI_BC_BIFURCATION_SELECT;
4047         if (enable)
4048                 temp |= FDI_BC_BIFURCATION_SELECT;
4049
4050         DRM_DEBUG_KMS("%sabling fdi C rx\n", enable ? "en" : "dis");
4051         I915_WRITE(SOUTH_CHICKEN1, temp);
4052         POSTING_READ(SOUTH_CHICKEN1);
4053 }
4054
4055 static void ivybridge_update_fdi_bc_bifurcation(struct intel_crtc *intel_crtc)
4056 {
4057         struct drm_device *dev = intel_crtc->base.dev;
4058
4059         switch (intel_crtc->pipe) {
4060         case PIPE_A:
4061                 break;
4062         case PIPE_B:
4063                 if (intel_crtc->config->fdi_lanes > 2)
4064                         cpt_set_fdi_bc_bifurcation(dev, false);
4065                 else
4066                         cpt_set_fdi_bc_bifurcation(dev, true);
4067
4068                 break;
4069         case PIPE_C:
4070                 cpt_set_fdi_bc_bifurcation(dev, true);
4071
4072                 break;
4073         default:
4074                 BUG();
4075         }
4076 }
4077
4078 /*
4079  * Enable PCH resources required for PCH ports:
4080  *   - PCH PLLs
4081  *   - FDI training & RX/TX
4082  *   - update transcoder timings
4083  *   - DP transcoding bits
4084  *   - transcoder
4085  */
4086 static void ironlake_pch_enable(struct drm_crtc *crtc)
4087 {
4088         struct drm_device *dev = crtc->dev;
4089         struct drm_i915_private *dev_priv = dev->dev_private;
4090         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4091         int pipe = intel_crtc->pipe;
4092         u32 reg, temp;
4093
4094         assert_pch_transcoder_disabled(dev_priv, pipe);
4095
4096         if (IS_IVYBRIDGE(dev))
4097                 ivybridge_update_fdi_bc_bifurcation(intel_crtc);
4098
4099         /* Write the TU size bits before fdi link training, so that error
4100          * detection works. */
4101         I915_WRITE(FDI_RX_TUSIZE1(pipe),
4102                    I915_READ(PIPE_DATA_M1(pipe)) & TU_SIZE_MASK);
4103
4104         /* For PCH output, training FDI link */
4105         dev_priv->display.fdi_link_train(crtc);
4106
4107         /* We need to program the right clock selection before writing the pixel
4108          * mutliplier into the DPLL. */
4109         if (HAS_PCH_CPT(dev)) {
4110                 u32 sel;
4111
4112                 temp = I915_READ(PCH_DPLL_SEL);
4113                 temp |= TRANS_DPLL_ENABLE(pipe);
4114                 sel = TRANS_DPLLB_SEL(pipe);
4115                 if (intel_crtc->config->shared_dpll == DPLL_ID_PCH_PLL_B)
4116                         temp |= sel;
4117                 else
4118                         temp &= ~sel;
4119                 I915_WRITE(PCH_DPLL_SEL, temp);
4120         }
4121
4122         /* XXX: pch pll's can be enabled any time before we enable the PCH
4123          * transcoder, and we actually should do this to not upset any PCH
4124          * transcoder that already use the clock when we share it.
4125          *
4126          * Note that enable_shared_dpll tries to do the right thing, but
4127          * get_shared_dpll unconditionally resets the pll - we need that to have
4128          * the right LVDS enable sequence. */
4129         intel_enable_shared_dpll(intel_crtc);
4130
4131         /* set transcoder timing, panel must allow it */
4132         assert_panel_unlocked(dev_priv, pipe);
4133         ironlake_pch_transcoder_set_timings(intel_crtc, pipe);
4134
4135         intel_fdi_normal_train(crtc);
4136
4137         /* For PCH DP, enable TRANS_DP_CTL */
4138         if (HAS_PCH_CPT(dev) && intel_crtc->config->has_dp_encoder) {
4139                 u32 bpc = (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) >> 5;
4140                 reg = TRANS_DP_CTL(pipe);
4141                 temp = I915_READ(reg);
4142                 temp &= ~(TRANS_DP_PORT_SEL_MASK |
4143                           TRANS_DP_SYNC_MASK |
4144                           TRANS_DP_BPC_MASK);
4145                 temp |= TRANS_DP_OUTPUT_ENABLE;
4146                 temp |= bpc << 9; /* same format but at 11:9 */
4147
4148                 if (crtc->mode.flags & DRM_MODE_FLAG_PHSYNC)
4149                         temp |= TRANS_DP_HSYNC_ACTIVE_HIGH;
4150                 if (crtc->mode.flags & DRM_MODE_FLAG_PVSYNC)
4151                         temp |= TRANS_DP_VSYNC_ACTIVE_HIGH;
4152
4153                 switch (intel_trans_dp_port_sel(crtc)) {
4154                 case PCH_DP_B:
4155                         temp |= TRANS_DP_PORT_SEL_B;
4156                         break;
4157                 case PCH_DP_C:
4158                         temp |= TRANS_DP_PORT_SEL_C;
4159                         break;
4160                 case PCH_DP_D:
4161                         temp |= TRANS_DP_PORT_SEL_D;
4162                         break;
4163                 default:
4164                         BUG();
4165                 }
4166
4167                 I915_WRITE(reg, temp);
4168         }
4169
4170         ironlake_enable_pch_transcoder(dev_priv, pipe);
4171 }
4172
4173 static void lpt_pch_enable(struct drm_crtc *crtc)
4174 {
4175         struct drm_device *dev = crtc->dev;
4176         struct drm_i915_private *dev_priv = dev->dev_private;
4177         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4178         enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
4179
4180         assert_pch_transcoder_disabled(dev_priv, TRANSCODER_A);
4181
4182         lpt_program_iclkip(crtc);
4183
4184         /* Set transcoder timing. */
4185         ironlake_pch_transcoder_set_timings(intel_crtc, PIPE_A);
4186
4187         lpt_enable_pch_transcoder(dev_priv, cpu_transcoder);
4188 }
4189
4190 struct intel_shared_dpll *intel_get_shared_dpll(struct intel_crtc *crtc,
4191                                                 struct intel_crtc_state *crtc_state)
4192 {
4193         struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
4194         struct intel_shared_dpll *pll;
4195         struct intel_shared_dpll_config *shared_dpll;
4196         enum intel_dpll_id i;
4197
4198         shared_dpll = intel_atomic_get_shared_dpll_state(crtc_state->base.state);
4199
4200         if (HAS_PCH_IBX(dev_priv->dev)) {
4201                 /* Ironlake PCH has a fixed PLL->PCH pipe mapping. */
4202                 i = (enum intel_dpll_id) crtc->pipe;
4203                 pll = &dev_priv->shared_dplls[i];
4204
4205                 DRM_DEBUG_KMS("CRTC:%d using pre-allocated %s\n",
4206                               crtc->base.base.id, pll->name);
4207
4208                 WARN_ON(shared_dpll[i].crtc_mask);
4209
4210                 goto found;
4211         }
4212
4213         if (IS_BROXTON(dev_priv->dev)) {
4214                 /* PLL is attached to port in bxt */
4215                 struct intel_encoder *encoder;
4216                 struct intel_digital_port *intel_dig_port;
4217
4218                 encoder = intel_ddi_get_crtc_new_encoder(crtc_state);
4219                 if (WARN_ON(!encoder))
4220                         return NULL;
4221
4222                 intel_dig_port = enc_to_dig_port(&encoder->base);
4223                 /* 1:1 mapping between ports and PLLs */
4224                 i = (enum intel_dpll_id)intel_dig_port->port;
4225                 pll = &dev_priv->shared_dplls[i];
4226                 DRM_DEBUG_KMS("CRTC:%d using pre-allocated %s\n",
4227                         crtc->base.base.id, pll->name);
4228                 WARN_ON(shared_dpll[i].crtc_mask);
4229
4230                 goto found;
4231         }
4232
4233         for (i = 0; i < dev_priv->num_shared_dpll; i++) {
4234                 pll = &dev_priv->shared_dplls[i];
4235
4236                 /* Only want to check enabled timings first */
4237                 if (shared_dpll[i].crtc_mask == 0)
4238                         continue;
4239
4240                 if (memcmp(&crtc_state->dpll_hw_state,
4241                            &shared_dpll[i].hw_state,
4242                            sizeof(crtc_state->dpll_hw_state)) == 0) {
4243                         DRM_DEBUG_KMS("CRTC:%d sharing existing %s (crtc mask 0x%08x, ative %d)\n",
4244                                       crtc->base.base.id, pll->name,
4245                                       shared_dpll[i].crtc_mask,
4246                                       pll->active);
4247                         goto found;
4248                 }
4249         }
4250
4251         /* Ok no matching timings, maybe there's a free one? */
4252         for (i = 0; i < dev_priv->num_shared_dpll; i++) {
4253                 pll = &dev_priv->shared_dplls[i];
4254                 if (shared_dpll[i].crtc_mask == 0) {
4255                         DRM_DEBUG_KMS("CRTC:%d allocated %s\n",
4256                                       crtc->base.base.id, pll->name);
4257                         goto found;
4258                 }
4259         }
4260
4261         return NULL;
4262
4263 found:
4264         if (shared_dpll[i].crtc_mask == 0)
4265                 shared_dpll[i].hw_state =
4266                         crtc_state->dpll_hw_state;
4267
4268         crtc_state->shared_dpll = i;
4269         DRM_DEBUG_DRIVER("using %s for pipe %c\n", pll->name,
4270                          pipe_name(crtc->pipe));
4271
4272         shared_dpll[i].crtc_mask |= 1 << crtc->pipe;
4273
4274         return pll;
4275 }
4276
4277 static void intel_shared_dpll_commit(struct drm_atomic_state *state)
4278 {
4279         struct drm_i915_private *dev_priv = to_i915(state->dev);
4280         struct intel_shared_dpll_config *shared_dpll;
4281         struct intel_shared_dpll *pll;
4282         enum intel_dpll_id i;
4283
4284         if (!to_intel_atomic_state(state)->dpll_set)
4285                 return;
4286
4287         shared_dpll = to_intel_atomic_state(state)->shared_dpll;
4288         for (i = 0; i < dev_priv->num_shared_dpll; i++) {
4289                 pll = &dev_priv->shared_dplls[i];
4290                 pll->config = shared_dpll[i];
4291         }
4292 }
4293
4294 static void cpt_verify_modeset(struct drm_device *dev, int pipe)
4295 {
4296         struct drm_i915_private *dev_priv = dev->dev_private;
4297         int dslreg = PIPEDSL(pipe);
4298         u32 temp;
4299
4300         temp = I915_READ(dslreg);
4301         udelay(500);
4302         if (wait_for(I915_READ(dslreg) != temp, 5)) {
4303                 if (wait_for(I915_READ(dslreg) != temp, 5))
4304                         DRM_ERROR("mode set failed: pipe %c stuck\n", pipe_name(pipe));
4305         }
4306 }
4307
4308 static int
4309 skl_update_scaler(struct intel_crtc_state *crtc_state, bool force_detach,
4310                   unsigned scaler_user, int *scaler_id, unsigned int rotation,
4311                   int src_w, int src_h, int dst_w, int dst_h)
4312 {
4313         struct intel_crtc_scaler_state *scaler_state =
4314                 &crtc_state->scaler_state;
4315         struct intel_crtc *intel_crtc =
4316                 to_intel_crtc(crtc_state->base.crtc);
4317         int need_scaling;
4318
4319         need_scaling = intel_rotation_90_or_270(rotation) ?
4320                 (src_h != dst_w || src_w != dst_h):
4321                 (src_w != dst_w || src_h != dst_h);
4322
4323         /*
4324          * if plane is being disabled or scaler is no more required or force detach
4325          *  - free scaler binded to this plane/crtc
4326          *  - in order to do this, update crtc->scaler_usage
4327          *
4328          * Here scaler state in crtc_state is set free so that
4329          * scaler can be assigned to other user. Actual register
4330          * update to free the scaler is done in plane/panel-fit programming.
4331          * For this purpose crtc/plane_state->scaler_id isn't reset here.
4332          */
4333         if (force_detach || !need_scaling) {
4334                 if (*scaler_id >= 0) {
4335                         scaler_state->scaler_users &= ~(1 << scaler_user);
4336                         scaler_state->scalers[*scaler_id].in_use = 0;
4337
4338                         DRM_DEBUG_KMS("scaler_user index %u.%u: "
4339                                 "Staged freeing scaler id %d scaler_users = 0x%x\n",
4340                                 intel_crtc->pipe, scaler_user, *scaler_id,
4341                                 scaler_state->scaler_users);
4342                         *scaler_id = -1;
4343                 }
4344                 return 0;
4345         }
4346
4347         /* range checks */
4348         if (src_w < SKL_MIN_SRC_W || src_h < SKL_MIN_SRC_H ||
4349                 dst_w < SKL_MIN_DST_W || dst_h < SKL_MIN_DST_H ||
4350
4351                 src_w > SKL_MAX_SRC_W || src_h > SKL_MAX_SRC_H ||
4352                 dst_w > SKL_MAX_DST_W || dst_h > SKL_MAX_DST_H) {
4353                 DRM_DEBUG_KMS("scaler_user index %u.%u: src %ux%u dst %ux%u "
4354                         "size is out of scaler range\n",
4355                         intel_crtc->pipe, scaler_user, src_w, src_h, dst_w, dst_h);
4356                 return -EINVAL;
4357         }
4358
4359         /* mark this plane as a scaler user in crtc_state */
4360         scaler_state->scaler_users |= (1 << scaler_user);
4361         DRM_DEBUG_KMS("scaler_user index %u.%u: "
4362                 "staged scaling request for %ux%u->%ux%u scaler_users = 0x%x\n",
4363                 intel_crtc->pipe, scaler_user, src_w, src_h, dst_w, dst_h,
4364                 scaler_state->scaler_users);
4365
4366         return 0;
4367 }
4368
4369 /**
4370  * skl_update_scaler_crtc - Stages update to scaler state for a given crtc.
4371  *
4372  * @state: crtc's scaler state
4373  *
4374  * Return
4375  *     0 - scaler_usage updated successfully
4376  *    error - requested scaling cannot be supported or other error condition
4377  */
4378 int skl_update_scaler_crtc(struct intel_crtc_state *state)
4379 {
4380         struct intel_crtc *intel_crtc = to_intel_crtc(state->base.crtc);
4381         struct drm_display_mode *adjusted_mode =
4382                 &state->base.adjusted_mode;
4383
4384         DRM_DEBUG_KMS("Updating scaler for [CRTC:%i] scaler_user index %u.%u\n",
4385                       intel_crtc->base.base.id, intel_crtc->pipe, SKL_CRTC_INDEX);
4386
4387         return skl_update_scaler(state, !state->base.active, SKL_CRTC_INDEX,
4388                 &state->scaler_state.scaler_id, DRM_ROTATE_0,
4389                 state->pipe_src_w, state->pipe_src_h,
4390                 adjusted_mode->hdisplay, adjusted_mode->vdisplay);
4391 }
4392
4393 /**
4394  * skl_update_scaler_plane - Stages update to scaler state for a given plane.
4395  *
4396  * @state: crtc's scaler state
4397  * @plane_state: atomic plane state to update
4398  *
4399  * Return
4400  *     0 - scaler_usage updated successfully
4401  *    error - requested scaling cannot be supported or other error condition
4402  */
4403 static int skl_update_scaler_plane(struct intel_crtc_state *crtc_state,
4404                                    struct intel_plane_state *plane_state)
4405 {
4406
4407         struct intel_crtc *intel_crtc = to_intel_crtc(crtc_state->base.crtc);
4408         struct intel_plane *intel_plane =
4409                 to_intel_plane(plane_state->base.plane);
4410         struct drm_framebuffer *fb = plane_state->base.fb;
4411         int ret;
4412
4413         bool force_detach = !fb || !plane_state->visible;
4414
4415         DRM_DEBUG_KMS("Updating scaler for [PLANE:%d] scaler_user index %u.%u\n",
4416                       intel_plane->base.base.id, intel_crtc->pipe,
4417                       drm_plane_index(&intel_plane->base));
4418
4419         ret = skl_update_scaler(crtc_state, force_detach,
4420                                 drm_plane_index(&intel_plane->base),
4421                                 &plane_state->scaler_id,
4422                                 plane_state->base.rotation,
4423                                 drm_rect_width(&plane_state->src) >> 16,
4424                                 drm_rect_height(&plane_state->src) >> 16,
4425                                 drm_rect_width(&plane_state->dst),
4426                                 drm_rect_height(&plane_state->dst));
4427
4428         if (ret || plane_state->scaler_id < 0)
4429                 return ret;
4430
4431         /* check colorkey */
4432         if (plane_state->ckey.flags != I915_SET_COLORKEY_NONE) {
4433                 DRM_DEBUG_KMS("[PLANE:%d] scaling with color key not allowed",
4434                               intel_plane->base.base.id);
4435                 return -EINVAL;
4436         }
4437
4438         /* Check src format */
4439         switch (fb->pixel_format) {
4440         case DRM_FORMAT_RGB565:
4441         case DRM_FORMAT_XBGR8888:
4442         case DRM_FORMAT_XRGB8888:
4443         case DRM_FORMAT_ABGR8888:
4444         case DRM_FORMAT_ARGB8888:
4445         case DRM_FORMAT_XRGB2101010:
4446         case DRM_FORMAT_XBGR2101010:
4447         case DRM_FORMAT_YUYV:
4448         case DRM_FORMAT_YVYU:
4449         case DRM_FORMAT_UYVY:
4450         case DRM_FORMAT_VYUY:
4451                 break;
4452         default:
4453                 DRM_DEBUG_KMS("[PLANE:%d] FB:%d unsupported scaling format 0x%x\n",
4454                         intel_plane->base.base.id, fb->base.id, fb->pixel_format);
4455                 return -EINVAL;
4456         }
4457
4458         return 0;
4459 }
4460
4461 static void skylake_scaler_disable(struct intel_crtc *crtc)
4462 {
4463         int i;
4464
4465         for (i = 0; i < crtc->num_scalers; i++)
4466                 skl_detach_scaler(crtc, i);
4467 }
4468
4469 static void skylake_pfit_enable(struct intel_crtc *crtc)
4470 {
4471         struct drm_device *dev = crtc->base.dev;
4472         struct drm_i915_private *dev_priv = dev->dev_private;
4473         int pipe = crtc->pipe;
4474         struct intel_crtc_scaler_state *scaler_state =
4475                 &crtc->config->scaler_state;
4476
4477         DRM_DEBUG_KMS("for crtc_state = %p\n", crtc->config);
4478
4479         if (crtc->config->pch_pfit.enabled) {
4480                 int id;
4481
4482                 if (WARN_ON(crtc->config->scaler_state.scaler_id < 0)) {
4483                         DRM_ERROR("Requesting pfit without getting a scaler first\n");
4484                         return;
4485                 }
4486
4487                 id = scaler_state->scaler_id;
4488                 I915_WRITE(SKL_PS_CTRL(pipe, id), PS_SCALER_EN |
4489                         PS_FILTER_MEDIUM | scaler_state->scalers[id].mode);
4490                 I915_WRITE(SKL_PS_WIN_POS(pipe, id), crtc->config->pch_pfit.pos);
4491                 I915_WRITE(SKL_PS_WIN_SZ(pipe, id), crtc->config->pch_pfit.size);
4492
4493                 DRM_DEBUG_KMS("for crtc_state = %p scaler_id = %d\n", crtc->config, id);
4494         }
4495 }
4496
4497 static void ironlake_pfit_enable(struct intel_crtc *crtc)
4498 {
4499         struct drm_device *dev = crtc->base.dev;
4500         struct drm_i915_private *dev_priv = dev->dev_private;
4501         int pipe = crtc->pipe;
4502
4503         if (crtc->config->pch_pfit.enabled) {
4504                 /* Force use of hard-coded filter coefficients
4505                  * as some pre-programmed values are broken,
4506                  * e.g. x201.
4507                  */
4508                 if (IS_IVYBRIDGE(dev) || IS_HASWELL(dev))
4509                         I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3 |
4510                                                  PF_PIPE_SEL_IVB(pipe));
4511                 else
4512                         I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3);
4513                 I915_WRITE(PF_WIN_POS(pipe), crtc->config->pch_pfit.pos);
4514                 I915_WRITE(PF_WIN_SZ(pipe), crtc->config->pch_pfit.size);
4515         }
4516 }
4517
4518 void hsw_enable_ips(struct intel_crtc *crtc)
4519 {
4520         struct drm_device *dev = crtc->base.dev;
4521         struct drm_i915_private *dev_priv = dev->dev_private;
4522
4523         if (!crtc->config->ips_enabled)
4524                 return;
4525
4526         /* We can only enable IPS after we enable a plane and wait for a vblank */
4527         intel_wait_for_vblank(dev, crtc->pipe);
4528
4529         assert_plane_enabled(dev_priv, crtc->plane);
4530         if (IS_BROADWELL(dev)) {
4531                 mutex_lock(&dev_priv->rps.hw_lock);
4532                 WARN_ON(sandybridge_pcode_write(dev_priv, DISPLAY_IPS_CONTROL, 0xc0000000));
4533                 mutex_unlock(&dev_priv->rps.hw_lock);
4534                 /* Quoting Art Runyan: "its not safe to expect any particular
4535                  * value in IPS_CTL bit 31 after enabling IPS through the
4536                  * mailbox." Moreover, the mailbox may return a bogus state,
4537                  * so we need to just enable it and continue on.
4538                  */
4539         } else {
4540                 I915_WRITE(IPS_CTL, IPS_ENABLE);
4541                 /* The bit only becomes 1 in the next vblank, so this wait here
4542                  * is essentially intel_wait_for_vblank. If we don't have this
4543                  * and don't wait for vblanks until the end of crtc_enable, then
4544                  * the HW state readout code will complain that the expected
4545                  * IPS_CTL value is not the one we read. */
4546                 if (wait_for(I915_READ_NOTRACE(IPS_CTL) & IPS_ENABLE, 50))
4547                         DRM_ERROR("Timed out waiting for IPS enable\n");
4548         }
4549 }
4550
4551 void hsw_disable_ips(struct intel_crtc *crtc)
4552 {
4553         struct drm_device *dev = crtc->base.dev;
4554         struct drm_i915_private *dev_priv = dev->dev_private;
4555
4556         if (!crtc->config->ips_enabled)
4557                 return;
4558
4559         assert_plane_enabled(dev_priv, crtc->plane);
4560         if (IS_BROADWELL(dev)) {
4561                 mutex_lock(&dev_priv->rps.hw_lock);
4562                 WARN_ON(sandybridge_pcode_write(dev_priv, DISPLAY_IPS_CONTROL, 0));
4563                 mutex_unlock(&dev_priv->rps.hw_lock);
4564                 /* wait for pcode to finish disabling IPS, which may take up to 42ms */
4565                 if (wait_for((I915_READ(IPS_CTL) & IPS_ENABLE) == 0, 42))
4566                         DRM_ERROR("Timed out waiting for IPS disable\n");
4567         } else {
4568                 I915_WRITE(IPS_CTL, 0);
4569                 POSTING_READ(IPS_CTL);
4570         }
4571
4572         /* We need to wait for a vblank before we can disable the plane. */
4573         intel_wait_for_vblank(dev, crtc->pipe);
4574 }
4575
4576 /** Loads the palette/gamma unit for the CRTC with the prepared values */
4577 static void intel_crtc_load_lut(struct drm_crtc *crtc)
4578 {
4579         struct drm_device *dev = crtc->dev;
4580         struct drm_i915_private *dev_priv = dev->dev_private;
4581         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4582         enum pipe pipe = intel_crtc->pipe;
4583         int palreg = PALETTE(pipe);
4584         int i;
4585         bool reenable_ips = false;
4586
4587         /* The clocks have to be on to load the palette. */
4588         if (!crtc->state->active)
4589                 return;
4590
4591         if (HAS_GMCH_DISPLAY(dev_priv->dev)) {
4592                 if (intel_pipe_has_type(intel_crtc, INTEL_OUTPUT_DSI))
4593                         assert_dsi_pll_enabled(dev_priv);
4594                 else
4595                         assert_pll_enabled(dev_priv, pipe);
4596         }
4597
4598         /* use legacy palette for Ironlake */
4599         if (!HAS_GMCH_DISPLAY(dev))
4600                 palreg = LGC_PALETTE(pipe);
4601
4602         /* Workaround : Do not read or write the pipe palette/gamma data while
4603          * GAMMA_MODE is configured for split gamma and IPS_CTL has IPS enabled.
4604          */
4605         if (IS_HASWELL(dev) && intel_crtc->config->ips_enabled &&
4606             ((I915_READ(GAMMA_MODE(pipe)) & GAMMA_MODE_MODE_MASK) ==
4607              GAMMA_MODE_MODE_SPLIT)) {
4608                 hsw_disable_ips(intel_crtc);
4609                 reenable_ips = true;
4610         }
4611
4612         for (i = 0; i < 256; i++) {
4613                 I915_WRITE(palreg + 4 * i,
4614                            (intel_crtc->lut_r[i] << 16) |
4615                            (intel_crtc->lut_g[i] << 8) |
4616                            intel_crtc->lut_b[i]);
4617         }
4618
4619         if (reenable_ips)
4620                 hsw_enable_ips(intel_crtc);
4621 }
4622
4623 static void intel_crtc_dpms_overlay_disable(struct intel_crtc *intel_crtc)
4624 {
4625         if (intel_crtc->overlay) {
4626                 struct drm_device *dev = intel_crtc->base.dev;
4627                 struct drm_i915_private *dev_priv = dev->dev_private;
4628
4629                 mutex_lock(&dev->struct_mutex);
4630                 dev_priv->mm.interruptible = false;
4631                 (void) intel_overlay_switch_off(intel_crtc->overlay);
4632                 dev_priv->mm.interruptible = true;
4633                 mutex_unlock(&dev->struct_mutex);
4634         }
4635
4636         /* Let userspace switch the overlay on again. In most cases userspace
4637          * has to recompute where to put it anyway.
4638          */
4639 }
4640
4641 /**
4642  * intel_post_enable_primary - Perform operations after enabling primary plane
4643  * @crtc: the CRTC whose primary plane was just enabled
4644  *
4645  * Performs potentially sleeping operations that must be done after the primary
4646  * plane is enabled, such as updating FBC and IPS.  Note that this may be
4647  * called due to an explicit primary plane update, or due to an implicit
4648  * re-enable that is caused when a sprite plane is updated to no longer
4649  * completely hide the primary plane.
4650  */
4651 static void
4652 intel_post_enable_primary(struct drm_crtc *crtc)
4653 {
4654         struct drm_device *dev = crtc->dev;
4655         struct drm_i915_private *dev_priv = dev->dev_private;
4656         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4657         int pipe = intel_crtc->pipe;
4658
4659         /*
4660          * BDW signals flip done immediately if the plane
4661          * is disabled, even if the plane enable is already
4662          * armed to occur at the next vblank :(
4663          */
4664         if (IS_BROADWELL(dev))
4665                 intel_wait_for_vblank(dev, pipe);
4666
4667         /*
4668          * FIXME IPS should be fine as long as one plane is
4669          * enabled, but in practice it seems to have problems
4670          * when going from primary only to sprite only and vice
4671          * versa.
4672          */
4673         hsw_enable_ips(intel_crtc);
4674
4675         /*
4676          * Gen2 reports pipe underruns whenever all planes are disabled.
4677          * So don't enable underrun reporting before at least some planes
4678          * are enabled.
4679          * FIXME: Need to fix the logic to work when we turn off all planes
4680          * but leave the pipe running.
4681          */
4682         if (IS_GEN2(dev))
4683                 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
4684
4685         /* Underruns don't raise interrupts, so check manually. */
4686         if (HAS_GMCH_DISPLAY(dev))
4687                 i9xx_check_fifo_underruns(dev_priv);
4688 }
4689
4690 /**
4691  * intel_pre_disable_primary - Perform operations before disabling primary plane
4692  * @crtc: the CRTC whose primary plane is to be disabled
4693  *
4694  * Performs potentially sleeping operations that must be done before the
4695  * primary plane is disabled, such as updating FBC and IPS.  Note that this may
4696  * be called due to an explicit primary plane update, or due to an implicit
4697  * disable that is caused when a sprite plane completely hides the primary
4698  * plane.
4699  */
4700 static void
4701 intel_pre_disable_primary(struct drm_crtc *crtc)
4702 {
4703         struct drm_device *dev = crtc->dev;
4704         struct drm_i915_private *dev_priv = dev->dev_private;
4705         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4706         int pipe = intel_crtc->pipe;
4707
4708         /*
4709          * Gen2 reports pipe underruns whenever all planes are disabled.
4710          * So diasble underrun reporting before all the planes get disabled.
4711          * FIXME: Need to fix the logic to work when we turn off all planes
4712          * but leave the pipe running.
4713          */
4714         if (IS_GEN2(dev))
4715                 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, false);
4716
4717         /*
4718          * Vblank time updates from the shadow to live plane control register
4719          * are blocked if the memory self-refresh mode is active at that
4720          * moment. So to make sure the plane gets truly disabled, disable
4721          * first the self-refresh mode. The self-refresh enable bit in turn
4722          * will be checked/applied by the HW only at the next frame start
4723          * event which is after the vblank start event, so we need to have a
4724          * wait-for-vblank between disabling the plane and the pipe.
4725          */
4726         if (HAS_GMCH_DISPLAY(dev)) {
4727                 intel_set_memory_cxsr(dev_priv, false);
4728                 dev_priv->wm.vlv.cxsr = false;
4729                 intel_wait_for_vblank(dev, pipe);
4730         }
4731
4732         /*
4733          * FIXME IPS should be fine as long as one plane is
4734          * enabled, but in practice it seems to have problems
4735          * when going from primary only to sprite only and vice
4736          * versa.
4737          */
4738         hsw_disable_ips(intel_crtc);
4739 }
4740
4741 static void intel_post_plane_update(struct intel_crtc *crtc)
4742 {
4743         struct intel_crtc_atomic_commit *atomic = &crtc->atomic;
4744         struct drm_device *dev = crtc->base.dev;
4745         struct drm_i915_private *dev_priv = dev->dev_private;
4746         struct drm_plane *plane;
4747
4748         if (atomic->wait_vblank)
4749                 intel_wait_for_vblank(dev, crtc->pipe);
4750
4751         intel_frontbuffer_flip(dev, atomic->fb_bits);
4752
4753         if (atomic->disable_cxsr)
4754                 crtc->wm.cxsr_allowed = true;
4755
4756         if (crtc->atomic.update_wm_post)
4757                 intel_update_watermarks(&crtc->base);
4758
4759         if (atomic->update_fbc)
4760                 intel_fbc_update(dev_priv);
4761
4762         if (atomic->post_enable_primary)
4763                 intel_post_enable_primary(&crtc->base);
4764
4765         drm_for_each_plane_mask(plane, dev, atomic->update_sprite_watermarks)
4766                 intel_update_sprite_watermarks(plane, &crtc->base,
4767                                                0, 0, 0, false, false);
4768
4769         memset(atomic, 0, sizeof(*atomic));
4770 }
4771
4772 static void intel_pre_plane_update(struct intel_crtc *crtc)
4773 {
4774         struct drm_device *dev = crtc->base.dev;
4775         struct drm_i915_private *dev_priv = dev->dev_private;
4776         struct intel_crtc_atomic_commit *atomic = &crtc->atomic;
4777         struct drm_plane *p;
4778
4779         /* Track fb's for any planes being disabled */
4780         drm_for_each_plane_mask(p, dev, atomic->disabled_planes) {
4781                 struct intel_plane *plane = to_intel_plane(p);
4782
4783                 mutex_lock(&dev->struct_mutex);
4784                 i915_gem_track_fb(intel_fb_obj(plane->base.fb), NULL,
4785                                   plane->frontbuffer_bit);
4786                 mutex_unlock(&dev->struct_mutex);
4787         }
4788
4789         if (atomic->wait_for_flips)
4790                 intel_crtc_wait_for_pending_flips(&crtc->base);
4791
4792         if (atomic->disable_fbc)
4793                 intel_fbc_disable_crtc(crtc);
4794
4795         if (crtc->atomic.disable_ips)
4796                 hsw_disable_ips(crtc);
4797
4798         if (atomic->pre_disable_primary)
4799                 intel_pre_disable_primary(&crtc->base);
4800
4801         if (atomic->disable_cxsr) {
4802                 crtc->wm.cxsr_allowed = false;
4803                 intel_set_memory_cxsr(dev_priv, false);
4804         }
4805 }
4806
4807 static void intel_crtc_disable_planes(struct drm_crtc *crtc, unsigned plane_mask)
4808 {
4809         struct drm_device *dev = crtc->dev;
4810         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4811         struct drm_plane *p;
4812         int pipe = intel_crtc->pipe;
4813
4814         intel_crtc_dpms_overlay_disable(intel_crtc);
4815
4816         drm_for_each_plane_mask(p, dev, plane_mask)
4817                 to_intel_plane(p)->disable_plane(p, crtc);
4818
4819         /*
4820          * FIXME: Once we grow proper nuclear flip support out of this we need
4821          * to compute the mask of flip planes precisely. For the time being
4822          * consider this a flip to a NULL plane.
4823          */
4824         intel_frontbuffer_flip(dev, INTEL_FRONTBUFFER_ALL_MASK(pipe));
4825 }
4826
4827 static void ironlake_crtc_enable(struct drm_crtc *crtc)
4828 {
4829         struct drm_device *dev = crtc->dev;
4830         struct drm_i915_private *dev_priv = dev->dev_private;
4831         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4832         struct intel_encoder *encoder;
4833         int pipe = intel_crtc->pipe;
4834
4835         if (WARN_ON(intel_crtc->active))
4836                 return;
4837
4838         if (intel_crtc->config->has_pch_encoder)
4839                 intel_prepare_shared_dpll(intel_crtc);
4840
4841         if (intel_crtc->config->has_dp_encoder)
4842                 intel_dp_set_m_n(intel_crtc, M1_N1);
4843
4844         intel_set_pipe_timings(intel_crtc);
4845
4846         if (intel_crtc->config->has_pch_encoder) {
4847                 intel_cpu_transcoder_set_m_n(intel_crtc,
4848                                      &intel_crtc->config->fdi_m_n, NULL);
4849         }
4850
4851         ironlake_set_pipeconf(crtc);
4852
4853         intel_crtc->active = true;
4854
4855         intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
4856         intel_set_pch_fifo_underrun_reporting(dev_priv, pipe, true);
4857
4858         for_each_encoder_on_crtc(dev, crtc, encoder)
4859                 if (encoder->pre_enable)
4860                         encoder->pre_enable(encoder);
4861
4862         if (intel_crtc->config->has_pch_encoder) {
4863                 /* Note: FDI PLL enabling _must_ be done before we enable the
4864                  * cpu pipes, hence this is separate from all the other fdi/pch
4865                  * enabling. */
4866                 ironlake_fdi_pll_enable(intel_crtc);
4867         } else {
4868                 assert_fdi_tx_disabled(dev_priv, pipe);
4869                 assert_fdi_rx_disabled(dev_priv, pipe);
4870         }
4871
4872         ironlake_pfit_enable(intel_crtc);
4873
4874         /*
4875          * On ILK+ LUT must be loaded before the pipe is running but with
4876          * clocks enabled
4877          */
4878         intel_crtc_load_lut(crtc);
4879
4880         intel_update_watermarks(crtc);
4881         intel_enable_pipe(intel_crtc);
4882
4883         if (intel_crtc->config->has_pch_encoder)
4884                 ironlake_pch_enable(crtc);
4885
4886         assert_vblank_disabled(crtc);
4887         drm_crtc_vblank_on(crtc);
4888
4889         for_each_encoder_on_crtc(dev, crtc, encoder)
4890                 encoder->enable(encoder);
4891
4892         if (HAS_PCH_CPT(dev))
4893                 cpt_verify_modeset(dev, intel_crtc->pipe);
4894 }
4895
4896 /* IPS only exists on ULT machines and is tied to pipe A. */
4897 static bool hsw_crtc_supports_ips(struct intel_crtc *crtc)
4898 {
4899         return HAS_IPS(crtc->base.dev) && crtc->pipe == PIPE_A;
4900 }
4901
4902 static void haswell_crtc_enable(struct drm_crtc *crtc)
4903 {
4904         struct drm_device *dev = crtc->dev;
4905         struct drm_i915_private *dev_priv = dev->dev_private;
4906         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4907         struct intel_encoder *encoder;
4908         int pipe = intel_crtc->pipe, hsw_workaround_pipe;
4909         struct intel_crtc_state *pipe_config =
4910                 to_intel_crtc_state(crtc->state);
4911
4912         if (WARN_ON(intel_crtc->active))
4913                 return;
4914
4915         if (intel_crtc_to_shared_dpll(intel_crtc))
4916                 intel_enable_shared_dpll(intel_crtc);
4917
4918         if (intel_crtc->config->has_dp_encoder)
4919                 intel_dp_set_m_n(intel_crtc, M1_N1);
4920
4921         intel_set_pipe_timings(intel_crtc);
4922
4923         if (intel_crtc->config->cpu_transcoder != TRANSCODER_EDP) {
4924                 I915_WRITE(PIPE_MULT(intel_crtc->config->cpu_transcoder),
4925                            intel_crtc->config->pixel_multiplier - 1);
4926         }
4927
4928         if (intel_crtc->config->has_pch_encoder) {
4929                 intel_cpu_transcoder_set_m_n(intel_crtc,
4930                                      &intel_crtc->config->fdi_m_n, NULL);
4931         }
4932
4933         haswell_set_pipeconf(crtc);
4934
4935         intel_set_pipe_csc(crtc);
4936
4937         intel_crtc->active = true;
4938
4939         intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
4940         for_each_encoder_on_crtc(dev, crtc, encoder)
4941                 if (encoder->pre_enable)
4942                         encoder->pre_enable(encoder);
4943
4944         if (intel_crtc->config->has_pch_encoder) {
4945                 intel_set_pch_fifo_underrun_reporting(dev_priv, TRANSCODER_A,
4946                                                       true);
4947                 dev_priv->display.fdi_link_train(crtc);
4948         }
4949
4950         intel_ddi_enable_pipe_clock(intel_crtc);
4951
4952         if (INTEL_INFO(dev)->gen == 9)
4953                 skylake_pfit_enable(intel_crtc);
4954         else if (INTEL_INFO(dev)->gen < 9)
4955                 ironlake_pfit_enable(intel_crtc);
4956         else
4957                 MISSING_CASE(INTEL_INFO(dev)->gen);
4958
4959         /*
4960          * On ILK+ LUT must be loaded before the pipe is running but with
4961          * clocks enabled
4962          */
4963         intel_crtc_load_lut(crtc);
4964
4965         intel_ddi_set_pipe_settings(crtc);
4966         intel_ddi_enable_transcoder_func(crtc);
4967
4968         intel_update_watermarks(crtc);
4969         intel_enable_pipe(intel_crtc);
4970
4971         if (intel_crtc->config->has_pch_encoder)
4972                 lpt_pch_enable(crtc);
4973
4974         if (intel_crtc->config->dp_encoder_is_mst)
4975                 intel_ddi_set_vc_payload_alloc(crtc, true);
4976
4977         assert_vblank_disabled(crtc);
4978         drm_crtc_vblank_on(crtc);
4979
4980         for_each_encoder_on_crtc(dev, crtc, encoder) {
4981                 encoder->enable(encoder);
4982                 intel_opregion_notify_encoder(encoder, true);
4983         }
4984
4985         /* If we change the relative order between pipe/planes enabling, we need
4986          * to change the workaround. */
4987         hsw_workaround_pipe = pipe_config->hsw_workaround_pipe;
4988         if (IS_HASWELL(dev) && hsw_workaround_pipe != INVALID_PIPE) {
4989                 intel_wait_for_vblank(dev, hsw_workaround_pipe);
4990                 intel_wait_for_vblank(dev, hsw_workaround_pipe);
4991         }
4992 }
4993
4994 static void ironlake_pfit_disable(struct intel_crtc *crtc)
4995 {
4996         struct drm_device *dev = crtc->base.dev;
4997         struct drm_i915_private *dev_priv = dev->dev_private;
4998         int pipe = crtc->pipe;
4999
5000         /* To avoid upsetting the power well on haswell only disable the pfit if
5001          * it's in use. The hw state code will make sure we get this right. */
5002         if (crtc->config->pch_pfit.enabled) {
5003                 I915_WRITE(PF_CTL(pipe), 0);
5004                 I915_WRITE(PF_WIN_POS(pipe), 0);
5005                 I915_WRITE(PF_WIN_SZ(pipe), 0);
5006         }
5007 }
5008
5009 static void ironlake_crtc_disable(struct drm_crtc *crtc)
5010 {
5011         struct drm_device *dev = crtc->dev;
5012         struct drm_i915_private *dev_priv = dev->dev_private;
5013         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5014         struct intel_encoder *encoder;
5015         int pipe = intel_crtc->pipe;
5016         u32 reg, temp;
5017
5018         for_each_encoder_on_crtc(dev, crtc, encoder)
5019                 encoder->disable(encoder);
5020
5021         drm_crtc_vblank_off(crtc);
5022         assert_vblank_disabled(crtc);
5023
5024         if (intel_crtc->config->has_pch_encoder)
5025                 intel_set_pch_fifo_underrun_reporting(dev_priv, pipe, false);
5026
5027         intel_disable_pipe(intel_crtc);
5028
5029         ironlake_pfit_disable(intel_crtc);
5030
5031         if (intel_crtc->config->has_pch_encoder)
5032                 ironlake_fdi_disable(crtc);
5033
5034         for_each_encoder_on_crtc(dev, crtc, encoder)
5035                 if (encoder->post_disable)
5036                         encoder->post_disable(encoder);
5037
5038         if (intel_crtc->config->has_pch_encoder) {
5039                 ironlake_disable_pch_transcoder(dev_priv, pipe);
5040
5041                 if (HAS_PCH_CPT(dev)) {
5042                         /* disable TRANS_DP_CTL */
5043                         reg = TRANS_DP_CTL(pipe);
5044                         temp = I915_READ(reg);
5045                         temp &= ~(TRANS_DP_OUTPUT_ENABLE |
5046                                   TRANS_DP_PORT_SEL_MASK);
5047                         temp |= TRANS_DP_PORT_SEL_NONE;
5048                         I915_WRITE(reg, temp);
5049
5050                         /* disable DPLL_SEL */
5051                         temp = I915_READ(PCH_DPLL_SEL);
5052                         temp &= ~(TRANS_DPLL_ENABLE(pipe) | TRANS_DPLLB_SEL(pipe));
5053                         I915_WRITE(PCH_DPLL_SEL, temp);
5054                 }
5055
5056                 ironlake_fdi_pll_disable(intel_crtc);
5057         }
5058
5059         intel_crtc->active = false;
5060         intel_update_watermarks(crtc);
5061 }
5062
5063 static void haswell_crtc_disable(struct drm_crtc *crtc)
5064 {
5065         struct drm_device *dev = crtc->dev;
5066         struct drm_i915_private *dev_priv = dev->dev_private;
5067         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5068         struct intel_encoder *encoder;
5069         enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
5070
5071         for_each_encoder_on_crtc(dev, crtc, encoder) {
5072                 intel_opregion_notify_encoder(encoder, false);
5073                 encoder->disable(encoder);
5074         }
5075
5076         drm_crtc_vblank_off(crtc);
5077         assert_vblank_disabled(crtc);
5078
5079         if (intel_crtc->config->has_pch_encoder)
5080                 intel_set_pch_fifo_underrun_reporting(dev_priv, TRANSCODER_A,
5081                                                       false);
5082         intel_disable_pipe(intel_crtc);
5083
5084         if (intel_crtc->config->dp_encoder_is_mst)
5085                 intel_ddi_set_vc_payload_alloc(crtc, false);
5086
5087         intel_ddi_disable_transcoder_func(dev_priv, cpu_transcoder);
5088
5089         if (INTEL_INFO(dev)->gen == 9)
5090                 skylake_scaler_disable(intel_crtc);
5091         else if (INTEL_INFO(dev)->gen < 9)
5092                 ironlake_pfit_disable(intel_crtc);
5093         else
5094                 MISSING_CASE(INTEL_INFO(dev)->gen);
5095
5096         intel_ddi_disable_pipe_clock(intel_crtc);
5097
5098         if (intel_crtc->config->has_pch_encoder) {
5099                 lpt_disable_pch_transcoder(dev_priv);
5100                 intel_ddi_fdi_disable(crtc);
5101         }
5102
5103         for_each_encoder_on_crtc(dev, crtc, encoder)
5104                 if (encoder->post_disable)
5105                         encoder->post_disable(encoder);
5106
5107         intel_crtc->active = false;
5108         intel_update_watermarks(crtc);
5109 }
5110
5111 static void i9xx_pfit_enable(struct intel_crtc *crtc)
5112 {
5113         struct drm_device *dev = crtc->base.dev;
5114         struct drm_i915_private *dev_priv = dev->dev_private;
5115         struct intel_crtc_state *pipe_config = crtc->config;
5116
5117         if (!pipe_config->gmch_pfit.control)
5118                 return;
5119
5120         /*
5121          * The panel fitter should only be adjusted whilst the pipe is disabled,
5122          * according to register description and PRM.
5123          */
5124         WARN_ON(I915_READ(PFIT_CONTROL) & PFIT_ENABLE);
5125         assert_pipe_disabled(dev_priv, crtc->pipe);
5126
5127         I915_WRITE(PFIT_PGM_RATIOS, pipe_config->gmch_pfit.pgm_ratios);
5128         I915_WRITE(PFIT_CONTROL, pipe_config->gmch_pfit.control);
5129
5130         /* Border color in case we don't scale up to the full screen. Black by
5131          * default, change to something else for debugging. */
5132         I915_WRITE(BCLRPAT(crtc->pipe), 0);
5133 }
5134
5135 static enum intel_display_power_domain port_to_power_domain(enum port port)
5136 {
5137         switch (port) {
5138         case PORT_A:
5139                 return POWER_DOMAIN_PORT_DDI_A_4_LANES;
5140         case PORT_B:
5141                 return POWER_DOMAIN_PORT_DDI_B_4_LANES;
5142         case PORT_C:
5143                 return POWER_DOMAIN_PORT_DDI_C_4_LANES;
5144         case PORT_D:
5145                 return POWER_DOMAIN_PORT_DDI_D_4_LANES;
5146         default:
5147                 WARN_ON_ONCE(1);
5148                 return POWER_DOMAIN_PORT_OTHER;
5149         }
5150 }
5151
5152 #define for_each_power_domain(domain, mask)                             \
5153         for ((domain) = 0; (domain) < POWER_DOMAIN_NUM; (domain)++)     \
5154                 if ((1 << (domain)) & (mask))
5155
5156 enum intel_display_power_domain
5157 intel_display_port_power_domain(struct intel_encoder *intel_encoder)
5158 {
5159         struct drm_device *dev = intel_encoder->base.dev;
5160         struct intel_digital_port *intel_dig_port;
5161
5162         switch (intel_encoder->type) {
5163         case INTEL_OUTPUT_UNKNOWN:
5164                 /* Only DDI platforms should ever use this output type */
5165                 WARN_ON_ONCE(!HAS_DDI(dev));
5166         case INTEL_OUTPUT_DISPLAYPORT:
5167         case INTEL_OUTPUT_HDMI:
5168         case INTEL_OUTPUT_EDP:
5169                 intel_dig_port = enc_to_dig_port(&intel_encoder->base);
5170                 return port_to_power_domain(intel_dig_port->port);
5171         case INTEL_OUTPUT_DP_MST:
5172                 intel_dig_port = enc_to_mst(&intel_encoder->base)->primary;
5173                 return port_to_power_domain(intel_dig_port->port);
5174         case INTEL_OUTPUT_ANALOG:
5175                 return POWER_DOMAIN_PORT_CRT;
5176         case INTEL_OUTPUT_DSI:
5177                 return POWER_DOMAIN_PORT_DSI;
5178         default:
5179                 return POWER_DOMAIN_PORT_OTHER;
5180         }
5181 }
5182
5183 static unsigned long get_crtc_power_domains(struct drm_crtc *crtc)
5184 {
5185         struct drm_device *dev = crtc->dev;
5186         struct intel_encoder *intel_encoder;
5187         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5188         enum pipe pipe = intel_crtc->pipe;
5189         unsigned long mask;
5190         enum transcoder transcoder;
5191
5192         if (!crtc->state->active)
5193                 return 0;
5194
5195         transcoder = intel_pipe_to_cpu_transcoder(dev->dev_private, pipe);
5196
5197         mask = BIT(POWER_DOMAIN_PIPE(pipe));
5198         mask |= BIT(POWER_DOMAIN_TRANSCODER(transcoder));
5199         if (intel_crtc->config->pch_pfit.enabled ||
5200             intel_crtc->config->pch_pfit.force_thru)
5201                 mask |= BIT(POWER_DOMAIN_PIPE_PANEL_FITTER(pipe));
5202
5203         for_each_encoder_on_crtc(dev, crtc, intel_encoder)
5204                 mask |= BIT(intel_display_port_power_domain(intel_encoder));
5205
5206         return mask;
5207 }
5208
5209 static unsigned long modeset_get_crtc_power_domains(struct drm_crtc *crtc)
5210 {
5211         struct drm_i915_private *dev_priv = crtc->dev->dev_private;
5212         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5213         enum intel_display_power_domain domain;
5214         unsigned long domains, new_domains, old_domains;
5215
5216         old_domains = intel_crtc->enabled_power_domains;
5217         intel_crtc->enabled_power_domains = new_domains = get_crtc_power_domains(crtc);
5218
5219         domains = new_domains & ~old_domains;
5220
5221         for_each_power_domain(domain, domains)
5222                 intel_display_power_get(dev_priv, domain);
5223
5224         return old_domains & ~new_domains;
5225 }
5226
5227 static void modeset_put_power_domains(struct drm_i915_private *dev_priv,
5228                                       unsigned long domains)
5229 {
5230         enum intel_display_power_domain domain;
5231
5232         for_each_power_domain(domain, domains)
5233                 intel_display_power_put(dev_priv, domain);
5234 }
5235
5236 static void modeset_update_crtc_power_domains(struct drm_atomic_state *state)
5237 {
5238         struct drm_device *dev = state->dev;
5239         struct drm_i915_private *dev_priv = dev->dev_private;
5240         unsigned long put_domains[I915_MAX_PIPES] = {};
5241         struct drm_crtc_state *crtc_state;
5242         struct drm_crtc *crtc;
5243         int i;
5244
5245         for_each_crtc_in_state(state, crtc, crtc_state, i) {
5246                 if (needs_modeset(crtc->state))
5247                         put_domains[to_intel_crtc(crtc)->pipe] =
5248                                 modeset_get_crtc_power_domains(crtc);
5249         }
5250
5251         if (dev_priv->display.modeset_commit_cdclk) {
5252                 unsigned int cdclk = to_intel_atomic_state(state)->cdclk;
5253
5254                 if (cdclk != dev_priv->cdclk_freq &&
5255                     !WARN_ON(!state->allow_modeset))
5256                         dev_priv->display.modeset_commit_cdclk(state);
5257         }
5258
5259         for (i = 0; i < I915_MAX_PIPES; i++)
5260                 if (put_domains[i])
5261                         modeset_put_power_domains(dev_priv, put_domains[i]);
5262 }
5263
5264 static void intel_update_max_cdclk(struct drm_device *dev)
5265 {
5266         struct drm_i915_private *dev_priv = dev->dev_private;
5267
5268         if (IS_SKYLAKE(dev)) {
5269                 u32 limit = I915_READ(SKL_DFSM) & SKL_DFSM_CDCLK_LIMIT_MASK;
5270
5271                 if (limit == SKL_DFSM_CDCLK_LIMIT_675)
5272                         dev_priv->max_cdclk_freq = 675000;
5273                 else if (limit == SKL_DFSM_CDCLK_LIMIT_540)
5274                         dev_priv->max_cdclk_freq = 540000;
5275                 else if (limit == SKL_DFSM_CDCLK_LIMIT_450)
5276                         dev_priv->max_cdclk_freq = 450000;
5277                 else
5278                         dev_priv->max_cdclk_freq = 337500;
5279         } else if (IS_BROADWELL(dev))  {
5280                 /*
5281                  * FIXME with extra cooling we can allow
5282                  * 540 MHz for ULX and 675 Mhz for ULT.
5283                  * How can we know if extra cooling is
5284                  * available? PCI ID, VTB, something else?
5285                  */
5286                 if (I915_READ(FUSE_STRAP) & HSW_CDCLK_LIMIT)
5287                         dev_priv->max_cdclk_freq = 450000;
5288                 else if (IS_BDW_ULX(dev))
5289                         dev_priv->max_cdclk_freq = 450000;
5290                 else if (IS_BDW_ULT(dev))
5291                         dev_priv->max_cdclk_freq = 540000;
5292                 else
5293                         dev_priv->max_cdclk_freq = 675000;
5294         } else if (IS_CHERRYVIEW(dev)) {
5295                 dev_priv->max_cdclk_freq = 320000;
5296         } else if (IS_VALLEYVIEW(dev)) {
5297                 dev_priv->max_cdclk_freq = 400000;
5298         } else {
5299                 /* otherwise assume cdclk is fixed */
5300                 dev_priv->max_cdclk_freq = dev_priv->cdclk_freq;
5301         }
5302
5303         DRM_DEBUG_DRIVER("Max CD clock rate: %d kHz\n",
5304                          dev_priv->max_cdclk_freq);
5305 }
5306
5307 static void intel_update_cdclk(struct drm_device *dev)
5308 {
5309         struct drm_i915_private *dev_priv = dev->dev_private;
5310
5311         dev_priv->cdclk_freq = dev_priv->display.get_display_clock_speed(dev);
5312         DRM_DEBUG_DRIVER("Current CD clock rate: %d kHz\n",
5313                          dev_priv->cdclk_freq);
5314
5315         /*
5316          * Program the gmbus_freq based on the cdclk frequency.
5317          * BSpec erroneously claims we should aim for 4MHz, but
5318          * in fact 1MHz is the correct frequency.
5319          */
5320         if (IS_VALLEYVIEW(dev)) {
5321                 /*
5322                  * Program the gmbus_freq based on the cdclk frequency.
5323                  * BSpec erroneously claims we should aim for 4MHz, but
5324                  * in fact 1MHz is the correct frequency.
5325                  */
5326                 I915_WRITE(GMBUSFREQ_VLV, DIV_ROUND_UP(dev_priv->cdclk_freq, 1000));
5327         }
5328
5329         if (dev_priv->max_cdclk_freq == 0)
5330                 intel_update_max_cdclk(dev);
5331 }
5332
5333 static void broxton_set_cdclk(struct drm_device *dev, int frequency)
5334 {
5335         struct drm_i915_private *dev_priv = dev->dev_private;
5336         uint32_t divider;
5337         uint32_t ratio;
5338         uint32_t current_freq;
5339         int ret;
5340
5341         /* frequency = 19.2MHz * ratio / 2 / div{1,1.5,2,4} */
5342         switch (frequency) {
5343         case 144000:
5344                 divider = BXT_CDCLK_CD2X_DIV_SEL_4;
5345                 ratio = BXT_DE_PLL_RATIO(60);
5346                 break;
5347         case 288000:
5348                 divider = BXT_CDCLK_CD2X_DIV_SEL_2;
5349                 ratio = BXT_DE_PLL_RATIO(60);
5350                 break;
5351         case 384000:
5352                 divider = BXT_CDCLK_CD2X_DIV_SEL_1_5;
5353                 ratio = BXT_DE_PLL_RATIO(60);
5354                 break;
5355         case 576000:
5356                 divider = BXT_CDCLK_CD2X_DIV_SEL_1;
5357                 ratio = BXT_DE_PLL_RATIO(60);
5358                 break;
5359         case 624000:
5360                 divider = BXT_CDCLK_CD2X_DIV_SEL_1;
5361                 ratio = BXT_DE_PLL_RATIO(65);
5362                 break;
5363         case 19200:
5364                 /*
5365                  * Bypass frequency with DE PLL disabled. Init ratio, divider
5366                  * to suppress GCC warning.
5367                  */
5368                 ratio = 0;
5369                 divider = 0;
5370                 break;
5371         default:
5372                 DRM_ERROR("unsupported CDCLK freq %d", frequency);
5373
5374                 return;
5375         }
5376
5377         mutex_lock(&dev_priv->rps.hw_lock);
5378         /* Inform power controller of upcoming frequency change */
5379         ret = sandybridge_pcode_write(dev_priv, HSW_PCODE_DE_WRITE_FREQ_REQ,
5380                                       0x80000000);
5381         mutex_unlock(&dev_priv->rps.hw_lock);
5382
5383         if (ret) {
5384                 DRM_ERROR("PCode CDCLK freq change notify failed (err %d, freq %d)\n",
5385                           ret, frequency);
5386                 return;
5387         }
5388
5389         current_freq = I915_READ(CDCLK_CTL) & CDCLK_FREQ_DECIMAL_MASK;
5390         /* convert from .1 fixpoint MHz with -1MHz offset to kHz */
5391         current_freq = current_freq * 500 + 1000;
5392
5393         /*
5394          * DE PLL has to be disabled when
5395          * - setting to 19.2MHz (bypass, PLL isn't used)
5396          * - before setting to 624MHz (PLL needs toggling)
5397          * - before setting to any frequency from 624MHz (PLL needs toggling)
5398          */
5399         if (frequency == 19200 || frequency == 624000 ||
5400             current_freq == 624000) {
5401                 I915_WRITE(BXT_DE_PLL_ENABLE, ~BXT_DE_PLL_PLL_ENABLE);
5402                 /* Timeout 200us */
5403                 if (wait_for(!(I915_READ(BXT_DE_PLL_ENABLE) & BXT_DE_PLL_LOCK),
5404                              1))
5405                         DRM_ERROR("timout waiting for DE PLL unlock\n");
5406         }
5407
5408         if (frequency != 19200) {
5409                 uint32_t val;
5410
5411                 val = I915_READ(BXT_DE_PLL_CTL);
5412                 val &= ~BXT_DE_PLL_RATIO_MASK;
5413                 val |= ratio;
5414                 I915_WRITE(BXT_DE_PLL_CTL, val);
5415
5416                 I915_WRITE(BXT_DE_PLL_ENABLE, BXT_DE_PLL_PLL_ENABLE);
5417                 /* Timeout 200us */
5418                 if (wait_for(I915_READ(BXT_DE_PLL_ENABLE) & BXT_DE_PLL_LOCK, 1))
5419                         DRM_ERROR("timeout waiting for DE PLL lock\n");
5420
5421                 val = I915_READ(CDCLK_CTL);
5422                 val &= ~BXT_CDCLK_CD2X_DIV_SEL_MASK;
5423                 val |= divider;
5424                 /*
5425                  * Disable SSA Precharge when CD clock frequency < 500 MHz,
5426                  * enable otherwise.
5427                  */
5428                 val &= ~BXT_CDCLK_SSA_PRECHARGE_ENABLE;
5429                 if (frequency >= 500000)
5430                         val |= BXT_CDCLK_SSA_PRECHARGE_ENABLE;
5431
5432                 val &= ~CDCLK_FREQ_DECIMAL_MASK;
5433                 /* convert from kHz to .1 fixpoint MHz with -1MHz offset */
5434                 val |= (frequency - 1000) / 500;
5435                 I915_WRITE(CDCLK_CTL, val);
5436         }
5437
5438         mutex_lock(&dev_priv->rps.hw_lock);
5439         ret = sandybridge_pcode_write(dev_priv, HSW_PCODE_DE_WRITE_FREQ_REQ,
5440                                       DIV_ROUND_UP(frequency, 25000));
5441         mutex_unlock(&dev_priv->rps.hw_lock);
5442
5443         if (ret) {
5444                 DRM_ERROR("PCode CDCLK freq set failed, (err %d, freq %d)\n",
5445                           ret, frequency);
5446                 return;
5447         }
5448
5449         intel_update_cdclk(dev);
5450 }
5451
5452 void broxton_init_cdclk(struct drm_device *dev)
5453 {
5454         struct drm_i915_private *dev_priv = dev->dev_private;
5455         uint32_t val;
5456
5457         /*
5458          * NDE_RSTWRN_OPT RST PCH Handshake En must always be 0b on BXT
5459          * or else the reset will hang because there is no PCH to respond.
5460          * Move the handshake programming to initialization sequence.
5461          * Previously was left up to BIOS.
5462          */
5463         val = I915_READ(HSW_NDE_RSTWRN_OPT);
5464         val &= ~RESET_PCH_HANDSHAKE_ENABLE;
5465         I915_WRITE(HSW_NDE_RSTWRN_OPT, val);
5466
5467         /* Enable PG1 for cdclk */
5468         intel_display_power_get(dev_priv, POWER_DOMAIN_PLLS);
5469
5470         /* check if cd clock is enabled */
5471         if (I915_READ(BXT_DE_PLL_ENABLE) & BXT_DE_PLL_PLL_ENABLE) {
5472                 DRM_DEBUG_KMS("Display already initialized\n");
5473                 return;
5474         }
5475
5476         /*
5477          * FIXME:
5478          * - The initial CDCLK needs to be read from VBT.
5479          *   Need to make this change after VBT has changes for BXT.
5480          * - check if setting the max (or any) cdclk freq is really necessary
5481          *   here, it belongs to modeset time
5482          */
5483         broxton_set_cdclk(dev, 624000);
5484
5485         I915_WRITE(DBUF_CTL, I915_READ(DBUF_CTL) | DBUF_POWER_REQUEST);
5486         POSTING_READ(DBUF_CTL);
5487
5488         udelay(10);
5489
5490         if (!(I915_READ(DBUF_CTL) & DBUF_POWER_STATE))
5491                 DRM_ERROR("DBuf power enable timeout!\n");
5492 }
5493
5494 void broxton_uninit_cdclk(struct drm_device *dev)
5495 {
5496         struct drm_i915_private *dev_priv = dev->dev_private;
5497
5498         I915_WRITE(DBUF_CTL, I915_READ(DBUF_CTL) & ~DBUF_POWER_REQUEST);
5499         POSTING_READ(DBUF_CTL);
5500
5501         udelay(10);
5502
5503         if (I915_READ(DBUF_CTL) & DBUF_POWER_STATE)
5504                 DRM_ERROR("DBuf power disable timeout!\n");
5505
5506         /* Set minimum (bypass) frequency, in effect turning off the DE PLL */
5507         broxton_set_cdclk(dev, 19200);
5508
5509         intel_display_power_put(dev_priv, POWER_DOMAIN_PLLS);
5510 }
5511
5512 static const struct skl_cdclk_entry {
5513         unsigned int freq;
5514         unsigned int vco;
5515 } skl_cdclk_frequencies[] = {
5516         { .freq = 308570, .vco = 8640 },
5517         { .freq = 337500, .vco = 8100 },
5518         { .freq = 432000, .vco = 8640 },
5519         { .freq = 450000, .vco = 8100 },
5520         { .freq = 540000, .vco = 8100 },
5521         { .freq = 617140, .vco = 8640 },
5522         { .freq = 675000, .vco = 8100 },
5523 };
5524
5525 static unsigned int skl_cdclk_decimal(unsigned int freq)
5526 {
5527         return (freq - 1000) / 500;
5528 }
5529
5530 static unsigned int skl_cdclk_get_vco(unsigned int freq)
5531 {
5532         unsigned int i;
5533
5534         for (i = 0; i < ARRAY_SIZE(skl_cdclk_frequencies); i++) {
5535                 const struct skl_cdclk_entry *e = &skl_cdclk_frequencies[i];
5536
5537                 if (e->freq == freq)
5538                         return e->vco;
5539         }
5540
5541         return 8100;
5542 }
5543
5544 static void
5545 skl_dpll0_enable(struct drm_i915_private *dev_priv, unsigned int required_vco)
5546 {
5547         unsigned int min_freq;
5548         u32 val;
5549
5550         /* select the minimum CDCLK before enabling DPLL 0 */
5551         val = I915_READ(CDCLK_CTL);
5552         val &= ~CDCLK_FREQ_SEL_MASK | ~CDCLK_FREQ_DECIMAL_MASK;
5553         val |= CDCLK_FREQ_337_308;
5554
5555         if (required_vco == 8640)
5556                 min_freq = 308570;
5557         else
5558                 min_freq = 337500;
5559
5560         val = CDCLK_FREQ_337_308 | skl_cdclk_decimal(min_freq);
5561
5562         I915_WRITE(CDCLK_CTL, val);
5563         POSTING_READ(CDCLK_CTL);
5564
5565         /*
5566          * We always enable DPLL0 with the lowest link rate possible, but still
5567          * taking into account the VCO required to operate the eDP panel at the
5568          * desired frequency. The usual DP link rates operate with a VCO of
5569          * 8100 while the eDP 1.4 alternate link rates need a VCO of 8640.
5570          * The modeset code is responsible for the selection of the exact link
5571          * rate later on, with the constraint of choosing a frequency that
5572          * works with required_vco.
5573          */
5574         val = I915_READ(DPLL_CTRL1);
5575
5576         val &= ~(DPLL_CTRL1_HDMI_MODE(SKL_DPLL0) | DPLL_CTRL1_SSC(SKL_DPLL0) |
5577                  DPLL_CTRL1_LINK_RATE_MASK(SKL_DPLL0));
5578         val |= DPLL_CTRL1_OVERRIDE(SKL_DPLL0);
5579         if (required_vco == 8640)
5580                 val |= DPLL_CTRL1_LINK_RATE(DPLL_CTRL1_LINK_RATE_1080,
5581                                             SKL_DPLL0);
5582         else
5583                 val |= DPLL_CTRL1_LINK_RATE(DPLL_CTRL1_LINK_RATE_810,
5584                                             SKL_DPLL0);
5585
5586         I915_WRITE(DPLL_CTRL1, val);
5587         POSTING_READ(DPLL_CTRL1);
5588
5589         I915_WRITE(LCPLL1_CTL, I915_READ(LCPLL1_CTL) | LCPLL_PLL_ENABLE);
5590
5591         if (wait_for(I915_READ(LCPLL1_CTL) & LCPLL_PLL_LOCK, 5))
5592                 DRM_ERROR("DPLL0 not locked\n");
5593 }
5594
5595 static bool skl_cdclk_pcu_ready(struct drm_i915_private *dev_priv)
5596 {
5597         int ret;
5598         u32 val;
5599
5600         /* inform PCU we want to change CDCLK */
5601         val = SKL_CDCLK_PREPARE_FOR_CHANGE;
5602         mutex_lock(&dev_priv->rps.hw_lock);
5603         ret = sandybridge_pcode_read(dev_priv, SKL_PCODE_CDCLK_CONTROL, &val);
5604         mutex_unlock(&dev_priv->rps.hw_lock);
5605
5606         return ret == 0 && (val & SKL_CDCLK_READY_FOR_CHANGE);
5607 }
5608
5609 static bool skl_cdclk_wait_for_pcu_ready(struct drm_i915_private *dev_priv)
5610 {
5611         unsigned int i;
5612
5613         for (i = 0; i < 15; i++) {
5614                 if (skl_cdclk_pcu_ready(dev_priv))
5615                         return true;
5616                 udelay(10);
5617         }
5618
5619         return false;
5620 }
5621
5622 static void skl_set_cdclk(struct drm_i915_private *dev_priv, unsigned int freq)
5623 {
5624         struct drm_device *dev = dev_priv->dev;
5625         u32 freq_select, pcu_ack;
5626
5627         DRM_DEBUG_DRIVER("Changing CDCLK to %dKHz\n", freq);
5628
5629         if (!skl_cdclk_wait_for_pcu_ready(dev_priv)) {
5630                 DRM_ERROR("failed to inform PCU about cdclk change\n");
5631                 return;
5632         }
5633
5634         /* set CDCLK_CTL */
5635         switch(freq) {
5636         case 450000:
5637         case 432000:
5638                 freq_select = CDCLK_FREQ_450_432;
5639                 pcu_ack = 1;
5640                 break;
5641         case 540000:
5642                 freq_select = CDCLK_FREQ_540;
5643                 pcu_ack = 2;
5644                 break;
5645         case 308570:
5646         case 337500:
5647         default:
5648                 freq_select = CDCLK_FREQ_337_308;
5649                 pcu_ack = 0;
5650                 break;
5651         case 617140:
5652         case 675000:
5653                 freq_select = CDCLK_FREQ_675_617;
5654                 pcu_ack = 3;
5655                 break;
5656         }
5657
5658         I915_WRITE(CDCLK_CTL, freq_select | skl_cdclk_decimal(freq));
5659         POSTING_READ(CDCLK_CTL);
5660
5661         /* inform PCU of the change */
5662         mutex_lock(&dev_priv->rps.hw_lock);
5663         sandybridge_pcode_write(dev_priv, SKL_PCODE_CDCLK_CONTROL, pcu_ack);
5664         mutex_unlock(&dev_priv->rps.hw_lock);
5665
5666         intel_update_cdclk(dev);
5667 }
5668
5669 void skl_uninit_cdclk(struct drm_i915_private *dev_priv)
5670 {
5671         /* disable DBUF power */
5672         I915_WRITE(DBUF_CTL, I915_READ(DBUF_CTL) & ~DBUF_POWER_REQUEST);
5673         POSTING_READ(DBUF_CTL);
5674
5675         udelay(10);
5676
5677         if (I915_READ(DBUF_CTL) & DBUF_POWER_STATE)
5678                 DRM_ERROR("DBuf power disable timeout\n");
5679
5680         /* disable DPLL0 */
5681         I915_WRITE(LCPLL1_CTL, I915_READ(LCPLL1_CTL) & ~LCPLL_PLL_ENABLE);
5682         if (wait_for(!(I915_READ(LCPLL1_CTL) & LCPLL_PLL_LOCK), 1))
5683                 DRM_ERROR("Couldn't disable DPLL0\n");
5684
5685         intel_display_power_put(dev_priv, POWER_DOMAIN_PLLS);
5686 }
5687
5688 void skl_init_cdclk(struct drm_i915_private *dev_priv)
5689 {
5690         u32 val;
5691         unsigned int required_vco;
5692
5693         /* enable PCH reset handshake */
5694         val = I915_READ(HSW_NDE_RSTWRN_OPT);
5695         I915_WRITE(HSW_NDE_RSTWRN_OPT, val | RESET_PCH_HANDSHAKE_ENABLE);
5696
5697         /* enable PG1 and Misc I/O */
5698         intel_display_power_get(dev_priv, POWER_DOMAIN_PLLS);
5699
5700         /* DPLL0 already enabed !? */
5701         if (I915_READ(LCPLL1_CTL) & LCPLL_PLL_ENABLE) {
5702                 DRM_DEBUG_DRIVER("DPLL0 already running\n");
5703                 return;
5704         }
5705
5706         /* enable DPLL0 */
5707         required_vco = skl_cdclk_get_vco(dev_priv->skl_boot_cdclk);
5708         skl_dpll0_enable(dev_priv, required_vco);
5709
5710         /* set CDCLK to the frequency the BIOS chose */
5711         skl_set_cdclk(dev_priv, dev_priv->skl_boot_cdclk);
5712
5713         /* enable DBUF power */
5714         I915_WRITE(DBUF_CTL, I915_READ(DBUF_CTL) | DBUF_POWER_REQUEST);
5715         POSTING_READ(DBUF_CTL);
5716
5717         udelay(10);
5718
5719         if (!(I915_READ(DBUF_CTL) & DBUF_POWER_STATE))
5720                 DRM_ERROR("DBuf power enable timeout\n");
5721 }
5722
5723 /* returns HPLL frequency in kHz */
5724 static int valleyview_get_vco(struct drm_i915_private *dev_priv)
5725 {
5726         int hpll_freq, vco_freq[] = { 800, 1600, 2000, 2400 };
5727
5728         /* Obtain SKU information */
5729         mutex_lock(&dev_priv->sb_lock);
5730         hpll_freq = vlv_cck_read(dev_priv, CCK_FUSE_REG) &
5731                 CCK_FUSE_HPLL_FREQ_MASK;
5732         mutex_unlock(&dev_priv->sb_lock);
5733
5734         return vco_freq[hpll_freq] * 1000;
5735 }
5736
5737 /* Adjust CDclk dividers to allow high res or save power if possible */
5738 static void valleyview_set_cdclk(struct drm_device *dev, int cdclk)
5739 {
5740         struct drm_i915_private *dev_priv = dev->dev_private;
5741         u32 val, cmd;
5742
5743         WARN_ON(dev_priv->display.get_display_clock_speed(dev)
5744                                         != dev_priv->cdclk_freq);
5745
5746         if (cdclk >= 320000) /* jump to highest voltage for 400MHz too */
5747                 cmd = 2;
5748         else if (cdclk == 266667)
5749                 cmd = 1;
5750         else
5751                 cmd = 0;
5752
5753         mutex_lock(&dev_priv->rps.hw_lock);
5754         val = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ);
5755         val &= ~DSPFREQGUAR_MASK;
5756         val |= (cmd << DSPFREQGUAR_SHIFT);
5757         vlv_punit_write(dev_priv, PUNIT_REG_DSPFREQ, val);
5758         if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ) &
5759                       DSPFREQSTAT_MASK) == (cmd << DSPFREQSTAT_SHIFT),
5760                      50)) {
5761                 DRM_ERROR("timed out waiting for CDclk change\n");
5762         }
5763         mutex_unlock(&dev_priv->rps.hw_lock);
5764
5765         mutex_lock(&dev_priv->sb_lock);
5766
5767         if (cdclk == 400000) {
5768                 u32 divider;
5769
5770                 divider = DIV_ROUND_CLOSEST(dev_priv->hpll_freq << 1, cdclk) - 1;
5771
5772                 /* adjust cdclk divider */
5773                 val = vlv_cck_read(dev_priv, CCK_DISPLAY_CLOCK_CONTROL);
5774                 val &= ~DISPLAY_FREQUENCY_VALUES;
5775                 val |= divider;
5776                 vlv_cck_write(dev_priv, CCK_DISPLAY_CLOCK_CONTROL, val);
5777
5778                 if (wait_for((vlv_cck_read(dev_priv, CCK_DISPLAY_CLOCK_CONTROL) &
5779                               DISPLAY_FREQUENCY_STATUS) == (divider << DISPLAY_FREQUENCY_STATUS_SHIFT),
5780                              50))
5781                         DRM_ERROR("timed out waiting for CDclk change\n");
5782         }
5783
5784         /* adjust self-refresh exit latency value */
5785         val = vlv_bunit_read(dev_priv, BUNIT_REG_BISOC);
5786         val &= ~0x7f;
5787
5788         /*
5789          * For high bandwidth configs, we set a higher latency in the bunit
5790          * so that the core display fetch happens in time to avoid underruns.
5791          */
5792         if (cdclk == 400000)
5793                 val |= 4500 / 250; /* 4.5 usec */
5794         else
5795                 val |= 3000 / 250; /* 3.0 usec */
5796         vlv_bunit_write(dev_priv, BUNIT_REG_BISOC, val);
5797
5798         mutex_unlock(&dev_priv->sb_lock);
5799
5800         intel_update_cdclk(dev);
5801 }
5802
5803 static void cherryview_set_cdclk(struct drm_device *dev, int cdclk)
5804 {
5805         struct drm_i915_private *dev_priv = dev->dev_private;
5806         u32 val, cmd;
5807
5808         WARN_ON(dev_priv->display.get_display_clock_speed(dev)
5809                                                 != dev_priv->cdclk_freq);
5810
5811         switch (cdclk) {
5812         case 333333:
5813         case 320000:
5814         case 266667:
5815         case 200000:
5816                 break;
5817         default:
5818                 MISSING_CASE(cdclk);
5819                 return;
5820         }
5821
5822         /*
5823          * Specs are full of misinformation, but testing on actual
5824          * hardware has shown that we just need to write the desired
5825          * CCK divider into the Punit register.
5826          */
5827         cmd = DIV_ROUND_CLOSEST(dev_priv->hpll_freq << 1, cdclk) - 1;
5828
5829         mutex_lock(&dev_priv->rps.hw_lock);
5830         val = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ);
5831         val &= ~DSPFREQGUAR_MASK_CHV;
5832         val |= (cmd << DSPFREQGUAR_SHIFT_CHV);
5833         vlv_punit_write(dev_priv, PUNIT_REG_DSPFREQ, val);
5834         if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ) &
5835                       DSPFREQSTAT_MASK_CHV) == (cmd << DSPFREQSTAT_SHIFT_CHV),
5836                      50)) {
5837                 DRM_ERROR("timed out waiting for CDclk change\n");
5838         }
5839         mutex_unlock(&dev_priv->rps.hw_lock);
5840
5841         intel_update_cdclk(dev);
5842 }
5843
5844 static int valleyview_calc_cdclk(struct drm_i915_private *dev_priv,
5845                                  int max_pixclk)
5846 {
5847         int freq_320 = (dev_priv->hpll_freq <<  1) % 320000 != 0 ? 333333 : 320000;
5848         int limit = IS_CHERRYVIEW(dev_priv) ? 95 : 90;
5849
5850         /*
5851          * Really only a few cases to deal with, as only 4 CDclks are supported:
5852          *   200MHz
5853          *   267MHz
5854          *   320/333MHz (depends on HPLL freq)
5855          *   400MHz (VLV only)
5856          * So we check to see whether we're above 90% (VLV) or 95% (CHV)
5857          * of the lower bin and adjust if needed.
5858          *
5859          * We seem to get an unstable or solid color picture at 200MHz.
5860          * Not sure what's wrong. For now use 200MHz only when all pipes
5861          * are off.
5862          */
5863         if (!IS_CHERRYVIEW(dev_priv) &&
5864             max_pixclk > freq_320*limit/100)
5865                 return 400000;
5866         else if (max_pixclk > 266667*limit/100)
5867                 return freq_320;
5868         else if (max_pixclk > 0)
5869                 return 266667;
5870         else
5871                 return 200000;
5872 }
5873
5874 static int broxton_calc_cdclk(struct drm_i915_private *dev_priv,
5875                               int max_pixclk)
5876 {
5877         /*
5878          * FIXME:
5879          * - remove the guardband, it's not needed on BXT
5880          * - set 19.2MHz bypass frequency if there are no active pipes
5881          */
5882         if (max_pixclk > 576000*9/10)
5883                 return 624000;
5884         else if (max_pixclk > 384000*9/10)
5885                 return 576000;
5886         else if (max_pixclk > 288000*9/10)
5887                 return 384000;
5888         else if (max_pixclk > 144000*9/10)
5889                 return 288000;
5890         else
5891                 return 144000;
5892 }
5893
5894 /* Compute the max pixel clock for new configuration. Uses atomic state if
5895  * that's non-NULL, look at current state otherwise. */
5896 static int intel_mode_max_pixclk(struct drm_device *dev,
5897                                  struct drm_atomic_state *state)
5898 {
5899         struct intel_crtc *intel_crtc;
5900         struct intel_crtc_state *crtc_state;
5901         int max_pixclk = 0;
5902
5903         for_each_intel_crtc(dev, intel_crtc) {
5904                 crtc_state = intel_atomic_get_crtc_state(state, intel_crtc);
5905                 if (IS_ERR(crtc_state))
5906                         return PTR_ERR(crtc_state);
5907
5908                 if (!crtc_state->base.enable)
5909                         continue;
5910
5911                 max_pixclk = max(max_pixclk,
5912                                  crtc_state->base.adjusted_mode.crtc_clock);
5913         }
5914
5915         return max_pixclk;
5916 }
5917
5918 static int valleyview_modeset_calc_cdclk(struct drm_atomic_state *state)
5919 {
5920         struct drm_device *dev = state->dev;
5921         struct drm_i915_private *dev_priv = dev->dev_private;
5922         int max_pixclk = intel_mode_max_pixclk(dev, state);
5923
5924         if (max_pixclk < 0)
5925                 return max_pixclk;
5926
5927         to_intel_atomic_state(state)->cdclk =
5928                 valleyview_calc_cdclk(dev_priv, max_pixclk);
5929
5930         return 0;
5931 }
5932
5933 static int broxton_modeset_calc_cdclk(struct drm_atomic_state *state)
5934 {
5935         struct drm_device *dev = state->dev;
5936         struct drm_i915_private *dev_priv = dev->dev_private;
5937         int max_pixclk = intel_mode_max_pixclk(dev, state);
5938
5939         if (max_pixclk < 0)
5940                 return max_pixclk;
5941
5942         to_intel_atomic_state(state)->cdclk =
5943                 broxton_calc_cdclk(dev_priv, max_pixclk);
5944
5945         return 0;
5946 }
5947
5948 static void vlv_program_pfi_credits(struct drm_i915_private *dev_priv)
5949 {
5950         unsigned int credits, default_credits;
5951
5952         if (IS_CHERRYVIEW(dev_priv))
5953                 default_credits = PFI_CREDIT(12);
5954         else
5955                 default_credits = PFI_CREDIT(8);
5956
5957         if (DIV_ROUND_CLOSEST(dev_priv->cdclk_freq, 1000) >= dev_priv->rps.cz_freq) {
5958                 /* CHV suggested value is 31 or 63 */
5959                 if (IS_CHERRYVIEW(dev_priv))
5960                         credits = PFI_CREDIT_63;
5961                 else
5962                         credits = PFI_CREDIT(15);
5963         } else {
5964                 credits = default_credits;
5965         }
5966
5967         /*
5968          * WA - write default credits before re-programming
5969          * FIXME: should we also set the resend bit here?
5970          */
5971         I915_WRITE(GCI_CONTROL, VGA_FAST_MODE_DISABLE |
5972                    default_credits);
5973
5974         I915_WRITE(GCI_CONTROL, VGA_FAST_MODE_DISABLE |
5975                    credits | PFI_CREDIT_RESEND);
5976
5977         /*
5978          * FIXME is this guaranteed to clear
5979          * immediately or should we poll for it?
5980          */
5981         WARN_ON(I915_READ(GCI_CONTROL) & PFI_CREDIT_RESEND);
5982 }
5983
5984 static void valleyview_modeset_commit_cdclk(struct drm_atomic_state *old_state)
5985 {
5986         struct drm_device *dev = old_state->dev;
5987         unsigned int req_cdclk = to_intel_atomic_state(old_state)->cdclk;
5988         struct drm_i915_private *dev_priv = dev->dev_private;
5989
5990         /*
5991          * FIXME: We can end up here with all power domains off, yet
5992          * with a CDCLK frequency other than the minimum. To account
5993          * for this take the PIPE-A power domain, which covers the HW
5994          * blocks needed for the following programming. This can be
5995          * removed once it's guaranteed that we get here either with
5996          * the minimum CDCLK set, or the required power domains
5997          * enabled.
5998          */
5999         intel_display_power_get(dev_priv, POWER_DOMAIN_PIPE_A);
6000
6001         if (IS_CHERRYVIEW(dev))
6002                 cherryview_set_cdclk(dev, req_cdclk);
6003         else
6004                 valleyview_set_cdclk(dev, req_cdclk);
6005
6006         vlv_program_pfi_credits(dev_priv);
6007
6008         intel_display_power_put(dev_priv, POWER_DOMAIN_PIPE_A);
6009 }
6010
6011 static void valleyview_crtc_enable(struct drm_crtc *crtc)
6012 {
6013         struct drm_device *dev = crtc->dev;
6014         struct drm_i915_private *dev_priv = to_i915(dev);
6015         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6016         struct intel_encoder *encoder;
6017         int pipe = intel_crtc->pipe;
6018         bool is_dsi;
6019
6020         if (WARN_ON(intel_crtc->active))
6021                 return;
6022
6023         is_dsi = intel_pipe_has_type(intel_crtc, INTEL_OUTPUT_DSI);
6024
6025         if (!is_dsi) {
6026                 if (IS_CHERRYVIEW(dev))
6027                         chv_prepare_pll(intel_crtc, intel_crtc->config);
6028                 else
6029                         vlv_prepare_pll(intel_crtc, intel_crtc->config);
6030         }
6031
6032         if (intel_crtc->config->has_dp_encoder)
6033                 intel_dp_set_m_n(intel_crtc, M1_N1);
6034
6035         intel_set_pipe_timings(intel_crtc);
6036
6037         if (IS_CHERRYVIEW(dev) && pipe == PIPE_B) {
6038                 struct drm_i915_private *dev_priv = dev->dev_private;
6039
6040                 I915_WRITE(CHV_BLEND(pipe), CHV_BLEND_LEGACY);
6041                 I915_WRITE(CHV_CANVAS(pipe), 0);
6042         }
6043
6044         i9xx_set_pipeconf(intel_crtc);
6045
6046         intel_crtc->active = true;
6047
6048         intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
6049
6050         for_each_encoder_on_crtc(dev, crtc, encoder)
6051                 if (encoder->pre_pll_enable)
6052                         encoder->pre_pll_enable(encoder);
6053
6054         if (!is_dsi) {
6055                 if (IS_CHERRYVIEW(dev))
6056                         chv_enable_pll(intel_crtc, intel_crtc->config);
6057                 else
6058                         vlv_enable_pll(intel_crtc, intel_crtc->config);
6059         }
6060
6061         for_each_encoder_on_crtc(dev, crtc, encoder)
6062                 if (encoder->pre_enable)
6063                         encoder->pre_enable(encoder);
6064
6065         i9xx_pfit_enable(intel_crtc);
6066
6067         intel_crtc_load_lut(crtc);
6068
6069         intel_enable_pipe(intel_crtc);
6070
6071         assert_vblank_disabled(crtc);
6072         drm_crtc_vblank_on(crtc);
6073
6074         for_each_encoder_on_crtc(dev, crtc, encoder)
6075                 encoder->enable(encoder);
6076 }
6077
6078 static void i9xx_set_pll_dividers(struct intel_crtc *crtc)
6079 {
6080         struct drm_device *dev = crtc->base.dev;
6081         struct drm_i915_private *dev_priv = dev->dev_private;
6082
6083         I915_WRITE(FP0(crtc->pipe), crtc->config->dpll_hw_state.fp0);
6084         I915_WRITE(FP1(crtc->pipe), crtc->config->dpll_hw_state.fp1);
6085 }
6086
6087 static void i9xx_crtc_enable(struct drm_crtc *crtc)
6088 {
6089         struct drm_device *dev = crtc->dev;
6090         struct drm_i915_private *dev_priv = to_i915(dev);
6091         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6092         struct intel_encoder *encoder;
6093         int pipe = intel_crtc->pipe;
6094
6095         if (WARN_ON(intel_crtc->active))
6096                 return;
6097
6098         i9xx_set_pll_dividers(intel_crtc);
6099
6100         if (intel_crtc->config->has_dp_encoder)
6101                 intel_dp_set_m_n(intel_crtc, M1_N1);
6102
6103         intel_set_pipe_timings(intel_crtc);
6104
6105         i9xx_set_pipeconf(intel_crtc);
6106
6107         intel_crtc->active = true;
6108
6109         if (!IS_GEN2(dev))
6110                 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
6111
6112         for_each_encoder_on_crtc(dev, crtc, encoder)
6113                 if (encoder->pre_enable)
6114                         encoder->pre_enable(encoder);
6115
6116         i9xx_enable_pll(intel_crtc);
6117
6118         i9xx_pfit_enable(intel_crtc);
6119
6120         intel_crtc_load_lut(crtc);
6121
6122         intel_update_watermarks(crtc);
6123         intel_enable_pipe(intel_crtc);
6124
6125         assert_vblank_disabled(crtc);
6126         drm_crtc_vblank_on(crtc);
6127
6128         for_each_encoder_on_crtc(dev, crtc, encoder)
6129                 encoder->enable(encoder);
6130 }
6131
6132 static void i9xx_pfit_disable(struct intel_crtc *crtc)
6133 {
6134         struct drm_device *dev = crtc->base.dev;
6135         struct drm_i915_private *dev_priv = dev->dev_private;
6136
6137         if (!crtc->config->gmch_pfit.control)
6138                 return;
6139
6140         assert_pipe_disabled(dev_priv, crtc->pipe);
6141
6142         DRM_DEBUG_DRIVER("disabling pfit, current: 0x%08x\n",
6143                          I915_READ(PFIT_CONTROL));
6144         I915_WRITE(PFIT_CONTROL, 0);
6145 }
6146
6147 static void i9xx_crtc_disable(struct drm_crtc *crtc)
6148 {
6149         struct drm_device *dev = crtc->dev;
6150         struct drm_i915_private *dev_priv = dev->dev_private;
6151         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6152         struct intel_encoder *encoder;
6153         int pipe = intel_crtc->pipe;
6154
6155         /*
6156          * On gen2 planes are double buffered but the pipe isn't, so we must
6157          * wait for planes to fully turn off before disabling the pipe.
6158          * We also need to wait on all gmch platforms because of the
6159          * self-refresh mode constraint explained above.
6160          */
6161         intel_wait_for_vblank(dev, pipe);
6162
6163         for_each_encoder_on_crtc(dev, crtc, encoder)
6164                 encoder->disable(encoder);
6165
6166         drm_crtc_vblank_off(crtc);
6167         assert_vblank_disabled(crtc);
6168
6169         intel_disable_pipe(intel_crtc);
6170
6171         i9xx_pfit_disable(intel_crtc);
6172
6173         for_each_encoder_on_crtc(dev, crtc, encoder)
6174                 if (encoder->post_disable)
6175                         encoder->post_disable(encoder);
6176
6177         if (!intel_pipe_has_type(intel_crtc, INTEL_OUTPUT_DSI)) {
6178                 if (IS_CHERRYVIEW(dev))
6179                         chv_disable_pll(dev_priv, pipe);
6180                 else if (IS_VALLEYVIEW(dev))
6181                         vlv_disable_pll(dev_priv, pipe);
6182                 else
6183                         i9xx_disable_pll(intel_crtc);
6184         }
6185
6186         if (!IS_GEN2(dev))
6187                 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, false);
6188
6189         intel_crtc->active = false;
6190         intel_update_watermarks(crtc);
6191 }
6192
6193 static void intel_crtc_disable_noatomic(struct drm_crtc *crtc)
6194 {
6195         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6196         struct drm_i915_private *dev_priv = to_i915(crtc->dev);
6197         enum intel_display_power_domain domain;
6198         unsigned long domains;
6199
6200         if (!intel_crtc->active)
6201                 return;
6202
6203         if (to_intel_plane_state(crtc->primary->state)->visible) {
6204                 intel_crtc_wait_for_pending_flips(crtc);
6205                 intel_pre_disable_primary(crtc);
6206         }
6207
6208         intel_crtc_disable_planes(crtc, crtc->state->plane_mask);
6209         dev_priv->display.crtc_disable(crtc);
6210         intel_disable_shared_dpll(intel_crtc);
6211
6212         domains = intel_crtc->enabled_power_domains;
6213         for_each_power_domain(domain, domains)
6214                 intel_display_power_put(dev_priv, domain);
6215         intel_crtc->enabled_power_domains = 0;
6216 }
6217
6218 /*
6219  * turn all crtc's off, but do not adjust state
6220  * This has to be paired with a call to intel_modeset_setup_hw_state.
6221  */
6222 int intel_display_suspend(struct drm_device *dev)
6223 {
6224         struct drm_mode_config *config = &dev->mode_config;
6225         struct drm_modeset_acquire_ctx *ctx = config->acquire_ctx;
6226         struct drm_atomic_state *state;
6227         struct drm_crtc *crtc;
6228         unsigned crtc_mask = 0;
6229         int ret = 0;
6230
6231         if (WARN_ON(!ctx))
6232                 return 0;
6233
6234         lockdep_assert_held(&ctx->ww_ctx);
6235         state = drm_atomic_state_alloc(dev);
6236         if (WARN_ON(!state))
6237                 return -ENOMEM;
6238
6239         state->acquire_ctx = ctx;
6240         state->allow_modeset = true;
6241
6242         for_each_crtc(dev, crtc) {
6243                 struct drm_crtc_state *crtc_state =
6244                         drm_atomic_get_crtc_state(state, crtc);
6245
6246                 ret = PTR_ERR_OR_ZERO(crtc_state);
6247                 if (ret)
6248                         goto free;
6249
6250                 if (!crtc_state->active)
6251                         continue;
6252
6253                 crtc_state->active = false;
6254                 crtc_mask |= 1 << drm_crtc_index(crtc);
6255         }
6256
6257         if (crtc_mask) {
6258                 ret = drm_atomic_commit(state);
6259
6260                 if (!ret) {
6261                         for_each_crtc(dev, crtc)
6262                                 if (crtc_mask & (1 << drm_crtc_index(crtc)))
6263                                         crtc->state->active = true;
6264
6265                         return ret;
6266                 }
6267         }
6268
6269 free:
6270         if (ret)
6271                 DRM_ERROR("Suspending crtc's failed with %i\n", ret);
6272         drm_atomic_state_free(state);
6273         return ret;
6274 }
6275
6276 void intel_encoder_destroy(struct drm_encoder *encoder)
6277 {
6278         struct intel_encoder *intel_encoder = to_intel_encoder(encoder);
6279
6280         drm_encoder_cleanup(encoder);
6281         kfree(intel_encoder);
6282 }
6283
6284 /* Cross check the actual hw state with our own modeset state tracking (and it's
6285  * internal consistency). */
6286 static void intel_connector_check_state(struct intel_connector *connector)
6287 {
6288         struct drm_crtc *crtc = connector->base.state->crtc;
6289
6290         DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n",
6291                       connector->base.base.id,
6292                       connector->base.name);
6293
6294         if (connector->get_hw_state(connector)) {
6295                 struct drm_encoder *encoder = &connector->encoder->base;
6296                 struct drm_connector_state *conn_state = connector->base.state;
6297
6298                 I915_STATE_WARN(!crtc,
6299                          "connector enabled without attached crtc\n");
6300
6301                 if (!crtc)
6302                         return;
6303
6304                 I915_STATE_WARN(!crtc->state->active,
6305                       "connector is active, but attached crtc isn't\n");
6306
6307                 if (!encoder)
6308                         return;
6309
6310                 I915_STATE_WARN(conn_state->best_encoder != encoder,
6311                         "atomic encoder doesn't match attached encoder\n");
6312
6313                 I915_STATE_WARN(conn_state->crtc != encoder->crtc,
6314                         "attached encoder crtc differs from connector crtc\n");
6315         } else {
6316                 I915_STATE_WARN(crtc && crtc->state->active,
6317                         "attached crtc is active, but connector isn't\n");
6318                 I915_STATE_WARN(!crtc && connector->base.state->best_encoder,
6319                         "best encoder set without crtc!\n");
6320         }
6321 }
6322
6323 int intel_connector_init(struct intel_connector *connector)
6324 {
6325         struct drm_connector_state *connector_state;
6326
6327         connector_state = kzalloc(sizeof *connector_state, GFP_KERNEL);
6328         if (!connector_state)
6329                 return -ENOMEM;
6330
6331         connector->base.state = connector_state;
6332         return 0;
6333 }
6334
6335 struct intel_connector *intel_connector_alloc(void)
6336 {
6337         struct intel_connector *connector;
6338
6339         connector = kzalloc(sizeof *connector, GFP_KERNEL);
6340         if (!connector)
6341                 return NULL;
6342
6343         if (intel_connector_init(connector) < 0) {
6344                 kfree(connector);
6345                 return NULL;
6346         }
6347
6348         return connector;
6349 }
6350
6351 /* Simple connector->get_hw_state implementation for encoders that support only
6352  * one connector and no cloning and hence the encoder state determines the state
6353  * of the connector. */
6354 bool intel_connector_get_hw_state(struct intel_connector *connector)
6355 {
6356         enum pipe pipe = 0;
6357         struct intel_encoder *encoder = connector->encoder;
6358
6359         return encoder->get_hw_state(encoder, &pipe);
6360 }
6361
6362 static int pipe_required_fdi_lanes(struct intel_crtc_state *crtc_state)
6363 {
6364         if (crtc_state->base.enable && crtc_state->has_pch_encoder)
6365                 return crtc_state->fdi_lanes;
6366
6367         return 0;
6368 }
6369
6370 static int ironlake_check_fdi_lanes(struct drm_device *dev, enum pipe pipe,
6371                                      struct intel_crtc_state *pipe_config)
6372 {
6373         struct drm_atomic_state *state = pipe_config->base.state;
6374         struct intel_crtc *other_crtc;
6375         struct intel_crtc_state *other_crtc_state;
6376
6377         DRM_DEBUG_KMS("checking fdi config on pipe %c, lanes %i\n",
6378                       pipe_name(pipe), pipe_config->fdi_lanes);
6379         if (pipe_config->fdi_lanes > 4) {
6380                 DRM_DEBUG_KMS("invalid fdi lane config on pipe %c: %i lanes\n",
6381                               pipe_name(pipe), pipe_config->fdi_lanes);
6382                 return -EINVAL;
6383         }
6384
6385         if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
6386                 if (pipe_config->fdi_lanes > 2) {
6387                         DRM_DEBUG_KMS("only 2 lanes on haswell, required: %i lanes\n",
6388                                       pipe_config->fdi_lanes);
6389                         return -EINVAL;
6390                 } else {
6391                         return 0;
6392                 }
6393         }
6394
6395         if (INTEL_INFO(dev)->num_pipes == 2)
6396                 return 0;
6397
6398         /* Ivybridge 3 pipe is really complicated */
6399         switch (pipe) {
6400         case PIPE_A:
6401                 return 0;
6402         case PIPE_B:
6403                 if (pipe_config->fdi_lanes <= 2)
6404                         return 0;
6405
6406                 other_crtc = to_intel_crtc(intel_get_crtc_for_pipe(dev, PIPE_C));
6407                 other_crtc_state =
6408                         intel_atomic_get_crtc_state(state, other_crtc);
6409                 if (IS_ERR(other_crtc_state))
6410                         return PTR_ERR(other_crtc_state);
6411
6412                 if (pipe_required_fdi_lanes(other_crtc_state) > 0) {
6413                         DRM_DEBUG_KMS("invalid shared fdi lane config on pipe %c: %i lanes\n",
6414                                       pipe_name(pipe), pipe_config->fdi_lanes);
6415                         return -EINVAL;
6416                 }
6417                 return 0;
6418         case PIPE_C:
6419                 if (pipe_config->fdi_lanes > 2) {
6420                         DRM_DEBUG_KMS("only 2 lanes on pipe %c: required %i lanes\n",
6421                                       pipe_name(pipe), pipe_config->fdi_lanes);
6422                         return -EINVAL;
6423                 }
6424
6425                 other_crtc = to_intel_crtc(intel_get_crtc_for_pipe(dev, PIPE_B));
6426                 other_crtc_state =
6427                         intel_atomic_get_crtc_state(state, other_crtc);
6428                 if (IS_ERR(other_crtc_state))
6429                         return PTR_ERR(other_crtc_state);
6430
6431                 if (pipe_required_fdi_lanes(other_crtc_state) > 2) {
6432                         DRM_DEBUG_KMS("fdi link B uses too many lanes to enable link C\n");
6433                         return -EINVAL;
6434                 }
6435                 return 0;
6436         default:
6437                 BUG();
6438         }
6439 }
6440
6441 #define RETRY 1
6442 static int ironlake_fdi_compute_config(struct intel_crtc *intel_crtc,
6443                                        struct intel_crtc_state *pipe_config)
6444 {
6445         struct drm_device *dev = intel_crtc->base.dev;
6446         struct drm_display_mode *adjusted_mode = &pipe_config->base.adjusted_mode;
6447         int lane, link_bw, fdi_dotclock, ret;
6448         bool needs_recompute = false;
6449
6450 retry:
6451         /* FDI is a binary signal running at ~2.7GHz, encoding
6452          * each output octet as 10 bits. The actual frequency
6453          * is stored as a divider into a 100MHz clock, and the
6454          * mode pixel clock is stored in units of 1KHz.
6455          * Hence the bw of each lane in terms of the mode signal
6456          * is:
6457          */
6458         link_bw = intel_fdi_link_freq(dev) * MHz(100)/KHz(1)/10;
6459
6460         fdi_dotclock = adjusted_mode->crtc_clock;
6461
6462         lane = ironlake_get_lanes_required(fdi_dotclock, link_bw,
6463                                            pipe_config->pipe_bpp);
6464
6465         pipe_config->fdi_lanes = lane;
6466
6467         intel_link_compute_m_n(pipe_config->pipe_bpp, lane, fdi_dotclock,
6468                                link_bw, &pipe_config->fdi_m_n);
6469
6470         ret = ironlake_check_fdi_lanes(intel_crtc->base.dev,
6471                                        intel_crtc->pipe, pipe_config);
6472         if (ret == -EINVAL && pipe_config->pipe_bpp > 6*3) {
6473                 pipe_config->pipe_bpp -= 2*3;
6474                 DRM_DEBUG_KMS("fdi link bw constraint, reducing pipe bpp to %i\n",
6475                               pipe_config->pipe_bpp);
6476                 needs_recompute = true;
6477                 pipe_config->bw_constrained = true;
6478
6479                 goto retry;
6480         }
6481
6482         if (needs_recompute)
6483                 return RETRY;
6484
6485         return ret;
6486 }
6487
6488 static bool pipe_config_supports_ips(struct drm_i915_private *dev_priv,
6489                                      struct intel_crtc_state *pipe_config)
6490 {
6491         if (pipe_config->pipe_bpp > 24)
6492                 return false;
6493
6494         /* HSW can handle pixel rate up to cdclk? */
6495         if (IS_HASWELL(dev_priv->dev))
6496                 return true;
6497
6498         /*
6499          * We compare against max which means we must take
6500          * the increased cdclk requirement into account when
6501          * calculating the new cdclk.
6502          *
6503          * Should measure whether using a lower cdclk w/o IPS
6504          */
6505         return ilk_pipe_pixel_rate(pipe_config) <=
6506                 dev_priv->max_cdclk_freq * 95 / 100;
6507 }
6508
6509 static void hsw_compute_ips_config(struct intel_crtc *crtc,
6510                                    struct intel_crtc_state *pipe_config)
6511 {
6512         struct drm_device *dev = crtc->base.dev;
6513         struct drm_i915_private *dev_priv = dev->dev_private;
6514
6515         pipe_config->ips_enabled = i915.enable_ips &&
6516                 hsw_crtc_supports_ips(crtc) &&
6517                 pipe_config_supports_ips(dev_priv, pipe_config);
6518 }
6519
6520 static int intel_crtc_compute_config(struct intel_crtc *crtc,
6521                                      struct intel_crtc_state *pipe_config)
6522 {
6523         struct drm_device *dev = crtc->base.dev;
6524         struct drm_i915_private *dev_priv = dev->dev_private;
6525         struct drm_display_mode *adjusted_mode = &pipe_config->base.adjusted_mode;
6526
6527         /* FIXME should check pixel clock limits on all platforms */
6528         if (INTEL_INFO(dev)->gen < 4) {
6529                 int clock_limit = dev_priv->max_cdclk_freq;
6530
6531                 /*
6532                  * Enable pixel doubling when the dot clock
6533                  * is > 90% of the (display) core speed.
6534                  *
6535                  * GDG double wide on either pipe,
6536                  * otherwise pipe A only.
6537                  */
6538                 if ((crtc->pipe == PIPE_A || IS_I915G(dev)) &&
6539                     adjusted_mode->crtc_clock > clock_limit * 9 / 10) {
6540                         clock_limit *= 2;
6541                         pipe_config->double_wide = true;
6542                 }
6543
6544                 if (adjusted_mode->crtc_clock > clock_limit * 9 / 10)
6545                         return -EINVAL;
6546         }
6547
6548         /*
6549          * Pipe horizontal size must be even in:
6550          * - DVO ganged mode
6551          * - LVDS dual channel mode
6552          * - Double wide pipe
6553          */
6554         if ((intel_pipe_will_have_type(pipe_config, INTEL_OUTPUT_LVDS) &&
6555              intel_is_dual_link_lvds(dev)) || pipe_config->double_wide)
6556                 pipe_config->pipe_src_w &= ~1;
6557
6558         /* Cantiga+ cannot handle modes with a hsync front porch of 0.
6559          * WaPruneModeWithIncorrectHsyncOffset:ctg,elk,ilk,snb,ivb,vlv,hsw.
6560          */
6561         if ((INTEL_INFO(dev)->gen > 4 || IS_G4X(dev)) &&
6562                 adjusted_mode->hsync_start == adjusted_mode->hdisplay)
6563                 return -EINVAL;
6564
6565         if (HAS_IPS(dev))
6566                 hsw_compute_ips_config(crtc, pipe_config);
6567
6568         if (pipe_config->has_pch_encoder)
6569                 return ironlake_fdi_compute_config(crtc, pipe_config);
6570
6571         return 0;
6572 }
6573
6574 static int skylake_get_display_clock_speed(struct drm_device *dev)
6575 {
6576         struct drm_i915_private *dev_priv = to_i915(dev);
6577         uint32_t lcpll1 = I915_READ(LCPLL1_CTL);
6578         uint32_t cdctl = I915_READ(CDCLK_CTL);
6579         uint32_t linkrate;
6580
6581         if (!(lcpll1 & LCPLL_PLL_ENABLE))
6582                 return 24000; /* 24MHz is the cd freq with NSSC ref */
6583
6584         if ((cdctl & CDCLK_FREQ_SEL_MASK) == CDCLK_FREQ_540)
6585                 return 540000;
6586
6587         linkrate = (I915_READ(DPLL_CTRL1) &
6588                     DPLL_CTRL1_LINK_RATE_MASK(SKL_DPLL0)) >> 1;
6589
6590         if (linkrate == DPLL_CTRL1_LINK_RATE_2160 ||
6591             linkrate == DPLL_CTRL1_LINK_RATE_1080) {
6592                 /* vco 8640 */
6593                 switch (cdctl & CDCLK_FREQ_SEL_MASK) {
6594                 case CDCLK_FREQ_450_432:
6595                         return 432000;
6596                 case CDCLK_FREQ_337_308:
6597                         return 308570;
6598                 case CDCLK_FREQ_675_617:
6599                         return 617140;
6600                 default:
6601                         WARN(1, "Unknown cd freq selection\n");
6602                 }
6603         } else {
6604                 /* vco 8100 */
6605                 switch (cdctl & CDCLK_FREQ_SEL_MASK) {
6606                 case CDCLK_FREQ_450_432:
6607                         return 450000;
6608                 case CDCLK_FREQ_337_308:
6609                         return 337500;
6610                 case CDCLK_FREQ_675_617:
6611                         return 675000;
6612                 default:
6613                         WARN(1, "Unknown cd freq selection\n");
6614                 }
6615         }
6616
6617         /* error case, do as if DPLL0 isn't enabled */
6618         return 24000;
6619 }
6620
6621 static int broxton_get_display_clock_speed(struct drm_device *dev)
6622 {
6623         struct drm_i915_private *dev_priv = to_i915(dev);
6624         uint32_t cdctl = I915_READ(CDCLK_CTL);
6625         uint32_t pll_ratio = I915_READ(BXT_DE_PLL_CTL) & BXT_DE_PLL_RATIO_MASK;
6626         uint32_t pll_enab = I915_READ(BXT_DE_PLL_ENABLE);
6627         int cdclk;
6628
6629         if (!(pll_enab & BXT_DE_PLL_PLL_ENABLE))
6630                 return 19200;
6631
6632         cdclk = 19200 * pll_ratio / 2;
6633
6634         switch (cdctl & BXT_CDCLK_CD2X_DIV_SEL_MASK) {
6635         case BXT_CDCLK_CD2X_DIV_SEL_1:
6636                 return cdclk;  /* 576MHz or 624MHz */
6637         case BXT_CDCLK_CD2X_DIV_SEL_1_5:
6638                 return cdclk * 2 / 3; /* 384MHz */
6639         case BXT_CDCLK_CD2X_DIV_SEL_2:
6640                 return cdclk / 2; /* 288MHz */
6641         case BXT_CDCLK_CD2X_DIV_SEL_4:
6642                 return cdclk / 4; /* 144MHz */
6643         }
6644
6645         /* error case, do as if DE PLL isn't enabled */
6646         return 19200;
6647 }
6648
6649 static int broadwell_get_display_clock_speed(struct drm_device *dev)
6650 {
6651         struct drm_i915_private *dev_priv = dev->dev_private;
6652         uint32_t lcpll = I915_READ(LCPLL_CTL);
6653         uint32_t freq = lcpll & LCPLL_CLK_FREQ_MASK;
6654
6655         if (lcpll & LCPLL_CD_SOURCE_FCLK)
6656                 return 800000;
6657         else if (I915_READ(FUSE_STRAP) & HSW_CDCLK_LIMIT)
6658                 return 450000;
6659         else if (freq == LCPLL_CLK_FREQ_450)
6660                 return 450000;
6661         else if (freq == LCPLL_CLK_FREQ_54O_BDW)
6662                 return 540000;
6663         else if (freq == LCPLL_CLK_FREQ_337_5_BDW)
6664                 return 337500;
6665         else
6666                 return 675000;
6667 }
6668
6669 static int haswell_get_display_clock_speed(struct drm_device *dev)
6670 {
6671         struct drm_i915_private *dev_priv = dev->dev_private;
6672         uint32_t lcpll = I915_READ(LCPLL_CTL);
6673         uint32_t freq = lcpll & LCPLL_CLK_FREQ_MASK;
6674
6675         if (lcpll & LCPLL_CD_SOURCE_FCLK)
6676                 return 800000;
6677         else if (I915_READ(FUSE_STRAP) & HSW_CDCLK_LIMIT)
6678                 return 450000;
6679         else if (freq == LCPLL_CLK_FREQ_450)
6680                 return 450000;
6681         else if (IS_HSW_ULT(dev))
6682                 return 337500;
6683         else
6684                 return 540000;
6685 }
6686
6687 static int valleyview_get_display_clock_speed(struct drm_device *dev)
6688 {
6689         struct drm_i915_private *dev_priv = dev->dev_private;
6690         u32 val;
6691         int divider;
6692
6693         if (dev_priv->hpll_freq == 0)
6694                 dev_priv->hpll_freq = valleyview_get_vco(dev_priv);
6695
6696         mutex_lock(&dev_priv->sb_lock);
6697         val = vlv_cck_read(dev_priv, CCK_DISPLAY_CLOCK_CONTROL);
6698         mutex_unlock(&dev_priv->sb_lock);
6699
6700         divider = val & DISPLAY_FREQUENCY_VALUES;
6701
6702         WARN((val & DISPLAY_FREQUENCY_STATUS) !=
6703              (divider << DISPLAY_FREQUENCY_STATUS_SHIFT),
6704              "cdclk change in progress\n");
6705
6706         return DIV_ROUND_CLOSEST(dev_priv->hpll_freq << 1, divider + 1);
6707 }
6708
6709 static int ilk_get_display_clock_speed(struct drm_device *dev)
6710 {
6711         return 450000;
6712 }
6713
6714 static int i945_get_display_clock_speed(struct drm_device *dev)
6715 {
6716         return 400000;
6717 }
6718
6719 static int i915_get_display_clock_speed(struct drm_device *dev)
6720 {
6721         return 333333;
6722 }
6723
6724 static int i9xx_misc_get_display_clock_speed(struct drm_device *dev)
6725 {
6726         return 200000;
6727 }
6728
6729 static int pnv_get_display_clock_speed(struct drm_device *dev)
6730 {
6731         u16 gcfgc = 0;
6732
6733         pci_read_config_word(dev->pdev, GCFGC, &gcfgc);
6734
6735         switch (gcfgc & GC_DISPLAY_CLOCK_MASK) {
6736         case GC_DISPLAY_CLOCK_267_MHZ_PNV:
6737                 return 266667;
6738         case GC_DISPLAY_CLOCK_333_MHZ_PNV:
6739                 return 333333;
6740         case GC_DISPLAY_CLOCK_444_MHZ_PNV:
6741                 return 444444;
6742         case GC_DISPLAY_CLOCK_200_MHZ_PNV:
6743                 return 200000;
6744         default:
6745                 DRM_ERROR("Unknown pnv display core clock 0x%04x\n", gcfgc);
6746         case GC_DISPLAY_CLOCK_133_MHZ_PNV:
6747                 return 133333;
6748         case GC_DISPLAY_CLOCK_167_MHZ_PNV:
6749                 return 166667;
6750         }
6751 }
6752
6753 static int i915gm_get_display_clock_speed(struct drm_device *dev)
6754 {
6755         u16 gcfgc = 0;
6756
6757         pci_read_config_word(dev->pdev, GCFGC, &gcfgc);
6758
6759         if (gcfgc & GC_LOW_FREQUENCY_ENABLE)
6760                 return 133333;
6761         else {
6762                 switch (gcfgc & GC_DISPLAY_CLOCK_MASK) {
6763                 case GC_DISPLAY_CLOCK_333_MHZ:
6764                         return 333333;
6765                 default:
6766                 case GC_DISPLAY_CLOCK_190_200_MHZ:
6767                         return 190000;
6768                 }
6769         }
6770 }
6771
6772 static int i865_get_display_clock_speed(struct drm_device *dev)
6773 {
6774         return 266667;
6775 }
6776
6777 static int i85x_get_display_clock_speed(struct drm_device *dev)
6778 {
6779         u16 hpllcc = 0;
6780
6781         /*
6782          * 852GM/852GMV only supports 133 MHz and the HPLLCC
6783          * encoding is different :(
6784          * FIXME is this the right way to detect 852GM/852GMV?
6785          */
6786         if (dev->pdev->revision == 0x1)
6787                 return 133333;
6788
6789         pci_bus_read_config_word(dev->pdev->bus,
6790                                  PCI_DEVFN(0, 3), HPLLCC, &hpllcc);
6791
6792         /* Assume that the hardware is in the high speed state.  This
6793          * should be the default.
6794          */
6795         switch (hpllcc & GC_CLOCK_CONTROL_MASK) {
6796         case GC_CLOCK_133_200:
6797         case GC_CLOCK_133_200_2:
6798         case GC_CLOCK_100_200:
6799                 return 200000;
6800         case GC_CLOCK_166_250:
6801                 return 250000;
6802         case GC_CLOCK_100_133:
6803                 return 133333;
6804         case GC_CLOCK_133_266:
6805         case GC_CLOCK_133_266_2:
6806         case GC_CLOCK_166_266:
6807                 return 266667;
6808         }
6809
6810         /* Shouldn't happen */
6811         return 0;
6812 }
6813
6814 static int i830_get_display_clock_speed(struct drm_device *dev)
6815 {
6816         return 133333;
6817 }
6818
6819 static unsigned int intel_hpll_vco(struct drm_device *dev)
6820 {
6821         struct drm_i915_private *dev_priv = dev->dev_private;
6822         static const unsigned int blb_vco[8] = {
6823                 [0] = 3200000,
6824                 [1] = 4000000,
6825                 [2] = 5333333,
6826                 [3] = 4800000,
6827                 [4] = 6400000,
6828         };
6829         static const unsigned int pnv_vco[8] = {
6830                 [0] = 3200000,
6831                 [1] = 4000000,
6832                 [2] = 5333333,
6833                 [3] = 4800000,
6834                 [4] = 2666667,
6835         };
6836         static const unsigned int cl_vco[8] = {
6837                 [0] = 3200000,
6838                 [1] = 4000000,
6839                 [2] = 5333333,
6840                 [3] = 6400000,
6841                 [4] = 3333333,
6842                 [5] = 3566667,
6843                 [6] = 4266667,
6844         };
6845         static const unsigned int elk_vco[8] = {
6846                 [0] = 3200000,
6847                 [1] = 4000000,
6848                 [2] = 5333333,
6849                 [3] = 4800000,
6850         };
6851         static const unsigned int ctg_vco[8] = {
6852                 [0] = 3200000,
6853                 [1] = 4000000,
6854                 [2] = 5333333,
6855                 [3] = 6400000,
6856                 [4] = 2666667,
6857                 [5] = 4266667,
6858         };
6859         const unsigned int *vco_table;
6860         unsigned int vco;
6861         uint8_t tmp = 0;
6862
6863         /* FIXME other chipsets? */
6864         if (IS_GM45(dev))
6865                 vco_table = ctg_vco;
6866         else if (IS_G4X(dev))
6867                 vco_table = elk_vco;
6868         else if (IS_CRESTLINE(dev))
6869                 vco_table = cl_vco;
6870         else if (IS_PINEVIEW(dev))
6871                 vco_table = pnv_vco;
6872         else if (IS_G33(dev))
6873                 vco_table = blb_vco;
6874         else
6875                 return 0;
6876
6877         tmp = I915_READ(IS_MOBILE(dev) ? HPLLVCO_MOBILE : HPLLVCO);
6878
6879         vco = vco_table[tmp & 0x7];
6880         if (vco == 0)
6881                 DRM_ERROR("Bad HPLL VCO (HPLLVCO=0x%02x)\n", tmp);
6882         else
6883                 DRM_DEBUG_KMS("HPLL VCO %u kHz\n", vco);
6884
6885         return vco;
6886 }
6887
6888 static int gm45_get_display_clock_speed(struct drm_device *dev)
6889 {
6890         unsigned int cdclk_sel, vco = intel_hpll_vco(dev);
6891         uint16_t tmp = 0;
6892
6893         pci_read_config_word(dev->pdev, GCFGC, &tmp);
6894
6895         cdclk_sel = (tmp >> 12) & 0x1;
6896
6897         switch (vco) {
6898         case 2666667:
6899         case 4000000:
6900         case 5333333:
6901                 return cdclk_sel ? 333333 : 222222;
6902         case 3200000:
6903                 return cdclk_sel ? 320000 : 228571;
6904         default:
6905                 DRM_ERROR("Unable to determine CDCLK. HPLL VCO=%u, CFGC=0x%04x\n", vco, tmp);
6906                 return 222222;
6907         }
6908 }
6909
6910 static int i965gm_get_display_clock_speed(struct drm_device *dev)
6911 {
6912         static const uint8_t div_3200[] = { 16, 10,  8 };
6913         static const uint8_t div_4000[] = { 20, 12, 10 };
6914         static const uint8_t div_5333[] = { 24, 16, 14 };
6915         const uint8_t *div_table;
6916         unsigned int cdclk_sel, vco = intel_hpll_vco(dev);
6917         uint16_t tmp = 0;
6918
6919         pci_read_config_word(dev->pdev, GCFGC, &tmp);
6920
6921         cdclk_sel = ((tmp >> 8) & 0x1f) - 1;
6922
6923         if (cdclk_sel >= ARRAY_SIZE(div_3200))
6924                 goto fail;
6925
6926         switch (vco) {
6927         case 3200000:
6928                 div_table = div_3200;
6929                 break;
6930         case 4000000:
6931                 div_table = div_4000;
6932                 break;
6933         case 5333333:
6934                 div_table = div_5333;
6935                 break;
6936         default:
6937                 goto fail;
6938         }
6939
6940         return DIV_ROUND_CLOSEST(vco, div_table[cdclk_sel]);
6941
6942 fail:
6943         DRM_ERROR("Unable to determine CDCLK. HPLL VCO=%u kHz, CFGC=0x%04x\n", vco, tmp);
6944         return 200000;
6945 }
6946
6947 static int g33_get_display_clock_speed(struct drm_device *dev)
6948 {
6949         static const uint8_t div_3200[] = { 12, 10,  8,  7, 5, 16 };
6950         static const uint8_t div_4000[] = { 14, 12, 10,  8, 6, 20 };
6951         static const uint8_t div_4800[] = { 20, 14, 12, 10, 8, 24 };
6952         static const uint8_t div_5333[] = { 20, 16, 12, 12, 8, 28 };
6953         const uint8_t *div_table;
6954         unsigned int cdclk_sel, vco = intel_hpll_vco(dev);
6955         uint16_t tmp = 0;
6956
6957         pci_read_config_word(dev->pdev, GCFGC, &tmp);
6958
6959         cdclk_sel = (tmp >> 4) & 0x7;
6960
6961         if (cdclk_sel >= ARRAY_SIZE(div_3200))
6962                 goto fail;
6963
6964         switch (vco) {
6965         case 3200000:
6966                 div_table = div_3200;
6967                 break;
6968         case 4000000:
6969                 div_table = div_4000;
6970                 break;
6971         case 4800000:
6972                 div_table = div_4800;
6973                 break;
6974         case 5333333:
6975                 div_table = div_5333;
6976                 break;
6977         default:
6978                 goto fail;
6979         }
6980
6981         return DIV_ROUND_CLOSEST(vco, div_table[cdclk_sel]);
6982
6983 fail:
6984         DRM_ERROR("Unable to determine CDCLK. HPLL VCO=%u kHz, CFGC=0x%08x\n", vco, tmp);
6985         return 190476;
6986 }
6987
6988 static void
6989 intel_reduce_m_n_ratio(uint32_t *num, uint32_t *den)
6990 {
6991         while (*num > DATA_LINK_M_N_MASK ||
6992                *den > DATA_LINK_M_N_MASK) {
6993                 *num >>= 1;
6994                 *den >>= 1;
6995         }
6996 }
6997
6998 static void compute_m_n(unsigned int m, unsigned int n,
6999                         uint32_t *ret_m, uint32_t *ret_n)
7000 {
7001         *ret_n = min_t(unsigned int, roundup_pow_of_two(n), DATA_LINK_N_MAX);
7002         *ret_m = div_u64((uint64_t) m * *ret_n, n);
7003         intel_reduce_m_n_ratio(ret_m, ret_n);
7004 }
7005
7006 void
7007 intel_link_compute_m_n(int bits_per_pixel, int nlanes,
7008                        int pixel_clock, int link_clock,
7009                        struct intel_link_m_n *m_n)
7010 {
7011         m_n->tu = 64;
7012
7013         compute_m_n(bits_per_pixel * pixel_clock,
7014                     link_clock * nlanes * 8,
7015                     &m_n->gmch_m, &m_n->gmch_n);
7016
7017         compute_m_n(pixel_clock, link_clock,
7018                     &m_n->link_m, &m_n->link_n);
7019 }
7020
7021 static inline bool intel_panel_use_ssc(struct drm_i915_private *dev_priv)
7022 {
7023         if (i915.panel_use_ssc >= 0)
7024                 return i915.panel_use_ssc != 0;
7025         return dev_priv->vbt.lvds_use_ssc
7026                 && !(dev_priv->quirks & QUIRK_LVDS_SSC_DISABLE);
7027 }
7028
7029 static int i9xx_get_refclk(const struct intel_crtc_state *crtc_state,
7030                            int num_connectors)
7031 {
7032         struct drm_device *dev = crtc_state->base.crtc->dev;
7033         struct drm_i915_private *dev_priv = dev->dev_private;
7034         int refclk;
7035
7036         WARN_ON(!crtc_state->base.state);
7037
7038         if (IS_VALLEYVIEW(dev) || IS_BROXTON(dev)) {
7039                 refclk = 100000;
7040         } else if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS) &&
7041             intel_panel_use_ssc(dev_priv) && num_connectors < 2) {
7042                 refclk = dev_priv->vbt.lvds_ssc_freq;
7043                 DRM_DEBUG_KMS("using SSC reference clock of %d kHz\n", refclk);
7044         } else if (!IS_GEN2(dev)) {
7045                 refclk = 96000;
7046         } else {
7047                 refclk = 48000;
7048         }
7049
7050         return refclk;
7051 }
7052
7053 static uint32_t pnv_dpll_compute_fp(struct dpll *dpll)
7054 {
7055         return (1 << dpll->n) << 16 | dpll->m2;
7056 }
7057
7058 static uint32_t i9xx_dpll_compute_fp(struct dpll *dpll)
7059 {
7060         return dpll->n << 16 | dpll->m1 << 8 | dpll->m2;
7061 }
7062
7063 static void i9xx_update_pll_dividers(struct intel_crtc *crtc,
7064                                      struct intel_crtc_state *crtc_state,
7065                                      intel_clock_t *reduced_clock)
7066 {
7067         struct drm_device *dev = crtc->base.dev;
7068         u32 fp, fp2 = 0;
7069
7070         if (IS_PINEVIEW(dev)) {
7071                 fp = pnv_dpll_compute_fp(&crtc_state->dpll);
7072                 if (reduced_clock)
7073                         fp2 = pnv_dpll_compute_fp(reduced_clock);
7074         } else {
7075                 fp = i9xx_dpll_compute_fp(&crtc_state->dpll);
7076                 if (reduced_clock)
7077                         fp2 = i9xx_dpll_compute_fp(reduced_clock);
7078         }
7079
7080         crtc_state->dpll_hw_state.fp0 = fp;
7081
7082         crtc->lowfreq_avail = false;
7083         if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS) &&
7084             reduced_clock) {
7085                 crtc_state->dpll_hw_state.fp1 = fp2;
7086                 crtc->lowfreq_avail = true;
7087         } else {
7088                 crtc_state->dpll_hw_state.fp1 = fp;
7089         }
7090 }
7091
7092 static void vlv_pllb_recal_opamp(struct drm_i915_private *dev_priv, enum pipe
7093                 pipe)
7094 {
7095         u32 reg_val;
7096
7097         /*
7098          * PLLB opamp always calibrates to max value of 0x3f, force enable it
7099          * and set it to a reasonable value instead.
7100          */
7101         reg_val = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW9(1));
7102         reg_val &= 0xffffff00;
7103         reg_val |= 0x00000030;
7104         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW9(1), reg_val);
7105
7106         reg_val = vlv_dpio_read(dev_priv, pipe, VLV_REF_DW13);
7107         reg_val &= 0x8cffffff;
7108         reg_val = 0x8c000000;
7109         vlv_dpio_write(dev_priv, pipe, VLV_REF_DW13, reg_val);
7110
7111         reg_val = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW9(1));
7112         reg_val &= 0xffffff00;
7113         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW9(1), reg_val);
7114
7115         reg_val = vlv_dpio_read(dev_priv, pipe, VLV_REF_DW13);
7116         reg_val &= 0x00ffffff;
7117         reg_val |= 0xb0000000;
7118         vlv_dpio_write(dev_priv, pipe, VLV_REF_DW13, reg_val);
7119 }
7120
7121 static void intel_pch_transcoder_set_m_n(struct intel_crtc *crtc,
7122                                          struct intel_link_m_n *m_n)
7123 {
7124         struct drm_device *dev = crtc->base.dev;
7125         struct drm_i915_private *dev_priv = dev->dev_private;
7126         int pipe = crtc->pipe;
7127
7128         I915_WRITE(PCH_TRANS_DATA_M1(pipe), TU_SIZE(m_n->tu) | m_n->gmch_m);
7129         I915_WRITE(PCH_TRANS_DATA_N1(pipe), m_n->gmch_n);
7130         I915_WRITE(PCH_TRANS_LINK_M1(pipe), m_n->link_m);
7131         I915_WRITE(PCH_TRANS_LINK_N1(pipe), m_n->link_n);
7132 }
7133
7134 static void intel_cpu_transcoder_set_m_n(struct intel_crtc *crtc,
7135                                          struct intel_link_m_n *m_n,
7136                                          struct intel_link_m_n *m2_n2)
7137 {
7138         struct drm_device *dev = crtc->base.dev;
7139         struct drm_i915_private *dev_priv = dev->dev_private;
7140         int pipe = crtc->pipe;
7141         enum transcoder transcoder = crtc->config->cpu_transcoder;
7142
7143         if (INTEL_INFO(dev)->gen >= 5) {
7144                 I915_WRITE(PIPE_DATA_M1(transcoder), TU_SIZE(m_n->tu) | m_n->gmch_m);
7145                 I915_WRITE(PIPE_DATA_N1(transcoder), m_n->gmch_n);
7146                 I915_WRITE(PIPE_LINK_M1(transcoder), m_n->link_m);
7147                 I915_WRITE(PIPE_LINK_N1(transcoder), m_n->link_n);
7148                 /* M2_N2 registers to be set only for gen < 8 (M2_N2 available
7149                  * for gen < 8) and if DRRS is supported (to make sure the
7150                  * registers are not unnecessarily accessed).
7151                  */
7152                 if (m2_n2 && (IS_CHERRYVIEW(dev) || INTEL_INFO(dev)->gen < 8) &&
7153                         crtc->config->has_drrs) {
7154                         I915_WRITE(PIPE_DATA_M2(transcoder),
7155                                         TU_SIZE(m2_n2->tu) | m2_n2->gmch_m);
7156                         I915_WRITE(PIPE_DATA_N2(transcoder), m2_n2->gmch_n);
7157                         I915_WRITE(PIPE_LINK_M2(transcoder), m2_n2->link_m);
7158                         I915_WRITE(PIPE_LINK_N2(transcoder), m2_n2->link_n);
7159                 }
7160         } else {
7161                 I915_WRITE(PIPE_DATA_M_G4X(pipe), TU_SIZE(m_n->tu) | m_n->gmch_m);
7162                 I915_WRITE(PIPE_DATA_N_G4X(pipe), m_n->gmch_n);
7163                 I915_WRITE(PIPE_LINK_M_G4X(pipe), m_n->link_m);
7164                 I915_WRITE(PIPE_LINK_N_G4X(pipe), m_n->link_n);
7165         }
7166 }
7167
7168 void intel_dp_set_m_n(struct intel_crtc *crtc, enum link_m_n_set m_n)
7169 {
7170         struct intel_link_m_n *dp_m_n, *dp_m2_n2 = NULL;
7171
7172         if (m_n == M1_N1) {
7173                 dp_m_n = &crtc->config->dp_m_n;
7174                 dp_m2_n2 = &crtc->config->dp_m2_n2;
7175         } else if (m_n == M2_N2) {
7176
7177                 /*
7178                  * M2_N2 registers are not supported. Hence m2_n2 divider value
7179                  * needs to be programmed into M1_N1.
7180                  */
7181                 dp_m_n = &crtc->config->dp_m2_n2;
7182         } else {
7183                 DRM_ERROR("Unsupported divider value\n");
7184                 return;
7185         }
7186
7187         if (crtc->config->has_pch_encoder)
7188                 intel_pch_transcoder_set_m_n(crtc, &crtc->config->dp_m_n);
7189         else
7190                 intel_cpu_transcoder_set_m_n(crtc, dp_m_n, dp_m2_n2);
7191 }
7192
7193 static void vlv_compute_dpll(struct intel_crtc *crtc,
7194                              struct intel_crtc_state *pipe_config)
7195 {
7196         u32 dpll, dpll_md;
7197
7198         /*
7199          * Enable DPIO clock input. We should never disable the reference
7200          * clock for pipe B, since VGA hotplug / manual detection depends
7201          * on it.
7202          */
7203         dpll = DPLL_EXT_BUFFER_ENABLE_VLV | DPLL_REF_CLK_ENABLE_VLV |
7204                 DPLL_VGA_MODE_DIS | DPLL_INTEGRATED_REF_CLK_VLV;
7205         /* We should never disable this, set it here for state tracking */
7206         if (crtc->pipe == PIPE_B)
7207                 dpll |= DPLL_INTEGRATED_CRI_CLK_VLV;
7208         dpll |= DPLL_VCO_ENABLE;
7209         pipe_config->dpll_hw_state.dpll = dpll;
7210
7211         dpll_md = (pipe_config->pixel_multiplier - 1)
7212                 << DPLL_MD_UDI_MULTIPLIER_SHIFT;
7213         pipe_config->dpll_hw_state.dpll_md = dpll_md;
7214 }
7215
7216 static void vlv_prepare_pll(struct intel_crtc *crtc,
7217                             const struct intel_crtc_state *pipe_config)
7218 {
7219         struct drm_device *dev = crtc->base.dev;
7220         struct drm_i915_private *dev_priv = dev->dev_private;
7221         int pipe = crtc->pipe;
7222         u32 mdiv;
7223         u32 bestn, bestm1, bestm2, bestp1, bestp2;
7224         u32 coreclk, reg_val;
7225
7226         mutex_lock(&dev_priv->sb_lock);
7227
7228         bestn = pipe_config->dpll.n;
7229         bestm1 = pipe_config->dpll.m1;
7230         bestm2 = pipe_config->dpll.m2;
7231         bestp1 = pipe_config->dpll.p1;
7232         bestp2 = pipe_config->dpll.p2;
7233
7234         /* See eDP HDMI DPIO driver vbios notes doc */
7235
7236         /* PLL B needs special handling */
7237         if (pipe == PIPE_B)
7238                 vlv_pllb_recal_opamp(dev_priv, pipe);
7239
7240         /* Set up Tx target for periodic Rcomp update */
7241         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW9_BCAST, 0x0100000f);
7242
7243         /* Disable target IRef on PLL */
7244         reg_val = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW8(pipe));
7245         reg_val &= 0x00ffffff;
7246         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW8(pipe), reg_val);
7247
7248         /* Disable fast lock */
7249         vlv_dpio_write(dev_priv, pipe, VLV_CMN_DW0, 0x610);
7250
7251         /* Set idtafcrecal before PLL is enabled */
7252         mdiv = ((bestm1 << DPIO_M1DIV_SHIFT) | (bestm2 & DPIO_M2DIV_MASK));
7253         mdiv |= ((bestp1 << DPIO_P1_SHIFT) | (bestp2 << DPIO_P2_SHIFT));
7254         mdiv |= ((bestn << DPIO_N_SHIFT));
7255         mdiv |= (1 << DPIO_K_SHIFT);
7256
7257         /*
7258          * Post divider depends on pixel clock rate, DAC vs digital (and LVDS,
7259          * but we don't support that).
7260          * Note: don't use the DAC post divider as it seems unstable.
7261          */
7262         mdiv |= (DPIO_POST_DIV_HDMIDP << DPIO_POST_DIV_SHIFT);
7263         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW3(pipe), mdiv);
7264
7265         mdiv |= DPIO_ENABLE_CALIBRATION;
7266         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW3(pipe), mdiv);
7267
7268         /* Set HBR and RBR LPF coefficients */
7269         if (pipe_config->port_clock == 162000 ||
7270             intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG) ||
7271             intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI))
7272                 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW10(pipe),
7273                                  0x009f0003);
7274         else
7275                 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW10(pipe),
7276                                  0x00d0000f);
7277
7278         if (pipe_config->has_dp_encoder) {
7279                 /* Use SSC source */
7280                 if (pipe == PIPE_A)
7281                         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
7282                                          0x0df40000);
7283                 else
7284                         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
7285                                          0x0df70000);
7286         } else { /* HDMI or VGA */
7287                 /* Use bend source */
7288                 if (pipe == PIPE_A)
7289                         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
7290                                          0x0df70000);
7291                 else
7292                         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
7293                                          0x0df40000);
7294         }
7295
7296         coreclk = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW7(pipe));
7297         coreclk = (coreclk & 0x0000ff00) | 0x01c00000;
7298         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT) ||
7299             intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))
7300                 coreclk |= 0x01000000;
7301         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW7(pipe), coreclk);
7302
7303         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW11(pipe), 0x87871000);
7304         mutex_unlock(&dev_priv->sb_lock);
7305 }
7306
7307 static void chv_compute_dpll(struct intel_crtc *crtc,
7308                              struct intel_crtc_state *pipe_config)
7309 {
7310         pipe_config->dpll_hw_state.dpll = DPLL_SSC_REF_CLK_CHV |
7311                 DPLL_REF_CLK_ENABLE_VLV | DPLL_VGA_MODE_DIS |
7312                 DPLL_VCO_ENABLE;
7313         if (crtc->pipe != PIPE_A)
7314                 pipe_config->dpll_hw_state.dpll |= DPLL_INTEGRATED_CRI_CLK_VLV;
7315
7316         pipe_config->dpll_hw_state.dpll_md =
7317                 (pipe_config->pixel_multiplier - 1) << DPLL_MD_UDI_MULTIPLIER_SHIFT;
7318 }
7319
7320 static void chv_prepare_pll(struct intel_crtc *crtc,
7321                             const struct intel_crtc_state *pipe_config)
7322 {
7323         struct drm_device *dev = crtc->base.dev;
7324         struct drm_i915_private *dev_priv = dev->dev_private;
7325         int pipe = crtc->pipe;
7326         int dpll_reg = DPLL(crtc->pipe);
7327         enum dpio_channel port = vlv_pipe_to_channel(pipe);
7328         u32 loopfilter, tribuf_calcntr;
7329         u32 bestn, bestm1, bestm2, bestp1, bestp2, bestm2_frac;
7330         u32 dpio_val;
7331         int vco;
7332
7333         bestn = pipe_config->dpll.n;
7334         bestm2_frac = pipe_config->dpll.m2 & 0x3fffff;
7335         bestm1 = pipe_config->dpll.m1;
7336         bestm2 = pipe_config->dpll.m2 >> 22;
7337         bestp1 = pipe_config->dpll.p1;
7338         bestp2 = pipe_config->dpll.p2;
7339         vco = pipe_config->dpll.vco;
7340         dpio_val = 0;
7341         loopfilter = 0;
7342
7343         /*
7344          * Enable Refclk and SSC
7345          */
7346         I915_WRITE(dpll_reg,
7347                    pipe_config->dpll_hw_state.dpll & ~DPLL_VCO_ENABLE);
7348
7349         mutex_lock(&dev_priv->sb_lock);
7350
7351         /* p1 and p2 divider */
7352         vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW13(port),
7353                         5 << DPIO_CHV_S1_DIV_SHIFT |
7354                         bestp1 << DPIO_CHV_P1_DIV_SHIFT |
7355                         bestp2 << DPIO_CHV_P2_DIV_SHIFT |
7356                         1 << DPIO_CHV_K_DIV_SHIFT);
7357
7358         /* Feedback post-divider - m2 */
7359         vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW0(port), bestm2);
7360
7361         /* Feedback refclk divider - n and m1 */
7362         vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW1(port),
7363                         DPIO_CHV_M1_DIV_BY_2 |
7364                         1 << DPIO_CHV_N_DIV_SHIFT);
7365
7366         /* M2 fraction division */
7367         if (bestm2_frac)
7368                 vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW2(port), bestm2_frac);
7369
7370         /* M2 fraction division enable */
7371         dpio_val = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW3(port));
7372         dpio_val &= ~(DPIO_CHV_FEEDFWD_GAIN_MASK | DPIO_CHV_FRAC_DIV_EN);
7373         dpio_val |= (2 << DPIO_CHV_FEEDFWD_GAIN_SHIFT);
7374         if (bestm2_frac)
7375                 dpio_val |= DPIO_CHV_FRAC_DIV_EN;
7376         vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW3(port), dpio_val);
7377
7378         /* Program digital lock detect threshold */
7379         dpio_val = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW9(port));
7380         dpio_val &= ~(DPIO_CHV_INT_LOCK_THRESHOLD_MASK |
7381                                         DPIO_CHV_INT_LOCK_THRESHOLD_SEL_COARSE);
7382         dpio_val |= (0x5 << DPIO_CHV_INT_LOCK_THRESHOLD_SHIFT);
7383         if (!bestm2_frac)
7384                 dpio_val |= DPIO_CHV_INT_LOCK_THRESHOLD_SEL_COARSE;
7385         vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW9(port), dpio_val);
7386
7387         /* Loop filter */
7388         if (vco == 5400000) {
7389                 loopfilter |= (0x3 << DPIO_CHV_PROP_COEFF_SHIFT);
7390                 loopfilter |= (0x8 << DPIO_CHV_INT_COEFF_SHIFT);
7391                 loopfilter |= (0x1 << DPIO_CHV_GAIN_CTRL_SHIFT);
7392                 tribuf_calcntr = 0x9;
7393         } else if (vco <= 6200000) {
7394                 loopfilter |= (0x5 << DPIO_CHV_PROP_COEFF_SHIFT);
7395                 loopfilter |= (0xB << DPIO_CHV_INT_COEFF_SHIFT);
7396                 loopfilter |= (0x3 << DPIO_CHV_GAIN_CTRL_SHIFT);
7397                 tribuf_calcntr = 0x9;
7398         } else if (vco <= 6480000) {
7399                 loopfilter |= (0x4 << DPIO_CHV_PROP_COEFF_SHIFT);
7400                 loopfilter |= (0x9 << DPIO_CHV_INT_COEFF_SHIFT);
7401                 loopfilter |= (0x3 << DPIO_CHV_GAIN_CTRL_SHIFT);
7402                 tribuf_calcntr = 0x8;
7403         } else {
7404                 /* Not supported. Apply the same limits as in the max case */
7405                 loopfilter |= (0x4 << DPIO_CHV_PROP_COEFF_SHIFT);
7406                 loopfilter |= (0x9 << DPIO_CHV_INT_COEFF_SHIFT);
7407                 loopfilter |= (0x3 << DPIO_CHV_GAIN_CTRL_SHIFT);
7408                 tribuf_calcntr = 0;
7409         }
7410         vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW6(port), loopfilter);
7411
7412         dpio_val = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW8(port));
7413         dpio_val &= ~DPIO_CHV_TDC_TARGET_CNT_MASK;
7414         dpio_val |= (tribuf_calcntr << DPIO_CHV_TDC_TARGET_CNT_SHIFT);
7415         vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW8(port), dpio_val);
7416
7417         /* AFC Recal */
7418         vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW14(port),
7419                         vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW14(port)) |
7420                         DPIO_AFC_RECAL);
7421
7422         mutex_unlock(&dev_priv->sb_lock);
7423 }
7424
7425 /**
7426  * vlv_force_pll_on - forcibly enable just the PLL
7427  * @dev_priv: i915 private structure
7428  * @pipe: pipe PLL to enable
7429  * @dpll: PLL configuration
7430  *
7431  * Enable the PLL for @pipe using the supplied @dpll config. To be used
7432  * in cases where we need the PLL enabled even when @pipe is not going to
7433  * be enabled.
7434  */
7435 void vlv_force_pll_on(struct drm_device *dev, enum pipe pipe,
7436                       const struct dpll *dpll)
7437 {
7438         struct intel_crtc *crtc =
7439                 to_intel_crtc(intel_get_crtc_for_pipe(dev, pipe));
7440         struct intel_crtc_state pipe_config = {
7441                 .base.crtc = &crtc->base,
7442                 .pixel_multiplier = 1,
7443                 .dpll = *dpll,
7444         };
7445
7446         if (IS_CHERRYVIEW(dev)) {
7447                 chv_compute_dpll(crtc, &pipe_config);
7448                 chv_prepare_pll(crtc, &pipe_config);
7449                 chv_enable_pll(crtc, &pipe_config);
7450         } else {
7451                 vlv_compute_dpll(crtc, &pipe_config);
7452                 vlv_prepare_pll(crtc, &pipe_config);
7453                 vlv_enable_pll(crtc, &pipe_config);
7454         }
7455 }
7456
7457 /**
7458  * vlv_force_pll_off - forcibly disable just the PLL
7459  * @dev_priv: i915 private structure
7460  * @pipe: pipe PLL to disable
7461  *
7462  * Disable the PLL for @pipe. To be used in cases where we need
7463  * the PLL enabled even when @pipe is not going to be enabled.
7464  */
7465 void vlv_force_pll_off(struct drm_device *dev, enum pipe pipe)
7466 {
7467         if (IS_CHERRYVIEW(dev))
7468                 chv_disable_pll(to_i915(dev), pipe);
7469         else
7470                 vlv_disable_pll(to_i915(dev), pipe);
7471 }
7472
7473 static void i9xx_compute_dpll(struct intel_crtc *crtc,
7474                               struct intel_crtc_state *crtc_state,
7475                               intel_clock_t *reduced_clock,
7476                               int num_connectors)
7477 {
7478         struct drm_device *dev = crtc->base.dev;
7479         struct drm_i915_private *dev_priv = dev->dev_private;
7480         u32 dpll;
7481         bool is_sdvo;
7482         struct dpll *clock = &crtc_state->dpll;
7483
7484         i9xx_update_pll_dividers(crtc, crtc_state, reduced_clock);
7485
7486         is_sdvo = intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_SDVO) ||
7487                 intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_HDMI);
7488
7489         dpll = DPLL_VGA_MODE_DIS;
7490
7491         if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS))
7492                 dpll |= DPLLB_MODE_LVDS;
7493         else
7494                 dpll |= DPLLB_MODE_DAC_SERIAL;
7495
7496         if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev)) {
7497                 dpll |= (crtc_state->pixel_multiplier - 1)
7498                         << SDVO_MULTIPLIER_SHIFT_HIRES;
7499         }
7500
7501         if (is_sdvo)
7502                 dpll |= DPLL_SDVO_HIGH_SPEED;
7503
7504         if (crtc_state->has_dp_encoder)
7505                 dpll |= DPLL_SDVO_HIGH_SPEED;
7506
7507         /* compute bitmask from p1 value */
7508         if (IS_PINEVIEW(dev))
7509                 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW;
7510         else {
7511                 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
7512                 if (IS_G4X(dev) && reduced_clock)
7513                         dpll |= (1 << (reduced_clock->p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
7514         }
7515         switch (clock->p2) {
7516         case 5:
7517                 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
7518                 break;
7519         case 7:
7520                 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
7521                 break;
7522         case 10:
7523                 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
7524                 break;
7525         case 14:
7526                 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
7527                 break;
7528         }
7529         if (INTEL_INFO(dev)->gen >= 4)
7530                 dpll |= (6 << PLL_LOAD_PULSE_PHASE_SHIFT);
7531
7532         if (crtc_state->sdvo_tv_clock)
7533                 dpll |= PLL_REF_INPUT_TVCLKINBC;
7534         else if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS) &&
7535                  intel_panel_use_ssc(dev_priv) && num_connectors < 2)
7536                 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
7537         else
7538                 dpll |= PLL_REF_INPUT_DREFCLK;
7539
7540         dpll |= DPLL_VCO_ENABLE;
7541         crtc_state->dpll_hw_state.dpll = dpll;
7542
7543         if (INTEL_INFO(dev)->gen >= 4) {
7544                 u32 dpll_md = (crtc_state->pixel_multiplier - 1)
7545                         << DPLL_MD_UDI_MULTIPLIER_SHIFT;
7546                 crtc_state->dpll_hw_state.dpll_md = dpll_md;
7547         }
7548 }
7549
7550 static void i8xx_compute_dpll(struct intel_crtc *crtc,
7551                               struct intel_crtc_state *crtc_state,
7552                               intel_clock_t *reduced_clock,
7553                               int num_connectors)
7554 {
7555         struct drm_device *dev = crtc->base.dev;
7556         struct drm_i915_private *dev_priv = dev->dev_private;
7557         u32 dpll;
7558         struct dpll *clock = &crtc_state->dpll;
7559
7560         i9xx_update_pll_dividers(crtc, crtc_state, reduced_clock);
7561
7562         dpll = DPLL_VGA_MODE_DIS;
7563
7564         if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS)) {
7565                 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
7566         } else {
7567                 if (clock->p1 == 2)
7568                         dpll |= PLL_P1_DIVIDE_BY_TWO;
7569                 else
7570                         dpll |= (clock->p1 - 2) << DPLL_FPA01_P1_POST_DIV_SHIFT;
7571                 if (clock->p2 == 4)
7572                         dpll |= PLL_P2_DIVIDE_BY_4;
7573         }
7574
7575         if (!IS_I830(dev) && intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_DVO))
7576                 dpll |= DPLL_DVO_2X_MODE;
7577
7578         if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS) &&
7579                  intel_panel_use_ssc(dev_priv) && num_connectors < 2)
7580                 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
7581         else
7582                 dpll |= PLL_REF_INPUT_DREFCLK;
7583
7584         dpll |= DPLL_VCO_ENABLE;
7585         crtc_state->dpll_hw_state.dpll = dpll;
7586 }
7587
7588 static void intel_set_pipe_timings(struct intel_crtc *intel_crtc)
7589 {
7590         struct drm_device *dev = intel_crtc->base.dev;
7591         struct drm_i915_private *dev_priv = dev->dev_private;
7592         enum pipe pipe = intel_crtc->pipe;
7593         enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
7594         struct drm_display_mode *adjusted_mode =
7595                 &intel_crtc->config->base.adjusted_mode;
7596         uint32_t crtc_vtotal, crtc_vblank_end;
7597         int vsyncshift = 0;
7598
7599         /* We need to be careful not to changed the adjusted mode, for otherwise
7600          * the hw state checker will get angry at the mismatch. */
7601         crtc_vtotal = adjusted_mode->crtc_vtotal;
7602         crtc_vblank_end = adjusted_mode->crtc_vblank_end;
7603
7604         if (adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE) {
7605                 /* the chip adds 2 halflines automatically */
7606                 crtc_vtotal -= 1;
7607                 crtc_vblank_end -= 1;
7608
7609                 if (intel_pipe_has_type(intel_crtc, INTEL_OUTPUT_SDVO))
7610                         vsyncshift = (adjusted_mode->crtc_htotal - 1) / 2;
7611                 else
7612                         vsyncshift = adjusted_mode->crtc_hsync_start -
7613                                 adjusted_mode->crtc_htotal / 2;
7614                 if (vsyncshift < 0)
7615                         vsyncshift += adjusted_mode->crtc_htotal;
7616         }
7617
7618         if (INTEL_INFO(dev)->gen > 3)
7619                 I915_WRITE(VSYNCSHIFT(cpu_transcoder), vsyncshift);
7620
7621         I915_WRITE(HTOTAL(cpu_transcoder),
7622                    (adjusted_mode->crtc_hdisplay - 1) |
7623                    ((adjusted_mode->crtc_htotal - 1) << 16));
7624         I915_WRITE(HBLANK(cpu_transcoder),
7625                    (adjusted_mode->crtc_hblank_start - 1) |
7626                    ((adjusted_mode->crtc_hblank_end - 1) << 16));
7627         I915_WRITE(HSYNC(cpu_transcoder),
7628                    (adjusted_mode->crtc_hsync_start - 1) |
7629                    ((adjusted_mode->crtc_hsync_end - 1) << 16));
7630
7631         I915_WRITE(VTOTAL(cpu_transcoder),
7632                    (adjusted_mode->crtc_vdisplay - 1) |
7633                    ((crtc_vtotal - 1) << 16));
7634         I915_WRITE(VBLANK(cpu_transcoder),
7635                    (adjusted_mode->crtc_vblank_start - 1) |
7636                    ((crtc_vblank_end - 1) << 16));
7637         I915_WRITE(VSYNC(cpu_transcoder),
7638                    (adjusted_mode->crtc_vsync_start - 1) |
7639                    ((adjusted_mode->crtc_vsync_end - 1) << 16));
7640
7641         /* Workaround: when the EDP input selection is B, the VTOTAL_B must be
7642          * programmed with the VTOTAL_EDP value. Same for VTOTAL_C. This is
7643          * documented on the DDI_FUNC_CTL register description, EDP Input Select
7644          * bits. */
7645         if (IS_HASWELL(dev) && cpu_transcoder == TRANSCODER_EDP &&
7646             (pipe == PIPE_B || pipe == PIPE_C))
7647                 I915_WRITE(VTOTAL(pipe), I915_READ(VTOTAL(cpu_transcoder)));
7648
7649         /* pipesrc controls the size that is scaled from, which should
7650          * always be the user's requested size.
7651          */
7652         I915_WRITE(PIPESRC(pipe),
7653                    ((intel_crtc->config->pipe_src_w - 1) << 16) |
7654                    (intel_crtc->config->pipe_src_h - 1));
7655 }
7656
7657 static void intel_get_pipe_timings(struct intel_crtc *crtc,
7658                                    struct intel_crtc_state *pipe_config)
7659 {
7660         struct drm_device *dev = crtc->base.dev;
7661         struct drm_i915_private *dev_priv = dev->dev_private;
7662         enum transcoder cpu_transcoder = pipe_config->cpu_transcoder;
7663         uint32_t tmp;
7664
7665         tmp = I915_READ(HTOTAL(cpu_transcoder));
7666         pipe_config->base.adjusted_mode.crtc_hdisplay = (tmp & 0xffff) + 1;
7667         pipe_config->base.adjusted_mode.crtc_htotal = ((tmp >> 16) & 0xffff) + 1;
7668         tmp = I915_READ(HBLANK(cpu_transcoder));
7669         pipe_config->base.adjusted_mode.crtc_hblank_start = (tmp & 0xffff) + 1;
7670         pipe_config->base.adjusted_mode.crtc_hblank_end = ((tmp >> 16) & 0xffff) + 1;
7671         tmp = I915_READ(HSYNC(cpu_transcoder));
7672         pipe_config->base.adjusted_mode.crtc_hsync_start = (tmp & 0xffff) + 1;
7673         pipe_config->base.adjusted_mode.crtc_hsync_end = ((tmp >> 16) & 0xffff) + 1;
7674
7675         tmp = I915_READ(VTOTAL(cpu_transcoder));
7676         pipe_config->base.adjusted_mode.crtc_vdisplay = (tmp & 0xffff) + 1;
7677         pipe_config->base.adjusted_mode.crtc_vtotal = ((tmp >> 16) & 0xffff) + 1;
7678         tmp = I915_READ(VBLANK(cpu_transcoder));
7679         pipe_config->base.adjusted_mode.crtc_vblank_start = (tmp & 0xffff) + 1;
7680         pipe_config->base.adjusted_mode.crtc_vblank_end = ((tmp >> 16) & 0xffff) + 1;
7681         tmp = I915_READ(VSYNC(cpu_transcoder));
7682         pipe_config->base.adjusted_mode.crtc_vsync_start = (tmp & 0xffff) + 1;
7683         pipe_config->base.adjusted_mode.crtc_vsync_end = ((tmp >> 16) & 0xffff) + 1;
7684
7685         if (I915_READ(PIPECONF(cpu_transcoder)) & PIPECONF_INTERLACE_MASK) {
7686                 pipe_config->base.adjusted_mode.flags |= DRM_MODE_FLAG_INTERLACE;
7687                 pipe_config->base.adjusted_mode.crtc_vtotal += 1;
7688                 pipe_config->base.adjusted_mode.crtc_vblank_end += 1;
7689         }
7690
7691         tmp = I915_READ(PIPESRC(crtc->pipe));
7692         pipe_config->pipe_src_h = (tmp & 0xffff) + 1;
7693         pipe_config->pipe_src_w = ((tmp >> 16) & 0xffff) + 1;
7694
7695         pipe_config->base.mode.vdisplay = pipe_config->pipe_src_h;
7696         pipe_config->base.mode.hdisplay = pipe_config->pipe_src_w;
7697 }
7698
7699 void intel_mode_from_pipe_config(struct drm_display_mode *mode,
7700                                  struct intel_crtc_state *pipe_config)
7701 {
7702         mode->hdisplay = pipe_config->base.adjusted_mode.crtc_hdisplay;
7703         mode->htotal = pipe_config->base.adjusted_mode.crtc_htotal;
7704         mode->hsync_start = pipe_config->base.adjusted_mode.crtc_hsync_start;
7705         mode->hsync_end = pipe_config->base.adjusted_mode.crtc_hsync_end;
7706
7707         mode->vdisplay = pipe_config->base.adjusted_mode.crtc_vdisplay;
7708         mode->vtotal = pipe_config->base.adjusted_mode.crtc_vtotal;
7709         mode->vsync_start = pipe_config->base.adjusted_mode.crtc_vsync_start;
7710         mode->vsync_end = pipe_config->base.adjusted_mode.crtc_vsync_end;
7711
7712         mode->flags = pipe_config->base.adjusted_mode.flags;
7713         mode->type = DRM_MODE_TYPE_DRIVER;
7714
7715         mode->clock = pipe_config->base.adjusted_mode.crtc_clock;
7716         mode->flags |= pipe_config->base.adjusted_mode.flags;
7717
7718         mode->hsync = drm_mode_hsync(mode);
7719         mode->vrefresh = drm_mode_vrefresh(mode);
7720         drm_mode_set_name(mode);
7721 }
7722
7723 static void i9xx_set_pipeconf(struct intel_crtc *intel_crtc)
7724 {
7725         struct drm_device *dev = intel_crtc->base.dev;
7726         struct drm_i915_private *dev_priv = dev->dev_private;
7727         uint32_t pipeconf;
7728
7729         pipeconf = 0;
7730
7731         if ((intel_crtc->pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) ||
7732             (intel_crtc->pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE))
7733                 pipeconf |= I915_READ(PIPECONF(intel_crtc->pipe)) & PIPECONF_ENABLE;
7734
7735         if (intel_crtc->config->double_wide)
7736                 pipeconf |= PIPECONF_DOUBLE_WIDE;
7737
7738         /* only g4x and later have fancy bpc/dither controls */
7739         if (IS_G4X(dev) || IS_VALLEYVIEW(dev)) {
7740                 /* Bspec claims that we can't use dithering for 30bpp pipes. */
7741                 if (intel_crtc->config->dither && intel_crtc->config->pipe_bpp != 30)
7742                         pipeconf |= PIPECONF_DITHER_EN |
7743                                     PIPECONF_DITHER_TYPE_SP;
7744
7745                 switch (intel_crtc->config->pipe_bpp) {
7746                 case 18:
7747                         pipeconf |= PIPECONF_6BPC;
7748                         break;
7749                 case 24:
7750                         pipeconf |= PIPECONF_8BPC;
7751                         break;
7752                 case 30:
7753                         pipeconf |= PIPECONF_10BPC;
7754                         break;
7755                 default:
7756                         /* Case prevented by intel_choose_pipe_bpp_dither. */
7757                         BUG();
7758                 }
7759         }
7760
7761         if (HAS_PIPE_CXSR(dev)) {
7762                 if (intel_crtc->lowfreq_avail) {
7763                         DRM_DEBUG_KMS("enabling CxSR downclocking\n");
7764                         pipeconf |= PIPECONF_CXSR_DOWNCLOCK;
7765                 } else {
7766                         DRM_DEBUG_KMS("disabling CxSR downclocking\n");
7767                 }
7768         }
7769
7770         if (intel_crtc->config->base.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE) {
7771                 if (INTEL_INFO(dev)->gen < 4 ||
7772                     intel_pipe_has_type(intel_crtc, INTEL_OUTPUT_SDVO))
7773                         pipeconf |= PIPECONF_INTERLACE_W_FIELD_INDICATION;
7774                 else
7775                         pipeconf |= PIPECONF_INTERLACE_W_SYNC_SHIFT;
7776         } else
7777                 pipeconf |= PIPECONF_PROGRESSIVE;
7778
7779         if (IS_VALLEYVIEW(dev) && intel_crtc->config->limited_color_range)
7780                 pipeconf |= PIPECONF_COLOR_RANGE_SELECT;
7781
7782         I915_WRITE(PIPECONF(intel_crtc->pipe), pipeconf);
7783         POSTING_READ(PIPECONF(intel_crtc->pipe));
7784 }
7785
7786 static int i9xx_crtc_compute_clock(struct intel_crtc *crtc,
7787                                    struct intel_crtc_state *crtc_state)
7788 {
7789         struct drm_device *dev = crtc->base.dev;
7790         struct drm_i915_private *dev_priv = dev->dev_private;
7791         int refclk, num_connectors = 0;
7792         intel_clock_t clock;
7793         bool ok;
7794         bool is_dsi = false;
7795         struct intel_encoder *encoder;
7796         const intel_limit_t *limit;
7797         struct drm_atomic_state *state = crtc_state->base.state;
7798         struct drm_connector *connector;
7799         struct drm_connector_state *connector_state;
7800         int i;
7801
7802         memset(&crtc_state->dpll_hw_state, 0,
7803                sizeof(crtc_state->dpll_hw_state));
7804
7805         for_each_connector_in_state(state, connector, connector_state, i) {
7806                 if (connector_state->crtc != &crtc->base)
7807                         continue;
7808
7809                 encoder = to_intel_encoder(connector_state->best_encoder);
7810
7811                 switch (encoder->type) {
7812                 case INTEL_OUTPUT_DSI:
7813                         is_dsi = true;
7814                         break;
7815                 default:
7816                         break;
7817                 }
7818
7819                 num_connectors++;
7820         }
7821
7822         if (is_dsi)
7823                 return 0;
7824
7825         if (!crtc_state->clock_set) {
7826                 refclk = i9xx_get_refclk(crtc_state, num_connectors);
7827
7828                 /*
7829                  * Returns a set of divisors for the desired target clock with
7830                  * the given refclk, or FALSE.  The returned values represent
7831                  * the clock equation: reflck * (5 * (m1 + 2) + (m2 + 2)) / (n +
7832                  * 2) / p1 / p2.
7833                  */
7834                 limit = intel_limit(crtc_state, refclk);
7835                 ok = dev_priv->display.find_dpll(limit, crtc_state,
7836                                                  crtc_state->port_clock,
7837                                                  refclk, NULL, &clock);
7838                 if (!ok) {
7839                         DRM_ERROR("Couldn't find PLL settings for mode!\n");
7840                         return -EINVAL;
7841                 }
7842
7843                 /* Compat-code for transition, will disappear. */
7844                 crtc_state->dpll.n = clock.n;
7845                 crtc_state->dpll.m1 = clock.m1;
7846                 crtc_state->dpll.m2 = clock.m2;
7847                 crtc_state->dpll.p1 = clock.p1;
7848                 crtc_state->dpll.p2 = clock.p2;
7849         }
7850
7851         if (IS_GEN2(dev)) {
7852                 i8xx_compute_dpll(crtc, crtc_state, NULL,
7853                                   num_connectors);
7854         } else if (IS_CHERRYVIEW(dev)) {
7855                 chv_compute_dpll(crtc, crtc_state);
7856         } else if (IS_VALLEYVIEW(dev)) {
7857                 vlv_compute_dpll(crtc, crtc_state);
7858         } else {
7859                 i9xx_compute_dpll(crtc, crtc_state, NULL,
7860                                   num_connectors);
7861         }
7862
7863         return 0;
7864 }
7865
7866 static void i9xx_get_pfit_config(struct intel_crtc *crtc,
7867                                  struct intel_crtc_state *pipe_config)
7868 {
7869         struct drm_device *dev = crtc->base.dev;
7870         struct drm_i915_private *dev_priv = dev->dev_private;
7871         uint32_t tmp;
7872
7873         if (INTEL_INFO(dev)->gen <= 3 && (IS_I830(dev) || !IS_MOBILE(dev)))
7874                 return;
7875
7876         tmp = I915_READ(PFIT_CONTROL);
7877         if (!(tmp & PFIT_ENABLE))
7878                 return;
7879
7880         /* Check whether the pfit is attached to our pipe. */
7881         if (INTEL_INFO(dev)->gen < 4) {
7882                 if (crtc->pipe != PIPE_B)
7883                         return;
7884         } else {
7885                 if ((tmp & PFIT_PIPE_MASK) != (crtc->pipe << PFIT_PIPE_SHIFT))
7886                         return;
7887         }
7888
7889         pipe_config->gmch_pfit.control = tmp;
7890         pipe_config->gmch_pfit.pgm_ratios = I915_READ(PFIT_PGM_RATIOS);
7891         if (INTEL_INFO(dev)->gen < 5)
7892                 pipe_config->gmch_pfit.lvds_border_bits =
7893                         I915_READ(LVDS) & LVDS_BORDER_ENABLE;
7894 }
7895
7896 static void vlv_crtc_clock_get(struct intel_crtc *crtc,
7897                                struct intel_crtc_state *pipe_config)
7898 {
7899         struct drm_device *dev = crtc->base.dev;
7900         struct drm_i915_private *dev_priv = dev->dev_private;
7901         int pipe = pipe_config->cpu_transcoder;
7902         intel_clock_t clock;
7903         u32 mdiv;
7904         int refclk = 100000;
7905
7906         /* In case of MIPI DPLL will not even be used */
7907         if (!(pipe_config->dpll_hw_state.dpll & DPLL_VCO_ENABLE))
7908                 return;
7909
7910         mutex_lock(&dev_priv->sb_lock);
7911         mdiv = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW3(pipe));
7912         mutex_unlock(&dev_priv->sb_lock);
7913
7914         clock.m1 = (mdiv >> DPIO_M1DIV_SHIFT) & 7;
7915         clock.m2 = mdiv & DPIO_M2DIV_MASK;
7916         clock.n = (mdiv >> DPIO_N_SHIFT) & 0xf;
7917         clock.p1 = (mdiv >> DPIO_P1_SHIFT) & 7;
7918         clock.p2 = (mdiv >> DPIO_P2_SHIFT) & 0x1f;
7919
7920         pipe_config->port_clock = vlv_calc_dpll_params(refclk, &clock);
7921 }
7922
7923 static void
7924 i9xx_get_initial_plane_config(struct intel_crtc *crtc,
7925                               struct intel_initial_plane_config *plane_config)
7926 {
7927         struct drm_device *dev = crtc->base.dev;
7928         struct drm_i915_private *dev_priv = dev->dev_private;
7929         u32 val, base, offset;
7930         int pipe = crtc->pipe, plane = crtc->plane;
7931         int fourcc, pixel_format;
7932         unsigned int aligned_height;
7933         struct drm_framebuffer *fb;
7934         struct intel_framebuffer *intel_fb;
7935
7936         val = I915_READ(DSPCNTR(plane));
7937         if (!(val & DISPLAY_PLANE_ENABLE))
7938                 return;
7939
7940         intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
7941         if (!intel_fb) {
7942                 DRM_DEBUG_KMS("failed to alloc fb\n");
7943                 return;
7944         }
7945
7946         fb = &intel_fb->base;
7947
7948         if (INTEL_INFO(dev)->gen >= 4) {
7949                 if (val & DISPPLANE_TILED) {
7950                         plane_config->tiling = I915_TILING_X;
7951                         fb->modifier[0] = I915_FORMAT_MOD_X_TILED;
7952                 }
7953         }
7954
7955         pixel_format = val & DISPPLANE_PIXFORMAT_MASK;
7956         fourcc = i9xx_format_to_fourcc(pixel_format);
7957         fb->pixel_format = fourcc;
7958         fb->bits_per_pixel = drm_format_plane_cpp(fourcc, 0) * 8;
7959
7960         if (INTEL_INFO(dev)->gen >= 4) {
7961                 if (plane_config->tiling)
7962                         offset = I915_READ(DSPTILEOFF(plane));
7963                 else
7964                         offset = I915_READ(DSPLINOFF(plane));
7965                 base = I915_READ(DSPSURF(plane)) & 0xfffff000;
7966         } else {
7967                 base = I915_READ(DSPADDR(plane));
7968         }
7969         plane_config->base = base;
7970
7971         val = I915_READ(PIPESRC(pipe));
7972         fb->width = ((val >> 16) & 0xfff) + 1;
7973         fb->height = ((val >> 0) & 0xfff) + 1;
7974
7975         val = I915_READ(DSPSTRIDE(pipe));
7976         fb->pitches[0] = val & 0xffffffc0;
7977
7978         aligned_height = intel_fb_align_height(dev, fb->height,
7979                                                fb->pixel_format,
7980                                                fb->modifier[0]);
7981
7982         plane_config->size = fb->pitches[0] * aligned_height;
7983
7984         DRM_DEBUG_KMS("pipe/plane %c/%d with fb: size=%dx%d@%d, offset=%x, pitch %d, size 0x%x\n",
7985                       pipe_name(pipe), plane, fb->width, fb->height,
7986                       fb->bits_per_pixel, base, fb->pitches[0],
7987                       plane_config->size);
7988
7989         plane_config->fb = intel_fb;
7990 }
7991
7992 static void chv_crtc_clock_get(struct intel_crtc *crtc,
7993                                struct intel_crtc_state *pipe_config)
7994 {
7995         struct drm_device *dev = crtc->base.dev;
7996         struct drm_i915_private *dev_priv = dev->dev_private;
7997         int pipe = pipe_config->cpu_transcoder;
7998         enum dpio_channel port = vlv_pipe_to_channel(pipe);
7999         intel_clock_t clock;
8000         u32 cmn_dw13, pll_dw0, pll_dw1, pll_dw2, pll_dw3;
8001         int refclk = 100000;
8002
8003         mutex_lock(&dev_priv->sb_lock);
8004         cmn_dw13 = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW13(port));
8005         pll_dw0 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW0(port));
8006         pll_dw1 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW1(port));
8007         pll_dw2 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW2(port));
8008         pll_dw3 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW3(port));
8009         mutex_unlock(&dev_priv->sb_lock);
8010
8011         clock.m1 = (pll_dw1 & 0x7) == DPIO_CHV_M1_DIV_BY_2 ? 2 : 0;
8012         clock.m2 = (pll_dw0 & 0xff) << 22;
8013         if (pll_dw3 & DPIO_CHV_FRAC_DIV_EN)
8014                 clock.m2 |= pll_dw2 & 0x3fffff;
8015         clock.n = (pll_dw1 >> DPIO_CHV_N_DIV_SHIFT) & 0xf;
8016         clock.p1 = (cmn_dw13 >> DPIO_CHV_P1_DIV_SHIFT) & 0x7;
8017         clock.p2 = (cmn_dw13 >> DPIO_CHV_P2_DIV_SHIFT) & 0x1f;
8018
8019         pipe_config->port_clock = chv_calc_dpll_params(refclk, &clock);
8020 }
8021
8022 static bool i9xx_get_pipe_config(struct intel_crtc *crtc,
8023                                  struct intel_crtc_state *pipe_config)
8024 {
8025         struct drm_device *dev = crtc->base.dev;
8026         struct drm_i915_private *dev_priv = dev->dev_private;
8027         uint32_t tmp;
8028
8029         if (!intel_display_power_is_enabled(dev_priv,
8030                                             POWER_DOMAIN_PIPE(crtc->pipe)))
8031                 return false;
8032
8033         pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
8034         pipe_config->shared_dpll = DPLL_ID_PRIVATE;
8035
8036         tmp = I915_READ(PIPECONF(crtc->pipe));
8037         if (!(tmp & PIPECONF_ENABLE))
8038                 return false;
8039
8040         if (IS_G4X(dev) || IS_VALLEYVIEW(dev)) {
8041                 switch (tmp & PIPECONF_BPC_MASK) {
8042                 case PIPECONF_6BPC:
8043                         pipe_config->pipe_bpp = 18;
8044                         break;
8045                 case PIPECONF_8BPC:
8046                         pipe_config->pipe_bpp = 24;
8047                         break;
8048                 case PIPECONF_10BPC:
8049                         pipe_config->pipe_bpp = 30;
8050                         break;
8051                 default:
8052                         break;
8053                 }
8054         }
8055
8056         if (IS_VALLEYVIEW(dev) && (tmp & PIPECONF_COLOR_RANGE_SELECT))
8057                 pipe_config->limited_color_range = true;
8058
8059         if (INTEL_INFO(dev)->gen < 4)
8060                 pipe_config->double_wide = tmp & PIPECONF_DOUBLE_WIDE;
8061
8062         intel_get_pipe_timings(crtc, pipe_config);
8063
8064         i9xx_get_pfit_config(crtc, pipe_config);
8065
8066         if (INTEL_INFO(dev)->gen >= 4) {
8067                 tmp = I915_READ(DPLL_MD(crtc->pipe));
8068                 pipe_config->pixel_multiplier =
8069                         ((tmp & DPLL_MD_UDI_MULTIPLIER_MASK)
8070                          >> DPLL_MD_UDI_MULTIPLIER_SHIFT) + 1;
8071                 pipe_config->dpll_hw_state.dpll_md = tmp;
8072         } else if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev)) {
8073                 tmp = I915_READ(DPLL(crtc->pipe));
8074                 pipe_config->pixel_multiplier =
8075                         ((tmp & SDVO_MULTIPLIER_MASK)
8076                          >> SDVO_MULTIPLIER_SHIFT_HIRES) + 1;
8077         } else {
8078                 /* Note that on i915G/GM the pixel multiplier is in the sdvo
8079                  * port and will be fixed up in the encoder->get_config
8080                  * function. */
8081                 pipe_config->pixel_multiplier = 1;
8082         }
8083         pipe_config->dpll_hw_state.dpll = I915_READ(DPLL(crtc->pipe));
8084         if (!IS_VALLEYVIEW(dev)) {
8085                 /*
8086                  * DPLL_DVO_2X_MODE must be enabled for both DPLLs
8087                  * on 830. Filter it out here so that we don't
8088                  * report errors due to that.
8089                  */
8090                 if (IS_I830(dev))
8091                         pipe_config->dpll_hw_state.dpll &= ~DPLL_DVO_2X_MODE;
8092
8093                 pipe_config->dpll_hw_state.fp0 = I915_READ(FP0(crtc->pipe));
8094                 pipe_config->dpll_hw_state.fp1 = I915_READ(FP1(crtc->pipe));
8095         } else {
8096                 /* Mask out read-only status bits. */
8097                 pipe_config->dpll_hw_state.dpll &= ~(DPLL_LOCK_VLV |
8098                                                      DPLL_PORTC_READY_MASK |
8099                                                      DPLL_PORTB_READY_MASK);
8100         }
8101
8102         if (IS_CHERRYVIEW(dev))
8103                 chv_crtc_clock_get(crtc, pipe_config);
8104         else if (IS_VALLEYVIEW(dev))
8105                 vlv_crtc_clock_get(crtc, pipe_config);
8106         else
8107                 i9xx_crtc_clock_get(crtc, pipe_config);
8108
8109         return true;
8110 }
8111
8112 static void ironlake_init_pch_refclk(struct drm_device *dev)
8113 {
8114         struct drm_i915_private *dev_priv = dev->dev_private;
8115         struct intel_encoder *encoder;
8116         u32 val, final;
8117         bool has_lvds = false;
8118         bool has_cpu_edp = false;
8119         bool has_panel = false;
8120         bool has_ck505 = false;
8121         bool can_ssc = false;
8122
8123         /* We need to take the global config into account */
8124         for_each_intel_encoder(dev, encoder) {
8125                 switch (encoder->type) {
8126                 case INTEL_OUTPUT_LVDS:
8127                         has_panel = true;
8128                         has_lvds = true;
8129                         break;
8130                 case INTEL_OUTPUT_EDP:
8131                         has_panel = true;
8132                         if (enc_to_dig_port(&encoder->base)->port == PORT_A)
8133                                 has_cpu_edp = true;
8134                         break;
8135                 default:
8136                         break;
8137                 }
8138         }
8139
8140         if (HAS_PCH_IBX(dev)) {
8141                 has_ck505 = dev_priv->vbt.display_clock_mode;
8142                 can_ssc = has_ck505;
8143         } else {
8144                 has_ck505 = false;
8145                 can_ssc = true;
8146         }
8147
8148         DRM_DEBUG_KMS("has_panel %d has_lvds %d has_ck505 %d\n",
8149                       has_panel, has_lvds, has_ck505);
8150
8151         /* Ironlake: try to setup display ref clock before DPLL
8152          * enabling. This is only under driver's control after
8153          * PCH B stepping, previous chipset stepping should be
8154          * ignoring this setting.
8155          */
8156         val = I915_READ(PCH_DREF_CONTROL);
8157
8158         /* As we must carefully and slowly disable/enable each source in turn,
8159          * compute the final state we want first and check if we need to
8160          * make any changes at all.
8161          */
8162         final = val;
8163         final &= ~DREF_NONSPREAD_SOURCE_MASK;
8164         if (has_ck505)
8165                 final |= DREF_NONSPREAD_CK505_ENABLE;
8166         else
8167                 final |= DREF_NONSPREAD_SOURCE_ENABLE;
8168
8169         final &= ~DREF_SSC_SOURCE_MASK;
8170         final &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
8171         final &= ~DREF_SSC1_ENABLE;
8172
8173         if (has_panel) {
8174                 final |= DREF_SSC_SOURCE_ENABLE;
8175
8176                 if (intel_panel_use_ssc(dev_priv) && can_ssc)
8177                         final |= DREF_SSC1_ENABLE;
8178
8179                 if (has_cpu_edp) {
8180                         if (intel_panel_use_ssc(dev_priv) && can_ssc)
8181                                 final |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD;
8182                         else
8183                                 final |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD;
8184                 } else
8185                         final |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
8186         } else {
8187                 final |= DREF_SSC_SOURCE_DISABLE;
8188                 final |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
8189         }
8190
8191         if (final == val)
8192                 return;
8193
8194         /* Always enable nonspread source */
8195         val &= ~DREF_NONSPREAD_SOURCE_MASK;
8196
8197         if (has_ck505)
8198                 val |= DREF_NONSPREAD_CK505_ENABLE;
8199         else
8200                 val |= DREF_NONSPREAD_SOURCE_ENABLE;
8201
8202         if (has_panel) {
8203                 val &= ~DREF_SSC_SOURCE_MASK;
8204                 val |= DREF_SSC_SOURCE_ENABLE;
8205
8206                 /* SSC must be turned on before enabling the CPU output  */
8207                 if (intel_panel_use_ssc(dev_priv) && can_ssc) {
8208                         DRM_DEBUG_KMS("Using SSC on panel\n");
8209                         val |= DREF_SSC1_ENABLE;
8210                 } else
8211                         val &= ~DREF_SSC1_ENABLE;
8212
8213                 /* Get SSC going before enabling the outputs */
8214                 I915_WRITE(PCH_DREF_CONTROL, val);
8215                 POSTING_READ(PCH_DREF_CONTROL);
8216                 udelay(200);
8217
8218                 val &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
8219
8220                 /* Enable CPU source on CPU attached eDP */
8221                 if (has_cpu_edp) {
8222                         if (intel_panel_use_ssc(dev_priv) && can_ssc) {
8223                                 DRM_DEBUG_KMS("Using SSC on eDP\n");
8224                                 val |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD;
8225                         } else
8226                                 val |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD;
8227                 } else
8228                         val |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
8229
8230                 I915_WRITE(PCH_DREF_CONTROL, val);
8231                 POSTING_READ(PCH_DREF_CONTROL);
8232                 udelay(200);
8233         } else {
8234                 DRM_DEBUG_KMS("Disabling SSC entirely\n");
8235
8236                 val &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
8237
8238                 /* Turn off CPU output */
8239                 val |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
8240
8241                 I915_WRITE(PCH_DREF_CONTROL, val);
8242                 POSTING_READ(PCH_DREF_CONTROL);
8243                 udelay(200);
8244
8245                 /* Turn off the SSC source */
8246                 val &= ~DREF_SSC_SOURCE_MASK;
8247                 val |= DREF_SSC_SOURCE_DISABLE;
8248
8249                 /* Turn off SSC1 */
8250                 val &= ~DREF_SSC1_ENABLE;
8251
8252                 I915_WRITE(PCH_DREF_CONTROL, val);
8253                 POSTING_READ(PCH_DREF_CONTROL);
8254                 udelay(200);
8255         }
8256
8257         BUG_ON(val != final);
8258 }
8259
8260 static void lpt_reset_fdi_mphy(struct drm_i915_private *dev_priv)
8261 {
8262         uint32_t tmp;
8263
8264         tmp = I915_READ(SOUTH_CHICKEN2);
8265         tmp |= FDI_MPHY_IOSFSB_RESET_CTL;
8266         I915_WRITE(SOUTH_CHICKEN2, tmp);
8267
8268         if (wait_for_atomic_us(I915_READ(SOUTH_CHICKEN2) &
8269                                FDI_MPHY_IOSFSB_RESET_STATUS, 100))
8270                 DRM_ERROR("FDI mPHY reset assert timeout\n");
8271
8272         tmp = I915_READ(SOUTH_CHICKEN2);
8273         tmp &= ~FDI_MPHY_IOSFSB_RESET_CTL;
8274         I915_WRITE(SOUTH_CHICKEN2, tmp);
8275
8276         if (wait_for_atomic_us((I915_READ(SOUTH_CHICKEN2) &
8277                                 FDI_MPHY_IOSFSB_RESET_STATUS) == 0, 100))
8278                 DRM_ERROR("FDI mPHY reset de-assert timeout\n");
8279 }
8280
8281 /* WaMPhyProgramming:hsw */
8282 static void lpt_program_fdi_mphy(struct drm_i915_private *dev_priv)
8283 {
8284         uint32_t tmp;
8285
8286         tmp = intel_sbi_read(dev_priv, 0x8008, SBI_MPHY);
8287         tmp &= ~(0xFF << 24);
8288         tmp |= (0x12 << 24);
8289         intel_sbi_write(dev_priv, 0x8008, tmp, SBI_MPHY);
8290
8291         tmp = intel_sbi_read(dev_priv, 0x2008, SBI_MPHY);
8292         tmp |= (1 << 11);
8293         intel_sbi_write(dev_priv, 0x2008, tmp, SBI_MPHY);
8294
8295         tmp = intel_sbi_read(dev_priv, 0x2108, SBI_MPHY);
8296         tmp |= (1 << 11);
8297         intel_sbi_write(dev_priv, 0x2108, tmp, SBI_MPHY);
8298
8299         tmp = intel_sbi_read(dev_priv, 0x206C, SBI_MPHY);
8300         tmp |= (1 << 24) | (1 << 21) | (1 << 18);
8301         intel_sbi_write(dev_priv, 0x206C, tmp, SBI_MPHY);
8302
8303         tmp = intel_sbi_read(dev_priv, 0x216C, SBI_MPHY);
8304         tmp |= (1 << 24) | (1 << 21) | (1 << 18);
8305         intel_sbi_write(dev_priv, 0x216C, tmp, SBI_MPHY);
8306
8307         tmp = intel_sbi_read(dev_priv, 0x2080, SBI_MPHY);
8308         tmp &= ~(7 << 13);
8309         tmp |= (5 << 13);
8310         intel_sbi_write(dev_priv, 0x2080, tmp, SBI_MPHY);
8311
8312         tmp = intel_sbi_read(dev_priv, 0x2180, SBI_MPHY);
8313         tmp &= ~(7 << 13);
8314         tmp |= (5 << 13);
8315         intel_sbi_write(dev_priv, 0x2180, tmp, SBI_MPHY);
8316
8317         tmp = intel_sbi_read(dev_priv, 0x208C, SBI_MPHY);
8318         tmp &= ~0xFF;
8319         tmp |= 0x1C;
8320         intel_sbi_write(dev_priv, 0x208C, tmp, SBI_MPHY);
8321
8322         tmp = intel_sbi_read(dev_priv, 0x218C, SBI_MPHY);
8323         tmp &= ~0xFF;
8324         tmp |= 0x1C;
8325         intel_sbi_write(dev_priv, 0x218C, tmp, SBI_MPHY);
8326
8327         tmp = intel_sbi_read(dev_priv, 0x2098, SBI_MPHY);
8328         tmp &= ~(0xFF << 16);
8329         tmp |= (0x1C << 16);
8330         intel_sbi_write(dev_priv, 0x2098, tmp, SBI_MPHY);
8331
8332         tmp = intel_sbi_read(dev_priv, 0x2198, SBI_MPHY);
8333         tmp &= ~(0xFF << 16);
8334         tmp |= (0x1C << 16);
8335         intel_sbi_write(dev_priv, 0x2198, tmp, SBI_MPHY);
8336
8337         tmp = intel_sbi_read(dev_priv, 0x20C4, SBI_MPHY);
8338         tmp |= (1 << 27);
8339         intel_sbi_write(dev_priv, 0x20C4, tmp, SBI_MPHY);
8340
8341         tmp = intel_sbi_read(dev_priv, 0x21C4, SBI_MPHY);
8342         tmp |= (1 << 27);
8343         intel_sbi_write(dev_priv, 0x21C4, tmp, SBI_MPHY);
8344
8345         tmp = intel_sbi_read(dev_priv, 0x20EC, SBI_MPHY);
8346         tmp &= ~(0xF << 28);
8347         tmp |= (4 << 28);
8348         intel_sbi_write(dev_priv, 0x20EC, tmp, SBI_MPHY);
8349
8350         tmp = intel_sbi_read(dev_priv, 0x21EC, SBI_MPHY);
8351         tmp &= ~(0xF << 28);
8352         tmp |= (4 << 28);
8353         intel_sbi_write(dev_priv, 0x21EC, tmp, SBI_MPHY);
8354 }
8355
8356 /* Implements 3 different sequences from BSpec chapter "Display iCLK
8357  * Programming" based on the parameters passed:
8358  * - Sequence to enable CLKOUT_DP
8359  * - Sequence to enable CLKOUT_DP without spread
8360  * - Sequence to enable CLKOUT_DP for FDI usage and configure PCH FDI I/O
8361  */
8362 static void lpt_enable_clkout_dp(struct drm_device *dev, bool with_spread,
8363                                  bool with_fdi)
8364 {
8365         struct drm_i915_private *dev_priv = dev->dev_private;
8366         uint32_t reg, tmp;
8367
8368         if (WARN(with_fdi && !with_spread, "FDI requires downspread\n"))
8369                 with_spread = true;
8370         if (WARN(dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE &&
8371                  with_fdi, "LP PCH doesn't have FDI\n"))
8372                 with_fdi = false;
8373
8374         mutex_lock(&dev_priv->sb_lock);
8375
8376         tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
8377         tmp &= ~SBI_SSCCTL_DISABLE;
8378         tmp |= SBI_SSCCTL_PATHALT;
8379         intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
8380
8381         udelay(24);
8382
8383         if (with_spread) {
8384                 tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
8385                 tmp &= ~SBI_SSCCTL_PATHALT;
8386                 intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
8387
8388                 if (with_fdi) {
8389                         lpt_reset_fdi_mphy(dev_priv);
8390                         lpt_program_fdi_mphy(dev_priv);
8391                 }
8392         }
8393
8394         reg = (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) ?
8395                SBI_GEN0 : SBI_DBUFF0;
8396         tmp = intel_sbi_read(dev_priv, reg, SBI_ICLK);
8397         tmp |= SBI_GEN0_CFG_BUFFENABLE_DISABLE;
8398         intel_sbi_write(dev_priv, reg, tmp, SBI_ICLK);
8399
8400         mutex_unlock(&dev_priv->sb_lock);
8401 }
8402
8403 /* Sequence to disable CLKOUT_DP */
8404 static void lpt_disable_clkout_dp(struct drm_device *dev)
8405 {
8406         struct drm_i915_private *dev_priv = dev->dev_private;
8407         uint32_t reg, tmp;
8408
8409         mutex_lock(&dev_priv->sb_lock);
8410
8411         reg = (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) ?
8412                SBI_GEN0 : SBI_DBUFF0;
8413         tmp = intel_sbi_read(dev_priv, reg, SBI_ICLK);
8414         tmp &= ~SBI_GEN0_CFG_BUFFENABLE_DISABLE;
8415         intel_sbi_write(dev_priv, reg, tmp, SBI_ICLK);
8416
8417         tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
8418         if (!(tmp & SBI_SSCCTL_DISABLE)) {
8419                 if (!(tmp & SBI_SSCCTL_PATHALT)) {
8420                         tmp |= SBI_SSCCTL_PATHALT;
8421                         intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
8422                         udelay(32);
8423                 }
8424                 tmp |= SBI_SSCCTL_DISABLE;
8425                 intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
8426         }
8427
8428         mutex_unlock(&dev_priv->sb_lock);
8429 }
8430
8431 static void lpt_init_pch_refclk(struct drm_device *dev)
8432 {
8433         struct intel_encoder *encoder;
8434         bool has_vga = false;
8435
8436         for_each_intel_encoder(dev, encoder) {
8437                 switch (encoder->type) {
8438                 case INTEL_OUTPUT_ANALOG:
8439                         has_vga = true;
8440                         break;
8441                 default:
8442                         break;
8443                 }
8444         }
8445
8446         if (has_vga)
8447                 lpt_enable_clkout_dp(dev, true, true);
8448         else
8449                 lpt_disable_clkout_dp(dev);
8450 }
8451
8452 /*
8453  * Initialize reference clocks when the driver loads
8454  */
8455 void intel_init_pch_refclk(struct drm_device *dev)
8456 {
8457         if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev))
8458                 ironlake_init_pch_refclk(dev);
8459         else if (HAS_PCH_LPT(dev))
8460                 lpt_init_pch_refclk(dev);
8461 }
8462
8463 static int ironlake_get_refclk(struct intel_crtc_state *crtc_state)
8464 {
8465         struct drm_device *dev = crtc_state->base.crtc->dev;
8466         struct drm_i915_private *dev_priv = dev->dev_private;
8467         struct drm_atomic_state *state = crtc_state->base.state;
8468         struct drm_connector *connector;
8469         struct drm_connector_state *connector_state;
8470         struct intel_encoder *encoder;
8471         int num_connectors = 0, i;
8472         bool is_lvds = false;
8473
8474         for_each_connector_in_state(state, connector, connector_state, i) {
8475                 if (connector_state->crtc != crtc_state->base.crtc)
8476                         continue;
8477
8478                 encoder = to_intel_encoder(connector_state->best_encoder);
8479
8480                 switch (encoder->type) {
8481                 case INTEL_OUTPUT_LVDS:
8482                         is_lvds = true;
8483                         break;
8484                 default:
8485                         break;
8486                 }
8487                 num_connectors++;
8488         }
8489
8490         if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2) {
8491                 DRM_DEBUG_KMS("using SSC reference clock of %d kHz\n",
8492                               dev_priv->vbt.lvds_ssc_freq);
8493                 return dev_priv->vbt.lvds_ssc_freq;
8494         }
8495
8496         return 120000;
8497 }
8498
8499 static void ironlake_set_pipeconf(struct drm_crtc *crtc)
8500 {
8501         struct drm_i915_private *dev_priv = crtc->dev->dev_private;
8502         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8503         int pipe = intel_crtc->pipe;
8504         uint32_t val;
8505
8506         val = 0;
8507
8508         switch (intel_crtc->config->pipe_bpp) {
8509         case 18:
8510                 val |= PIPECONF_6BPC;
8511                 break;
8512         case 24:
8513                 val |= PIPECONF_8BPC;
8514                 break;
8515         case 30:
8516                 val |= PIPECONF_10BPC;
8517                 break;
8518         case 36:
8519                 val |= PIPECONF_12BPC;
8520                 break;
8521         default:
8522                 /* Case prevented by intel_choose_pipe_bpp_dither. */
8523                 BUG();
8524         }
8525
8526         if (intel_crtc->config->dither)
8527                 val |= (PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_SP);
8528
8529         if (intel_crtc->config->base.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE)
8530                 val |= PIPECONF_INTERLACED_ILK;
8531         else
8532                 val |= PIPECONF_PROGRESSIVE;
8533
8534         if (intel_crtc->config->limited_color_range)
8535                 val |= PIPECONF_COLOR_RANGE_SELECT;
8536
8537         I915_WRITE(PIPECONF(pipe), val);
8538         POSTING_READ(PIPECONF(pipe));
8539 }
8540
8541 /*
8542  * Set up the pipe CSC unit.
8543  *
8544  * Currently only full range RGB to limited range RGB conversion
8545  * is supported, but eventually this should handle various
8546  * RGB<->YCbCr scenarios as well.
8547  */
8548 static void intel_set_pipe_csc(struct drm_crtc *crtc)
8549 {
8550         struct drm_device *dev = crtc->dev;
8551         struct drm_i915_private *dev_priv = dev->dev_private;
8552         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8553         int pipe = intel_crtc->pipe;
8554         uint16_t coeff = 0x7800; /* 1.0 */
8555
8556         /*
8557          * TODO: Check what kind of values actually come out of the pipe
8558          * with these coeff/postoff values and adjust to get the best
8559          * accuracy. Perhaps we even need to take the bpc value into
8560          * consideration.
8561          */
8562
8563         if (intel_crtc->config->limited_color_range)
8564                 coeff = ((235 - 16) * (1 << 12) / 255) & 0xff8; /* 0.xxx... */
8565
8566         /*
8567          * GY/GU and RY/RU should be the other way around according
8568          * to BSpec, but reality doesn't agree. Just set them up in
8569          * a way that results in the correct picture.
8570          */
8571         I915_WRITE(PIPE_CSC_COEFF_RY_GY(pipe), coeff << 16);
8572         I915_WRITE(PIPE_CSC_COEFF_BY(pipe), 0);
8573
8574         I915_WRITE(PIPE_CSC_COEFF_RU_GU(pipe), coeff);
8575         I915_WRITE(PIPE_CSC_COEFF_BU(pipe), 0);
8576
8577         I915_WRITE(PIPE_CSC_COEFF_RV_GV(pipe), 0);
8578         I915_WRITE(PIPE_CSC_COEFF_BV(pipe), coeff << 16);
8579
8580         I915_WRITE(PIPE_CSC_PREOFF_HI(pipe), 0);
8581         I915_WRITE(PIPE_CSC_PREOFF_ME(pipe), 0);
8582         I915_WRITE(PIPE_CSC_PREOFF_LO(pipe), 0);
8583
8584         if (INTEL_INFO(dev)->gen > 6) {
8585                 uint16_t postoff = 0;
8586
8587                 if (intel_crtc->config->limited_color_range)
8588                         postoff = (16 * (1 << 12) / 255) & 0x1fff;
8589
8590                 I915_WRITE(PIPE_CSC_POSTOFF_HI(pipe), postoff);
8591                 I915_WRITE(PIPE_CSC_POSTOFF_ME(pipe), postoff);
8592                 I915_WRITE(PIPE_CSC_POSTOFF_LO(pipe), postoff);
8593
8594                 I915_WRITE(PIPE_CSC_MODE(pipe), 0);
8595         } else {
8596                 uint32_t mode = CSC_MODE_YUV_TO_RGB;
8597
8598                 if (intel_crtc->config->limited_color_range)
8599                         mode |= CSC_BLACK_SCREEN_OFFSET;
8600
8601                 I915_WRITE(PIPE_CSC_MODE(pipe), mode);
8602         }
8603 }
8604
8605 static void haswell_set_pipeconf(struct drm_crtc *crtc)
8606 {
8607         struct drm_device *dev = crtc->dev;
8608         struct drm_i915_private *dev_priv = dev->dev_private;
8609         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8610         enum pipe pipe = intel_crtc->pipe;
8611         enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
8612         uint32_t val;
8613
8614         val = 0;
8615
8616         if (IS_HASWELL(dev) && intel_crtc->config->dither)
8617                 val |= (PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_SP);
8618
8619         if (intel_crtc->config->base.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE)
8620                 val |= PIPECONF_INTERLACED_ILK;
8621         else
8622                 val |= PIPECONF_PROGRESSIVE;
8623
8624         I915_WRITE(PIPECONF(cpu_transcoder), val);
8625         POSTING_READ(PIPECONF(cpu_transcoder));
8626
8627         I915_WRITE(GAMMA_MODE(intel_crtc->pipe), GAMMA_MODE_MODE_8BIT);
8628         POSTING_READ(GAMMA_MODE(intel_crtc->pipe));
8629
8630         if (IS_BROADWELL(dev) || INTEL_INFO(dev)->gen >= 9) {
8631                 val = 0;
8632
8633                 switch (intel_crtc->config->pipe_bpp) {
8634                 case 18:
8635                         val |= PIPEMISC_DITHER_6_BPC;
8636                         break;
8637                 case 24:
8638                         val |= PIPEMISC_DITHER_8_BPC;
8639                         break;
8640                 case 30:
8641                         val |= PIPEMISC_DITHER_10_BPC;
8642                         break;
8643                 case 36:
8644                         val |= PIPEMISC_DITHER_12_BPC;
8645                         break;
8646                 default:
8647                         /* Case prevented by pipe_config_set_bpp. */
8648                         BUG();
8649                 }
8650
8651                 if (intel_crtc->config->dither)
8652                         val |= PIPEMISC_DITHER_ENABLE | PIPEMISC_DITHER_TYPE_SP;
8653
8654                 I915_WRITE(PIPEMISC(pipe), val);
8655         }
8656 }
8657
8658 static bool ironlake_compute_clocks(struct drm_crtc *crtc,
8659                                     struct intel_crtc_state *crtc_state,
8660                                     intel_clock_t *clock,
8661                                     bool *has_reduced_clock,
8662                                     intel_clock_t *reduced_clock)
8663 {
8664         struct drm_device *dev = crtc->dev;
8665         struct drm_i915_private *dev_priv = dev->dev_private;
8666         int refclk;
8667         const intel_limit_t *limit;
8668         bool ret;
8669
8670         refclk = ironlake_get_refclk(crtc_state);
8671
8672         /*
8673          * Returns a set of divisors for the desired target clock with the given
8674          * refclk, or FALSE.  The returned values represent the clock equation:
8675          * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
8676          */
8677         limit = intel_limit(crtc_state, refclk);
8678         ret = dev_priv->display.find_dpll(limit, crtc_state,
8679                                           crtc_state->port_clock,
8680                                           refclk, NULL, clock);
8681         if (!ret)
8682                 return false;
8683
8684         return true;
8685 }
8686
8687 int ironlake_get_lanes_required(int target_clock, int link_bw, int bpp)
8688 {
8689         /*
8690          * Account for spread spectrum to avoid
8691          * oversubscribing the link. Max center spread
8692          * is 2.5%; use 5% for safety's sake.
8693          */
8694         u32 bps = target_clock * bpp * 21 / 20;
8695         return DIV_ROUND_UP(bps, link_bw * 8);
8696 }
8697
8698 static bool ironlake_needs_fb_cb_tune(struct dpll *dpll, int factor)
8699 {
8700         return i9xx_dpll_compute_m(dpll) < factor * dpll->n;
8701 }
8702
8703 static uint32_t ironlake_compute_dpll(struct intel_crtc *intel_crtc,
8704                                       struct intel_crtc_state *crtc_state,
8705                                       u32 *fp,
8706                                       intel_clock_t *reduced_clock, u32 *fp2)
8707 {
8708         struct drm_crtc *crtc = &intel_crtc->base;
8709         struct drm_device *dev = crtc->dev;
8710         struct drm_i915_private *dev_priv = dev->dev_private;
8711         struct drm_atomic_state *state = crtc_state->base.state;
8712         struct drm_connector *connector;
8713         struct drm_connector_state *connector_state;
8714         struct intel_encoder *encoder;
8715         uint32_t dpll;
8716         int factor, num_connectors = 0, i;
8717         bool is_lvds = false, is_sdvo = false;
8718
8719         for_each_connector_in_state(state, connector, connector_state, i) {
8720                 if (connector_state->crtc != crtc_state->base.crtc)
8721                         continue;
8722
8723                 encoder = to_intel_encoder(connector_state->best_encoder);
8724
8725                 switch (encoder->type) {
8726                 case INTEL_OUTPUT_LVDS:
8727                         is_lvds = true;
8728                         break;
8729                 case INTEL_OUTPUT_SDVO:
8730                 case INTEL_OUTPUT_HDMI:
8731                         is_sdvo = true;
8732                         break;
8733                 default:
8734                         break;
8735                 }
8736
8737                 num_connectors++;
8738         }
8739
8740         /* Enable autotuning of the PLL clock (if permissible) */
8741         factor = 21;
8742         if (is_lvds) {
8743                 if ((intel_panel_use_ssc(dev_priv) &&
8744                      dev_priv->vbt.lvds_ssc_freq == 100000) ||
8745                     (HAS_PCH_IBX(dev) && intel_is_dual_link_lvds(dev)))
8746                         factor = 25;
8747         } else if (crtc_state->sdvo_tv_clock)
8748                 factor = 20;
8749
8750         if (ironlake_needs_fb_cb_tune(&crtc_state->dpll, factor))
8751                 *fp |= FP_CB_TUNE;
8752
8753         if (fp2 && (reduced_clock->m < factor * reduced_clock->n))
8754                 *fp2 |= FP_CB_TUNE;
8755
8756         dpll = 0;
8757
8758         if (is_lvds)
8759                 dpll |= DPLLB_MODE_LVDS;
8760         else
8761                 dpll |= DPLLB_MODE_DAC_SERIAL;
8762
8763         dpll |= (crtc_state->pixel_multiplier - 1)
8764                 << PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT;
8765
8766         if (is_sdvo)
8767                 dpll |= DPLL_SDVO_HIGH_SPEED;
8768         if (crtc_state->has_dp_encoder)
8769                 dpll |= DPLL_SDVO_HIGH_SPEED;
8770
8771         /* compute bitmask from p1 value */
8772         dpll |= (1 << (crtc_state->dpll.p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
8773         /* also FPA1 */
8774         dpll |= (1 << (crtc_state->dpll.p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
8775
8776         switch (crtc_state->dpll.p2) {
8777         case 5:
8778                 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
8779                 break;
8780         case 7:
8781                 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
8782                 break;
8783         case 10:
8784                 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
8785                 break;
8786         case 14:
8787                 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
8788                 break;
8789         }
8790
8791         if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2)
8792                 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
8793         else
8794                 dpll |= PLL_REF_INPUT_DREFCLK;
8795
8796         return dpll | DPLL_VCO_ENABLE;
8797 }
8798
8799 static int ironlake_crtc_compute_clock(struct intel_crtc *crtc,
8800                                        struct intel_crtc_state *crtc_state)
8801 {
8802         struct drm_device *dev = crtc->base.dev;
8803         intel_clock_t clock, reduced_clock;
8804         u32 dpll = 0, fp = 0, fp2 = 0;
8805         bool ok, has_reduced_clock = false;
8806         bool is_lvds = false;
8807         struct intel_shared_dpll *pll;
8808
8809         memset(&crtc_state->dpll_hw_state, 0,
8810                sizeof(crtc_state->dpll_hw_state));
8811
8812         is_lvds = intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS);
8813
8814         WARN(!(HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev)),
8815              "Unexpected PCH type %d\n", INTEL_PCH_TYPE(dev));
8816
8817         ok = ironlake_compute_clocks(&crtc->base, crtc_state, &clock,
8818                                      &has_reduced_clock, &reduced_clock);
8819         if (!ok && !crtc_state->clock_set) {
8820                 DRM_ERROR("Couldn't find PLL settings for mode!\n");
8821                 return -EINVAL;
8822         }
8823         /* Compat-code for transition, will disappear. */
8824         if (!crtc_state->clock_set) {
8825                 crtc_state->dpll.n = clock.n;
8826                 crtc_state->dpll.m1 = clock.m1;
8827                 crtc_state->dpll.m2 = clock.m2;
8828                 crtc_state->dpll.p1 = clock.p1;
8829                 crtc_state->dpll.p2 = clock.p2;
8830         }
8831
8832         /* CPU eDP is the only output that doesn't need a PCH PLL of its own. */
8833         if (crtc_state->has_pch_encoder) {
8834                 fp = i9xx_dpll_compute_fp(&crtc_state->dpll);
8835                 if (has_reduced_clock)
8836                         fp2 = i9xx_dpll_compute_fp(&reduced_clock);
8837
8838                 dpll = ironlake_compute_dpll(crtc, crtc_state,
8839                                              &fp, &reduced_clock,
8840                                              has_reduced_clock ? &fp2 : NULL);
8841
8842                 crtc_state->dpll_hw_state.dpll = dpll;
8843                 crtc_state->dpll_hw_state.fp0 = fp;
8844                 if (has_reduced_clock)
8845                         crtc_state->dpll_hw_state.fp1 = fp2;
8846                 else
8847                         crtc_state->dpll_hw_state.fp1 = fp;
8848
8849                 pll = intel_get_shared_dpll(crtc, crtc_state);
8850                 if (pll == NULL) {
8851                         DRM_DEBUG_DRIVER("failed to find PLL for pipe %c\n",
8852                                          pipe_name(crtc->pipe));
8853                         return -EINVAL;
8854                 }
8855         }
8856
8857         if (is_lvds && has_reduced_clock)
8858                 crtc->lowfreq_avail = true;
8859         else
8860                 crtc->lowfreq_avail = false;
8861
8862         return 0;
8863 }
8864
8865 static void intel_pch_transcoder_get_m_n(struct intel_crtc *crtc,
8866                                          struct intel_link_m_n *m_n)
8867 {
8868         struct drm_device *dev = crtc->base.dev;
8869         struct drm_i915_private *dev_priv = dev->dev_private;
8870         enum pipe pipe = crtc->pipe;
8871
8872         m_n->link_m = I915_READ(PCH_TRANS_LINK_M1(pipe));
8873         m_n->link_n = I915_READ(PCH_TRANS_LINK_N1(pipe));
8874         m_n->gmch_m = I915_READ(PCH_TRANS_DATA_M1(pipe))
8875                 & ~TU_SIZE_MASK;
8876         m_n->gmch_n = I915_READ(PCH_TRANS_DATA_N1(pipe));
8877         m_n->tu = ((I915_READ(PCH_TRANS_DATA_M1(pipe))
8878                     & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
8879 }
8880
8881 static void intel_cpu_transcoder_get_m_n(struct intel_crtc *crtc,
8882                                          enum transcoder transcoder,
8883                                          struct intel_link_m_n *m_n,
8884                                          struct intel_link_m_n *m2_n2)
8885 {
8886         struct drm_device *dev = crtc->base.dev;
8887         struct drm_i915_private *dev_priv = dev->dev_private;
8888         enum pipe pipe = crtc->pipe;
8889
8890         if (INTEL_INFO(dev)->gen >= 5) {
8891                 m_n->link_m = I915_READ(PIPE_LINK_M1(transcoder));
8892                 m_n->link_n = I915_READ(PIPE_LINK_N1(transcoder));
8893                 m_n->gmch_m = I915_READ(PIPE_DATA_M1(transcoder))
8894                         & ~TU_SIZE_MASK;
8895                 m_n->gmch_n = I915_READ(PIPE_DATA_N1(transcoder));
8896                 m_n->tu = ((I915_READ(PIPE_DATA_M1(transcoder))
8897                             & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
8898                 /* Read M2_N2 registers only for gen < 8 (M2_N2 available for
8899                  * gen < 8) and if DRRS is supported (to make sure the
8900                  * registers are not unnecessarily read).
8901                  */
8902                 if (m2_n2 && INTEL_INFO(dev)->gen < 8 &&
8903                         crtc->config->has_drrs) {
8904                         m2_n2->link_m = I915_READ(PIPE_LINK_M2(transcoder));
8905                         m2_n2->link_n = I915_READ(PIPE_LINK_N2(transcoder));
8906                         m2_n2->gmch_m = I915_READ(PIPE_DATA_M2(transcoder))
8907                                         & ~TU_SIZE_MASK;
8908                         m2_n2->gmch_n = I915_READ(PIPE_DATA_N2(transcoder));
8909                         m2_n2->tu = ((I915_READ(PIPE_DATA_M2(transcoder))
8910                                         & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
8911                 }
8912         } else {
8913                 m_n->link_m = I915_READ(PIPE_LINK_M_G4X(pipe));
8914                 m_n->link_n = I915_READ(PIPE_LINK_N_G4X(pipe));
8915                 m_n->gmch_m = I915_READ(PIPE_DATA_M_G4X(pipe))
8916                         & ~TU_SIZE_MASK;
8917                 m_n->gmch_n = I915_READ(PIPE_DATA_N_G4X(pipe));
8918                 m_n->tu = ((I915_READ(PIPE_DATA_M_G4X(pipe))
8919                             & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
8920         }
8921 }
8922
8923 void intel_dp_get_m_n(struct intel_crtc *crtc,
8924                       struct intel_crtc_state *pipe_config)
8925 {
8926         if (pipe_config->has_pch_encoder)
8927                 intel_pch_transcoder_get_m_n(crtc, &pipe_config->dp_m_n);
8928         else
8929                 intel_cpu_transcoder_get_m_n(crtc, pipe_config->cpu_transcoder,
8930                                              &pipe_config->dp_m_n,
8931                                              &pipe_config->dp_m2_n2);
8932 }
8933
8934 static void ironlake_get_fdi_m_n_config(struct intel_crtc *crtc,
8935                                         struct intel_crtc_state *pipe_config)
8936 {
8937         intel_cpu_transcoder_get_m_n(crtc, pipe_config->cpu_transcoder,
8938                                      &pipe_config->fdi_m_n, NULL);
8939 }
8940
8941 static void skylake_get_pfit_config(struct intel_crtc *crtc,
8942                                     struct intel_crtc_state *pipe_config)
8943 {
8944         struct drm_device *dev = crtc->base.dev;
8945         struct drm_i915_private *dev_priv = dev->dev_private;
8946         struct intel_crtc_scaler_state *scaler_state = &pipe_config->scaler_state;
8947         uint32_t ps_ctrl = 0;
8948         int id = -1;
8949         int i;
8950
8951         /* find scaler attached to this pipe */
8952         for (i = 0; i < crtc->num_scalers; i++) {
8953                 ps_ctrl = I915_READ(SKL_PS_CTRL(crtc->pipe, i));
8954                 if (ps_ctrl & PS_SCALER_EN && !(ps_ctrl & PS_PLANE_SEL_MASK)) {
8955                         id = i;
8956                         pipe_config->pch_pfit.enabled = true;
8957                         pipe_config->pch_pfit.pos = I915_READ(SKL_PS_WIN_POS(crtc->pipe, i));
8958                         pipe_config->pch_pfit.size = I915_READ(SKL_PS_WIN_SZ(crtc->pipe, i));
8959                         break;
8960                 }
8961         }
8962
8963         scaler_state->scaler_id = id;
8964         if (id >= 0) {
8965                 scaler_state->scaler_users |= (1 << SKL_CRTC_INDEX);
8966         } else {
8967                 scaler_state->scaler_users &= ~(1 << SKL_CRTC_INDEX);
8968         }
8969 }
8970
8971 static void
8972 skylake_get_initial_plane_config(struct intel_crtc *crtc,
8973                                  struct intel_initial_plane_config *plane_config)
8974 {
8975         struct drm_device *dev = crtc->base.dev;
8976         struct drm_i915_private *dev_priv = dev->dev_private;
8977         u32 val, base, offset, stride_mult, tiling;
8978         int pipe = crtc->pipe;
8979         int fourcc, pixel_format;
8980         unsigned int aligned_height;
8981         struct drm_framebuffer *fb;
8982         struct intel_framebuffer *intel_fb;
8983
8984         intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
8985         if (!intel_fb) {
8986                 DRM_DEBUG_KMS("failed to alloc fb\n");
8987                 return;
8988         }
8989
8990         fb = &intel_fb->base;
8991
8992         val = I915_READ(PLANE_CTL(pipe, 0));
8993         if (!(val & PLANE_CTL_ENABLE))
8994                 goto error;
8995
8996         pixel_format = val & PLANE_CTL_FORMAT_MASK;
8997         fourcc = skl_format_to_fourcc(pixel_format,
8998                                       val & PLANE_CTL_ORDER_RGBX,
8999                                       val & PLANE_CTL_ALPHA_MASK);
9000         fb->pixel_format = fourcc;
9001         fb->bits_per_pixel = drm_format_plane_cpp(fourcc, 0) * 8;
9002
9003         tiling = val & PLANE_CTL_TILED_MASK;
9004         switch (tiling) {
9005         case PLANE_CTL_TILED_LINEAR:
9006                 fb->modifier[0] = DRM_FORMAT_MOD_NONE;
9007                 break;
9008         case PLANE_CTL_TILED_X:
9009                 plane_config->tiling = I915_TILING_X;
9010                 fb->modifier[0] = I915_FORMAT_MOD_X_TILED;
9011                 break;
9012         case PLANE_CTL_TILED_Y:
9013                 fb->modifier[0] = I915_FORMAT_MOD_Y_TILED;
9014                 break;
9015         case PLANE_CTL_TILED_YF:
9016                 fb->modifier[0] = I915_FORMAT_MOD_Yf_TILED;
9017                 break;
9018         default:
9019                 MISSING_CASE(tiling);
9020                 goto error;
9021         }
9022
9023         base = I915_READ(PLANE_SURF(pipe, 0)) & 0xfffff000;
9024         plane_config->base = base;
9025
9026         offset = I915_READ(PLANE_OFFSET(pipe, 0));
9027
9028         val = I915_READ(PLANE_SIZE(pipe, 0));
9029         fb->height = ((val >> 16) & 0xfff) + 1;
9030         fb->width = ((val >> 0) & 0x1fff) + 1;
9031
9032         val = I915_READ(PLANE_STRIDE(pipe, 0));
9033         stride_mult = intel_fb_stride_alignment(dev, fb->modifier[0],
9034                                                 fb->pixel_format);
9035         fb->pitches[0] = (val & 0x3ff) * stride_mult;
9036
9037         aligned_height = intel_fb_align_height(dev, fb->height,
9038                                                fb->pixel_format,
9039                                                fb->modifier[0]);
9040
9041         plane_config->size = fb->pitches[0] * aligned_height;
9042
9043         DRM_DEBUG_KMS("pipe %c with fb: size=%dx%d@%d, offset=%x, pitch %d, size 0x%x\n",
9044                       pipe_name(pipe), fb->width, fb->height,
9045                       fb->bits_per_pixel, base, fb->pitches[0],
9046                       plane_config->size);
9047
9048         plane_config->fb = intel_fb;
9049         return;
9050
9051 error:
9052         kfree(fb);
9053 }
9054
9055 static void ironlake_get_pfit_config(struct intel_crtc *crtc,
9056                                      struct intel_crtc_state *pipe_config)
9057 {
9058         struct drm_device *dev = crtc->base.dev;
9059         struct drm_i915_private *dev_priv = dev->dev_private;
9060         uint32_t tmp;
9061
9062         tmp = I915_READ(PF_CTL(crtc->pipe));
9063
9064         if (tmp & PF_ENABLE) {
9065                 pipe_config->pch_pfit.enabled = true;
9066                 pipe_config->pch_pfit.pos = I915_READ(PF_WIN_POS(crtc->pipe));
9067                 pipe_config->pch_pfit.size = I915_READ(PF_WIN_SZ(crtc->pipe));
9068
9069                 /* We currently do not free assignements of panel fitters on
9070                  * ivb/hsw (since we don't use the higher upscaling modes which
9071                  * differentiates them) so just WARN about this case for now. */
9072                 if (IS_GEN7(dev)) {
9073                         WARN_ON((tmp & PF_PIPE_SEL_MASK_IVB) !=
9074                                 PF_PIPE_SEL_IVB(crtc->pipe));
9075                 }
9076         }
9077 }
9078
9079 static void
9080 ironlake_get_initial_plane_config(struct intel_crtc *crtc,
9081                                   struct intel_initial_plane_config *plane_config)
9082 {
9083         struct drm_device *dev = crtc->base.dev;
9084         struct drm_i915_private *dev_priv = dev->dev_private;
9085         u32 val, base, offset;
9086         int pipe = crtc->pipe;
9087         int fourcc, pixel_format;
9088         unsigned int aligned_height;
9089         struct drm_framebuffer *fb;
9090         struct intel_framebuffer *intel_fb;
9091
9092         val = I915_READ(DSPCNTR(pipe));
9093         if (!(val & DISPLAY_PLANE_ENABLE))
9094                 return;
9095
9096         intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
9097         if (!intel_fb) {
9098                 DRM_DEBUG_KMS("failed to alloc fb\n");
9099                 return;
9100         }
9101
9102         fb = &intel_fb->base;
9103
9104         if (INTEL_INFO(dev)->gen >= 4) {
9105                 if (val & DISPPLANE_TILED) {
9106                         plane_config->tiling = I915_TILING_X;
9107                         fb->modifier[0] = I915_FORMAT_MOD_X_TILED;
9108                 }
9109         }
9110
9111         pixel_format = val & DISPPLANE_PIXFORMAT_MASK;
9112         fourcc = i9xx_format_to_fourcc(pixel_format);
9113         fb->pixel_format = fourcc;
9114         fb->bits_per_pixel = drm_format_plane_cpp(fourcc, 0) * 8;
9115
9116         base = I915_READ(DSPSURF(pipe)) & 0xfffff000;
9117         if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
9118                 offset = I915_READ(DSPOFFSET(pipe));
9119         } else {
9120                 if (plane_config->tiling)
9121                         offset = I915_READ(DSPTILEOFF(pipe));
9122                 else
9123                         offset = I915_READ(DSPLINOFF(pipe));
9124         }
9125         plane_config->base = base;
9126
9127         val = I915_READ(PIPESRC(pipe));
9128         fb->width = ((val >> 16) & 0xfff) + 1;
9129         fb->height = ((val >> 0) & 0xfff) + 1;
9130
9131         val = I915_READ(DSPSTRIDE(pipe));
9132         fb->pitches[0] = val & 0xffffffc0;
9133
9134         aligned_height = intel_fb_align_height(dev, fb->height,
9135                                                fb->pixel_format,
9136                                                fb->modifier[0]);
9137
9138         plane_config->size = fb->pitches[0] * aligned_height;
9139
9140         DRM_DEBUG_KMS("pipe %c with fb: size=%dx%d@%d, offset=%x, pitch %d, size 0x%x\n",
9141                       pipe_name(pipe), fb->width, fb->height,
9142                       fb->bits_per_pixel, base, fb->pitches[0],
9143                       plane_config->size);
9144
9145         plane_config->fb = intel_fb;
9146 }
9147
9148 static bool ironlake_get_pipe_config(struct intel_crtc *crtc,
9149                                      struct intel_crtc_state *pipe_config)
9150 {
9151         struct drm_device *dev = crtc->base.dev;
9152         struct drm_i915_private *dev_priv = dev->dev_private;
9153         uint32_t tmp;
9154
9155         if (!intel_display_power_is_enabled(dev_priv,
9156                                             POWER_DOMAIN_PIPE(crtc->pipe)))
9157                 return false;
9158
9159         pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
9160         pipe_config->shared_dpll = DPLL_ID_PRIVATE;
9161
9162         tmp = I915_READ(PIPECONF(crtc->pipe));
9163         if (!(tmp & PIPECONF_ENABLE))
9164                 return false;
9165
9166         switch (tmp & PIPECONF_BPC_MASK) {
9167         case PIPECONF_6BPC:
9168                 pipe_config->pipe_bpp = 18;
9169                 break;
9170         case PIPECONF_8BPC:
9171                 pipe_config->pipe_bpp = 24;
9172                 break;
9173         case PIPECONF_10BPC:
9174                 pipe_config->pipe_bpp = 30;
9175                 break;
9176         case PIPECONF_12BPC:
9177                 pipe_config->pipe_bpp = 36;
9178                 break;
9179         default:
9180                 break;
9181         }
9182
9183         if (tmp & PIPECONF_COLOR_RANGE_SELECT)
9184                 pipe_config->limited_color_range = true;
9185
9186         if (I915_READ(PCH_TRANSCONF(crtc->pipe)) & TRANS_ENABLE) {
9187                 struct intel_shared_dpll *pll;
9188
9189                 pipe_config->has_pch_encoder = true;
9190
9191                 tmp = I915_READ(FDI_RX_CTL(crtc->pipe));
9192                 pipe_config->fdi_lanes = ((FDI_DP_PORT_WIDTH_MASK & tmp) >>
9193                                           FDI_DP_PORT_WIDTH_SHIFT) + 1;
9194
9195                 ironlake_get_fdi_m_n_config(crtc, pipe_config);
9196
9197                 if (HAS_PCH_IBX(dev_priv->dev)) {
9198                         pipe_config->shared_dpll =
9199                                 (enum intel_dpll_id) crtc->pipe;
9200                 } else {
9201                         tmp = I915_READ(PCH_DPLL_SEL);
9202                         if (tmp & TRANS_DPLLB_SEL(crtc->pipe))
9203                                 pipe_config->shared_dpll = DPLL_ID_PCH_PLL_B;
9204                         else
9205                                 pipe_config->shared_dpll = DPLL_ID_PCH_PLL_A;
9206                 }
9207
9208                 pll = &dev_priv->shared_dplls[pipe_config->shared_dpll];
9209
9210                 WARN_ON(!pll->get_hw_state(dev_priv, pll,
9211                                            &pipe_config->dpll_hw_state));
9212
9213                 tmp = pipe_config->dpll_hw_state.dpll;
9214                 pipe_config->pixel_multiplier =
9215                         ((tmp & PLL_REF_SDVO_HDMI_MULTIPLIER_MASK)
9216                          >> PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT) + 1;
9217
9218                 ironlake_pch_clock_get(crtc, pipe_config);
9219         } else {
9220                 pipe_config->pixel_multiplier = 1;
9221         }
9222
9223         intel_get_pipe_timings(crtc, pipe_config);
9224
9225         ironlake_get_pfit_config(crtc, pipe_config);
9226
9227         return true;
9228 }
9229
9230 static void assert_can_disable_lcpll(struct drm_i915_private *dev_priv)
9231 {
9232         struct drm_device *dev = dev_priv->dev;
9233         struct intel_crtc *crtc;
9234
9235         for_each_intel_crtc(dev, crtc)
9236                 I915_STATE_WARN(crtc->active, "CRTC for pipe %c enabled\n",
9237                      pipe_name(crtc->pipe));
9238
9239         I915_STATE_WARN(I915_READ(HSW_PWR_WELL_DRIVER), "Power well on\n");
9240         I915_STATE_WARN(I915_READ(SPLL_CTL) & SPLL_PLL_ENABLE, "SPLL enabled\n");
9241         I915_STATE_WARN(I915_READ(WRPLL_CTL1) & WRPLL_PLL_ENABLE, "WRPLL1 enabled\n");
9242         I915_STATE_WARN(I915_READ(WRPLL_CTL2) & WRPLL_PLL_ENABLE, "WRPLL2 enabled\n");
9243         I915_STATE_WARN(I915_READ(PCH_PP_STATUS) & PP_ON, "Panel power on\n");
9244         I915_STATE_WARN(I915_READ(BLC_PWM_CPU_CTL2) & BLM_PWM_ENABLE,
9245              "CPU PWM1 enabled\n");
9246         if (IS_HASWELL(dev))
9247                 I915_STATE_WARN(I915_READ(HSW_BLC_PWM2_CTL) & BLM_PWM_ENABLE,
9248                      "CPU PWM2 enabled\n");
9249         I915_STATE_WARN(I915_READ(BLC_PWM_PCH_CTL1) & BLM_PCH_PWM_ENABLE,
9250              "PCH PWM1 enabled\n");
9251         I915_STATE_WARN(I915_READ(UTIL_PIN_CTL) & UTIL_PIN_ENABLE,
9252              "Utility pin enabled\n");
9253         I915_STATE_WARN(I915_READ(PCH_GTC_CTL) & PCH_GTC_ENABLE, "PCH GTC enabled\n");
9254
9255         /*
9256          * In theory we can still leave IRQs enabled, as long as only the HPD
9257          * interrupts remain enabled. We used to check for that, but since it's
9258          * gen-specific and since we only disable LCPLL after we fully disable
9259          * the interrupts, the check below should be enough.
9260          */
9261         I915_STATE_WARN(intel_irqs_enabled(dev_priv), "IRQs enabled\n");
9262 }
9263
9264 static uint32_t hsw_read_dcomp(struct drm_i915_private *dev_priv)
9265 {
9266         struct drm_device *dev = dev_priv->dev;
9267
9268         if (IS_HASWELL(dev))
9269                 return I915_READ(D_COMP_HSW);
9270         else
9271                 return I915_READ(D_COMP_BDW);
9272 }
9273
9274 static void hsw_write_dcomp(struct drm_i915_private *dev_priv, uint32_t val)
9275 {
9276         struct drm_device *dev = dev_priv->dev;
9277
9278         if (IS_HASWELL(dev)) {
9279                 mutex_lock(&dev_priv->rps.hw_lock);
9280                 if (sandybridge_pcode_write(dev_priv, GEN6_PCODE_WRITE_D_COMP,
9281                                             val))
9282                         DRM_ERROR("Failed to write to D_COMP\n");
9283                 mutex_unlock(&dev_priv->rps.hw_lock);
9284         } else {
9285                 I915_WRITE(D_COMP_BDW, val);
9286                 POSTING_READ(D_COMP_BDW);
9287         }
9288 }
9289
9290 /*
9291  * This function implements pieces of two sequences from BSpec:
9292  * - Sequence for display software to disable LCPLL
9293  * - Sequence for display software to allow package C8+
9294  * The steps implemented here are just the steps that actually touch the LCPLL
9295  * register. Callers should take care of disabling all the display engine
9296  * functions, doing the mode unset, fixing interrupts, etc.
9297  */
9298 static void hsw_disable_lcpll(struct drm_i915_private *dev_priv,
9299                               bool switch_to_fclk, bool allow_power_down)
9300 {
9301         uint32_t val;
9302
9303         assert_can_disable_lcpll(dev_priv);
9304
9305         val = I915_READ(LCPLL_CTL);
9306
9307         if (switch_to_fclk) {
9308                 val |= LCPLL_CD_SOURCE_FCLK;
9309                 I915_WRITE(LCPLL_CTL, val);
9310
9311                 if (wait_for_atomic_us(I915_READ(LCPLL_CTL) &
9312                                        LCPLL_CD_SOURCE_FCLK_DONE, 1))
9313                         DRM_ERROR("Switching to FCLK failed\n");
9314
9315                 val = I915_READ(LCPLL_CTL);
9316         }
9317
9318         val |= LCPLL_PLL_DISABLE;
9319         I915_WRITE(LCPLL_CTL, val);
9320         POSTING_READ(LCPLL_CTL);
9321
9322         if (wait_for((I915_READ(LCPLL_CTL) & LCPLL_PLL_LOCK) == 0, 1))
9323                 DRM_ERROR("LCPLL still locked\n");
9324
9325         val = hsw_read_dcomp(dev_priv);
9326         val |= D_COMP_COMP_DISABLE;
9327         hsw_write_dcomp(dev_priv, val);
9328         ndelay(100);
9329
9330         if (wait_for((hsw_read_dcomp(dev_priv) & D_COMP_RCOMP_IN_PROGRESS) == 0,
9331                      1))
9332                 DRM_ERROR("D_COMP RCOMP still in progress\n");
9333
9334         if (allow_power_down) {
9335                 val = I915_READ(LCPLL_CTL);
9336                 val |= LCPLL_POWER_DOWN_ALLOW;
9337                 I915_WRITE(LCPLL_CTL, val);
9338                 POSTING_READ(LCPLL_CTL);
9339         }
9340 }
9341
9342 /*
9343  * Fully restores LCPLL, disallowing power down and switching back to LCPLL
9344  * source.
9345  */
9346 static void hsw_restore_lcpll(struct drm_i915_private *dev_priv)
9347 {
9348         uint32_t val;
9349
9350         val = I915_READ(LCPLL_CTL);
9351
9352         if ((val & (LCPLL_PLL_LOCK | LCPLL_PLL_DISABLE | LCPLL_CD_SOURCE_FCLK |
9353                     LCPLL_POWER_DOWN_ALLOW)) == LCPLL_PLL_LOCK)
9354                 return;
9355
9356         /*
9357          * Make sure we're not on PC8 state before disabling PC8, otherwise
9358          * we'll hang the machine. To prevent PC8 state, just enable force_wake.
9359          */
9360         intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
9361
9362         if (val & LCPLL_POWER_DOWN_ALLOW) {
9363                 val &= ~LCPLL_POWER_DOWN_ALLOW;
9364                 I915_WRITE(LCPLL_CTL, val);
9365                 POSTING_READ(LCPLL_CTL);
9366         }
9367
9368         val = hsw_read_dcomp(dev_priv);
9369         val |= D_COMP_COMP_FORCE;
9370         val &= ~D_COMP_COMP_DISABLE;
9371         hsw_write_dcomp(dev_priv, val);
9372
9373         val = I915_READ(LCPLL_CTL);
9374         val &= ~LCPLL_PLL_DISABLE;
9375         I915_WRITE(LCPLL_CTL, val);
9376
9377         if (wait_for(I915_READ(LCPLL_CTL) & LCPLL_PLL_LOCK, 5))
9378                 DRM_ERROR("LCPLL not locked yet\n");
9379
9380         if (val & LCPLL_CD_SOURCE_FCLK) {
9381                 val = I915_READ(LCPLL_CTL);
9382                 val &= ~LCPLL_CD_SOURCE_FCLK;
9383                 I915_WRITE(LCPLL_CTL, val);
9384
9385                 if (wait_for_atomic_us((I915_READ(LCPLL_CTL) &
9386                                         LCPLL_CD_SOURCE_FCLK_DONE) == 0, 1))
9387                         DRM_ERROR("Switching back to LCPLL failed\n");
9388         }
9389
9390         intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
9391         intel_update_cdclk(dev_priv->dev);
9392 }
9393
9394 /*
9395  * Package states C8 and deeper are really deep PC states that can only be
9396  * reached when all the devices on the system allow it, so even if the graphics
9397  * device allows PC8+, it doesn't mean the system will actually get to these
9398  * states. Our driver only allows PC8+ when going into runtime PM.
9399  *
9400  * The requirements for PC8+ are that all the outputs are disabled, the power
9401  * well is disabled and most interrupts are disabled, and these are also
9402  * requirements for runtime PM. When these conditions are met, we manually do
9403  * the other conditions: disable the interrupts, clocks and switch LCPLL refclk
9404  * to Fclk. If we're in PC8+ and we get an non-hotplug interrupt, we can hard
9405  * hang the machine.
9406  *
9407  * When we really reach PC8 or deeper states (not just when we allow it) we lose
9408  * the state of some registers, so when we come back from PC8+ we need to
9409  * restore this state. We don't get into PC8+ if we're not in RC6, so we don't
9410  * need to take care of the registers kept by RC6. Notice that this happens even
9411  * if we don't put the device in PCI D3 state (which is what currently happens
9412  * because of the runtime PM support).
9413  *
9414  * For more, read "Display Sequences for Package C8" on the hardware
9415  * documentation.
9416  */
9417 void hsw_enable_pc8(struct drm_i915_private *dev_priv)
9418 {
9419         struct drm_device *dev = dev_priv->dev;
9420         uint32_t val;
9421
9422         DRM_DEBUG_KMS("Enabling package C8+\n");
9423
9424         if (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) {
9425                 val = I915_READ(SOUTH_DSPCLK_GATE_D);
9426                 val &= ~PCH_LP_PARTITION_LEVEL_DISABLE;
9427                 I915_WRITE(SOUTH_DSPCLK_GATE_D, val);
9428         }
9429
9430         lpt_disable_clkout_dp(dev);
9431         hsw_disable_lcpll(dev_priv, true, true);
9432 }
9433
9434 void hsw_disable_pc8(struct drm_i915_private *dev_priv)
9435 {
9436         struct drm_device *dev = dev_priv->dev;
9437         uint32_t val;
9438
9439         DRM_DEBUG_KMS("Disabling package C8+\n");
9440
9441         hsw_restore_lcpll(dev_priv);
9442         lpt_init_pch_refclk(dev);
9443
9444         if (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) {
9445                 val = I915_READ(SOUTH_DSPCLK_GATE_D);
9446                 val |= PCH_LP_PARTITION_LEVEL_DISABLE;
9447                 I915_WRITE(SOUTH_DSPCLK_GATE_D, val);
9448         }
9449
9450         intel_prepare_ddi(dev);
9451 }
9452
9453 static void broxton_modeset_commit_cdclk(struct drm_atomic_state *old_state)
9454 {
9455         struct drm_device *dev = old_state->dev;
9456         unsigned int req_cdclk = to_intel_atomic_state(old_state)->cdclk;
9457
9458         broxton_set_cdclk(dev, req_cdclk);
9459 }
9460
9461 /* compute the max rate for new configuration */
9462 static int ilk_max_pixel_rate(struct drm_atomic_state *state)
9463 {
9464         struct intel_crtc *intel_crtc;
9465         struct intel_crtc_state *crtc_state;
9466         int max_pixel_rate = 0;
9467
9468         for_each_intel_crtc(state->dev, intel_crtc) {
9469                 int pixel_rate;
9470
9471                 crtc_state = intel_atomic_get_crtc_state(state, intel_crtc);
9472                 if (IS_ERR(crtc_state))
9473                         return PTR_ERR(crtc_state);
9474
9475                 if (!crtc_state->base.enable)
9476                         continue;
9477
9478                 pixel_rate = ilk_pipe_pixel_rate(crtc_state);
9479
9480                 /* pixel rate mustn't exceed 95% of cdclk with IPS on BDW */
9481                 if (IS_BROADWELL(state->dev) && crtc_state->ips_enabled)
9482                         pixel_rate = DIV_ROUND_UP(pixel_rate * 100, 95);
9483
9484                 max_pixel_rate = max(max_pixel_rate, pixel_rate);
9485         }
9486
9487         return max_pixel_rate;
9488 }
9489
9490 static void broadwell_set_cdclk(struct drm_device *dev, int cdclk)
9491 {
9492         struct drm_i915_private *dev_priv = dev->dev_private;
9493         uint32_t val, data;
9494         int ret;
9495
9496         if (WARN((I915_READ(LCPLL_CTL) &
9497                   (LCPLL_PLL_DISABLE | LCPLL_PLL_LOCK |
9498                    LCPLL_CD_CLOCK_DISABLE | LCPLL_ROOT_CD_CLOCK_DISABLE |
9499                    LCPLL_CD2X_CLOCK_DISABLE | LCPLL_POWER_DOWN_ALLOW |
9500                    LCPLL_CD_SOURCE_FCLK)) != LCPLL_PLL_LOCK,
9501                  "trying to change cdclk frequency with cdclk not enabled\n"))
9502                 return;
9503
9504         mutex_lock(&dev_priv->rps.hw_lock);
9505         ret = sandybridge_pcode_write(dev_priv,
9506                                       BDW_PCODE_DISPLAY_FREQ_CHANGE_REQ, 0x0);
9507         mutex_unlock(&dev_priv->rps.hw_lock);
9508         if (ret) {
9509                 DRM_ERROR("failed to inform pcode about cdclk change\n");
9510                 return;
9511         }
9512
9513         val = I915_READ(LCPLL_CTL);
9514         val |= LCPLL_CD_SOURCE_FCLK;
9515         I915_WRITE(LCPLL_CTL, val);
9516
9517         if (wait_for_atomic_us(I915_READ(LCPLL_CTL) &
9518                                LCPLL_CD_SOURCE_FCLK_DONE, 1))
9519                 DRM_ERROR("Switching to FCLK failed\n");
9520
9521         val = I915_READ(LCPLL_CTL);
9522         val &= ~LCPLL_CLK_FREQ_MASK;
9523
9524         switch (cdclk) {
9525         case 450000:
9526                 val |= LCPLL_CLK_FREQ_450;
9527                 data = 0;
9528                 break;
9529         case 540000:
9530                 val |= LCPLL_CLK_FREQ_54O_BDW;
9531                 data = 1;
9532                 break;
9533         case 337500:
9534                 val |= LCPLL_CLK_FREQ_337_5_BDW;
9535                 data = 2;
9536                 break;
9537         case 675000:
9538                 val |= LCPLL_CLK_FREQ_675_BDW;
9539                 data = 3;
9540                 break;
9541         default:
9542                 WARN(1, "invalid cdclk frequency\n");
9543                 return;
9544         }
9545
9546         I915_WRITE(LCPLL_CTL, val);
9547
9548         val = I915_READ(LCPLL_CTL);
9549         val &= ~LCPLL_CD_SOURCE_FCLK;
9550         I915_WRITE(LCPLL_CTL, val);
9551
9552         if (wait_for_atomic_us((I915_READ(LCPLL_CTL) &
9553                                 LCPLL_CD_SOURCE_FCLK_DONE) == 0, 1))
9554                 DRM_ERROR("Switching back to LCPLL failed\n");
9555
9556         mutex_lock(&dev_priv->rps.hw_lock);
9557         sandybridge_pcode_write(dev_priv, HSW_PCODE_DE_WRITE_FREQ_REQ, data);
9558         mutex_unlock(&dev_priv->rps.hw_lock);
9559
9560         intel_update_cdclk(dev);
9561
9562         WARN(cdclk != dev_priv->cdclk_freq,
9563              "cdclk requested %d kHz but got %d kHz\n",
9564              cdclk, dev_priv->cdclk_freq);
9565 }
9566
9567 static int broadwell_modeset_calc_cdclk(struct drm_atomic_state *state)
9568 {
9569         struct drm_i915_private *dev_priv = to_i915(state->dev);
9570         int max_pixclk = ilk_max_pixel_rate(state);
9571         int cdclk;
9572
9573         /*
9574          * FIXME should also account for plane ratio
9575          * once 64bpp pixel formats are supported.
9576          */
9577         if (max_pixclk > 540000)
9578                 cdclk = 675000;
9579         else if (max_pixclk > 450000)
9580                 cdclk = 540000;
9581         else if (max_pixclk > 337500)
9582                 cdclk = 450000;
9583         else
9584                 cdclk = 337500;
9585
9586         /*
9587          * FIXME move the cdclk caclulation to
9588          * compute_config() so we can fail gracegully.
9589          */
9590         if (cdclk > dev_priv->max_cdclk_freq) {
9591                 DRM_ERROR("requested cdclk (%d kHz) exceeds max (%d kHz)\n",
9592                           cdclk, dev_priv->max_cdclk_freq);
9593                 cdclk = dev_priv->max_cdclk_freq;
9594         }
9595
9596         to_intel_atomic_state(state)->cdclk = cdclk;
9597
9598         return 0;
9599 }
9600
9601 static void broadwell_modeset_commit_cdclk(struct drm_atomic_state *old_state)
9602 {
9603         struct drm_device *dev = old_state->dev;
9604         unsigned int req_cdclk = to_intel_atomic_state(old_state)->cdclk;
9605
9606         broadwell_set_cdclk(dev, req_cdclk);
9607 }
9608
9609 static int haswell_crtc_compute_clock(struct intel_crtc *crtc,
9610                                       struct intel_crtc_state *crtc_state)
9611 {
9612         if (!intel_ddi_pll_select(crtc, crtc_state))
9613                 return -EINVAL;
9614
9615         crtc->lowfreq_avail = false;
9616
9617         return 0;
9618 }
9619
9620 static void bxt_get_ddi_pll(struct drm_i915_private *dev_priv,
9621                                 enum port port,
9622                                 struct intel_crtc_state *pipe_config)
9623 {
9624         switch (port) {
9625         case PORT_A:
9626                 pipe_config->ddi_pll_sel = SKL_DPLL0;
9627                 pipe_config->shared_dpll = DPLL_ID_SKL_DPLL1;
9628                 break;
9629         case PORT_B:
9630                 pipe_config->ddi_pll_sel = SKL_DPLL1;
9631                 pipe_config->shared_dpll = DPLL_ID_SKL_DPLL2;
9632                 break;
9633         case PORT_C:
9634                 pipe_config->ddi_pll_sel = SKL_DPLL2;
9635                 pipe_config->shared_dpll = DPLL_ID_SKL_DPLL3;
9636                 break;
9637         default:
9638                 DRM_ERROR("Incorrect port type\n");
9639         }
9640 }
9641
9642 static void skylake_get_ddi_pll(struct drm_i915_private *dev_priv,
9643                                 enum port port,
9644                                 struct intel_crtc_state *pipe_config)
9645 {
9646         u32 temp, dpll_ctl1;
9647
9648         temp = I915_READ(DPLL_CTRL2) & DPLL_CTRL2_DDI_CLK_SEL_MASK(port);
9649         pipe_config->ddi_pll_sel = temp >> (port * 3 + 1);
9650
9651         switch (pipe_config->ddi_pll_sel) {
9652         case SKL_DPLL0:
9653                 /*
9654                  * On SKL the eDP DPLL (DPLL0 as we don't use SSC) is not part
9655                  * of the shared DPLL framework and thus needs to be read out
9656                  * separately
9657                  */
9658                 dpll_ctl1 = I915_READ(DPLL_CTRL1);
9659                 pipe_config->dpll_hw_state.ctrl1 = dpll_ctl1 & 0x3f;
9660                 break;
9661         case SKL_DPLL1:
9662                 pipe_config->shared_dpll = DPLL_ID_SKL_DPLL1;
9663                 break;
9664         case SKL_DPLL2:
9665                 pipe_config->shared_dpll = DPLL_ID_SKL_DPLL2;
9666                 break;
9667         case SKL_DPLL3:
9668                 pipe_config->shared_dpll = DPLL_ID_SKL_DPLL3;
9669                 break;
9670         }
9671 }
9672
9673 static void haswell_get_ddi_pll(struct drm_i915_private *dev_priv,
9674                                 enum port port,
9675                                 struct intel_crtc_state *pipe_config)
9676 {
9677         pipe_config->ddi_pll_sel = I915_READ(PORT_CLK_SEL(port));
9678
9679         switch (pipe_config->ddi_pll_sel) {
9680         case PORT_CLK_SEL_WRPLL1:
9681                 pipe_config->shared_dpll = DPLL_ID_WRPLL1;
9682                 break;
9683         case PORT_CLK_SEL_WRPLL2:
9684                 pipe_config->shared_dpll = DPLL_ID_WRPLL2;
9685                 break;
9686         }
9687 }
9688
9689 static void haswell_get_ddi_port_state(struct intel_crtc *crtc,
9690                                        struct intel_crtc_state *pipe_config)
9691 {
9692         struct drm_device *dev = crtc->base.dev;
9693         struct drm_i915_private *dev_priv = dev->dev_private;
9694         struct intel_shared_dpll *pll;
9695         enum port port;
9696         uint32_t tmp;
9697
9698         tmp = I915_READ(TRANS_DDI_FUNC_CTL(pipe_config->cpu_transcoder));
9699
9700         port = (tmp & TRANS_DDI_PORT_MASK) >> TRANS_DDI_PORT_SHIFT;
9701
9702         if (IS_SKYLAKE(dev))
9703                 skylake_get_ddi_pll(dev_priv, port, pipe_config);
9704         else if (IS_BROXTON(dev))
9705                 bxt_get_ddi_pll(dev_priv, port, pipe_config);
9706         else
9707                 haswell_get_ddi_pll(dev_priv, port, pipe_config);
9708
9709         if (pipe_config->shared_dpll >= 0) {
9710                 pll = &dev_priv->shared_dplls[pipe_config->shared_dpll];
9711
9712                 WARN_ON(!pll->get_hw_state(dev_priv, pll,
9713                                            &pipe_config->dpll_hw_state));
9714         }
9715
9716         /*
9717          * Haswell has only FDI/PCH transcoder A. It is which is connected to
9718          * DDI E. So just check whether this pipe is wired to DDI E and whether
9719          * the PCH transcoder is on.
9720          */
9721         if (INTEL_INFO(dev)->gen < 9 &&
9722             (port == PORT_E) && I915_READ(LPT_TRANSCONF) & TRANS_ENABLE) {
9723                 pipe_config->has_pch_encoder = true;
9724
9725                 tmp = I915_READ(FDI_RX_CTL(PIPE_A));
9726                 pipe_config->fdi_lanes = ((FDI_DP_PORT_WIDTH_MASK & tmp) >>
9727                                           FDI_DP_PORT_WIDTH_SHIFT) + 1;
9728
9729                 ironlake_get_fdi_m_n_config(crtc, pipe_config);
9730         }
9731 }
9732
9733 static bool haswell_get_pipe_config(struct intel_crtc *crtc,
9734                                     struct intel_crtc_state *pipe_config)
9735 {
9736         struct drm_device *dev = crtc->base.dev;
9737         struct drm_i915_private *dev_priv = dev->dev_private;
9738         enum intel_display_power_domain pfit_domain;
9739         uint32_t tmp;
9740
9741         if (!intel_display_power_is_enabled(dev_priv,
9742                                          POWER_DOMAIN_PIPE(crtc->pipe)))
9743                 return false;
9744
9745         pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
9746         pipe_config->shared_dpll = DPLL_ID_PRIVATE;
9747
9748         tmp = I915_READ(TRANS_DDI_FUNC_CTL(TRANSCODER_EDP));
9749         if (tmp & TRANS_DDI_FUNC_ENABLE) {
9750                 enum pipe trans_edp_pipe;
9751                 switch (tmp & TRANS_DDI_EDP_INPUT_MASK) {
9752                 default:
9753                         WARN(1, "unknown pipe linked to edp transcoder\n");
9754                 case TRANS_DDI_EDP_INPUT_A_ONOFF:
9755                 case TRANS_DDI_EDP_INPUT_A_ON:
9756                         trans_edp_pipe = PIPE_A;
9757                         break;
9758                 case TRANS_DDI_EDP_INPUT_B_ONOFF:
9759                         trans_edp_pipe = PIPE_B;
9760                         break;
9761                 case TRANS_DDI_EDP_INPUT_C_ONOFF:
9762                         trans_edp_pipe = PIPE_C;
9763                         break;
9764                 }
9765
9766                 if (trans_edp_pipe == crtc->pipe)
9767                         pipe_config->cpu_transcoder = TRANSCODER_EDP;
9768         }
9769
9770         if (!intel_display_power_is_enabled(dev_priv,
9771                         POWER_DOMAIN_TRANSCODER(pipe_config->cpu_transcoder)))
9772                 return false;
9773
9774         tmp = I915_READ(PIPECONF(pipe_config->cpu_transcoder));
9775         if (!(tmp & PIPECONF_ENABLE))
9776                 return false;
9777
9778         haswell_get_ddi_port_state(crtc, pipe_config);
9779
9780         intel_get_pipe_timings(crtc, pipe_config);
9781
9782         if (INTEL_INFO(dev)->gen >= 9) {
9783                 skl_init_scalers(dev, crtc, pipe_config);
9784         }
9785
9786         pfit_domain = POWER_DOMAIN_PIPE_PANEL_FITTER(crtc->pipe);
9787
9788         if (INTEL_INFO(dev)->gen >= 9) {
9789                 pipe_config->scaler_state.scaler_id = -1;
9790                 pipe_config->scaler_state.scaler_users &= ~(1 << SKL_CRTC_INDEX);
9791         }
9792
9793         if (intel_display_power_is_enabled(dev_priv, pfit_domain)) {
9794                 if (INTEL_INFO(dev)->gen == 9)
9795                         skylake_get_pfit_config(crtc, pipe_config);
9796                 else if (INTEL_INFO(dev)->gen < 9)
9797                         ironlake_get_pfit_config(crtc, pipe_config);
9798                 else
9799                         MISSING_CASE(INTEL_INFO(dev)->gen);
9800         }
9801
9802         if (IS_HASWELL(dev))
9803                 pipe_config->ips_enabled = hsw_crtc_supports_ips(crtc) &&
9804                         (I915_READ(IPS_CTL) & IPS_ENABLE);
9805
9806         if (pipe_config->cpu_transcoder != TRANSCODER_EDP) {
9807                 pipe_config->pixel_multiplier =
9808                         I915_READ(PIPE_MULT(pipe_config->cpu_transcoder)) + 1;
9809         } else {
9810                 pipe_config->pixel_multiplier = 1;
9811         }
9812
9813         return true;
9814 }
9815
9816 static void i845_update_cursor(struct drm_crtc *crtc, u32 base)
9817 {
9818         struct drm_device *dev = crtc->dev;
9819         struct drm_i915_private *dev_priv = dev->dev_private;
9820         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9821         uint32_t cntl = 0, size = 0;
9822
9823         if (base) {
9824                 unsigned int width = intel_crtc->base.cursor->state->crtc_w;
9825                 unsigned int height = intel_crtc->base.cursor->state->crtc_h;
9826                 unsigned int stride = roundup_pow_of_two(width) * 4;
9827
9828                 switch (stride) {
9829                 default:
9830                         WARN_ONCE(1, "Invalid cursor width/stride, width=%u, stride=%u\n",
9831                                   width, stride);
9832                         stride = 256;
9833                         /* fallthrough */
9834                 case 256:
9835                 case 512:
9836                 case 1024:
9837                 case 2048:
9838                         break;
9839                 }
9840
9841                 cntl |= CURSOR_ENABLE |
9842                         CURSOR_GAMMA_ENABLE |
9843                         CURSOR_FORMAT_ARGB |
9844                         CURSOR_STRIDE(stride);
9845
9846                 size = (height << 12) | width;
9847         }
9848
9849         if (intel_crtc->cursor_cntl != 0 &&
9850             (intel_crtc->cursor_base != base ||
9851              intel_crtc->cursor_size != size ||
9852              intel_crtc->cursor_cntl != cntl)) {
9853                 /* On these chipsets we can only modify the base/size/stride
9854                  * whilst the cursor is disabled.
9855                  */
9856                 I915_WRITE(_CURACNTR, 0);
9857                 POSTING_READ(_CURACNTR);
9858                 intel_crtc->cursor_cntl = 0;
9859         }
9860
9861         if (intel_crtc->cursor_base != base) {
9862                 I915_WRITE(_CURABASE, base);
9863                 intel_crtc->cursor_base = base;
9864         }
9865
9866         if (intel_crtc->cursor_size != size) {
9867                 I915_WRITE(CURSIZE, size);
9868                 intel_crtc->cursor_size = size;
9869         }
9870
9871         if (intel_crtc->cursor_cntl != cntl) {
9872                 I915_WRITE(_CURACNTR, cntl);
9873                 POSTING_READ(_CURACNTR);
9874                 intel_crtc->cursor_cntl = cntl;
9875         }
9876 }
9877
9878 static void i9xx_update_cursor(struct drm_crtc *crtc, u32 base)
9879 {
9880         struct drm_device *dev = crtc->dev;
9881         struct drm_i915_private *dev_priv = dev->dev_private;
9882         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9883         int pipe = intel_crtc->pipe;
9884         uint32_t cntl;
9885
9886         cntl = 0;
9887         if (base) {
9888                 cntl = MCURSOR_GAMMA_ENABLE;
9889                 switch (intel_crtc->base.cursor->state->crtc_w) {
9890                         case 64:
9891                                 cntl |= CURSOR_MODE_64_ARGB_AX;
9892                                 break;
9893                         case 128:
9894                                 cntl |= CURSOR_MODE_128_ARGB_AX;
9895                                 break;
9896                         case 256:
9897                                 cntl |= CURSOR_MODE_256_ARGB_AX;
9898                                 break;
9899                         default:
9900                                 MISSING_CASE(intel_crtc->base.cursor->state->crtc_w);
9901                                 return;
9902                 }
9903                 cntl |= pipe << 28; /* Connect to correct pipe */
9904
9905                 if (IS_HASWELL(dev) || IS_BROADWELL(dev))
9906                         cntl |= CURSOR_PIPE_CSC_ENABLE;
9907         }
9908
9909         if (crtc->cursor->state->rotation == BIT(DRM_ROTATE_180))
9910                 cntl |= CURSOR_ROTATE_180;
9911
9912         if (intel_crtc->cursor_cntl != cntl) {
9913                 I915_WRITE(CURCNTR(pipe), cntl);
9914                 POSTING_READ(CURCNTR(pipe));
9915                 intel_crtc->cursor_cntl = cntl;
9916         }
9917
9918         /* and commit changes on next vblank */
9919         I915_WRITE(CURBASE(pipe), base);
9920         POSTING_READ(CURBASE(pipe));
9921
9922         intel_crtc->cursor_base = base;
9923 }
9924
9925 /* If no-part of the cursor is visible on the framebuffer, then the GPU may hang... */
9926 static void intel_crtc_update_cursor(struct drm_crtc *crtc,
9927                                      bool on)
9928 {
9929         struct drm_device *dev = crtc->dev;
9930         struct drm_i915_private *dev_priv = dev->dev_private;
9931         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9932         int pipe = intel_crtc->pipe;
9933         int x = crtc->cursor_x;
9934         int y = crtc->cursor_y;
9935         u32 base = 0, pos = 0;
9936
9937         if (on)
9938                 base = intel_crtc->cursor_addr;
9939
9940         if (x >= intel_crtc->config->pipe_src_w)
9941                 base = 0;
9942
9943         if (y >= intel_crtc->config->pipe_src_h)
9944                 base = 0;
9945
9946         if (x < 0) {
9947                 if (x + intel_crtc->base.cursor->state->crtc_w <= 0)
9948                         base = 0;
9949
9950                 pos |= CURSOR_POS_SIGN << CURSOR_X_SHIFT;
9951                 x = -x;
9952         }
9953         pos |= x << CURSOR_X_SHIFT;
9954
9955         if (y < 0) {
9956                 if (y + intel_crtc->base.cursor->state->crtc_h <= 0)
9957                         base = 0;
9958
9959                 pos |= CURSOR_POS_SIGN << CURSOR_Y_SHIFT;
9960                 y = -y;
9961         }
9962         pos |= y << CURSOR_Y_SHIFT;
9963
9964         if (base == 0 && intel_crtc->cursor_base == 0)
9965                 return;
9966
9967         I915_WRITE(CURPOS(pipe), pos);
9968
9969         /* ILK+ do this automagically */
9970         if (HAS_GMCH_DISPLAY(dev) &&
9971             crtc->cursor->state->rotation == BIT(DRM_ROTATE_180)) {
9972                 base += (intel_crtc->base.cursor->state->crtc_h *
9973                         intel_crtc->base.cursor->state->crtc_w - 1) * 4;
9974         }
9975
9976         if (IS_845G(dev) || IS_I865G(dev))
9977                 i845_update_cursor(crtc, base);
9978         else
9979                 i9xx_update_cursor(crtc, base);
9980 }
9981
9982 static bool cursor_size_ok(struct drm_device *dev,
9983                            uint32_t width, uint32_t height)
9984 {
9985         if (width == 0 || height == 0)
9986                 return false;
9987
9988         /*
9989          * 845g/865g are special in that they are only limited by
9990          * the width of their cursors, the height is arbitrary up to
9991          * the precision of the register. Everything else requires
9992          * square cursors, limited to a few power-of-two sizes.
9993          */
9994         if (IS_845G(dev) || IS_I865G(dev)) {
9995                 if ((width & 63) != 0)
9996                         return false;
9997
9998                 if (width > (IS_845G(dev) ? 64 : 512))
9999                         return false;
10000
10001                 if (height > 1023)
10002                         return false;
10003         } else {
10004                 switch (width | height) {
10005                 case 256:
10006                 case 128:
10007                         if (IS_GEN2(dev))
10008                                 return false;
10009                 case 64:
10010                         break;
10011                 default:
10012                         return false;
10013                 }
10014         }
10015
10016         return true;
10017 }
10018
10019 static void intel_crtc_gamma_set(struct drm_crtc *crtc, u16 *red, u16 *green,
10020                                  u16 *blue, uint32_t start, uint32_t size)
10021 {
10022         int end = (start + size > 256) ? 256 : start + size, i;
10023         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
10024
10025         for (i = start; i < end; i++) {
10026                 intel_crtc->lut_r[i] = red[i] >> 8;
10027                 intel_crtc->lut_g[i] = green[i] >> 8;
10028                 intel_crtc->lut_b[i] = blue[i] >> 8;
10029         }
10030
10031         intel_crtc_load_lut(crtc);
10032 }
10033
10034 /* VESA 640x480x72Hz mode to set on the pipe */
10035 static struct drm_display_mode load_detect_mode = {
10036         DRM_MODE("640x480", DRM_MODE_TYPE_DEFAULT, 31500, 640, 664,
10037                  704, 832, 0, 480, 489, 491, 520, 0, DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
10038 };
10039
10040 struct drm_framebuffer *
10041 __intel_framebuffer_create(struct drm_device *dev,
10042                            struct drm_mode_fb_cmd2 *mode_cmd,
10043                            struct drm_i915_gem_object *obj)
10044 {
10045         struct intel_framebuffer *intel_fb;
10046         int ret;
10047
10048         intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
10049         if (!intel_fb) {
10050                 drm_gem_object_unreference(&obj->base);
10051                 return ERR_PTR(-ENOMEM);
10052         }
10053
10054         ret = intel_framebuffer_init(dev, intel_fb, mode_cmd, obj);
10055         if (ret)
10056                 goto err;
10057
10058         return &intel_fb->base;
10059 err:
10060         drm_gem_object_unreference(&obj->base);
10061         kfree(intel_fb);
10062
10063         return ERR_PTR(ret);
10064 }
10065
10066 static struct drm_framebuffer *
10067 intel_framebuffer_create(struct drm_device *dev,
10068                          struct drm_mode_fb_cmd2 *mode_cmd,
10069                          struct drm_i915_gem_object *obj)
10070 {
10071         struct drm_framebuffer *fb;
10072         int ret;
10073
10074         ret = i915_mutex_lock_interruptible(dev);
10075         if (ret)
10076                 return ERR_PTR(ret);
10077         fb = __intel_framebuffer_create(dev, mode_cmd, obj);
10078         mutex_unlock(&dev->struct_mutex);
10079
10080         return fb;
10081 }
10082
10083 static u32
10084 intel_framebuffer_pitch_for_width(int width, int bpp)
10085 {
10086         u32 pitch = DIV_ROUND_UP(width * bpp, 8);
10087         return ALIGN(pitch, 64);
10088 }
10089
10090 static u32
10091 intel_framebuffer_size_for_mode(struct drm_display_mode *mode, int bpp)
10092 {
10093         u32 pitch = intel_framebuffer_pitch_for_width(mode->hdisplay, bpp);
10094         return PAGE_ALIGN(pitch * mode->vdisplay);
10095 }
10096
10097 static struct drm_framebuffer *
10098 intel_framebuffer_create_for_mode(struct drm_device *dev,
10099                                   struct drm_display_mode *mode,
10100                                   int depth, int bpp)
10101 {
10102         struct drm_i915_gem_object *obj;
10103         struct drm_mode_fb_cmd2 mode_cmd = { 0 };
10104
10105         obj = i915_gem_alloc_object(dev,
10106                                     intel_framebuffer_size_for_mode(mode, bpp));
10107         if (obj == NULL)
10108                 return ERR_PTR(-ENOMEM);
10109
10110         mode_cmd.width = mode->hdisplay;
10111         mode_cmd.height = mode->vdisplay;
10112         mode_cmd.pitches[0] = intel_framebuffer_pitch_for_width(mode_cmd.width,
10113                                                                 bpp);
10114         mode_cmd.pixel_format = drm_mode_legacy_fb_format(bpp, depth);
10115
10116         return intel_framebuffer_create(dev, &mode_cmd, obj);
10117 }
10118
10119 static struct drm_framebuffer *
10120 mode_fits_in_fbdev(struct drm_device *dev,
10121                    struct drm_display_mode *mode)
10122 {
10123 #ifdef CONFIG_DRM_I915_FBDEV
10124         struct drm_i915_private *dev_priv = dev->dev_private;
10125         struct drm_i915_gem_object *obj;
10126         struct drm_framebuffer *fb;
10127
10128         if (!dev_priv->fbdev)
10129                 return NULL;
10130
10131         if (!dev_priv->fbdev->fb)
10132                 return NULL;
10133
10134         obj = dev_priv->fbdev->fb->obj;
10135         BUG_ON(!obj);
10136
10137         fb = &dev_priv->fbdev->fb->base;
10138         if (fb->pitches[0] < intel_framebuffer_pitch_for_width(mode->hdisplay,
10139                                                                fb->bits_per_pixel))
10140                 return NULL;
10141
10142         if (obj->base.size < mode->vdisplay * fb->pitches[0])
10143                 return NULL;
10144
10145         return fb;
10146 #else
10147         return NULL;
10148 #endif
10149 }
10150
10151 static int intel_modeset_setup_plane_state(struct drm_atomic_state *state,
10152                                            struct drm_crtc *crtc,
10153                                            struct drm_display_mode *mode,
10154                                            struct drm_framebuffer *fb,
10155                                            int x, int y)
10156 {
10157         struct drm_plane_state *plane_state;
10158         int hdisplay, vdisplay;
10159         int ret;
10160
10161         plane_state = drm_atomic_get_plane_state(state, crtc->primary);
10162         if (IS_ERR(plane_state))
10163                 return PTR_ERR(plane_state);
10164
10165         if (mode)
10166                 drm_crtc_get_hv_timing(mode, &hdisplay, &vdisplay);
10167         else
10168                 hdisplay = vdisplay = 0;
10169
10170         ret = drm_atomic_set_crtc_for_plane(plane_state, fb ? crtc : NULL);
10171         if (ret)
10172                 return ret;
10173         drm_atomic_set_fb_for_plane(plane_state, fb);
10174         plane_state->crtc_x = 0;
10175         plane_state->crtc_y = 0;
10176         plane_state->crtc_w = hdisplay;
10177         plane_state->crtc_h = vdisplay;
10178         plane_state->src_x = x << 16;
10179         plane_state->src_y = y << 16;
10180         plane_state->src_w = hdisplay << 16;
10181         plane_state->src_h = vdisplay << 16;
10182
10183         return 0;
10184 }
10185
10186 bool intel_get_load_detect_pipe(struct drm_connector *connector,
10187                                 struct drm_display_mode *mode,
10188                                 struct intel_load_detect_pipe *old,
10189                                 struct drm_modeset_acquire_ctx *ctx)
10190 {
10191         struct intel_crtc *intel_crtc;
10192         struct intel_encoder *intel_encoder =
10193                 intel_attached_encoder(connector);
10194         struct drm_crtc *possible_crtc;
10195         struct drm_encoder *encoder = &intel_encoder->base;
10196         struct drm_crtc *crtc = NULL;
10197         struct drm_device *dev = encoder->dev;
10198         struct drm_framebuffer *fb;
10199         struct drm_mode_config *config = &dev->mode_config;
10200         struct drm_atomic_state *state = NULL;
10201         struct drm_connector_state *connector_state;
10202         struct intel_crtc_state *crtc_state;
10203         int ret, i = -1;
10204
10205         DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
10206                       connector->base.id, connector->name,
10207                       encoder->base.id, encoder->name);
10208
10209 retry:
10210         ret = drm_modeset_lock(&config->connection_mutex, ctx);
10211         if (ret)
10212                 goto fail;
10213
10214         /*
10215          * Algorithm gets a little messy:
10216          *
10217          *   - if the connector already has an assigned crtc, use it (but make
10218          *     sure it's on first)
10219          *
10220          *   - try to find the first unused crtc that can drive this connector,
10221          *     and use that if we find one
10222          */
10223
10224         /* See if we already have a CRTC for this connector */
10225         if (encoder->crtc) {
10226                 crtc = encoder->crtc;
10227
10228                 ret = drm_modeset_lock(&crtc->mutex, ctx);
10229                 if (ret)
10230                         goto fail;
10231                 ret = drm_modeset_lock(&crtc->primary->mutex, ctx);
10232                 if (ret)
10233                         goto fail;
10234
10235                 old->dpms_mode = connector->dpms;
10236                 old->load_detect_temp = false;
10237
10238                 /* Make sure the crtc and connector are running */
10239                 if (connector->dpms != DRM_MODE_DPMS_ON)
10240                         connector->funcs->dpms(connector, DRM_MODE_DPMS_ON);
10241
10242                 return true;
10243         }
10244
10245         /* Find an unused one (if possible) */
10246         for_each_crtc(dev, possible_crtc) {
10247                 i++;
10248                 if (!(encoder->possible_crtcs & (1 << i)))
10249                         continue;
10250                 if (possible_crtc->state->enable)
10251                         continue;
10252
10253                 crtc = possible_crtc;
10254                 break;
10255         }
10256
10257         /*
10258          * If we didn't find an unused CRTC, don't use any.
10259          */
10260         if (!crtc) {
10261                 DRM_DEBUG_KMS("no pipe available for load-detect\n");
10262                 goto fail;
10263         }
10264
10265         ret = drm_modeset_lock(&crtc->mutex, ctx);
10266         if (ret)
10267                 goto fail;
10268         ret = drm_modeset_lock(&crtc->primary->mutex, ctx);
10269         if (ret)
10270                 goto fail;
10271
10272         intel_crtc = to_intel_crtc(crtc);
10273         old->dpms_mode = connector->dpms;
10274         old->load_detect_temp = true;
10275         old->release_fb = NULL;
10276
10277         state = drm_atomic_state_alloc(dev);
10278         if (!state)
10279                 return false;
10280
10281         state->acquire_ctx = ctx;
10282
10283         connector_state = drm_atomic_get_connector_state(state, connector);
10284         if (IS_ERR(connector_state)) {
10285                 ret = PTR_ERR(connector_state);
10286                 goto fail;
10287         }
10288
10289         connector_state->crtc = crtc;
10290         connector_state->best_encoder = &intel_encoder->base;
10291
10292         crtc_state = intel_atomic_get_crtc_state(state, intel_crtc);
10293         if (IS_ERR(crtc_state)) {
10294                 ret = PTR_ERR(crtc_state);
10295                 goto fail;
10296         }
10297
10298         crtc_state->base.active = crtc_state->base.enable = true;
10299
10300         if (!mode)
10301                 mode = &load_detect_mode;
10302
10303         /* We need a framebuffer large enough to accommodate all accesses
10304          * that the plane may generate whilst we perform load detection.
10305          * We can not rely on the fbcon either being present (we get called
10306          * during its initialisation to detect all boot displays, or it may
10307          * not even exist) or that it is large enough to satisfy the
10308          * requested mode.
10309          */
10310         fb = mode_fits_in_fbdev(dev, mode);
10311         if (fb == NULL) {
10312                 DRM_DEBUG_KMS("creating tmp fb for load-detection\n");
10313                 fb = intel_framebuffer_create_for_mode(dev, mode, 24, 32);
10314                 old->release_fb = fb;
10315         } else
10316                 DRM_DEBUG_KMS("reusing fbdev for load-detection framebuffer\n");
10317         if (IS_ERR(fb)) {
10318                 DRM_DEBUG_KMS("failed to allocate framebuffer for load-detection\n");
10319                 goto fail;
10320         }
10321
10322         ret = intel_modeset_setup_plane_state(state, crtc, mode, fb, 0, 0);
10323         if (ret)
10324                 goto fail;
10325
10326         drm_mode_copy(&crtc_state->base.mode, mode);
10327
10328         if (drm_atomic_commit(state)) {
10329                 DRM_DEBUG_KMS("failed to set mode on load-detect pipe\n");
10330                 if (old->release_fb)
10331                         old->release_fb->funcs->destroy(old->release_fb);
10332                 goto fail;
10333         }
10334         crtc->primary->crtc = crtc;
10335
10336         /* let the connector get through one full cycle before testing */
10337         intel_wait_for_vblank(dev, intel_crtc->pipe);
10338         return true;
10339
10340 fail:
10341         drm_atomic_state_free(state);
10342         state = NULL;
10343
10344         if (ret == -EDEADLK) {
10345                 drm_modeset_backoff(ctx);
10346                 goto retry;
10347         }
10348
10349         return false;
10350 }
10351
10352 void intel_release_load_detect_pipe(struct drm_connector *connector,
10353                                     struct intel_load_detect_pipe *old,
10354                                     struct drm_modeset_acquire_ctx *ctx)
10355 {
10356         struct drm_device *dev = connector->dev;
10357         struct intel_encoder *intel_encoder =
10358                 intel_attached_encoder(connector);
10359         struct drm_encoder *encoder = &intel_encoder->base;
10360         struct drm_crtc *crtc = encoder->crtc;
10361         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
10362         struct drm_atomic_state *state;
10363         struct drm_connector_state *connector_state;
10364         struct intel_crtc_state *crtc_state;
10365         int ret;
10366
10367         DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
10368                       connector->base.id, connector->name,
10369                       encoder->base.id, encoder->name);
10370
10371         if (old->load_detect_temp) {
10372                 state = drm_atomic_state_alloc(dev);
10373                 if (!state)
10374                         goto fail;
10375
10376                 state->acquire_ctx = ctx;
10377
10378                 connector_state = drm_atomic_get_connector_state(state, connector);
10379                 if (IS_ERR(connector_state))
10380                         goto fail;
10381
10382                 crtc_state = intel_atomic_get_crtc_state(state, intel_crtc);
10383                 if (IS_ERR(crtc_state))
10384                         goto fail;
10385
10386                 connector_state->best_encoder = NULL;
10387                 connector_state->crtc = NULL;
10388
10389                 crtc_state->base.enable = crtc_state->base.active = false;
10390
10391                 ret = intel_modeset_setup_plane_state(state, crtc, NULL, NULL,
10392                                                       0, 0);
10393                 if (ret)
10394                         goto fail;
10395
10396                 ret = drm_atomic_commit(state);
10397                 if (ret)
10398                         goto fail;
10399
10400                 if (old->release_fb) {
10401                         drm_framebuffer_unregister_private(old->release_fb);
10402                         drm_framebuffer_unreference(old->release_fb);
10403                 }
10404
10405                 return;
10406         }
10407
10408         /* Switch crtc and encoder back off if necessary */
10409         if (old->dpms_mode != DRM_MODE_DPMS_ON)
10410                 connector->funcs->dpms(connector, old->dpms_mode);
10411
10412         return;
10413 fail:
10414         DRM_DEBUG_KMS("Couldn't release load detect pipe.\n");
10415         drm_atomic_state_free(state);
10416 }
10417
10418 static int i9xx_pll_refclk(struct drm_device *dev,
10419                            const struct intel_crtc_state *pipe_config)
10420 {
10421         struct drm_i915_private *dev_priv = dev->dev_private;
10422         u32 dpll = pipe_config->dpll_hw_state.dpll;
10423
10424         if ((dpll & PLL_REF_INPUT_MASK) == PLLB_REF_INPUT_SPREADSPECTRUMIN)
10425                 return dev_priv->vbt.lvds_ssc_freq;
10426         else if (HAS_PCH_SPLIT(dev))
10427                 return 120000;
10428         else if (!IS_GEN2(dev))
10429                 return 96000;
10430         else
10431                 return 48000;
10432 }
10433
10434 /* Returns the clock of the currently programmed mode of the given pipe. */
10435 static void i9xx_crtc_clock_get(struct intel_crtc *crtc,
10436                                 struct intel_crtc_state *pipe_config)
10437 {
10438         struct drm_device *dev = crtc->base.dev;
10439         struct drm_i915_private *dev_priv = dev->dev_private;
10440         int pipe = pipe_config->cpu_transcoder;
10441         u32 dpll = pipe_config->dpll_hw_state.dpll;
10442         u32 fp;
10443         intel_clock_t clock;
10444         int port_clock;
10445         int refclk = i9xx_pll_refclk(dev, pipe_config);
10446
10447         if ((dpll & DISPLAY_RATE_SELECT_FPA1) == 0)
10448                 fp = pipe_config->dpll_hw_state.fp0;
10449         else
10450                 fp = pipe_config->dpll_hw_state.fp1;
10451
10452         clock.m1 = (fp & FP_M1_DIV_MASK) >> FP_M1_DIV_SHIFT;
10453         if (IS_PINEVIEW(dev)) {
10454                 clock.n = ffs((fp & FP_N_PINEVIEW_DIV_MASK) >> FP_N_DIV_SHIFT) - 1;
10455                 clock.m2 = (fp & FP_M2_PINEVIEW_DIV_MASK) >> FP_M2_DIV_SHIFT;
10456         } else {
10457                 clock.n = (fp & FP_N_DIV_MASK) >> FP_N_DIV_SHIFT;
10458                 clock.m2 = (fp & FP_M2_DIV_MASK) >> FP_M2_DIV_SHIFT;
10459         }
10460
10461         if (!IS_GEN2(dev)) {
10462                 if (IS_PINEVIEW(dev))
10463                         clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_PINEVIEW) >>
10464                                 DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW);
10465                 else
10466                         clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK) >>
10467                                DPLL_FPA01_P1_POST_DIV_SHIFT);
10468
10469                 switch (dpll & DPLL_MODE_MASK) {
10470                 case DPLLB_MODE_DAC_SERIAL:
10471                         clock.p2 = dpll & DPLL_DAC_SERIAL_P2_CLOCK_DIV_5 ?
10472                                 5 : 10;
10473                         break;
10474                 case DPLLB_MODE_LVDS:
10475                         clock.p2 = dpll & DPLLB_LVDS_P2_CLOCK_DIV_7 ?
10476                                 7 : 14;
10477                         break;
10478                 default:
10479                         DRM_DEBUG_KMS("Unknown DPLL mode %08x in programmed "
10480                                   "mode\n", (int)(dpll & DPLL_MODE_MASK));
10481                         return;
10482                 }
10483
10484                 if (IS_PINEVIEW(dev))
10485                         port_clock = pnv_calc_dpll_params(refclk, &clock);
10486                 else
10487                         port_clock = i9xx_calc_dpll_params(refclk, &clock);
10488         } else {
10489                 u32 lvds = IS_I830(dev) ? 0 : I915_READ(LVDS);
10490                 bool is_lvds = (pipe == 1) && (lvds & LVDS_PORT_EN);
10491
10492                 if (is_lvds) {
10493                         clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830_LVDS) >>
10494                                        DPLL_FPA01_P1_POST_DIV_SHIFT);
10495
10496                         if (lvds & LVDS_CLKB_POWER_UP)
10497                                 clock.p2 = 7;
10498                         else
10499                                 clock.p2 = 14;
10500                 } else {
10501                         if (dpll & PLL_P1_DIVIDE_BY_TWO)
10502                                 clock.p1 = 2;
10503                         else {
10504                                 clock.p1 = ((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830) >>
10505                                             DPLL_FPA01_P1_POST_DIV_SHIFT) + 2;
10506                         }
10507                         if (dpll & PLL_P2_DIVIDE_BY_4)
10508                                 clock.p2 = 4;
10509                         else
10510                                 clock.p2 = 2;
10511                 }
10512
10513                 port_clock = i9xx_calc_dpll_params(refclk, &clock);
10514         }
10515
10516         /*
10517          * This value includes pixel_multiplier. We will use
10518          * port_clock to compute adjusted_mode.crtc_clock in the
10519          * encoder's get_config() function.
10520          */
10521         pipe_config->port_clock = port_clock;
10522 }
10523
10524 int intel_dotclock_calculate(int link_freq,
10525                              const struct intel_link_m_n *m_n)
10526 {
10527         /*
10528          * The calculation for the data clock is:
10529          * pixel_clock = ((m/n)*(link_clock * nr_lanes))/bpp
10530          * But we want to avoid losing precison if possible, so:
10531          * pixel_clock = ((m * link_clock * nr_lanes)/(n*bpp))
10532          *
10533          * and the link clock is simpler:
10534          * link_clock = (m * link_clock) / n
10535          */
10536
10537         if (!m_n->link_n)
10538                 return 0;
10539
10540         return div_u64((u64)m_n->link_m * link_freq, m_n->link_n);
10541 }
10542
10543 static void ironlake_pch_clock_get(struct intel_crtc *crtc,
10544                                    struct intel_crtc_state *pipe_config)
10545 {
10546         struct drm_device *dev = crtc->base.dev;
10547
10548         /* read out port_clock from the DPLL */
10549         i9xx_crtc_clock_get(crtc, pipe_config);
10550
10551         /*
10552          * This value does not include pixel_multiplier.
10553          * We will check that port_clock and adjusted_mode.crtc_clock
10554          * agree once we know their relationship in the encoder's
10555          * get_config() function.
10556          */
10557         pipe_config->base.adjusted_mode.crtc_clock =
10558                 intel_dotclock_calculate(intel_fdi_link_freq(dev) * 10000,
10559                                          &pipe_config->fdi_m_n);
10560 }
10561
10562 /** Returns the currently programmed mode of the given pipe. */
10563 struct drm_display_mode *intel_crtc_mode_get(struct drm_device *dev,
10564                                              struct drm_crtc *crtc)
10565 {
10566         struct drm_i915_private *dev_priv = dev->dev_private;
10567         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
10568         enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
10569         struct drm_display_mode *mode;
10570         struct intel_crtc_state pipe_config;
10571         int htot = I915_READ(HTOTAL(cpu_transcoder));
10572         int hsync = I915_READ(HSYNC(cpu_transcoder));
10573         int vtot = I915_READ(VTOTAL(cpu_transcoder));
10574         int vsync = I915_READ(VSYNC(cpu_transcoder));
10575         enum pipe pipe = intel_crtc->pipe;
10576
10577         mode = kzalloc(sizeof(*mode), GFP_KERNEL);
10578         if (!mode)
10579                 return NULL;
10580
10581         /*
10582          * Construct a pipe_config sufficient for getting the clock info
10583          * back out of crtc_clock_get.
10584          *
10585          * Note, if LVDS ever uses a non-1 pixel multiplier, we'll need
10586          * to use a real value here instead.
10587          */
10588         pipe_config.cpu_transcoder = (enum transcoder) pipe;
10589         pipe_config.pixel_multiplier = 1;
10590         pipe_config.dpll_hw_state.dpll = I915_READ(DPLL(pipe));
10591         pipe_config.dpll_hw_state.fp0 = I915_READ(FP0(pipe));
10592         pipe_config.dpll_hw_state.fp1 = I915_READ(FP1(pipe));
10593         i9xx_crtc_clock_get(intel_crtc, &pipe_config);
10594
10595         mode->clock = pipe_config.port_clock / pipe_config.pixel_multiplier;
10596         mode->hdisplay = (htot & 0xffff) + 1;
10597         mode->htotal = ((htot & 0xffff0000) >> 16) + 1;
10598         mode->hsync_start = (hsync & 0xffff) + 1;
10599         mode->hsync_end = ((hsync & 0xffff0000) >> 16) + 1;
10600         mode->vdisplay = (vtot & 0xffff) + 1;
10601         mode->vtotal = ((vtot & 0xffff0000) >> 16) + 1;
10602         mode->vsync_start = (vsync & 0xffff) + 1;
10603         mode->vsync_end = ((vsync & 0xffff0000) >> 16) + 1;
10604
10605         drm_mode_set_name(mode);
10606
10607         return mode;
10608 }
10609
10610 void intel_mark_busy(struct drm_device *dev)
10611 {
10612         struct drm_i915_private *dev_priv = dev->dev_private;
10613
10614         if (dev_priv->mm.busy)
10615                 return;
10616
10617         intel_runtime_pm_get(dev_priv);
10618         i915_update_gfx_val(dev_priv);
10619         if (INTEL_INFO(dev)->gen >= 6)
10620                 gen6_rps_busy(dev_priv);
10621         dev_priv->mm.busy = true;
10622 }
10623
10624 void intel_mark_idle(struct drm_device *dev)
10625 {
10626         struct drm_i915_private *dev_priv = dev->dev_private;
10627
10628         if (!dev_priv->mm.busy)
10629                 return;
10630
10631         dev_priv->mm.busy = false;
10632
10633         if (INTEL_INFO(dev)->gen >= 6)
10634                 gen6_rps_idle(dev->dev_private);
10635
10636         intel_runtime_pm_put(dev_priv);
10637 }
10638
10639 static void intel_crtc_destroy(struct drm_crtc *crtc)
10640 {
10641         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
10642         struct drm_device *dev = crtc->dev;
10643         struct intel_unpin_work *work;
10644
10645         spin_lock_irq(&dev->event_lock);
10646         work = intel_crtc->unpin_work;
10647         intel_crtc->unpin_work = NULL;
10648         spin_unlock_irq(&dev->event_lock);
10649
10650         if (work) {
10651                 cancel_work_sync(&work->work);
10652                 kfree(work);
10653         }
10654
10655         drm_crtc_cleanup(crtc);
10656
10657         kfree(intel_crtc);
10658 }
10659
10660 static void intel_unpin_work_fn(struct work_struct *__work)
10661 {
10662         struct intel_unpin_work *work =
10663                 container_of(__work, struct intel_unpin_work, work);
10664         struct intel_crtc *crtc = to_intel_crtc(work->crtc);
10665         struct drm_device *dev = crtc->base.dev;
10666         struct drm_plane *primary = crtc->base.primary;
10667
10668         mutex_lock(&dev->struct_mutex);
10669         intel_unpin_fb_obj(work->old_fb, primary->state);
10670         drm_gem_object_unreference(&work->pending_flip_obj->base);
10671
10672         if (work->flip_queued_req)
10673                 i915_gem_request_assign(&work->flip_queued_req, NULL);
10674         mutex_unlock(&dev->struct_mutex);
10675
10676         intel_frontbuffer_flip_complete(dev, to_intel_plane(primary)->frontbuffer_bit);
10677         drm_framebuffer_unreference(work->old_fb);
10678
10679         BUG_ON(atomic_read(&crtc->unpin_work_count) == 0);
10680         atomic_dec(&crtc->unpin_work_count);
10681
10682         kfree(work);
10683 }
10684
10685 static void do_intel_finish_page_flip(struct drm_device *dev,
10686                                       struct drm_crtc *crtc)
10687 {
10688         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
10689         struct intel_unpin_work *work;
10690         unsigned long flags;
10691
10692         /* Ignore early vblank irqs */
10693         if (intel_crtc == NULL)
10694                 return;
10695
10696         /*
10697          * This is called both by irq handlers and the reset code (to complete
10698          * lost pageflips) so needs the full irqsave spinlocks.
10699          */
10700         spin_lock_irqsave(&dev->event_lock, flags);
10701         work = intel_crtc->unpin_work;
10702
10703         /* Ensure we don't miss a work->pending update ... */
10704         smp_rmb();
10705
10706         if (work == NULL || atomic_read(&work->pending) < INTEL_FLIP_COMPLETE) {
10707                 spin_unlock_irqrestore(&dev->event_lock, flags);
10708                 return;
10709         }
10710
10711         page_flip_completed(intel_crtc);
10712
10713         spin_unlock_irqrestore(&dev->event_lock, flags);
10714 }
10715
10716 void intel_finish_page_flip(struct drm_device *dev, int pipe)
10717 {
10718         struct drm_i915_private *dev_priv = dev->dev_private;
10719         struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
10720
10721         do_intel_finish_page_flip(dev, crtc);
10722 }
10723
10724 void intel_finish_page_flip_plane(struct drm_device *dev, int plane)
10725 {
10726         struct drm_i915_private *dev_priv = dev->dev_private;
10727         struct drm_crtc *crtc = dev_priv->plane_to_crtc_mapping[plane];
10728
10729         do_intel_finish_page_flip(dev, crtc);
10730 }
10731
10732 /* Is 'a' after or equal to 'b'? */
10733 static bool g4x_flip_count_after_eq(u32 a, u32 b)
10734 {
10735         return !((a - b) & 0x80000000);
10736 }
10737
10738 static bool page_flip_finished(struct intel_crtc *crtc)
10739 {
10740         struct drm_device *dev = crtc->base.dev;
10741         struct drm_i915_private *dev_priv = dev->dev_private;
10742
10743         if (i915_reset_in_progress(&dev_priv->gpu_error) ||
10744             crtc->reset_counter != atomic_read(&dev_priv->gpu_error.reset_counter))
10745                 return true;
10746
10747         /*
10748          * The relevant registers doen't exist on pre-ctg.
10749          * As the flip done interrupt doesn't trigger for mmio
10750          * flips on gmch platforms, a flip count check isn't
10751          * really needed there. But since ctg has the registers,
10752          * include it in the check anyway.
10753          */
10754         if (INTEL_INFO(dev)->gen < 5 && !IS_G4X(dev))
10755                 return true;
10756
10757         /*
10758          * A DSPSURFLIVE check isn't enough in case the mmio and CS flips
10759          * used the same base address. In that case the mmio flip might
10760          * have completed, but the CS hasn't even executed the flip yet.
10761          *
10762          * A flip count check isn't enough as the CS might have updated
10763          * the base address just after start of vblank, but before we
10764          * managed to process the interrupt. This means we'd complete the
10765          * CS flip too soon.
10766          *
10767          * Combining both checks should get us a good enough result. It may
10768          * still happen that the CS flip has been executed, but has not
10769          * yet actually completed. But in case the base address is the same
10770          * anyway, we don't really care.
10771          */
10772         return (I915_READ(DSPSURFLIVE(crtc->plane)) & ~0xfff) ==
10773                 crtc->unpin_work->gtt_offset &&
10774                 g4x_flip_count_after_eq(I915_READ(PIPE_FLIPCOUNT_GM45(crtc->pipe)),
10775                                     crtc->unpin_work->flip_count);
10776 }
10777
10778 void intel_prepare_page_flip(struct drm_device *dev, int plane)
10779 {
10780         struct drm_i915_private *dev_priv = dev->dev_private;
10781         struct intel_crtc *intel_crtc =
10782                 to_intel_crtc(dev_priv->plane_to_crtc_mapping[plane]);
10783         unsigned long flags;
10784
10785
10786         /*
10787          * This is called both by irq handlers and the reset code (to complete
10788          * lost pageflips) so needs the full irqsave spinlocks.
10789          *
10790          * NB: An MMIO update of the plane base pointer will also
10791          * generate a page-flip completion irq, i.e. every modeset
10792          * is also accompanied by a spurious intel_prepare_page_flip().
10793          */
10794         spin_lock_irqsave(&dev->event_lock, flags);
10795         if (intel_crtc->unpin_work && page_flip_finished(intel_crtc))
10796                 atomic_inc_not_zero(&intel_crtc->unpin_work->pending);
10797         spin_unlock_irqrestore(&dev->event_lock, flags);
10798 }
10799
10800 static inline void intel_mark_page_flip_active(struct intel_crtc *intel_crtc)
10801 {
10802         /* Ensure that the work item is consistent when activating it ... */
10803         smp_wmb();
10804         atomic_set(&intel_crtc->unpin_work->pending, INTEL_FLIP_PENDING);
10805         /* and that it is marked active as soon as the irq could fire. */
10806         smp_wmb();
10807 }
10808
10809 static int intel_gen2_queue_flip(struct drm_device *dev,
10810                                  struct drm_crtc *crtc,
10811                                  struct drm_framebuffer *fb,
10812                                  struct drm_i915_gem_object *obj,
10813                                  struct drm_i915_gem_request *req,
10814                                  uint32_t flags)
10815 {
10816         struct intel_engine_cs *ring = req->ring;
10817         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
10818         u32 flip_mask;
10819         int ret;
10820
10821         ret = intel_ring_begin(req, 6);
10822         if (ret)
10823                 return ret;
10824
10825         /* Can't queue multiple flips, so wait for the previous
10826          * one to finish before executing the next.
10827          */
10828         if (intel_crtc->plane)
10829                 flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
10830         else
10831                 flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
10832         intel_ring_emit(ring, MI_WAIT_FOR_EVENT | flip_mask);
10833         intel_ring_emit(ring, MI_NOOP);
10834         intel_ring_emit(ring, MI_DISPLAY_FLIP |
10835                         MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
10836         intel_ring_emit(ring, fb->pitches[0]);
10837         intel_ring_emit(ring, intel_crtc->unpin_work->gtt_offset);
10838         intel_ring_emit(ring, 0); /* aux display base address, unused */
10839
10840         intel_mark_page_flip_active(intel_crtc);
10841         return 0;
10842 }
10843
10844 static int intel_gen3_queue_flip(struct drm_device *dev,
10845                                  struct drm_crtc *crtc,
10846                                  struct drm_framebuffer *fb,
10847                                  struct drm_i915_gem_object *obj,
10848                                  struct drm_i915_gem_request *req,
10849                                  uint32_t flags)
10850 {
10851         struct intel_engine_cs *ring = req->ring;
10852         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
10853         u32 flip_mask;
10854         int ret;
10855
10856         ret = intel_ring_begin(req, 6);
10857         if (ret)
10858                 return ret;
10859
10860         if (intel_crtc->plane)
10861                 flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
10862         else
10863                 flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
10864         intel_ring_emit(ring, MI_WAIT_FOR_EVENT | flip_mask);
10865         intel_ring_emit(ring, MI_NOOP);
10866         intel_ring_emit(ring, MI_DISPLAY_FLIP_I915 |
10867                         MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
10868         intel_ring_emit(ring, fb->pitches[0]);
10869         intel_ring_emit(ring, intel_crtc->unpin_work->gtt_offset);
10870         intel_ring_emit(ring, MI_NOOP);
10871
10872         intel_mark_page_flip_active(intel_crtc);
10873         return 0;
10874 }
10875
10876 static int intel_gen4_queue_flip(struct drm_device *dev,
10877                                  struct drm_crtc *crtc,
10878                                  struct drm_framebuffer *fb,
10879                                  struct drm_i915_gem_object *obj,
10880                                  struct drm_i915_gem_request *req,
10881                                  uint32_t flags)
10882 {
10883         struct intel_engine_cs *ring = req->ring;
10884         struct drm_i915_private *dev_priv = dev->dev_private;
10885         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
10886         uint32_t pf, pipesrc;
10887         int ret;
10888
10889         ret = intel_ring_begin(req, 4);
10890         if (ret)
10891                 return ret;
10892
10893         /* i965+ uses the linear or tiled offsets from the
10894          * Display Registers (which do not change across a page-flip)
10895          * so we need only reprogram the base address.
10896          */
10897         intel_ring_emit(ring, MI_DISPLAY_FLIP |
10898                         MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
10899         intel_ring_emit(ring, fb->pitches[0]);
10900         intel_ring_emit(ring, intel_crtc->unpin_work->gtt_offset |
10901                         obj->tiling_mode);
10902
10903         /* XXX Enabling the panel-fitter across page-flip is so far
10904          * untested on non-native modes, so ignore it for now.
10905          * pf = I915_READ(pipe == 0 ? PFA_CTL_1 : PFB_CTL_1) & PF_ENABLE;
10906          */
10907         pf = 0;
10908         pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
10909         intel_ring_emit(ring, pf | pipesrc);
10910
10911         intel_mark_page_flip_active(intel_crtc);
10912         return 0;
10913 }
10914
10915 static int intel_gen6_queue_flip(struct drm_device *dev,
10916                                  struct drm_crtc *crtc,
10917                                  struct drm_framebuffer *fb,
10918                                  struct drm_i915_gem_object *obj,
10919                                  struct drm_i915_gem_request *req,
10920                                  uint32_t flags)
10921 {
10922         struct intel_engine_cs *ring = req->ring;
10923         struct drm_i915_private *dev_priv = dev->dev_private;
10924         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
10925         uint32_t pf, pipesrc;
10926         int ret;
10927
10928         ret = intel_ring_begin(req, 4);
10929         if (ret)
10930                 return ret;
10931
10932         intel_ring_emit(ring, MI_DISPLAY_FLIP |
10933                         MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
10934         intel_ring_emit(ring, fb->pitches[0] | obj->tiling_mode);
10935         intel_ring_emit(ring, intel_crtc->unpin_work->gtt_offset);
10936
10937         /* Contrary to the suggestions in the documentation,
10938          * "Enable Panel Fitter" does not seem to be required when page
10939          * flipping with a non-native mode, and worse causes a normal
10940          * modeset to fail.
10941          * pf = I915_READ(PF_CTL(intel_crtc->pipe)) & PF_ENABLE;
10942          */
10943         pf = 0;
10944         pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
10945         intel_ring_emit(ring, pf | pipesrc);
10946
10947         intel_mark_page_flip_active(intel_crtc);
10948         return 0;
10949 }
10950
10951 static int intel_gen7_queue_flip(struct drm_device *dev,
10952                                  struct drm_crtc *crtc,
10953                                  struct drm_framebuffer *fb,
10954                                  struct drm_i915_gem_object *obj,
10955                                  struct drm_i915_gem_request *req,
10956                                  uint32_t flags)
10957 {
10958         struct intel_engine_cs *ring = req->ring;
10959         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
10960         uint32_t plane_bit = 0;
10961         int len, ret;
10962
10963         switch (intel_crtc->plane) {
10964         case PLANE_A:
10965                 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_A;
10966                 break;
10967         case PLANE_B:
10968                 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_B;
10969                 break;
10970         case PLANE_C:
10971                 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_C;
10972                 break;
10973         default:
10974                 WARN_ONCE(1, "unknown plane in flip command\n");
10975                 return -ENODEV;
10976         }
10977
10978         len = 4;
10979         if (ring->id == RCS) {
10980                 len += 6;
10981                 /*
10982                  * On Gen 8, SRM is now taking an extra dword to accommodate
10983                  * 48bits addresses, and we need a NOOP for the batch size to
10984                  * stay even.
10985                  */
10986                 if (IS_GEN8(dev))
10987                         len += 2;
10988         }
10989
10990         /*
10991          * BSpec MI_DISPLAY_FLIP for IVB:
10992          * "The full packet must be contained within the same cache line."
10993          *
10994          * Currently the LRI+SRM+MI_DISPLAY_FLIP all fit within the same
10995          * cacheline, if we ever start emitting more commands before
10996          * the MI_DISPLAY_FLIP we may need to first emit everything else,
10997          * then do the cacheline alignment, and finally emit the
10998          * MI_DISPLAY_FLIP.
10999          */
11000         ret = intel_ring_cacheline_align(req);
11001         if (ret)
11002                 return ret;
11003
11004         ret = intel_ring_begin(req, len);
11005         if (ret)
11006                 return ret;
11007
11008         /* Unmask the flip-done completion message. Note that the bspec says that
11009          * we should do this for both the BCS and RCS, and that we must not unmask
11010          * more than one flip event at any time (or ensure that one flip message
11011          * can be sent by waiting for flip-done prior to queueing new flips).
11012          * Experimentation says that BCS works despite DERRMR masking all
11013          * flip-done completion events and that unmasking all planes at once
11014          * for the RCS also doesn't appear to drop events. Setting the DERRMR
11015          * to zero does lead to lockups within MI_DISPLAY_FLIP.
11016          */
11017         if (ring->id == RCS) {
11018                 intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
11019                 intel_ring_emit(ring, DERRMR);
11020                 intel_ring_emit(ring, ~(DERRMR_PIPEA_PRI_FLIP_DONE |
11021                                         DERRMR_PIPEB_PRI_FLIP_DONE |
11022                                         DERRMR_PIPEC_PRI_FLIP_DONE));
11023                 if (IS_GEN8(dev))
11024                         intel_ring_emit(ring, MI_STORE_REGISTER_MEM_GEN8(1) |
11025                                               MI_SRM_LRM_GLOBAL_GTT);
11026                 else
11027                         intel_ring_emit(ring, MI_STORE_REGISTER_MEM(1) |
11028                                               MI_SRM_LRM_GLOBAL_GTT);
11029                 intel_ring_emit(ring, DERRMR);
11030                 intel_ring_emit(ring, ring->scratch.gtt_offset + 256);
11031                 if (IS_GEN8(dev)) {
11032                         intel_ring_emit(ring, 0);
11033                         intel_ring_emit(ring, MI_NOOP);
11034                 }
11035         }
11036
11037         intel_ring_emit(ring, MI_DISPLAY_FLIP_I915 | plane_bit);
11038         intel_ring_emit(ring, (fb->pitches[0] | obj->tiling_mode));
11039         intel_ring_emit(ring, intel_crtc->unpin_work->gtt_offset);
11040         intel_ring_emit(ring, (MI_NOOP));
11041
11042         intel_mark_page_flip_active(intel_crtc);
11043         return 0;
11044 }
11045
11046 static bool use_mmio_flip(struct intel_engine_cs *ring,
11047                           struct drm_i915_gem_object *obj)
11048 {
11049         /*
11050          * This is not being used for older platforms, because
11051          * non-availability of flip done interrupt forces us to use
11052          * CS flips. Older platforms derive flip done using some clever
11053          * tricks involving the flip_pending status bits and vblank irqs.
11054          * So using MMIO flips there would disrupt this mechanism.
11055          */
11056
11057         if (ring == NULL)
11058                 return true;
11059
11060         if (INTEL_INFO(ring->dev)->gen < 5)
11061                 return false;
11062
11063         if (i915.use_mmio_flip < 0)
11064                 return false;
11065         else if (i915.use_mmio_flip > 0)
11066                 return true;
11067         else if (i915.enable_execlists)
11068                 return true;
11069         else
11070                 return ring != i915_gem_request_get_ring(obj->last_write_req);
11071 }
11072
11073 static void skl_do_mmio_flip(struct intel_crtc *intel_crtc)
11074 {
11075         struct drm_device *dev = intel_crtc->base.dev;
11076         struct drm_i915_private *dev_priv = dev->dev_private;
11077         struct drm_framebuffer *fb = intel_crtc->base.primary->fb;
11078         const enum pipe pipe = intel_crtc->pipe;
11079         u32 ctl, stride;
11080
11081         ctl = I915_READ(PLANE_CTL(pipe, 0));
11082         ctl &= ~PLANE_CTL_TILED_MASK;
11083         switch (fb->modifier[0]) {
11084         case DRM_FORMAT_MOD_NONE:
11085                 break;
11086         case I915_FORMAT_MOD_X_TILED:
11087                 ctl |= PLANE_CTL_TILED_X;
11088                 break;
11089         case I915_FORMAT_MOD_Y_TILED:
11090                 ctl |= PLANE_CTL_TILED_Y;
11091                 break;
11092         case I915_FORMAT_MOD_Yf_TILED:
11093                 ctl |= PLANE_CTL_TILED_YF;
11094                 break;
11095         default:
11096                 MISSING_CASE(fb->modifier[0]);
11097         }
11098
11099         /*
11100          * The stride is either expressed as a multiple of 64 bytes chunks for
11101          * linear buffers or in number of tiles for tiled buffers.
11102          */
11103         stride = fb->pitches[0] /
11104                  intel_fb_stride_alignment(dev, fb->modifier[0],
11105                                            fb->pixel_format);
11106
11107         /*
11108          * Both PLANE_CTL and PLANE_STRIDE are not updated on vblank but on
11109          * PLANE_SURF updates, the update is then guaranteed to be atomic.
11110          */
11111         I915_WRITE(PLANE_CTL(pipe, 0), ctl);
11112         I915_WRITE(PLANE_STRIDE(pipe, 0), stride);
11113
11114         I915_WRITE(PLANE_SURF(pipe, 0), intel_crtc->unpin_work->gtt_offset);
11115         POSTING_READ(PLANE_SURF(pipe, 0));
11116 }
11117
11118 static void ilk_do_mmio_flip(struct intel_crtc *intel_crtc)
11119 {
11120         struct drm_device *dev = intel_crtc->base.dev;
11121         struct drm_i915_private *dev_priv = dev->dev_private;
11122         struct intel_framebuffer *intel_fb =
11123                 to_intel_framebuffer(intel_crtc->base.primary->fb);
11124         struct drm_i915_gem_object *obj = intel_fb->obj;
11125         u32 dspcntr;
11126         u32 reg;
11127
11128         reg = DSPCNTR(intel_crtc->plane);
11129         dspcntr = I915_READ(reg);
11130
11131         if (obj->tiling_mode != I915_TILING_NONE)
11132                 dspcntr |= DISPPLANE_TILED;
11133         else
11134                 dspcntr &= ~DISPPLANE_TILED;
11135
11136         I915_WRITE(reg, dspcntr);
11137
11138         I915_WRITE(DSPSURF(intel_crtc->plane),
11139                    intel_crtc->unpin_work->gtt_offset);
11140         POSTING_READ(DSPSURF(intel_crtc->plane));
11141
11142 }
11143
11144 /*
11145  * XXX: This is the temporary way to update the plane registers until we get
11146  * around to using the usual plane update functions for MMIO flips
11147  */
11148 static void intel_do_mmio_flip(struct intel_crtc *intel_crtc)
11149 {
11150         struct drm_device *dev = intel_crtc->base.dev;
11151         u32 start_vbl_count;
11152
11153         intel_mark_page_flip_active(intel_crtc);
11154
11155         intel_pipe_update_start(intel_crtc, &start_vbl_count);
11156
11157         if (INTEL_INFO(dev)->gen >= 9)
11158                 skl_do_mmio_flip(intel_crtc);
11159         else
11160                 /* use_mmio_flip() retricts MMIO flips to ilk+ */
11161                 ilk_do_mmio_flip(intel_crtc);
11162
11163         intel_pipe_update_end(intel_crtc, start_vbl_count);
11164 }
11165
11166 static void intel_mmio_flip_work_func(struct work_struct *work)
11167 {
11168         struct intel_mmio_flip *mmio_flip =
11169                 container_of(work, struct intel_mmio_flip, work);
11170
11171         if (mmio_flip->req)
11172                 WARN_ON(__i915_wait_request(mmio_flip->req,
11173                                             mmio_flip->crtc->reset_counter,
11174                                             false, NULL,
11175                                             &mmio_flip->i915->rps.mmioflips));
11176
11177         intel_do_mmio_flip(mmio_flip->crtc);
11178
11179         i915_gem_request_unreference__unlocked(mmio_flip->req);
11180         kfree(mmio_flip);
11181 }
11182
11183 static int intel_queue_mmio_flip(struct drm_device *dev,
11184                                  struct drm_crtc *crtc,
11185                                  struct drm_framebuffer *fb,
11186                                  struct drm_i915_gem_object *obj,
11187                                  struct intel_engine_cs *ring,
11188                                  uint32_t flags)
11189 {
11190         struct intel_mmio_flip *mmio_flip;
11191
11192         mmio_flip = kmalloc(sizeof(*mmio_flip), GFP_KERNEL);
11193         if (mmio_flip == NULL)
11194                 return -ENOMEM;
11195
11196         mmio_flip->i915 = to_i915(dev);
11197         mmio_flip->req = i915_gem_request_reference(obj->last_write_req);
11198         mmio_flip->crtc = to_intel_crtc(crtc);
11199
11200         INIT_WORK(&mmio_flip->work, intel_mmio_flip_work_func);
11201         schedule_work(&mmio_flip->work);
11202
11203         return 0;
11204 }
11205
11206 static int intel_default_queue_flip(struct drm_device *dev,
11207                                     struct drm_crtc *crtc,
11208                                     struct drm_framebuffer *fb,
11209                                     struct drm_i915_gem_object *obj,
11210                                     struct drm_i915_gem_request *req,
11211                                     uint32_t flags)
11212 {
11213         return -ENODEV;
11214 }
11215
11216 static bool __intel_pageflip_stall_check(struct drm_device *dev,
11217                                          struct drm_crtc *crtc)
11218 {
11219         struct drm_i915_private *dev_priv = dev->dev_private;
11220         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
11221         struct intel_unpin_work *work = intel_crtc->unpin_work;
11222         u32 addr;
11223
11224         if (atomic_read(&work->pending) >= INTEL_FLIP_COMPLETE)
11225                 return true;
11226
11227         if (!work->enable_stall_check)
11228                 return false;
11229
11230         if (work->flip_ready_vblank == 0) {
11231                 if (work->flip_queued_req &&
11232                     !i915_gem_request_completed(work->flip_queued_req, true))
11233                         return false;
11234
11235                 work->flip_ready_vblank = drm_crtc_vblank_count(crtc);
11236         }
11237
11238         if (drm_crtc_vblank_count(crtc) - work->flip_ready_vblank < 3)
11239                 return false;
11240
11241         /* Potential stall - if we see that the flip has happened,
11242          * assume a missed interrupt. */
11243         if (INTEL_INFO(dev)->gen >= 4)
11244                 addr = I915_HI_DISPBASE(I915_READ(DSPSURF(intel_crtc->plane)));
11245         else
11246                 addr = I915_READ(DSPADDR(intel_crtc->plane));
11247
11248         /* There is a potential issue here with a false positive after a flip
11249          * to the same address. We could address this by checking for a
11250          * non-incrementing frame counter.
11251          */
11252         return addr == work->gtt_offset;
11253 }
11254
11255 void intel_check_page_flip(struct drm_device *dev, int pipe)
11256 {
11257         struct drm_i915_private *dev_priv = dev->dev_private;
11258         struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
11259         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
11260         struct intel_unpin_work *work;
11261
11262         WARN_ON(!in_interrupt());
11263
11264         if (crtc == NULL)
11265                 return;
11266
11267         spin_lock(&dev->event_lock);
11268         work = intel_crtc->unpin_work;
11269         if (work != NULL && __intel_pageflip_stall_check(dev, crtc)) {
11270                 WARN_ONCE(1, "Kicking stuck page flip: queued at %d, now %d\n",
11271                          work->flip_queued_vblank, drm_vblank_count(dev, pipe));
11272                 page_flip_completed(intel_crtc);
11273                 work = NULL;
11274         }
11275         if (work != NULL &&
11276             drm_vblank_count(dev, pipe) - work->flip_queued_vblank > 1)
11277                 intel_queue_rps_boost_for_request(dev, work->flip_queued_req);
11278         spin_unlock(&dev->event_lock);
11279 }
11280
11281 static int intel_crtc_page_flip(struct drm_crtc *crtc,
11282                                 struct drm_framebuffer *fb,
11283                                 struct drm_pending_vblank_event *event,
11284                                 uint32_t page_flip_flags)
11285 {
11286         struct drm_device *dev = crtc->dev;
11287         struct drm_i915_private *dev_priv = dev->dev_private;
11288         struct drm_framebuffer *old_fb = crtc->primary->fb;
11289         struct drm_i915_gem_object *obj = intel_fb_obj(fb);
11290         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
11291         struct drm_plane *primary = crtc->primary;
11292         enum pipe pipe = intel_crtc->pipe;
11293         struct intel_unpin_work *work;
11294         struct intel_engine_cs *ring;
11295         bool mmio_flip;
11296         struct drm_i915_gem_request *request = NULL;
11297         int ret;
11298
11299         /*
11300          * drm_mode_page_flip_ioctl() should already catch this, but double
11301          * check to be safe.  In the future we may enable pageflipping from
11302          * a disabled primary plane.
11303          */
11304         if (WARN_ON(intel_fb_obj(old_fb) == NULL))
11305                 return -EBUSY;
11306
11307         /* Can't change pixel format via MI display flips. */
11308         if (fb->pixel_format != crtc->primary->fb->pixel_format)
11309                 return -EINVAL;
11310
11311         /*
11312          * TILEOFF/LINOFF registers can't be changed via MI display flips.
11313          * Note that pitch changes could also affect these register.
11314          */
11315         if (INTEL_INFO(dev)->gen > 3 &&
11316             (fb->offsets[0] != crtc->primary->fb->offsets[0] ||
11317              fb->pitches[0] != crtc->primary->fb->pitches[0]))
11318                 return -EINVAL;
11319
11320         if (i915_terminally_wedged(&dev_priv->gpu_error))
11321                 goto out_hang;
11322
11323         work = kzalloc(sizeof(*work), GFP_KERNEL);
11324         if (work == NULL)
11325                 return -ENOMEM;
11326
11327         work->event = event;
11328         work->crtc = crtc;
11329         work->old_fb = old_fb;
11330         INIT_WORK(&work->work, intel_unpin_work_fn);
11331
11332         ret = drm_crtc_vblank_get(crtc);
11333         if (ret)
11334                 goto free_work;
11335
11336         /* We borrow the event spin lock for protecting unpin_work */
11337         spin_lock_irq(&dev->event_lock);
11338         if (intel_crtc->unpin_work) {
11339                 /* Before declaring the flip queue wedged, check if
11340                  * the hardware completed the operation behind our backs.
11341                  */
11342                 if (__intel_pageflip_stall_check(dev, crtc)) {
11343                         DRM_DEBUG_DRIVER("flip queue: previous flip completed, continuing\n");
11344                         page_flip_completed(intel_crtc);
11345                 } else {
11346                         DRM_DEBUG_DRIVER("flip queue: crtc already busy\n");
11347                         spin_unlock_irq(&dev->event_lock);
11348
11349                         drm_crtc_vblank_put(crtc);
11350                         kfree(work);
11351                         return -EBUSY;
11352                 }
11353         }
11354         intel_crtc->unpin_work = work;
11355         spin_unlock_irq(&dev->event_lock);
11356
11357         if (atomic_read(&intel_crtc->unpin_work_count) >= 2)
11358                 flush_workqueue(dev_priv->wq);
11359
11360         /* Reference the objects for the scheduled work. */
11361         drm_framebuffer_reference(work->old_fb);
11362         drm_gem_object_reference(&obj->base);
11363
11364         crtc->primary->fb = fb;
11365         update_state_fb(crtc->primary);
11366
11367         work->pending_flip_obj = obj;
11368
11369         ret = i915_mutex_lock_interruptible(dev);
11370         if (ret)
11371                 goto cleanup;
11372
11373         atomic_inc(&intel_crtc->unpin_work_count);
11374         intel_crtc->reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
11375
11376         if (INTEL_INFO(dev)->gen >= 5 || IS_G4X(dev))
11377                 work->flip_count = I915_READ(PIPE_FLIPCOUNT_GM45(pipe)) + 1;
11378
11379         if (IS_VALLEYVIEW(dev)) {
11380                 ring = &dev_priv->ring[BCS];
11381                 if (obj->tiling_mode != intel_fb_obj(work->old_fb)->tiling_mode)
11382                         /* vlv: DISPLAY_FLIP fails to change tiling */
11383                         ring = NULL;
11384         } else if (IS_IVYBRIDGE(dev) || IS_HASWELL(dev)) {
11385                 ring = &dev_priv->ring[BCS];
11386         } else if (INTEL_INFO(dev)->gen >= 7) {
11387                 ring = i915_gem_request_get_ring(obj->last_write_req);
11388                 if (ring == NULL || ring->id != RCS)
11389                         ring = &dev_priv->ring[BCS];
11390         } else {
11391                 ring = &dev_priv->ring[RCS];
11392         }
11393
11394         mmio_flip = use_mmio_flip(ring, obj);
11395
11396         /* When using CS flips, we want to emit semaphores between rings.
11397          * However, when using mmio flips we will create a task to do the
11398          * synchronisation, so all we want here is to pin the framebuffer
11399          * into the display plane and skip any waits.
11400          */
11401         ret = intel_pin_and_fence_fb_obj(crtc->primary, fb,
11402                                          crtc->primary->state,
11403                                          mmio_flip ? i915_gem_request_get_ring(obj->last_write_req) : ring, &request);
11404         if (ret)
11405                 goto cleanup_pending;
11406
11407         work->gtt_offset = intel_plane_obj_offset(to_intel_plane(primary), obj)
11408                                                   + intel_crtc->dspaddr_offset;
11409
11410         if (mmio_flip) {
11411                 ret = intel_queue_mmio_flip(dev, crtc, fb, obj, ring,
11412                                             page_flip_flags);
11413                 if (ret)
11414                         goto cleanup_unpin;
11415
11416                 i915_gem_request_assign(&work->flip_queued_req,
11417                                         obj->last_write_req);
11418         } else {
11419                 if (!request) {
11420                         ret = i915_gem_request_alloc(ring, ring->default_context, &request);
11421                         if (ret)
11422                                 goto cleanup_unpin;
11423                 }
11424
11425                 ret = dev_priv->display.queue_flip(dev, crtc, fb, obj, request,
11426                                                    page_flip_flags);
11427                 if (ret)
11428                         goto cleanup_unpin;
11429
11430                 i915_gem_request_assign(&work->flip_queued_req, request);
11431         }
11432
11433         if (request)
11434                 i915_add_request_no_flush(request);
11435
11436         work->flip_queued_vblank = drm_crtc_vblank_count(crtc);
11437         work->enable_stall_check = true;
11438
11439         i915_gem_track_fb(intel_fb_obj(work->old_fb), obj,
11440                           to_intel_plane(primary)->frontbuffer_bit);
11441         mutex_unlock(&dev->struct_mutex);
11442
11443         intel_fbc_disable_crtc(intel_crtc);
11444         intel_frontbuffer_flip_prepare(dev,
11445                                        to_intel_plane(primary)->frontbuffer_bit);
11446
11447         trace_i915_flip_request(intel_crtc->plane, obj);
11448
11449         return 0;
11450
11451 cleanup_unpin:
11452         intel_unpin_fb_obj(fb, crtc->primary->state);
11453 cleanup_pending:
11454         if (request)
11455                 i915_gem_request_cancel(request);
11456         atomic_dec(&intel_crtc->unpin_work_count);
11457         mutex_unlock(&dev->struct_mutex);
11458 cleanup:
11459         crtc->primary->fb = old_fb;
11460         update_state_fb(crtc->primary);
11461
11462         drm_gem_object_unreference_unlocked(&obj->base);
11463         drm_framebuffer_unreference(work->old_fb);
11464
11465         spin_lock_irq(&dev->event_lock);
11466         intel_crtc->unpin_work = NULL;
11467         spin_unlock_irq(&dev->event_lock);
11468
11469         drm_crtc_vblank_put(crtc);
11470 free_work:
11471         kfree(work);
11472
11473         if (ret == -EIO) {
11474                 struct drm_atomic_state *state;
11475                 struct drm_plane_state *plane_state;
11476
11477 out_hang:
11478                 state = drm_atomic_state_alloc(dev);
11479                 if (!state)
11480                         return -ENOMEM;
11481                 state->acquire_ctx = drm_modeset_legacy_acquire_ctx(crtc);
11482
11483 retry:
11484                 plane_state = drm_atomic_get_plane_state(state, primary);
11485                 ret = PTR_ERR_OR_ZERO(plane_state);
11486                 if (!ret) {
11487                         drm_atomic_set_fb_for_plane(plane_state, fb);
11488
11489                         ret = drm_atomic_set_crtc_for_plane(plane_state, crtc);
11490                         if (!ret)
11491                                 ret = drm_atomic_commit(state);
11492                 }
11493
11494                 if (ret == -EDEADLK) {
11495                         drm_modeset_backoff(state->acquire_ctx);
11496                         drm_atomic_state_clear(state);
11497                         goto retry;
11498                 }
11499
11500                 if (ret)
11501                         drm_atomic_state_free(state);
11502
11503                 if (ret == 0 && event) {
11504                         spin_lock_irq(&dev->event_lock);
11505                         drm_send_vblank_event(dev, pipe, event);
11506                         spin_unlock_irq(&dev->event_lock);
11507                 }
11508         }
11509         return ret;
11510 }
11511
11512
11513 /**
11514  * intel_wm_need_update - Check whether watermarks need updating
11515  * @plane: drm plane
11516  * @state: new plane state
11517  *
11518  * Check current plane state versus the new one to determine whether
11519  * watermarks need to be recalculated.
11520  *
11521  * Returns true or false.
11522  */
11523 static bool intel_wm_need_update(struct drm_plane *plane,
11524                                  struct drm_plane_state *state)
11525 {
11526         /* Update watermarks on tiling changes. */
11527         if (!plane->state->fb || !state->fb ||
11528             plane->state->fb->modifier[0] != state->fb->modifier[0] ||
11529             plane->state->rotation != state->rotation)
11530                 return true;
11531
11532         if (plane->state->crtc_w != state->crtc_w)
11533                 return true;
11534
11535         return false;
11536 }
11537
11538 int intel_plane_atomic_calc_changes(struct drm_crtc_state *crtc_state,
11539                                     struct drm_plane_state *plane_state)
11540 {
11541         struct drm_crtc *crtc = crtc_state->crtc;
11542         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
11543         struct drm_plane *plane = plane_state->plane;
11544         struct drm_device *dev = crtc->dev;
11545         struct drm_i915_private *dev_priv = dev->dev_private;
11546         struct intel_plane_state *old_plane_state =
11547                 to_intel_plane_state(plane->state);
11548         int idx = intel_crtc->base.base.id, ret;
11549         int i = drm_plane_index(plane);
11550         bool mode_changed = needs_modeset(crtc_state);
11551         bool was_crtc_enabled = crtc->state->active;
11552         bool is_crtc_enabled = crtc_state->active;
11553
11554         bool turn_off, turn_on, visible, was_visible;
11555         struct drm_framebuffer *fb = plane_state->fb;
11556
11557         if (crtc_state && INTEL_INFO(dev)->gen >= 9 &&
11558             plane->type != DRM_PLANE_TYPE_CURSOR) {
11559                 ret = skl_update_scaler_plane(
11560                         to_intel_crtc_state(crtc_state),
11561                         to_intel_plane_state(plane_state));
11562                 if (ret)
11563                         return ret;
11564         }
11565
11566         /*
11567          * Disabling a plane is always okay; we just need to update
11568          * fb tracking in a special way since cleanup_fb() won't
11569          * get called by the plane helpers.
11570          */
11571         if (old_plane_state->base.fb && !fb)
11572                 intel_crtc->atomic.disabled_planes |= 1 << i;
11573
11574         was_visible = old_plane_state->visible;
11575         visible = to_intel_plane_state(plane_state)->visible;
11576
11577         if (!was_crtc_enabled && WARN_ON(was_visible))
11578                 was_visible = false;
11579
11580         if (!is_crtc_enabled && WARN_ON(visible))
11581                 visible = false;
11582
11583         if (!was_visible && !visible)
11584                 return 0;
11585
11586         turn_off = was_visible && (!visible || mode_changed);
11587         turn_on = visible && (!was_visible || mode_changed);
11588
11589         DRM_DEBUG_ATOMIC("[CRTC:%i] has [PLANE:%i] with fb %i\n", idx,
11590                          plane->base.id, fb ? fb->base.id : -1);
11591
11592         DRM_DEBUG_ATOMIC("[PLANE:%i] visible %i -> %i, off %i, on %i, ms %i\n",
11593                          plane->base.id, was_visible, visible,
11594                          turn_off, turn_on, mode_changed);
11595
11596         if (turn_on) {
11597                 intel_crtc->atomic.update_wm_pre = true;
11598                 /* must disable cxsr around plane enable/disable */
11599                 if (plane->type != DRM_PLANE_TYPE_CURSOR) {
11600                         intel_crtc->atomic.disable_cxsr = true;
11601                         /* to potentially re-enable cxsr */
11602                         intel_crtc->atomic.wait_vblank = true;
11603                         intel_crtc->atomic.update_wm_post = true;
11604                 }
11605         } else if (turn_off) {
11606                 intel_crtc->atomic.update_wm_post = true;
11607                 /* must disable cxsr around plane enable/disable */
11608                 if (plane->type != DRM_PLANE_TYPE_CURSOR) {
11609                         if (is_crtc_enabled)
11610                                 intel_crtc->atomic.wait_vblank = true;
11611                         intel_crtc->atomic.disable_cxsr = true;
11612                 }
11613         } else if (intel_wm_need_update(plane, plane_state)) {
11614                 intel_crtc->atomic.update_wm_pre = true;
11615         }
11616
11617         if (visible)
11618                 intel_crtc->atomic.fb_bits |=
11619                         to_intel_plane(plane)->frontbuffer_bit;
11620
11621         switch (plane->type) {
11622         case DRM_PLANE_TYPE_PRIMARY:
11623                 intel_crtc->atomic.wait_for_flips = true;
11624                 intel_crtc->atomic.pre_disable_primary = turn_off;
11625                 intel_crtc->atomic.post_enable_primary = turn_on;
11626
11627                 if (turn_off) {
11628                         /*
11629                          * FIXME: Actually if we will still have any other
11630                          * plane enabled on the pipe we could let IPS enabled
11631                          * still, but for now lets consider that when we make
11632                          * primary invisible by setting DSPCNTR to 0 on
11633                          * update_primary_plane function IPS needs to be
11634                          * disable.
11635                          */
11636                         intel_crtc->atomic.disable_ips = true;
11637
11638                         intel_crtc->atomic.disable_fbc = true;
11639                 }
11640
11641                 /*
11642                  * FBC does not work on some platforms for rotated
11643                  * planes, so disable it when rotation is not 0 and
11644                  * update it when rotation is set back to 0.
11645                  *
11646                  * FIXME: This is redundant with the fbc update done in
11647                  * the primary plane enable function except that that
11648                  * one is done too late. We eventually need to unify
11649                  * this.
11650                  */
11651
11652                 if (visible &&
11653                     INTEL_INFO(dev)->gen <= 4 && !IS_G4X(dev) &&
11654                     dev_priv->fbc.crtc == intel_crtc &&
11655                     plane_state->rotation != BIT(DRM_ROTATE_0))
11656                         intel_crtc->atomic.disable_fbc = true;
11657
11658                 /*
11659                  * BDW signals flip done immediately if the plane
11660                  * is disabled, even if the plane enable is already
11661                  * armed to occur at the next vblank :(
11662                  */
11663                 if (turn_on && IS_BROADWELL(dev))
11664                         intel_crtc->atomic.wait_vblank = true;
11665
11666                 intel_crtc->atomic.update_fbc |= visible || mode_changed;
11667                 break;
11668         case DRM_PLANE_TYPE_CURSOR:
11669                 break;
11670         case DRM_PLANE_TYPE_OVERLAY:
11671                 if (turn_off && !mode_changed) {
11672                         intel_crtc->atomic.wait_vblank = true;
11673                         intel_crtc->atomic.update_sprite_watermarks |=
11674                                 1 << i;
11675                 }
11676         }
11677         return 0;
11678 }
11679
11680 static bool encoders_cloneable(const struct intel_encoder *a,
11681                                const struct intel_encoder *b)
11682 {
11683         /* masks could be asymmetric, so check both ways */
11684         return a == b || (a->cloneable & (1 << b->type) &&
11685                           b->cloneable & (1 << a->type));
11686 }
11687
11688 static bool check_single_encoder_cloning(struct drm_atomic_state *state,
11689                                          struct intel_crtc *crtc,
11690                                          struct intel_encoder *encoder)
11691 {
11692         struct intel_encoder *source_encoder;
11693         struct drm_connector *connector;
11694         struct drm_connector_state *connector_state;
11695         int i;
11696
11697         for_each_connector_in_state(state, connector, connector_state, i) {
11698                 if (connector_state->crtc != &crtc->base)
11699                         continue;
11700
11701                 source_encoder =
11702                         to_intel_encoder(connector_state->best_encoder);
11703                 if (!encoders_cloneable(encoder, source_encoder))
11704                         return false;
11705         }
11706
11707         return true;
11708 }
11709
11710 static bool check_encoder_cloning(struct drm_atomic_state *state,
11711                                   struct intel_crtc *crtc)
11712 {
11713         struct intel_encoder *encoder;
11714         struct drm_connector *connector;
11715         struct drm_connector_state *connector_state;
11716         int i;
11717
11718         for_each_connector_in_state(state, connector, connector_state, i) {
11719                 if (connector_state->crtc != &crtc->base)
11720                         continue;
11721
11722                 encoder = to_intel_encoder(connector_state->best_encoder);
11723                 if (!check_single_encoder_cloning(state, crtc, encoder))
11724                         return false;
11725         }
11726
11727         return true;
11728 }
11729
11730 static int intel_crtc_atomic_check(struct drm_crtc *crtc,
11731                                    struct drm_crtc_state *crtc_state)
11732 {
11733         struct drm_device *dev = crtc->dev;
11734         struct drm_i915_private *dev_priv = dev->dev_private;
11735         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
11736         struct intel_crtc_state *pipe_config =
11737                 to_intel_crtc_state(crtc_state);
11738         struct drm_atomic_state *state = crtc_state->state;
11739         int ret;
11740         bool mode_changed = needs_modeset(crtc_state);
11741
11742         if (mode_changed && !check_encoder_cloning(state, intel_crtc)) {
11743                 DRM_DEBUG_KMS("rejecting invalid cloning configuration\n");
11744                 return -EINVAL;
11745         }
11746
11747         if (mode_changed && !crtc_state->active)
11748                 intel_crtc->atomic.update_wm_post = true;
11749
11750         if (mode_changed && crtc_state->enable &&
11751             dev_priv->display.crtc_compute_clock &&
11752             !WARN_ON(pipe_config->shared_dpll != DPLL_ID_PRIVATE)) {
11753                 ret = dev_priv->display.crtc_compute_clock(intel_crtc,
11754                                                            pipe_config);
11755                 if (ret)
11756                         return ret;
11757         }
11758
11759         ret = 0;
11760         if (INTEL_INFO(dev)->gen >= 9) {
11761                 if (mode_changed)
11762                         ret = skl_update_scaler_crtc(pipe_config);
11763
11764                 if (!ret)
11765                         ret = intel_atomic_setup_scalers(dev, intel_crtc,
11766                                                          pipe_config);
11767         }
11768
11769         return ret;
11770 }
11771
11772 static const struct drm_crtc_helper_funcs intel_helper_funcs = {
11773         .mode_set_base_atomic = intel_pipe_set_base_atomic,
11774         .load_lut = intel_crtc_load_lut,
11775         .atomic_begin = intel_begin_crtc_commit,
11776         .atomic_flush = intel_finish_crtc_commit,
11777         .atomic_check = intel_crtc_atomic_check,
11778 };
11779
11780 static void intel_modeset_update_connector_atomic_state(struct drm_device *dev)
11781 {
11782         struct intel_connector *connector;
11783
11784         for_each_intel_connector(dev, connector) {
11785                 if (connector->base.encoder) {
11786                         connector->base.state->best_encoder =
11787                                 connector->base.encoder;
11788                         connector->base.state->crtc =
11789                                 connector->base.encoder->crtc;
11790                 } else {
11791                         connector->base.state->best_encoder = NULL;
11792                         connector->base.state->crtc = NULL;
11793                 }
11794         }
11795 }
11796
11797 static void
11798 connected_sink_compute_bpp(struct intel_connector *connector,
11799                            struct intel_crtc_state *pipe_config)
11800 {
11801         int bpp = pipe_config->pipe_bpp;
11802
11803         DRM_DEBUG_KMS("[CONNECTOR:%d:%s] checking for sink bpp constrains\n",
11804                 connector->base.base.id,
11805                 connector->base.name);
11806
11807         /* Don't use an invalid EDID bpc value */
11808         if (connector->base.display_info.bpc &&
11809             connector->base.display_info.bpc * 3 < bpp) {
11810                 DRM_DEBUG_KMS("clamping display bpp (was %d) to EDID reported max of %d\n",
11811                               bpp, connector->base.display_info.bpc*3);
11812                 pipe_config->pipe_bpp = connector->base.display_info.bpc*3;
11813         }
11814
11815         /* Clamp bpp to 8 on screens without EDID 1.4 */
11816         if (connector->base.display_info.bpc == 0 && bpp > 24) {
11817                 DRM_DEBUG_KMS("clamping display bpp (was %d) to default limit of 24\n",
11818                               bpp);
11819                 pipe_config->pipe_bpp = 24;
11820         }
11821 }
11822
11823 static int
11824 compute_baseline_pipe_bpp(struct intel_crtc *crtc,
11825                           struct intel_crtc_state *pipe_config)
11826 {
11827         struct drm_device *dev = crtc->base.dev;
11828         struct drm_atomic_state *state;
11829         struct drm_connector *connector;
11830         struct drm_connector_state *connector_state;
11831         int bpp, i;
11832
11833         if ((IS_G4X(dev) || IS_VALLEYVIEW(dev)))
11834                 bpp = 10*3;
11835         else if (INTEL_INFO(dev)->gen >= 5)
11836                 bpp = 12*3;
11837         else
11838                 bpp = 8*3;
11839
11840
11841         pipe_config->pipe_bpp = bpp;
11842
11843         state = pipe_config->base.state;
11844
11845         /* Clamp display bpp to EDID value */
11846         for_each_connector_in_state(state, connector, connector_state, i) {
11847                 if (connector_state->crtc != &crtc->base)
11848                         continue;
11849
11850                 connected_sink_compute_bpp(to_intel_connector(connector),
11851                                            pipe_config);
11852         }
11853
11854         return bpp;
11855 }
11856
11857 static void intel_dump_crtc_timings(const struct drm_display_mode *mode)
11858 {
11859         DRM_DEBUG_KMS("crtc timings: %d %d %d %d %d %d %d %d %d, "
11860                         "type: 0x%x flags: 0x%x\n",
11861                 mode->crtc_clock,
11862                 mode->crtc_hdisplay, mode->crtc_hsync_start,
11863                 mode->crtc_hsync_end, mode->crtc_htotal,
11864                 mode->crtc_vdisplay, mode->crtc_vsync_start,
11865                 mode->crtc_vsync_end, mode->crtc_vtotal, mode->type, mode->flags);
11866 }
11867
11868 static void intel_dump_pipe_config(struct intel_crtc *crtc,
11869                                    struct intel_crtc_state *pipe_config,
11870                                    const char *context)
11871 {
11872         struct drm_device *dev = crtc->base.dev;
11873         struct drm_plane *plane;
11874         struct intel_plane *intel_plane;
11875         struct intel_plane_state *state;
11876         struct drm_framebuffer *fb;
11877
11878         DRM_DEBUG_KMS("[CRTC:%d]%s config %p for pipe %c\n", crtc->base.base.id,
11879                       context, pipe_config, pipe_name(crtc->pipe));
11880
11881         DRM_DEBUG_KMS("cpu_transcoder: %c\n", transcoder_name(pipe_config->cpu_transcoder));
11882         DRM_DEBUG_KMS("pipe bpp: %i, dithering: %i\n",
11883                       pipe_config->pipe_bpp, pipe_config->dither);
11884         DRM_DEBUG_KMS("fdi/pch: %i, lanes: %i, gmch_m: %u, gmch_n: %u, link_m: %u, link_n: %u, tu: %u\n",
11885                       pipe_config->has_pch_encoder,
11886                       pipe_config->fdi_lanes,
11887                       pipe_config->fdi_m_n.gmch_m, pipe_config->fdi_m_n.gmch_n,
11888                       pipe_config->fdi_m_n.link_m, pipe_config->fdi_m_n.link_n,
11889                       pipe_config->fdi_m_n.tu);
11890         DRM_DEBUG_KMS("dp: %i, gmch_m: %u, gmch_n: %u, link_m: %u, link_n: %u, tu: %u\n",
11891                       pipe_config->has_dp_encoder,
11892                       pipe_config->dp_m_n.gmch_m, pipe_config->dp_m_n.gmch_n,
11893                       pipe_config->dp_m_n.link_m, pipe_config->dp_m_n.link_n,
11894                       pipe_config->dp_m_n.tu);
11895
11896         DRM_DEBUG_KMS("dp: %i, gmch_m2: %u, gmch_n2: %u, link_m2: %u, link_n2: %u, tu2: %u\n",
11897                       pipe_config->has_dp_encoder,
11898                       pipe_config->dp_m2_n2.gmch_m,
11899                       pipe_config->dp_m2_n2.gmch_n,
11900                       pipe_config->dp_m2_n2.link_m,
11901                       pipe_config->dp_m2_n2.link_n,
11902                       pipe_config->dp_m2_n2.tu);
11903
11904         DRM_DEBUG_KMS("audio: %i, infoframes: %i\n",
11905                       pipe_config->has_audio,
11906                       pipe_config->has_infoframe);
11907
11908         DRM_DEBUG_KMS("requested mode:\n");
11909         drm_mode_debug_printmodeline(&pipe_config->base.mode);
11910         DRM_DEBUG_KMS("adjusted mode:\n");
11911         drm_mode_debug_printmodeline(&pipe_config->base.adjusted_mode);
11912         intel_dump_crtc_timings(&pipe_config->base.adjusted_mode);
11913         DRM_DEBUG_KMS("port clock: %d\n", pipe_config->port_clock);
11914         DRM_DEBUG_KMS("pipe src size: %dx%d\n",
11915                       pipe_config->pipe_src_w, pipe_config->pipe_src_h);
11916         DRM_DEBUG_KMS("num_scalers: %d, scaler_users: 0x%x, scaler_id: %d\n",
11917                       crtc->num_scalers,
11918                       pipe_config->scaler_state.scaler_users,
11919                       pipe_config->scaler_state.scaler_id);
11920         DRM_DEBUG_KMS("gmch pfit: control: 0x%08x, ratios: 0x%08x, lvds border: 0x%08x\n",
11921                       pipe_config->gmch_pfit.control,
11922                       pipe_config->gmch_pfit.pgm_ratios,
11923                       pipe_config->gmch_pfit.lvds_border_bits);
11924         DRM_DEBUG_KMS("pch pfit: pos: 0x%08x, size: 0x%08x, %s\n",
11925                       pipe_config->pch_pfit.pos,
11926                       pipe_config->pch_pfit.size,
11927                       pipe_config->pch_pfit.enabled ? "enabled" : "disabled");
11928         DRM_DEBUG_KMS("ips: %i\n", pipe_config->ips_enabled);
11929         DRM_DEBUG_KMS("double wide: %i\n", pipe_config->double_wide);
11930
11931         if (IS_BROXTON(dev)) {
11932                 DRM_DEBUG_KMS("ddi_pll_sel: %u; dpll_hw_state: ebb0: 0x%x, ebb4: 0x%x,"
11933                               "pll0: 0x%x, pll1: 0x%x, pll2: 0x%x, pll3: 0x%x, "
11934                               "pll6: 0x%x, pll8: 0x%x, pll9: 0x%x, pll10: 0x%x, pcsdw12: 0x%x\n",
11935                               pipe_config->ddi_pll_sel,
11936                               pipe_config->dpll_hw_state.ebb0,
11937                               pipe_config->dpll_hw_state.ebb4,
11938                               pipe_config->dpll_hw_state.pll0,
11939                               pipe_config->dpll_hw_state.pll1,
11940                               pipe_config->dpll_hw_state.pll2,
11941                               pipe_config->dpll_hw_state.pll3,
11942                               pipe_config->dpll_hw_state.pll6,
11943                               pipe_config->dpll_hw_state.pll8,
11944                               pipe_config->dpll_hw_state.pll9,
11945                               pipe_config->dpll_hw_state.pll10,
11946                               pipe_config->dpll_hw_state.pcsdw12);
11947         } else if (IS_SKYLAKE(dev)) {
11948                 DRM_DEBUG_KMS("ddi_pll_sel: %u; dpll_hw_state: "
11949                               "ctrl1: 0x%x, cfgcr1: 0x%x, cfgcr2: 0x%x\n",
11950                               pipe_config->ddi_pll_sel,
11951                               pipe_config->dpll_hw_state.ctrl1,
11952                               pipe_config->dpll_hw_state.cfgcr1,
11953                               pipe_config->dpll_hw_state.cfgcr2);
11954         } else if (HAS_DDI(dev)) {
11955                 DRM_DEBUG_KMS("ddi_pll_sel: %u; dpll_hw_state: wrpll: 0x%x\n",
11956                               pipe_config->ddi_pll_sel,
11957                               pipe_config->dpll_hw_state.wrpll);
11958         } else {
11959                 DRM_DEBUG_KMS("dpll_hw_state: dpll: 0x%x, dpll_md: 0x%x, "
11960                               "fp0: 0x%x, fp1: 0x%x\n",
11961                               pipe_config->dpll_hw_state.dpll,
11962                               pipe_config->dpll_hw_state.dpll_md,
11963                               pipe_config->dpll_hw_state.fp0,
11964                               pipe_config->dpll_hw_state.fp1);
11965         }
11966
11967         DRM_DEBUG_KMS("planes on this crtc\n");
11968         list_for_each_entry(plane, &dev->mode_config.plane_list, head) {
11969                 intel_plane = to_intel_plane(plane);
11970                 if (intel_plane->pipe != crtc->pipe)
11971                         continue;
11972
11973                 state = to_intel_plane_state(plane->state);
11974                 fb = state->base.fb;
11975                 if (!fb) {
11976                         DRM_DEBUG_KMS("%s PLANE:%d plane: %u.%u idx: %d "
11977                                 "disabled, scaler_id = %d\n",
11978                                 plane->type == DRM_PLANE_TYPE_CURSOR ? "CURSOR" : "STANDARD",
11979                                 plane->base.id, intel_plane->pipe,
11980                                 (crtc->base.primary == plane) ? 0 : intel_plane->plane + 1,
11981                                 drm_plane_index(plane), state->scaler_id);
11982                         continue;
11983                 }
11984
11985                 DRM_DEBUG_KMS("%s PLANE:%d plane: %u.%u idx: %d enabled",
11986                         plane->type == DRM_PLANE_TYPE_CURSOR ? "CURSOR" : "STANDARD",
11987                         plane->base.id, intel_plane->pipe,
11988                         crtc->base.primary == plane ? 0 : intel_plane->plane + 1,
11989                         drm_plane_index(plane));
11990                 DRM_DEBUG_KMS("\tFB:%d, fb = %ux%u format = 0x%x",
11991                         fb->base.id, fb->width, fb->height, fb->pixel_format);
11992                 DRM_DEBUG_KMS("\tscaler:%d src (%u, %u) %ux%u dst (%u, %u) %ux%u\n",
11993                         state->scaler_id,
11994                         state->src.x1 >> 16, state->src.y1 >> 16,
11995                         drm_rect_width(&state->src) >> 16,
11996                         drm_rect_height(&state->src) >> 16,
11997                         state->dst.x1, state->dst.y1,
11998                         drm_rect_width(&state->dst), drm_rect_height(&state->dst));
11999         }
12000 }
12001
12002 static bool check_digital_port_conflicts(struct drm_atomic_state *state)
12003 {
12004         struct drm_device *dev = state->dev;
12005         struct intel_encoder *encoder;
12006         struct drm_connector *connector;
12007         struct drm_connector_state *connector_state;
12008         unsigned int used_ports = 0;
12009         int i;
12010
12011         /*
12012          * Walk the connector list instead of the encoder
12013          * list to detect the problem on ddi platforms
12014          * where there's just one encoder per digital port.
12015          */
12016         for_each_connector_in_state(state, connector, connector_state, i) {
12017                 if (!connector_state->best_encoder)
12018                         continue;
12019
12020                 encoder = to_intel_encoder(connector_state->best_encoder);
12021
12022                 WARN_ON(!connector_state->crtc);
12023
12024                 switch (encoder->type) {
12025                         unsigned int port_mask;
12026                 case INTEL_OUTPUT_UNKNOWN:
12027                         if (WARN_ON(!HAS_DDI(dev)))
12028                                 break;
12029                 case INTEL_OUTPUT_DISPLAYPORT:
12030                 case INTEL_OUTPUT_HDMI:
12031                 case INTEL_OUTPUT_EDP:
12032                         port_mask = 1 << enc_to_dig_port(&encoder->base)->port;
12033
12034                         /* the same port mustn't appear more than once */
12035                         if (used_ports & port_mask)
12036                                 return false;
12037
12038                         used_ports |= port_mask;
12039                 default:
12040                         break;
12041                 }
12042         }
12043
12044         return true;
12045 }
12046
12047 static void
12048 clear_intel_crtc_state(struct intel_crtc_state *crtc_state)
12049 {
12050         struct drm_crtc_state tmp_state;
12051         struct intel_crtc_scaler_state scaler_state;
12052         struct intel_dpll_hw_state dpll_hw_state;
12053         enum intel_dpll_id shared_dpll;
12054         uint32_t ddi_pll_sel;
12055         bool force_thru;
12056
12057         /* FIXME: before the switch to atomic started, a new pipe_config was
12058          * kzalloc'd. Code that depends on any field being zero should be
12059          * fixed, so that the crtc_state can be safely duplicated. For now,
12060          * only fields that are know to not cause problems are preserved. */
12061
12062         tmp_state = crtc_state->base;
12063         scaler_state = crtc_state->scaler_state;
12064         shared_dpll = crtc_state->shared_dpll;
12065         dpll_hw_state = crtc_state->dpll_hw_state;
12066         ddi_pll_sel = crtc_state->ddi_pll_sel;
12067         force_thru = crtc_state->pch_pfit.force_thru;
12068
12069         memset(crtc_state, 0, sizeof *crtc_state);
12070
12071         crtc_state->base = tmp_state;
12072         crtc_state->scaler_state = scaler_state;
12073         crtc_state->shared_dpll = shared_dpll;
12074         crtc_state->dpll_hw_state = dpll_hw_state;
12075         crtc_state->ddi_pll_sel = ddi_pll_sel;
12076         crtc_state->pch_pfit.force_thru = force_thru;
12077 }
12078
12079 static int
12080 intel_modeset_pipe_config(struct drm_crtc *crtc,
12081                           struct intel_crtc_state *pipe_config)
12082 {
12083         struct drm_atomic_state *state = pipe_config->base.state;
12084         struct intel_encoder *encoder;
12085         struct drm_connector *connector;
12086         struct drm_connector_state *connector_state;
12087         int base_bpp, ret = -EINVAL;
12088         int i;
12089         bool retry = true;
12090
12091         clear_intel_crtc_state(pipe_config);
12092
12093         pipe_config->cpu_transcoder =
12094                 (enum transcoder) to_intel_crtc(crtc)->pipe;
12095
12096         /*
12097          * Sanitize sync polarity flags based on requested ones. If neither
12098          * positive or negative polarity is requested, treat this as meaning
12099          * negative polarity.
12100          */
12101         if (!(pipe_config->base.adjusted_mode.flags &
12102               (DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NHSYNC)))
12103                 pipe_config->base.adjusted_mode.flags |= DRM_MODE_FLAG_NHSYNC;
12104
12105         if (!(pipe_config->base.adjusted_mode.flags &
12106               (DRM_MODE_FLAG_PVSYNC | DRM_MODE_FLAG_NVSYNC)))
12107                 pipe_config->base.adjusted_mode.flags |= DRM_MODE_FLAG_NVSYNC;
12108
12109         /* Compute a starting value for pipe_config->pipe_bpp taking the source
12110          * plane pixel format and any sink constraints into account. Returns the
12111          * source plane bpp so that dithering can be selected on mismatches
12112          * after encoders and crtc also have had their say. */
12113         base_bpp = compute_baseline_pipe_bpp(to_intel_crtc(crtc),
12114                                              pipe_config);
12115         if (base_bpp < 0)
12116                 goto fail;
12117
12118         /*
12119          * Determine the real pipe dimensions. Note that stereo modes can
12120          * increase the actual pipe size due to the frame doubling and
12121          * insertion of additional space for blanks between the frame. This
12122          * is stored in the crtc timings. We use the requested mode to do this
12123          * computation to clearly distinguish it from the adjusted mode, which
12124          * can be changed by the connectors in the below retry loop.
12125          */
12126         drm_crtc_get_hv_timing(&pipe_config->base.mode,
12127                                &pipe_config->pipe_src_w,
12128                                &pipe_config->pipe_src_h);
12129
12130 encoder_retry:
12131         /* Ensure the port clock defaults are reset when retrying. */
12132         pipe_config->port_clock = 0;
12133         pipe_config->pixel_multiplier = 1;
12134
12135         /* Fill in default crtc timings, allow encoders to overwrite them. */
12136         drm_mode_set_crtcinfo(&pipe_config->base.adjusted_mode,
12137                               CRTC_STEREO_DOUBLE);
12138
12139         /* Pass our mode to the connectors and the CRTC to give them a chance to
12140          * adjust it according to limitations or connector properties, and also
12141          * a chance to reject the mode entirely.
12142          */
12143         for_each_connector_in_state(state, connector, connector_state, i) {
12144                 if (connector_state->crtc != crtc)
12145                         continue;
12146
12147                 encoder = to_intel_encoder(connector_state->best_encoder);
12148
12149                 if (!(encoder->compute_config(encoder, pipe_config))) {
12150                         DRM_DEBUG_KMS("Encoder config failure\n");
12151                         goto fail;
12152                 }
12153         }
12154
12155         /* Set default port clock if not overwritten by the encoder. Needs to be
12156          * done afterwards in case the encoder adjusts the mode. */
12157         if (!pipe_config->port_clock)
12158                 pipe_config->port_clock = pipe_config->base.adjusted_mode.crtc_clock
12159                         * pipe_config->pixel_multiplier;
12160
12161         ret = intel_crtc_compute_config(to_intel_crtc(crtc), pipe_config);
12162         if (ret < 0) {
12163                 DRM_DEBUG_KMS("CRTC fixup failed\n");
12164                 goto fail;
12165         }
12166
12167         if (ret == RETRY) {
12168                 if (WARN(!retry, "loop in pipe configuration computation\n")) {
12169                         ret = -EINVAL;
12170                         goto fail;
12171                 }
12172
12173                 DRM_DEBUG_KMS("CRTC bw constrained, retrying\n");
12174                 retry = false;
12175                 goto encoder_retry;
12176         }
12177
12178         pipe_config->dither = pipe_config->pipe_bpp != base_bpp;
12179         DRM_DEBUG_KMS("plane bpp: %i, pipe bpp: %i, dithering: %i\n",
12180                       base_bpp, pipe_config->pipe_bpp, pipe_config->dither);
12181
12182 fail:
12183         return ret;
12184 }
12185
12186 static bool intel_crtc_in_use(struct drm_crtc *crtc)
12187 {
12188         struct drm_encoder *encoder;
12189         struct drm_device *dev = crtc->dev;
12190
12191         list_for_each_entry(encoder, &dev->mode_config.encoder_list, head)
12192                 if (encoder->crtc == crtc)
12193                         return true;
12194
12195         return false;
12196 }
12197
12198 static void
12199 intel_modeset_update_state(struct drm_atomic_state *state)
12200 {
12201         struct drm_device *dev = state->dev;
12202         struct intel_encoder *intel_encoder;
12203         struct drm_crtc *crtc;
12204         struct drm_crtc_state *crtc_state;
12205         struct drm_connector *connector;
12206         int i;
12207
12208         intel_shared_dpll_commit(state);
12209
12210         for_each_intel_encoder(dev, intel_encoder) {
12211                 if (!intel_encoder->base.crtc)
12212                         continue;
12213
12214                 crtc = intel_encoder->base.crtc;
12215                 crtc_state = drm_atomic_get_existing_crtc_state(state, crtc);
12216                 if (!crtc_state || !needs_modeset(crtc->state))
12217                         continue;
12218
12219                 intel_encoder->connectors_active = false;
12220         }
12221
12222         drm_atomic_helper_update_legacy_modeset_state(state->dev, state);
12223
12224         /* Double check state. */
12225         for_each_crtc_in_state(state, crtc, crtc_state, i) {
12226                 WARN_ON(crtc->state->enable != intel_crtc_in_use(crtc));
12227
12228                 to_intel_crtc(crtc)->config = to_intel_crtc_state(crtc->state);
12229
12230                 /* Update hwmode for vblank functions */
12231                 if (crtc->state->active)
12232                         crtc->hwmode = crtc->state->adjusted_mode;
12233                 else
12234                         crtc->hwmode.crtc_clock = 0;
12235         }
12236
12237         list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
12238                 if (!connector->encoder || !connector->encoder->crtc)
12239                         continue;
12240
12241                 crtc = connector->encoder->crtc;
12242                 crtc_state = drm_atomic_get_existing_crtc_state(state, crtc);
12243                 if (!crtc_state || !needs_modeset(crtc->state))
12244                         continue;
12245
12246                 if (crtc->state->active) {
12247                         intel_encoder = to_intel_encoder(connector->encoder);
12248                         intel_encoder->connectors_active = true;
12249                 }
12250         }
12251 }
12252
12253 static bool intel_fuzzy_clock_check(int clock1, int clock2)
12254 {
12255         int diff;
12256
12257         if (clock1 == clock2)
12258                 return true;
12259
12260         if (!clock1 || !clock2)
12261                 return false;
12262
12263         diff = abs(clock1 - clock2);
12264
12265         if (((((diff + clock1 + clock2) * 100)) / (clock1 + clock2)) < 105)
12266                 return true;
12267
12268         return false;
12269 }
12270
12271 #define for_each_intel_crtc_masked(dev, mask, intel_crtc) \
12272         list_for_each_entry((intel_crtc), \
12273                             &(dev)->mode_config.crtc_list, \
12274                             base.head) \
12275                 if (mask & (1 <<(intel_crtc)->pipe))
12276
12277
12278 static bool
12279 intel_compare_m_n(unsigned int m, unsigned int n,
12280                   unsigned int m2, unsigned int n2,
12281                   bool exact)
12282 {
12283         if (m == m2 && n == n2)
12284                 return true;
12285
12286         if (exact || !m || !n || !m2 || !n2)
12287                 return false;
12288
12289         BUILD_BUG_ON(DATA_LINK_M_N_MASK > INT_MAX);
12290
12291         if (m > m2) {
12292                 while (m > m2) {
12293                         m2 <<= 1;
12294                         n2 <<= 1;
12295                 }
12296         } else if (m < m2) {
12297                 while (m < m2) {
12298                         m <<= 1;
12299                         n <<= 1;
12300                 }
12301         }
12302
12303         return m == m2 && n == n2;
12304 }
12305
12306 static bool
12307 intel_compare_link_m_n(const struct intel_link_m_n *m_n,
12308                        struct intel_link_m_n *m2_n2,
12309                        bool adjust)
12310 {
12311         if (m_n->tu == m2_n2->tu &&
12312             intel_compare_m_n(m_n->gmch_m, m_n->gmch_n,
12313                               m2_n2->gmch_m, m2_n2->gmch_n, !adjust) &&
12314             intel_compare_m_n(m_n->link_m, m_n->link_n,
12315                               m2_n2->link_m, m2_n2->link_n, !adjust)) {
12316                 if (adjust)
12317                         *m2_n2 = *m_n;
12318
12319                 return true;
12320         }
12321
12322         return false;
12323 }
12324
12325 static bool
12326 intel_pipe_config_compare(struct drm_device *dev,
12327                           struct intel_crtc_state *current_config,
12328                           struct intel_crtc_state *pipe_config,
12329                           bool adjust)
12330 {
12331         bool ret = true;
12332
12333 #define INTEL_ERR_OR_DBG_KMS(fmt, ...) \
12334         do { \
12335                 if (!adjust) \
12336                         DRM_ERROR(fmt, ##__VA_ARGS__); \
12337                 else \
12338                         DRM_DEBUG_KMS(fmt, ##__VA_ARGS__); \
12339         } while (0)
12340
12341 #define PIPE_CONF_CHECK_X(name) \
12342         if (current_config->name != pipe_config->name) { \
12343                 INTEL_ERR_OR_DBG_KMS("mismatch in " #name " " \
12344                           "(expected 0x%08x, found 0x%08x)\n", \
12345                           current_config->name, \
12346                           pipe_config->name); \
12347                 ret = false; \
12348         }
12349
12350 #define PIPE_CONF_CHECK_I(name) \
12351         if (current_config->name != pipe_config->name) { \
12352                 INTEL_ERR_OR_DBG_KMS("mismatch in " #name " " \
12353                           "(expected %i, found %i)\n", \
12354                           current_config->name, \
12355                           pipe_config->name); \
12356                 ret = false; \
12357         }
12358
12359 #define PIPE_CONF_CHECK_M_N(name) \
12360         if (!intel_compare_link_m_n(&current_config->name, \
12361                                     &pipe_config->name,\
12362                                     adjust)) { \
12363                 INTEL_ERR_OR_DBG_KMS("mismatch in " #name " " \
12364                           "(expected tu %i gmch %i/%i link %i/%i, " \
12365                           "found tu %i, gmch %i/%i link %i/%i)\n", \
12366                           current_config->name.tu, \
12367                           current_config->name.gmch_m, \
12368                           current_config->name.gmch_n, \
12369                           current_config->name.link_m, \
12370                           current_config->name.link_n, \
12371                           pipe_config->name.tu, \
12372                           pipe_config->name.gmch_m, \
12373                           pipe_config->name.gmch_n, \
12374                           pipe_config->name.link_m, \
12375                           pipe_config->name.link_n); \
12376                 ret = false; \
12377         }
12378
12379 #define PIPE_CONF_CHECK_M_N_ALT(name, alt_name) \
12380         if (!intel_compare_link_m_n(&current_config->name, \
12381                                     &pipe_config->name, adjust) && \
12382             !intel_compare_link_m_n(&current_config->alt_name, \
12383                                     &pipe_config->name, adjust)) { \
12384                 INTEL_ERR_OR_DBG_KMS("mismatch in " #name " " \
12385                           "(expected tu %i gmch %i/%i link %i/%i, " \
12386                           "or tu %i gmch %i/%i link %i/%i, " \
12387                           "found tu %i, gmch %i/%i link %i/%i)\n", \
12388                           current_config->name.tu, \
12389                           current_config->name.gmch_m, \
12390                           current_config->name.gmch_n, \
12391                           current_config->name.link_m, \
12392                           current_config->name.link_n, \
12393                           current_config->alt_name.tu, \
12394                           current_config->alt_name.gmch_m, \
12395                           current_config->alt_name.gmch_n, \
12396                           current_config->alt_name.link_m, \
12397                           current_config->alt_name.link_n, \
12398                           pipe_config->name.tu, \
12399                           pipe_config->name.gmch_m, \
12400                           pipe_config->name.gmch_n, \
12401                           pipe_config->name.link_m, \
12402                           pipe_config->name.link_n); \
12403                 ret = false; \
12404         }
12405
12406 /* This is required for BDW+ where there is only one set of registers for
12407  * switching between high and low RR.
12408  * This macro can be used whenever a comparison has to be made between one
12409  * hw state and multiple sw state variables.
12410  */
12411 #define PIPE_CONF_CHECK_I_ALT(name, alt_name) \
12412         if ((current_config->name != pipe_config->name) && \
12413                 (current_config->alt_name != pipe_config->name)) { \
12414                         INTEL_ERR_OR_DBG_KMS("mismatch in " #name " " \
12415                                   "(expected %i or %i, found %i)\n", \
12416                                   current_config->name, \
12417                                   current_config->alt_name, \
12418                                   pipe_config->name); \
12419                         ret = false; \
12420         }
12421
12422 #define PIPE_CONF_CHECK_FLAGS(name, mask)       \
12423         if ((current_config->name ^ pipe_config->name) & (mask)) { \
12424                 INTEL_ERR_OR_DBG_KMS("mismatch in " #name "(" #mask ") " \
12425                           "(expected %i, found %i)\n", \
12426                           current_config->name & (mask), \
12427                           pipe_config->name & (mask)); \
12428                 ret = false; \
12429         }
12430
12431 #define PIPE_CONF_CHECK_CLOCK_FUZZY(name) \
12432         if (!intel_fuzzy_clock_check(current_config->name, pipe_config->name)) { \
12433                 INTEL_ERR_OR_DBG_KMS("mismatch in " #name " " \
12434                           "(expected %i, found %i)\n", \
12435                           current_config->name, \
12436                           pipe_config->name); \
12437                 ret = false; \
12438         }
12439
12440 #define PIPE_CONF_QUIRK(quirk)  \
12441         ((current_config->quirks | pipe_config->quirks) & (quirk))
12442
12443         PIPE_CONF_CHECK_I(cpu_transcoder);
12444
12445         PIPE_CONF_CHECK_I(has_pch_encoder);
12446         PIPE_CONF_CHECK_I(fdi_lanes);
12447         PIPE_CONF_CHECK_M_N(fdi_m_n);
12448
12449         PIPE_CONF_CHECK_I(has_dp_encoder);
12450
12451         if (INTEL_INFO(dev)->gen < 8) {
12452                 PIPE_CONF_CHECK_M_N(dp_m_n);
12453
12454                 PIPE_CONF_CHECK_I(has_drrs);
12455                 if (current_config->has_drrs)
12456                         PIPE_CONF_CHECK_M_N(dp_m2_n2);
12457         } else
12458                 PIPE_CONF_CHECK_M_N_ALT(dp_m_n, dp_m2_n2);
12459
12460         PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_hdisplay);
12461         PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_htotal);
12462         PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_hblank_start);
12463         PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_hblank_end);
12464         PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_hsync_start);
12465         PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_hsync_end);
12466
12467         PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vdisplay);
12468         PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vtotal);
12469         PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vblank_start);
12470         PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vblank_end);
12471         PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vsync_start);
12472         PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vsync_end);
12473
12474         PIPE_CONF_CHECK_I(pixel_multiplier);
12475         PIPE_CONF_CHECK_I(has_hdmi_sink);
12476         if ((INTEL_INFO(dev)->gen < 8 && !IS_HASWELL(dev)) ||
12477             IS_VALLEYVIEW(dev))
12478                 PIPE_CONF_CHECK_I(limited_color_range);
12479         PIPE_CONF_CHECK_I(has_infoframe);
12480
12481         PIPE_CONF_CHECK_I(has_audio);
12482
12483         PIPE_CONF_CHECK_FLAGS(base.adjusted_mode.flags,
12484                               DRM_MODE_FLAG_INTERLACE);
12485
12486         if (!PIPE_CONF_QUIRK(PIPE_CONFIG_QUIRK_MODE_SYNC_FLAGS)) {
12487                 PIPE_CONF_CHECK_FLAGS(base.adjusted_mode.flags,
12488                                       DRM_MODE_FLAG_PHSYNC);
12489                 PIPE_CONF_CHECK_FLAGS(base.adjusted_mode.flags,
12490                                       DRM_MODE_FLAG_NHSYNC);
12491                 PIPE_CONF_CHECK_FLAGS(base.adjusted_mode.flags,
12492                                       DRM_MODE_FLAG_PVSYNC);
12493                 PIPE_CONF_CHECK_FLAGS(base.adjusted_mode.flags,
12494                                       DRM_MODE_FLAG_NVSYNC);
12495         }
12496
12497         PIPE_CONF_CHECK_I(pipe_src_w);
12498         PIPE_CONF_CHECK_I(pipe_src_h);
12499
12500         PIPE_CONF_CHECK_I(gmch_pfit.control);
12501         /* pfit ratios are autocomputed by the hw on gen4+ */
12502         if (INTEL_INFO(dev)->gen < 4)
12503                 PIPE_CONF_CHECK_I(gmch_pfit.pgm_ratios);
12504         PIPE_CONF_CHECK_I(gmch_pfit.lvds_border_bits);
12505
12506         PIPE_CONF_CHECK_I(pch_pfit.enabled);
12507         if (current_config->pch_pfit.enabled) {
12508                 PIPE_CONF_CHECK_I(pch_pfit.pos);
12509                 PIPE_CONF_CHECK_I(pch_pfit.size);
12510         }
12511
12512         PIPE_CONF_CHECK_I(scaler_state.scaler_id);
12513
12514         /* BDW+ don't expose a synchronous way to read the state */
12515         if (IS_HASWELL(dev))
12516                 PIPE_CONF_CHECK_I(ips_enabled);
12517
12518         PIPE_CONF_CHECK_I(double_wide);
12519
12520         PIPE_CONF_CHECK_X(ddi_pll_sel);
12521
12522         PIPE_CONF_CHECK_I(shared_dpll);
12523         PIPE_CONF_CHECK_X(dpll_hw_state.dpll);
12524         PIPE_CONF_CHECK_X(dpll_hw_state.dpll_md);
12525         PIPE_CONF_CHECK_X(dpll_hw_state.fp0);
12526         PIPE_CONF_CHECK_X(dpll_hw_state.fp1);
12527         PIPE_CONF_CHECK_X(dpll_hw_state.wrpll);
12528         PIPE_CONF_CHECK_X(dpll_hw_state.ctrl1);
12529         PIPE_CONF_CHECK_X(dpll_hw_state.cfgcr1);
12530         PIPE_CONF_CHECK_X(dpll_hw_state.cfgcr2);
12531
12532         if (IS_G4X(dev) || INTEL_INFO(dev)->gen >= 5)
12533                 PIPE_CONF_CHECK_I(pipe_bpp);
12534
12535         PIPE_CONF_CHECK_CLOCK_FUZZY(base.adjusted_mode.crtc_clock);
12536         PIPE_CONF_CHECK_CLOCK_FUZZY(port_clock);
12537
12538 #undef PIPE_CONF_CHECK_X
12539 #undef PIPE_CONF_CHECK_I
12540 #undef PIPE_CONF_CHECK_I_ALT
12541 #undef PIPE_CONF_CHECK_FLAGS
12542 #undef PIPE_CONF_CHECK_CLOCK_FUZZY
12543 #undef PIPE_CONF_QUIRK
12544 #undef INTEL_ERR_OR_DBG_KMS
12545
12546         return ret;
12547 }
12548
12549 static void check_wm_state(struct drm_device *dev)
12550 {
12551         struct drm_i915_private *dev_priv = dev->dev_private;
12552         struct skl_ddb_allocation hw_ddb, *sw_ddb;
12553         struct intel_crtc *intel_crtc;
12554         int plane;
12555
12556         if (INTEL_INFO(dev)->gen < 9)
12557                 return;
12558
12559         skl_ddb_get_hw_state(dev_priv, &hw_ddb);
12560         sw_ddb = &dev_priv->wm.skl_hw.ddb;
12561
12562         for_each_intel_crtc(dev, intel_crtc) {
12563                 struct skl_ddb_entry *hw_entry, *sw_entry;
12564                 const enum pipe pipe = intel_crtc->pipe;
12565
12566                 if (!intel_crtc->active)
12567                         continue;
12568
12569                 /* planes */
12570                 for_each_plane(dev_priv, pipe, plane) {
12571                         hw_entry = &hw_ddb.plane[pipe][plane];
12572                         sw_entry = &sw_ddb->plane[pipe][plane];
12573
12574                         if (skl_ddb_entry_equal(hw_entry, sw_entry))
12575                                 continue;
12576
12577                         DRM_ERROR("mismatch in DDB state pipe %c plane %d "
12578                                   "(expected (%u,%u), found (%u,%u))\n",
12579                                   pipe_name(pipe), plane + 1,
12580                                   sw_entry->start, sw_entry->end,
12581                                   hw_entry->start, hw_entry->end);
12582                 }
12583
12584                 /* cursor */
12585                 hw_entry = &hw_ddb.cursor[pipe];
12586                 sw_entry = &sw_ddb->cursor[pipe];
12587
12588                 if (skl_ddb_entry_equal(hw_entry, sw_entry))
12589                         continue;
12590
12591                 DRM_ERROR("mismatch in DDB state pipe %c cursor "
12592                           "(expected (%u,%u), found (%u,%u))\n",
12593                           pipe_name(pipe),
12594                           sw_entry->start, sw_entry->end,
12595                           hw_entry->start, hw_entry->end);
12596         }
12597 }
12598
12599 static void
12600 check_connector_state(struct drm_device *dev,
12601                       struct drm_atomic_state *old_state)
12602 {
12603         struct drm_connector_state *old_conn_state;
12604         struct drm_connector *connector;
12605         int i;
12606
12607         for_each_connector_in_state(old_state, connector, old_conn_state, i) {
12608                 struct drm_encoder *encoder = connector->encoder;
12609                 struct drm_connector_state *state = connector->state;
12610
12611                 /* This also checks the encoder/connector hw state with the
12612                  * ->get_hw_state callbacks. */
12613                 intel_connector_check_state(to_intel_connector(connector));
12614
12615                 I915_STATE_WARN(state->best_encoder != encoder,
12616                      "connector's atomic encoder doesn't match legacy encoder\n");
12617         }
12618 }
12619
12620 static void
12621 check_encoder_state(struct drm_device *dev)
12622 {
12623         struct intel_encoder *encoder;
12624         struct intel_connector *connector;
12625
12626         for_each_intel_encoder(dev, encoder) {
12627                 bool enabled = false;
12628                 enum pipe pipe;
12629
12630                 DRM_DEBUG_KMS("[ENCODER:%d:%s]\n",
12631                               encoder->base.base.id,
12632                               encoder->base.name);
12633
12634                 for_each_intel_connector(dev, connector) {
12635                         if (connector->base.state->best_encoder != &encoder->base)
12636                                 continue;
12637                         enabled = true;
12638
12639                         I915_STATE_WARN(connector->base.state->crtc !=
12640                                         encoder->base.crtc,
12641                              "connector's crtc doesn't match encoder crtc\n");
12642                 }
12643
12644                 I915_STATE_WARN(!!encoder->base.crtc != enabled,
12645                      "encoder's enabled state mismatch "
12646                      "(expected %i, found %i)\n",
12647                      !!encoder->base.crtc, enabled);
12648
12649                 if (!encoder->base.crtc) {
12650                         bool active;
12651
12652                         active = encoder->get_hw_state(encoder, &pipe);
12653                         I915_STATE_WARN(active,
12654                              "encoder detached but still enabled on pipe %c.\n",
12655                              pipe_name(pipe));
12656                 }
12657         }
12658 }
12659
12660 static void
12661 check_crtc_state(struct drm_device *dev, struct drm_atomic_state *old_state)
12662 {
12663         struct drm_i915_private *dev_priv = dev->dev_private;
12664         struct intel_encoder *encoder;
12665         struct drm_crtc_state *old_crtc_state;
12666         struct drm_crtc *crtc;
12667         int i;
12668
12669         for_each_crtc_in_state(old_state, crtc, old_crtc_state, i) {
12670                 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
12671                 struct intel_crtc_state *pipe_config, *sw_config;
12672                 bool active;
12673
12674                 if (!needs_modeset(crtc->state))
12675                         continue;
12676
12677                 __drm_atomic_helper_crtc_destroy_state(crtc, old_crtc_state);
12678                 pipe_config = to_intel_crtc_state(old_crtc_state);
12679                 memset(pipe_config, 0, sizeof(*pipe_config));
12680                 pipe_config->base.crtc = crtc;
12681                 pipe_config->base.state = old_state;
12682
12683                 DRM_DEBUG_KMS("[CRTC:%d]\n",
12684                               crtc->base.id);
12685
12686                 active = dev_priv->display.get_pipe_config(intel_crtc,
12687                                                            pipe_config);
12688
12689                 /* hw state is inconsistent with the pipe quirk */
12690                 if ((intel_crtc->pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) ||
12691                     (intel_crtc->pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE))
12692                         active = crtc->state->active;
12693
12694                 I915_STATE_WARN(crtc->state->active != active,
12695                      "crtc active state doesn't match with hw state "
12696                      "(expected %i, found %i)\n", crtc->state->active, active);
12697
12698                 I915_STATE_WARN(intel_crtc->active != crtc->state->active,
12699                      "transitional active state does not match atomic hw state "
12700                      "(expected %i, found %i)\n", crtc->state->active, intel_crtc->active);
12701
12702                 for_each_encoder_on_crtc(dev, crtc, encoder) {
12703                         enum pipe pipe;
12704
12705                         active = encoder->get_hw_state(encoder, &pipe);
12706                         I915_STATE_WARN(active != crtc->state->active,
12707                                 "[ENCODER:%i] active %i with crtc active %i\n",
12708                                 encoder->base.base.id, active, crtc->state->active);
12709
12710                         I915_STATE_WARN(active && intel_crtc->pipe != pipe,
12711                                         "Encoder connected to wrong pipe %c\n",
12712                                         pipe_name(pipe));
12713
12714                         if (active)
12715                                 encoder->get_config(encoder, pipe_config);
12716                 }
12717
12718                 if (!crtc->state->active)
12719                         continue;
12720
12721                 sw_config = to_intel_crtc_state(crtc->state);
12722                 if (!intel_pipe_config_compare(dev, sw_config,
12723                                                pipe_config, false)) {
12724                         I915_STATE_WARN(1, "pipe state doesn't match!\n");
12725                         intel_dump_pipe_config(intel_crtc, pipe_config,
12726                                                "[hw state]");
12727                         intel_dump_pipe_config(intel_crtc, sw_config,
12728                                                "[sw state]");
12729                 }
12730         }
12731 }
12732
12733 static void
12734 check_shared_dpll_state(struct drm_device *dev)
12735 {
12736         struct drm_i915_private *dev_priv = dev->dev_private;
12737         struct intel_crtc *crtc;
12738         struct intel_dpll_hw_state dpll_hw_state;
12739         int i;
12740
12741         for (i = 0; i < dev_priv->num_shared_dpll; i++) {
12742                 struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
12743                 int enabled_crtcs = 0, active_crtcs = 0;
12744                 bool active;
12745
12746                 memset(&dpll_hw_state, 0, sizeof(dpll_hw_state));
12747
12748                 DRM_DEBUG_KMS("%s\n", pll->name);
12749
12750                 active = pll->get_hw_state(dev_priv, pll, &dpll_hw_state);
12751
12752                 I915_STATE_WARN(pll->active > hweight32(pll->config.crtc_mask),
12753                      "more active pll users than references: %i vs %i\n",
12754                      pll->active, hweight32(pll->config.crtc_mask));
12755                 I915_STATE_WARN(pll->active && !pll->on,
12756                      "pll in active use but not on in sw tracking\n");
12757                 I915_STATE_WARN(pll->on && !pll->active,
12758                      "pll in on but not on in use in sw tracking\n");
12759                 I915_STATE_WARN(pll->on != active,
12760                      "pll on state mismatch (expected %i, found %i)\n",
12761                      pll->on, active);
12762
12763                 for_each_intel_crtc(dev, crtc) {
12764                         if (crtc->base.state->enable && intel_crtc_to_shared_dpll(crtc) == pll)
12765                                 enabled_crtcs++;
12766                         if (crtc->active && intel_crtc_to_shared_dpll(crtc) == pll)
12767                                 active_crtcs++;
12768                 }
12769                 I915_STATE_WARN(pll->active != active_crtcs,
12770                      "pll active crtcs mismatch (expected %i, found %i)\n",
12771                      pll->active, active_crtcs);
12772                 I915_STATE_WARN(hweight32(pll->config.crtc_mask) != enabled_crtcs,
12773                      "pll enabled crtcs mismatch (expected %i, found %i)\n",
12774                      hweight32(pll->config.crtc_mask), enabled_crtcs);
12775
12776                 I915_STATE_WARN(pll->on && memcmp(&pll->config.hw_state, &dpll_hw_state,
12777                                        sizeof(dpll_hw_state)),
12778                      "pll hw state mismatch\n");
12779         }
12780 }
12781
12782 static void
12783 intel_modeset_check_state(struct drm_device *dev,
12784                           struct drm_atomic_state *old_state)
12785 {
12786         check_wm_state(dev);
12787         check_connector_state(dev, old_state);
12788         check_encoder_state(dev);
12789         check_crtc_state(dev, old_state);
12790         check_shared_dpll_state(dev);
12791 }
12792
12793 void ironlake_check_encoder_dotclock(const struct intel_crtc_state *pipe_config,
12794                                      int dotclock)
12795 {
12796         /*
12797          * FDI already provided one idea for the dotclock.
12798          * Yell if the encoder disagrees.
12799          */
12800         WARN(!intel_fuzzy_clock_check(pipe_config->base.adjusted_mode.crtc_clock, dotclock),
12801              "FDI dotclock and encoder dotclock mismatch, fdi: %i, encoder: %i\n",
12802              pipe_config->base.adjusted_mode.crtc_clock, dotclock);
12803 }
12804
12805 static void update_scanline_offset(struct intel_crtc *crtc)
12806 {
12807         struct drm_device *dev = crtc->base.dev;
12808
12809         /*
12810          * The scanline counter increments at the leading edge of hsync.
12811          *
12812          * On most platforms it starts counting from vtotal-1 on the
12813          * first active line. That means the scanline counter value is
12814          * always one less than what we would expect. Ie. just after
12815          * start of vblank, which also occurs at start of hsync (on the
12816          * last active line), the scanline counter will read vblank_start-1.
12817          *
12818          * On gen2 the scanline counter starts counting from 1 instead
12819          * of vtotal-1, so we have to subtract one (or rather add vtotal-1
12820          * to keep the value positive), instead of adding one.
12821          *
12822          * On HSW+ the behaviour of the scanline counter depends on the output
12823          * type. For DP ports it behaves like most other platforms, but on HDMI
12824          * there's an extra 1 line difference. So we need to add two instead of
12825          * one to the value.
12826          */
12827         if (IS_GEN2(dev)) {
12828                 const struct drm_display_mode *mode = &crtc->config->base.adjusted_mode;
12829                 int vtotal;
12830
12831                 vtotal = mode->crtc_vtotal;
12832                 if (mode->flags & DRM_MODE_FLAG_INTERLACE)
12833                         vtotal /= 2;
12834
12835                 crtc->scanline_offset = vtotal - 1;
12836         } else if (HAS_DDI(dev) &&
12837                    intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI)) {
12838                 crtc->scanline_offset = 2;
12839         } else
12840                 crtc->scanline_offset = 1;
12841 }
12842
12843 static void intel_modeset_clear_plls(struct drm_atomic_state *state)
12844 {
12845         struct drm_device *dev = state->dev;
12846         struct drm_i915_private *dev_priv = to_i915(dev);
12847         struct intel_shared_dpll_config *shared_dpll = NULL;
12848         struct intel_crtc *intel_crtc;
12849         struct intel_crtc_state *intel_crtc_state;
12850         struct drm_crtc *crtc;
12851         struct drm_crtc_state *crtc_state;
12852         int i;
12853
12854         if (!dev_priv->display.crtc_compute_clock)
12855                 return;
12856
12857         for_each_crtc_in_state(state, crtc, crtc_state, i) {
12858                 int dpll;
12859
12860                 intel_crtc = to_intel_crtc(crtc);
12861                 intel_crtc_state = to_intel_crtc_state(crtc_state);
12862                 dpll = intel_crtc_state->shared_dpll;
12863
12864                 if (!needs_modeset(crtc_state) || dpll == DPLL_ID_PRIVATE)
12865                         continue;
12866
12867                 intel_crtc_state->shared_dpll = DPLL_ID_PRIVATE;
12868
12869                 if (!shared_dpll)
12870                         shared_dpll = intel_atomic_get_shared_dpll_state(state);
12871
12872                 shared_dpll[dpll].crtc_mask &= ~(1 << intel_crtc->pipe);
12873         }
12874 }
12875
12876 /*
12877  * This implements the workaround described in the "notes" section of the mode
12878  * set sequence documentation. When going from no pipes or single pipe to
12879  * multiple pipes, and planes are enabled after the pipe, we need to wait at
12880  * least 2 vblanks on the first pipe before enabling planes on the second pipe.
12881  */
12882 static int haswell_mode_set_planes_workaround(struct drm_atomic_state *state)
12883 {
12884         struct drm_crtc_state *crtc_state;
12885         struct intel_crtc *intel_crtc;
12886         struct drm_crtc *crtc;
12887         struct intel_crtc_state *first_crtc_state = NULL;
12888         struct intel_crtc_state *other_crtc_state = NULL;
12889         enum pipe first_pipe = INVALID_PIPE, enabled_pipe = INVALID_PIPE;
12890         int i;
12891
12892         /* look at all crtc's that are going to be enabled in during modeset */
12893         for_each_crtc_in_state(state, crtc, crtc_state, i) {
12894                 intel_crtc = to_intel_crtc(crtc);
12895
12896                 if (!crtc_state->active || !needs_modeset(crtc_state))
12897                         continue;
12898
12899                 if (first_crtc_state) {
12900                         other_crtc_state = to_intel_crtc_state(crtc_state);
12901                         break;
12902                 } else {
12903                         first_crtc_state = to_intel_crtc_state(crtc_state);
12904                         first_pipe = intel_crtc->pipe;
12905                 }
12906         }
12907
12908         /* No workaround needed? */
12909         if (!first_crtc_state)
12910                 return 0;
12911
12912         /* w/a possibly needed, check how many crtc's are already enabled. */
12913         for_each_intel_crtc(state->dev, intel_crtc) {
12914                 struct intel_crtc_state *pipe_config;
12915
12916                 pipe_config = intel_atomic_get_crtc_state(state, intel_crtc);
12917                 if (IS_ERR(pipe_config))
12918                         return PTR_ERR(pipe_config);
12919
12920                 pipe_config->hsw_workaround_pipe = INVALID_PIPE;
12921
12922                 if (!pipe_config->base.active ||
12923                     needs_modeset(&pipe_config->base))
12924                         continue;
12925
12926                 /* 2 or more enabled crtcs means no need for w/a */
12927                 if (enabled_pipe != INVALID_PIPE)
12928                         return 0;
12929
12930                 enabled_pipe = intel_crtc->pipe;
12931         }
12932
12933         if (enabled_pipe != INVALID_PIPE)
12934                 first_crtc_state->hsw_workaround_pipe = enabled_pipe;
12935         else if (other_crtc_state)
12936                 other_crtc_state->hsw_workaround_pipe = first_pipe;
12937
12938         return 0;
12939 }
12940
12941 static int intel_modeset_all_pipes(struct drm_atomic_state *state)
12942 {
12943         struct drm_crtc *crtc;
12944         struct drm_crtc_state *crtc_state;
12945         int ret = 0;
12946
12947         /* add all active pipes to the state */
12948         for_each_crtc(state->dev, crtc) {
12949                 crtc_state = drm_atomic_get_crtc_state(state, crtc);
12950                 if (IS_ERR(crtc_state))
12951                         return PTR_ERR(crtc_state);
12952
12953                 if (!crtc_state->active || needs_modeset(crtc_state))
12954                         continue;
12955
12956                 crtc_state->mode_changed = true;
12957
12958                 ret = drm_atomic_add_affected_connectors(state, crtc);
12959                 if (ret)
12960                         break;
12961
12962                 ret = drm_atomic_add_affected_planes(state, crtc);
12963                 if (ret)
12964                         break;
12965         }
12966
12967         return ret;
12968 }
12969
12970
12971 static int intel_modeset_checks(struct drm_atomic_state *state)
12972 {
12973         struct drm_device *dev = state->dev;
12974         struct drm_i915_private *dev_priv = dev->dev_private;
12975         int ret;
12976
12977         if (!check_digital_port_conflicts(state)) {
12978                 DRM_DEBUG_KMS("rejecting conflicting digital port configuration\n");
12979                 return -EINVAL;
12980         }
12981
12982         /*
12983          * See if the config requires any additional preparation, e.g.
12984          * to adjust global state with pipes off.  We need to do this
12985          * here so we can get the modeset_pipe updated config for the new
12986          * mode set on this crtc.  For other crtcs we need to use the
12987          * adjusted_mode bits in the crtc directly.
12988          */
12989         if (dev_priv->display.modeset_calc_cdclk) {
12990                 unsigned int cdclk;
12991
12992                 ret = dev_priv->display.modeset_calc_cdclk(state);
12993
12994                 cdclk = to_intel_atomic_state(state)->cdclk;
12995                 if (!ret && cdclk != dev_priv->cdclk_freq)
12996                         ret = intel_modeset_all_pipes(state);
12997
12998                 if (ret < 0)
12999                         return ret;
13000         } else
13001                 to_intel_atomic_state(state)->cdclk = dev_priv->cdclk_freq;
13002
13003         intel_modeset_clear_plls(state);
13004
13005         if (IS_HASWELL(dev))
13006                 return haswell_mode_set_planes_workaround(state);
13007
13008         return 0;
13009 }
13010
13011 /**
13012  * intel_atomic_check - validate state object
13013  * @dev: drm device
13014  * @state: state to validate
13015  */
13016 static int intel_atomic_check(struct drm_device *dev,
13017                               struct drm_atomic_state *state)
13018 {
13019         struct drm_crtc *crtc;
13020         struct drm_crtc_state *crtc_state;
13021         int ret, i;
13022         bool any_ms = false;
13023
13024         ret = drm_atomic_helper_check_modeset(dev, state);
13025         if (ret)
13026                 return ret;
13027
13028         for_each_crtc_in_state(state, crtc, crtc_state, i) {
13029                 struct intel_crtc_state *pipe_config =
13030                         to_intel_crtc_state(crtc_state);
13031
13032                 /* Catch I915_MODE_FLAG_INHERITED */
13033                 if (crtc_state->mode.private_flags != crtc->state->mode.private_flags)
13034                         crtc_state->mode_changed = true;
13035
13036                 if (!crtc_state->enable) {
13037                         if (needs_modeset(crtc_state))
13038                                 any_ms = true;
13039                         continue;
13040                 }
13041
13042                 if (!needs_modeset(crtc_state))
13043                         continue;
13044
13045                 /* FIXME: For only active_changed we shouldn't need to do any
13046                  * state recomputation at all. */
13047
13048                 ret = drm_atomic_add_affected_connectors(state, crtc);
13049                 if (ret)
13050                         return ret;
13051
13052                 ret = intel_modeset_pipe_config(crtc, pipe_config);
13053                 if (ret)
13054                         return ret;
13055
13056                 if (i915.fastboot &&
13057                     intel_pipe_config_compare(state->dev,
13058                                         to_intel_crtc_state(crtc->state),
13059                                         pipe_config, true)) {
13060                         crtc_state->mode_changed = false;
13061                 }
13062
13063                 if (needs_modeset(crtc_state)) {
13064                         any_ms = true;
13065
13066                         ret = drm_atomic_add_affected_planes(state, crtc);
13067                         if (ret)
13068                                 return ret;
13069                 }
13070
13071                 intel_dump_pipe_config(to_intel_crtc(crtc), pipe_config,
13072                                        needs_modeset(crtc_state) ?
13073                                        "[modeset]" : "[fastset]");
13074         }
13075
13076         if (any_ms) {
13077                 ret = intel_modeset_checks(state);
13078
13079                 if (ret)
13080                         return ret;
13081         } else
13082                 to_intel_atomic_state(state)->cdclk =
13083                         to_i915(state->dev)->cdclk_freq;
13084
13085         return drm_atomic_helper_check_planes(state->dev, state);
13086 }
13087
13088 /**
13089  * intel_atomic_commit - commit validated state object
13090  * @dev: DRM device
13091  * @state: the top-level driver state object
13092  * @async: asynchronous commit
13093  *
13094  * This function commits a top-level state object that has been validated
13095  * with drm_atomic_helper_check().
13096  *
13097  * FIXME:  Atomic modeset support for i915 is not yet complete.  At the moment
13098  * we can only handle plane-related operations and do not yet support
13099  * asynchronous commit.
13100  *
13101  * RETURNS
13102  * Zero for success or -errno.
13103  */
13104 static int intel_atomic_commit(struct drm_device *dev,
13105                                struct drm_atomic_state *state,
13106                                bool async)
13107 {
13108         struct drm_i915_private *dev_priv = dev->dev_private;
13109         struct drm_crtc *crtc;
13110         struct drm_crtc_state *crtc_state;
13111         int ret = 0;
13112         int i;
13113         bool any_ms = false;
13114
13115         if (async) {
13116                 DRM_DEBUG_KMS("i915 does not yet support async commit\n");
13117                 return -EINVAL;
13118         }
13119
13120         ret = drm_atomic_helper_prepare_planes(dev, state);
13121         if (ret)
13122                 return ret;
13123
13124         drm_atomic_helper_swap_state(dev, state);
13125
13126         for_each_crtc_in_state(state, crtc, crtc_state, i) {
13127                 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
13128
13129                 if (!needs_modeset(crtc->state))
13130                         continue;
13131
13132                 any_ms = true;
13133                 intel_pre_plane_update(intel_crtc);
13134
13135                 if (crtc_state->active) {
13136                         intel_crtc_disable_planes(crtc, crtc_state->plane_mask);
13137                         dev_priv->display.crtc_disable(crtc);
13138                         intel_crtc->active = false;
13139                         intel_disable_shared_dpll(intel_crtc);
13140                 }
13141         }
13142
13143         /* Only after disabling all output pipelines that will be changed can we
13144          * update the the output configuration. */
13145         intel_modeset_update_state(state);
13146
13147         /* The state has been swaped above, so state actually contains the
13148          * old state now. */
13149         if (any_ms)
13150                 modeset_update_crtc_power_domains(state);
13151
13152         /* Now enable the clocks, plane, pipe, and connectors that we set up. */
13153         for_each_crtc_in_state(state, crtc, crtc_state, i) {
13154                 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
13155                 bool modeset = needs_modeset(crtc->state);
13156
13157                 if (modeset && crtc->state->active) {
13158                         update_scanline_offset(to_intel_crtc(crtc));
13159                         dev_priv->display.crtc_enable(crtc);
13160                 }
13161
13162                 if (!modeset)
13163                         intel_pre_plane_update(intel_crtc);
13164
13165                 drm_atomic_helper_commit_planes_on_crtc(crtc_state);
13166                 intel_post_plane_update(intel_crtc);
13167         }
13168
13169         /* FIXME: add subpixel order */
13170
13171         drm_atomic_helper_wait_for_vblanks(dev, state);
13172         drm_atomic_helper_cleanup_planes(dev, state);
13173
13174         if (any_ms)
13175                 intel_modeset_check_state(dev, state);
13176
13177         drm_atomic_state_free(state);
13178
13179         return 0;
13180 }
13181
13182 void intel_crtc_restore_mode(struct drm_crtc *crtc)
13183 {
13184         struct drm_device *dev = crtc->dev;
13185         struct drm_atomic_state *state;
13186         struct drm_crtc_state *crtc_state;
13187         int ret;
13188
13189         state = drm_atomic_state_alloc(dev);
13190         if (!state) {
13191                 DRM_DEBUG_KMS("[CRTC:%d] crtc restore failed, out of memory",
13192                               crtc->base.id);
13193                 return;
13194         }
13195
13196         state->acquire_ctx = drm_modeset_legacy_acquire_ctx(crtc);
13197
13198 retry:
13199         crtc_state = drm_atomic_get_crtc_state(state, crtc);
13200         ret = PTR_ERR_OR_ZERO(crtc_state);
13201         if (!ret) {
13202                 if (!crtc_state->active)
13203                         goto out;
13204
13205                 crtc_state->mode_changed = true;
13206                 ret = drm_atomic_commit(state);
13207         }
13208
13209         if (ret == -EDEADLK) {
13210                 drm_atomic_state_clear(state);
13211                 drm_modeset_backoff(state->acquire_ctx);
13212                 goto retry;
13213         }
13214
13215         if (ret)
13216 out:
13217                 drm_atomic_state_free(state);
13218 }
13219
13220 #undef for_each_intel_crtc_masked
13221
13222 static const struct drm_crtc_funcs intel_crtc_funcs = {
13223         .gamma_set = intel_crtc_gamma_set,
13224         .set_config = drm_atomic_helper_set_config,
13225         .destroy = intel_crtc_destroy,
13226         .page_flip = intel_crtc_page_flip,
13227         .atomic_duplicate_state = intel_crtc_duplicate_state,
13228         .atomic_destroy_state = intel_crtc_destroy_state,
13229 };
13230
13231 static bool ibx_pch_dpll_get_hw_state(struct drm_i915_private *dev_priv,
13232                                       struct intel_shared_dpll *pll,
13233                                       struct intel_dpll_hw_state *hw_state)
13234 {
13235         uint32_t val;
13236
13237         if (!intel_display_power_is_enabled(dev_priv, POWER_DOMAIN_PLLS))
13238                 return false;
13239
13240         val = I915_READ(PCH_DPLL(pll->id));
13241         hw_state->dpll = val;
13242         hw_state->fp0 = I915_READ(PCH_FP0(pll->id));
13243         hw_state->fp1 = I915_READ(PCH_FP1(pll->id));
13244
13245         return val & DPLL_VCO_ENABLE;
13246 }
13247
13248 static void ibx_pch_dpll_mode_set(struct drm_i915_private *dev_priv,
13249                                   struct intel_shared_dpll *pll)
13250 {
13251         I915_WRITE(PCH_FP0(pll->id), pll->config.hw_state.fp0);
13252         I915_WRITE(PCH_FP1(pll->id), pll->config.hw_state.fp1);
13253 }
13254
13255 static void ibx_pch_dpll_enable(struct drm_i915_private *dev_priv,
13256                                 struct intel_shared_dpll *pll)
13257 {
13258         /* PCH refclock must be enabled first */
13259         ibx_assert_pch_refclk_enabled(dev_priv);
13260
13261         I915_WRITE(PCH_DPLL(pll->id), pll->config.hw_state.dpll);
13262
13263         /* Wait for the clocks to stabilize. */
13264         POSTING_READ(PCH_DPLL(pll->id));
13265         udelay(150);
13266
13267         /* The pixel multiplier can only be updated once the
13268          * DPLL is enabled and the clocks are stable.
13269          *
13270          * So write it again.
13271          */
13272         I915_WRITE(PCH_DPLL(pll->id), pll->config.hw_state.dpll);
13273         POSTING_READ(PCH_DPLL(pll->id));
13274         udelay(200);
13275 }
13276
13277 static void ibx_pch_dpll_disable(struct drm_i915_private *dev_priv,
13278                                  struct intel_shared_dpll *pll)
13279 {
13280         struct drm_device *dev = dev_priv->dev;
13281         struct intel_crtc *crtc;
13282
13283         /* Make sure no transcoder isn't still depending on us. */
13284         for_each_intel_crtc(dev, crtc) {
13285                 if (intel_crtc_to_shared_dpll(crtc) == pll)
13286                         assert_pch_transcoder_disabled(dev_priv, crtc->pipe);
13287         }
13288
13289         I915_WRITE(PCH_DPLL(pll->id), 0);
13290         POSTING_READ(PCH_DPLL(pll->id));
13291         udelay(200);
13292 }
13293
13294 static char *ibx_pch_dpll_names[] = {
13295         "PCH DPLL A",
13296         "PCH DPLL B",
13297 };
13298
13299 static void ibx_pch_dpll_init(struct drm_device *dev)
13300 {
13301         struct drm_i915_private *dev_priv = dev->dev_private;
13302         int i;
13303
13304         dev_priv->num_shared_dpll = 2;
13305
13306         for (i = 0; i < dev_priv->num_shared_dpll; i++) {
13307                 dev_priv->shared_dplls[i].id = i;
13308                 dev_priv->shared_dplls[i].name = ibx_pch_dpll_names[i];
13309                 dev_priv->shared_dplls[i].mode_set = ibx_pch_dpll_mode_set;
13310                 dev_priv->shared_dplls[i].enable = ibx_pch_dpll_enable;
13311                 dev_priv->shared_dplls[i].disable = ibx_pch_dpll_disable;
13312                 dev_priv->shared_dplls[i].get_hw_state =
13313                         ibx_pch_dpll_get_hw_state;
13314         }
13315 }
13316
13317 static void intel_shared_dpll_init(struct drm_device *dev)
13318 {
13319         struct drm_i915_private *dev_priv = dev->dev_private;
13320
13321         intel_update_cdclk(dev);
13322
13323         if (HAS_DDI(dev))
13324                 intel_ddi_pll_init(dev);
13325         else if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev))
13326                 ibx_pch_dpll_init(dev);
13327         else
13328                 dev_priv->num_shared_dpll = 0;
13329
13330         BUG_ON(dev_priv->num_shared_dpll > I915_NUM_PLLS);
13331 }
13332
13333 /**
13334  * intel_prepare_plane_fb - Prepare fb for usage on plane
13335  * @plane: drm plane to prepare for
13336  * @fb: framebuffer to prepare for presentation
13337  *
13338  * Prepares a framebuffer for usage on a display plane.  Generally this
13339  * involves pinning the underlying object and updating the frontbuffer tracking
13340  * bits.  Some older platforms need special physical address handling for
13341  * cursor planes.
13342  *
13343  * Returns 0 on success, negative error code on failure.
13344  */
13345 int
13346 intel_prepare_plane_fb(struct drm_plane *plane,
13347                        struct drm_framebuffer *fb,
13348                        const struct drm_plane_state *new_state)
13349 {
13350         struct drm_device *dev = plane->dev;
13351         struct intel_plane *intel_plane = to_intel_plane(plane);
13352         struct drm_i915_gem_object *obj = intel_fb_obj(fb);
13353         struct drm_i915_gem_object *old_obj = intel_fb_obj(plane->fb);
13354         int ret = 0;
13355
13356         if (!obj)
13357                 return 0;
13358
13359         mutex_lock(&dev->struct_mutex);
13360
13361         if (plane->type == DRM_PLANE_TYPE_CURSOR &&
13362             INTEL_INFO(dev)->cursor_needs_physical) {
13363                 int align = IS_I830(dev) ? 16 * 1024 : 256;
13364                 ret = i915_gem_object_attach_phys(obj, align);
13365                 if (ret)
13366                         DRM_DEBUG_KMS("failed to attach phys object\n");
13367         } else {
13368                 ret = intel_pin_and_fence_fb_obj(plane, fb, new_state, NULL, NULL);
13369         }
13370
13371         if (ret == 0)
13372                 i915_gem_track_fb(old_obj, obj, intel_plane->frontbuffer_bit);
13373
13374         mutex_unlock(&dev->struct_mutex);
13375
13376         return ret;
13377 }
13378
13379 /**
13380  * intel_cleanup_plane_fb - Cleans up an fb after plane use
13381  * @plane: drm plane to clean up for
13382  * @fb: old framebuffer that was on plane
13383  *
13384  * Cleans up a framebuffer that has just been removed from a plane.
13385  */
13386 void
13387 intel_cleanup_plane_fb(struct drm_plane *plane,
13388                        struct drm_framebuffer *fb,
13389                        const struct drm_plane_state *old_state)
13390 {
13391         struct drm_device *dev = plane->dev;
13392         struct drm_i915_gem_object *obj = intel_fb_obj(fb);
13393
13394         if (WARN_ON(!obj))
13395                 return;
13396
13397         if (plane->type != DRM_PLANE_TYPE_CURSOR ||
13398             !INTEL_INFO(dev)->cursor_needs_physical) {
13399                 mutex_lock(&dev->struct_mutex);
13400                 intel_unpin_fb_obj(fb, old_state);
13401                 mutex_unlock(&dev->struct_mutex);
13402         }
13403 }
13404
13405 int
13406 skl_max_scale(struct intel_crtc *intel_crtc, struct intel_crtc_state *crtc_state)
13407 {
13408         int max_scale;
13409         struct drm_device *dev;
13410         struct drm_i915_private *dev_priv;
13411         int crtc_clock, cdclk;
13412
13413         if (!intel_crtc || !crtc_state)
13414                 return DRM_PLANE_HELPER_NO_SCALING;
13415
13416         dev = intel_crtc->base.dev;
13417         dev_priv = dev->dev_private;
13418         crtc_clock = crtc_state->base.adjusted_mode.crtc_clock;
13419         cdclk = to_intel_atomic_state(crtc_state->base.state)->cdclk;
13420
13421         if (!crtc_clock || !cdclk)
13422                 return DRM_PLANE_HELPER_NO_SCALING;
13423
13424         /*
13425          * skl max scale is lower of:
13426          *    close to 3 but not 3, -1 is for that purpose
13427          *            or
13428          *    cdclk/crtc_clock
13429          */
13430         max_scale = min((1 << 16) * 3 - 1, (1 << 8) * ((cdclk << 8) / crtc_clock));
13431
13432         return max_scale;
13433 }
13434
13435 static int
13436 intel_check_primary_plane(struct drm_plane *plane,
13437                           struct intel_crtc_state *crtc_state,
13438                           struct intel_plane_state *state)
13439 {
13440         struct drm_crtc *crtc = state->base.crtc;
13441         struct drm_framebuffer *fb = state->base.fb;
13442         int min_scale = DRM_PLANE_HELPER_NO_SCALING;
13443         int max_scale = DRM_PLANE_HELPER_NO_SCALING;
13444         bool can_position = false;
13445
13446         /* use scaler when colorkey is not required */
13447         if (INTEL_INFO(plane->dev)->gen >= 9 &&
13448             state->ckey.flags == I915_SET_COLORKEY_NONE) {
13449                 min_scale = 1;
13450                 max_scale = skl_max_scale(to_intel_crtc(crtc), crtc_state);
13451                 can_position = true;
13452         }
13453
13454         return drm_plane_helper_check_update(plane, crtc, fb, &state->src,
13455                                              &state->dst, &state->clip,
13456                                              min_scale, max_scale,
13457                                              can_position, true,
13458                                              &state->visible);
13459 }
13460
13461 static void
13462 intel_commit_primary_plane(struct drm_plane *plane,
13463                            struct intel_plane_state *state)
13464 {
13465         struct drm_crtc *crtc = state->base.crtc;
13466         struct drm_framebuffer *fb = state->base.fb;
13467         struct drm_device *dev = plane->dev;
13468         struct drm_i915_private *dev_priv = dev->dev_private;
13469         struct intel_crtc *intel_crtc;
13470         struct drm_rect *src = &state->src;
13471
13472         crtc = crtc ? crtc : plane->crtc;
13473         intel_crtc = to_intel_crtc(crtc);
13474
13475         plane->fb = fb;
13476         crtc->x = src->x1 >> 16;
13477         crtc->y = src->y1 >> 16;
13478
13479         if (!crtc->state->active)
13480                 return;
13481
13482         if (state->visible)
13483                 /* FIXME: kill this fastboot hack */
13484                 intel_update_pipe_size(intel_crtc);
13485
13486         dev_priv->display.update_primary_plane(crtc, fb, crtc->x, crtc->y);
13487 }
13488
13489 static void
13490 intel_disable_primary_plane(struct drm_plane *plane,
13491                             struct drm_crtc *crtc)
13492 {
13493         struct drm_device *dev = plane->dev;
13494         struct drm_i915_private *dev_priv = dev->dev_private;
13495
13496         dev_priv->display.update_primary_plane(crtc, NULL, 0, 0);
13497 }
13498
13499 static void intel_begin_crtc_commit(struct drm_crtc *crtc,
13500                                     struct drm_crtc_state *old_crtc_state)
13501 {
13502         struct drm_device *dev = crtc->dev;
13503         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
13504
13505         if (intel_crtc->atomic.update_wm_pre)
13506                 intel_update_watermarks(crtc);
13507
13508         /* Perform vblank evasion around commit operation */
13509         if (crtc->state->active)
13510                 intel_pipe_update_start(intel_crtc, &intel_crtc->start_vbl_count);
13511
13512         if (!needs_modeset(crtc->state) && INTEL_INFO(dev)->gen >= 9)
13513                 skl_detach_scalers(intel_crtc);
13514 }
13515
13516 static void intel_finish_crtc_commit(struct drm_crtc *crtc,
13517                                      struct drm_crtc_state *old_crtc_state)
13518 {
13519         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
13520
13521         if (crtc->state->active)
13522                 intel_pipe_update_end(intel_crtc, intel_crtc->start_vbl_count);
13523 }
13524
13525 /**
13526  * intel_plane_destroy - destroy a plane
13527  * @plane: plane to destroy
13528  *
13529  * Common destruction function for all types of planes (primary, cursor,
13530  * sprite).
13531  */
13532 void intel_plane_destroy(struct drm_plane *plane)
13533 {
13534         struct intel_plane *intel_plane = to_intel_plane(plane);
13535         drm_plane_cleanup(plane);
13536         kfree(intel_plane);
13537 }
13538
13539 const struct drm_plane_funcs intel_plane_funcs = {
13540         .update_plane = drm_atomic_helper_update_plane,
13541         .disable_plane = drm_atomic_helper_disable_plane,
13542         .destroy = intel_plane_destroy,
13543         .set_property = drm_atomic_helper_plane_set_property,
13544         .atomic_get_property = intel_plane_atomic_get_property,
13545         .atomic_set_property = intel_plane_atomic_set_property,
13546         .atomic_duplicate_state = intel_plane_duplicate_state,
13547         .atomic_destroy_state = intel_plane_destroy_state,
13548
13549 };
13550
13551 static struct drm_plane *intel_primary_plane_create(struct drm_device *dev,
13552                                                     int pipe)
13553 {
13554         struct intel_plane *primary;
13555         struct intel_plane_state *state;
13556         const uint32_t *intel_primary_formats;
13557         int num_formats;
13558
13559         primary = kzalloc(sizeof(*primary), GFP_KERNEL);
13560         if (primary == NULL)
13561                 return NULL;
13562
13563         state = intel_create_plane_state(&primary->base);
13564         if (!state) {
13565                 kfree(primary);
13566                 return NULL;
13567         }
13568         primary->base.state = &state->base;
13569
13570         primary->can_scale = false;
13571         primary->max_downscale = 1;
13572         if (INTEL_INFO(dev)->gen >= 9) {
13573                 primary->can_scale = true;
13574                 state->scaler_id = -1;
13575         }
13576         primary->pipe = pipe;
13577         primary->plane = pipe;
13578         primary->frontbuffer_bit = INTEL_FRONTBUFFER_PRIMARY(pipe);
13579         primary->check_plane = intel_check_primary_plane;
13580         primary->commit_plane = intel_commit_primary_plane;
13581         primary->disable_plane = intel_disable_primary_plane;
13582         if (HAS_FBC(dev) && INTEL_INFO(dev)->gen < 4)
13583                 primary->plane = !pipe;
13584
13585         if (INTEL_INFO(dev)->gen >= 9) {
13586                 intel_primary_formats = skl_primary_formats;
13587                 num_formats = ARRAY_SIZE(skl_primary_formats);
13588         } else if (INTEL_INFO(dev)->gen >= 4) {
13589                 intel_primary_formats = i965_primary_formats;
13590                 num_formats = ARRAY_SIZE(i965_primary_formats);
13591         } else {
13592                 intel_primary_formats = i8xx_primary_formats;
13593                 num_formats = ARRAY_SIZE(i8xx_primary_formats);
13594         }
13595
13596         drm_universal_plane_init(dev, &primary->base, 0,
13597                                  &intel_plane_funcs,
13598                                  intel_primary_formats, num_formats,
13599                                  DRM_PLANE_TYPE_PRIMARY);
13600
13601         if (INTEL_INFO(dev)->gen >= 4)
13602                 intel_create_rotation_property(dev, primary);
13603
13604         drm_plane_helper_add(&primary->base, &intel_plane_helper_funcs);
13605
13606         return &primary->base;
13607 }
13608
13609 void intel_create_rotation_property(struct drm_device *dev, struct intel_plane *plane)
13610 {
13611         if (!dev->mode_config.rotation_property) {
13612                 unsigned long flags = BIT(DRM_ROTATE_0) |
13613                         BIT(DRM_ROTATE_180);
13614
13615                 if (INTEL_INFO(dev)->gen >= 9)
13616                         flags |= BIT(DRM_ROTATE_90) | BIT(DRM_ROTATE_270);
13617
13618                 dev->mode_config.rotation_property =
13619                         drm_mode_create_rotation_property(dev, flags);
13620         }
13621         if (dev->mode_config.rotation_property)
13622                 drm_object_attach_property(&plane->base.base,
13623                                 dev->mode_config.rotation_property,
13624                                 plane->base.state->rotation);
13625 }
13626
13627 static int
13628 intel_check_cursor_plane(struct drm_plane *plane,
13629                          struct intel_crtc_state *crtc_state,
13630                          struct intel_plane_state *state)
13631 {
13632         struct drm_crtc *crtc = crtc_state->base.crtc;
13633         struct drm_framebuffer *fb = state->base.fb;
13634         struct drm_i915_gem_object *obj = intel_fb_obj(fb);
13635         unsigned stride;
13636         int ret;
13637
13638         ret = drm_plane_helper_check_update(plane, crtc, fb, &state->src,
13639                                             &state->dst, &state->clip,
13640                                             DRM_PLANE_HELPER_NO_SCALING,
13641                                             DRM_PLANE_HELPER_NO_SCALING,
13642                                             true, true, &state->visible);
13643         if (ret)
13644                 return ret;
13645
13646         /* if we want to turn off the cursor ignore width and height */
13647         if (!obj)
13648                 return 0;
13649
13650         /* Check for which cursor types we support */
13651         if (!cursor_size_ok(plane->dev, state->base.crtc_w, state->base.crtc_h)) {
13652                 DRM_DEBUG("Cursor dimension %dx%d not supported\n",
13653                           state->base.crtc_w, state->base.crtc_h);
13654                 return -EINVAL;
13655         }
13656
13657         stride = roundup_pow_of_two(state->base.crtc_w) * 4;
13658         if (obj->base.size < stride * state->base.crtc_h) {
13659                 DRM_DEBUG_KMS("buffer is too small\n");
13660                 return -ENOMEM;
13661         }
13662
13663         if (fb->modifier[0] != DRM_FORMAT_MOD_NONE) {
13664                 DRM_DEBUG_KMS("cursor cannot be tiled\n");
13665                 return -EINVAL;
13666         }
13667
13668         return 0;
13669 }
13670
13671 static void
13672 intel_disable_cursor_plane(struct drm_plane *plane,
13673                            struct drm_crtc *crtc)
13674 {
13675         intel_crtc_update_cursor(crtc, false);
13676 }
13677
13678 static void
13679 intel_commit_cursor_plane(struct drm_plane *plane,
13680                           struct intel_plane_state *state)
13681 {
13682         struct drm_crtc *crtc = state->base.crtc;
13683         struct drm_device *dev = plane->dev;
13684         struct intel_crtc *intel_crtc;
13685         struct drm_i915_gem_object *obj = intel_fb_obj(state->base.fb);
13686         uint32_t addr;
13687
13688         crtc = crtc ? crtc : plane->crtc;
13689         intel_crtc = to_intel_crtc(crtc);
13690
13691         plane->fb = state->base.fb;
13692         crtc->cursor_x = state->base.crtc_x;
13693         crtc->cursor_y = state->base.crtc_y;
13694
13695         if (intel_crtc->cursor_bo == obj)
13696                 goto update;
13697
13698         if (!obj)
13699                 addr = 0;
13700         else if (!INTEL_INFO(dev)->cursor_needs_physical)
13701                 addr = i915_gem_obj_ggtt_offset(obj);
13702         else
13703                 addr = obj->phys_handle->busaddr;
13704
13705         intel_crtc->cursor_addr = addr;
13706         intel_crtc->cursor_bo = obj;
13707
13708 update:
13709         if (crtc->state->active)
13710                 intel_crtc_update_cursor(crtc, state->visible);
13711 }
13712
13713 static struct drm_plane *intel_cursor_plane_create(struct drm_device *dev,
13714                                                    int pipe)
13715 {
13716         struct intel_plane *cursor;
13717         struct intel_plane_state *state;
13718
13719         cursor = kzalloc(sizeof(*cursor), GFP_KERNEL);
13720         if (cursor == NULL)
13721                 return NULL;
13722
13723         state = intel_create_plane_state(&cursor->base);
13724         if (!state) {
13725                 kfree(cursor);
13726                 return NULL;
13727         }
13728         cursor->base.state = &state->base;
13729
13730         cursor->can_scale = false;
13731         cursor->max_downscale = 1;
13732         cursor->pipe = pipe;
13733         cursor->plane = pipe;
13734         cursor->frontbuffer_bit = INTEL_FRONTBUFFER_CURSOR(pipe);
13735         cursor->check_plane = intel_check_cursor_plane;
13736         cursor->commit_plane = intel_commit_cursor_plane;
13737         cursor->disable_plane = intel_disable_cursor_plane;
13738
13739         drm_universal_plane_init(dev, &cursor->base, 0,
13740                                  &intel_plane_funcs,
13741                                  intel_cursor_formats,
13742                                  ARRAY_SIZE(intel_cursor_formats),
13743                                  DRM_PLANE_TYPE_CURSOR);
13744
13745         if (INTEL_INFO(dev)->gen >= 4) {
13746                 if (!dev->mode_config.rotation_property)
13747                         dev->mode_config.rotation_property =
13748                                 drm_mode_create_rotation_property(dev,
13749                                                         BIT(DRM_ROTATE_0) |
13750                                                         BIT(DRM_ROTATE_180));
13751                 if (dev->mode_config.rotation_property)
13752                         drm_object_attach_property(&cursor->base.base,
13753                                 dev->mode_config.rotation_property,
13754                                 state->base.rotation);
13755         }
13756
13757         if (INTEL_INFO(dev)->gen >=9)
13758                 state->scaler_id = -1;
13759
13760         drm_plane_helper_add(&cursor->base, &intel_plane_helper_funcs);
13761
13762         return &cursor->base;
13763 }
13764
13765 static void skl_init_scalers(struct drm_device *dev, struct intel_crtc *intel_crtc,
13766         struct intel_crtc_state *crtc_state)
13767 {
13768         int i;
13769         struct intel_scaler *intel_scaler;
13770         struct intel_crtc_scaler_state *scaler_state = &crtc_state->scaler_state;
13771
13772         for (i = 0; i < intel_crtc->num_scalers; i++) {
13773                 intel_scaler = &scaler_state->scalers[i];
13774                 intel_scaler->in_use = 0;
13775                 intel_scaler->mode = PS_SCALER_MODE_DYN;
13776         }
13777
13778         scaler_state->scaler_id = -1;
13779 }
13780
13781 static void intel_crtc_init(struct drm_device *dev, int pipe)
13782 {
13783         struct drm_i915_private *dev_priv = dev->dev_private;
13784         struct intel_crtc *intel_crtc;
13785         struct intel_crtc_state *crtc_state = NULL;
13786         struct drm_plane *primary = NULL;
13787         struct drm_plane *cursor = NULL;
13788         int i, ret;
13789
13790         intel_crtc = kzalloc(sizeof(*intel_crtc), GFP_KERNEL);
13791         if (intel_crtc == NULL)
13792                 return;
13793
13794         crtc_state = kzalloc(sizeof(*crtc_state), GFP_KERNEL);
13795         if (!crtc_state)
13796                 goto fail;
13797         intel_crtc->config = crtc_state;
13798         intel_crtc->base.state = &crtc_state->base;
13799         crtc_state->base.crtc = &intel_crtc->base;
13800
13801         /* initialize shared scalers */
13802         if (INTEL_INFO(dev)->gen >= 9) {
13803                 if (pipe == PIPE_C)
13804                         intel_crtc->num_scalers = 1;
13805                 else
13806                         intel_crtc->num_scalers = SKL_NUM_SCALERS;
13807
13808                 skl_init_scalers(dev, intel_crtc, crtc_state);
13809         }
13810
13811         primary = intel_primary_plane_create(dev, pipe);
13812         if (!primary)
13813                 goto fail;
13814
13815         cursor = intel_cursor_plane_create(dev, pipe);
13816         if (!cursor)
13817                 goto fail;
13818
13819         ret = drm_crtc_init_with_planes(dev, &intel_crtc->base, primary,
13820                                         cursor, &intel_crtc_funcs);
13821         if (ret)
13822                 goto fail;
13823
13824         drm_mode_crtc_set_gamma_size(&intel_crtc->base, 256);
13825         for (i = 0; i < 256; i++) {
13826                 intel_crtc->lut_r[i] = i;
13827                 intel_crtc->lut_g[i] = i;
13828                 intel_crtc->lut_b[i] = i;
13829         }
13830
13831         /*
13832          * On gen2/3 only plane A can do fbc, but the panel fitter and lvds port
13833          * is hooked to pipe B. Hence we want plane A feeding pipe B.
13834          */
13835         intel_crtc->pipe = pipe;
13836         intel_crtc->plane = pipe;
13837         if (HAS_FBC(dev) && INTEL_INFO(dev)->gen < 4) {
13838                 DRM_DEBUG_KMS("swapping pipes & planes for FBC\n");
13839                 intel_crtc->plane = !pipe;
13840         }
13841
13842         intel_crtc->cursor_base = ~0;
13843         intel_crtc->cursor_cntl = ~0;
13844         intel_crtc->cursor_size = ~0;
13845
13846         intel_crtc->wm.cxsr_allowed = true;
13847
13848         BUG_ON(pipe >= ARRAY_SIZE(dev_priv->plane_to_crtc_mapping) ||
13849                dev_priv->plane_to_crtc_mapping[intel_crtc->plane] != NULL);
13850         dev_priv->plane_to_crtc_mapping[intel_crtc->plane] = &intel_crtc->base;
13851         dev_priv->pipe_to_crtc_mapping[intel_crtc->pipe] = &intel_crtc->base;
13852
13853         drm_crtc_helper_add(&intel_crtc->base, &intel_helper_funcs);
13854
13855         WARN_ON(drm_crtc_index(&intel_crtc->base) != intel_crtc->pipe);
13856         return;
13857
13858 fail:
13859         if (primary)
13860                 drm_plane_cleanup(primary);
13861         if (cursor)
13862                 drm_plane_cleanup(cursor);
13863         kfree(crtc_state);
13864         kfree(intel_crtc);
13865 }
13866
13867 enum pipe intel_get_pipe_from_connector(struct intel_connector *connector)
13868 {
13869         struct drm_encoder *encoder = connector->base.encoder;
13870         struct drm_device *dev = connector->base.dev;
13871
13872         WARN_ON(!drm_modeset_is_locked(&dev->mode_config.connection_mutex));
13873
13874         if (!encoder || WARN_ON(!encoder->crtc))
13875                 return INVALID_PIPE;
13876
13877         return to_intel_crtc(encoder->crtc)->pipe;
13878 }
13879
13880 int intel_get_pipe_from_crtc_id(struct drm_device *dev, void *data,
13881                                 struct drm_file *file)
13882 {
13883         struct drm_i915_get_pipe_from_crtc_id *pipe_from_crtc_id = data;
13884         struct drm_crtc *drmmode_crtc;
13885         struct intel_crtc *crtc;
13886
13887         drmmode_crtc = drm_crtc_find(dev, pipe_from_crtc_id->crtc_id);
13888
13889         if (!drmmode_crtc) {
13890                 DRM_ERROR("no such CRTC id\n");
13891                 return -ENOENT;
13892         }
13893
13894         crtc = to_intel_crtc(drmmode_crtc);
13895         pipe_from_crtc_id->pipe = crtc->pipe;
13896
13897         return 0;
13898 }
13899
13900 static int intel_encoder_clones(struct intel_encoder *encoder)
13901 {
13902         struct drm_device *dev = encoder->base.dev;
13903         struct intel_encoder *source_encoder;
13904         int index_mask = 0;
13905         int entry = 0;
13906
13907         for_each_intel_encoder(dev, source_encoder) {
13908                 if (encoders_cloneable(encoder, source_encoder))
13909                         index_mask |= (1 << entry);
13910
13911                 entry++;
13912         }
13913
13914         return index_mask;
13915 }
13916
13917 static bool has_edp_a(struct drm_device *dev)
13918 {
13919         struct drm_i915_private *dev_priv = dev->dev_private;
13920
13921         if (!IS_MOBILE(dev))
13922                 return false;
13923
13924         if ((I915_READ(DP_A) & DP_DETECTED) == 0)
13925                 return false;
13926
13927         if (IS_GEN5(dev) && (I915_READ(FUSE_STRAP) & ILK_eDP_A_DISABLE))
13928                 return false;
13929
13930         return true;
13931 }
13932
13933 static bool intel_crt_present(struct drm_device *dev)
13934 {
13935         struct drm_i915_private *dev_priv = dev->dev_private;
13936
13937         if (INTEL_INFO(dev)->gen >= 9)
13938                 return false;
13939
13940         if (IS_HSW_ULT(dev) || IS_BDW_ULT(dev))
13941                 return false;
13942
13943         if (IS_CHERRYVIEW(dev))
13944                 return false;
13945
13946         if (IS_VALLEYVIEW(dev) && !dev_priv->vbt.int_crt_support)
13947                 return false;
13948
13949         return true;
13950 }
13951
13952 static void intel_setup_outputs(struct drm_device *dev)
13953 {
13954         struct drm_i915_private *dev_priv = dev->dev_private;
13955         struct intel_encoder *encoder;
13956         bool dpd_is_edp = false;
13957
13958         intel_lvds_init(dev);
13959
13960         if (intel_crt_present(dev))
13961                 intel_crt_init(dev);
13962
13963         if (IS_BROXTON(dev)) {
13964                 /*
13965                  * FIXME: Broxton doesn't support port detection via the
13966                  * DDI_BUF_CTL_A or SFUSE_STRAP registers, find another way to
13967                  * detect the ports.
13968                  */
13969                 intel_ddi_init(dev, PORT_A);
13970                 intel_ddi_init(dev, PORT_B);
13971                 intel_ddi_init(dev, PORT_C);
13972         } else if (HAS_DDI(dev)) {
13973                 int found;
13974
13975                 /*
13976                  * Haswell uses DDI functions to detect digital outputs.
13977                  * On SKL pre-D0 the strap isn't connected, so we assume
13978                  * it's there.
13979                  */
13980                 found = I915_READ(DDI_BUF_CTL_A) & DDI_INIT_DISPLAY_DETECTED;
13981                 /* WaIgnoreDDIAStrap: skl */
13982                 if (found ||
13983                     (IS_SKYLAKE(dev) && INTEL_REVID(dev) < SKL_REVID_D0))
13984                         intel_ddi_init(dev, PORT_A);
13985
13986                 /* DDI B, C and D detection is indicated by the SFUSE_STRAP
13987                  * register */
13988                 found = I915_READ(SFUSE_STRAP);
13989
13990                 if (found & SFUSE_STRAP_DDIB_DETECTED)
13991                         intel_ddi_init(dev, PORT_B);
13992                 if (found & SFUSE_STRAP_DDIC_DETECTED)
13993                         intel_ddi_init(dev, PORT_C);
13994                 if (found & SFUSE_STRAP_DDID_DETECTED)
13995                         intel_ddi_init(dev, PORT_D);
13996         } else if (HAS_PCH_SPLIT(dev)) {
13997                 int found;
13998                 dpd_is_edp = intel_dp_is_edp(dev, PORT_D);
13999
14000                 if (has_edp_a(dev))
14001                         intel_dp_init(dev, DP_A, PORT_A);
14002
14003                 if (I915_READ(PCH_HDMIB) & SDVO_DETECTED) {
14004                         /* PCH SDVOB multiplex with HDMIB */
14005                         found = intel_sdvo_init(dev, PCH_SDVOB, true);
14006                         if (!found)
14007                                 intel_hdmi_init(dev, PCH_HDMIB, PORT_B);
14008                         if (!found && (I915_READ(PCH_DP_B) & DP_DETECTED))
14009                                 intel_dp_init(dev, PCH_DP_B, PORT_B);
14010                 }
14011
14012                 if (I915_READ(PCH_HDMIC) & SDVO_DETECTED)
14013                         intel_hdmi_init(dev, PCH_HDMIC, PORT_C);
14014
14015                 if (!dpd_is_edp && I915_READ(PCH_HDMID) & SDVO_DETECTED)
14016                         intel_hdmi_init(dev, PCH_HDMID, PORT_D);
14017
14018                 if (I915_READ(PCH_DP_C) & DP_DETECTED)
14019                         intel_dp_init(dev, PCH_DP_C, PORT_C);
14020
14021                 if (I915_READ(PCH_DP_D) & DP_DETECTED)
14022                         intel_dp_init(dev, PCH_DP_D, PORT_D);
14023         } else if (IS_VALLEYVIEW(dev)) {
14024                 /*
14025                  * The DP_DETECTED bit is the latched state of the DDC
14026                  * SDA pin at boot. However since eDP doesn't require DDC
14027                  * (no way to plug in a DP->HDMI dongle) the DDC pins for
14028                  * eDP ports may have been muxed to an alternate function.
14029                  * Thus we can't rely on the DP_DETECTED bit alone to detect
14030                  * eDP ports. Consult the VBT as well as DP_DETECTED to
14031                  * detect eDP ports.
14032                  */
14033                 if (I915_READ(VLV_DISPLAY_BASE + GEN4_HDMIB) & SDVO_DETECTED &&
14034                     !intel_dp_is_edp(dev, PORT_B))
14035                         intel_hdmi_init(dev, VLV_DISPLAY_BASE + GEN4_HDMIB,
14036                                         PORT_B);
14037                 if (I915_READ(VLV_DISPLAY_BASE + DP_B) & DP_DETECTED ||
14038                     intel_dp_is_edp(dev, PORT_B))
14039                         intel_dp_init(dev, VLV_DISPLAY_BASE + DP_B, PORT_B);
14040
14041                 if (I915_READ(VLV_DISPLAY_BASE + GEN4_HDMIC) & SDVO_DETECTED &&
14042                     !intel_dp_is_edp(dev, PORT_C))
14043                         intel_hdmi_init(dev, VLV_DISPLAY_BASE + GEN4_HDMIC,
14044                                         PORT_C);
14045                 if (I915_READ(VLV_DISPLAY_BASE + DP_C) & DP_DETECTED ||
14046                     intel_dp_is_edp(dev, PORT_C))
14047                         intel_dp_init(dev, VLV_DISPLAY_BASE + DP_C, PORT_C);
14048
14049                 if (IS_CHERRYVIEW(dev)) {
14050                         if (I915_READ(VLV_DISPLAY_BASE + CHV_HDMID) & SDVO_DETECTED)
14051                                 intel_hdmi_init(dev, VLV_DISPLAY_BASE + CHV_HDMID,
14052                                                 PORT_D);
14053                         /* eDP not supported on port D, so don't check VBT */
14054                         if (I915_READ(VLV_DISPLAY_BASE + DP_D) & DP_DETECTED)
14055                                 intel_dp_init(dev, VLV_DISPLAY_BASE + DP_D, PORT_D);
14056                 }
14057
14058                 intel_dsi_init(dev);
14059         } else if (!IS_GEN2(dev) && !IS_PINEVIEW(dev)) {
14060                 bool found = false;
14061
14062                 if (I915_READ(GEN3_SDVOB) & SDVO_DETECTED) {
14063                         DRM_DEBUG_KMS("probing SDVOB\n");
14064                         found = intel_sdvo_init(dev, GEN3_SDVOB, true);
14065                         if (!found && IS_G4X(dev)) {
14066                                 DRM_DEBUG_KMS("probing HDMI on SDVOB\n");
14067                                 intel_hdmi_init(dev, GEN4_HDMIB, PORT_B);
14068                         }
14069
14070                         if (!found && IS_G4X(dev))
14071                                 intel_dp_init(dev, DP_B, PORT_B);
14072                 }
14073
14074                 /* Before G4X SDVOC doesn't have its own detect register */
14075
14076                 if (I915_READ(GEN3_SDVOB) & SDVO_DETECTED) {
14077                         DRM_DEBUG_KMS("probing SDVOC\n");
14078                         found = intel_sdvo_init(dev, GEN3_SDVOC, false);
14079                 }
14080
14081                 if (!found && (I915_READ(GEN3_SDVOC) & SDVO_DETECTED)) {
14082
14083                         if (IS_G4X(dev)) {
14084                                 DRM_DEBUG_KMS("probing HDMI on SDVOC\n");
14085                                 intel_hdmi_init(dev, GEN4_HDMIC, PORT_C);
14086                         }
14087                         if (IS_G4X(dev))
14088                                 intel_dp_init(dev, DP_C, PORT_C);
14089                 }
14090
14091                 if (IS_G4X(dev) &&
14092                     (I915_READ(DP_D) & DP_DETECTED))
14093                         intel_dp_init(dev, DP_D, PORT_D);
14094         } else if (IS_GEN2(dev))
14095                 intel_dvo_init(dev);
14096
14097         if (SUPPORTS_TV(dev))
14098                 intel_tv_init(dev);
14099
14100         intel_psr_init(dev);
14101
14102         for_each_intel_encoder(dev, encoder) {
14103                 encoder->base.possible_crtcs = encoder->crtc_mask;
14104                 encoder->base.possible_clones =
14105                         intel_encoder_clones(encoder);
14106         }
14107
14108         intel_init_pch_refclk(dev);
14109
14110         drm_helper_move_panel_connectors_to_head(dev);
14111 }
14112
14113 static void intel_user_framebuffer_destroy(struct drm_framebuffer *fb)
14114 {
14115         struct drm_device *dev = fb->dev;
14116         struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
14117
14118         drm_framebuffer_cleanup(fb);
14119         mutex_lock(&dev->struct_mutex);
14120         WARN_ON(!intel_fb->obj->framebuffer_references--);
14121         drm_gem_object_unreference(&intel_fb->obj->base);
14122         mutex_unlock(&dev->struct_mutex);
14123         kfree(intel_fb);
14124 }
14125
14126 static int intel_user_framebuffer_create_handle(struct drm_framebuffer *fb,
14127                                                 struct drm_file *file,
14128                                                 unsigned int *handle)
14129 {
14130         struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
14131         struct drm_i915_gem_object *obj = intel_fb->obj;
14132
14133         return drm_gem_handle_create(file, &obj->base, handle);
14134 }
14135
14136 static int intel_user_framebuffer_dirty(struct drm_framebuffer *fb,
14137                                         struct drm_file *file,
14138                                         unsigned flags, unsigned color,
14139                                         struct drm_clip_rect *clips,
14140                                         unsigned num_clips)
14141 {
14142         struct drm_device *dev = fb->dev;
14143         struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
14144         struct drm_i915_gem_object *obj = intel_fb->obj;
14145
14146         mutex_lock(&dev->struct_mutex);
14147         intel_fb_obj_flush(obj, false, ORIGIN_DIRTYFB);
14148         mutex_unlock(&dev->struct_mutex);
14149
14150         return 0;
14151 }
14152
14153 static const struct drm_framebuffer_funcs intel_fb_funcs = {
14154         .destroy = intel_user_framebuffer_destroy,
14155         .create_handle = intel_user_framebuffer_create_handle,
14156         .dirty = intel_user_framebuffer_dirty,
14157 };
14158
14159 static
14160 u32 intel_fb_pitch_limit(struct drm_device *dev, uint64_t fb_modifier,
14161                          uint32_t pixel_format)
14162 {
14163         u32 gen = INTEL_INFO(dev)->gen;
14164
14165         if (gen >= 9) {
14166                 /* "The stride in bytes must not exceed the of the size of 8K
14167                  *  pixels and 32K bytes."
14168                  */
14169                  return min(8192*drm_format_plane_cpp(pixel_format, 0), 32768);
14170         } else if (gen >= 5 && !IS_VALLEYVIEW(dev)) {
14171                 return 32*1024;
14172         } else if (gen >= 4) {
14173                 if (fb_modifier == I915_FORMAT_MOD_X_TILED)
14174                         return 16*1024;
14175                 else
14176                         return 32*1024;
14177         } else if (gen >= 3) {
14178                 if (fb_modifier == I915_FORMAT_MOD_X_TILED)
14179                         return 8*1024;
14180                 else
14181                         return 16*1024;
14182         } else {
14183                 /* XXX DSPC is limited to 4k tiled */
14184                 return 8*1024;
14185         }
14186 }
14187
14188 static int intel_framebuffer_init(struct drm_device *dev,
14189                                   struct intel_framebuffer *intel_fb,
14190                                   struct drm_mode_fb_cmd2 *mode_cmd,
14191                                   struct drm_i915_gem_object *obj)
14192 {
14193         unsigned int aligned_height;
14194         int ret;
14195         u32 pitch_limit, stride_alignment;
14196
14197         WARN_ON(!mutex_is_locked(&dev->struct_mutex));
14198
14199         if (mode_cmd->flags & DRM_MODE_FB_MODIFIERS) {
14200                 /* Enforce that fb modifier and tiling mode match, but only for
14201                  * X-tiled. This is needed for FBC. */
14202                 if (!!(obj->tiling_mode == I915_TILING_X) !=
14203                     !!(mode_cmd->modifier[0] == I915_FORMAT_MOD_X_TILED)) {
14204                         DRM_DEBUG("tiling_mode doesn't match fb modifier\n");
14205                         return -EINVAL;
14206                 }
14207         } else {
14208                 if (obj->tiling_mode == I915_TILING_X)
14209                         mode_cmd->modifier[0] = I915_FORMAT_MOD_X_TILED;
14210                 else if (obj->tiling_mode == I915_TILING_Y) {
14211                         DRM_DEBUG("No Y tiling for legacy addfb\n");
14212                         return -EINVAL;
14213                 }
14214         }
14215
14216         /* Passed in modifier sanity checking. */
14217         switch (mode_cmd->modifier[0]) {
14218         case I915_FORMAT_MOD_Y_TILED:
14219         case I915_FORMAT_MOD_Yf_TILED:
14220                 if (INTEL_INFO(dev)->gen < 9) {
14221                         DRM_DEBUG("Unsupported tiling 0x%llx!\n",
14222                                   mode_cmd->modifier[0]);
14223                         return -EINVAL;
14224                 }
14225         case DRM_FORMAT_MOD_NONE:
14226         case I915_FORMAT_MOD_X_TILED:
14227                 break;
14228         default:
14229                 DRM_DEBUG("Unsupported fb modifier 0x%llx!\n",
14230                           mode_cmd->modifier[0]);
14231                 return -EINVAL;
14232         }
14233
14234         stride_alignment = intel_fb_stride_alignment(dev, mode_cmd->modifier[0],
14235                                                      mode_cmd->pixel_format);
14236         if (mode_cmd->pitches[0] & (stride_alignment - 1)) {
14237                 DRM_DEBUG("pitch (%d) must be at least %u byte aligned\n",
14238                           mode_cmd->pitches[0], stride_alignment);
14239                 return -EINVAL;
14240         }
14241
14242         pitch_limit = intel_fb_pitch_limit(dev, mode_cmd->modifier[0],
14243                                            mode_cmd->pixel_format);
14244         if (mode_cmd->pitches[0] > pitch_limit) {
14245                 DRM_DEBUG("%s pitch (%u) must be at less than %d\n",
14246                           mode_cmd->modifier[0] != DRM_FORMAT_MOD_NONE ?
14247                           "tiled" : "linear",
14248                           mode_cmd->pitches[0], pitch_limit);
14249                 return -EINVAL;
14250         }
14251
14252         if (mode_cmd->modifier[0] == I915_FORMAT_MOD_X_TILED &&
14253             mode_cmd->pitches[0] != obj->stride) {
14254                 DRM_DEBUG("pitch (%d) must match tiling stride (%d)\n",
14255                           mode_cmd->pitches[0], obj->stride);
14256                 return -EINVAL;
14257         }
14258
14259         /* Reject formats not supported by any plane early. */
14260         switch (mode_cmd->pixel_format) {
14261         case DRM_FORMAT_C8:
14262         case DRM_FORMAT_RGB565:
14263         case DRM_FORMAT_XRGB8888:
14264         case DRM_FORMAT_ARGB8888:
14265                 break;
14266         case DRM_FORMAT_XRGB1555:
14267                 if (INTEL_INFO(dev)->gen > 3) {
14268                         DRM_DEBUG("unsupported pixel format: %s\n",
14269                                   drm_get_format_name(mode_cmd->pixel_format));
14270                         return -EINVAL;
14271                 }
14272                 break;
14273         case DRM_FORMAT_ABGR8888:
14274                 if (!IS_VALLEYVIEW(dev) && INTEL_INFO(dev)->gen < 9) {
14275                         DRM_DEBUG("unsupported pixel format: %s\n",
14276                                   drm_get_format_name(mode_cmd->pixel_format));
14277                         return -EINVAL;
14278                 }
14279                 break;
14280         case DRM_FORMAT_XBGR8888:
14281         case DRM_FORMAT_XRGB2101010:
14282         case DRM_FORMAT_XBGR2101010:
14283                 if (INTEL_INFO(dev)->gen < 4) {
14284                         DRM_DEBUG("unsupported pixel format: %s\n",
14285                                   drm_get_format_name(mode_cmd->pixel_format));
14286                         return -EINVAL;
14287                 }
14288                 break;
14289         case DRM_FORMAT_ABGR2101010:
14290                 if (!IS_VALLEYVIEW(dev)) {
14291                         DRM_DEBUG("unsupported pixel format: %s\n",
14292                                   drm_get_format_name(mode_cmd->pixel_format));
14293                         return -EINVAL;
14294                 }
14295                 break;
14296         case DRM_FORMAT_YUYV:
14297         case DRM_FORMAT_UYVY:
14298         case DRM_FORMAT_YVYU:
14299         case DRM_FORMAT_VYUY:
14300                 if (INTEL_INFO(dev)->gen < 5) {
14301                         DRM_DEBUG("unsupported pixel format: %s\n",
14302                                   drm_get_format_name(mode_cmd->pixel_format));
14303                         return -EINVAL;
14304                 }
14305                 break;
14306         default:
14307                 DRM_DEBUG("unsupported pixel format: %s\n",
14308                           drm_get_format_name(mode_cmd->pixel_format));
14309                 return -EINVAL;
14310         }
14311
14312         /* FIXME need to adjust LINOFF/TILEOFF accordingly. */
14313         if (mode_cmd->offsets[0] != 0)
14314                 return -EINVAL;
14315
14316         aligned_height = intel_fb_align_height(dev, mode_cmd->height,
14317                                                mode_cmd->pixel_format,
14318                                                mode_cmd->modifier[0]);
14319         /* FIXME drm helper for size checks (especially planar formats)? */
14320         if (obj->base.size < aligned_height * mode_cmd->pitches[0])
14321                 return -EINVAL;
14322
14323         drm_helper_mode_fill_fb_struct(&intel_fb->base, mode_cmd);
14324         intel_fb->obj = obj;
14325         intel_fb->obj->framebuffer_references++;
14326
14327         ret = drm_framebuffer_init(dev, &intel_fb->base, &intel_fb_funcs);
14328         if (ret) {
14329                 DRM_ERROR("framebuffer init failed %d\n", ret);
14330                 return ret;
14331         }
14332
14333         return 0;
14334 }
14335
14336 static struct drm_framebuffer *
14337 intel_user_framebuffer_create(struct drm_device *dev,
14338                               struct drm_file *filp,
14339                               struct drm_mode_fb_cmd2 *mode_cmd)
14340 {
14341         struct drm_i915_gem_object *obj;
14342
14343         obj = to_intel_bo(drm_gem_object_lookup(dev, filp,
14344                                                 mode_cmd->handles[0]));
14345         if (&obj->base == NULL)
14346                 return ERR_PTR(-ENOENT);
14347
14348         return intel_framebuffer_create(dev, mode_cmd, obj);
14349 }
14350
14351 #ifndef CONFIG_DRM_I915_FBDEV
14352 static inline void intel_fbdev_output_poll_changed(struct drm_device *dev)
14353 {
14354 }
14355 #endif
14356
14357 static const struct drm_mode_config_funcs intel_mode_funcs = {
14358         .fb_create = intel_user_framebuffer_create,
14359         .output_poll_changed = intel_fbdev_output_poll_changed,
14360         .atomic_check = intel_atomic_check,
14361         .atomic_commit = intel_atomic_commit,
14362         .atomic_state_alloc = intel_atomic_state_alloc,
14363         .atomic_state_clear = intel_atomic_state_clear,
14364 };
14365
14366 /* Set up chip specific display functions */
14367 static void intel_init_display(struct drm_device *dev)
14368 {
14369         struct drm_i915_private *dev_priv = dev->dev_private;
14370
14371         if (HAS_PCH_SPLIT(dev) || IS_G4X(dev))
14372                 dev_priv->display.find_dpll = g4x_find_best_dpll;
14373         else if (IS_CHERRYVIEW(dev))
14374                 dev_priv->display.find_dpll = chv_find_best_dpll;
14375         else if (IS_VALLEYVIEW(dev))
14376                 dev_priv->display.find_dpll = vlv_find_best_dpll;
14377         else if (IS_PINEVIEW(dev))
14378                 dev_priv->display.find_dpll = pnv_find_best_dpll;
14379         else
14380                 dev_priv->display.find_dpll = i9xx_find_best_dpll;
14381
14382         if (INTEL_INFO(dev)->gen >= 9) {
14383                 dev_priv->display.get_pipe_config = haswell_get_pipe_config;
14384                 dev_priv->display.get_initial_plane_config =
14385                         skylake_get_initial_plane_config;
14386                 dev_priv->display.crtc_compute_clock =
14387                         haswell_crtc_compute_clock;
14388                 dev_priv->display.crtc_enable = haswell_crtc_enable;
14389                 dev_priv->display.crtc_disable = haswell_crtc_disable;
14390                 dev_priv->display.update_primary_plane =
14391                         skylake_update_primary_plane;
14392         } else if (HAS_DDI(dev)) {
14393                 dev_priv->display.get_pipe_config = haswell_get_pipe_config;
14394                 dev_priv->display.get_initial_plane_config =
14395                         ironlake_get_initial_plane_config;
14396                 dev_priv->display.crtc_compute_clock =
14397                         haswell_crtc_compute_clock;
14398                 dev_priv->display.crtc_enable = haswell_crtc_enable;
14399                 dev_priv->display.crtc_disable = haswell_crtc_disable;
14400                 dev_priv->display.update_primary_plane =
14401                         ironlake_update_primary_plane;
14402         } else if (HAS_PCH_SPLIT(dev)) {
14403                 dev_priv->display.get_pipe_config = ironlake_get_pipe_config;
14404                 dev_priv->display.get_initial_plane_config =
14405                         ironlake_get_initial_plane_config;
14406                 dev_priv->display.crtc_compute_clock =
14407                         ironlake_crtc_compute_clock;
14408                 dev_priv->display.crtc_enable = ironlake_crtc_enable;
14409                 dev_priv->display.crtc_disable = ironlake_crtc_disable;
14410                 dev_priv->display.update_primary_plane =
14411                         ironlake_update_primary_plane;
14412         } else if (IS_VALLEYVIEW(dev)) {
14413                 dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
14414                 dev_priv->display.get_initial_plane_config =
14415                         i9xx_get_initial_plane_config;
14416                 dev_priv->display.crtc_compute_clock = i9xx_crtc_compute_clock;
14417                 dev_priv->display.crtc_enable = valleyview_crtc_enable;
14418                 dev_priv->display.crtc_disable = i9xx_crtc_disable;
14419                 dev_priv->display.update_primary_plane =
14420                         i9xx_update_primary_plane;
14421         } else {
14422                 dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
14423                 dev_priv->display.get_initial_plane_config =
14424                         i9xx_get_initial_plane_config;
14425                 dev_priv->display.crtc_compute_clock = i9xx_crtc_compute_clock;
14426                 dev_priv->display.crtc_enable = i9xx_crtc_enable;
14427                 dev_priv->display.crtc_disable = i9xx_crtc_disable;
14428                 dev_priv->display.update_primary_plane =
14429                         i9xx_update_primary_plane;
14430         }
14431
14432         /* Returns the core display clock speed */
14433         if (IS_SKYLAKE(dev))
14434                 dev_priv->display.get_display_clock_speed =
14435                         skylake_get_display_clock_speed;
14436         else if (IS_BROXTON(dev))
14437                 dev_priv->display.get_display_clock_speed =
14438                         broxton_get_display_clock_speed;
14439         else if (IS_BROADWELL(dev))
14440                 dev_priv->display.get_display_clock_speed =
14441                         broadwell_get_display_clock_speed;
14442         else if (IS_HASWELL(dev))
14443                 dev_priv->display.get_display_clock_speed =
14444                         haswell_get_display_clock_speed;
14445         else if (IS_VALLEYVIEW(dev))
14446                 dev_priv->display.get_display_clock_speed =
14447                         valleyview_get_display_clock_speed;
14448         else if (IS_GEN5(dev))
14449                 dev_priv->display.get_display_clock_speed =
14450                         ilk_get_display_clock_speed;
14451         else if (IS_I945G(dev) || IS_BROADWATER(dev) ||
14452                  IS_GEN6(dev) || IS_IVYBRIDGE(dev))
14453                 dev_priv->display.get_display_clock_speed =
14454                         i945_get_display_clock_speed;
14455         else if (IS_GM45(dev))
14456                 dev_priv->display.get_display_clock_speed =
14457                         gm45_get_display_clock_speed;
14458         else if (IS_CRESTLINE(dev))
14459                 dev_priv->display.get_display_clock_speed =
14460                         i965gm_get_display_clock_speed;
14461         else if (IS_PINEVIEW(dev))
14462                 dev_priv->display.get_display_clock_speed =
14463                         pnv_get_display_clock_speed;
14464         else if (IS_G33(dev) || IS_G4X(dev))
14465                 dev_priv->display.get_display_clock_speed =
14466                         g33_get_display_clock_speed;
14467         else if (IS_I915G(dev))
14468                 dev_priv->display.get_display_clock_speed =
14469                         i915_get_display_clock_speed;
14470         else if (IS_I945GM(dev) || IS_845G(dev))
14471                 dev_priv->display.get_display_clock_speed =
14472                         i9xx_misc_get_display_clock_speed;
14473         else if (IS_PINEVIEW(dev))
14474                 dev_priv->display.get_display_clock_speed =
14475                         pnv_get_display_clock_speed;
14476         else if (IS_I915GM(dev))
14477                 dev_priv->display.get_display_clock_speed =
14478                         i915gm_get_display_clock_speed;
14479         else if (IS_I865G(dev))
14480                 dev_priv->display.get_display_clock_speed =
14481                         i865_get_display_clock_speed;
14482         else if (IS_I85X(dev))
14483                 dev_priv->display.get_display_clock_speed =
14484                         i85x_get_display_clock_speed;
14485         else { /* 830 */
14486                 WARN(!IS_I830(dev), "Unknown platform. Assuming 133 MHz CDCLK\n");
14487                 dev_priv->display.get_display_clock_speed =
14488                         i830_get_display_clock_speed;
14489         }
14490
14491         if (IS_GEN5(dev)) {
14492                 dev_priv->display.fdi_link_train = ironlake_fdi_link_train;
14493         } else if (IS_GEN6(dev)) {
14494                 dev_priv->display.fdi_link_train = gen6_fdi_link_train;
14495         } else if (IS_IVYBRIDGE(dev)) {
14496                 /* FIXME: detect B0+ stepping and use auto training */
14497                 dev_priv->display.fdi_link_train = ivb_manual_fdi_link_train;
14498         } else if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
14499                 dev_priv->display.fdi_link_train = hsw_fdi_link_train;
14500                 if (IS_BROADWELL(dev)) {
14501                         dev_priv->display.modeset_commit_cdclk =
14502                                 broadwell_modeset_commit_cdclk;
14503                         dev_priv->display.modeset_calc_cdclk =
14504                                 broadwell_modeset_calc_cdclk;
14505                 }
14506         } else if (IS_VALLEYVIEW(dev)) {
14507                 dev_priv->display.modeset_commit_cdclk =
14508                         valleyview_modeset_commit_cdclk;
14509                 dev_priv->display.modeset_calc_cdclk =
14510                         valleyview_modeset_calc_cdclk;
14511         } else if (IS_BROXTON(dev)) {
14512                 dev_priv->display.modeset_commit_cdclk =
14513                         broxton_modeset_commit_cdclk;
14514                 dev_priv->display.modeset_calc_cdclk =
14515                         broxton_modeset_calc_cdclk;
14516         }
14517
14518         switch (INTEL_INFO(dev)->gen) {
14519         case 2:
14520                 dev_priv->display.queue_flip = intel_gen2_queue_flip;
14521                 break;
14522
14523         case 3:
14524                 dev_priv->display.queue_flip = intel_gen3_queue_flip;
14525                 break;
14526
14527         case 4:
14528         case 5:
14529                 dev_priv->display.queue_flip = intel_gen4_queue_flip;
14530                 break;
14531
14532         case 6:
14533                 dev_priv->display.queue_flip = intel_gen6_queue_flip;
14534                 break;
14535         case 7:
14536         case 8: /* FIXME(BDW): Check that the gen8 RCS flip works. */
14537                 dev_priv->display.queue_flip = intel_gen7_queue_flip;
14538                 break;
14539         case 9:
14540                 /* Drop through - unsupported since execlist only. */
14541         default:
14542                 /* Default just returns -ENODEV to indicate unsupported */
14543                 dev_priv->display.queue_flip = intel_default_queue_flip;
14544         }
14545
14546         intel_panel_init_backlight_funcs(dev);
14547
14548         mutex_init(&dev_priv->pps_mutex);
14549 }
14550
14551 /*
14552  * Some BIOSes insist on assuming the GPU's pipe A is enabled at suspend,
14553  * resume, or other times.  This quirk makes sure that's the case for
14554  * affected systems.
14555  */
14556 static void quirk_pipea_force(struct drm_device *dev)
14557 {
14558         struct drm_i915_private *dev_priv = dev->dev_private;
14559
14560         dev_priv->quirks |= QUIRK_PIPEA_FORCE;
14561         DRM_INFO("applying pipe a force quirk\n");
14562 }
14563
14564 static void quirk_pipeb_force(struct drm_device *dev)
14565 {
14566         struct drm_i915_private *dev_priv = dev->dev_private;
14567
14568         dev_priv->quirks |= QUIRK_PIPEB_FORCE;
14569         DRM_INFO("applying pipe b force quirk\n");
14570 }
14571
14572 /*
14573  * Some machines (Lenovo U160) do not work with SSC on LVDS for some reason
14574  */
14575 static void quirk_ssc_force_disable(struct drm_device *dev)
14576 {
14577         struct drm_i915_private *dev_priv = dev->dev_private;
14578         dev_priv->quirks |= QUIRK_LVDS_SSC_DISABLE;
14579         DRM_INFO("applying lvds SSC disable quirk\n");
14580 }
14581
14582 /*
14583  * A machine (e.g. Acer Aspire 5734Z) may need to invert the panel backlight
14584  * brightness value
14585  */
14586 static void quirk_invert_brightness(struct drm_device *dev)
14587 {
14588         struct drm_i915_private *dev_priv = dev->dev_private;
14589         dev_priv->quirks |= QUIRK_INVERT_BRIGHTNESS;
14590         DRM_INFO("applying inverted panel brightness quirk\n");
14591 }
14592
14593 /* Some VBT's incorrectly indicate no backlight is present */
14594 static void quirk_backlight_present(struct drm_device *dev)
14595 {
14596         struct drm_i915_private *dev_priv = dev->dev_private;
14597         dev_priv->quirks |= QUIRK_BACKLIGHT_PRESENT;
14598         DRM_INFO("applying backlight present quirk\n");
14599 }
14600
14601 struct intel_quirk {
14602         int device;
14603         int subsystem_vendor;
14604         int subsystem_device;
14605         void (*hook)(struct drm_device *dev);
14606 };
14607
14608 /* For systems that don't have a meaningful PCI subdevice/subvendor ID */
14609 struct intel_dmi_quirk {
14610         void (*hook)(struct drm_device *dev);
14611         const struct dmi_system_id (*dmi_id_list)[];
14612 };
14613
14614 static int intel_dmi_reverse_brightness(const struct dmi_system_id *id)
14615 {
14616         DRM_INFO("Backlight polarity reversed on %s\n", id->ident);
14617         return 1;
14618 }
14619
14620 static const struct intel_dmi_quirk intel_dmi_quirks[] = {
14621         {
14622                 .dmi_id_list = &(const struct dmi_system_id[]) {
14623                         {
14624                                 .callback = intel_dmi_reverse_brightness,
14625                                 .ident = "NCR Corporation",
14626                                 .matches = {DMI_MATCH(DMI_SYS_VENDOR, "NCR Corporation"),
14627                                             DMI_MATCH(DMI_PRODUCT_NAME, ""),
14628                                 },
14629                         },
14630                         { }  /* terminating entry */
14631                 },
14632                 .hook = quirk_invert_brightness,
14633         },
14634 };
14635
14636 static struct intel_quirk intel_quirks[] = {
14637         /* Toshiba Protege R-205, S-209 needs pipe A force quirk */
14638         { 0x2592, 0x1179, 0x0001, quirk_pipea_force },
14639
14640         /* ThinkPad T60 needs pipe A force quirk (bug #16494) */
14641         { 0x2782, 0x17aa, 0x201a, quirk_pipea_force },
14642
14643         /* 830 needs to leave pipe A & dpll A up */
14644         { 0x3577, PCI_ANY_ID, PCI_ANY_ID, quirk_pipea_force },
14645
14646         /* 830 needs to leave pipe B & dpll B up */
14647         { 0x3577, PCI_ANY_ID, PCI_ANY_ID, quirk_pipeb_force },
14648
14649         /* Lenovo U160 cannot use SSC on LVDS */
14650         { 0x0046, 0x17aa, 0x3920, quirk_ssc_force_disable },
14651
14652         /* Sony Vaio Y cannot use SSC on LVDS */
14653         { 0x0046, 0x104d, 0x9076, quirk_ssc_force_disable },
14654
14655         /* Acer Aspire 5734Z must invert backlight brightness */
14656         { 0x2a42, 0x1025, 0x0459, quirk_invert_brightness },
14657
14658         /* Acer/eMachines G725 */
14659         { 0x2a42, 0x1025, 0x0210, quirk_invert_brightness },
14660
14661         /* Acer/eMachines e725 */
14662         { 0x2a42, 0x1025, 0x0212, quirk_invert_brightness },
14663
14664         /* Acer/Packard Bell NCL20 */
14665         { 0x2a42, 0x1025, 0x034b, quirk_invert_brightness },
14666
14667         /* Acer Aspire 4736Z */
14668         { 0x2a42, 0x1025, 0x0260, quirk_invert_brightness },
14669
14670         /* Acer Aspire 5336 */
14671         { 0x2a42, 0x1025, 0x048a, quirk_invert_brightness },
14672
14673         /* Acer C720 and C720P Chromebooks (Celeron 2955U) have backlights */
14674         { 0x0a06, 0x1025, 0x0a11, quirk_backlight_present },
14675
14676         /* Acer C720 Chromebook (Core i3 4005U) */
14677         { 0x0a16, 0x1025, 0x0a11, quirk_backlight_present },
14678
14679         /* Apple Macbook 2,1 (Core 2 T7400) */
14680         { 0x27a2, 0x8086, 0x7270, quirk_backlight_present },
14681
14682         /* Toshiba CB35 Chromebook (Celeron 2955U) */
14683         { 0x0a06, 0x1179, 0x0a88, quirk_backlight_present },
14684
14685         /* HP Chromebook 14 (Celeron 2955U) */
14686         { 0x0a06, 0x103c, 0x21ed, quirk_backlight_present },
14687
14688         /* Dell Chromebook 11 */
14689         { 0x0a06, 0x1028, 0x0a35, quirk_backlight_present },
14690 };
14691
14692 static void intel_init_quirks(struct drm_device *dev)
14693 {
14694         struct pci_dev *d = dev->pdev;
14695         int i;
14696
14697         for (i = 0; i < ARRAY_SIZE(intel_quirks); i++) {
14698                 struct intel_quirk *q = &intel_quirks[i];
14699
14700                 if (d->device == q->device &&
14701                     (d->subsystem_vendor == q->subsystem_vendor ||
14702                      q->subsystem_vendor == PCI_ANY_ID) &&
14703                     (d->subsystem_device == q->subsystem_device ||
14704                      q->subsystem_device == PCI_ANY_ID))
14705                         q->hook(dev);
14706         }
14707         for (i = 0; i < ARRAY_SIZE(intel_dmi_quirks); i++) {
14708                 if (dmi_check_system(*intel_dmi_quirks[i].dmi_id_list) != 0)
14709                         intel_dmi_quirks[i].hook(dev);
14710         }
14711 }
14712
14713 /* Disable the VGA plane that we never use */
14714 static void i915_disable_vga(struct drm_device *dev)
14715 {
14716         struct drm_i915_private *dev_priv = dev->dev_private;
14717         u8 sr1;
14718         u32 vga_reg = i915_vgacntrl_reg(dev);
14719
14720         /* WaEnableVGAAccessThroughIOPort:ctg,elk,ilk,snb,ivb,vlv,hsw */
14721         vga_get_uninterruptible(dev->pdev, VGA_RSRC_LEGACY_IO);
14722         outb(SR01, VGA_SR_INDEX);
14723         sr1 = inb(VGA_SR_DATA);
14724         outb(sr1 | 1<<5, VGA_SR_DATA);
14725         vga_put(dev->pdev, VGA_RSRC_LEGACY_IO);
14726         udelay(300);
14727
14728         I915_WRITE(vga_reg, VGA_DISP_DISABLE);
14729         POSTING_READ(vga_reg);
14730 }
14731
14732 void intel_modeset_init_hw(struct drm_device *dev)
14733 {
14734         intel_update_cdclk(dev);
14735         intel_prepare_ddi(dev);
14736         intel_init_clock_gating(dev);
14737         intel_enable_gt_powersave(dev);
14738 }
14739
14740 void intel_modeset_init(struct drm_device *dev)
14741 {
14742         struct drm_i915_private *dev_priv = dev->dev_private;
14743         int sprite, ret;
14744         enum pipe pipe;
14745         struct intel_crtc *crtc;
14746
14747         drm_mode_config_init(dev);
14748
14749         dev->mode_config.min_width = 0;
14750         dev->mode_config.min_height = 0;
14751
14752         dev->mode_config.preferred_depth = 24;
14753         dev->mode_config.prefer_shadow = 1;
14754
14755         dev->mode_config.allow_fb_modifiers = true;
14756
14757         dev->mode_config.funcs = &intel_mode_funcs;
14758
14759         intel_init_quirks(dev);
14760
14761         intel_init_pm(dev);
14762
14763         if (INTEL_INFO(dev)->num_pipes == 0)
14764                 return;
14765
14766         intel_init_display(dev);
14767         intel_init_audio(dev);
14768
14769         if (IS_GEN2(dev)) {
14770                 dev->mode_config.max_width = 2048;
14771                 dev->mode_config.max_height = 2048;
14772         } else if (IS_GEN3(dev)) {
14773                 dev->mode_config.max_width = 4096;
14774                 dev->mode_config.max_height = 4096;
14775         } else {
14776                 dev->mode_config.max_width = 8192;
14777                 dev->mode_config.max_height = 8192;
14778         }
14779
14780         if (IS_845G(dev) || IS_I865G(dev)) {
14781                 dev->mode_config.cursor_width = IS_845G(dev) ? 64 : 512;
14782                 dev->mode_config.cursor_height = 1023;
14783         } else if (IS_GEN2(dev)) {
14784                 dev->mode_config.cursor_width = GEN2_CURSOR_WIDTH;
14785                 dev->mode_config.cursor_height = GEN2_CURSOR_HEIGHT;
14786         } else {
14787                 dev->mode_config.cursor_width = MAX_CURSOR_WIDTH;
14788                 dev->mode_config.cursor_height = MAX_CURSOR_HEIGHT;
14789         }
14790
14791         dev->mode_config.fb_base = dev_priv->gtt.mappable_base;
14792
14793         DRM_DEBUG_KMS("%d display pipe%s available.\n",
14794                       INTEL_INFO(dev)->num_pipes,
14795                       INTEL_INFO(dev)->num_pipes > 1 ? "s" : "");
14796
14797         for_each_pipe(dev_priv, pipe) {
14798                 intel_crtc_init(dev, pipe);
14799                 for_each_sprite(dev_priv, pipe, sprite) {
14800                         ret = intel_plane_init(dev, pipe, sprite);
14801                         if (ret)
14802                                 DRM_DEBUG_KMS("pipe %c sprite %c init failed: %d\n",
14803                                               pipe_name(pipe), sprite_name(pipe, sprite), ret);
14804                 }
14805         }
14806
14807         intel_init_dpio(dev);
14808
14809         intel_shared_dpll_init(dev);
14810
14811         /* Just disable it once at startup */
14812         i915_disable_vga(dev);
14813         intel_setup_outputs(dev);
14814
14815         /* Just in case the BIOS is doing something questionable. */
14816         intel_fbc_disable(dev_priv);
14817
14818         drm_modeset_lock_all(dev);
14819         intel_modeset_setup_hw_state(dev);
14820         drm_modeset_unlock_all(dev);
14821
14822         for_each_intel_crtc(dev, crtc) {
14823                 struct intel_initial_plane_config plane_config = {};
14824
14825                 if (!crtc->active)
14826                         continue;
14827
14828                 /*
14829                  * Note that reserving the BIOS fb up front prevents us
14830                  * from stuffing other stolen allocations like the ring
14831                  * on top.  This prevents some ugliness at boot time, and
14832                  * can even allow for smooth boot transitions if the BIOS
14833                  * fb is large enough for the active pipe configuration.
14834                  */
14835                 dev_priv->display.get_initial_plane_config(crtc,
14836                                                            &plane_config);
14837
14838                 /*
14839                  * If the fb is shared between multiple heads, we'll
14840                  * just get the first one.
14841                  */
14842                 intel_find_initial_plane_obj(crtc, &plane_config);
14843         }
14844 }
14845
14846 static void intel_enable_pipe_a(struct drm_device *dev)
14847 {
14848         struct intel_connector *connector;
14849         struct drm_connector *crt = NULL;
14850         struct intel_load_detect_pipe load_detect_temp;
14851         struct drm_modeset_acquire_ctx *ctx = dev->mode_config.acquire_ctx;
14852
14853         /* We can't just switch on the pipe A, we need to set things up with a
14854          * proper mode and output configuration. As a gross hack, enable pipe A
14855          * by enabling the load detect pipe once. */
14856         for_each_intel_connector(dev, connector) {
14857                 if (connector->encoder->type == INTEL_OUTPUT_ANALOG) {
14858                         crt = &connector->base;
14859                         break;
14860                 }
14861         }
14862
14863         if (!crt)
14864                 return;
14865
14866         if (intel_get_load_detect_pipe(crt, NULL, &load_detect_temp, ctx))
14867                 intel_release_load_detect_pipe(crt, &load_detect_temp, ctx);
14868 }
14869
14870 static bool
14871 intel_check_plane_mapping(struct intel_crtc *crtc)
14872 {
14873         struct drm_device *dev = crtc->base.dev;
14874         struct drm_i915_private *dev_priv = dev->dev_private;
14875         u32 reg, val;
14876
14877         if (INTEL_INFO(dev)->num_pipes == 1)
14878                 return true;
14879
14880         reg = DSPCNTR(!crtc->plane);
14881         val = I915_READ(reg);
14882
14883         if ((val & DISPLAY_PLANE_ENABLE) &&
14884             (!!(val & DISPPLANE_SEL_PIPE_MASK) == crtc->pipe))
14885                 return false;
14886
14887         return true;
14888 }
14889
14890 static void intel_sanitize_crtc(struct intel_crtc *crtc)
14891 {
14892         struct drm_device *dev = crtc->base.dev;
14893         struct drm_i915_private *dev_priv = dev->dev_private;
14894         struct intel_encoder *encoder;
14895         u32 reg;
14896         bool enable;
14897
14898         /* Clear any frame start delays used for debugging left by the BIOS */
14899         reg = PIPECONF(crtc->config->cpu_transcoder);
14900         I915_WRITE(reg, I915_READ(reg) & ~PIPECONF_FRAME_START_DELAY_MASK);
14901
14902         /* restore vblank interrupts to correct state */
14903         drm_crtc_vblank_reset(&crtc->base);
14904         if (crtc->active) {
14905                 drm_calc_timestamping_constants(&crtc->base, &crtc->base.hwmode);
14906                 update_scanline_offset(crtc);
14907                 drm_crtc_vblank_on(&crtc->base);
14908         }
14909
14910         /* We need to sanitize the plane -> pipe mapping first because this will
14911          * disable the crtc (and hence change the state) if it is wrong. Note
14912          * that gen4+ has a fixed plane -> pipe mapping.  */
14913         if (INTEL_INFO(dev)->gen < 4 && !intel_check_plane_mapping(crtc)) {
14914                 bool plane;
14915
14916                 DRM_DEBUG_KMS("[CRTC:%d] wrong plane connection detected!\n",
14917                               crtc->base.base.id);
14918
14919                 /* Pipe has the wrong plane attached and the plane is active.
14920                  * Temporarily change the plane mapping and disable everything
14921                  * ...  */
14922                 plane = crtc->plane;
14923                 to_intel_plane_state(crtc->base.primary->state)->visible = true;
14924                 crtc->plane = !plane;
14925                 intel_crtc_disable_noatomic(&crtc->base);
14926                 crtc->plane = plane;
14927         }
14928
14929         if (dev_priv->quirks & QUIRK_PIPEA_FORCE &&
14930             crtc->pipe == PIPE_A && !crtc->active) {
14931                 /* BIOS forgot to enable pipe A, this mostly happens after
14932                  * resume. Force-enable the pipe to fix this, the update_dpms
14933                  * call below we restore the pipe to the right state, but leave
14934                  * the required bits on. */
14935                 intel_enable_pipe_a(dev);
14936         }
14937
14938         /* Adjust the state of the output pipe according to whether we
14939          * have active connectors/encoders. */
14940         enable = false;
14941         for_each_encoder_on_crtc(dev, &crtc->base, encoder)
14942                 enable |= encoder->connectors_active;
14943
14944         if (!enable)
14945                 intel_crtc_disable_noatomic(&crtc->base);
14946
14947         if (crtc->active != crtc->base.state->active) {
14948
14949                 /* This can happen either due to bugs in the get_hw_state
14950                  * functions or because of calls to intel_crtc_disable_noatomic,
14951                  * or because the pipe is force-enabled due to the
14952                  * pipe A quirk. */
14953                 DRM_DEBUG_KMS("[CRTC:%d] hw state adjusted, was %s, now %s\n",
14954                               crtc->base.base.id,
14955                               crtc->base.state->enable ? "enabled" : "disabled",
14956                               crtc->active ? "enabled" : "disabled");
14957
14958                 WARN_ON(drm_atomic_set_mode_for_crtc(crtc->base.state, NULL) < 0);
14959                 crtc->base.state->active = crtc->active;
14960                 crtc->base.enabled = crtc->active;
14961
14962                 /* Because we only establish the connector -> encoder ->
14963                  * crtc links if something is active, this means the
14964                  * crtc is now deactivated. Break the links. connector
14965                  * -> encoder links are only establish when things are
14966                  *  actually up, hence no need to break them. */
14967                 WARN_ON(crtc->active);
14968
14969                 for_each_encoder_on_crtc(dev, &crtc->base, encoder) {
14970                         WARN_ON(encoder->connectors_active);
14971                         encoder->base.crtc = NULL;
14972                 }
14973         }
14974
14975         if (crtc->active || HAS_GMCH_DISPLAY(dev)) {
14976                 /*
14977                  * We start out with underrun reporting disabled to avoid races.
14978                  * For correct bookkeeping mark this on active crtcs.
14979                  *
14980                  * Also on gmch platforms we dont have any hardware bits to
14981                  * disable the underrun reporting. Which means we need to start
14982                  * out with underrun reporting disabled also on inactive pipes,
14983                  * since otherwise we'll complain about the garbage we read when
14984                  * e.g. coming up after runtime pm.
14985                  *
14986                  * No protection against concurrent access is required - at
14987                  * worst a fifo underrun happens which also sets this to false.
14988                  */
14989                 crtc->cpu_fifo_underrun_disabled = true;
14990                 crtc->pch_fifo_underrun_disabled = true;
14991         }
14992 }
14993
14994 static void intel_sanitize_encoder(struct intel_encoder *encoder)
14995 {
14996         struct intel_connector *connector;
14997         struct drm_device *dev = encoder->base.dev;
14998
14999         /* We need to check both for a crtc link (meaning that the
15000          * encoder is active and trying to read from a pipe) and the
15001          * pipe itself being active. */
15002         bool has_active_crtc = encoder->base.crtc &&
15003                 to_intel_crtc(encoder->base.crtc)->active;
15004
15005         if (encoder->connectors_active && !has_active_crtc) {
15006                 DRM_DEBUG_KMS("[ENCODER:%d:%s] has active connectors but no active pipe!\n",
15007                               encoder->base.base.id,
15008                               encoder->base.name);
15009
15010                 /* Connector is active, but has no active pipe. This is
15011                  * fallout from our resume register restoring. Disable
15012                  * the encoder manually again. */
15013                 if (encoder->base.crtc) {
15014                         DRM_DEBUG_KMS("[ENCODER:%d:%s] manually disabled\n",
15015                                       encoder->base.base.id,
15016                                       encoder->base.name);
15017                         encoder->disable(encoder);
15018                         if (encoder->post_disable)
15019                                 encoder->post_disable(encoder);
15020                 }
15021                 encoder->base.crtc = NULL;
15022                 encoder->connectors_active = false;
15023
15024                 /* Inconsistent output/port/pipe state happens presumably due to
15025                  * a bug in one of the get_hw_state functions. Or someplace else
15026                  * in our code, like the register restore mess on resume. Clamp
15027                  * things to off as a safer default. */
15028                 for_each_intel_connector(dev, connector) {
15029                         if (connector->encoder != encoder)
15030                                 continue;
15031                         connector->base.dpms = DRM_MODE_DPMS_OFF;
15032                         connector->base.encoder = NULL;
15033                 }
15034         }
15035         /* Enabled encoders without active connectors will be fixed in
15036          * the crtc fixup. */
15037 }
15038
15039 void i915_redisable_vga_power_on(struct drm_device *dev)
15040 {
15041         struct drm_i915_private *dev_priv = dev->dev_private;
15042         u32 vga_reg = i915_vgacntrl_reg(dev);
15043
15044         if (!(I915_READ(vga_reg) & VGA_DISP_DISABLE)) {
15045                 DRM_DEBUG_KMS("Something enabled VGA plane, disabling it\n");
15046                 i915_disable_vga(dev);
15047         }
15048 }
15049
15050 void i915_redisable_vga(struct drm_device *dev)
15051 {
15052         struct drm_i915_private *dev_priv = dev->dev_private;
15053
15054         /* This function can be called both from intel_modeset_setup_hw_state or
15055          * at a very early point in our resume sequence, where the power well
15056          * structures are not yet restored. Since this function is at a very
15057          * paranoid "someone might have enabled VGA while we were not looking"
15058          * level, just check if the power well is enabled instead of trying to
15059          * follow the "don't touch the power well if we don't need it" policy
15060          * the rest of the driver uses. */
15061         if (!intel_display_power_is_enabled(dev_priv, POWER_DOMAIN_VGA))
15062                 return;
15063
15064         i915_redisable_vga_power_on(dev);
15065 }
15066
15067 static bool primary_get_hw_state(struct intel_crtc *crtc)
15068 {
15069         struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
15070
15071         return !!(I915_READ(DSPCNTR(crtc->plane)) & DISPLAY_PLANE_ENABLE);
15072 }
15073
15074 static void readout_plane_state(struct intel_crtc *crtc,
15075                                 struct intel_crtc_state *crtc_state)
15076 {
15077         struct intel_plane *p;
15078         struct intel_plane_state *plane_state;
15079         bool active = crtc_state->base.active;
15080
15081         for_each_intel_plane(crtc->base.dev, p) {
15082                 if (crtc->pipe != p->pipe)
15083                         continue;
15084
15085                 plane_state = to_intel_plane_state(p->base.state);
15086
15087                 if (p->base.type == DRM_PLANE_TYPE_PRIMARY)
15088                         plane_state->visible = primary_get_hw_state(crtc);
15089                 else {
15090                         if (active)
15091                                 p->disable_plane(&p->base, &crtc->base);
15092
15093                         plane_state->visible = false;
15094                 }
15095         }
15096 }
15097
15098 static void intel_modeset_readout_hw_state(struct drm_device *dev)
15099 {
15100         struct drm_i915_private *dev_priv = dev->dev_private;
15101         enum pipe pipe;
15102         struct intel_crtc *crtc;
15103         struct intel_encoder *encoder;
15104         struct intel_connector *connector;
15105         int i;
15106
15107         for_each_intel_crtc(dev, crtc) {
15108                 __drm_atomic_helper_crtc_destroy_state(&crtc->base, crtc->base.state);
15109                 memset(crtc->config, 0, sizeof(*crtc->config));
15110                 crtc->config->base.crtc = &crtc->base;
15111
15112                 crtc->active = dev_priv->display.get_pipe_config(crtc,
15113                                                                  crtc->config);
15114
15115                 crtc->base.state->active = crtc->active;
15116                 crtc->base.enabled = crtc->active;
15117
15118                 memset(&crtc->base.mode, 0, sizeof(crtc->base.mode));
15119                 if (crtc->base.state->active) {
15120                         intel_mode_from_pipe_config(&crtc->base.mode, crtc->config);
15121                         intel_mode_from_pipe_config(&crtc->base.state->adjusted_mode, crtc->config);
15122                         WARN_ON(drm_atomic_set_mode_for_crtc(crtc->base.state, &crtc->base.mode));
15123
15124                         /*
15125                          * The initial mode needs to be set in order to keep
15126                          * the atomic core happy. It wants a valid mode if the
15127                          * crtc's enabled, so we do the above call.
15128                          *
15129                          * At this point some state updated by the connectors
15130                          * in their ->detect() callback has not run yet, so
15131                          * no recalculation can be done yet.
15132                          *
15133                          * Even if we could do a recalculation and modeset
15134                          * right now it would cause a double modeset if
15135                          * fbdev or userspace chooses a different initial mode.
15136                          *
15137                          * If that happens, someone indicated they wanted a
15138                          * mode change, which means it's safe to do a full
15139                          * recalculation.
15140                          */
15141                         crtc->base.state->mode.private_flags = I915_MODE_FLAG_INHERITED;
15142                 }
15143
15144                 crtc->base.hwmode = crtc->config->base.adjusted_mode;
15145                 readout_plane_state(crtc, to_intel_crtc_state(crtc->base.state));
15146
15147                 DRM_DEBUG_KMS("[CRTC:%d] hw state readout: %s\n",
15148                               crtc->base.base.id,
15149                               crtc->active ? "enabled" : "disabled");
15150         }
15151
15152         for (i = 0; i < dev_priv->num_shared_dpll; i++) {
15153                 struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
15154
15155                 pll->on = pll->get_hw_state(dev_priv, pll,
15156                                             &pll->config.hw_state);
15157                 pll->active = 0;
15158                 pll->config.crtc_mask = 0;
15159                 for_each_intel_crtc(dev, crtc) {
15160                         if (crtc->active && intel_crtc_to_shared_dpll(crtc) == pll) {
15161                                 pll->active++;
15162                                 pll->config.crtc_mask |= 1 << crtc->pipe;
15163                         }
15164                 }
15165
15166                 DRM_DEBUG_KMS("%s hw state readout: crtc_mask 0x%08x, on %i\n",
15167                               pll->name, pll->config.crtc_mask, pll->on);
15168
15169                 if (pll->config.crtc_mask)
15170                         intel_display_power_get(dev_priv, POWER_DOMAIN_PLLS);
15171         }
15172
15173         for_each_intel_encoder(dev, encoder) {
15174                 pipe = 0;
15175
15176                 if (encoder->get_hw_state(encoder, &pipe)) {
15177                         crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
15178                         encoder->base.crtc = &crtc->base;
15179                         encoder->get_config(encoder, crtc->config);
15180                 } else {
15181                         encoder->base.crtc = NULL;
15182                 }
15183
15184                 encoder->connectors_active = false;
15185                 DRM_DEBUG_KMS("[ENCODER:%d:%s] hw state readout: %s, pipe %c\n",
15186                               encoder->base.base.id,
15187                               encoder->base.name,
15188                               encoder->base.crtc ? "enabled" : "disabled",
15189                               pipe_name(pipe));
15190         }
15191
15192         for_each_intel_connector(dev, connector) {
15193                 if (connector->get_hw_state(connector)) {
15194                         connector->base.dpms = DRM_MODE_DPMS_ON;
15195                         connector->encoder->connectors_active = true;
15196                         connector->base.encoder = &connector->encoder->base;
15197                 } else {
15198                         connector->base.dpms = DRM_MODE_DPMS_OFF;
15199                         connector->base.encoder = NULL;
15200                 }
15201                 DRM_DEBUG_KMS("[CONNECTOR:%d:%s] hw state readout: %s\n",
15202                               connector->base.base.id,
15203                               connector->base.name,
15204                               connector->base.encoder ? "enabled" : "disabled");
15205         }
15206 }
15207
15208 /* Scan out the current hw modeset state,
15209  * and sanitizes it to the current state
15210  */
15211 static void
15212 intel_modeset_setup_hw_state(struct drm_device *dev)
15213 {
15214         struct drm_i915_private *dev_priv = dev->dev_private;
15215         enum pipe pipe;
15216         struct intel_crtc *crtc;
15217         struct intel_encoder *encoder;
15218         int i;
15219
15220         intel_modeset_readout_hw_state(dev);
15221
15222         /* HW state is read out, now we need to sanitize this mess. */
15223         for_each_intel_encoder(dev, encoder) {
15224                 intel_sanitize_encoder(encoder);
15225         }
15226
15227         for_each_pipe(dev_priv, pipe) {
15228                 crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
15229                 intel_sanitize_crtc(crtc);
15230                 intel_dump_pipe_config(crtc, crtc->config,
15231                                        "[setup_hw_state]");
15232         }
15233
15234         intel_modeset_update_connector_atomic_state(dev);
15235
15236         for (i = 0; i < dev_priv->num_shared_dpll; i++) {
15237                 struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
15238
15239                 if (!pll->on || pll->active)
15240                         continue;
15241
15242                 DRM_DEBUG_KMS("%s enabled but not in use, disabling\n", pll->name);
15243
15244                 pll->disable(dev_priv, pll);
15245                 pll->on = false;
15246         }
15247
15248         if (IS_VALLEYVIEW(dev))
15249                 vlv_wm_get_hw_state(dev);
15250         else if (IS_GEN9(dev))
15251                 skl_wm_get_hw_state(dev);
15252         else if (HAS_PCH_SPLIT(dev))
15253                 ilk_wm_get_hw_state(dev);
15254
15255         for_each_intel_crtc(dev, crtc) {
15256                 unsigned long put_domains;
15257
15258                 put_domains = modeset_get_crtc_power_domains(&crtc->base);
15259                 if (WARN_ON(put_domains))
15260                         modeset_put_power_domains(dev_priv, put_domains);
15261         }
15262         intel_display_set_init_power(dev_priv, false);
15263 }
15264
15265 void intel_display_resume(struct drm_device *dev)
15266 {
15267         struct drm_atomic_state *state = drm_atomic_state_alloc(dev);
15268         struct intel_connector *conn;
15269         struct intel_plane *plane;
15270         struct drm_crtc *crtc;
15271         int ret;
15272
15273         if (!state)
15274                 return;
15275
15276         state->acquire_ctx = dev->mode_config.acquire_ctx;
15277
15278         /* preserve complete old state, including dpll */
15279         intel_atomic_get_shared_dpll_state(state);
15280
15281         for_each_crtc(dev, crtc) {
15282                 struct drm_crtc_state *crtc_state =
15283                         drm_atomic_get_crtc_state(state, crtc);
15284
15285                 ret = PTR_ERR_OR_ZERO(crtc_state);
15286                 if (ret)
15287                         goto err;
15288
15289                 /* force a restore */
15290                 crtc_state->mode_changed = true;
15291         }
15292
15293         for_each_intel_plane(dev, plane) {
15294                 ret = PTR_ERR_OR_ZERO(drm_atomic_get_plane_state(state, &plane->base));
15295                 if (ret)
15296                         goto err;
15297         }
15298
15299         for_each_intel_connector(dev, conn) {
15300                 ret = PTR_ERR_OR_ZERO(drm_atomic_get_connector_state(state, &conn->base));
15301                 if (ret)
15302                         goto err;
15303         }
15304
15305         intel_modeset_setup_hw_state(dev);
15306
15307         i915_redisable_vga(dev);
15308         ret = drm_atomic_commit(state);
15309         if (!ret)
15310                 return;
15311
15312 err:
15313         DRM_ERROR("Restoring old state failed with %i\n", ret);
15314         drm_atomic_state_free(state);
15315 }
15316
15317 void intel_modeset_gem_init(struct drm_device *dev)
15318 {
15319         struct drm_i915_private *dev_priv = dev->dev_private;
15320         struct drm_crtc *c;
15321         struct drm_i915_gem_object *obj;
15322         int ret;
15323
15324         mutex_lock(&dev->struct_mutex);
15325         intel_init_gt_powersave(dev);
15326         mutex_unlock(&dev->struct_mutex);
15327
15328         /*
15329          * There may be no VBT; and if the BIOS enabled SSC we can
15330          * just keep using it to avoid unnecessary flicker.  Whereas if the
15331          * BIOS isn't using it, don't assume it will work even if the VBT
15332          * indicates as much.
15333          */
15334         if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev))
15335                 dev_priv->vbt.lvds_use_ssc = !!(I915_READ(PCH_DREF_CONTROL) &
15336                                                 DREF_SSC1_ENABLE);
15337
15338         intel_modeset_init_hw(dev);
15339
15340         intel_setup_overlay(dev);
15341
15342         /*
15343          * Make sure any fbs we allocated at startup are properly
15344          * pinned & fenced.  When we do the allocation it's too early
15345          * for this.
15346          */
15347         for_each_crtc(dev, c) {
15348                 obj = intel_fb_obj(c->primary->fb);
15349                 if (obj == NULL)
15350                         continue;
15351
15352                 mutex_lock(&dev->struct_mutex);
15353                 ret = intel_pin_and_fence_fb_obj(c->primary,
15354                                                  c->primary->fb,
15355                                                  c->primary->state,
15356                                                  NULL, NULL);
15357                 mutex_unlock(&dev->struct_mutex);
15358                 if (ret) {
15359                         DRM_ERROR("failed to pin boot fb on pipe %d\n",
15360                                   to_intel_crtc(c)->pipe);
15361                         drm_framebuffer_unreference(c->primary->fb);
15362                         c->primary->fb = NULL;
15363                         c->primary->crtc = c->primary->state->crtc = NULL;
15364                         update_state_fb(c->primary);
15365                         c->state->plane_mask &= ~(1 << drm_plane_index(c->primary));
15366                 }
15367         }
15368
15369         intel_backlight_register(dev);
15370 }
15371
15372 void intel_connector_unregister(struct intel_connector *intel_connector)
15373 {
15374         struct drm_connector *connector = &intel_connector->base;
15375
15376         intel_panel_destroy_backlight(connector);
15377         drm_connector_unregister(connector);
15378 }
15379
15380 void intel_modeset_cleanup(struct drm_device *dev)
15381 {
15382         struct drm_i915_private *dev_priv = dev->dev_private;
15383         struct drm_connector *connector;
15384
15385         intel_disable_gt_powersave(dev);
15386
15387         intel_backlight_unregister(dev);
15388
15389         /*
15390          * Interrupts and polling as the first thing to avoid creating havoc.
15391          * Too much stuff here (turning of connectors, ...) would
15392          * experience fancy races otherwise.
15393          */
15394         intel_irq_uninstall(dev_priv);
15395
15396         /*
15397          * Due to the hpd irq storm handling the hotplug work can re-arm the
15398          * poll handlers. Hence disable polling after hpd handling is shut down.
15399          */
15400         drm_kms_helper_poll_fini(dev);
15401
15402         intel_unregister_dsm_handler();
15403
15404         intel_fbc_disable(dev_priv);
15405
15406         /* flush any delayed tasks or pending work */
15407         flush_scheduled_work();
15408
15409         /* destroy the backlight and sysfs files before encoders/connectors */
15410         list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
15411                 struct intel_connector *intel_connector;
15412
15413                 intel_connector = to_intel_connector(connector);
15414                 intel_connector->unregister(intel_connector);
15415         }
15416
15417         drm_mode_config_cleanup(dev);
15418
15419         intel_cleanup_overlay(dev);
15420
15421         mutex_lock(&dev->struct_mutex);
15422         intel_cleanup_gt_powersave(dev);
15423         mutex_unlock(&dev->struct_mutex);
15424 }
15425
15426 /*
15427  * Return which encoder is currently attached for connector.
15428  */
15429 struct drm_encoder *intel_best_encoder(struct drm_connector *connector)
15430 {
15431         return &intel_attached_encoder(connector)->base;
15432 }
15433
15434 void intel_connector_attach_encoder(struct intel_connector *connector,
15435                                     struct intel_encoder *encoder)
15436 {
15437         connector->encoder = encoder;
15438         drm_mode_connector_attach_encoder(&connector->base,
15439                                           &encoder->base);
15440 }
15441
15442 /*
15443  * set vga decode state - true == enable VGA decode
15444  */
15445 int intel_modeset_vga_set_state(struct drm_device *dev, bool state)
15446 {
15447         struct drm_i915_private *dev_priv = dev->dev_private;
15448         unsigned reg = INTEL_INFO(dev)->gen >= 6 ? SNB_GMCH_CTRL : INTEL_GMCH_CTRL;
15449         u16 gmch_ctrl;
15450
15451         if (pci_read_config_word(dev_priv->bridge_dev, reg, &gmch_ctrl)) {
15452                 DRM_ERROR("failed to read control word\n");
15453                 return -EIO;
15454         }
15455
15456         if (!!(gmch_ctrl & INTEL_GMCH_VGA_DISABLE) == !state)
15457                 return 0;
15458
15459         if (state)
15460                 gmch_ctrl &= ~INTEL_GMCH_VGA_DISABLE;
15461         else
15462                 gmch_ctrl |= INTEL_GMCH_VGA_DISABLE;
15463
15464         if (pci_write_config_word(dev_priv->bridge_dev, reg, gmch_ctrl)) {
15465                 DRM_ERROR("failed to write control word\n");
15466                 return -EIO;
15467         }
15468
15469         return 0;
15470 }
15471
15472 struct intel_display_error_state {
15473
15474         u32 power_well_driver;
15475
15476         int num_transcoders;
15477
15478         struct intel_cursor_error_state {
15479                 u32 control;
15480                 u32 position;
15481                 u32 base;
15482                 u32 size;
15483         } cursor[I915_MAX_PIPES];
15484
15485         struct intel_pipe_error_state {
15486                 bool power_domain_on;
15487                 u32 source;
15488                 u32 stat;
15489         } pipe[I915_MAX_PIPES];
15490
15491         struct intel_plane_error_state {
15492                 u32 control;
15493                 u32 stride;
15494                 u32 size;
15495                 u32 pos;
15496                 u32 addr;
15497                 u32 surface;
15498                 u32 tile_offset;
15499         } plane[I915_MAX_PIPES];
15500
15501         struct intel_transcoder_error_state {
15502                 bool power_domain_on;
15503                 enum transcoder cpu_transcoder;
15504
15505                 u32 conf;
15506
15507                 u32 htotal;
15508                 u32 hblank;
15509                 u32 hsync;
15510                 u32 vtotal;
15511                 u32 vblank;
15512                 u32 vsync;
15513         } transcoder[4];
15514 };
15515
15516 struct intel_display_error_state *
15517 intel_display_capture_error_state(struct drm_device *dev)
15518 {
15519         struct drm_i915_private *dev_priv = dev->dev_private;
15520         struct intel_display_error_state *error;
15521         int transcoders[] = {
15522                 TRANSCODER_A,
15523                 TRANSCODER_B,
15524                 TRANSCODER_C,
15525                 TRANSCODER_EDP,
15526         };
15527         int i;
15528
15529         if (INTEL_INFO(dev)->num_pipes == 0)
15530                 return NULL;
15531
15532         error = kzalloc(sizeof(*error), GFP_ATOMIC);
15533         if (error == NULL)
15534                 return NULL;
15535
15536         if (IS_HASWELL(dev) || IS_BROADWELL(dev))
15537                 error->power_well_driver = I915_READ(HSW_PWR_WELL_DRIVER);
15538
15539         for_each_pipe(dev_priv, i) {
15540                 error->pipe[i].power_domain_on =
15541                         __intel_display_power_is_enabled(dev_priv,
15542                                                          POWER_DOMAIN_PIPE(i));
15543                 if (!error->pipe[i].power_domain_on)
15544                         continue;
15545
15546                 error->cursor[i].control = I915_READ(CURCNTR(i));
15547                 error->cursor[i].position = I915_READ(CURPOS(i));
15548                 error->cursor[i].base = I915_READ(CURBASE(i));
15549
15550                 error->plane[i].control = I915_READ(DSPCNTR(i));
15551                 error->plane[i].stride = I915_READ(DSPSTRIDE(i));
15552                 if (INTEL_INFO(dev)->gen <= 3) {
15553                         error->plane[i].size = I915_READ(DSPSIZE(i));
15554                         error->plane[i].pos = I915_READ(DSPPOS(i));
15555                 }
15556                 if (INTEL_INFO(dev)->gen <= 7 && !IS_HASWELL(dev))
15557                         error->plane[i].addr = I915_READ(DSPADDR(i));
15558                 if (INTEL_INFO(dev)->gen >= 4) {
15559                         error->plane[i].surface = I915_READ(DSPSURF(i));
15560                         error->plane[i].tile_offset = I915_READ(DSPTILEOFF(i));
15561                 }
15562
15563                 error->pipe[i].source = I915_READ(PIPESRC(i));
15564
15565                 if (HAS_GMCH_DISPLAY(dev))
15566                         error->pipe[i].stat = I915_READ(PIPESTAT(i));
15567         }
15568
15569         error->num_transcoders = INTEL_INFO(dev)->num_pipes;
15570         if (HAS_DDI(dev_priv->dev))
15571                 error->num_transcoders++; /* Account for eDP. */
15572
15573         for (i = 0; i < error->num_transcoders; i++) {
15574                 enum transcoder cpu_transcoder = transcoders[i];
15575
15576                 error->transcoder[i].power_domain_on =
15577                         __intel_display_power_is_enabled(dev_priv,
15578                                 POWER_DOMAIN_TRANSCODER(cpu_transcoder));
15579                 if (!error->transcoder[i].power_domain_on)
15580                         continue;
15581
15582                 error->transcoder[i].cpu_transcoder = cpu_transcoder;
15583
15584                 error->transcoder[i].conf = I915_READ(PIPECONF(cpu_transcoder));
15585                 error->transcoder[i].htotal = I915_READ(HTOTAL(cpu_transcoder));
15586                 error->transcoder[i].hblank = I915_READ(HBLANK(cpu_transcoder));
15587                 error->transcoder[i].hsync = I915_READ(HSYNC(cpu_transcoder));
15588                 error->transcoder[i].vtotal = I915_READ(VTOTAL(cpu_transcoder));
15589                 error->transcoder[i].vblank = I915_READ(VBLANK(cpu_transcoder));
15590                 error->transcoder[i].vsync = I915_READ(VSYNC(cpu_transcoder));
15591         }
15592
15593         return error;
15594 }
15595
15596 #define err_printf(e, ...) i915_error_printf(e, __VA_ARGS__)
15597
15598 void
15599 intel_display_print_error_state(struct drm_i915_error_state_buf *m,
15600                                 struct drm_device *dev,
15601                                 struct intel_display_error_state *error)
15602 {
15603         struct drm_i915_private *dev_priv = dev->dev_private;
15604         int i;
15605
15606         if (!error)
15607                 return;
15608
15609         err_printf(m, "Num Pipes: %d\n", INTEL_INFO(dev)->num_pipes);
15610         if (IS_HASWELL(dev) || IS_BROADWELL(dev))
15611                 err_printf(m, "PWR_WELL_CTL2: %08x\n",
15612                            error->power_well_driver);
15613         for_each_pipe(dev_priv, i) {
15614                 err_printf(m, "Pipe [%d]:\n", i);
15615                 err_printf(m, "  Power: %s\n",
15616                            error->pipe[i].power_domain_on ? "on" : "off");
15617                 err_printf(m, "  SRC: %08x\n", error->pipe[i].source);
15618                 err_printf(m, "  STAT: %08x\n", error->pipe[i].stat);
15619
15620                 err_printf(m, "Plane [%d]:\n", i);
15621                 err_printf(m, "  CNTR: %08x\n", error->plane[i].control);
15622                 err_printf(m, "  STRIDE: %08x\n", error->plane[i].stride);
15623                 if (INTEL_INFO(dev)->gen <= 3) {
15624                         err_printf(m, "  SIZE: %08x\n", error->plane[i].size);
15625                         err_printf(m, "  POS: %08x\n", error->plane[i].pos);
15626                 }
15627                 if (INTEL_INFO(dev)->gen <= 7 && !IS_HASWELL(dev))
15628                         err_printf(m, "  ADDR: %08x\n", error->plane[i].addr);
15629                 if (INTEL_INFO(dev)->gen >= 4) {
15630                         err_printf(m, "  SURF: %08x\n", error->plane[i].surface);
15631                         err_printf(m, "  TILEOFF: %08x\n", error->plane[i].tile_offset);
15632                 }
15633
15634                 err_printf(m, "Cursor [%d]:\n", i);
15635                 err_printf(m, "  CNTR: %08x\n", error->cursor[i].control);
15636                 err_printf(m, "  POS: %08x\n", error->cursor[i].position);
15637                 err_printf(m, "  BASE: %08x\n", error->cursor[i].base);
15638         }
15639
15640         for (i = 0; i < error->num_transcoders; i++) {
15641                 err_printf(m, "CPU transcoder: %c\n",
15642                            transcoder_name(error->transcoder[i].cpu_transcoder));
15643                 err_printf(m, "  Power: %s\n",
15644                            error->transcoder[i].power_domain_on ? "on" : "off");
15645                 err_printf(m, "  CONF: %08x\n", error->transcoder[i].conf);
15646                 err_printf(m, "  HTOTAL: %08x\n", error->transcoder[i].htotal);
15647                 err_printf(m, "  HBLANK: %08x\n", error->transcoder[i].hblank);
15648                 err_printf(m, "  HSYNC: %08x\n", error->transcoder[i].hsync);
15649                 err_printf(m, "  VTOTAL: %08x\n", error->transcoder[i].vtotal);
15650                 err_printf(m, "  VBLANK: %08x\n", error->transcoder[i].vblank);
15651                 err_printf(m, "  VSYNC: %08x\n", error->transcoder[i].vsync);
15652         }
15653 }
15654
15655 void intel_modeset_preclose(struct drm_device *dev, struct drm_file *file)
15656 {
15657         struct intel_crtc *crtc;
15658
15659         for_each_intel_crtc(dev, crtc) {
15660                 struct intel_unpin_work *work;
15661
15662                 spin_lock_irq(&dev->event_lock);
15663
15664                 work = crtc->unpin_work;
15665
15666                 if (work && work->event &&
15667                     work->event->base.file_priv == file) {
15668                         kfree(work->event);
15669                         work->event = NULL;
15670                 }
15671
15672                 spin_unlock_irq(&dev->event_lock);
15673         }
15674 }