drm/i915: Parametrize fence registers
[firefly-linux-kernel-4.4.55.git] / drivers / gpu / drm / i915 / i915_gem_fence.c
1 /*
2  * Copyright © 2008-2015 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  */
23
24 #include <drm/drmP.h>
25 #include <drm/i915_drm.h>
26 #include "i915_drv.h"
27
28 /**
29  * DOC: fence register handling
30  *
31  * Important to avoid confusions: "fences" in the i915 driver are not execution
32  * fences used to track command completion but hardware detiler objects which
33  * wrap a given range of the global GTT. Each platform has only a fairly limited
34  * set of these objects.
35  *
36  * Fences are used to detile GTT memory mappings. They're also connected to the
37  * hardware frontbuffer render tracking and hence interract with frontbuffer
38  * conmpression. Furthermore on older platforms fences are required for tiled
39  * objects used by the display engine. They can also be used by the render
40  * engine - they're required for blitter commands and are optional for render
41  * commands. But on gen4+ both display (with the exception of fbc) and rendering
42  * have their own tiling state bits and don't need fences.
43  *
44  * Also note that fences only support X and Y tiling and hence can't be used for
45  * the fancier new tiling formats like W, Ys and Yf.
46  *
47  * Finally note that because fences are such a restricted resource they're
48  * dynamically associated with objects. Furthermore fence state is committed to
49  * the hardware lazily to avoid unecessary stalls on gen2/3. Therefore code must
50  * explictly call i915_gem_object_get_fence() to synchronize fencing status
51  * for cpu access. Also note that some code wants an unfenced view, for those
52  * cases the fence can be removed forcefully with i915_gem_object_put_fence().
53  *
54  * Internally these functions will synchronize with userspace access by removing
55  * CPU ptes into GTT mmaps (not the GTT ptes themselves) as needed.
56  */
57
58 static void i965_write_fence_reg(struct drm_device *dev, int reg,
59                                  struct drm_i915_gem_object *obj)
60 {
61         struct drm_i915_private *dev_priv = dev->dev_private;
62         int fence_reg_lo, fence_reg_hi;
63         int fence_pitch_shift;
64
65         if (INTEL_INFO(dev)->gen >= 6) {
66                 fence_reg_lo = FENCE_REG_GEN6_LO(reg);
67                 fence_reg_hi = FENCE_REG_GEN6_HI(reg);
68                 fence_pitch_shift = GEN6_FENCE_PITCH_SHIFT;
69         } else {
70                 fence_reg_lo = FENCE_REG_965_LO(reg);
71                 fence_reg_hi = FENCE_REG_965_HI(reg);
72                 fence_pitch_shift = I965_FENCE_PITCH_SHIFT;
73         }
74
75         /* To w/a incoherency with non-atomic 64-bit register updates,
76          * we split the 64-bit update into two 32-bit writes. In order
77          * for a partial fence not to be evaluated between writes, we
78          * precede the update with write to turn off the fence register,
79          * and only enable the fence as the last step.
80          *
81          * For extra levels of paranoia, we make sure each step lands
82          * before applying the next step.
83          */
84         I915_WRITE(fence_reg_lo, 0);
85         POSTING_READ(fence_reg_lo);
86
87         if (obj) {
88                 u32 size = i915_gem_obj_ggtt_size(obj);
89                 uint64_t val;
90
91                 /* Adjust fence size to match tiled area */
92                 if (obj->tiling_mode != I915_TILING_NONE) {
93                         uint32_t row_size = obj->stride *
94                                 (obj->tiling_mode == I915_TILING_Y ? 32 : 8);
95                         size = (size / row_size) * row_size;
96                 }
97
98                 val = (uint64_t)((i915_gem_obj_ggtt_offset(obj) + size - 4096) &
99                                  0xfffff000) << 32;
100                 val |= i915_gem_obj_ggtt_offset(obj) & 0xfffff000;
101                 val |= (uint64_t)((obj->stride / 128) - 1) << fence_pitch_shift;
102                 if (obj->tiling_mode == I915_TILING_Y)
103                         val |= 1 << I965_FENCE_TILING_Y_SHIFT;
104                 val |= I965_FENCE_REG_VALID;
105
106                 I915_WRITE(fence_reg_hi, val >> 32);
107                 POSTING_READ(fence_reg_hi);
108
109                 I915_WRITE(fence_reg_lo, val);
110                 POSTING_READ(fence_reg_lo);
111         } else {
112                 I915_WRITE(fence_reg_hi, 0);
113                 POSTING_READ(fence_reg_hi);
114         }
115 }
116
117 static void i915_write_fence_reg(struct drm_device *dev, int reg,
118                                  struct drm_i915_gem_object *obj)
119 {
120         struct drm_i915_private *dev_priv = dev->dev_private;
121         u32 val;
122
123         if (obj) {
124                 u32 size = i915_gem_obj_ggtt_size(obj);
125                 int pitch_val;
126                 int tile_width;
127
128                 WARN((i915_gem_obj_ggtt_offset(obj) & ~I915_FENCE_START_MASK) ||
129                      (size & -size) != size ||
130                      (i915_gem_obj_ggtt_offset(obj) & (size - 1)),
131                      "object 0x%08llx [fenceable? %d] not 1M or pot-size (0x%08x) aligned\n",
132                      i915_gem_obj_ggtt_offset(obj), obj->map_and_fenceable, size);
133
134                 if (obj->tiling_mode == I915_TILING_Y && HAS_128_BYTE_Y_TILING(dev))
135                         tile_width = 128;
136                 else
137                         tile_width = 512;
138
139                 /* Note: pitch better be a power of two tile widths */
140                 pitch_val = obj->stride / tile_width;
141                 pitch_val = ffs(pitch_val) - 1;
142
143                 val = i915_gem_obj_ggtt_offset(obj);
144                 if (obj->tiling_mode == I915_TILING_Y)
145                         val |= 1 << I830_FENCE_TILING_Y_SHIFT;
146                 val |= I915_FENCE_SIZE_BITS(size);
147                 val |= pitch_val << I830_FENCE_PITCH_SHIFT;
148                 val |= I830_FENCE_REG_VALID;
149         } else
150                 val = 0;
151
152         I915_WRITE(FENCE_REG(reg), val);
153         POSTING_READ(FENCE_REG(reg));
154 }
155
156 static void i830_write_fence_reg(struct drm_device *dev, int reg,
157                                 struct drm_i915_gem_object *obj)
158 {
159         struct drm_i915_private *dev_priv = dev->dev_private;
160         uint32_t val;
161
162         if (obj) {
163                 u32 size = i915_gem_obj_ggtt_size(obj);
164                 uint32_t pitch_val;
165
166                 WARN((i915_gem_obj_ggtt_offset(obj) & ~I830_FENCE_START_MASK) ||
167                      (size & -size) != size ||
168                      (i915_gem_obj_ggtt_offset(obj) & (size - 1)),
169                      "object 0x%08llx not 512K or pot-size 0x%08x aligned\n",
170                      i915_gem_obj_ggtt_offset(obj), size);
171
172                 pitch_val = obj->stride / 128;
173                 pitch_val = ffs(pitch_val) - 1;
174
175                 val = i915_gem_obj_ggtt_offset(obj);
176                 if (obj->tiling_mode == I915_TILING_Y)
177                         val |= 1 << I830_FENCE_TILING_Y_SHIFT;
178                 val |= I830_FENCE_SIZE_BITS(size);
179                 val |= pitch_val << I830_FENCE_PITCH_SHIFT;
180                 val |= I830_FENCE_REG_VALID;
181         } else
182                 val = 0;
183
184         I915_WRITE(FENCE_REG(reg), val);
185         POSTING_READ(FENCE_REG(reg));
186 }
187
188 inline static bool i915_gem_object_needs_mb(struct drm_i915_gem_object *obj)
189 {
190         return obj && obj->base.read_domains & I915_GEM_DOMAIN_GTT;
191 }
192
193 static void i915_gem_write_fence(struct drm_device *dev, int reg,
194                                  struct drm_i915_gem_object *obj)
195 {
196         struct drm_i915_private *dev_priv = dev->dev_private;
197
198         /* Ensure that all CPU reads are completed before installing a fence
199          * and all writes before removing the fence.
200          */
201         if (i915_gem_object_needs_mb(dev_priv->fence_regs[reg].obj))
202                 mb();
203
204         WARN(obj && (!obj->stride || !obj->tiling_mode),
205              "bogus fence setup with stride: 0x%x, tiling mode: %i\n",
206              obj->stride, obj->tiling_mode);
207
208         if (IS_GEN2(dev))
209                 i830_write_fence_reg(dev, reg, obj);
210         else if (IS_GEN3(dev))
211                 i915_write_fence_reg(dev, reg, obj);
212         else if (INTEL_INFO(dev)->gen >= 4)
213                 i965_write_fence_reg(dev, reg, obj);
214
215         /* And similarly be paranoid that no direct access to this region
216          * is reordered to before the fence is installed.
217          */
218         if (i915_gem_object_needs_mb(obj))
219                 mb();
220 }
221
222 static inline int fence_number(struct drm_i915_private *dev_priv,
223                                struct drm_i915_fence_reg *fence)
224 {
225         return fence - dev_priv->fence_regs;
226 }
227
228 static void i915_gem_object_update_fence(struct drm_i915_gem_object *obj,
229                                          struct drm_i915_fence_reg *fence,
230                                          bool enable)
231 {
232         struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
233         int reg = fence_number(dev_priv, fence);
234
235         i915_gem_write_fence(obj->base.dev, reg, enable ? obj : NULL);
236
237         if (enable) {
238                 obj->fence_reg = reg;
239                 fence->obj = obj;
240                 list_move_tail(&fence->lru_list, &dev_priv->mm.fence_list);
241         } else {
242                 obj->fence_reg = I915_FENCE_REG_NONE;
243                 fence->obj = NULL;
244                 list_del_init(&fence->lru_list);
245         }
246         obj->fence_dirty = false;
247 }
248
249 static inline void i915_gem_object_fence_lost(struct drm_i915_gem_object *obj)
250 {
251         if (obj->tiling_mode)
252                 i915_gem_release_mmap(obj);
253
254         /* As we do not have an associated fence register, we will force
255          * a tiling change if we ever need to acquire one.
256          */
257         obj->fence_dirty = false;
258         obj->fence_reg = I915_FENCE_REG_NONE;
259 }
260
261 static int
262 i915_gem_object_wait_fence(struct drm_i915_gem_object *obj)
263 {
264         if (obj->last_fenced_req) {
265                 int ret = i915_wait_request(obj->last_fenced_req);
266                 if (ret)
267                         return ret;
268
269                 i915_gem_request_assign(&obj->last_fenced_req, NULL);
270         }
271
272         return 0;
273 }
274
275 /**
276  * i915_gem_object_put_fence - force-remove fence for an object
277  * @obj: object to map through a fence reg
278  *
279  * This function force-removes any fence from the given object, which is useful
280  * if the kernel wants to do untiled GTT access.
281  *
282  * Returns:
283  *
284  * 0 on success, negative error code on failure.
285  */
286 int
287 i915_gem_object_put_fence(struct drm_i915_gem_object *obj)
288 {
289         struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
290         struct drm_i915_fence_reg *fence;
291         int ret;
292
293         ret = i915_gem_object_wait_fence(obj);
294         if (ret)
295                 return ret;
296
297         if (obj->fence_reg == I915_FENCE_REG_NONE)
298                 return 0;
299
300         fence = &dev_priv->fence_regs[obj->fence_reg];
301
302         if (WARN_ON(fence->pin_count))
303                 return -EBUSY;
304
305         i915_gem_object_fence_lost(obj);
306         i915_gem_object_update_fence(obj, fence, false);
307
308         return 0;
309 }
310
311 static struct drm_i915_fence_reg *
312 i915_find_fence_reg(struct drm_device *dev)
313 {
314         struct drm_i915_private *dev_priv = dev->dev_private;
315         struct drm_i915_fence_reg *reg, *avail;
316         int i;
317
318         /* First try to find a free reg */
319         avail = NULL;
320         for (i = dev_priv->fence_reg_start; i < dev_priv->num_fence_regs; i++) {
321                 reg = &dev_priv->fence_regs[i];
322                 if (!reg->obj)
323                         return reg;
324
325                 if (!reg->pin_count)
326                         avail = reg;
327         }
328
329         if (avail == NULL)
330                 goto deadlock;
331
332         /* None available, try to steal one or wait for a user to finish */
333         list_for_each_entry(reg, &dev_priv->mm.fence_list, lru_list) {
334                 if (reg->pin_count)
335                         continue;
336
337                 return reg;
338         }
339
340 deadlock:
341         /* Wait for completion of pending flips which consume fences */
342         if (intel_has_pending_fb_unpin(dev))
343                 return ERR_PTR(-EAGAIN);
344
345         return ERR_PTR(-EDEADLK);
346 }
347
348 /**
349  * i915_gem_object_get_fence - set up fencing for an object
350  * @obj: object to map through a fence reg
351  *
352  * When mapping objects through the GTT, userspace wants to be able to write
353  * to them without having to worry about swizzling if the object is tiled.
354  * This function walks the fence regs looking for a free one for @obj,
355  * stealing one if it can't find any.
356  *
357  * It then sets up the reg based on the object's properties: address, pitch
358  * and tiling format.
359  *
360  * For an untiled surface, this removes any existing fence.
361  *
362  * Returns:
363  *
364  * 0 on success, negative error code on failure.
365  */
366 int
367 i915_gem_object_get_fence(struct drm_i915_gem_object *obj)
368 {
369         struct drm_device *dev = obj->base.dev;
370         struct drm_i915_private *dev_priv = dev->dev_private;
371         bool enable = obj->tiling_mode != I915_TILING_NONE;
372         struct drm_i915_fence_reg *reg;
373         int ret;
374
375         /* Have we updated the tiling parameters upon the object and so
376          * will need to serialise the write to the associated fence register?
377          */
378         if (obj->fence_dirty) {
379                 ret = i915_gem_object_wait_fence(obj);
380                 if (ret)
381                         return ret;
382         }
383
384         /* Just update our place in the LRU if our fence is getting reused. */
385         if (obj->fence_reg != I915_FENCE_REG_NONE) {
386                 reg = &dev_priv->fence_regs[obj->fence_reg];
387                 if (!obj->fence_dirty) {
388                         list_move_tail(&reg->lru_list,
389                                        &dev_priv->mm.fence_list);
390                         return 0;
391                 }
392         } else if (enable) {
393                 if (WARN_ON(!obj->map_and_fenceable))
394                         return -EINVAL;
395
396                 reg = i915_find_fence_reg(dev);
397                 if (IS_ERR(reg))
398                         return PTR_ERR(reg);
399
400                 if (reg->obj) {
401                         struct drm_i915_gem_object *old = reg->obj;
402
403                         ret = i915_gem_object_wait_fence(old);
404                         if (ret)
405                                 return ret;
406
407                         i915_gem_object_fence_lost(old);
408                 }
409         } else
410                 return 0;
411
412         i915_gem_object_update_fence(obj, reg, enable);
413
414         return 0;
415 }
416
417 /**
418  * i915_gem_object_pin_fence - pin fencing state
419  * @obj: object to pin fencing for
420  *
421  * This pins the fencing state (whether tiled or untiled) to make sure the
422  * object is ready to be used as a scanout target. Fencing status must be
423  * synchronize first by calling i915_gem_object_get_fence():
424  *
425  * The resulting fence pin reference must be released again with
426  * i915_gem_object_unpin_fence().
427  *
428  * Returns:
429  *
430  * True if the object has a fence, false otherwise.
431  */
432 bool
433 i915_gem_object_pin_fence(struct drm_i915_gem_object *obj)
434 {
435         if (obj->fence_reg != I915_FENCE_REG_NONE) {
436                 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
437                 struct i915_vma *ggtt_vma = i915_gem_obj_to_ggtt(obj);
438
439                 WARN_ON(!ggtt_vma ||
440                         dev_priv->fence_regs[obj->fence_reg].pin_count >
441                         ggtt_vma->pin_count);
442                 dev_priv->fence_regs[obj->fence_reg].pin_count++;
443                 return true;
444         } else
445                 return false;
446 }
447
448 /**
449  * i915_gem_object_unpin_fence - unpin fencing state
450  * @obj: object to unpin fencing for
451  *
452  * This releases the fence pin reference acquired through
453  * i915_gem_object_pin_fence. It will handle both objects with and without an
454  * attached fence correctly, callers do not need to distinguish this.
455  */
456 void
457 i915_gem_object_unpin_fence(struct drm_i915_gem_object *obj)
458 {
459         if (obj->fence_reg != I915_FENCE_REG_NONE) {
460                 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
461                 WARN_ON(dev_priv->fence_regs[obj->fence_reg].pin_count <= 0);
462                 dev_priv->fence_regs[obj->fence_reg].pin_count--;
463         }
464 }
465
466 /**
467  * i915_gem_restore_fences - restore fence state
468  * @dev: DRM device
469  *
470  * Restore the hw fence state to match the software tracking again, to be called
471  * after a gpu reset and on resume.
472  */
473 void i915_gem_restore_fences(struct drm_device *dev)
474 {
475         struct drm_i915_private *dev_priv = dev->dev_private;
476         int i;
477
478         for (i = 0; i < dev_priv->num_fence_regs; i++) {
479                 struct drm_i915_fence_reg *reg = &dev_priv->fence_regs[i];
480
481                 /*
482                  * Commit delayed tiling changes if we have an object still
483                  * attached to the fence, otherwise just clear the fence.
484                  */
485                 if (reg->obj) {
486                         i915_gem_object_update_fence(reg->obj, reg,
487                                                      reg->obj->tiling_mode);
488                 } else {
489                         i915_gem_write_fence(dev, i, NULL);
490                 }
491         }
492 }
493
494 /**
495  * DOC: tiling swizzling details
496  *
497  * The idea behind tiling is to increase cache hit rates by rearranging
498  * pixel data so that a group of pixel accesses are in the same cacheline.
499  * Performance improvement from doing this on the back/depth buffer are on
500  * the order of 30%.
501  *
502  * Intel architectures make this somewhat more complicated, though, by
503  * adjustments made to addressing of data when the memory is in interleaved
504  * mode (matched pairs of DIMMS) to improve memory bandwidth.
505  * For interleaved memory, the CPU sends every sequential 64 bytes
506  * to an alternate memory channel so it can get the bandwidth from both.
507  *
508  * The GPU also rearranges its accesses for increased bandwidth to interleaved
509  * memory, and it matches what the CPU does for non-tiled.  However, when tiled
510  * it does it a little differently, since one walks addresses not just in the
511  * X direction but also Y.  So, along with alternating channels when bit
512  * 6 of the address flips, it also alternates when other bits flip --  Bits 9
513  * (every 512 bytes, an X tile scanline) and 10 (every two X tile scanlines)
514  * are common to both the 915 and 965-class hardware.
515  *
516  * The CPU also sometimes XORs in higher bits as well, to improve
517  * bandwidth doing strided access like we do so frequently in graphics.  This
518  * is called "Channel XOR Randomization" in the MCH documentation.  The result
519  * is that the CPU is XORing in either bit 11 or bit 17 to bit 6 of its address
520  * decode.
521  *
522  * All of this bit 6 XORing has an effect on our memory management,
523  * as we need to make sure that the 3d driver can correctly address object
524  * contents.
525  *
526  * If we don't have interleaved memory, all tiling is safe and no swizzling is
527  * required.
528  *
529  * When bit 17 is XORed in, we simply refuse to tile at all.  Bit
530  * 17 is not just a page offset, so as we page an objet out and back in,
531  * individual pages in it will have different bit 17 addresses, resulting in
532  * each 64 bytes being swapped with its neighbor!
533  *
534  * Otherwise, if interleaved, we have to tell the 3d driver what the address
535  * swizzling it needs to do is, since it's writing with the CPU to the pages
536  * (bit 6 and potentially bit 11 XORed in), and the GPU is reading from the
537  * pages (bit 6, 9, and 10 XORed in), resulting in a cumulative bit swizzling
538  * required by the CPU of XORing in bit 6, 9, 10, and potentially 11, in order
539  * to match what the GPU expects.
540  */
541
542 /**
543  * i915_gem_detect_bit_6_swizzle - detect bit 6 swizzling pattern
544  * @dev: DRM device
545  *
546  * Detects bit 6 swizzling of address lookup between IGD access and CPU
547  * access through main memory.
548  */
549 void
550 i915_gem_detect_bit_6_swizzle(struct drm_device *dev)
551 {
552         struct drm_i915_private *dev_priv = dev->dev_private;
553         uint32_t swizzle_x = I915_BIT_6_SWIZZLE_UNKNOWN;
554         uint32_t swizzle_y = I915_BIT_6_SWIZZLE_UNKNOWN;
555
556         if (INTEL_INFO(dev)->gen >= 8 || IS_VALLEYVIEW(dev)) {
557                 /*
558                  * On BDW+, swizzling is not used. We leave the CPU memory
559                  * controller in charge of optimizing memory accesses without
560                  * the extra address manipulation GPU side.
561                  *
562                  * VLV and CHV don't have GPU swizzling.
563                  */
564                 swizzle_x = I915_BIT_6_SWIZZLE_NONE;
565                 swizzle_y = I915_BIT_6_SWIZZLE_NONE;
566         } else if (INTEL_INFO(dev)->gen >= 6) {
567                 if (dev_priv->preserve_bios_swizzle) {
568                         if (I915_READ(DISP_ARB_CTL) &
569                             DISP_TILE_SURFACE_SWIZZLING) {
570                                 swizzle_x = I915_BIT_6_SWIZZLE_9_10;
571                                 swizzle_y = I915_BIT_6_SWIZZLE_9;
572                         } else {
573                                 swizzle_x = I915_BIT_6_SWIZZLE_NONE;
574                                 swizzle_y = I915_BIT_6_SWIZZLE_NONE;
575                         }
576                 } else {
577                         uint32_t dimm_c0, dimm_c1;
578                         dimm_c0 = I915_READ(MAD_DIMM_C0);
579                         dimm_c1 = I915_READ(MAD_DIMM_C1);
580                         dimm_c0 &= MAD_DIMM_A_SIZE_MASK | MAD_DIMM_B_SIZE_MASK;
581                         dimm_c1 &= MAD_DIMM_A_SIZE_MASK | MAD_DIMM_B_SIZE_MASK;
582                         /* Enable swizzling when the channels are populated
583                          * with identically sized dimms. We don't need to check
584                          * the 3rd channel because no cpu with gpu attached
585                          * ships in that configuration. Also, swizzling only
586                          * makes sense for 2 channels anyway. */
587                         if (dimm_c0 == dimm_c1) {
588                                 swizzle_x = I915_BIT_6_SWIZZLE_9_10;
589                                 swizzle_y = I915_BIT_6_SWIZZLE_9;
590                         } else {
591                                 swizzle_x = I915_BIT_6_SWIZZLE_NONE;
592                                 swizzle_y = I915_BIT_6_SWIZZLE_NONE;
593                         }
594                 }
595         } else if (IS_GEN5(dev)) {
596                 /* On Ironlake whatever DRAM config, GPU always do
597                  * same swizzling setup.
598                  */
599                 swizzle_x = I915_BIT_6_SWIZZLE_9_10;
600                 swizzle_y = I915_BIT_6_SWIZZLE_9;
601         } else if (IS_GEN2(dev)) {
602                 /* As far as we know, the 865 doesn't have these bit 6
603                  * swizzling issues.
604                  */
605                 swizzle_x = I915_BIT_6_SWIZZLE_NONE;
606                 swizzle_y = I915_BIT_6_SWIZZLE_NONE;
607         } else if (IS_MOBILE(dev) || (IS_GEN3(dev) && !IS_G33(dev))) {
608                 uint32_t dcc;
609
610                 /* On 9xx chipsets, channel interleave by the CPU is
611                  * determined by DCC.  For single-channel, neither the CPU
612                  * nor the GPU do swizzling.  For dual channel interleaved,
613                  * the GPU's interleave is bit 9 and 10 for X tiled, and bit
614                  * 9 for Y tiled.  The CPU's interleave is independent, and
615                  * can be based on either bit 11 (haven't seen this yet) or
616                  * bit 17 (common).
617                  */
618                 dcc = I915_READ(DCC);
619                 switch (dcc & DCC_ADDRESSING_MODE_MASK) {
620                 case DCC_ADDRESSING_MODE_SINGLE_CHANNEL:
621                 case DCC_ADDRESSING_MODE_DUAL_CHANNEL_ASYMMETRIC:
622                         swizzle_x = I915_BIT_6_SWIZZLE_NONE;
623                         swizzle_y = I915_BIT_6_SWIZZLE_NONE;
624                         break;
625                 case DCC_ADDRESSING_MODE_DUAL_CHANNEL_INTERLEAVED:
626                         if (dcc & DCC_CHANNEL_XOR_DISABLE) {
627                                 /* This is the base swizzling by the GPU for
628                                  * tiled buffers.
629                                  */
630                                 swizzle_x = I915_BIT_6_SWIZZLE_9_10;
631                                 swizzle_y = I915_BIT_6_SWIZZLE_9;
632                         } else if ((dcc & DCC_CHANNEL_XOR_BIT_17) == 0) {
633                                 /* Bit 11 swizzling by the CPU in addition. */
634                                 swizzle_x = I915_BIT_6_SWIZZLE_9_10_11;
635                                 swizzle_y = I915_BIT_6_SWIZZLE_9_11;
636                         } else {
637                                 /* Bit 17 swizzling by the CPU in addition. */
638                                 swizzle_x = I915_BIT_6_SWIZZLE_9_10_17;
639                                 swizzle_y = I915_BIT_6_SWIZZLE_9_17;
640                         }
641                         break;
642                 }
643
644                 /* check for L-shaped memory aka modified enhanced addressing */
645                 if (IS_GEN4(dev)) {
646                         uint32_t ddc2 = I915_READ(DCC2);
647
648                         if (!(ddc2 & DCC2_MODIFIED_ENHANCED_DISABLE))
649                                 dev_priv->quirks |= QUIRK_PIN_SWIZZLED_PAGES;
650                 }
651
652                 if (dcc == 0xffffffff) {
653                         DRM_ERROR("Couldn't read from MCHBAR.  "
654                                   "Disabling tiling.\n");
655                         swizzle_x = I915_BIT_6_SWIZZLE_UNKNOWN;
656                         swizzle_y = I915_BIT_6_SWIZZLE_UNKNOWN;
657                 }
658         } else {
659                 /* The 965, G33, and newer, have a very flexible memory
660                  * configuration.  It will enable dual-channel mode
661                  * (interleaving) on as much memory as it can, and the GPU
662                  * will additionally sometimes enable different bit 6
663                  * swizzling for tiled objects from the CPU.
664                  *
665                  * Here's what I found on the G965:
666                  *    slot fill         memory size  swizzling
667                  * 0A   0B   1A   1B    1-ch   2-ch
668                  * 512  0    0    0     512    0     O
669                  * 512  0    512  0     16     1008  X
670                  * 512  0    0    512   16     1008  X
671                  * 0    512  0    512   16     1008  X
672                  * 1024 1024 1024 0     2048   1024  O
673                  *
674                  * We could probably detect this based on either the DRB
675                  * matching, which was the case for the swizzling required in
676                  * the table above, or from the 1-ch value being less than
677                  * the minimum size of a rank.
678                  */
679                 if (I915_READ16(C0DRB3) != I915_READ16(C1DRB3)) {
680                         swizzle_x = I915_BIT_6_SWIZZLE_NONE;
681                         swizzle_y = I915_BIT_6_SWIZZLE_NONE;
682                 } else {
683                         swizzle_x = I915_BIT_6_SWIZZLE_9_10;
684                         swizzle_y = I915_BIT_6_SWIZZLE_9;
685                 }
686         }
687
688         dev_priv->mm.bit_6_swizzle_x = swizzle_x;
689         dev_priv->mm.bit_6_swizzle_y = swizzle_y;
690 }
691
692 /*
693  * Swap every 64 bytes of this page around, to account for it having a new
694  * bit 17 of its physical address and therefore being interpreted differently
695  * by the GPU.
696  */
697 static void
698 i915_gem_swizzle_page(struct page *page)
699 {
700         char temp[64];
701         char *vaddr;
702         int i;
703
704         vaddr = kmap(page);
705
706         for (i = 0; i < PAGE_SIZE; i += 128) {
707                 memcpy(temp, &vaddr[i], 64);
708                 memcpy(&vaddr[i], &vaddr[i + 64], 64);
709                 memcpy(&vaddr[i + 64], temp, 64);
710         }
711
712         kunmap(page);
713 }
714
715 /**
716  * i915_gem_object_do_bit_17_swizzle - fixup bit 17 swizzling
717  * @obj: i915 GEM buffer object
718  *
719  * This function fixes up the swizzling in case any page frame number for this
720  * object has changed in bit 17 since that state has been saved with
721  * i915_gem_object_save_bit_17_swizzle().
722  *
723  * This is called when pinning backing storage again, since the kernel is free
724  * to move unpinned backing storage around (either by directly moving pages or
725  * by swapping them out and back in again).
726  */
727 void
728 i915_gem_object_do_bit_17_swizzle(struct drm_i915_gem_object *obj)
729 {
730         struct sg_page_iter sg_iter;
731         int i;
732
733         if (obj->bit_17 == NULL)
734                 return;
735
736         i = 0;
737         for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents, 0) {
738                 struct page *page = sg_page_iter_page(&sg_iter);
739                 char new_bit_17 = page_to_phys(page) >> 17;
740                 if ((new_bit_17 & 0x1) !=
741                     (test_bit(i, obj->bit_17) != 0)) {
742                         i915_gem_swizzle_page(page);
743                         set_page_dirty(page);
744                 }
745                 i++;
746         }
747 }
748
749 /**
750  * i915_gem_object_save_bit_17_swizzle - save bit 17 swizzling
751  * @obj: i915 GEM buffer object
752  *
753  * This function saves the bit 17 of each page frame number so that swizzling
754  * can be fixed up later on with i915_gem_object_do_bit_17_swizzle(). This must
755  * be called before the backing storage can be unpinned.
756  */
757 void
758 i915_gem_object_save_bit_17_swizzle(struct drm_i915_gem_object *obj)
759 {
760         struct sg_page_iter sg_iter;
761         int page_count = obj->base.size >> PAGE_SHIFT;
762         int i;
763
764         if (obj->bit_17 == NULL) {
765                 obj->bit_17 = kcalloc(BITS_TO_LONGS(page_count),
766                                       sizeof(long), GFP_KERNEL);
767                 if (obj->bit_17 == NULL) {
768                         DRM_ERROR("Failed to allocate memory for bit 17 "
769                                   "record\n");
770                         return;
771                 }
772         }
773
774         i = 0;
775         for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents, 0) {
776                 if (page_to_phys(sg_page_iter_page(&sg_iter)) & (1 << 17))
777                         __set_bit(i, obj->bit_17);
778                 else
779                         __clear_bit(i, obj->bit_17);
780                 i++;
781         }
782 }