Merge branch 'linux-linaro-lsk-v4.4' into linux-linaro-lsk-v4.4-android
[firefly-linux-kernel-4.4.55.git] / drivers / gpu / drm / i915 / i915_irq.c
1 /* i915_irq.c -- IRQ support for the I915 -*- linux-c -*-
2  */
3 /*
4  * Copyright 2003 Tungsten Graphics, Inc., Cedar Park, Texas.
5  * All Rights Reserved.
6  *
7  * Permission is hereby granted, free of charge, to any person obtaining a
8  * copy of this software and associated documentation files (the
9  * "Software"), to deal in the Software without restriction, including
10  * without limitation the rights to use, copy, modify, merge, publish,
11  * distribute, sub license, and/or sell copies of the Software, and to
12  * permit persons to whom the Software is furnished to do so, subject to
13  * the following conditions:
14  *
15  * The above copyright notice and this permission notice (including the
16  * next paragraph) shall be included in all copies or substantial portions
17  * of the Software.
18  *
19  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
20  * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
21  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
22  * IN NO EVENT SHALL TUNGSTEN GRAPHICS AND/OR ITS SUPPLIERS BE LIABLE FOR
23  * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
24  * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
25  * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
26  *
27  */
28
29 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
30
31 #include <linux/sysrq.h>
32 #include <linux/slab.h>
33 #include <linux/circ_buf.h>
34 #include <drm/drmP.h>
35 #include <drm/i915_drm.h>
36 #include "i915_drv.h"
37 #include "i915_trace.h"
38 #include "intel_drv.h"
39
40 /**
41  * DOC: interrupt handling
42  *
43  * These functions provide the basic support for enabling and disabling the
44  * interrupt handling support. There's a lot more functionality in i915_irq.c
45  * and related files, but that will be described in separate chapters.
46  */
47
48 static const u32 hpd_ilk[HPD_NUM_PINS] = {
49         [HPD_PORT_A] = DE_DP_A_HOTPLUG,
50 };
51
52 static const u32 hpd_ivb[HPD_NUM_PINS] = {
53         [HPD_PORT_A] = DE_DP_A_HOTPLUG_IVB,
54 };
55
56 static const u32 hpd_bdw[HPD_NUM_PINS] = {
57         [HPD_PORT_A] = GEN8_PORT_DP_A_HOTPLUG,
58 };
59
60 static const u32 hpd_ibx[HPD_NUM_PINS] = {
61         [HPD_CRT] = SDE_CRT_HOTPLUG,
62         [HPD_SDVO_B] = SDE_SDVOB_HOTPLUG,
63         [HPD_PORT_B] = SDE_PORTB_HOTPLUG,
64         [HPD_PORT_C] = SDE_PORTC_HOTPLUG,
65         [HPD_PORT_D] = SDE_PORTD_HOTPLUG
66 };
67
68 static const u32 hpd_cpt[HPD_NUM_PINS] = {
69         [HPD_CRT] = SDE_CRT_HOTPLUG_CPT,
70         [HPD_SDVO_B] = SDE_SDVOB_HOTPLUG_CPT,
71         [HPD_PORT_B] = SDE_PORTB_HOTPLUG_CPT,
72         [HPD_PORT_C] = SDE_PORTC_HOTPLUG_CPT,
73         [HPD_PORT_D] = SDE_PORTD_HOTPLUG_CPT
74 };
75
76 static const u32 hpd_spt[HPD_NUM_PINS] = {
77         [HPD_PORT_A] = SDE_PORTA_HOTPLUG_SPT,
78         [HPD_PORT_B] = SDE_PORTB_HOTPLUG_CPT,
79         [HPD_PORT_C] = SDE_PORTC_HOTPLUG_CPT,
80         [HPD_PORT_D] = SDE_PORTD_HOTPLUG_CPT,
81         [HPD_PORT_E] = SDE_PORTE_HOTPLUG_SPT
82 };
83
84 static const u32 hpd_mask_i915[HPD_NUM_PINS] = {
85         [HPD_CRT] = CRT_HOTPLUG_INT_EN,
86         [HPD_SDVO_B] = SDVOB_HOTPLUG_INT_EN,
87         [HPD_SDVO_C] = SDVOC_HOTPLUG_INT_EN,
88         [HPD_PORT_B] = PORTB_HOTPLUG_INT_EN,
89         [HPD_PORT_C] = PORTC_HOTPLUG_INT_EN,
90         [HPD_PORT_D] = PORTD_HOTPLUG_INT_EN
91 };
92
93 static const u32 hpd_status_g4x[HPD_NUM_PINS] = {
94         [HPD_CRT] = CRT_HOTPLUG_INT_STATUS,
95         [HPD_SDVO_B] = SDVOB_HOTPLUG_INT_STATUS_G4X,
96         [HPD_SDVO_C] = SDVOC_HOTPLUG_INT_STATUS_G4X,
97         [HPD_PORT_B] = PORTB_HOTPLUG_INT_STATUS,
98         [HPD_PORT_C] = PORTC_HOTPLUG_INT_STATUS,
99         [HPD_PORT_D] = PORTD_HOTPLUG_INT_STATUS
100 };
101
102 static const u32 hpd_status_i915[HPD_NUM_PINS] = {
103         [HPD_CRT] = CRT_HOTPLUG_INT_STATUS,
104         [HPD_SDVO_B] = SDVOB_HOTPLUG_INT_STATUS_I915,
105         [HPD_SDVO_C] = SDVOC_HOTPLUG_INT_STATUS_I915,
106         [HPD_PORT_B] = PORTB_HOTPLUG_INT_STATUS,
107         [HPD_PORT_C] = PORTC_HOTPLUG_INT_STATUS,
108         [HPD_PORT_D] = PORTD_HOTPLUG_INT_STATUS
109 };
110
111 /* BXT hpd list */
112 static const u32 hpd_bxt[HPD_NUM_PINS] = {
113         [HPD_PORT_A] = BXT_DE_PORT_HP_DDIA,
114         [HPD_PORT_B] = BXT_DE_PORT_HP_DDIB,
115         [HPD_PORT_C] = BXT_DE_PORT_HP_DDIC
116 };
117
118 /* IIR can theoretically queue up two events. Be paranoid. */
119 #define GEN8_IRQ_RESET_NDX(type, which) do { \
120         I915_WRITE(GEN8_##type##_IMR(which), 0xffffffff); \
121         POSTING_READ(GEN8_##type##_IMR(which)); \
122         I915_WRITE(GEN8_##type##_IER(which), 0); \
123         I915_WRITE(GEN8_##type##_IIR(which), 0xffffffff); \
124         POSTING_READ(GEN8_##type##_IIR(which)); \
125         I915_WRITE(GEN8_##type##_IIR(which), 0xffffffff); \
126         POSTING_READ(GEN8_##type##_IIR(which)); \
127 } while (0)
128
129 #define GEN5_IRQ_RESET(type) do { \
130         I915_WRITE(type##IMR, 0xffffffff); \
131         POSTING_READ(type##IMR); \
132         I915_WRITE(type##IER, 0); \
133         I915_WRITE(type##IIR, 0xffffffff); \
134         POSTING_READ(type##IIR); \
135         I915_WRITE(type##IIR, 0xffffffff); \
136         POSTING_READ(type##IIR); \
137 } while (0)
138
139 /*
140  * We should clear IMR at preinstall/uninstall, and just check at postinstall.
141  */
142 static void gen5_assert_iir_is_zero(struct drm_i915_private *dev_priv, u32 reg)
143 {
144         u32 val = I915_READ(reg);
145
146         if (val == 0)
147                 return;
148
149         WARN(1, "Interrupt register 0x%x is not zero: 0x%08x\n",
150              reg, val);
151         I915_WRITE(reg, 0xffffffff);
152         POSTING_READ(reg);
153         I915_WRITE(reg, 0xffffffff);
154         POSTING_READ(reg);
155 }
156
157 #define GEN8_IRQ_INIT_NDX(type, which, imr_val, ier_val) do { \
158         gen5_assert_iir_is_zero(dev_priv, GEN8_##type##_IIR(which)); \
159         I915_WRITE(GEN8_##type##_IER(which), (ier_val)); \
160         I915_WRITE(GEN8_##type##_IMR(which), (imr_val)); \
161         POSTING_READ(GEN8_##type##_IMR(which)); \
162 } while (0)
163
164 #define GEN5_IRQ_INIT(type, imr_val, ier_val) do { \
165         gen5_assert_iir_is_zero(dev_priv, type##IIR); \
166         I915_WRITE(type##IER, (ier_val)); \
167         I915_WRITE(type##IMR, (imr_val)); \
168         POSTING_READ(type##IMR); \
169 } while (0)
170
171 static void gen6_rps_irq_handler(struct drm_i915_private *dev_priv, u32 pm_iir);
172
173 /* For display hotplug interrupt */
174 static inline void
175 i915_hotplug_interrupt_update_locked(struct drm_i915_private *dev_priv,
176                                      uint32_t mask,
177                                      uint32_t bits)
178 {
179         uint32_t val;
180
181         assert_spin_locked(&dev_priv->irq_lock);
182         WARN_ON(bits & ~mask);
183
184         val = I915_READ(PORT_HOTPLUG_EN);
185         val &= ~mask;
186         val |= bits;
187         I915_WRITE(PORT_HOTPLUG_EN, val);
188 }
189
190 /**
191  * i915_hotplug_interrupt_update - update hotplug interrupt enable
192  * @dev_priv: driver private
193  * @mask: bits to update
194  * @bits: bits to enable
195  * NOTE: the HPD enable bits are modified both inside and outside
196  * of an interrupt context. To avoid that read-modify-write cycles
197  * interfer, these bits are protected by a spinlock. Since this
198  * function is usually not called from a context where the lock is
199  * held already, this function acquires the lock itself. A non-locking
200  * version is also available.
201  */
202 void i915_hotplug_interrupt_update(struct drm_i915_private *dev_priv,
203                                    uint32_t mask,
204                                    uint32_t bits)
205 {
206         spin_lock_irq(&dev_priv->irq_lock);
207         i915_hotplug_interrupt_update_locked(dev_priv, mask, bits);
208         spin_unlock_irq(&dev_priv->irq_lock);
209 }
210
211 /**
212  * ilk_update_display_irq - update DEIMR
213  * @dev_priv: driver private
214  * @interrupt_mask: mask of interrupt bits to update
215  * @enabled_irq_mask: mask of interrupt bits to enable
216  */
217 static void ilk_update_display_irq(struct drm_i915_private *dev_priv,
218                                    uint32_t interrupt_mask,
219                                    uint32_t enabled_irq_mask)
220 {
221         uint32_t new_val;
222
223         assert_spin_locked(&dev_priv->irq_lock);
224
225         WARN_ON(enabled_irq_mask & ~interrupt_mask);
226
227         if (WARN_ON(!intel_irqs_enabled(dev_priv)))
228                 return;
229
230         new_val = dev_priv->irq_mask;
231         new_val &= ~interrupt_mask;
232         new_val |= (~enabled_irq_mask & interrupt_mask);
233
234         if (new_val != dev_priv->irq_mask) {
235                 dev_priv->irq_mask = new_val;
236                 I915_WRITE(DEIMR, dev_priv->irq_mask);
237                 POSTING_READ(DEIMR);
238         }
239 }
240
241 void
242 ironlake_enable_display_irq(struct drm_i915_private *dev_priv, u32 mask)
243 {
244         ilk_update_display_irq(dev_priv, mask, mask);
245 }
246
247 void
248 ironlake_disable_display_irq(struct drm_i915_private *dev_priv, u32 mask)
249 {
250         ilk_update_display_irq(dev_priv, mask, 0);
251 }
252
253 /**
254  * ilk_update_gt_irq - update GTIMR
255  * @dev_priv: driver private
256  * @interrupt_mask: mask of interrupt bits to update
257  * @enabled_irq_mask: mask of interrupt bits to enable
258  */
259 static void ilk_update_gt_irq(struct drm_i915_private *dev_priv,
260                               uint32_t interrupt_mask,
261                               uint32_t enabled_irq_mask)
262 {
263         assert_spin_locked(&dev_priv->irq_lock);
264
265         WARN_ON(enabled_irq_mask & ~interrupt_mask);
266
267         if (WARN_ON(!intel_irqs_enabled(dev_priv)))
268                 return;
269
270         dev_priv->gt_irq_mask &= ~interrupt_mask;
271         dev_priv->gt_irq_mask |= (~enabled_irq_mask & interrupt_mask);
272         I915_WRITE(GTIMR, dev_priv->gt_irq_mask);
273         POSTING_READ(GTIMR);
274 }
275
276 void gen5_enable_gt_irq(struct drm_i915_private *dev_priv, uint32_t mask)
277 {
278         ilk_update_gt_irq(dev_priv, mask, mask);
279 }
280
281 void gen5_disable_gt_irq(struct drm_i915_private *dev_priv, uint32_t mask)
282 {
283         ilk_update_gt_irq(dev_priv, mask, 0);
284 }
285
286 static u32 gen6_pm_iir(struct drm_i915_private *dev_priv)
287 {
288         return INTEL_INFO(dev_priv)->gen >= 8 ? GEN8_GT_IIR(2) : GEN6_PMIIR;
289 }
290
291 static u32 gen6_pm_imr(struct drm_i915_private *dev_priv)
292 {
293         return INTEL_INFO(dev_priv)->gen >= 8 ? GEN8_GT_IMR(2) : GEN6_PMIMR;
294 }
295
296 static u32 gen6_pm_ier(struct drm_i915_private *dev_priv)
297 {
298         return INTEL_INFO(dev_priv)->gen >= 8 ? GEN8_GT_IER(2) : GEN6_PMIER;
299 }
300
301 /**
302   * snb_update_pm_irq - update GEN6_PMIMR
303   * @dev_priv: driver private
304   * @interrupt_mask: mask of interrupt bits to update
305   * @enabled_irq_mask: mask of interrupt bits to enable
306   */
307 static void snb_update_pm_irq(struct drm_i915_private *dev_priv,
308                               uint32_t interrupt_mask,
309                               uint32_t enabled_irq_mask)
310 {
311         uint32_t new_val;
312
313         WARN_ON(enabled_irq_mask & ~interrupt_mask);
314
315         assert_spin_locked(&dev_priv->irq_lock);
316
317         new_val = dev_priv->pm_irq_mask;
318         new_val &= ~interrupt_mask;
319         new_val |= (~enabled_irq_mask & interrupt_mask);
320
321         if (new_val != dev_priv->pm_irq_mask) {
322                 dev_priv->pm_irq_mask = new_val;
323                 I915_WRITE(gen6_pm_imr(dev_priv), dev_priv->pm_irq_mask);
324                 POSTING_READ(gen6_pm_imr(dev_priv));
325         }
326 }
327
328 void gen6_enable_pm_irq(struct drm_i915_private *dev_priv, uint32_t mask)
329 {
330         if (WARN_ON(!intel_irqs_enabled(dev_priv)))
331                 return;
332
333         snb_update_pm_irq(dev_priv, mask, mask);
334 }
335
336 static void __gen6_disable_pm_irq(struct drm_i915_private *dev_priv,
337                                   uint32_t mask)
338 {
339         snb_update_pm_irq(dev_priv, mask, 0);
340 }
341
342 void gen6_disable_pm_irq(struct drm_i915_private *dev_priv, uint32_t mask)
343 {
344         if (WARN_ON(!intel_irqs_enabled(dev_priv)))
345                 return;
346
347         __gen6_disable_pm_irq(dev_priv, mask);
348 }
349
350 void gen6_reset_rps_interrupts(struct drm_device *dev)
351 {
352         struct drm_i915_private *dev_priv = dev->dev_private;
353         uint32_t reg = gen6_pm_iir(dev_priv);
354
355         spin_lock_irq(&dev_priv->irq_lock);
356         I915_WRITE(reg, dev_priv->pm_rps_events);
357         I915_WRITE(reg, dev_priv->pm_rps_events);
358         POSTING_READ(reg);
359         dev_priv->rps.pm_iir = 0;
360         spin_unlock_irq(&dev_priv->irq_lock);
361 }
362
363 void gen6_enable_rps_interrupts(struct drm_device *dev)
364 {
365         struct drm_i915_private *dev_priv = dev->dev_private;
366
367         spin_lock_irq(&dev_priv->irq_lock);
368
369         WARN_ON(dev_priv->rps.pm_iir);
370         WARN_ON(I915_READ(gen6_pm_iir(dev_priv)) & dev_priv->pm_rps_events);
371         dev_priv->rps.interrupts_enabled = true;
372         I915_WRITE(gen6_pm_ier(dev_priv), I915_READ(gen6_pm_ier(dev_priv)) |
373                                 dev_priv->pm_rps_events);
374         gen6_enable_pm_irq(dev_priv, dev_priv->pm_rps_events);
375
376         spin_unlock_irq(&dev_priv->irq_lock);
377 }
378
379 u32 gen6_sanitize_rps_pm_mask(struct drm_i915_private *dev_priv, u32 mask)
380 {
381         /*
382          * SNB,IVB can while VLV,CHV may hard hang on looping batchbuffer
383          * if GEN6_PM_UP_EI_EXPIRED is masked.
384          *
385          * TODO: verify if this can be reproduced on VLV,CHV.
386          */
387         if (INTEL_INFO(dev_priv)->gen <= 7 && !IS_HASWELL(dev_priv))
388                 mask &= ~GEN6_PM_RP_UP_EI_EXPIRED;
389
390         if (INTEL_INFO(dev_priv)->gen >= 8)
391                 mask &= ~GEN8_PMINTR_REDIRECT_TO_NON_DISP;
392
393         return mask;
394 }
395
396 void gen6_disable_rps_interrupts(struct drm_device *dev)
397 {
398         struct drm_i915_private *dev_priv = dev->dev_private;
399
400         spin_lock_irq(&dev_priv->irq_lock);
401         dev_priv->rps.interrupts_enabled = false;
402         spin_unlock_irq(&dev_priv->irq_lock);
403
404         cancel_work_sync(&dev_priv->rps.work);
405
406         spin_lock_irq(&dev_priv->irq_lock);
407
408         I915_WRITE(GEN6_PMINTRMSK, gen6_sanitize_rps_pm_mask(dev_priv, ~0));
409
410         __gen6_disable_pm_irq(dev_priv, dev_priv->pm_rps_events);
411         I915_WRITE(gen6_pm_ier(dev_priv), I915_READ(gen6_pm_ier(dev_priv)) &
412                                 ~dev_priv->pm_rps_events);
413
414         spin_unlock_irq(&dev_priv->irq_lock);
415
416         synchronize_irq(dev->irq);
417 }
418
419 /**
420   * bdw_update_port_irq - update DE port interrupt
421   * @dev_priv: driver private
422   * @interrupt_mask: mask of interrupt bits to update
423   * @enabled_irq_mask: mask of interrupt bits to enable
424   */
425 static void bdw_update_port_irq(struct drm_i915_private *dev_priv,
426                                 uint32_t interrupt_mask,
427                                 uint32_t enabled_irq_mask)
428 {
429         uint32_t new_val;
430         uint32_t old_val;
431
432         assert_spin_locked(&dev_priv->irq_lock);
433
434         WARN_ON(enabled_irq_mask & ~interrupt_mask);
435
436         if (WARN_ON(!intel_irqs_enabled(dev_priv)))
437                 return;
438
439         old_val = I915_READ(GEN8_DE_PORT_IMR);
440
441         new_val = old_val;
442         new_val &= ~interrupt_mask;
443         new_val |= (~enabled_irq_mask & interrupt_mask);
444
445         if (new_val != old_val) {
446                 I915_WRITE(GEN8_DE_PORT_IMR, new_val);
447                 POSTING_READ(GEN8_DE_PORT_IMR);
448         }
449 }
450
451 /**
452  * ibx_display_interrupt_update - update SDEIMR
453  * @dev_priv: driver private
454  * @interrupt_mask: mask of interrupt bits to update
455  * @enabled_irq_mask: mask of interrupt bits to enable
456  */
457 void ibx_display_interrupt_update(struct drm_i915_private *dev_priv,
458                                   uint32_t interrupt_mask,
459                                   uint32_t enabled_irq_mask)
460 {
461         uint32_t sdeimr = I915_READ(SDEIMR);
462         sdeimr &= ~interrupt_mask;
463         sdeimr |= (~enabled_irq_mask & interrupt_mask);
464
465         WARN_ON(enabled_irq_mask & ~interrupt_mask);
466
467         assert_spin_locked(&dev_priv->irq_lock);
468
469         if (WARN_ON(!intel_irqs_enabled(dev_priv)))
470                 return;
471
472         I915_WRITE(SDEIMR, sdeimr);
473         POSTING_READ(SDEIMR);
474 }
475
476 static void
477 __i915_enable_pipestat(struct drm_i915_private *dev_priv, enum pipe pipe,
478                        u32 enable_mask, u32 status_mask)
479 {
480         u32 reg = PIPESTAT(pipe);
481         u32 pipestat = I915_READ(reg) & PIPESTAT_INT_ENABLE_MASK;
482
483         assert_spin_locked(&dev_priv->irq_lock);
484         WARN_ON(!intel_irqs_enabled(dev_priv));
485
486         if (WARN_ONCE(enable_mask & ~PIPESTAT_INT_ENABLE_MASK ||
487                       status_mask & ~PIPESTAT_INT_STATUS_MASK,
488                       "pipe %c: enable_mask=0x%x, status_mask=0x%x\n",
489                       pipe_name(pipe), enable_mask, status_mask))
490                 return;
491
492         if ((pipestat & enable_mask) == enable_mask)
493                 return;
494
495         dev_priv->pipestat_irq_mask[pipe] |= status_mask;
496
497         /* Enable the interrupt, clear any pending status */
498         pipestat |= enable_mask | status_mask;
499         I915_WRITE(reg, pipestat);
500         POSTING_READ(reg);
501 }
502
503 static void
504 __i915_disable_pipestat(struct drm_i915_private *dev_priv, enum pipe pipe,
505                         u32 enable_mask, u32 status_mask)
506 {
507         u32 reg = PIPESTAT(pipe);
508         u32 pipestat = I915_READ(reg) & PIPESTAT_INT_ENABLE_MASK;
509
510         assert_spin_locked(&dev_priv->irq_lock);
511         WARN_ON(!intel_irqs_enabled(dev_priv));
512
513         if (WARN_ONCE(enable_mask & ~PIPESTAT_INT_ENABLE_MASK ||
514                       status_mask & ~PIPESTAT_INT_STATUS_MASK,
515                       "pipe %c: enable_mask=0x%x, status_mask=0x%x\n",
516                       pipe_name(pipe), enable_mask, status_mask))
517                 return;
518
519         if ((pipestat & enable_mask) == 0)
520                 return;
521
522         dev_priv->pipestat_irq_mask[pipe] &= ~status_mask;
523
524         pipestat &= ~enable_mask;
525         I915_WRITE(reg, pipestat);
526         POSTING_READ(reg);
527 }
528
529 static u32 vlv_get_pipestat_enable_mask(struct drm_device *dev, u32 status_mask)
530 {
531         u32 enable_mask = status_mask << 16;
532
533         /*
534          * On pipe A we don't support the PSR interrupt yet,
535          * on pipe B and C the same bit MBZ.
536          */
537         if (WARN_ON_ONCE(status_mask & PIPE_A_PSR_STATUS_VLV))
538                 return 0;
539         /*
540          * On pipe B and C we don't support the PSR interrupt yet, on pipe
541          * A the same bit is for perf counters which we don't use either.
542          */
543         if (WARN_ON_ONCE(status_mask & PIPE_B_PSR_STATUS_VLV))
544                 return 0;
545
546         enable_mask &= ~(PIPE_FIFO_UNDERRUN_STATUS |
547                          SPRITE0_FLIP_DONE_INT_EN_VLV |
548                          SPRITE1_FLIP_DONE_INT_EN_VLV);
549         if (status_mask & SPRITE0_FLIP_DONE_INT_STATUS_VLV)
550                 enable_mask |= SPRITE0_FLIP_DONE_INT_EN_VLV;
551         if (status_mask & SPRITE1_FLIP_DONE_INT_STATUS_VLV)
552                 enable_mask |= SPRITE1_FLIP_DONE_INT_EN_VLV;
553
554         return enable_mask;
555 }
556
557 void
558 i915_enable_pipestat(struct drm_i915_private *dev_priv, enum pipe pipe,
559                      u32 status_mask)
560 {
561         u32 enable_mask;
562
563         if (IS_VALLEYVIEW(dev_priv->dev))
564                 enable_mask = vlv_get_pipestat_enable_mask(dev_priv->dev,
565                                                            status_mask);
566         else
567                 enable_mask = status_mask << 16;
568         __i915_enable_pipestat(dev_priv, pipe, enable_mask, status_mask);
569 }
570
571 void
572 i915_disable_pipestat(struct drm_i915_private *dev_priv, enum pipe pipe,
573                       u32 status_mask)
574 {
575         u32 enable_mask;
576
577         if (IS_VALLEYVIEW(dev_priv->dev))
578                 enable_mask = vlv_get_pipestat_enable_mask(dev_priv->dev,
579                                                            status_mask);
580         else
581                 enable_mask = status_mask << 16;
582         __i915_disable_pipestat(dev_priv, pipe, enable_mask, status_mask);
583 }
584
585 /**
586  * i915_enable_asle_pipestat - enable ASLE pipestat for OpRegion
587  * @dev: drm device
588  */
589 static void i915_enable_asle_pipestat(struct drm_device *dev)
590 {
591         struct drm_i915_private *dev_priv = dev->dev_private;
592
593         if (!dev_priv->opregion.asle || !IS_MOBILE(dev))
594                 return;
595
596         spin_lock_irq(&dev_priv->irq_lock);
597
598         i915_enable_pipestat(dev_priv, PIPE_B, PIPE_LEGACY_BLC_EVENT_STATUS);
599         if (INTEL_INFO(dev)->gen >= 4)
600                 i915_enable_pipestat(dev_priv, PIPE_A,
601                                      PIPE_LEGACY_BLC_EVENT_STATUS);
602
603         spin_unlock_irq(&dev_priv->irq_lock);
604 }
605
606 /*
607  * This timing diagram depicts the video signal in and
608  * around the vertical blanking period.
609  *
610  * Assumptions about the fictitious mode used in this example:
611  *  vblank_start >= 3
612  *  vsync_start = vblank_start + 1
613  *  vsync_end = vblank_start + 2
614  *  vtotal = vblank_start + 3
615  *
616  *           start of vblank:
617  *           latch double buffered registers
618  *           increment frame counter (ctg+)
619  *           generate start of vblank interrupt (gen4+)
620  *           |
621  *           |          frame start:
622  *           |          generate frame start interrupt (aka. vblank interrupt) (gmch)
623  *           |          may be shifted forward 1-3 extra lines via PIPECONF
624  *           |          |
625  *           |          |  start of vsync:
626  *           |          |  generate vsync interrupt
627  *           |          |  |
628  * ___xxxx___    ___xxxx___    ___xxxx___    ___xxxx___    ___xxxx___    ___xxxx
629  *       .   \hs/   .      \hs/          \hs/          \hs/   .      \hs/
630  * ----va---> <-----------------vb--------------------> <--------va-------------
631  *       |          |       <----vs----->                     |
632  * -vbs-----> <---vbs+1---> <---vbs+2---> <-----0-----> <-----1-----> <-----2--- (scanline counter gen2)
633  * -vbs-2---> <---vbs-1---> <---vbs-----> <---vbs+1---> <---vbs+2---> <-----0--- (scanline counter gen3+)
634  * -vbs-2---> <---vbs-2---> <---vbs-1---> <---vbs-----> <---vbs+1---> <---vbs+2- (scanline counter hsw+ hdmi)
635  *       |          |                                         |
636  *       last visible pixel                                   first visible pixel
637  *                  |                                         increment frame counter (gen3/4)
638  *                  pixel counter = vblank_start * htotal     pixel counter = 0 (gen3/4)
639  *
640  * x  = horizontal active
641  * _  = horizontal blanking
642  * hs = horizontal sync
643  * va = vertical active
644  * vb = vertical blanking
645  * vs = vertical sync
646  * vbs = vblank_start (number)
647  *
648  * Summary:
649  * - most events happen at the start of horizontal sync
650  * - frame start happens at the start of horizontal blank, 1-4 lines
651  *   (depending on PIPECONF settings) after the start of vblank
652  * - gen3/4 pixel and frame counter are synchronized with the start
653  *   of horizontal active on the first line of vertical active
654  */
655
656 static u32 i8xx_get_vblank_counter(struct drm_device *dev, unsigned int pipe)
657 {
658         /* Gen2 doesn't have a hardware frame counter */
659         return 0;
660 }
661
662 /* Called from drm generic code, passed a 'crtc', which
663  * we use as a pipe index
664  */
665 static u32 i915_get_vblank_counter(struct drm_device *dev, unsigned int pipe)
666 {
667         struct drm_i915_private *dev_priv = dev->dev_private;
668         unsigned long high_frame;
669         unsigned long low_frame;
670         u32 high1, high2, low, pixel, vbl_start, hsync_start, htotal;
671         struct intel_crtc *intel_crtc =
672                 to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
673         const struct drm_display_mode *mode = &intel_crtc->base.hwmode;
674
675         htotal = mode->crtc_htotal;
676         hsync_start = mode->crtc_hsync_start;
677         vbl_start = mode->crtc_vblank_start;
678         if (mode->flags & DRM_MODE_FLAG_INTERLACE)
679                 vbl_start = DIV_ROUND_UP(vbl_start, 2);
680
681         /* Convert to pixel count */
682         vbl_start *= htotal;
683
684         /* Start of vblank event occurs at start of hsync */
685         vbl_start -= htotal - hsync_start;
686
687         high_frame = PIPEFRAME(pipe);
688         low_frame = PIPEFRAMEPIXEL(pipe);
689
690         /*
691          * High & low register fields aren't synchronized, so make sure
692          * we get a low value that's stable across two reads of the high
693          * register.
694          */
695         do {
696                 high1 = I915_READ(high_frame) & PIPE_FRAME_HIGH_MASK;
697                 low   = I915_READ(low_frame);
698                 high2 = I915_READ(high_frame) & PIPE_FRAME_HIGH_MASK;
699         } while (high1 != high2);
700
701         high1 >>= PIPE_FRAME_HIGH_SHIFT;
702         pixel = low & PIPE_PIXEL_MASK;
703         low >>= PIPE_FRAME_LOW_SHIFT;
704
705         /*
706          * The frame counter increments at beginning of active.
707          * Cook up a vblank counter by also checking the pixel
708          * counter against vblank start.
709          */
710         return (((high1 << 8) | low) + (pixel >= vbl_start)) & 0xffffff;
711 }
712
713 static u32 g4x_get_vblank_counter(struct drm_device *dev, unsigned int pipe)
714 {
715         struct drm_i915_private *dev_priv = dev->dev_private;
716
717         return I915_READ(PIPE_FRMCOUNT_G4X(pipe));
718 }
719
720 /* raw reads, only for fast reads of display block, no need for forcewake etc. */
721 #define __raw_i915_read32(dev_priv__, reg__) readl((dev_priv__)->regs + (reg__))
722
723 static int __intel_get_crtc_scanline(struct intel_crtc *crtc)
724 {
725         struct drm_device *dev = crtc->base.dev;
726         struct drm_i915_private *dev_priv = dev->dev_private;
727         const struct drm_display_mode *mode = &crtc->base.hwmode;
728         enum pipe pipe = crtc->pipe;
729         int position, vtotal;
730
731         vtotal = mode->crtc_vtotal;
732         if (mode->flags & DRM_MODE_FLAG_INTERLACE)
733                 vtotal /= 2;
734
735         if (IS_GEN2(dev))
736                 position = __raw_i915_read32(dev_priv, PIPEDSL(pipe)) & DSL_LINEMASK_GEN2;
737         else
738                 position = __raw_i915_read32(dev_priv, PIPEDSL(pipe)) & DSL_LINEMASK_GEN3;
739
740         /*
741          * On HSW, the DSL reg (0x70000) appears to return 0 if we
742          * read it just before the start of vblank.  So try it again
743          * so we don't accidentally end up spanning a vblank frame
744          * increment, causing the pipe_update_end() code to squak at us.
745          *
746          * The nature of this problem means we can't simply check the ISR
747          * bit and return the vblank start value; nor can we use the scanline
748          * debug register in the transcoder as it appears to have the same
749          * problem.  We may need to extend this to include other platforms,
750          * but so far testing only shows the problem on HSW.
751          */
752         if (HAS_DDI(dev) && !position) {
753                 int i, temp;
754
755                 for (i = 0; i < 100; i++) {
756                         udelay(1);
757                         temp = __raw_i915_read32(dev_priv, PIPEDSL(pipe)) &
758                                 DSL_LINEMASK_GEN3;
759                         if (temp != position) {
760                                 position = temp;
761                                 break;
762                         }
763                 }
764         }
765
766         /*
767          * See update_scanline_offset() for the details on the
768          * scanline_offset adjustment.
769          */
770         return (position + crtc->scanline_offset) % vtotal;
771 }
772
773 static int i915_get_crtc_scanoutpos(struct drm_device *dev, unsigned int pipe,
774                                     unsigned int flags, int *vpos, int *hpos,
775                                     ktime_t *stime, ktime_t *etime,
776                                     const struct drm_display_mode *mode)
777 {
778         struct drm_i915_private *dev_priv = dev->dev_private;
779         struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
780         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
781         int position;
782         int vbl_start, vbl_end, hsync_start, htotal, vtotal;
783         bool in_vbl = true;
784         int ret = 0;
785         unsigned long irqflags;
786
787         if (WARN_ON(!mode->crtc_clock)) {
788                 DRM_DEBUG_DRIVER("trying to get scanoutpos for disabled "
789                                  "pipe %c\n", pipe_name(pipe));
790                 return 0;
791         }
792
793         htotal = mode->crtc_htotal;
794         hsync_start = mode->crtc_hsync_start;
795         vtotal = mode->crtc_vtotal;
796         vbl_start = mode->crtc_vblank_start;
797         vbl_end = mode->crtc_vblank_end;
798
799         if (mode->flags & DRM_MODE_FLAG_INTERLACE) {
800                 vbl_start = DIV_ROUND_UP(vbl_start, 2);
801                 vbl_end /= 2;
802                 vtotal /= 2;
803         }
804
805         ret |= DRM_SCANOUTPOS_VALID | DRM_SCANOUTPOS_ACCURATE;
806
807         /*
808          * Lock uncore.lock, as we will do multiple timing critical raw
809          * register reads, potentially with preemption disabled, so the
810          * following code must not block on uncore.lock.
811          */
812         spin_lock_irqsave(&dev_priv->uncore.lock, irqflags);
813
814         /* preempt_disable_rt() should go right here in PREEMPT_RT patchset. */
815
816         /* Get optional system timestamp before query. */
817         if (stime)
818                 *stime = ktime_get();
819
820         if (IS_GEN2(dev) || IS_G4X(dev) || INTEL_INFO(dev)->gen >= 5) {
821                 /* No obvious pixelcount register. Only query vertical
822                  * scanout position from Display scan line register.
823                  */
824                 position = __intel_get_crtc_scanline(intel_crtc);
825         } else {
826                 /* Have access to pixelcount since start of frame.
827                  * We can split this into vertical and horizontal
828                  * scanout position.
829                  */
830                 position = (__raw_i915_read32(dev_priv, PIPEFRAMEPIXEL(pipe)) & PIPE_PIXEL_MASK) >> PIPE_PIXEL_SHIFT;
831
832                 /* convert to pixel counts */
833                 vbl_start *= htotal;
834                 vbl_end *= htotal;
835                 vtotal *= htotal;
836
837                 /*
838                  * In interlaced modes, the pixel counter counts all pixels,
839                  * so one field will have htotal more pixels. In order to avoid
840                  * the reported position from jumping backwards when the pixel
841                  * counter is beyond the length of the shorter field, just
842                  * clamp the position the length of the shorter field. This
843                  * matches how the scanline counter based position works since
844                  * the scanline counter doesn't count the two half lines.
845                  */
846                 if (position >= vtotal)
847                         position = vtotal - 1;
848
849                 /*
850                  * Start of vblank interrupt is triggered at start of hsync,
851                  * just prior to the first active line of vblank. However we
852                  * consider lines to start at the leading edge of horizontal
853                  * active. So, should we get here before we've crossed into
854                  * the horizontal active of the first line in vblank, we would
855                  * not set the DRM_SCANOUTPOS_INVBL flag. In order to fix that,
856                  * always add htotal-hsync_start to the current pixel position.
857                  */
858                 position = (position + htotal - hsync_start) % vtotal;
859         }
860
861         /* Get optional system timestamp after query. */
862         if (etime)
863                 *etime = ktime_get();
864
865         /* preempt_enable_rt() should go right here in PREEMPT_RT patchset. */
866
867         spin_unlock_irqrestore(&dev_priv->uncore.lock, irqflags);
868
869         in_vbl = position >= vbl_start && position < vbl_end;
870
871         /*
872          * While in vblank, position will be negative
873          * counting up towards 0 at vbl_end. And outside
874          * vblank, position will be positive counting
875          * up since vbl_end.
876          */
877         if (position >= vbl_start)
878                 position -= vbl_end;
879         else
880                 position += vtotal - vbl_end;
881
882         if (IS_GEN2(dev) || IS_G4X(dev) || INTEL_INFO(dev)->gen >= 5) {
883                 *vpos = position;
884                 *hpos = 0;
885         } else {
886                 *vpos = position / htotal;
887                 *hpos = position - (*vpos * htotal);
888         }
889
890         /* In vblank? */
891         if (in_vbl)
892                 ret |= DRM_SCANOUTPOS_IN_VBLANK;
893
894         return ret;
895 }
896
897 int intel_get_crtc_scanline(struct intel_crtc *crtc)
898 {
899         struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
900         unsigned long irqflags;
901         int position;
902
903         spin_lock_irqsave(&dev_priv->uncore.lock, irqflags);
904         position = __intel_get_crtc_scanline(crtc);
905         spin_unlock_irqrestore(&dev_priv->uncore.lock, irqflags);
906
907         return position;
908 }
909
910 static int i915_get_vblank_timestamp(struct drm_device *dev, unsigned int pipe,
911                               int *max_error,
912                               struct timeval *vblank_time,
913                               unsigned flags)
914 {
915         struct drm_crtc *crtc;
916
917         if (pipe >= INTEL_INFO(dev)->num_pipes) {
918                 DRM_ERROR("Invalid crtc %u\n", pipe);
919                 return -EINVAL;
920         }
921
922         /* Get drm_crtc to timestamp: */
923         crtc = intel_get_crtc_for_pipe(dev, pipe);
924         if (crtc == NULL) {
925                 DRM_ERROR("Invalid crtc %u\n", pipe);
926                 return -EINVAL;
927         }
928
929         if (!crtc->hwmode.crtc_clock) {
930                 DRM_DEBUG_KMS("crtc %u is disabled\n", pipe);
931                 return -EBUSY;
932         }
933
934         /* Helper routine in DRM core does all the work: */
935         return drm_calc_vbltimestamp_from_scanoutpos(dev, pipe, max_error,
936                                                      vblank_time, flags,
937                                                      &crtc->hwmode);
938 }
939
940 static void ironlake_rps_change_irq_handler(struct drm_device *dev)
941 {
942         struct drm_i915_private *dev_priv = dev->dev_private;
943         u32 busy_up, busy_down, max_avg, min_avg;
944         u8 new_delay;
945
946         spin_lock(&mchdev_lock);
947
948         I915_WRITE16(MEMINTRSTS, I915_READ(MEMINTRSTS));
949
950         new_delay = dev_priv->ips.cur_delay;
951
952         I915_WRITE16(MEMINTRSTS, MEMINT_EVAL_CHG);
953         busy_up = I915_READ(RCPREVBSYTUPAVG);
954         busy_down = I915_READ(RCPREVBSYTDNAVG);
955         max_avg = I915_READ(RCBMAXAVG);
956         min_avg = I915_READ(RCBMINAVG);
957
958         /* Handle RCS change request from hw */
959         if (busy_up > max_avg) {
960                 if (dev_priv->ips.cur_delay != dev_priv->ips.max_delay)
961                         new_delay = dev_priv->ips.cur_delay - 1;
962                 if (new_delay < dev_priv->ips.max_delay)
963                         new_delay = dev_priv->ips.max_delay;
964         } else if (busy_down < min_avg) {
965                 if (dev_priv->ips.cur_delay != dev_priv->ips.min_delay)
966                         new_delay = dev_priv->ips.cur_delay + 1;
967                 if (new_delay > dev_priv->ips.min_delay)
968                         new_delay = dev_priv->ips.min_delay;
969         }
970
971         if (ironlake_set_drps(dev, new_delay))
972                 dev_priv->ips.cur_delay = new_delay;
973
974         spin_unlock(&mchdev_lock);
975
976         return;
977 }
978
979 static void notify_ring(struct intel_engine_cs *ring)
980 {
981         if (!intel_ring_initialized(ring))
982                 return;
983
984         trace_i915_gem_request_notify(ring);
985
986         wake_up_all(&ring->irq_queue);
987 }
988
989 static void vlv_c0_read(struct drm_i915_private *dev_priv,
990                         struct intel_rps_ei *ei)
991 {
992         ei->cz_clock = vlv_punit_read(dev_priv, PUNIT_REG_CZ_TIMESTAMP);
993         ei->render_c0 = I915_READ(VLV_RENDER_C0_COUNT);
994         ei->media_c0 = I915_READ(VLV_MEDIA_C0_COUNT);
995 }
996
997 static bool vlv_c0_above(struct drm_i915_private *dev_priv,
998                          const struct intel_rps_ei *old,
999                          const struct intel_rps_ei *now,
1000                          int threshold)
1001 {
1002         u64 time, c0;
1003         unsigned int mul = 100;
1004
1005         if (old->cz_clock == 0)
1006                 return false;
1007
1008         if (I915_READ(VLV_COUNTER_CONTROL) & VLV_COUNT_RANGE_HIGH)
1009                 mul <<= 8;
1010
1011         time = now->cz_clock - old->cz_clock;
1012         time *= threshold * dev_priv->czclk_freq;
1013
1014         /* Workload can be split between render + media, e.g. SwapBuffers
1015          * being blitted in X after being rendered in mesa. To account for
1016          * this we need to combine both engines into our activity counter.
1017          */
1018         c0 = now->render_c0 - old->render_c0;
1019         c0 += now->media_c0 - old->media_c0;
1020         c0 *= mul * VLV_CZ_CLOCK_TO_MILLI_SEC;
1021
1022         return c0 >= time;
1023 }
1024
1025 void gen6_rps_reset_ei(struct drm_i915_private *dev_priv)
1026 {
1027         vlv_c0_read(dev_priv, &dev_priv->rps.down_ei);
1028         dev_priv->rps.up_ei = dev_priv->rps.down_ei;
1029 }
1030
1031 static u32 vlv_wa_c0_ei(struct drm_i915_private *dev_priv, u32 pm_iir)
1032 {
1033         struct intel_rps_ei now;
1034         u32 events = 0;
1035
1036         if ((pm_iir & (GEN6_PM_RP_DOWN_EI_EXPIRED | GEN6_PM_RP_UP_EI_EXPIRED)) == 0)
1037                 return 0;
1038
1039         vlv_c0_read(dev_priv, &now);
1040         if (now.cz_clock == 0)
1041                 return 0;
1042
1043         if (pm_iir & GEN6_PM_RP_DOWN_EI_EXPIRED) {
1044                 if (!vlv_c0_above(dev_priv,
1045                                   &dev_priv->rps.down_ei, &now,
1046                                   dev_priv->rps.down_threshold))
1047                         events |= GEN6_PM_RP_DOWN_THRESHOLD;
1048                 dev_priv->rps.down_ei = now;
1049         }
1050
1051         if (pm_iir & GEN6_PM_RP_UP_EI_EXPIRED) {
1052                 if (vlv_c0_above(dev_priv,
1053                                  &dev_priv->rps.up_ei, &now,
1054                                  dev_priv->rps.up_threshold))
1055                         events |= GEN6_PM_RP_UP_THRESHOLD;
1056                 dev_priv->rps.up_ei = now;
1057         }
1058
1059         return events;
1060 }
1061
1062 static bool any_waiters(struct drm_i915_private *dev_priv)
1063 {
1064         struct intel_engine_cs *ring;
1065         int i;
1066
1067         for_each_ring(ring, dev_priv, i)
1068                 if (ring->irq_refcount)
1069                         return true;
1070
1071         return false;
1072 }
1073
1074 static void gen6_pm_rps_work(struct work_struct *work)
1075 {
1076         struct drm_i915_private *dev_priv =
1077                 container_of(work, struct drm_i915_private, rps.work);
1078         bool client_boost;
1079         int new_delay, adj, min, max;
1080         u32 pm_iir;
1081
1082         spin_lock_irq(&dev_priv->irq_lock);
1083         /* Speed up work cancelation during disabling rps interrupts. */
1084         if (!dev_priv->rps.interrupts_enabled) {
1085                 spin_unlock_irq(&dev_priv->irq_lock);
1086                 return;
1087         }
1088         pm_iir = dev_priv->rps.pm_iir;
1089         dev_priv->rps.pm_iir = 0;
1090         /* Make sure not to corrupt PMIMR state used by ringbuffer on GEN6 */
1091         gen6_enable_pm_irq(dev_priv, dev_priv->pm_rps_events);
1092         client_boost = dev_priv->rps.client_boost;
1093         dev_priv->rps.client_boost = false;
1094         spin_unlock_irq(&dev_priv->irq_lock);
1095
1096         /* Make sure we didn't queue anything we're not going to process. */
1097         WARN_ON(pm_iir & ~dev_priv->pm_rps_events);
1098
1099         if ((pm_iir & dev_priv->pm_rps_events) == 0 && !client_boost)
1100                 return;
1101
1102         mutex_lock(&dev_priv->rps.hw_lock);
1103
1104         pm_iir |= vlv_wa_c0_ei(dev_priv, pm_iir);
1105
1106         adj = dev_priv->rps.last_adj;
1107         new_delay = dev_priv->rps.cur_freq;
1108         min = dev_priv->rps.min_freq_softlimit;
1109         max = dev_priv->rps.max_freq_softlimit;
1110
1111         if (client_boost) {
1112                 new_delay = dev_priv->rps.max_freq_softlimit;
1113                 adj = 0;
1114         } else if (pm_iir & GEN6_PM_RP_UP_THRESHOLD) {
1115                 if (adj > 0)
1116                         adj *= 2;
1117                 else /* CHV needs even encode values */
1118                         adj = IS_CHERRYVIEW(dev_priv) ? 2 : 1;
1119                 /*
1120                  * For better performance, jump directly
1121                  * to RPe if we're below it.
1122                  */
1123                 if (new_delay < dev_priv->rps.efficient_freq - adj) {
1124                         new_delay = dev_priv->rps.efficient_freq;
1125                         adj = 0;
1126                 }
1127         } else if (any_waiters(dev_priv)) {
1128                 adj = 0;
1129         } else if (pm_iir & GEN6_PM_RP_DOWN_TIMEOUT) {
1130                 if (dev_priv->rps.cur_freq > dev_priv->rps.efficient_freq)
1131                         new_delay = dev_priv->rps.efficient_freq;
1132                 else
1133                         new_delay = dev_priv->rps.min_freq_softlimit;
1134                 adj = 0;
1135         } else if (pm_iir & GEN6_PM_RP_DOWN_THRESHOLD) {
1136                 if (adj < 0)
1137                         adj *= 2;
1138                 else /* CHV needs even encode values */
1139                         adj = IS_CHERRYVIEW(dev_priv) ? -2 : -1;
1140         } else { /* unknown event */
1141                 adj = 0;
1142         }
1143
1144         dev_priv->rps.last_adj = adj;
1145
1146         /* sysfs frequency interfaces may have snuck in while servicing the
1147          * interrupt
1148          */
1149         new_delay += adj;
1150         new_delay = clamp_t(int, new_delay, min, max);
1151
1152         intel_set_rps(dev_priv->dev, new_delay);
1153
1154         mutex_unlock(&dev_priv->rps.hw_lock);
1155 }
1156
1157
1158 /**
1159  * ivybridge_parity_work - Workqueue called when a parity error interrupt
1160  * occurred.
1161  * @work: workqueue struct
1162  *
1163  * Doesn't actually do anything except notify userspace. As a consequence of
1164  * this event, userspace should try to remap the bad rows since statistically
1165  * it is likely the same row is more likely to go bad again.
1166  */
1167 static void ivybridge_parity_work(struct work_struct *work)
1168 {
1169         struct drm_i915_private *dev_priv =
1170                 container_of(work, struct drm_i915_private, l3_parity.error_work);
1171         u32 error_status, row, bank, subbank;
1172         char *parity_event[6];
1173         uint32_t misccpctl;
1174         uint8_t slice = 0;
1175
1176         /* We must turn off DOP level clock gating to access the L3 registers.
1177          * In order to prevent a get/put style interface, acquire struct mutex
1178          * any time we access those registers.
1179          */
1180         mutex_lock(&dev_priv->dev->struct_mutex);
1181
1182         /* If we've screwed up tracking, just let the interrupt fire again */
1183         if (WARN_ON(!dev_priv->l3_parity.which_slice))
1184                 goto out;
1185
1186         misccpctl = I915_READ(GEN7_MISCCPCTL);
1187         I915_WRITE(GEN7_MISCCPCTL, misccpctl & ~GEN7_DOP_CLOCK_GATE_ENABLE);
1188         POSTING_READ(GEN7_MISCCPCTL);
1189
1190         while ((slice = ffs(dev_priv->l3_parity.which_slice)) != 0) {
1191                 u32 reg;
1192
1193                 slice--;
1194                 if (WARN_ON_ONCE(slice >= NUM_L3_SLICES(dev_priv->dev)))
1195                         break;
1196
1197                 dev_priv->l3_parity.which_slice &= ~(1<<slice);
1198
1199                 reg = GEN7_L3CDERRST1 + (slice * 0x200);
1200
1201                 error_status = I915_READ(reg);
1202                 row = GEN7_PARITY_ERROR_ROW(error_status);
1203                 bank = GEN7_PARITY_ERROR_BANK(error_status);
1204                 subbank = GEN7_PARITY_ERROR_SUBBANK(error_status);
1205
1206                 I915_WRITE(reg, GEN7_PARITY_ERROR_VALID | GEN7_L3CDERRST1_ENABLE);
1207                 POSTING_READ(reg);
1208
1209                 parity_event[0] = I915_L3_PARITY_UEVENT "=1";
1210                 parity_event[1] = kasprintf(GFP_KERNEL, "ROW=%d", row);
1211                 parity_event[2] = kasprintf(GFP_KERNEL, "BANK=%d", bank);
1212                 parity_event[3] = kasprintf(GFP_KERNEL, "SUBBANK=%d", subbank);
1213                 parity_event[4] = kasprintf(GFP_KERNEL, "SLICE=%d", slice);
1214                 parity_event[5] = NULL;
1215
1216                 kobject_uevent_env(&dev_priv->dev->primary->kdev->kobj,
1217                                    KOBJ_CHANGE, parity_event);
1218
1219                 DRM_DEBUG("Parity error: Slice = %d, Row = %d, Bank = %d, Sub bank = %d.\n",
1220                           slice, row, bank, subbank);
1221
1222                 kfree(parity_event[4]);
1223                 kfree(parity_event[3]);
1224                 kfree(parity_event[2]);
1225                 kfree(parity_event[1]);
1226         }
1227
1228         I915_WRITE(GEN7_MISCCPCTL, misccpctl);
1229
1230 out:
1231         WARN_ON(dev_priv->l3_parity.which_slice);
1232         spin_lock_irq(&dev_priv->irq_lock);
1233         gen5_enable_gt_irq(dev_priv, GT_PARITY_ERROR(dev_priv->dev));
1234         spin_unlock_irq(&dev_priv->irq_lock);
1235
1236         mutex_unlock(&dev_priv->dev->struct_mutex);
1237 }
1238
1239 static void ivybridge_parity_error_irq_handler(struct drm_device *dev, u32 iir)
1240 {
1241         struct drm_i915_private *dev_priv = dev->dev_private;
1242
1243         if (!HAS_L3_DPF(dev))
1244                 return;
1245
1246         spin_lock(&dev_priv->irq_lock);
1247         gen5_disable_gt_irq(dev_priv, GT_PARITY_ERROR(dev));
1248         spin_unlock(&dev_priv->irq_lock);
1249
1250         iir &= GT_PARITY_ERROR(dev);
1251         if (iir & GT_RENDER_L3_PARITY_ERROR_INTERRUPT_S1)
1252                 dev_priv->l3_parity.which_slice |= 1 << 1;
1253
1254         if (iir & GT_RENDER_L3_PARITY_ERROR_INTERRUPT)
1255                 dev_priv->l3_parity.which_slice |= 1 << 0;
1256
1257         queue_work(dev_priv->wq, &dev_priv->l3_parity.error_work);
1258 }
1259
1260 static void ilk_gt_irq_handler(struct drm_device *dev,
1261                                struct drm_i915_private *dev_priv,
1262                                u32 gt_iir)
1263 {
1264         if (gt_iir &
1265             (GT_RENDER_USER_INTERRUPT | GT_RENDER_PIPECTL_NOTIFY_INTERRUPT))
1266                 notify_ring(&dev_priv->ring[RCS]);
1267         if (gt_iir & ILK_BSD_USER_INTERRUPT)
1268                 notify_ring(&dev_priv->ring[VCS]);
1269 }
1270
1271 static void snb_gt_irq_handler(struct drm_device *dev,
1272                                struct drm_i915_private *dev_priv,
1273                                u32 gt_iir)
1274 {
1275
1276         if (gt_iir &
1277             (GT_RENDER_USER_INTERRUPT | GT_RENDER_PIPECTL_NOTIFY_INTERRUPT))
1278                 notify_ring(&dev_priv->ring[RCS]);
1279         if (gt_iir & GT_BSD_USER_INTERRUPT)
1280                 notify_ring(&dev_priv->ring[VCS]);
1281         if (gt_iir & GT_BLT_USER_INTERRUPT)
1282                 notify_ring(&dev_priv->ring[BCS]);
1283
1284         if (gt_iir & (GT_BLT_CS_ERROR_INTERRUPT |
1285                       GT_BSD_CS_ERROR_INTERRUPT |
1286                       GT_RENDER_CS_MASTER_ERROR_INTERRUPT))
1287                 DRM_DEBUG("Command parser error, gt_iir 0x%08x\n", gt_iir);
1288
1289         if (gt_iir & GT_PARITY_ERROR(dev))
1290                 ivybridge_parity_error_irq_handler(dev, gt_iir);
1291 }
1292
1293 static irqreturn_t gen8_gt_irq_handler(struct drm_i915_private *dev_priv,
1294                                        u32 master_ctl)
1295 {
1296         irqreturn_t ret = IRQ_NONE;
1297
1298         if (master_ctl & (GEN8_GT_RCS_IRQ | GEN8_GT_BCS_IRQ)) {
1299                 u32 tmp = I915_READ_FW(GEN8_GT_IIR(0));
1300                 if (tmp) {
1301                         I915_WRITE_FW(GEN8_GT_IIR(0), tmp);
1302                         ret = IRQ_HANDLED;
1303
1304                         if (tmp & (GT_CONTEXT_SWITCH_INTERRUPT << GEN8_RCS_IRQ_SHIFT))
1305                                 intel_lrc_irq_handler(&dev_priv->ring[RCS]);
1306                         if (tmp & (GT_RENDER_USER_INTERRUPT << GEN8_RCS_IRQ_SHIFT))
1307                                 notify_ring(&dev_priv->ring[RCS]);
1308
1309                         if (tmp & (GT_CONTEXT_SWITCH_INTERRUPT << GEN8_BCS_IRQ_SHIFT))
1310                                 intel_lrc_irq_handler(&dev_priv->ring[BCS]);
1311                         if (tmp & (GT_RENDER_USER_INTERRUPT << GEN8_BCS_IRQ_SHIFT))
1312                                 notify_ring(&dev_priv->ring[BCS]);
1313                 } else
1314                         DRM_ERROR("The master control interrupt lied (GT0)!\n");
1315         }
1316
1317         if (master_ctl & (GEN8_GT_VCS1_IRQ | GEN8_GT_VCS2_IRQ)) {
1318                 u32 tmp = I915_READ_FW(GEN8_GT_IIR(1));
1319                 if (tmp) {
1320                         I915_WRITE_FW(GEN8_GT_IIR(1), tmp);
1321                         ret = IRQ_HANDLED;
1322
1323                         if (tmp & (GT_CONTEXT_SWITCH_INTERRUPT << GEN8_VCS1_IRQ_SHIFT))
1324                                 intel_lrc_irq_handler(&dev_priv->ring[VCS]);
1325                         if (tmp & (GT_RENDER_USER_INTERRUPT << GEN8_VCS1_IRQ_SHIFT))
1326                                 notify_ring(&dev_priv->ring[VCS]);
1327
1328                         if (tmp & (GT_CONTEXT_SWITCH_INTERRUPT << GEN8_VCS2_IRQ_SHIFT))
1329                                 intel_lrc_irq_handler(&dev_priv->ring[VCS2]);
1330                         if (tmp & (GT_RENDER_USER_INTERRUPT << GEN8_VCS2_IRQ_SHIFT))
1331                                 notify_ring(&dev_priv->ring[VCS2]);
1332                 } else
1333                         DRM_ERROR("The master control interrupt lied (GT1)!\n");
1334         }
1335
1336         if (master_ctl & GEN8_GT_VECS_IRQ) {
1337                 u32 tmp = I915_READ_FW(GEN8_GT_IIR(3));
1338                 if (tmp) {
1339                         I915_WRITE_FW(GEN8_GT_IIR(3), tmp);
1340                         ret = IRQ_HANDLED;
1341
1342                         if (tmp & (GT_CONTEXT_SWITCH_INTERRUPT << GEN8_VECS_IRQ_SHIFT))
1343                                 intel_lrc_irq_handler(&dev_priv->ring[VECS]);
1344                         if (tmp & (GT_RENDER_USER_INTERRUPT << GEN8_VECS_IRQ_SHIFT))
1345                                 notify_ring(&dev_priv->ring[VECS]);
1346                 } else
1347                         DRM_ERROR("The master control interrupt lied (GT3)!\n");
1348         }
1349
1350         if (master_ctl & GEN8_GT_PM_IRQ) {
1351                 u32 tmp = I915_READ_FW(GEN8_GT_IIR(2));
1352                 if (tmp & dev_priv->pm_rps_events) {
1353                         I915_WRITE_FW(GEN8_GT_IIR(2),
1354                                       tmp & dev_priv->pm_rps_events);
1355                         ret = IRQ_HANDLED;
1356                         gen6_rps_irq_handler(dev_priv, tmp);
1357                 } else
1358                         DRM_ERROR("The master control interrupt lied (PM)!\n");
1359         }
1360
1361         return ret;
1362 }
1363
1364 static bool bxt_port_hotplug_long_detect(enum port port, u32 val)
1365 {
1366         switch (port) {
1367         case PORT_A:
1368                 return val & PORTA_HOTPLUG_LONG_DETECT;
1369         case PORT_B:
1370                 return val & PORTB_HOTPLUG_LONG_DETECT;
1371         case PORT_C:
1372                 return val & PORTC_HOTPLUG_LONG_DETECT;
1373         default:
1374                 return false;
1375         }
1376 }
1377
1378 static bool spt_port_hotplug2_long_detect(enum port port, u32 val)
1379 {
1380         switch (port) {
1381         case PORT_E:
1382                 return val & PORTE_HOTPLUG_LONG_DETECT;
1383         default:
1384                 return false;
1385         }
1386 }
1387
1388 static bool spt_port_hotplug_long_detect(enum port port, u32 val)
1389 {
1390         switch (port) {
1391         case PORT_A:
1392                 return val & PORTA_HOTPLUG_LONG_DETECT;
1393         case PORT_B:
1394                 return val & PORTB_HOTPLUG_LONG_DETECT;
1395         case PORT_C:
1396                 return val & PORTC_HOTPLUG_LONG_DETECT;
1397         case PORT_D:
1398                 return val & PORTD_HOTPLUG_LONG_DETECT;
1399         default:
1400                 return false;
1401         }
1402 }
1403
1404 static bool ilk_port_hotplug_long_detect(enum port port, u32 val)
1405 {
1406         switch (port) {
1407         case PORT_A:
1408                 return val & DIGITAL_PORTA_HOTPLUG_LONG_DETECT;
1409         default:
1410                 return false;
1411         }
1412 }
1413
1414 static bool pch_port_hotplug_long_detect(enum port port, u32 val)
1415 {
1416         switch (port) {
1417         case PORT_B:
1418                 return val & PORTB_HOTPLUG_LONG_DETECT;
1419         case PORT_C:
1420                 return val & PORTC_HOTPLUG_LONG_DETECT;
1421         case PORT_D:
1422                 return val & PORTD_HOTPLUG_LONG_DETECT;
1423         default:
1424                 return false;
1425         }
1426 }
1427
1428 static bool i9xx_port_hotplug_long_detect(enum port port, u32 val)
1429 {
1430         switch (port) {
1431         case PORT_B:
1432                 return val & PORTB_HOTPLUG_INT_LONG_PULSE;
1433         case PORT_C:
1434                 return val & PORTC_HOTPLUG_INT_LONG_PULSE;
1435         case PORT_D:
1436                 return val & PORTD_HOTPLUG_INT_LONG_PULSE;
1437         default:
1438                 return false;
1439         }
1440 }
1441
1442 /*
1443  * Get a bit mask of pins that have triggered, and which ones may be long.
1444  * This can be called multiple times with the same masks to accumulate
1445  * hotplug detection results from several registers.
1446  *
1447  * Note that the caller is expected to zero out the masks initially.
1448  */
1449 static void intel_get_hpd_pins(u32 *pin_mask, u32 *long_mask,
1450                              u32 hotplug_trigger, u32 dig_hotplug_reg,
1451                              const u32 hpd[HPD_NUM_PINS],
1452                              bool long_pulse_detect(enum port port, u32 val))
1453 {
1454         enum port port;
1455         int i;
1456
1457         for_each_hpd_pin(i) {
1458                 if ((hpd[i] & hotplug_trigger) == 0)
1459                         continue;
1460
1461                 *pin_mask |= BIT(i);
1462
1463                 if (!intel_hpd_pin_to_port(i, &port))
1464                         continue;
1465
1466                 if (long_pulse_detect(port, dig_hotplug_reg))
1467                         *long_mask |= BIT(i);
1468         }
1469
1470         DRM_DEBUG_DRIVER("hotplug event received, stat 0x%08x, dig 0x%08x, pins 0x%08x\n",
1471                          hotplug_trigger, dig_hotplug_reg, *pin_mask);
1472
1473 }
1474
1475 static void gmbus_irq_handler(struct drm_device *dev)
1476 {
1477         struct drm_i915_private *dev_priv = dev->dev_private;
1478
1479         wake_up_all(&dev_priv->gmbus_wait_queue);
1480 }
1481
1482 static void dp_aux_irq_handler(struct drm_device *dev)
1483 {
1484         struct drm_i915_private *dev_priv = dev->dev_private;
1485
1486         wake_up_all(&dev_priv->gmbus_wait_queue);
1487 }
1488
1489 #if defined(CONFIG_DEBUG_FS)
1490 static void display_pipe_crc_irq_handler(struct drm_device *dev, enum pipe pipe,
1491                                          uint32_t crc0, uint32_t crc1,
1492                                          uint32_t crc2, uint32_t crc3,
1493                                          uint32_t crc4)
1494 {
1495         struct drm_i915_private *dev_priv = dev->dev_private;
1496         struct intel_pipe_crc *pipe_crc = &dev_priv->pipe_crc[pipe];
1497         struct intel_pipe_crc_entry *entry;
1498         int head, tail;
1499
1500         spin_lock(&pipe_crc->lock);
1501
1502         if (!pipe_crc->entries) {
1503                 spin_unlock(&pipe_crc->lock);
1504                 DRM_DEBUG_KMS("spurious interrupt\n");
1505                 return;
1506         }
1507
1508         head = pipe_crc->head;
1509         tail = pipe_crc->tail;
1510
1511         if (CIRC_SPACE(head, tail, INTEL_PIPE_CRC_ENTRIES_NR) < 1) {
1512                 spin_unlock(&pipe_crc->lock);
1513                 DRM_ERROR("CRC buffer overflowing\n");
1514                 return;
1515         }
1516
1517         entry = &pipe_crc->entries[head];
1518
1519         entry->frame = dev->driver->get_vblank_counter(dev, pipe);
1520         entry->crc[0] = crc0;
1521         entry->crc[1] = crc1;
1522         entry->crc[2] = crc2;
1523         entry->crc[3] = crc3;
1524         entry->crc[4] = crc4;
1525
1526         head = (head + 1) & (INTEL_PIPE_CRC_ENTRIES_NR - 1);
1527         pipe_crc->head = head;
1528
1529         spin_unlock(&pipe_crc->lock);
1530
1531         wake_up_interruptible(&pipe_crc->wq);
1532 }
1533 #else
1534 static inline void
1535 display_pipe_crc_irq_handler(struct drm_device *dev, enum pipe pipe,
1536                              uint32_t crc0, uint32_t crc1,
1537                              uint32_t crc2, uint32_t crc3,
1538                              uint32_t crc4) {}
1539 #endif
1540
1541
1542 static void hsw_pipe_crc_irq_handler(struct drm_device *dev, enum pipe pipe)
1543 {
1544         struct drm_i915_private *dev_priv = dev->dev_private;
1545
1546         display_pipe_crc_irq_handler(dev, pipe,
1547                                      I915_READ(PIPE_CRC_RES_1_IVB(pipe)),
1548                                      0, 0, 0, 0);
1549 }
1550
1551 static void ivb_pipe_crc_irq_handler(struct drm_device *dev, enum pipe pipe)
1552 {
1553         struct drm_i915_private *dev_priv = dev->dev_private;
1554
1555         display_pipe_crc_irq_handler(dev, pipe,
1556                                      I915_READ(PIPE_CRC_RES_1_IVB(pipe)),
1557                                      I915_READ(PIPE_CRC_RES_2_IVB(pipe)),
1558                                      I915_READ(PIPE_CRC_RES_3_IVB(pipe)),
1559                                      I915_READ(PIPE_CRC_RES_4_IVB(pipe)),
1560                                      I915_READ(PIPE_CRC_RES_5_IVB(pipe)));
1561 }
1562
1563 static void i9xx_pipe_crc_irq_handler(struct drm_device *dev, enum pipe pipe)
1564 {
1565         struct drm_i915_private *dev_priv = dev->dev_private;
1566         uint32_t res1, res2;
1567
1568         if (INTEL_INFO(dev)->gen >= 3)
1569                 res1 = I915_READ(PIPE_CRC_RES_RES1_I915(pipe));
1570         else
1571                 res1 = 0;
1572
1573         if (INTEL_INFO(dev)->gen >= 5 || IS_G4X(dev))
1574                 res2 = I915_READ(PIPE_CRC_RES_RES2_G4X(pipe));
1575         else
1576                 res2 = 0;
1577
1578         display_pipe_crc_irq_handler(dev, pipe,
1579                                      I915_READ(PIPE_CRC_RES_RED(pipe)),
1580                                      I915_READ(PIPE_CRC_RES_GREEN(pipe)),
1581                                      I915_READ(PIPE_CRC_RES_BLUE(pipe)),
1582                                      res1, res2);
1583 }
1584
1585 /* The RPS events need forcewake, so we add them to a work queue and mask their
1586  * IMR bits until the work is done. Other interrupts can be processed without
1587  * the work queue. */
1588 static void gen6_rps_irq_handler(struct drm_i915_private *dev_priv, u32 pm_iir)
1589 {
1590         if (pm_iir & dev_priv->pm_rps_events) {
1591                 spin_lock(&dev_priv->irq_lock);
1592                 gen6_disable_pm_irq(dev_priv, pm_iir & dev_priv->pm_rps_events);
1593                 if (dev_priv->rps.interrupts_enabled) {
1594                         dev_priv->rps.pm_iir |= pm_iir & dev_priv->pm_rps_events;
1595                         queue_work(dev_priv->wq, &dev_priv->rps.work);
1596                 }
1597                 spin_unlock(&dev_priv->irq_lock);
1598         }
1599
1600         if (INTEL_INFO(dev_priv)->gen >= 8)
1601                 return;
1602
1603         if (HAS_VEBOX(dev_priv->dev)) {
1604                 if (pm_iir & PM_VEBOX_USER_INTERRUPT)
1605                         notify_ring(&dev_priv->ring[VECS]);
1606
1607                 if (pm_iir & PM_VEBOX_CS_ERROR_INTERRUPT)
1608                         DRM_DEBUG("Command parser error, pm_iir 0x%08x\n", pm_iir);
1609         }
1610 }
1611
1612 static bool intel_pipe_handle_vblank(struct drm_device *dev, enum pipe pipe)
1613 {
1614         if (!drm_handle_vblank(dev, pipe))
1615                 return false;
1616
1617         return true;
1618 }
1619
1620 static void valleyview_pipestat_irq_handler(struct drm_device *dev, u32 iir)
1621 {
1622         struct drm_i915_private *dev_priv = dev->dev_private;
1623         u32 pipe_stats[I915_MAX_PIPES] = { };
1624         int pipe;
1625
1626         spin_lock(&dev_priv->irq_lock);
1627         for_each_pipe(dev_priv, pipe) {
1628                 int reg;
1629                 u32 mask, iir_bit = 0;
1630
1631                 /*
1632                  * PIPESTAT bits get signalled even when the interrupt is
1633                  * disabled with the mask bits, and some of the status bits do
1634                  * not generate interrupts at all (like the underrun bit). Hence
1635                  * we need to be careful that we only handle what we want to
1636                  * handle.
1637                  */
1638
1639                 /* fifo underruns are filterered in the underrun handler. */
1640                 mask = PIPE_FIFO_UNDERRUN_STATUS;
1641
1642                 switch (pipe) {
1643                 case PIPE_A:
1644                         iir_bit = I915_DISPLAY_PIPE_A_EVENT_INTERRUPT;
1645                         break;
1646                 case PIPE_B:
1647                         iir_bit = I915_DISPLAY_PIPE_B_EVENT_INTERRUPT;
1648                         break;
1649                 case PIPE_C:
1650                         iir_bit = I915_DISPLAY_PIPE_C_EVENT_INTERRUPT;
1651                         break;
1652                 }
1653                 if (iir & iir_bit)
1654                         mask |= dev_priv->pipestat_irq_mask[pipe];
1655
1656                 if (!mask)
1657                         continue;
1658
1659                 reg = PIPESTAT(pipe);
1660                 mask |= PIPESTAT_INT_ENABLE_MASK;
1661                 pipe_stats[pipe] = I915_READ(reg) & mask;
1662
1663                 /*
1664                  * Clear the PIPE*STAT regs before the IIR
1665                  */
1666                 if (pipe_stats[pipe] & (PIPE_FIFO_UNDERRUN_STATUS |
1667                                         PIPESTAT_INT_STATUS_MASK))
1668                         I915_WRITE(reg, pipe_stats[pipe]);
1669         }
1670         spin_unlock(&dev_priv->irq_lock);
1671
1672         for_each_pipe(dev_priv, pipe) {
1673                 if (pipe_stats[pipe] & PIPE_START_VBLANK_INTERRUPT_STATUS &&
1674                     intel_pipe_handle_vblank(dev, pipe))
1675                         intel_check_page_flip(dev, pipe);
1676
1677                 if (pipe_stats[pipe] & PLANE_FLIP_DONE_INT_STATUS_VLV) {
1678                         intel_prepare_page_flip(dev, pipe);
1679                         intel_finish_page_flip(dev, pipe);
1680                 }
1681
1682                 if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS)
1683                         i9xx_pipe_crc_irq_handler(dev, pipe);
1684
1685                 if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS)
1686                         intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
1687         }
1688
1689         if (pipe_stats[0] & PIPE_GMBUS_INTERRUPT_STATUS)
1690                 gmbus_irq_handler(dev);
1691 }
1692
1693 static void i9xx_hpd_irq_handler(struct drm_device *dev)
1694 {
1695         struct drm_i915_private *dev_priv = dev->dev_private;
1696         u32 hotplug_status = I915_READ(PORT_HOTPLUG_STAT);
1697         u32 pin_mask = 0, long_mask = 0;
1698
1699         if (!hotplug_status)
1700                 return;
1701
1702         I915_WRITE(PORT_HOTPLUG_STAT, hotplug_status);
1703         /*
1704          * Make sure hotplug status is cleared before we clear IIR, or else we
1705          * may miss hotplug events.
1706          */
1707         POSTING_READ(PORT_HOTPLUG_STAT);
1708
1709         if (IS_G4X(dev) || IS_VALLEYVIEW(dev)) {
1710                 u32 hotplug_trigger = hotplug_status & HOTPLUG_INT_STATUS_G4X;
1711
1712                 if (hotplug_trigger) {
1713                         intel_get_hpd_pins(&pin_mask, &long_mask, hotplug_trigger,
1714                                            hotplug_trigger, hpd_status_g4x,
1715                                            i9xx_port_hotplug_long_detect);
1716
1717                         intel_hpd_irq_handler(dev, pin_mask, long_mask);
1718                 }
1719
1720                 if (hotplug_status & DP_AUX_CHANNEL_MASK_INT_STATUS_G4X)
1721                         dp_aux_irq_handler(dev);
1722         } else {
1723                 u32 hotplug_trigger = hotplug_status & HOTPLUG_INT_STATUS_I915;
1724
1725                 if (hotplug_trigger) {
1726                         intel_get_hpd_pins(&pin_mask, &long_mask, hotplug_trigger,
1727                                            hotplug_trigger, hpd_status_i915,
1728                                            i9xx_port_hotplug_long_detect);
1729                         intel_hpd_irq_handler(dev, pin_mask, long_mask);
1730                 }
1731         }
1732 }
1733
1734 static irqreturn_t valleyview_irq_handler(int irq, void *arg)
1735 {
1736         struct drm_device *dev = arg;
1737         struct drm_i915_private *dev_priv = dev->dev_private;
1738         u32 iir, gt_iir, pm_iir;
1739         irqreturn_t ret = IRQ_NONE;
1740
1741         if (!intel_irqs_enabled(dev_priv))
1742                 return IRQ_NONE;
1743
1744         while (true) {
1745                 /* Find, clear, then process each source of interrupt */
1746
1747                 gt_iir = I915_READ(GTIIR);
1748                 if (gt_iir)
1749                         I915_WRITE(GTIIR, gt_iir);
1750
1751                 pm_iir = I915_READ(GEN6_PMIIR);
1752                 if (pm_iir)
1753                         I915_WRITE(GEN6_PMIIR, pm_iir);
1754
1755                 iir = I915_READ(VLV_IIR);
1756                 if (iir) {
1757                         /* Consume port before clearing IIR or we'll miss events */
1758                         if (iir & I915_DISPLAY_PORT_INTERRUPT)
1759                                 i9xx_hpd_irq_handler(dev);
1760                         I915_WRITE(VLV_IIR, iir);
1761                 }
1762
1763                 if (gt_iir == 0 && pm_iir == 0 && iir == 0)
1764                         goto out;
1765
1766                 ret = IRQ_HANDLED;
1767
1768                 if (gt_iir)
1769                         snb_gt_irq_handler(dev, dev_priv, gt_iir);
1770                 if (pm_iir)
1771                         gen6_rps_irq_handler(dev_priv, pm_iir);
1772                 /* Call regardless, as some status bits might not be
1773                  * signalled in iir */
1774                 valleyview_pipestat_irq_handler(dev, iir);
1775         }
1776
1777 out:
1778         return ret;
1779 }
1780
1781 static irqreturn_t cherryview_irq_handler(int irq, void *arg)
1782 {
1783         struct drm_device *dev = arg;
1784         struct drm_i915_private *dev_priv = dev->dev_private;
1785         u32 master_ctl, iir;
1786         irqreturn_t ret = IRQ_NONE;
1787
1788         if (!intel_irqs_enabled(dev_priv))
1789                 return IRQ_NONE;
1790
1791         for (;;) {
1792                 master_ctl = I915_READ(GEN8_MASTER_IRQ) & ~GEN8_MASTER_IRQ_CONTROL;
1793                 iir = I915_READ(VLV_IIR);
1794
1795                 if (master_ctl == 0 && iir == 0)
1796                         break;
1797
1798                 ret = IRQ_HANDLED;
1799
1800                 I915_WRITE(GEN8_MASTER_IRQ, 0);
1801
1802                 /* Find, clear, then process each source of interrupt */
1803
1804                 if (iir) {
1805                         /* Consume port before clearing IIR or we'll miss events */
1806                         if (iir & I915_DISPLAY_PORT_INTERRUPT)
1807                                 i9xx_hpd_irq_handler(dev);
1808                         I915_WRITE(VLV_IIR, iir);
1809                 }
1810
1811                 gen8_gt_irq_handler(dev_priv, master_ctl);
1812
1813                 /* Call regardless, as some status bits might not be
1814                  * signalled in iir */
1815                 valleyview_pipestat_irq_handler(dev, iir);
1816
1817                 I915_WRITE(GEN8_MASTER_IRQ, DE_MASTER_IRQ_CONTROL);
1818                 POSTING_READ(GEN8_MASTER_IRQ);
1819         }
1820
1821         return ret;
1822 }
1823
1824 static void ibx_hpd_irq_handler(struct drm_device *dev, u32 hotplug_trigger,
1825                                 const u32 hpd[HPD_NUM_PINS])
1826 {
1827         struct drm_i915_private *dev_priv = to_i915(dev);
1828         u32 dig_hotplug_reg, pin_mask = 0, long_mask = 0;
1829
1830         dig_hotplug_reg = I915_READ(PCH_PORT_HOTPLUG);
1831         I915_WRITE(PCH_PORT_HOTPLUG, dig_hotplug_reg);
1832
1833         intel_get_hpd_pins(&pin_mask, &long_mask, hotplug_trigger,
1834                            dig_hotplug_reg, hpd,
1835                            pch_port_hotplug_long_detect);
1836
1837         intel_hpd_irq_handler(dev, pin_mask, long_mask);
1838 }
1839
1840 static void ibx_irq_handler(struct drm_device *dev, u32 pch_iir)
1841 {
1842         struct drm_i915_private *dev_priv = dev->dev_private;
1843         int pipe;
1844         u32 hotplug_trigger = pch_iir & SDE_HOTPLUG_MASK;
1845
1846         if (hotplug_trigger)
1847                 ibx_hpd_irq_handler(dev, hotplug_trigger, hpd_ibx);
1848
1849         if (pch_iir & SDE_AUDIO_POWER_MASK) {
1850                 int port = ffs((pch_iir & SDE_AUDIO_POWER_MASK) >>
1851                                SDE_AUDIO_POWER_SHIFT);
1852                 DRM_DEBUG_DRIVER("PCH audio power change on port %d\n",
1853                                  port_name(port));
1854         }
1855
1856         if (pch_iir & SDE_AUX_MASK)
1857                 dp_aux_irq_handler(dev);
1858
1859         if (pch_iir & SDE_GMBUS)
1860                 gmbus_irq_handler(dev);
1861
1862         if (pch_iir & SDE_AUDIO_HDCP_MASK)
1863                 DRM_DEBUG_DRIVER("PCH HDCP audio interrupt\n");
1864
1865         if (pch_iir & SDE_AUDIO_TRANS_MASK)
1866                 DRM_DEBUG_DRIVER("PCH transcoder audio interrupt\n");
1867
1868         if (pch_iir & SDE_POISON)
1869                 DRM_ERROR("PCH poison interrupt\n");
1870
1871         if (pch_iir & SDE_FDI_MASK)
1872                 for_each_pipe(dev_priv, pipe)
1873                         DRM_DEBUG_DRIVER("  pipe %c FDI IIR: 0x%08x\n",
1874                                          pipe_name(pipe),
1875                                          I915_READ(FDI_RX_IIR(pipe)));
1876
1877         if (pch_iir & (SDE_TRANSB_CRC_DONE | SDE_TRANSA_CRC_DONE))
1878                 DRM_DEBUG_DRIVER("PCH transcoder CRC done interrupt\n");
1879
1880         if (pch_iir & (SDE_TRANSB_CRC_ERR | SDE_TRANSA_CRC_ERR))
1881                 DRM_DEBUG_DRIVER("PCH transcoder CRC error interrupt\n");
1882
1883         if (pch_iir & SDE_TRANSA_FIFO_UNDER)
1884                 intel_pch_fifo_underrun_irq_handler(dev_priv, TRANSCODER_A);
1885
1886         if (pch_iir & SDE_TRANSB_FIFO_UNDER)
1887                 intel_pch_fifo_underrun_irq_handler(dev_priv, TRANSCODER_B);
1888 }
1889
1890 static void ivb_err_int_handler(struct drm_device *dev)
1891 {
1892         struct drm_i915_private *dev_priv = dev->dev_private;
1893         u32 err_int = I915_READ(GEN7_ERR_INT);
1894         enum pipe pipe;
1895
1896         if (err_int & ERR_INT_POISON)
1897                 DRM_ERROR("Poison interrupt\n");
1898
1899         for_each_pipe(dev_priv, pipe) {
1900                 if (err_int & ERR_INT_FIFO_UNDERRUN(pipe))
1901                         intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
1902
1903                 if (err_int & ERR_INT_PIPE_CRC_DONE(pipe)) {
1904                         if (IS_IVYBRIDGE(dev))
1905                                 ivb_pipe_crc_irq_handler(dev, pipe);
1906                         else
1907                                 hsw_pipe_crc_irq_handler(dev, pipe);
1908                 }
1909         }
1910
1911         I915_WRITE(GEN7_ERR_INT, err_int);
1912 }
1913
1914 static void cpt_serr_int_handler(struct drm_device *dev)
1915 {
1916         struct drm_i915_private *dev_priv = dev->dev_private;
1917         u32 serr_int = I915_READ(SERR_INT);
1918
1919         if (serr_int & SERR_INT_POISON)
1920                 DRM_ERROR("PCH poison interrupt\n");
1921
1922         if (serr_int & SERR_INT_TRANS_A_FIFO_UNDERRUN)
1923                 intel_pch_fifo_underrun_irq_handler(dev_priv, TRANSCODER_A);
1924
1925         if (serr_int & SERR_INT_TRANS_B_FIFO_UNDERRUN)
1926                 intel_pch_fifo_underrun_irq_handler(dev_priv, TRANSCODER_B);
1927
1928         if (serr_int & SERR_INT_TRANS_C_FIFO_UNDERRUN)
1929                 intel_pch_fifo_underrun_irq_handler(dev_priv, TRANSCODER_C);
1930
1931         I915_WRITE(SERR_INT, serr_int);
1932 }
1933
1934 static void cpt_irq_handler(struct drm_device *dev, u32 pch_iir)
1935 {
1936         struct drm_i915_private *dev_priv = dev->dev_private;
1937         int pipe;
1938         u32 hotplug_trigger = pch_iir & SDE_HOTPLUG_MASK_CPT;
1939
1940         if (hotplug_trigger)
1941                 ibx_hpd_irq_handler(dev, hotplug_trigger, hpd_cpt);
1942
1943         if (pch_iir & SDE_AUDIO_POWER_MASK_CPT) {
1944                 int port = ffs((pch_iir & SDE_AUDIO_POWER_MASK_CPT) >>
1945                                SDE_AUDIO_POWER_SHIFT_CPT);
1946                 DRM_DEBUG_DRIVER("PCH audio power change on port %c\n",
1947                                  port_name(port));
1948         }
1949
1950         if (pch_iir & SDE_AUX_MASK_CPT)
1951                 dp_aux_irq_handler(dev);
1952
1953         if (pch_iir & SDE_GMBUS_CPT)
1954                 gmbus_irq_handler(dev);
1955
1956         if (pch_iir & SDE_AUDIO_CP_REQ_CPT)
1957                 DRM_DEBUG_DRIVER("Audio CP request interrupt\n");
1958
1959         if (pch_iir & SDE_AUDIO_CP_CHG_CPT)
1960                 DRM_DEBUG_DRIVER("Audio CP change interrupt\n");
1961
1962         if (pch_iir & SDE_FDI_MASK_CPT)
1963                 for_each_pipe(dev_priv, pipe)
1964                         DRM_DEBUG_DRIVER("  pipe %c FDI IIR: 0x%08x\n",
1965                                          pipe_name(pipe),
1966                                          I915_READ(FDI_RX_IIR(pipe)));
1967
1968         if (pch_iir & SDE_ERROR_CPT)
1969                 cpt_serr_int_handler(dev);
1970 }
1971
1972 static void spt_irq_handler(struct drm_device *dev, u32 pch_iir)
1973 {
1974         struct drm_i915_private *dev_priv = dev->dev_private;
1975         u32 hotplug_trigger = pch_iir & SDE_HOTPLUG_MASK_SPT &
1976                 ~SDE_PORTE_HOTPLUG_SPT;
1977         u32 hotplug2_trigger = pch_iir & SDE_PORTE_HOTPLUG_SPT;
1978         u32 pin_mask = 0, long_mask = 0;
1979
1980         if (hotplug_trigger) {
1981                 u32 dig_hotplug_reg;
1982
1983                 dig_hotplug_reg = I915_READ(PCH_PORT_HOTPLUG);
1984                 I915_WRITE(PCH_PORT_HOTPLUG, dig_hotplug_reg);
1985
1986                 intel_get_hpd_pins(&pin_mask, &long_mask, hotplug_trigger,
1987                                    dig_hotplug_reg, hpd_spt,
1988                                    spt_port_hotplug_long_detect);
1989         }
1990
1991         if (hotplug2_trigger) {
1992                 u32 dig_hotplug_reg;
1993
1994                 dig_hotplug_reg = I915_READ(PCH_PORT_HOTPLUG2);
1995                 I915_WRITE(PCH_PORT_HOTPLUG2, dig_hotplug_reg);
1996
1997                 intel_get_hpd_pins(&pin_mask, &long_mask, hotplug2_trigger,
1998                                    dig_hotplug_reg, hpd_spt,
1999                                    spt_port_hotplug2_long_detect);
2000         }
2001
2002         if (pin_mask)
2003                 intel_hpd_irq_handler(dev, pin_mask, long_mask);
2004
2005         if (pch_iir & SDE_GMBUS_CPT)
2006                 gmbus_irq_handler(dev);
2007 }
2008
2009 static void ilk_hpd_irq_handler(struct drm_device *dev, u32 hotplug_trigger,
2010                                 const u32 hpd[HPD_NUM_PINS])
2011 {
2012         struct drm_i915_private *dev_priv = to_i915(dev);
2013         u32 dig_hotplug_reg, pin_mask = 0, long_mask = 0;
2014
2015         dig_hotplug_reg = I915_READ(DIGITAL_PORT_HOTPLUG_CNTRL);
2016         I915_WRITE(DIGITAL_PORT_HOTPLUG_CNTRL, dig_hotplug_reg);
2017
2018         intel_get_hpd_pins(&pin_mask, &long_mask, hotplug_trigger,
2019                            dig_hotplug_reg, hpd,
2020                            ilk_port_hotplug_long_detect);
2021
2022         intel_hpd_irq_handler(dev, pin_mask, long_mask);
2023 }
2024
2025 static void ilk_display_irq_handler(struct drm_device *dev, u32 de_iir)
2026 {
2027         struct drm_i915_private *dev_priv = dev->dev_private;
2028         enum pipe pipe;
2029         u32 hotplug_trigger = de_iir & DE_DP_A_HOTPLUG;
2030
2031         if (hotplug_trigger)
2032                 ilk_hpd_irq_handler(dev, hotplug_trigger, hpd_ilk);
2033
2034         if (de_iir & DE_AUX_CHANNEL_A)
2035                 dp_aux_irq_handler(dev);
2036
2037         if (de_iir & DE_GSE)
2038                 intel_opregion_asle_intr(dev);
2039
2040         if (de_iir & DE_POISON)
2041                 DRM_ERROR("Poison interrupt\n");
2042
2043         for_each_pipe(dev_priv, pipe) {
2044                 if (de_iir & DE_PIPE_VBLANK(pipe) &&
2045                     intel_pipe_handle_vblank(dev, pipe))
2046                         intel_check_page_flip(dev, pipe);
2047
2048                 if (de_iir & DE_PIPE_FIFO_UNDERRUN(pipe))
2049                         intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
2050
2051                 if (de_iir & DE_PIPE_CRC_DONE(pipe))
2052                         i9xx_pipe_crc_irq_handler(dev, pipe);
2053
2054                 /* plane/pipes map 1:1 on ilk+ */
2055                 if (de_iir & DE_PLANE_FLIP_DONE(pipe)) {
2056                         intel_prepare_page_flip(dev, pipe);
2057                         intel_finish_page_flip_plane(dev, pipe);
2058                 }
2059         }
2060
2061         /* check event from PCH */
2062         if (de_iir & DE_PCH_EVENT) {
2063                 u32 pch_iir = I915_READ(SDEIIR);
2064
2065                 if (HAS_PCH_CPT(dev))
2066                         cpt_irq_handler(dev, pch_iir);
2067                 else
2068                         ibx_irq_handler(dev, pch_iir);
2069
2070                 /* should clear PCH hotplug event before clear CPU irq */
2071                 I915_WRITE(SDEIIR, pch_iir);
2072         }
2073
2074         if (IS_GEN5(dev) && de_iir & DE_PCU_EVENT)
2075                 ironlake_rps_change_irq_handler(dev);
2076 }
2077
2078 static void ivb_display_irq_handler(struct drm_device *dev, u32 de_iir)
2079 {
2080         struct drm_i915_private *dev_priv = dev->dev_private;
2081         enum pipe pipe;
2082         u32 hotplug_trigger = de_iir & DE_DP_A_HOTPLUG_IVB;
2083
2084         if (hotplug_trigger)
2085                 ilk_hpd_irq_handler(dev, hotplug_trigger, hpd_ivb);
2086
2087         if (de_iir & DE_ERR_INT_IVB)
2088                 ivb_err_int_handler(dev);
2089
2090         if (de_iir & DE_AUX_CHANNEL_A_IVB)
2091                 dp_aux_irq_handler(dev);
2092
2093         if (de_iir & DE_GSE_IVB)
2094                 intel_opregion_asle_intr(dev);
2095
2096         for_each_pipe(dev_priv, pipe) {
2097                 if (de_iir & (DE_PIPE_VBLANK_IVB(pipe)) &&
2098                     intel_pipe_handle_vblank(dev, pipe))
2099                         intel_check_page_flip(dev, pipe);
2100
2101                 /* plane/pipes map 1:1 on ilk+ */
2102                 if (de_iir & DE_PLANE_FLIP_DONE_IVB(pipe)) {
2103                         intel_prepare_page_flip(dev, pipe);
2104                         intel_finish_page_flip_plane(dev, pipe);
2105                 }
2106         }
2107
2108         /* check event from PCH */
2109         if (!HAS_PCH_NOP(dev) && (de_iir & DE_PCH_EVENT_IVB)) {
2110                 u32 pch_iir = I915_READ(SDEIIR);
2111
2112                 cpt_irq_handler(dev, pch_iir);
2113
2114                 /* clear PCH hotplug event before clear CPU irq */
2115                 I915_WRITE(SDEIIR, pch_iir);
2116         }
2117 }
2118
2119 /*
2120  * To handle irqs with the minimum potential races with fresh interrupts, we:
2121  * 1 - Disable Master Interrupt Control.
2122  * 2 - Find the source(s) of the interrupt.
2123  * 3 - Clear the Interrupt Identity bits (IIR).
2124  * 4 - Process the interrupt(s) that had bits set in the IIRs.
2125  * 5 - Re-enable Master Interrupt Control.
2126  */
2127 static irqreturn_t ironlake_irq_handler(int irq, void *arg)
2128 {
2129         struct drm_device *dev = arg;
2130         struct drm_i915_private *dev_priv = dev->dev_private;
2131         u32 de_iir, gt_iir, de_ier, sde_ier = 0;
2132         irqreturn_t ret = IRQ_NONE;
2133
2134         if (!intel_irqs_enabled(dev_priv))
2135                 return IRQ_NONE;
2136
2137         /* We get interrupts on unclaimed registers, so check for this before we
2138          * do any I915_{READ,WRITE}. */
2139         intel_uncore_check_errors(dev);
2140
2141         /* disable master interrupt before clearing iir  */
2142         de_ier = I915_READ(DEIER);
2143         I915_WRITE(DEIER, de_ier & ~DE_MASTER_IRQ_CONTROL);
2144         POSTING_READ(DEIER);
2145
2146         /* Disable south interrupts. We'll only write to SDEIIR once, so further
2147          * interrupts will will be stored on its back queue, and then we'll be
2148          * able to process them after we restore SDEIER (as soon as we restore
2149          * it, we'll get an interrupt if SDEIIR still has something to process
2150          * due to its back queue). */
2151         if (!HAS_PCH_NOP(dev)) {
2152                 sde_ier = I915_READ(SDEIER);
2153                 I915_WRITE(SDEIER, 0);
2154                 POSTING_READ(SDEIER);
2155         }
2156
2157         /* Find, clear, then process each source of interrupt */
2158
2159         gt_iir = I915_READ(GTIIR);
2160         if (gt_iir) {
2161                 I915_WRITE(GTIIR, gt_iir);
2162                 ret = IRQ_HANDLED;
2163                 if (INTEL_INFO(dev)->gen >= 6)
2164                         snb_gt_irq_handler(dev, dev_priv, gt_iir);
2165                 else
2166                         ilk_gt_irq_handler(dev, dev_priv, gt_iir);
2167         }
2168
2169         de_iir = I915_READ(DEIIR);
2170         if (de_iir) {
2171                 I915_WRITE(DEIIR, de_iir);
2172                 ret = IRQ_HANDLED;
2173                 if (INTEL_INFO(dev)->gen >= 7)
2174                         ivb_display_irq_handler(dev, de_iir);
2175                 else
2176                         ilk_display_irq_handler(dev, de_iir);
2177         }
2178
2179         if (INTEL_INFO(dev)->gen >= 6) {
2180                 u32 pm_iir = I915_READ(GEN6_PMIIR);
2181                 if (pm_iir) {
2182                         I915_WRITE(GEN6_PMIIR, pm_iir);
2183                         ret = IRQ_HANDLED;
2184                         gen6_rps_irq_handler(dev_priv, pm_iir);
2185                 }
2186         }
2187
2188         I915_WRITE(DEIER, de_ier);
2189         POSTING_READ(DEIER);
2190         if (!HAS_PCH_NOP(dev)) {
2191                 I915_WRITE(SDEIER, sde_ier);
2192                 POSTING_READ(SDEIER);
2193         }
2194
2195         return ret;
2196 }
2197
2198 static void bxt_hpd_irq_handler(struct drm_device *dev, u32 hotplug_trigger,
2199                                 const u32 hpd[HPD_NUM_PINS])
2200 {
2201         struct drm_i915_private *dev_priv = to_i915(dev);
2202         u32 dig_hotplug_reg, pin_mask = 0, long_mask = 0;
2203
2204         dig_hotplug_reg = I915_READ(PCH_PORT_HOTPLUG);
2205         I915_WRITE(PCH_PORT_HOTPLUG, dig_hotplug_reg);
2206
2207         intel_get_hpd_pins(&pin_mask, &long_mask, hotplug_trigger,
2208                            dig_hotplug_reg, hpd,
2209                            bxt_port_hotplug_long_detect);
2210
2211         intel_hpd_irq_handler(dev, pin_mask, long_mask);
2212 }
2213
2214 static irqreturn_t gen8_irq_handler(int irq, void *arg)
2215 {
2216         struct drm_device *dev = arg;
2217         struct drm_i915_private *dev_priv = dev->dev_private;
2218         u32 master_ctl;
2219         irqreturn_t ret = IRQ_NONE;
2220         uint32_t tmp = 0;
2221         enum pipe pipe;
2222         u32 aux_mask = GEN8_AUX_CHANNEL_A;
2223
2224         if (!intel_irqs_enabled(dev_priv))
2225                 return IRQ_NONE;
2226
2227         if (INTEL_INFO(dev_priv)->gen >= 9)
2228                 aux_mask |=  GEN9_AUX_CHANNEL_B | GEN9_AUX_CHANNEL_C |
2229                         GEN9_AUX_CHANNEL_D;
2230
2231         master_ctl = I915_READ_FW(GEN8_MASTER_IRQ);
2232         master_ctl &= ~GEN8_MASTER_IRQ_CONTROL;
2233         if (!master_ctl)
2234                 return IRQ_NONE;
2235
2236         I915_WRITE_FW(GEN8_MASTER_IRQ, 0);
2237
2238         /* Find, clear, then process each source of interrupt */
2239
2240         ret = gen8_gt_irq_handler(dev_priv, master_ctl);
2241
2242         if (master_ctl & GEN8_DE_MISC_IRQ) {
2243                 tmp = I915_READ(GEN8_DE_MISC_IIR);
2244                 if (tmp) {
2245                         I915_WRITE(GEN8_DE_MISC_IIR, tmp);
2246                         ret = IRQ_HANDLED;
2247                         if (tmp & GEN8_DE_MISC_GSE)
2248                                 intel_opregion_asle_intr(dev);
2249                         else
2250                                 DRM_ERROR("Unexpected DE Misc interrupt\n");
2251                 }
2252                 else
2253                         DRM_ERROR("The master control interrupt lied (DE MISC)!\n");
2254         }
2255
2256         if (master_ctl & GEN8_DE_PORT_IRQ) {
2257                 tmp = I915_READ(GEN8_DE_PORT_IIR);
2258                 if (tmp) {
2259                         bool found = false;
2260                         u32 hotplug_trigger = 0;
2261
2262                         if (IS_BROXTON(dev_priv))
2263                                 hotplug_trigger = tmp & BXT_DE_PORT_HOTPLUG_MASK;
2264                         else if (IS_BROADWELL(dev_priv))
2265                                 hotplug_trigger = tmp & GEN8_PORT_DP_A_HOTPLUG;
2266
2267                         I915_WRITE(GEN8_DE_PORT_IIR, tmp);
2268                         ret = IRQ_HANDLED;
2269
2270                         if (tmp & aux_mask) {
2271                                 dp_aux_irq_handler(dev);
2272                                 found = true;
2273                         }
2274
2275                         if (hotplug_trigger) {
2276                                 if (IS_BROXTON(dev))
2277                                         bxt_hpd_irq_handler(dev, hotplug_trigger, hpd_bxt);
2278                                 else
2279                                         ilk_hpd_irq_handler(dev, hotplug_trigger, hpd_bdw);
2280                                 found = true;
2281                         }
2282
2283                         if (IS_BROXTON(dev) && (tmp & BXT_DE_PORT_GMBUS)) {
2284                                 gmbus_irq_handler(dev);
2285                                 found = true;
2286                         }
2287
2288                         if (!found)
2289                                 DRM_ERROR("Unexpected DE Port interrupt\n");
2290                 }
2291                 else
2292                         DRM_ERROR("The master control interrupt lied (DE PORT)!\n");
2293         }
2294
2295         for_each_pipe(dev_priv, pipe) {
2296                 uint32_t pipe_iir, flip_done = 0, fault_errors = 0;
2297
2298                 if (!(master_ctl & GEN8_DE_PIPE_IRQ(pipe)))
2299                         continue;
2300
2301                 pipe_iir = I915_READ(GEN8_DE_PIPE_IIR(pipe));
2302                 if (pipe_iir) {
2303                         ret = IRQ_HANDLED;
2304                         I915_WRITE(GEN8_DE_PIPE_IIR(pipe), pipe_iir);
2305
2306                         if (pipe_iir & GEN8_PIPE_VBLANK &&
2307                             intel_pipe_handle_vblank(dev, pipe))
2308                                 intel_check_page_flip(dev, pipe);
2309
2310                         if (INTEL_INFO(dev_priv)->gen >= 9)
2311                                 flip_done = pipe_iir & GEN9_PIPE_PLANE1_FLIP_DONE;
2312                         else
2313                                 flip_done = pipe_iir & GEN8_PIPE_PRIMARY_FLIP_DONE;
2314
2315                         if (flip_done) {
2316                                 intel_prepare_page_flip(dev, pipe);
2317                                 intel_finish_page_flip_plane(dev, pipe);
2318                         }
2319
2320                         if (pipe_iir & GEN8_PIPE_CDCLK_CRC_DONE)
2321                                 hsw_pipe_crc_irq_handler(dev, pipe);
2322
2323                         if (pipe_iir & GEN8_PIPE_FIFO_UNDERRUN)
2324                                 intel_cpu_fifo_underrun_irq_handler(dev_priv,
2325                                                                     pipe);
2326
2327
2328                         if (INTEL_INFO(dev_priv)->gen >= 9)
2329                                 fault_errors = pipe_iir & GEN9_DE_PIPE_IRQ_FAULT_ERRORS;
2330                         else
2331                                 fault_errors = pipe_iir & GEN8_DE_PIPE_IRQ_FAULT_ERRORS;
2332
2333                         if (fault_errors)
2334                                 DRM_ERROR("Fault errors on pipe %c\n: 0x%08x",
2335                                           pipe_name(pipe),
2336                                           pipe_iir & GEN8_DE_PIPE_IRQ_FAULT_ERRORS);
2337                 } else
2338                         DRM_ERROR("The master control interrupt lied (DE PIPE)!\n");
2339         }
2340
2341         if (HAS_PCH_SPLIT(dev) && !HAS_PCH_NOP(dev) &&
2342             master_ctl & GEN8_DE_PCH_IRQ) {
2343                 /*
2344                  * FIXME(BDW): Assume for now that the new interrupt handling
2345                  * scheme also closed the SDE interrupt handling race we've seen
2346                  * on older pch-split platforms. But this needs testing.
2347                  */
2348                 u32 pch_iir = I915_READ(SDEIIR);
2349                 if (pch_iir) {
2350                         I915_WRITE(SDEIIR, pch_iir);
2351                         ret = IRQ_HANDLED;
2352
2353                         if (HAS_PCH_SPT(dev_priv))
2354                                 spt_irq_handler(dev, pch_iir);
2355                         else
2356                                 cpt_irq_handler(dev, pch_iir);
2357                 } else {
2358                         /*
2359                          * Like on previous PCH there seems to be something
2360                          * fishy going on with forwarding PCH interrupts.
2361                          */
2362                         DRM_DEBUG_DRIVER("The master control interrupt lied (SDE)!\n");
2363                 }
2364         }
2365
2366         I915_WRITE_FW(GEN8_MASTER_IRQ, GEN8_MASTER_IRQ_CONTROL);
2367         POSTING_READ_FW(GEN8_MASTER_IRQ);
2368
2369         return ret;
2370 }
2371
2372 static void i915_error_wake_up(struct drm_i915_private *dev_priv,
2373                                bool reset_completed)
2374 {
2375         struct intel_engine_cs *ring;
2376         int i;
2377
2378         /*
2379          * Notify all waiters for GPU completion events that reset state has
2380          * been changed, and that they need to restart their wait after
2381          * checking for potential errors (and bail out to drop locks if there is
2382          * a gpu reset pending so that i915_error_work_func can acquire them).
2383          */
2384
2385         /* Wake up __wait_seqno, potentially holding dev->struct_mutex. */
2386         for_each_ring(ring, dev_priv, i)
2387                 wake_up_all(&ring->irq_queue);
2388
2389         /* Wake up intel_crtc_wait_for_pending_flips, holding crtc->mutex. */
2390         wake_up_all(&dev_priv->pending_flip_queue);
2391
2392         /*
2393          * Signal tasks blocked in i915_gem_wait_for_error that the pending
2394          * reset state is cleared.
2395          */
2396         if (reset_completed)
2397                 wake_up_all(&dev_priv->gpu_error.reset_queue);
2398 }
2399
2400 /**
2401  * i915_reset_and_wakeup - do process context error handling work
2402  * @dev: drm device
2403  *
2404  * Fire an error uevent so userspace can see that a hang or error
2405  * was detected.
2406  */
2407 static void i915_reset_and_wakeup(struct drm_device *dev)
2408 {
2409         struct drm_i915_private *dev_priv = to_i915(dev);
2410         struct i915_gpu_error *error = &dev_priv->gpu_error;
2411         char *error_event[] = { I915_ERROR_UEVENT "=1", NULL };
2412         char *reset_event[] = { I915_RESET_UEVENT "=1", NULL };
2413         char *reset_done_event[] = { I915_ERROR_UEVENT "=0", NULL };
2414         int ret;
2415
2416         kobject_uevent_env(&dev->primary->kdev->kobj, KOBJ_CHANGE, error_event);
2417
2418         /*
2419          * Note that there's only one work item which does gpu resets, so we
2420          * need not worry about concurrent gpu resets potentially incrementing
2421          * error->reset_counter twice. We only need to take care of another
2422          * racing irq/hangcheck declaring the gpu dead for a second time. A
2423          * quick check for that is good enough: schedule_work ensures the
2424          * correct ordering between hang detection and this work item, and since
2425          * the reset in-progress bit is only ever set by code outside of this
2426          * work we don't need to worry about any other races.
2427          */
2428         if (i915_reset_in_progress(error) && !i915_terminally_wedged(error)) {
2429                 DRM_DEBUG_DRIVER("resetting chip\n");
2430                 kobject_uevent_env(&dev->primary->kdev->kobj, KOBJ_CHANGE,
2431                                    reset_event);
2432
2433                 /*
2434                  * In most cases it's guaranteed that we get here with an RPM
2435                  * reference held, for example because there is a pending GPU
2436                  * request that won't finish until the reset is done. This
2437                  * isn't the case at least when we get here by doing a
2438                  * simulated reset via debugs, so get an RPM reference.
2439                  */
2440                 intel_runtime_pm_get(dev_priv);
2441
2442                 intel_prepare_reset(dev);
2443
2444                 /*
2445                  * All state reset _must_ be completed before we update the
2446                  * reset counter, for otherwise waiters might miss the reset
2447                  * pending state and not properly drop locks, resulting in
2448                  * deadlocks with the reset work.
2449                  */
2450                 ret = i915_reset(dev);
2451
2452                 intel_finish_reset(dev);
2453
2454                 intel_runtime_pm_put(dev_priv);
2455
2456                 if (ret == 0) {
2457                         /*
2458                          * After all the gem state is reset, increment the reset
2459                          * counter and wake up everyone waiting for the reset to
2460                          * complete.
2461                          *
2462                          * Since unlock operations are a one-sided barrier only,
2463                          * we need to insert a barrier here to order any seqno
2464                          * updates before
2465                          * the counter increment.
2466                          */
2467                         smp_mb__before_atomic();
2468                         atomic_inc(&dev_priv->gpu_error.reset_counter);
2469
2470                         kobject_uevent_env(&dev->primary->kdev->kobj,
2471                                            KOBJ_CHANGE, reset_done_event);
2472                 } else {
2473                         atomic_or(I915_WEDGED, &error->reset_counter);
2474                 }
2475
2476                 /*
2477                  * Note: The wake_up also serves as a memory barrier so that
2478                  * waiters see the update value of the reset counter atomic_t.
2479                  */
2480                 i915_error_wake_up(dev_priv, true);
2481         }
2482 }
2483
2484 static void i915_report_and_clear_eir(struct drm_device *dev)
2485 {
2486         struct drm_i915_private *dev_priv = dev->dev_private;
2487         uint32_t instdone[I915_NUM_INSTDONE_REG];
2488         u32 eir = I915_READ(EIR);
2489         int pipe, i;
2490
2491         if (!eir)
2492                 return;
2493
2494         pr_err("render error detected, EIR: 0x%08x\n", eir);
2495
2496         i915_get_extra_instdone(dev, instdone);
2497
2498         if (IS_G4X(dev)) {
2499                 if (eir & (GM45_ERROR_MEM_PRIV | GM45_ERROR_CP_PRIV)) {
2500                         u32 ipeir = I915_READ(IPEIR_I965);
2501
2502                         pr_err("  IPEIR: 0x%08x\n", I915_READ(IPEIR_I965));
2503                         pr_err("  IPEHR: 0x%08x\n", I915_READ(IPEHR_I965));
2504                         for (i = 0; i < ARRAY_SIZE(instdone); i++)
2505                                 pr_err("  INSTDONE_%d: 0x%08x\n", i, instdone[i]);
2506                         pr_err("  INSTPS: 0x%08x\n", I915_READ(INSTPS));
2507                         pr_err("  ACTHD: 0x%08x\n", I915_READ(ACTHD_I965));
2508                         I915_WRITE(IPEIR_I965, ipeir);
2509                         POSTING_READ(IPEIR_I965);
2510                 }
2511                 if (eir & GM45_ERROR_PAGE_TABLE) {
2512                         u32 pgtbl_err = I915_READ(PGTBL_ER);
2513                         pr_err("page table error\n");
2514                         pr_err("  PGTBL_ER: 0x%08x\n", pgtbl_err);
2515                         I915_WRITE(PGTBL_ER, pgtbl_err);
2516                         POSTING_READ(PGTBL_ER);
2517                 }
2518         }
2519
2520         if (!IS_GEN2(dev)) {
2521                 if (eir & I915_ERROR_PAGE_TABLE) {
2522                         u32 pgtbl_err = I915_READ(PGTBL_ER);
2523                         pr_err("page table error\n");
2524                         pr_err("  PGTBL_ER: 0x%08x\n", pgtbl_err);
2525                         I915_WRITE(PGTBL_ER, pgtbl_err);
2526                         POSTING_READ(PGTBL_ER);
2527                 }
2528         }
2529
2530         if (eir & I915_ERROR_MEMORY_REFRESH) {
2531                 pr_err("memory refresh error:\n");
2532                 for_each_pipe(dev_priv, pipe)
2533                         pr_err("pipe %c stat: 0x%08x\n",
2534                                pipe_name(pipe), I915_READ(PIPESTAT(pipe)));
2535                 /* pipestat has already been acked */
2536         }
2537         if (eir & I915_ERROR_INSTRUCTION) {
2538                 pr_err("instruction error\n");
2539                 pr_err("  INSTPM: 0x%08x\n", I915_READ(INSTPM));
2540                 for (i = 0; i < ARRAY_SIZE(instdone); i++)
2541                         pr_err("  INSTDONE_%d: 0x%08x\n", i, instdone[i]);
2542                 if (INTEL_INFO(dev)->gen < 4) {
2543                         u32 ipeir = I915_READ(IPEIR);
2544
2545                         pr_err("  IPEIR: 0x%08x\n", I915_READ(IPEIR));
2546                         pr_err("  IPEHR: 0x%08x\n", I915_READ(IPEHR));
2547                         pr_err("  ACTHD: 0x%08x\n", I915_READ(ACTHD));
2548                         I915_WRITE(IPEIR, ipeir);
2549                         POSTING_READ(IPEIR);
2550                 } else {
2551                         u32 ipeir = I915_READ(IPEIR_I965);
2552
2553                         pr_err("  IPEIR: 0x%08x\n", I915_READ(IPEIR_I965));
2554                         pr_err("  IPEHR: 0x%08x\n", I915_READ(IPEHR_I965));
2555                         pr_err("  INSTPS: 0x%08x\n", I915_READ(INSTPS));
2556                         pr_err("  ACTHD: 0x%08x\n", I915_READ(ACTHD_I965));
2557                         I915_WRITE(IPEIR_I965, ipeir);
2558                         POSTING_READ(IPEIR_I965);
2559                 }
2560         }
2561
2562         I915_WRITE(EIR, eir);
2563         POSTING_READ(EIR);
2564         eir = I915_READ(EIR);
2565         if (eir) {
2566                 /*
2567                  * some errors might have become stuck,
2568                  * mask them.
2569                  */
2570                 DRM_ERROR("EIR stuck: 0x%08x, masking\n", eir);
2571                 I915_WRITE(EMR, I915_READ(EMR) | eir);
2572                 I915_WRITE(IIR, I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT);
2573         }
2574 }
2575
2576 /**
2577  * i915_handle_error - handle a gpu error
2578  * @dev: drm device
2579  *
2580  * Do some basic checking of register state at error time and
2581  * dump it to the syslog.  Also call i915_capture_error_state() to make
2582  * sure we get a record and make it available in debugfs.  Fire a uevent
2583  * so userspace knows something bad happened (should trigger collection
2584  * of a ring dump etc.).
2585  */
2586 void i915_handle_error(struct drm_device *dev, bool wedged,
2587                        const char *fmt, ...)
2588 {
2589         struct drm_i915_private *dev_priv = dev->dev_private;
2590         va_list args;
2591         char error_msg[80];
2592
2593         va_start(args, fmt);
2594         vscnprintf(error_msg, sizeof(error_msg), fmt, args);
2595         va_end(args);
2596
2597         i915_capture_error_state(dev, wedged, error_msg);
2598         i915_report_and_clear_eir(dev);
2599
2600         if (wedged) {
2601                 atomic_or(I915_RESET_IN_PROGRESS_FLAG,
2602                                 &dev_priv->gpu_error.reset_counter);
2603
2604                 /*
2605                  * Wakeup waiting processes so that the reset function
2606                  * i915_reset_and_wakeup doesn't deadlock trying to grab
2607                  * various locks. By bumping the reset counter first, the woken
2608                  * processes will see a reset in progress and back off,
2609                  * releasing their locks and then wait for the reset completion.
2610                  * We must do this for _all_ gpu waiters that might hold locks
2611                  * that the reset work needs to acquire.
2612                  *
2613                  * Note: The wake_up serves as the required memory barrier to
2614                  * ensure that the waiters see the updated value of the reset
2615                  * counter atomic_t.
2616                  */
2617                 i915_error_wake_up(dev_priv, false);
2618         }
2619
2620         i915_reset_and_wakeup(dev);
2621 }
2622
2623 /* Called from drm generic code, passed 'crtc' which
2624  * we use as a pipe index
2625  */
2626 static int i915_enable_vblank(struct drm_device *dev, unsigned int pipe)
2627 {
2628         struct drm_i915_private *dev_priv = dev->dev_private;
2629         unsigned long irqflags;
2630
2631         spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2632         if (INTEL_INFO(dev)->gen >= 4)
2633                 i915_enable_pipestat(dev_priv, pipe,
2634                                      PIPE_START_VBLANK_INTERRUPT_STATUS);
2635         else
2636                 i915_enable_pipestat(dev_priv, pipe,
2637                                      PIPE_VBLANK_INTERRUPT_STATUS);
2638         spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2639
2640         return 0;
2641 }
2642
2643 static int ironlake_enable_vblank(struct drm_device *dev, unsigned int pipe)
2644 {
2645         struct drm_i915_private *dev_priv = dev->dev_private;
2646         unsigned long irqflags;
2647         uint32_t bit = (INTEL_INFO(dev)->gen >= 7) ? DE_PIPE_VBLANK_IVB(pipe) :
2648                                                      DE_PIPE_VBLANK(pipe);
2649
2650         spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2651         ironlake_enable_display_irq(dev_priv, bit);
2652         spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2653
2654         return 0;
2655 }
2656
2657 static int valleyview_enable_vblank(struct drm_device *dev, unsigned int pipe)
2658 {
2659         struct drm_i915_private *dev_priv = dev->dev_private;
2660         unsigned long irqflags;
2661
2662         spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2663         i915_enable_pipestat(dev_priv, pipe,
2664                              PIPE_START_VBLANK_INTERRUPT_STATUS);
2665         spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2666
2667         return 0;
2668 }
2669
2670 static int gen8_enable_vblank(struct drm_device *dev, unsigned int pipe)
2671 {
2672         struct drm_i915_private *dev_priv = dev->dev_private;
2673         unsigned long irqflags;
2674
2675         spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2676         dev_priv->de_irq_mask[pipe] &= ~GEN8_PIPE_VBLANK;
2677         I915_WRITE(GEN8_DE_PIPE_IMR(pipe), dev_priv->de_irq_mask[pipe]);
2678         POSTING_READ(GEN8_DE_PIPE_IMR(pipe));
2679         spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2680         return 0;
2681 }
2682
2683 /* Called from drm generic code, passed 'crtc' which
2684  * we use as a pipe index
2685  */
2686 static void i915_disable_vblank(struct drm_device *dev, unsigned int pipe)
2687 {
2688         struct drm_i915_private *dev_priv = dev->dev_private;
2689         unsigned long irqflags;
2690
2691         spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2692         i915_disable_pipestat(dev_priv, pipe,
2693                               PIPE_VBLANK_INTERRUPT_STATUS |
2694                               PIPE_START_VBLANK_INTERRUPT_STATUS);
2695         spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2696 }
2697
2698 static void ironlake_disable_vblank(struct drm_device *dev, unsigned int pipe)
2699 {
2700         struct drm_i915_private *dev_priv = dev->dev_private;
2701         unsigned long irqflags;
2702         uint32_t bit = (INTEL_INFO(dev)->gen >= 7) ? DE_PIPE_VBLANK_IVB(pipe) :
2703                                                      DE_PIPE_VBLANK(pipe);
2704
2705         spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2706         ironlake_disable_display_irq(dev_priv, bit);
2707         spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2708 }
2709
2710 static void valleyview_disable_vblank(struct drm_device *dev, unsigned int pipe)
2711 {
2712         struct drm_i915_private *dev_priv = dev->dev_private;
2713         unsigned long irqflags;
2714
2715         spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2716         i915_disable_pipestat(dev_priv, pipe,
2717                               PIPE_START_VBLANK_INTERRUPT_STATUS);
2718         spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2719 }
2720
2721 static void gen8_disable_vblank(struct drm_device *dev, unsigned int pipe)
2722 {
2723         struct drm_i915_private *dev_priv = dev->dev_private;
2724         unsigned long irqflags;
2725
2726         spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2727         dev_priv->de_irq_mask[pipe] |= GEN8_PIPE_VBLANK;
2728         I915_WRITE(GEN8_DE_PIPE_IMR(pipe), dev_priv->de_irq_mask[pipe]);
2729         POSTING_READ(GEN8_DE_PIPE_IMR(pipe));
2730         spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2731 }
2732
2733 static bool
2734 ring_idle(struct intel_engine_cs *ring, u32 seqno)
2735 {
2736         return (list_empty(&ring->request_list) ||
2737                 i915_seqno_passed(seqno, ring->last_submitted_seqno));
2738 }
2739
2740 static bool
2741 ipehr_is_semaphore_wait(struct drm_device *dev, u32 ipehr)
2742 {
2743         if (INTEL_INFO(dev)->gen >= 8) {
2744                 return (ipehr >> 23) == 0x1c;
2745         } else {
2746                 ipehr &= ~MI_SEMAPHORE_SYNC_MASK;
2747                 return ipehr == (MI_SEMAPHORE_MBOX | MI_SEMAPHORE_COMPARE |
2748                                  MI_SEMAPHORE_REGISTER);
2749         }
2750 }
2751
2752 static struct intel_engine_cs *
2753 semaphore_wait_to_signaller_ring(struct intel_engine_cs *ring, u32 ipehr, u64 offset)
2754 {
2755         struct drm_i915_private *dev_priv = ring->dev->dev_private;
2756         struct intel_engine_cs *signaller;
2757         int i;
2758
2759         if (INTEL_INFO(dev_priv->dev)->gen >= 8) {
2760                 for_each_ring(signaller, dev_priv, i) {
2761                         if (ring == signaller)
2762                                 continue;
2763
2764                         if (offset == signaller->semaphore.signal_ggtt[ring->id])
2765                                 return signaller;
2766                 }
2767         } else {
2768                 u32 sync_bits = ipehr & MI_SEMAPHORE_SYNC_MASK;
2769
2770                 for_each_ring(signaller, dev_priv, i) {
2771                         if(ring == signaller)
2772                                 continue;
2773
2774                         if (sync_bits == signaller->semaphore.mbox.wait[ring->id])
2775                                 return signaller;
2776                 }
2777         }
2778
2779         DRM_ERROR("No signaller ring found for ring %i, ipehr 0x%08x, offset 0x%016llx\n",
2780                   ring->id, ipehr, offset);
2781
2782         return NULL;
2783 }
2784
2785 static struct intel_engine_cs *
2786 semaphore_waits_for(struct intel_engine_cs *ring, u32 *seqno)
2787 {
2788         struct drm_i915_private *dev_priv = ring->dev->dev_private;
2789         u32 cmd, ipehr, head;
2790         u64 offset = 0;
2791         int i, backwards;
2792
2793         /*
2794          * This function does not support execlist mode - any attempt to
2795          * proceed further into this function will result in a kernel panic
2796          * when dereferencing ring->buffer, which is not set up in execlist
2797          * mode.
2798          *
2799          * The correct way of doing it would be to derive the currently
2800          * executing ring buffer from the current context, which is derived
2801          * from the currently running request. Unfortunately, to get the
2802          * current request we would have to grab the struct_mutex before doing
2803          * anything else, which would be ill-advised since some other thread
2804          * might have grabbed it already and managed to hang itself, causing
2805          * the hang checker to deadlock.
2806          *
2807          * Therefore, this function does not support execlist mode in its
2808          * current form. Just return NULL and move on.
2809          */
2810         if (ring->buffer == NULL)
2811                 return NULL;
2812
2813         ipehr = I915_READ(RING_IPEHR(ring->mmio_base));
2814         if (!ipehr_is_semaphore_wait(ring->dev, ipehr))
2815                 return NULL;
2816
2817         /*
2818          * HEAD is likely pointing to the dword after the actual command,
2819          * so scan backwards until we find the MBOX. But limit it to just 3
2820          * or 4 dwords depending on the semaphore wait command size.
2821          * Note that we don't care about ACTHD here since that might
2822          * point at at batch, and semaphores are always emitted into the
2823          * ringbuffer itself.
2824          */
2825         head = I915_READ_HEAD(ring) & HEAD_ADDR;
2826         backwards = (INTEL_INFO(ring->dev)->gen >= 8) ? 5 : 4;
2827
2828         for (i = backwards; i; --i) {
2829                 /*
2830                  * Be paranoid and presume the hw has gone off into the wild -
2831                  * our ring is smaller than what the hardware (and hence
2832                  * HEAD_ADDR) allows. Also handles wrap-around.
2833                  */
2834                 head &= ring->buffer->size - 1;
2835
2836                 /* This here seems to blow up */
2837                 cmd = ioread32(ring->buffer->virtual_start + head);
2838                 if (cmd == ipehr)
2839                         break;
2840
2841                 head -= 4;
2842         }
2843
2844         if (!i)
2845                 return NULL;
2846
2847         *seqno = ioread32(ring->buffer->virtual_start + head + 4) + 1;
2848         if (INTEL_INFO(ring->dev)->gen >= 8) {
2849                 offset = ioread32(ring->buffer->virtual_start + head + 12);
2850                 offset <<= 32;
2851                 offset = ioread32(ring->buffer->virtual_start + head + 8);
2852         }
2853         return semaphore_wait_to_signaller_ring(ring, ipehr, offset);
2854 }
2855
2856 static int semaphore_passed(struct intel_engine_cs *ring)
2857 {
2858         struct drm_i915_private *dev_priv = ring->dev->dev_private;
2859         struct intel_engine_cs *signaller;
2860         u32 seqno;
2861
2862         ring->hangcheck.deadlock++;
2863
2864         signaller = semaphore_waits_for(ring, &seqno);
2865         if (signaller == NULL)
2866                 return -1;
2867
2868         /* Prevent pathological recursion due to driver bugs */
2869         if (signaller->hangcheck.deadlock >= I915_NUM_RINGS)
2870                 return -1;
2871
2872         if (i915_seqno_passed(signaller->get_seqno(signaller, false), seqno))
2873                 return 1;
2874
2875         /* cursory check for an unkickable deadlock */
2876         if (I915_READ_CTL(signaller) & RING_WAIT_SEMAPHORE &&
2877             semaphore_passed(signaller) < 0)
2878                 return -1;
2879
2880         return 0;
2881 }
2882
2883 static void semaphore_clear_deadlocks(struct drm_i915_private *dev_priv)
2884 {
2885         struct intel_engine_cs *ring;
2886         int i;
2887
2888         for_each_ring(ring, dev_priv, i)
2889                 ring->hangcheck.deadlock = 0;
2890 }
2891
2892 static enum intel_ring_hangcheck_action
2893 ring_stuck(struct intel_engine_cs *ring, u64 acthd)
2894 {
2895         struct drm_device *dev = ring->dev;
2896         struct drm_i915_private *dev_priv = dev->dev_private;
2897         u32 tmp;
2898
2899         if (acthd != ring->hangcheck.acthd) {
2900                 if (acthd > ring->hangcheck.max_acthd) {
2901                         ring->hangcheck.max_acthd = acthd;
2902                         return HANGCHECK_ACTIVE;
2903                 }
2904
2905                 return HANGCHECK_ACTIVE_LOOP;
2906         }
2907
2908         if (IS_GEN2(dev))
2909                 return HANGCHECK_HUNG;
2910
2911         /* Is the chip hanging on a WAIT_FOR_EVENT?
2912          * If so we can simply poke the RB_WAIT bit
2913          * and break the hang. This should work on
2914          * all but the second generation chipsets.
2915          */
2916         tmp = I915_READ_CTL(ring);
2917         if (tmp & RING_WAIT) {
2918                 i915_handle_error(dev, false,
2919                                   "Kicking stuck wait on %s",
2920                                   ring->name);
2921                 I915_WRITE_CTL(ring, tmp);
2922                 return HANGCHECK_KICK;
2923         }
2924
2925         if (INTEL_INFO(dev)->gen >= 6 && tmp & RING_WAIT_SEMAPHORE) {
2926                 switch (semaphore_passed(ring)) {
2927                 default:
2928                         return HANGCHECK_HUNG;
2929                 case 1:
2930                         i915_handle_error(dev, false,
2931                                           "Kicking stuck semaphore on %s",
2932                                           ring->name);
2933                         I915_WRITE_CTL(ring, tmp);
2934                         return HANGCHECK_KICK;
2935                 case 0:
2936                         return HANGCHECK_WAIT;
2937                 }
2938         }
2939
2940         return HANGCHECK_HUNG;
2941 }
2942
2943 /*
2944  * This is called when the chip hasn't reported back with completed
2945  * batchbuffers in a long time. We keep track per ring seqno progress and
2946  * if there are no progress, hangcheck score for that ring is increased.
2947  * Further, acthd is inspected to see if the ring is stuck. On stuck case
2948  * we kick the ring. If we see no progress on three subsequent calls
2949  * we assume chip is wedged and try to fix it by resetting the chip.
2950  */
2951 static void i915_hangcheck_elapsed(struct work_struct *work)
2952 {
2953         struct drm_i915_private *dev_priv =
2954                 container_of(work, typeof(*dev_priv),
2955                              gpu_error.hangcheck_work.work);
2956         struct drm_device *dev = dev_priv->dev;
2957         struct intel_engine_cs *ring;
2958         int i;
2959         int busy_count = 0, rings_hung = 0;
2960         bool stuck[I915_NUM_RINGS] = { 0 };
2961 #define BUSY 1
2962 #define KICK 5
2963 #define HUNG 20
2964
2965         if (!i915.enable_hangcheck)
2966                 return;
2967
2968         for_each_ring(ring, dev_priv, i) {
2969                 u64 acthd;
2970                 u32 seqno;
2971                 bool busy = true;
2972
2973                 semaphore_clear_deadlocks(dev_priv);
2974
2975                 seqno = ring->get_seqno(ring, false);
2976                 acthd = intel_ring_get_active_head(ring);
2977
2978                 if (ring->hangcheck.seqno == seqno) {
2979                         if (ring_idle(ring, seqno)) {
2980                                 ring->hangcheck.action = HANGCHECK_IDLE;
2981
2982                                 if (waitqueue_active(&ring->irq_queue)) {
2983                                         /* Issue a wake-up to catch stuck h/w. */
2984                                         if (!test_and_set_bit(ring->id, &dev_priv->gpu_error.missed_irq_rings)) {
2985                                                 if (!(dev_priv->gpu_error.test_irq_rings & intel_ring_flag(ring)))
2986                                                         DRM_ERROR("Hangcheck timer elapsed... %s idle\n",
2987                                                                   ring->name);
2988                                                 else
2989                                                         DRM_INFO("Fake missed irq on %s\n",
2990                                                                  ring->name);
2991                                                 wake_up_all(&ring->irq_queue);
2992                                         }
2993                                         /* Safeguard against driver failure */
2994                                         ring->hangcheck.score += BUSY;
2995                                 } else
2996                                         busy = false;
2997                         } else {
2998                                 /* We always increment the hangcheck score
2999                                  * if the ring is busy and still processing
3000                                  * the same request, so that no single request
3001                                  * can run indefinitely (such as a chain of
3002                                  * batches). The only time we do not increment
3003                                  * the hangcheck score on this ring, if this
3004                                  * ring is in a legitimate wait for another
3005                                  * ring. In that case the waiting ring is a
3006                                  * victim and we want to be sure we catch the
3007                                  * right culprit. Then every time we do kick
3008                                  * the ring, add a small increment to the
3009                                  * score so that we can catch a batch that is
3010                                  * being repeatedly kicked and so responsible
3011                                  * for stalling the machine.
3012                                  */
3013                                 ring->hangcheck.action = ring_stuck(ring,
3014                                                                     acthd);
3015
3016                                 switch (ring->hangcheck.action) {
3017                                 case HANGCHECK_IDLE:
3018                                 case HANGCHECK_WAIT:
3019                                 case HANGCHECK_ACTIVE:
3020                                         break;
3021                                 case HANGCHECK_ACTIVE_LOOP:
3022                                         ring->hangcheck.score += BUSY;
3023                                         break;
3024                                 case HANGCHECK_KICK:
3025                                         ring->hangcheck.score += KICK;
3026                                         break;
3027                                 case HANGCHECK_HUNG:
3028                                         ring->hangcheck.score += HUNG;
3029                                         stuck[i] = true;
3030                                         break;
3031                                 }
3032                         }
3033                 } else {
3034                         ring->hangcheck.action = HANGCHECK_ACTIVE;
3035
3036                         /* Gradually reduce the count so that we catch DoS
3037                          * attempts across multiple batches.
3038                          */
3039                         if (ring->hangcheck.score > 0)
3040                                 ring->hangcheck.score--;
3041
3042                         ring->hangcheck.acthd = ring->hangcheck.max_acthd = 0;
3043                 }
3044
3045                 ring->hangcheck.seqno = seqno;
3046                 ring->hangcheck.acthd = acthd;
3047                 busy_count += busy;
3048         }
3049
3050         for_each_ring(ring, dev_priv, i) {
3051                 if (ring->hangcheck.score >= HANGCHECK_SCORE_RING_HUNG) {
3052                         DRM_INFO("%s on %s\n",
3053                                  stuck[i] ? "stuck" : "no progress",
3054                                  ring->name);
3055                         rings_hung++;
3056                 }
3057         }
3058
3059         if (rings_hung)
3060                 return i915_handle_error(dev, true, "Ring hung");
3061
3062         if (busy_count)
3063                 /* Reset timer case chip hangs without another request
3064                  * being added */
3065                 i915_queue_hangcheck(dev);
3066 }
3067
3068 void i915_queue_hangcheck(struct drm_device *dev)
3069 {
3070         struct i915_gpu_error *e = &to_i915(dev)->gpu_error;
3071
3072         if (!i915.enable_hangcheck)
3073                 return;
3074
3075         /* Don't continually defer the hangcheck so that it is always run at
3076          * least once after work has been scheduled on any ring. Otherwise,
3077          * we will ignore a hung ring if a second ring is kept busy.
3078          */
3079
3080         queue_delayed_work(e->hangcheck_wq, &e->hangcheck_work,
3081                            round_jiffies_up_relative(DRM_I915_HANGCHECK_JIFFIES));
3082 }
3083
3084 static void ibx_irq_reset(struct drm_device *dev)
3085 {
3086         struct drm_i915_private *dev_priv = dev->dev_private;
3087
3088         if (HAS_PCH_NOP(dev))
3089                 return;
3090
3091         GEN5_IRQ_RESET(SDE);
3092
3093         if (HAS_PCH_CPT(dev) || HAS_PCH_LPT(dev))
3094                 I915_WRITE(SERR_INT, 0xffffffff);
3095 }
3096
3097 /*
3098  * SDEIER is also touched by the interrupt handler to work around missed PCH
3099  * interrupts. Hence we can't update it after the interrupt handler is enabled -
3100  * instead we unconditionally enable all PCH interrupt sources here, but then
3101  * only unmask them as needed with SDEIMR.
3102  *
3103  * This function needs to be called before interrupts are enabled.
3104  */
3105 static void ibx_irq_pre_postinstall(struct drm_device *dev)
3106 {
3107         struct drm_i915_private *dev_priv = dev->dev_private;
3108
3109         if (HAS_PCH_NOP(dev))
3110                 return;
3111
3112         WARN_ON(I915_READ(SDEIER) != 0);
3113         I915_WRITE(SDEIER, 0xffffffff);
3114         POSTING_READ(SDEIER);
3115 }
3116
3117 static void gen5_gt_irq_reset(struct drm_device *dev)
3118 {
3119         struct drm_i915_private *dev_priv = dev->dev_private;
3120
3121         GEN5_IRQ_RESET(GT);
3122         if (INTEL_INFO(dev)->gen >= 6)
3123                 GEN5_IRQ_RESET(GEN6_PM);
3124 }
3125
3126 /* drm_dma.h hooks
3127 */
3128 static void ironlake_irq_reset(struct drm_device *dev)
3129 {
3130         struct drm_i915_private *dev_priv = dev->dev_private;
3131
3132         I915_WRITE(HWSTAM, 0xffffffff);
3133
3134         GEN5_IRQ_RESET(DE);
3135         if (IS_GEN7(dev))
3136                 I915_WRITE(GEN7_ERR_INT, 0xffffffff);
3137
3138         gen5_gt_irq_reset(dev);
3139
3140         ibx_irq_reset(dev);
3141 }
3142
3143 static void vlv_display_irq_reset(struct drm_i915_private *dev_priv)
3144 {
3145         enum pipe pipe;
3146
3147         i915_hotplug_interrupt_update(dev_priv, 0xFFFFFFFF, 0);
3148         I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
3149
3150         for_each_pipe(dev_priv, pipe)
3151                 I915_WRITE(PIPESTAT(pipe), 0xffff);
3152
3153         GEN5_IRQ_RESET(VLV_);
3154 }
3155
3156 static void valleyview_irq_preinstall(struct drm_device *dev)
3157 {
3158         struct drm_i915_private *dev_priv = dev->dev_private;
3159
3160         /* VLV magic */
3161         I915_WRITE(VLV_IMR, 0);
3162         I915_WRITE(RING_IMR(RENDER_RING_BASE), 0);
3163         I915_WRITE(RING_IMR(GEN6_BSD_RING_BASE), 0);
3164         I915_WRITE(RING_IMR(BLT_RING_BASE), 0);
3165
3166         gen5_gt_irq_reset(dev);
3167
3168         I915_WRITE(DPINVGTT, DPINVGTT_STATUS_MASK);
3169
3170         vlv_display_irq_reset(dev_priv);
3171 }
3172
3173 static void gen8_gt_irq_reset(struct drm_i915_private *dev_priv)
3174 {
3175         GEN8_IRQ_RESET_NDX(GT, 0);
3176         GEN8_IRQ_RESET_NDX(GT, 1);
3177         GEN8_IRQ_RESET_NDX(GT, 2);
3178         GEN8_IRQ_RESET_NDX(GT, 3);
3179 }
3180
3181 static void gen8_irq_reset(struct drm_device *dev)
3182 {
3183         struct drm_i915_private *dev_priv = dev->dev_private;
3184         int pipe;
3185
3186         I915_WRITE(GEN8_MASTER_IRQ, 0);
3187         POSTING_READ(GEN8_MASTER_IRQ);
3188
3189         gen8_gt_irq_reset(dev_priv);
3190
3191         for_each_pipe(dev_priv, pipe)
3192                 if (intel_display_power_is_enabled(dev_priv,
3193                                                    POWER_DOMAIN_PIPE(pipe)))
3194                         GEN8_IRQ_RESET_NDX(DE_PIPE, pipe);
3195
3196         GEN5_IRQ_RESET(GEN8_DE_PORT_);
3197         GEN5_IRQ_RESET(GEN8_DE_MISC_);
3198         GEN5_IRQ_RESET(GEN8_PCU_);
3199
3200         if (HAS_PCH_SPLIT(dev))
3201                 ibx_irq_reset(dev);
3202 }
3203
3204 void gen8_irq_power_well_post_enable(struct drm_i915_private *dev_priv,
3205                                      unsigned int pipe_mask)
3206 {
3207         uint32_t extra_ier = GEN8_PIPE_VBLANK | GEN8_PIPE_FIFO_UNDERRUN;
3208
3209         spin_lock_irq(&dev_priv->irq_lock);
3210         if (pipe_mask & 1 << PIPE_A)
3211                 GEN8_IRQ_INIT_NDX(DE_PIPE, PIPE_A,
3212                                   dev_priv->de_irq_mask[PIPE_A],
3213                                   ~dev_priv->de_irq_mask[PIPE_A] | extra_ier);
3214         if (pipe_mask & 1 << PIPE_B)
3215                 GEN8_IRQ_INIT_NDX(DE_PIPE, PIPE_B,
3216                                   dev_priv->de_irq_mask[PIPE_B],
3217                                   ~dev_priv->de_irq_mask[PIPE_B] | extra_ier);
3218         if (pipe_mask & 1 << PIPE_C)
3219                 GEN8_IRQ_INIT_NDX(DE_PIPE, PIPE_C,
3220                                   dev_priv->de_irq_mask[PIPE_C],
3221                                   ~dev_priv->de_irq_mask[PIPE_C] | extra_ier);
3222         spin_unlock_irq(&dev_priv->irq_lock);
3223 }
3224
3225 static void cherryview_irq_preinstall(struct drm_device *dev)
3226 {
3227         struct drm_i915_private *dev_priv = dev->dev_private;
3228
3229         I915_WRITE(GEN8_MASTER_IRQ, 0);
3230         POSTING_READ(GEN8_MASTER_IRQ);
3231
3232         gen8_gt_irq_reset(dev_priv);
3233
3234         GEN5_IRQ_RESET(GEN8_PCU_);
3235
3236         I915_WRITE(DPINVGTT, DPINVGTT_STATUS_MASK_CHV);
3237
3238         vlv_display_irq_reset(dev_priv);
3239 }
3240
3241 static u32 intel_hpd_enabled_irqs(struct drm_device *dev,
3242                                   const u32 hpd[HPD_NUM_PINS])
3243 {
3244         struct drm_i915_private *dev_priv = to_i915(dev);
3245         struct intel_encoder *encoder;
3246         u32 enabled_irqs = 0;
3247
3248         for_each_intel_encoder(dev, encoder)
3249                 if (dev_priv->hotplug.stats[encoder->hpd_pin].state == HPD_ENABLED)
3250                         enabled_irqs |= hpd[encoder->hpd_pin];
3251
3252         return enabled_irqs;
3253 }
3254
3255 static void ibx_hpd_irq_setup(struct drm_device *dev)
3256 {
3257         struct drm_i915_private *dev_priv = dev->dev_private;
3258         u32 hotplug_irqs, hotplug, enabled_irqs;
3259
3260         if (HAS_PCH_IBX(dev)) {
3261                 hotplug_irqs = SDE_HOTPLUG_MASK;
3262                 enabled_irqs = intel_hpd_enabled_irqs(dev, hpd_ibx);
3263         } else {
3264                 hotplug_irqs = SDE_HOTPLUG_MASK_CPT;
3265                 enabled_irqs = intel_hpd_enabled_irqs(dev, hpd_cpt);
3266         }
3267
3268         ibx_display_interrupt_update(dev_priv, hotplug_irqs, enabled_irqs);
3269
3270         /*
3271          * Enable digital hotplug on the PCH, and configure the DP short pulse
3272          * duration to 2ms (which is the minimum in the Display Port spec).
3273          * The pulse duration bits are reserved on LPT+.
3274          */
3275         hotplug = I915_READ(PCH_PORT_HOTPLUG);
3276         hotplug &= ~(PORTD_PULSE_DURATION_MASK|PORTC_PULSE_DURATION_MASK|PORTB_PULSE_DURATION_MASK);
3277         hotplug |= PORTD_HOTPLUG_ENABLE | PORTD_PULSE_DURATION_2ms;
3278         hotplug |= PORTC_HOTPLUG_ENABLE | PORTC_PULSE_DURATION_2ms;
3279         hotplug |= PORTB_HOTPLUG_ENABLE | PORTB_PULSE_DURATION_2ms;
3280         /*
3281          * When CPU and PCH are on the same package, port A
3282          * HPD must be enabled in both north and south.
3283          */
3284         if (HAS_PCH_LPT_LP(dev))
3285                 hotplug |= PORTA_HOTPLUG_ENABLE;
3286         I915_WRITE(PCH_PORT_HOTPLUG, hotplug);
3287 }
3288
3289 static void spt_hpd_irq_setup(struct drm_device *dev)
3290 {
3291         struct drm_i915_private *dev_priv = dev->dev_private;
3292         u32 hotplug_irqs, hotplug, enabled_irqs;
3293
3294         hotplug_irqs = SDE_HOTPLUG_MASK_SPT;
3295         enabled_irqs = intel_hpd_enabled_irqs(dev, hpd_spt);
3296
3297         ibx_display_interrupt_update(dev_priv, hotplug_irqs, enabled_irqs);
3298
3299         /* Enable digital hotplug on the PCH */
3300         hotplug = I915_READ(PCH_PORT_HOTPLUG);
3301         hotplug |= PORTD_HOTPLUG_ENABLE | PORTC_HOTPLUG_ENABLE |
3302                 PORTB_HOTPLUG_ENABLE | PORTA_HOTPLUG_ENABLE;
3303         I915_WRITE(PCH_PORT_HOTPLUG, hotplug);
3304
3305         hotplug = I915_READ(PCH_PORT_HOTPLUG2);
3306         hotplug |= PORTE_HOTPLUG_ENABLE;
3307         I915_WRITE(PCH_PORT_HOTPLUG2, hotplug);
3308 }
3309
3310 static void ilk_hpd_irq_setup(struct drm_device *dev)
3311 {
3312         struct drm_i915_private *dev_priv = dev->dev_private;
3313         u32 hotplug_irqs, hotplug, enabled_irqs;
3314
3315         if (INTEL_INFO(dev)->gen >= 8) {
3316                 hotplug_irqs = GEN8_PORT_DP_A_HOTPLUG;
3317                 enabled_irqs = intel_hpd_enabled_irqs(dev, hpd_bdw);
3318
3319                 bdw_update_port_irq(dev_priv, hotplug_irqs, enabled_irqs);
3320         } else if (INTEL_INFO(dev)->gen >= 7) {
3321                 hotplug_irqs = DE_DP_A_HOTPLUG_IVB;
3322                 enabled_irqs = intel_hpd_enabled_irqs(dev, hpd_ivb);
3323
3324                 ilk_update_display_irq(dev_priv, hotplug_irqs, enabled_irqs);
3325         } else {
3326                 hotplug_irqs = DE_DP_A_HOTPLUG;
3327                 enabled_irqs = intel_hpd_enabled_irqs(dev, hpd_ilk);
3328
3329                 ilk_update_display_irq(dev_priv, hotplug_irqs, enabled_irqs);
3330         }
3331
3332         /*
3333          * Enable digital hotplug on the CPU, and configure the DP short pulse
3334          * duration to 2ms (which is the minimum in the Display Port spec)
3335          * The pulse duration bits are reserved on HSW+.
3336          */
3337         hotplug = I915_READ(DIGITAL_PORT_HOTPLUG_CNTRL);
3338         hotplug &= ~DIGITAL_PORTA_PULSE_DURATION_MASK;
3339         hotplug |= DIGITAL_PORTA_HOTPLUG_ENABLE | DIGITAL_PORTA_PULSE_DURATION_2ms;
3340         I915_WRITE(DIGITAL_PORT_HOTPLUG_CNTRL, hotplug);
3341
3342         ibx_hpd_irq_setup(dev);
3343 }
3344
3345 static void bxt_hpd_irq_setup(struct drm_device *dev)
3346 {
3347         struct drm_i915_private *dev_priv = dev->dev_private;
3348         u32 hotplug_irqs, hotplug, enabled_irqs;
3349
3350         enabled_irqs = intel_hpd_enabled_irqs(dev, hpd_bxt);
3351         hotplug_irqs = BXT_DE_PORT_HOTPLUG_MASK;
3352
3353         bdw_update_port_irq(dev_priv, hotplug_irqs, enabled_irqs);
3354
3355         hotplug = I915_READ(PCH_PORT_HOTPLUG);
3356         hotplug |= PORTC_HOTPLUG_ENABLE | PORTB_HOTPLUG_ENABLE |
3357                 PORTA_HOTPLUG_ENABLE;
3358         I915_WRITE(PCH_PORT_HOTPLUG, hotplug);
3359 }
3360
3361 static void ibx_irq_postinstall(struct drm_device *dev)
3362 {
3363         struct drm_i915_private *dev_priv = dev->dev_private;
3364         u32 mask;
3365
3366         if (HAS_PCH_NOP(dev))
3367                 return;
3368
3369         if (HAS_PCH_IBX(dev))
3370                 mask = SDE_GMBUS | SDE_AUX_MASK | SDE_POISON;
3371         else
3372                 mask = SDE_GMBUS_CPT | SDE_AUX_MASK_CPT;
3373
3374         gen5_assert_iir_is_zero(dev_priv, SDEIIR);
3375         I915_WRITE(SDEIMR, ~mask);
3376 }
3377
3378 static void gen5_gt_irq_postinstall(struct drm_device *dev)
3379 {
3380         struct drm_i915_private *dev_priv = dev->dev_private;
3381         u32 pm_irqs, gt_irqs;
3382
3383         pm_irqs = gt_irqs = 0;
3384
3385         dev_priv->gt_irq_mask = ~0;
3386         if (HAS_L3_DPF(dev)) {
3387                 /* L3 parity interrupt is always unmasked. */
3388                 dev_priv->gt_irq_mask = ~GT_PARITY_ERROR(dev);
3389                 gt_irqs |= GT_PARITY_ERROR(dev);
3390         }
3391
3392         gt_irqs |= GT_RENDER_USER_INTERRUPT;
3393         if (IS_GEN5(dev)) {
3394                 gt_irqs |= GT_RENDER_PIPECTL_NOTIFY_INTERRUPT |
3395                            ILK_BSD_USER_INTERRUPT;
3396         } else {
3397                 gt_irqs |= GT_BLT_USER_INTERRUPT | GT_BSD_USER_INTERRUPT;
3398         }
3399
3400         GEN5_IRQ_INIT(GT, dev_priv->gt_irq_mask, gt_irqs);
3401
3402         if (INTEL_INFO(dev)->gen >= 6) {
3403                 /*
3404                  * RPS interrupts will get enabled/disabled on demand when RPS
3405                  * itself is enabled/disabled.
3406                  */
3407                 if (HAS_VEBOX(dev))
3408                         pm_irqs |= PM_VEBOX_USER_INTERRUPT;
3409
3410                 dev_priv->pm_irq_mask = 0xffffffff;
3411                 GEN5_IRQ_INIT(GEN6_PM, dev_priv->pm_irq_mask, pm_irqs);
3412         }
3413 }
3414
3415 static int ironlake_irq_postinstall(struct drm_device *dev)
3416 {
3417         struct drm_i915_private *dev_priv = dev->dev_private;
3418         u32 display_mask, extra_mask;
3419
3420         if (INTEL_INFO(dev)->gen >= 7) {
3421                 display_mask = (DE_MASTER_IRQ_CONTROL | DE_GSE_IVB |
3422                                 DE_PCH_EVENT_IVB | DE_PLANEC_FLIP_DONE_IVB |
3423                                 DE_PLANEB_FLIP_DONE_IVB |
3424                                 DE_PLANEA_FLIP_DONE_IVB | DE_AUX_CHANNEL_A_IVB);
3425                 extra_mask = (DE_PIPEC_VBLANK_IVB | DE_PIPEB_VBLANK_IVB |
3426                               DE_PIPEA_VBLANK_IVB | DE_ERR_INT_IVB |
3427                               DE_DP_A_HOTPLUG_IVB);
3428         } else {
3429                 display_mask = (DE_MASTER_IRQ_CONTROL | DE_GSE | DE_PCH_EVENT |
3430                                 DE_PLANEA_FLIP_DONE | DE_PLANEB_FLIP_DONE |
3431                                 DE_AUX_CHANNEL_A |
3432                                 DE_PIPEB_CRC_DONE | DE_PIPEA_CRC_DONE |
3433                                 DE_POISON);
3434                 extra_mask = (DE_PIPEA_VBLANK | DE_PIPEB_VBLANK | DE_PCU_EVENT |
3435                               DE_PIPEB_FIFO_UNDERRUN | DE_PIPEA_FIFO_UNDERRUN |
3436                               DE_DP_A_HOTPLUG);
3437         }
3438
3439         dev_priv->irq_mask = ~display_mask;
3440
3441         I915_WRITE(HWSTAM, 0xeffe);
3442
3443         ibx_irq_pre_postinstall(dev);
3444
3445         GEN5_IRQ_INIT(DE, dev_priv->irq_mask, display_mask | extra_mask);
3446
3447         gen5_gt_irq_postinstall(dev);
3448
3449         ibx_irq_postinstall(dev);
3450
3451         if (IS_IRONLAKE_M(dev)) {
3452                 /* Enable PCU event interrupts
3453                  *
3454                  * spinlocking not required here for correctness since interrupt
3455                  * setup is guaranteed to run in single-threaded context. But we
3456                  * need it to make the assert_spin_locked happy. */
3457                 spin_lock_irq(&dev_priv->irq_lock);
3458                 ironlake_enable_display_irq(dev_priv, DE_PCU_EVENT);
3459                 spin_unlock_irq(&dev_priv->irq_lock);
3460         }
3461
3462         return 0;
3463 }
3464
3465 static void valleyview_display_irqs_install(struct drm_i915_private *dev_priv)
3466 {
3467         u32 pipestat_mask;
3468         u32 iir_mask;
3469         enum pipe pipe;
3470
3471         pipestat_mask = PIPESTAT_INT_STATUS_MASK |
3472                         PIPE_FIFO_UNDERRUN_STATUS;
3473
3474         for_each_pipe(dev_priv, pipe)
3475                 I915_WRITE(PIPESTAT(pipe), pipestat_mask);
3476         POSTING_READ(PIPESTAT(PIPE_A));
3477
3478         pipestat_mask = PLANE_FLIP_DONE_INT_STATUS_VLV |
3479                         PIPE_CRC_DONE_INTERRUPT_STATUS;
3480
3481         i915_enable_pipestat(dev_priv, PIPE_A, PIPE_GMBUS_INTERRUPT_STATUS);
3482         for_each_pipe(dev_priv, pipe)
3483                       i915_enable_pipestat(dev_priv, pipe, pipestat_mask);
3484
3485         iir_mask = I915_DISPLAY_PORT_INTERRUPT |
3486                    I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
3487                    I915_DISPLAY_PIPE_B_EVENT_INTERRUPT;
3488         if (IS_CHERRYVIEW(dev_priv))
3489                 iir_mask |= I915_DISPLAY_PIPE_C_EVENT_INTERRUPT;
3490         dev_priv->irq_mask &= ~iir_mask;
3491
3492         I915_WRITE(VLV_IIR, iir_mask);
3493         I915_WRITE(VLV_IIR, iir_mask);
3494         I915_WRITE(VLV_IER, ~dev_priv->irq_mask);
3495         I915_WRITE(VLV_IMR, dev_priv->irq_mask);
3496         POSTING_READ(VLV_IMR);
3497 }
3498
3499 static void valleyview_display_irqs_uninstall(struct drm_i915_private *dev_priv)
3500 {
3501         u32 pipestat_mask;
3502         u32 iir_mask;
3503         enum pipe pipe;
3504
3505         iir_mask = I915_DISPLAY_PORT_INTERRUPT |
3506                    I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
3507                    I915_DISPLAY_PIPE_B_EVENT_INTERRUPT;
3508         if (IS_CHERRYVIEW(dev_priv))
3509                 iir_mask |= I915_DISPLAY_PIPE_C_EVENT_INTERRUPT;
3510
3511         dev_priv->irq_mask |= iir_mask;
3512         I915_WRITE(VLV_IMR, dev_priv->irq_mask);
3513         I915_WRITE(VLV_IER, ~dev_priv->irq_mask);
3514         I915_WRITE(VLV_IIR, iir_mask);
3515         I915_WRITE(VLV_IIR, iir_mask);
3516         POSTING_READ(VLV_IIR);
3517
3518         pipestat_mask = PLANE_FLIP_DONE_INT_STATUS_VLV |
3519                         PIPE_CRC_DONE_INTERRUPT_STATUS;
3520
3521         i915_disable_pipestat(dev_priv, PIPE_A, PIPE_GMBUS_INTERRUPT_STATUS);
3522         for_each_pipe(dev_priv, pipe)
3523                 i915_disable_pipestat(dev_priv, pipe, pipestat_mask);
3524
3525         pipestat_mask = PIPESTAT_INT_STATUS_MASK |
3526                         PIPE_FIFO_UNDERRUN_STATUS;
3527
3528         for_each_pipe(dev_priv, pipe)
3529                 I915_WRITE(PIPESTAT(pipe), pipestat_mask);
3530         POSTING_READ(PIPESTAT(PIPE_A));
3531 }
3532
3533 void valleyview_enable_display_irqs(struct drm_i915_private *dev_priv)
3534 {
3535         assert_spin_locked(&dev_priv->irq_lock);
3536
3537         if (dev_priv->display_irqs_enabled)
3538                 return;
3539
3540         dev_priv->display_irqs_enabled = true;
3541
3542         if (intel_irqs_enabled(dev_priv))
3543                 valleyview_display_irqs_install(dev_priv);
3544 }
3545
3546 void valleyview_disable_display_irqs(struct drm_i915_private *dev_priv)
3547 {
3548         assert_spin_locked(&dev_priv->irq_lock);
3549
3550         if (!dev_priv->display_irqs_enabled)
3551                 return;
3552
3553         dev_priv->display_irqs_enabled = false;
3554
3555         if (intel_irqs_enabled(dev_priv))
3556                 valleyview_display_irqs_uninstall(dev_priv);
3557 }
3558
3559 static void vlv_display_irq_postinstall(struct drm_i915_private *dev_priv)
3560 {
3561         dev_priv->irq_mask = ~0;
3562
3563         i915_hotplug_interrupt_update(dev_priv, 0xffffffff, 0);
3564         POSTING_READ(PORT_HOTPLUG_EN);
3565
3566         I915_WRITE(VLV_IIR, 0xffffffff);
3567         I915_WRITE(VLV_IIR, 0xffffffff);
3568         I915_WRITE(VLV_IER, ~dev_priv->irq_mask);
3569         I915_WRITE(VLV_IMR, dev_priv->irq_mask);
3570         POSTING_READ(VLV_IMR);
3571
3572         /* Interrupt setup is already guaranteed to be single-threaded, this is
3573          * just to make the assert_spin_locked check happy. */
3574         spin_lock_irq(&dev_priv->irq_lock);
3575         if (dev_priv->display_irqs_enabled)
3576                 valleyview_display_irqs_install(dev_priv);
3577         spin_unlock_irq(&dev_priv->irq_lock);
3578 }
3579
3580 static int valleyview_irq_postinstall(struct drm_device *dev)
3581 {
3582         struct drm_i915_private *dev_priv = dev->dev_private;
3583
3584         vlv_display_irq_postinstall(dev_priv);
3585
3586         gen5_gt_irq_postinstall(dev);
3587
3588         /* ack & enable invalid PTE error interrupts */
3589 #if 0 /* FIXME: add support to irq handler for checking these bits */
3590         I915_WRITE(DPINVGTT, DPINVGTT_STATUS_MASK);
3591         I915_WRITE(DPINVGTT, DPINVGTT_EN_MASK);
3592 #endif
3593
3594         I915_WRITE(VLV_MASTER_IER, MASTER_INTERRUPT_ENABLE);
3595
3596         return 0;
3597 }
3598
3599 static void gen8_gt_irq_postinstall(struct drm_i915_private *dev_priv)
3600 {
3601         /* These are interrupts we'll toggle with the ring mask register */
3602         uint32_t gt_interrupts[] = {
3603                 GT_RENDER_USER_INTERRUPT << GEN8_RCS_IRQ_SHIFT |
3604                         GT_CONTEXT_SWITCH_INTERRUPT << GEN8_RCS_IRQ_SHIFT |
3605                         GT_RENDER_L3_PARITY_ERROR_INTERRUPT |
3606                         GT_RENDER_USER_INTERRUPT << GEN8_BCS_IRQ_SHIFT |
3607                         GT_CONTEXT_SWITCH_INTERRUPT << GEN8_BCS_IRQ_SHIFT,
3608                 GT_RENDER_USER_INTERRUPT << GEN8_VCS1_IRQ_SHIFT |
3609                         GT_CONTEXT_SWITCH_INTERRUPT << GEN8_VCS1_IRQ_SHIFT |
3610                         GT_RENDER_USER_INTERRUPT << GEN8_VCS2_IRQ_SHIFT |
3611                         GT_CONTEXT_SWITCH_INTERRUPT << GEN8_VCS2_IRQ_SHIFT,
3612                 0,
3613                 GT_RENDER_USER_INTERRUPT << GEN8_VECS_IRQ_SHIFT |
3614                         GT_CONTEXT_SWITCH_INTERRUPT << GEN8_VECS_IRQ_SHIFT
3615                 };
3616
3617         dev_priv->pm_irq_mask = 0xffffffff;
3618         GEN8_IRQ_INIT_NDX(GT, 0, ~gt_interrupts[0], gt_interrupts[0]);
3619         GEN8_IRQ_INIT_NDX(GT, 1, ~gt_interrupts[1], gt_interrupts[1]);
3620         /*
3621          * RPS interrupts will get enabled/disabled on demand when RPS itself
3622          * is enabled/disabled.
3623          */
3624         GEN8_IRQ_INIT_NDX(GT, 2, dev_priv->pm_irq_mask, 0);
3625         GEN8_IRQ_INIT_NDX(GT, 3, ~gt_interrupts[3], gt_interrupts[3]);
3626 }
3627
3628 static void gen8_de_irq_postinstall(struct drm_i915_private *dev_priv)
3629 {
3630         uint32_t de_pipe_masked = GEN8_PIPE_CDCLK_CRC_DONE;
3631         uint32_t de_pipe_enables;
3632         u32 de_port_masked = GEN8_AUX_CHANNEL_A;
3633         u32 de_port_enables;
3634         enum pipe pipe;
3635
3636         if (INTEL_INFO(dev_priv)->gen >= 9) {
3637                 de_pipe_masked |= GEN9_PIPE_PLANE1_FLIP_DONE |
3638                                   GEN9_DE_PIPE_IRQ_FAULT_ERRORS;
3639                 de_port_masked |= GEN9_AUX_CHANNEL_B | GEN9_AUX_CHANNEL_C |
3640                                   GEN9_AUX_CHANNEL_D;
3641                 if (IS_BROXTON(dev_priv))
3642                         de_port_masked |= BXT_DE_PORT_GMBUS;
3643         } else {
3644                 de_pipe_masked |= GEN8_PIPE_PRIMARY_FLIP_DONE |
3645                                   GEN8_DE_PIPE_IRQ_FAULT_ERRORS;
3646         }
3647
3648         de_pipe_enables = de_pipe_masked | GEN8_PIPE_VBLANK |
3649                                            GEN8_PIPE_FIFO_UNDERRUN;
3650
3651         de_port_enables = de_port_masked;
3652         if (IS_BROXTON(dev_priv))
3653                 de_port_enables |= BXT_DE_PORT_HOTPLUG_MASK;
3654         else if (IS_BROADWELL(dev_priv))
3655                 de_port_enables |= GEN8_PORT_DP_A_HOTPLUG;
3656
3657         dev_priv->de_irq_mask[PIPE_A] = ~de_pipe_masked;
3658         dev_priv->de_irq_mask[PIPE_B] = ~de_pipe_masked;
3659         dev_priv->de_irq_mask[PIPE_C] = ~de_pipe_masked;
3660
3661         for_each_pipe(dev_priv, pipe)
3662                 if (intel_display_power_is_enabled(dev_priv,
3663                                 POWER_DOMAIN_PIPE(pipe)))
3664                         GEN8_IRQ_INIT_NDX(DE_PIPE, pipe,
3665                                           dev_priv->de_irq_mask[pipe],
3666                                           de_pipe_enables);
3667
3668         GEN5_IRQ_INIT(GEN8_DE_PORT_, ~de_port_masked, de_port_enables);
3669 }
3670
3671 static int gen8_irq_postinstall(struct drm_device *dev)
3672 {
3673         struct drm_i915_private *dev_priv = dev->dev_private;
3674
3675         if (HAS_PCH_SPLIT(dev))
3676                 ibx_irq_pre_postinstall(dev);
3677
3678         gen8_gt_irq_postinstall(dev_priv);
3679         gen8_de_irq_postinstall(dev_priv);
3680
3681         if (HAS_PCH_SPLIT(dev))
3682                 ibx_irq_postinstall(dev);
3683
3684         I915_WRITE(GEN8_MASTER_IRQ, DE_MASTER_IRQ_CONTROL);
3685         POSTING_READ(GEN8_MASTER_IRQ);
3686
3687         return 0;
3688 }
3689
3690 static int cherryview_irq_postinstall(struct drm_device *dev)
3691 {
3692         struct drm_i915_private *dev_priv = dev->dev_private;
3693
3694         vlv_display_irq_postinstall(dev_priv);
3695
3696         gen8_gt_irq_postinstall(dev_priv);
3697
3698         I915_WRITE(GEN8_MASTER_IRQ, MASTER_INTERRUPT_ENABLE);
3699         POSTING_READ(GEN8_MASTER_IRQ);
3700
3701         return 0;
3702 }
3703
3704 static void gen8_irq_uninstall(struct drm_device *dev)
3705 {
3706         struct drm_i915_private *dev_priv = dev->dev_private;
3707
3708         if (!dev_priv)
3709                 return;
3710
3711         gen8_irq_reset(dev);
3712 }
3713
3714 static void vlv_display_irq_uninstall(struct drm_i915_private *dev_priv)
3715 {
3716         /* Interrupt setup is already guaranteed to be single-threaded, this is
3717          * just to make the assert_spin_locked check happy. */
3718         spin_lock_irq(&dev_priv->irq_lock);
3719         if (dev_priv->display_irqs_enabled)
3720                 valleyview_display_irqs_uninstall(dev_priv);
3721         spin_unlock_irq(&dev_priv->irq_lock);
3722
3723         vlv_display_irq_reset(dev_priv);
3724
3725         dev_priv->irq_mask = ~0;
3726 }
3727
3728 static void valleyview_irq_uninstall(struct drm_device *dev)
3729 {
3730         struct drm_i915_private *dev_priv = dev->dev_private;
3731
3732         if (!dev_priv)
3733                 return;
3734
3735         I915_WRITE(VLV_MASTER_IER, 0);
3736
3737         gen5_gt_irq_reset(dev);
3738
3739         I915_WRITE(HWSTAM, 0xffffffff);
3740
3741         vlv_display_irq_uninstall(dev_priv);
3742 }
3743
3744 static void cherryview_irq_uninstall(struct drm_device *dev)
3745 {
3746         struct drm_i915_private *dev_priv = dev->dev_private;
3747
3748         if (!dev_priv)
3749                 return;
3750
3751         I915_WRITE(GEN8_MASTER_IRQ, 0);
3752         POSTING_READ(GEN8_MASTER_IRQ);
3753
3754         gen8_gt_irq_reset(dev_priv);
3755
3756         GEN5_IRQ_RESET(GEN8_PCU_);
3757
3758         vlv_display_irq_uninstall(dev_priv);
3759 }
3760
3761 static void ironlake_irq_uninstall(struct drm_device *dev)
3762 {
3763         struct drm_i915_private *dev_priv = dev->dev_private;
3764
3765         if (!dev_priv)
3766                 return;
3767
3768         ironlake_irq_reset(dev);
3769 }
3770
3771 static void i8xx_irq_preinstall(struct drm_device * dev)
3772 {
3773         struct drm_i915_private *dev_priv = dev->dev_private;
3774         int pipe;
3775
3776         for_each_pipe(dev_priv, pipe)
3777                 I915_WRITE(PIPESTAT(pipe), 0);
3778         I915_WRITE16(IMR, 0xffff);
3779         I915_WRITE16(IER, 0x0);
3780         POSTING_READ16(IER);
3781 }
3782
3783 static int i8xx_irq_postinstall(struct drm_device *dev)
3784 {
3785         struct drm_i915_private *dev_priv = dev->dev_private;
3786
3787         I915_WRITE16(EMR,
3788                      ~(I915_ERROR_PAGE_TABLE | I915_ERROR_MEMORY_REFRESH));
3789
3790         /* Unmask the interrupts that we always want on. */
3791         dev_priv->irq_mask =
3792                 ~(I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
3793                   I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
3794                   I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
3795                   I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT);
3796         I915_WRITE16(IMR, dev_priv->irq_mask);
3797
3798         I915_WRITE16(IER,
3799                      I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
3800                      I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
3801                      I915_USER_INTERRUPT);
3802         POSTING_READ16(IER);
3803
3804         /* Interrupt setup is already guaranteed to be single-threaded, this is
3805          * just to make the assert_spin_locked check happy. */
3806         spin_lock_irq(&dev_priv->irq_lock);
3807         i915_enable_pipestat(dev_priv, PIPE_A, PIPE_CRC_DONE_INTERRUPT_STATUS);
3808         i915_enable_pipestat(dev_priv, PIPE_B, PIPE_CRC_DONE_INTERRUPT_STATUS);
3809         spin_unlock_irq(&dev_priv->irq_lock);
3810
3811         return 0;
3812 }
3813
3814 /*
3815  * Returns true when a page flip has completed.
3816  */
3817 static bool i8xx_handle_vblank(struct drm_device *dev,
3818                                int plane, int pipe, u32 iir)
3819 {
3820         struct drm_i915_private *dev_priv = dev->dev_private;
3821         u16 flip_pending = DISPLAY_PLANE_FLIP_PENDING(plane);
3822
3823         if (!intel_pipe_handle_vblank(dev, pipe))
3824                 return false;
3825
3826         if ((iir & flip_pending) == 0)
3827                 goto check_page_flip;
3828
3829         /* We detect FlipDone by looking for the change in PendingFlip from '1'
3830          * to '0' on the following vblank, i.e. IIR has the Pendingflip
3831          * asserted following the MI_DISPLAY_FLIP, but ISR is deasserted, hence
3832          * the flip is completed (no longer pending). Since this doesn't raise
3833          * an interrupt per se, we watch for the change at vblank.
3834          */
3835         if (I915_READ16(ISR) & flip_pending)
3836                 goto check_page_flip;
3837
3838         intel_prepare_page_flip(dev, plane);
3839         intel_finish_page_flip(dev, pipe);
3840         return true;
3841
3842 check_page_flip:
3843         intel_check_page_flip(dev, pipe);
3844         return false;
3845 }
3846
3847 static irqreturn_t i8xx_irq_handler(int irq, void *arg)
3848 {
3849         struct drm_device *dev = arg;
3850         struct drm_i915_private *dev_priv = dev->dev_private;
3851         u16 iir, new_iir;
3852         u32 pipe_stats[2];
3853         int pipe;
3854         u16 flip_mask =
3855                 I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
3856                 I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT;
3857
3858         if (!intel_irqs_enabled(dev_priv))
3859                 return IRQ_NONE;
3860
3861         iir = I915_READ16(IIR);
3862         if (iir == 0)
3863                 return IRQ_NONE;
3864
3865         while (iir & ~flip_mask) {
3866                 /* Can't rely on pipestat interrupt bit in iir as it might
3867                  * have been cleared after the pipestat interrupt was received.
3868                  * It doesn't set the bit in iir again, but it still produces
3869                  * interrupts (for non-MSI).
3870                  */
3871                 spin_lock(&dev_priv->irq_lock);
3872                 if (iir & I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT)
3873                         DRM_DEBUG("Command parser error, iir 0x%08x\n", iir);
3874
3875                 for_each_pipe(dev_priv, pipe) {
3876                         int reg = PIPESTAT(pipe);
3877                         pipe_stats[pipe] = I915_READ(reg);
3878
3879                         /*
3880                          * Clear the PIPE*STAT regs before the IIR
3881                          */
3882                         if (pipe_stats[pipe] & 0x8000ffff)
3883                                 I915_WRITE(reg, pipe_stats[pipe]);
3884                 }
3885                 spin_unlock(&dev_priv->irq_lock);
3886
3887                 I915_WRITE16(IIR, iir & ~flip_mask);
3888                 new_iir = I915_READ16(IIR); /* Flush posted writes */
3889
3890                 if (iir & I915_USER_INTERRUPT)
3891                         notify_ring(&dev_priv->ring[RCS]);
3892
3893                 for_each_pipe(dev_priv, pipe) {
3894                         int plane = pipe;
3895                         if (HAS_FBC(dev))
3896                                 plane = !plane;
3897
3898                         if (pipe_stats[pipe] & PIPE_VBLANK_INTERRUPT_STATUS &&
3899                             i8xx_handle_vblank(dev, plane, pipe, iir))
3900                                 flip_mask &= ~DISPLAY_PLANE_FLIP_PENDING(plane);
3901
3902                         if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS)
3903                                 i9xx_pipe_crc_irq_handler(dev, pipe);
3904
3905                         if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS)
3906                                 intel_cpu_fifo_underrun_irq_handler(dev_priv,
3907                                                                     pipe);
3908                 }
3909
3910                 iir = new_iir;
3911         }
3912
3913         return IRQ_HANDLED;
3914 }
3915
3916 static void i8xx_irq_uninstall(struct drm_device * dev)
3917 {
3918         struct drm_i915_private *dev_priv = dev->dev_private;
3919         int pipe;
3920
3921         for_each_pipe(dev_priv, pipe) {
3922                 /* Clear enable bits; then clear status bits */
3923                 I915_WRITE(PIPESTAT(pipe), 0);
3924                 I915_WRITE(PIPESTAT(pipe), I915_READ(PIPESTAT(pipe)));
3925         }
3926         I915_WRITE16(IMR, 0xffff);
3927         I915_WRITE16(IER, 0x0);
3928         I915_WRITE16(IIR, I915_READ16(IIR));
3929 }
3930
3931 static void i915_irq_preinstall(struct drm_device * dev)
3932 {
3933         struct drm_i915_private *dev_priv = dev->dev_private;
3934         int pipe;
3935
3936         if (I915_HAS_HOTPLUG(dev)) {
3937                 i915_hotplug_interrupt_update(dev_priv, 0xffffffff, 0);
3938                 I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
3939         }
3940
3941         I915_WRITE16(HWSTAM, 0xeffe);
3942         for_each_pipe(dev_priv, pipe)
3943                 I915_WRITE(PIPESTAT(pipe), 0);
3944         I915_WRITE(IMR, 0xffffffff);
3945         I915_WRITE(IER, 0x0);
3946         POSTING_READ(IER);
3947 }
3948
3949 static int i915_irq_postinstall(struct drm_device *dev)
3950 {
3951         struct drm_i915_private *dev_priv = dev->dev_private;
3952         u32 enable_mask;
3953
3954         I915_WRITE(EMR, ~(I915_ERROR_PAGE_TABLE | I915_ERROR_MEMORY_REFRESH));
3955
3956         /* Unmask the interrupts that we always want on. */
3957         dev_priv->irq_mask =
3958                 ~(I915_ASLE_INTERRUPT |
3959                   I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
3960                   I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
3961                   I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
3962                   I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT);
3963
3964         enable_mask =
3965                 I915_ASLE_INTERRUPT |
3966                 I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
3967                 I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
3968                 I915_USER_INTERRUPT;
3969
3970         if (I915_HAS_HOTPLUG(dev)) {
3971                 i915_hotplug_interrupt_update(dev_priv, 0xffffffff, 0);
3972                 POSTING_READ(PORT_HOTPLUG_EN);
3973
3974                 /* Enable in IER... */
3975                 enable_mask |= I915_DISPLAY_PORT_INTERRUPT;
3976                 /* and unmask in IMR */
3977                 dev_priv->irq_mask &= ~I915_DISPLAY_PORT_INTERRUPT;
3978         }
3979
3980         I915_WRITE(IMR, dev_priv->irq_mask);
3981         I915_WRITE(IER, enable_mask);
3982         POSTING_READ(IER);
3983
3984         i915_enable_asle_pipestat(dev);
3985
3986         /* Interrupt setup is already guaranteed to be single-threaded, this is
3987          * just to make the assert_spin_locked check happy. */
3988         spin_lock_irq(&dev_priv->irq_lock);
3989         i915_enable_pipestat(dev_priv, PIPE_A, PIPE_CRC_DONE_INTERRUPT_STATUS);
3990         i915_enable_pipestat(dev_priv, PIPE_B, PIPE_CRC_DONE_INTERRUPT_STATUS);
3991         spin_unlock_irq(&dev_priv->irq_lock);
3992
3993         return 0;
3994 }
3995
3996 /*
3997  * Returns true when a page flip has completed.
3998  */
3999 static bool i915_handle_vblank(struct drm_device *dev,
4000                                int plane, int pipe, u32 iir)
4001 {
4002         struct drm_i915_private *dev_priv = dev->dev_private;
4003         u32 flip_pending = DISPLAY_PLANE_FLIP_PENDING(plane);
4004
4005         if (!intel_pipe_handle_vblank(dev, pipe))
4006                 return false;
4007
4008         if ((iir & flip_pending) == 0)
4009                 goto check_page_flip;
4010
4011         /* We detect FlipDone by looking for the change in PendingFlip from '1'
4012          * to '0' on the following vblank, i.e. IIR has the Pendingflip
4013          * asserted following the MI_DISPLAY_FLIP, but ISR is deasserted, hence
4014          * the flip is completed (no longer pending). Since this doesn't raise
4015          * an interrupt per se, we watch for the change at vblank.
4016          */
4017         if (I915_READ(ISR) & flip_pending)
4018                 goto check_page_flip;
4019
4020         intel_prepare_page_flip(dev, plane);
4021         intel_finish_page_flip(dev, pipe);
4022         return true;
4023
4024 check_page_flip:
4025         intel_check_page_flip(dev, pipe);
4026         return false;
4027 }
4028
4029 static irqreturn_t i915_irq_handler(int irq, void *arg)
4030 {
4031         struct drm_device *dev = arg;
4032         struct drm_i915_private *dev_priv = dev->dev_private;
4033         u32 iir, new_iir, pipe_stats[I915_MAX_PIPES];
4034         u32 flip_mask =
4035                 I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
4036                 I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT;
4037         int pipe, ret = IRQ_NONE;
4038
4039         if (!intel_irqs_enabled(dev_priv))
4040                 return IRQ_NONE;
4041
4042         iir = I915_READ(IIR);
4043         do {
4044                 bool irq_received = (iir & ~flip_mask) != 0;
4045                 bool blc_event = false;
4046
4047                 /* Can't rely on pipestat interrupt bit in iir as it might
4048                  * have been cleared after the pipestat interrupt was received.
4049                  * It doesn't set the bit in iir again, but it still produces
4050                  * interrupts (for non-MSI).
4051                  */
4052                 spin_lock(&dev_priv->irq_lock);
4053                 if (iir & I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT)
4054                         DRM_DEBUG("Command parser error, iir 0x%08x\n", iir);
4055
4056                 for_each_pipe(dev_priv, pipe) {
4057                         int reg = PIPESTAT(pipe);
4058                         pipe_stats[pipe] = I915_READ(reg);
4059
4060                         /* Clear the PIPE*STAT regs before the IIR */
4061                         if (pipe_stats[pipe] & 0x8000ffff) {
4062                                 I915_WRITE(reg, pipe_stats[pipe]);
4063                                 irq_received = true;
4064                         }
4065                 }
4066                 spin_unlock(&dev_priv->irq_lock);
4067
4068                 if (!irq_received)
4069                         break;
4070
4071                 /* Consume port.  Then clear IIR or we'll miss events */
4072                 if (I915_HAS_HOTPLUG(dev) &&
4073                     iir & I915_DISPLAY_PORT_INTERRUPT)
4074                         i9xx_hpd_irq_handler(dev);
4075
4076                 I915_WRITE(IIR, iir & ~flip_mask);
4077                 new_iir = I915_READ(IIR); /* Flush posted writes */
4078
4079                 if (iir & I915_USER_INTERRUPT)
4080                         notify_ring(&dev_priv->ring[RCS]);
4081
4082                 for_each_pipe(dev_priv, pipe) {
4083                         int plane = pipe;
4084                         if (HAS_FBC(dev))
4085                                 plane = !plane;
4086
4087                         if (pipe_stats[pipe] & PIPE_VBLANK_INTERRUPT_STATUS &&
4088                             i915_handle_vblank(dev, plane, pipe, iir))
4089                                 flip_mask &= ~DISPLAY_PLANE_FLIP_PENDING(plane);
4090
4091                         if (pipe_stats[pipe] & PIPE_LEGACY_BLC_EVENT_STATUS)
4092                                 blc_event = true;
4093
4094                         if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS)
4095                                 i9xx_pipe_crc_irq_handler(dev, pipe);
4096
4097                         if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS)
4098                                 intel_cpu_fifo_underrun_irq_handler(dev_priv,
4099                                                                     pipe);
4100                 }
4101
4102                 if (blc_event || (iir & I915_ASLE_INTERRUPT))
4103                         intel_opregion_asle_intr(dev);
4104
4105                 /* With MSI, interrupts are only generated when iir
4106                  * transitions from zero to nonzero.  If another bit got
4107                  * set while we were handling the existing iir bits, then
4108                  * we would never get another interrupt.
4109                  *
4110                  * This is fine on non-MSI as well, as if we hit this path
4111                  * we avoid exiting the interrupt handler only to generate
4112                  * another one.
4113                  *
4114                  * Note that for MSI this could cause a stray interrupt report
4115                  * if an interrupt landed in the time between writing IIR and
4116                  * the posting read.  This should be rare enough to never
4117                  * trigger the 99% of 100,000 interrupts test for disabling
4118                  * stray interrupts.
4119                  */
4120                 ret = IRQ_HANDLED;
4121                 iir = new_iir;
4122         } while (iir & ~flip_mask);
4123
4124         return ret;
4125 }
4126
4127 static void i915_irq_uninstall(struct drm_device * dev)
4128 {
4129         struct drm_i915_private *dev_priv = dev->dev_private;
4130         int pipe;
4131
4132         if (I915_HAS_HOTPLUG(dev)) {
4133                 i915_hotplug_interrupt_update(dev_priv, 0xffffffff, 0);
4134                 I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
4135         }
4136
4137         I915_WRITE16(HWSTAM, 0xffff);
4138         for_each_pipe(dev_priv, pipe) {
4139                 /* Clear enable bits; then clear status bits */
4140                 I915_WRITE(PIPESTAT(pipe), 0);
4141                 I915_WRITE(PIPESTAT(pipe), I915_READ(PIPESTAT(pipe)));
4142         }
4143         I915_WRITE(IMR, 0xffffffff);
4144         I915_WRITE(IER, 0x0);
4145
4146         I915_WRITE(IIR, I915_READ(IIR));
4147 }
4148
4149 static void i965_irq_preinstall(struct drm_device * dev)
4150 {
4151         struct drm_i915_private *dev_priv = dev->dev_private;
4152         int pipe;
4153
4154         i915_hotplug_interrupt_update(dev_priv, 0xffffffff, 0);
4155         I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
4156
4157         I915_WRITE(HWSTAM, 0xeffe);
4158         for_each_pipe(dev_priv, pipe)
4159                 I915_WRITE(PIPESTAT(pipe), 0);
4160         I915_WRITE(IMR, 0xffffffff);
4161         I915_WRITE(IER, 0x0);
4162         POSTING_READ(IER);
4163 }
4164
4165 static int i965_irq_postinstall(struct drm_device *dev)
4166 {
4167         struct drm_i915_private *dev_priv = dev->dev_private;
4168         u32 enable_mask;
4169         u32 error_mask;
4170
4171         /* Unmask the interrupts that we always want on. */
4172         dev_priv->irq_mask = ~(I915_ASLE_INTERRUPT |
4173                                I915_DISPLAY_PORT_INTERRUPT |
4174                                I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
4175                                I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
4176                                I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
4177                                I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT |
4178                                I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT);
4179
4180         enable_mask = ~dev_priv->irq_mask;
4181         enable_mask &= ~(I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
4182                          I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT);
4183         enable_mask |= I915_USER_INTERRUPT;
4184
4185         if (IS_G4X(dev))
4186                 enable_mask |= I915_BSD_USER_INTERRUPT;
4187
4188         /* Interrupt setup is already guaranteed to be single-threaded, this is
4189          * just to make the assert_spin_locked check happy. */
4190         spin_lock_irq(&dev_priv->irq_lock);
4191         i915_enable_pipestat(dev_priv, PIPE_A, PIPE_GMBUS_INTERRUPT_STATUS);
4192         i915_enable_pipestat(dev_priv, PIPE_A, PIPE_CRC_DONE_INTERRUPT_STATUS);
4193         i915_enable_pipestat(dev_priv, PIPE_B, PIPE_CRC_DONE_INTERRUPT_STATUS);
4194         spin_unlock_irq(&dev_priv->irq_lock);
4195
4196         /*
4197          * Enable some error detection, note the instruction error mask
4198          * bit is reserved, so we leave it masked.
4199          */
4200         if (IS_G4X(dev)) {
4201                 error_mask = ~(GM45_ERROR_PAGE_TABLE |
4202                                GM45_ERROR_MEM_PRIV |
4203                                GM45_ERROR_CP_PRIV |
4204                                I915_ERROR_MEMORY_REFRESH);
4205         } else {
4206                 error_mask = ~(I915_ERROR_PAGE_TABLE |
4207                                I915_ERROR_MEMORY_REFRESH);
4208         }
4209         I915_WRITE(EMR, error_mask);
4210
4211         I915_WRITE(IMR, dev_priv->irq_mask);
4212         I915_WRITE(IER, enable_mask);
4213         POSTING_READ(IER);
4214
4215         i915_hotplug_interrupt_update(dev_priv, 0xffffffff, 0);
4216         POSTING_READ(PORT_HOTPLUG_EN);
4217
4218         i915_enable_asle_pipestat(dev);
4219
4220         return 0;
4221 }
4222
4223 static void i915_hpd_irq_setup(struct drm_device *dev)
4224 {
4225         struct drm_i915_private *dev_priv = dev->dev_private;
4226         u32 hotplug_en;
4227
4228         assert_spin_locked(&dev_priv->irq_lock);
4229
4230         /* Note HDMI and DP share hotplug bits */
4231         /* enable bits are the same for all generations */
4232         hotplug_en = intel_hpd_enabled_irqs(dev, hpd_mask_i915);
4233         /* Programming the CRT detection parameters tends
4234            to generate a spurious hotplug event about three
4235            seconds later.  So just do it once.
4236         */
4237         if (IS_G4X(dev))
4238                 hotplug_en |= CRT_HOTPLUG_ACTIVATION_PERIOD_64;
4239         hotplug_en |= CRT_HOTPLUG_VOLTAGE_COMPARE_50;
4240
4241         /* Ignore TV since it's buggy */
4242         i915_hotplug_interrupt_update_locked(dev_priv,
4243                                              HOTPLUG_INT_EN_MASK |
4244                                              CRT_HOTPLUG_VOLTAGE_COMPARE_MASK |
4245                                              CRT_HOTPLUG_ACTIVATION_PERIOD_64,
4246                                              hotplug_en);
4247 }
4248
4249 static irqreturn_t i965_irq_handler(int irq, void *arg)
4250 {
4251         struct drm_device *dev = arg;
4252         struct drm_i915_private *dev_priv = dev->dev_private;
4253         u32 iir, new_iir;
4254         u32 pipe_stats[I915_MAX_PIPES];
4255         int ret = IRQ_NONE, pipe;
4256         u32 flip_mask =
4257                 I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
4258                 I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT;
4259
4260         if (!intel_irqs_enabled(dev_priv))
4261                 return IRQ_NONE;
4262
4263         iir = I915_READ(IIR);
4264
4265         for (;;) {
4266                 bool irq_received = (iir & ~flip_mask) != 0;
4267                 bool blc_event = false;
4268
4269                 /* Can't rely on pipestat interrupt bit in iir as it might
4270                  * have been cleared after the pipestat interrupt was received.
4271                  * It doesn't set the bit in iir again, but it still produces
4272                  * interrupts (for non-MSI).
4273                  */
4274                 spin_lock(&dev_priv->irq_lock);
4275                 if (iir & I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT)
4276                         DRM_DEBUG("Command parser error, iir 0x%08x\n", iir);
4277
4278                 for_each_pipe(dev_priv, pipe) {
4279                         int reg = PIPESTAT(pipe);
4280                         pipe_stats[pipe] = I915_READ(reg);
4281
4282                         /*
4283                          * Clear the PIPE*STAT regs before the IIR
4284                          */
4285                         if (pipe_stats[pipe] & 0x8000ffff) {
4286                                 I915_WRITE(reg, pipe_stats[pipe]);
4287                                 irq_received = true;
4288                         }
4289                 }
4290                 spin_unlock(&dev_priv->irq_lock);
4291
4292                 if (!irq_received)
4293                         break;
4294
4295                 ret = IRQ_HANDLED;
4296
4297                 /* Consume port.  Then clear IIR or we'll miss events */
4298                 if (iir & I915_DISPLAY_PORT_INTERRUPT)
4299                         i9xx_hpd_irq_handler(dev);
4300
4301                 I915_WRITE(IIR, iir & ~flip_mask);
4302                 new_iir = I915_READ(IIR); /* Flush posted writes */
4303
4304                 if (iir & I915_USER_INTERRUPT)
4305                         notify_ring(&dev_priv->ring[RCS]);
4306                 if (iir & I915_BSD_USER_INTERRUPT)
4307                         notify_ring(&dev_priv->ring[VCS]);
4308
4309                 for_each_pipe(dev_priv, pipe) {
4310                         if (pipe_stats[pipe] & PIPE_START_VBLANK_INTERRUPT_STATUS &&
4311                             i915_handle_vblank(dev, pipe, pipe, iir))
4312                                 flip_mask &= ~DISPLAY_PLANE_FLIP_PENDING(pipe);
4313
4314                         if (pipe_stats[pipe] & PIPE_LEGACY_BLC_EVENT_STATUS)
4315                                 blc_event = true;
4316
4317                         if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS)
4318                                 i9xx_pipe_crc_irq_handler(dev, pipe);
4319
4320                         if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS)
4321                                 intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
4322                 }
4323
4324                 if (blc_event || (iir & I915_ASLE_INTERRUPT))
4325                         intel_opregion_asle_intr(dev);
4326
4327                 if (pipe_stats[0] & PIPE_GMBUS_INTERRUPT_STATUS)
4328                         gmbus_irq_handler(dev);
4329
4330                 /* With MSI, interrupts are only generated when iir
4331                  * transitions from zero to nonzero.  If another bit got
4332                  * set while we were handling the existing iir bits, then
4333                  * we would never get another interrupt.
4334                  *
4335                  * This is fine on non-MSI as well, as if we hit this path
4336                  * we avoid exiting the interrupt handler only to generate
4337                  * another one.
4338                  *
4339                  * Note that for MSI this could cause a stray interrupt report
4340                  * if an interrupt landed in the time between writing IIR and
4341                  * the posting read.  This should be rare enough to never
4342                  * trigger the 99% of 100,000 interrupts test for disabling
4343                  * stray interrupts.
4344                  */
4345                 iir = new_iir;
4346         }
4347
4348         return ret;
4349 }
4350
4351 static void i965_irq_uninstall(struct drm_device * dev)
4352 {
4353         struct drm_i915_private *dev_priv = dev->dev_private;
4354         int pipe;
4355
4356         if (!dev_priv)
4357                 return;
4358
4359         i915_hotplug_interrupt_update(dev_priv, 0xffffffff, 0);
4360         I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
4361
4362         I915_WRITE(HWSTAM, 0xffffffff);
4363         for_each_pipe(dev_priv, pipe)
4364                 I915_WRITE(PIPESTAT(pipe), 0);
4365         I915_WRITE(IMR, 0xffffffff);
4366         I915_WRITE(IER, 0x0);
4367
4368         for_each_pipe(dev_priv, pipe)
4369                 I915_WRITE(PIPESTAT(pipe),
4370                            I915_READ(PIPESTAT(pipe)) & 0x8000ffff);
4371         I915_WRITE(IIR, I915_READ(IIR));
4372 }
4373
4374 /**
4375  * intel_irq_init - initializes irq support
4376  * @dev_priv: i915 device instance
4377  *
4378  * This function initializes all the irq support including work items, timers
4379  * and all the vtables. It does not setup the interrupt itself though.
4380  */
4381 void intel_irq_init(struct drm_i915_private *dev_priv)
4382 {
4383         struct drm_device *dev = dev_priv->dev;
4384
4385         intel_hpd_init_work(dev_priv);
4386
4387         INIT_WORK(&dev_priv->rps.work, gen6_pm_rps_work);
4388         INIT_WORK(&dev_priv->l3_parity.error_work, ivybridge_parity_work);
4389
4390         /* Let's track the enabled rps events */
4391         if (IS_VALLEYVIEW(dev_priv) && !IS_CHERRYVIEW(dev_priv))
4392                 /* WaGsvRC0ResidencyMethod:vlv */
4393                 dev_priv->pm_rps_events = GEN6_PM_RP_DOWN_EI_EXPIRED | GEN6_PM_RP_UP_EI_EXPIRED;
4394         else
4395                 dev_priv->pm_rps_events = GEN6_PM_RPS_EVENTS;
4396
4397         INIT_DELAYED_WORK(&dev_priv->gpu_error.hangcheck_work,
4398                           i915_hangcheck_elapsed);
4399
4400         pm_qos_add_request(&dev_priv->pm_qos, PM_QOS_CPU_DMA_LATENCY, PM_QOS_DEFAULT_VALUE);
4401
4402         if (IS_GEN2(dev_priv)) {
4403                 dev->max_vblank_count = 0;
4404                 dev->driver->get_vblank_counter = i8xx_get_vblank_counter;
4405         } else if (IS_G4X(dev_priv) || INTEL_INFO(dev_priv)->gen >= 5) {
4406                 dev->max_vblank_count = 0xffffffff; /* full 32 bit counter */
4407                 dev->driver->get_vblank_counter = g4x_get_vblank_counter;
4408         } else {
4409                 dev->driver->get_vblank_counter = i915_get_vblank_counter;
4410                 dev->max_vblank_count = 0xffffff; /* only 24 bits of frame count */
4411         }
4412
4413         /*
4414          * Opt out of the vblank disable timer on everything except gen2.
4415          * Gen2 doesn't have a hardware frame counter and so depends on
4416          * vblank interrupts to produce sane vblank seuquence numbers.
4417          */
4418         if (!IS_GEN2(dev_priv))
4419                 dev->vblank_disable_immediate = true;
4420
4421         dev->driver->get_vblank_timestamp = i915_get_vblank_timestamp;
4422         dev->driver->get_scanout_position = i915_get_crtc_scanoutpos;
4423
4424         if (IS_CHERRYVIEW(dev_priv)) {
4425                 dev->driver->irq_handler = cherryview_irq_handler;
4426                 dev->driver->irq_preinstall = cherryview_irq_preinstall;
4427                 dev->driver->irq_postinstall = cherryview_irq_postinstall;
4428                 dev->driver->irq_uninstall = cherryview_irq_uninstall;
4429                 dev->driver->enable_vblank = valleyview_enable_vblank;
4430                 dev->driver->disable_vblank = valleyview_disable_vblank;
4431                 dev_priv->display.hpd_irq_setup = i915_hpd_irq_setup;
4432         } else if (IS_VALLEYVIEW(dev_priv)) {
4433                 dev->driver->irq_handler = valleyview_irq_handler;
4434                 dev->driver->irq_preinstall = valleyview_irq_preinstall;
4435                 dev->driver->irq_postinstall = valleyview_irq_postinstall;
4436                 dev->driver->irq_uninstall = valleyview_irq_uninstall;
4437                 dev->driver->enable_vblank = valleyview_enable_vblank;
4438                 dev->driver->disable_vblank = valleyview_disable_vblank;
4439                 dev_priv->display.hpd_irq_setup = i915_hpd_irq_setup;
4440         } else if (INTEL_INFO(dev_priv)->gen >= 8) {
4441                 dev->driver->irq_handler = gen8_irq_handler;
4442                 dev->driver->irq_preinstall = gen8_irq_reset;
4443                 dev->driver->irq_postinstall = gen8_irq_postinstall;
4444                 dev->driver->irq_uninstall = gen8_irq_uninstall;
4445                 dev->driver->enable_vblank = gen8_enable_vblank;
4446                 dev->driver->disable_vblank = gen8_disable_vblank;
4447                 if (IS_BROXTON(dev))
4448                         dev_priv->display.hpd_irq_setup = bxt_hpd_irq_setup;
4449                 else if (HAS_PCH_SPT(dev))
4450                         dev_priv->display.hpd_irq_setup = spt_hpd_irq_setup;
4451                 else
4452                         dev_priv->display.hpd_irq_setup = ilk_hpd_irq_setup;
4453         } else if (HAS_PCH_SPLIT(dev)) {
4454                 dev->driver->irq_handler = ironlake_irq_handler;
4455                 dev->driver->irq_preinstall = ironlake_irq_reset;
4456                 dev->driver->irq_postinstall = ironlake_irq_postinstall;
4457                 dev->driver->irq_uninstall = ironlake_irq_uninstall;
4458                 dev->driver->enable_vblank = ironlake_enable_vblank;
4459                 dev->driver->disable_vblank = ironlake_disable_vblank;
4460                 dev_priv->display.hpd_irq_setup = ilk_hpd_irq_setup;
4461         } else {
4462                 if (INTEL_INFO(dev_priv)->gen == 2) {
4463                         dev->driver->irq_preinstall = i8xx_irq_preinstall;
4464                         dev->driver->irq_postinstall = i8xx_irq_postinstall;
4465                         dev->driver->irq_handler = i8xx_irq_handler;
4466                         dev->driver->irq_uninstall = i8xx_irq_uninstall;
4467                 } else if (INTEL_INFO(dev_priv)->gen == 3) {
4468                         dev->driver->irq_preinstall = i915_irq_preinstall;
4469                         dev->driver->irq_postinstall = i915_irq_postinstall;
4470                         dev->driver->irq_uninstall = i915_irq_uninstall;
4471                         dev->driver->irq_handler = i915_irq_handler;
4472                 } else {
4473                         dev->driver->irq_preinstall = i965_irq_preinstall;
4474                         dev->driver->irq_postinstall = i965_irq_postinstall;
4475                         dev->driver->irq_uninstall = i965_irq_uninstall;
4476                         dev->driver->irq_handler = i965_irq_handler;
4477                 }
4478                 if (I915_HAS_HOTPLUG(dev_priv))
4479                         dev_priv->display.hpd_irq_setup = i915_hpd_irq_setup;
4480                 dev->driver->enable_vblank = i915_enable_vblank;
4481                 dev->driver->disable_vblank = i915_disable_vblank;
4482         }
4483 }
4484
4485 /**
4486  * intel_irq_install - enables the hardware interrupt
4487  * @dev_priv: i915 device instance
4488  *
4489  * This function enables the hardware interrupt handling, but leaves the hotplug
4490  * handling still disabled. It is called after intel_irq_init().
4491  *
4492  * In the driver load and resume code we need working interrupts in a few places
4493  * but don't want to deal with the hassle of concurrent probe and hotplug
4494  * workers. Hence the split into this two-stage approach.
4495  */
4496 int intel_irq_install(struct drm_i915_private *dev_priv)
4497 {
4498         /*
4499          * We enable some interrupt sources in our postinstall hooks, so mark
4500          * interrupts as enabled _before_ actually enabling them to avoid
4501          * special cases in our ordering checks.
4502          */
4503         dev_priv->pm.irqs_enabled = true;
4504
4505         return drm_irq_install(dev_priv->dev, dev_priv->dev->pdev->irq);
4506 }
4507
4508 /**
4509  * intel_irq_uninstall - finilizes all irq handling
4510  * @dev_priv: i915 device instance
4511  *
4512  * This stops interrupt and hotplug handling and unregisters and frees all
4513  * resources acquired in the init functions.
4514  */
4515 void intel_irq_uninstall(struct drm_i915_private *dev_priv)
4516 {
4517         drm_irq_uninstall(dev_priv->dev);
4518         intel_hpd_cancel_work(dev_priv);
4519         dev_priv->pm.irqs_enabled = false;
4520 }
4521
4522 /**
4523  * intel_runtime_pm_disable_interrupts - runtime interrupt disabling
4524  * @dev_priv: i915 device instance
4525  *
4526  * This function is used to disable interrupts at runtime, both in the runtime
4527  * pm and the system suspend/resume code.
4528  */
4529 void intel_runtime_pm_disable_interrupts(struct drm_i915_private *dev_priv)
4530 {
4531         dev_priv->dev->driver->irq_uninstall(dev_priv->dev);
4532         dev_priv->pm.irqs_enabled = false;
4533         synchronize_irq(dev_priv->dev->irq);
4534 }
4535
4536 /**
4537  * intel_runtime_pm_enable_interrupts - runtime interrupt enabling
4538  * @dev_priv: i915 device instance
4539  *
4540  * This function is used to enable interrupts at runtime, both in the runtime
4541  * pm and the system suspend/resume code.
4542  */
4543 void intel_runtime_pm_enable_interrupts(struct drm_i915_private *dev_priv)
4544 {
4545         dev_priv->pm.irqs_enabled = true;
4546         dev_priv->dev->driver->irq_preinstall(dev_priv->dev);
4547         dev_priv->dev->driver->irq_postinstall(dev_priv->dev);
4548 }