Merge tag 'for-linus-20151217' of git://git.infradead.org/linux-mtd
[firefly-linux-kernel-4.4.55.git] / drivers / gpu / drm / i915 / i915_gem.c
1 /*
2  * Copyright © 2008-2015 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *    Eric Anholt <eric@anholt.net>
25  *
26  */
27
28 #include <drm/drmP.h>
29 #include <drm/drm_vma_manager.h>
30 #include <drm/i915_drm.h>
31 #include "i915_drv.h"
32 #include "i915_vgpu.h"
33 #include "i915_trace.h"
34 #include "intel_drv.h"
35 #include <linux/shmem_fs.h>
36 #include <linux/slab.h>
37 #include <linux/swap.h>
38 #include <linux/pci.h>
39 #include <linux/dma-buf.h>
40
41 #define RQ_BUG_ON(expr)
42
43 static void i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj);
44 static void i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj);
45 static void
46 i915_gem_object_retire__write(struct drm_i915_gem_object *obj);
47 static void
48 i915_gem_object_retire__read(struct drm_i915_gem_object *obj, int ring);
49
50 static bool cpu_cache_is_coherent(struct drm_device *dev,
51                                   enum i915_cache_level level)
52 {
53         return HAS_LLC(dev) || level != I915_CACHE_NONE;
54 }
55
56 static bool cpu_write_needs_clflush(struct drm_i915_gem_object *obj)
57 {
58         if (!cpu_cache_is_coherent(obj->base.dev, obj->cache_level))
59                 return true;
60
61         return obj->pin_display;
62 }
63
64 /* some bookkeeping */
65 static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
66                                   size_t size)
67 {
68         spin_lock(&dev_priv->mm.object_stat_lock);
69         dev_priv->mm.object_count++;
70         dev_priv->mm.object_memory += size;
71         spin_unlock(&dev_priv->mm.object_stat_lock);
72 }
73
74 static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
75                                      size_t size)
76 {
77         spin_lock(&dev_priv->mm.object_stat_lock);
78         dev_priv->mm.object_count--;
79         dev_priv->mm.object_memory -= size;
80         spin_unlock(&dev_priv->mm.object_stat_lock);
81 }
82
83 static int
84 i915_gem_wait_for_error(struct i915_gpu_error *error)
85 {
86         int ret;
87
88 #define EXIT_COND (!i915_reset_in_progress(error) || \
89                    i915_terminally_wedged(error))
90         if (EXIT_COND)
91                 return 0;
92
93         /*
94          * Only wait 10 seconds for the gpu reset to complete to avoid hanging
95          * userspace. If it takes that long something really bad is going on and
96          * we should simply try to bail out and fail as gracefully as possible.
97          */
98         ret = wait_event_interruptible_timeout(error->reset_queue,
99                                                EXIT_COND,
100                                                10*HZ);
101         if (ret == 0) {
102                 DRM_ERROR("Timed out waiting for the gpu reset to complete\n");
103                 return -EIO;
104         } else if (ret < 0) {
105                 return ret;
106         }
107 #undef EXIT_COND
108
109         return 0;
110 }
111
112 int i915_mutex_lock_interruptible(struct drm_device *dev)
113 {
114         struct drm_i915_private *dev_priv = dev->dev_private;
115         int ret;
116
117         ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
118         if (ret)
119                 return ret;
120
121         ret = mutex_lock_interruptible(&dev->struct_mutex);
122         if (ret)
123                 return ret;
124
125         WARN_ON(i915_verify_lists(dev));
126         return 0;
127 }
128
129 int
130 i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
131                             struct drm_file *file)
132 {
133         struct drm_i915_private *dev_priv = dev->dev_private;
134         struct drm_i915_gem_get_aperture *args = data;
135         struct i915_gtt *ggtt = &dev_priv->gtt;
136         struct i915_vma *vma;
137         size_t pinned;
138
139         pinned = 0;
140         mutex_lock(&dev->struct_mutex);
141         list_for_each_entry(vma, &ggtt->base.active_list, mm_list)
142                 if (vma->pin_count)
143                         pinned += vma->node.size;
144         list_for_each_entry(vma, &ggtt->base.inactive_list, mm_list)
145                 if (vma->pin_count)
146                         pinned += vma->node.size;
147         mutex_unlock(&dev->struct_mutex);
148
149         args->aper_size = dev_priv->gtt.base.total;
150         args->aper_available_size = args->aper_size - pinned;
151
152         return 0;
153 }
154
155 static int
156 i915_gem_object_get_pages_phys(struct drm_i915_gem_object *obj)
157 {
158         struct address_space *mapping = file_inode(obj->base.filp)->i_mapping;
159         char *vaddr = obj->phys_handle->vaddr;
160         struct sg_table *st;
161         struct scatterlist *sg;
162         int i;
163
164         if (WARN_ON(i915_gem_object_needs_bit17_swizzle(obj)))
165                 return -EINVAL;
166
167         for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
168                 struct page *page;
169                 char *src;
170
171                 page = shmem_read_mapping_page(mapping, i);
172                 if (IS_ERR(page))
173                         return PTR_ERR(page);
174
175                 src = kmap_atomic(page);
176                 memcpy(vaddr, src, PAGE_SIZE);
177                 drm_clflush_virt_range(vaddr, PAGE_SIZE);
178                 kunmap_atomic(src);
179
180                 page_cache_release(page);
181                 vaddr += PAGE_SIZE;
182         }
183
184         i915_gem_chipset_flush(obj->base.dev);
185
186         st = kmalloc(sizeof(*st), GFP_KERNEL);
187         if (st == NULL)
188                 return -ENOMEM;
189
190         if (sg_alloc_table(st, 1, GFP_KERNEL)) {
191                 kfree(st);
192                 return -ENOMEM;
193         }
194
195         sg = st->sgl;
196         sg->offset = 0;
197         sg->length = obj->base.size;
198
199         sg_dma_address(sg) = obj->phys_handle->busaddr;
200         sg_dma_len(sg) = obj->base.size;
201
202         obj->pages = st;
203         return 0;
204 }
205
206 static void
207 i915_gem_object_put_pages_phys(struct drm_i915_gem_object *obj)
208 {
209         int ret;
210
211         BUG_ON(obj->madv == __I915_MADV_PURGED);
212
213         ret = i915_gem_object_set_to_cpu_domain(obj, true);
214         if (ret) {
215                 /* In the event of a disaster, abandon all caches and
216                  * hope for the best.
217                  */
218                 WARN_ON(ret != -EIO);
219                 obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
220         }
221
222         if (obj->madv == I915_MADV_DONTNEED)
223                 obj->dirty = 0;
224
225         if (obj->dirty) {
226                 struct address_space *mapping = file_inode(obj->base.filp)->i_mapping;
227                 char *vaddr = obj->phys_handle->vaddr;
228                 int i;
229
230                 for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
231                         struct page *page;
232                         char *dst;
233
234                         page = shmem_read_mapping_page(mapping, i);
235                         if (IS_ERR(page))
236                                 continue;
237
238                         dst = kmap_atomic(page);
239                         drm_clflush_virt_range(vaddr, PAGE_SIZE);
240                         memcpy(dst, vaddr, PAGE_SIZE);
241                         kunmap_atomic(dst);
242
243                         set_page_dirty(page);
244                         if (obj->madv == I915_MADV_WILLNEED)
245                                 mark_page_accessed(page);
246                         page_cache_release(page);
247                         vaddr += PAGE_SIZE;
248                 }
249                 obj->dirty = 0;
250         }
251
252         sg_free_table(obj->pages);
253         kfree(obj->pages);
254 }
255
256 static void
257 i915_gem_object_release_phys(struct drm_i915_gem_object *obj)
258 {
259         drm_pci_free(obj->base.dev, obj->phys_handle);
260 }
261
262 static const struct drm_i915_gem_object_ops i915_gem_phys_ops = {
263         .get_pages = i915_gem_object_get_pages_phys,
264         .put_pages = i915_gem_object_put_pages_phys,
265         .release = i915_gem_object_release_phys,
266 };
267
268 static int
269 drop_pages(struct drm_i915_gem_object *obj)
270 {
271         struct i915_vma *vma, *next;
272         int ret;
273
274         drm_gem_object_reference(&obj->base);
275         list_for_each_entry_safe(vma, next, &obj->vma_list, vma_link)
276                 if (i915_vma_unbind(vma))
277                         break;
278
279         ret = i915_gem_object_put_pages(obj);
280         drm_gem_object_unreference(&obj->base);
281
282         return ret;
283 }
284
285 int
286 i915_gem_object_attach_phys(struct drm_i915_gem_object *obj,
287                             int align)
288 {
289         drm_dma_handle_t *phys;
290         int ret;
291
292         if (obj->phys_handle) {
293                 if ((unsigned long)obj->phys_handle->vaddr & (align -1))
294                         return -EBUSY;
295
296                 return 0;
297         }
298
299         if (obj->madv != I915_MADV_WILLNEED)
300                 return -EFAULT;
301
302         if (obj->base.filp == NULL)
303                 return -EINVAL;
304
305         ret = drop_pages(obj);
306         if (ret)
307                 return ret;
308
309         /* create a new object */
310         phys = drm_pci_alloc(obj->base.dev, obj->base.size, align);
311         if (!phys)
312                 return -ENOMEM;
313
314         obj->phys_handle = phys;
315         obj->ops = &i915_gem_phys_ops;
316
317         return i915_gem_object_get_pages(obj);
318 }
319
320 static int
321 i915_gem_phys_pwrite(struct drm_i915_gem_object *obj,
322                      struct drm_i915_gem_pwrite *args,
323                      struct drm_file *file_priv)
324 {
325         struct drm_device *dev = obj->base.dev;
326         void *vaddr = obj->phys_handle->vaddr + args->offset;
327         char __user *user_data = to_user_ptr(args->data_ptr);
328         int ret = 0;
329
330         /* We manually control the domain here and pretend that it
331          * remains coherent i.e. in the GTT domain, like shmem_pwrite.
332          */
333         ret = i915_gem_object_wait_rendering(obj, false);
334         if (ret)
335                 return ret;
336
337         intel_fb_obj_invalidate(obj, ORIGIN_CPU);
338         if (__copy_from_user_inatomic_nocache(vaddr, user_data, args->size)) {
339                 unsigned long unwritten;
340
341                 /* The physical object once assigned is fixed for the lifetime
342                  * of the obj, so we can safely drop the lock and continue
343                  * to access vaddr.
344                  */
345                 mutex_unlock(&dev->struct_mutex);
346                 unwritten = copy_from_user(vaddr, user_data, args->size);
347                 mutex_lock(&dev->struct_mutex);
348                 if (unwritten) {
349                         ret = -EFAULT;
350                         goto out;
351                 }
352         }
353
354         drm_clflush_virt_range(vaddr, args->size);
355         i915_gem_chipset_flush(dev);
356
357 out:
358         intel_fb_obj_flush(obj, false, ORIGIN_CPU);
359         return ret;
360 }
361
362 void *i915_gem_object_alloc(struct drm_device *dev)
363 {
364         struct drm_i915_private *dev_priv = dev->dev_private;
365         return kmem_cache_zalloc(dev_priv->objects, GFP_KERNEL);
366 }
367
368 void i915_gem_object_free(struct drm_i915_gem_object *obj)
369 {
370         struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
371         kmem_cache_free(dev_priv->objects, obj);
372 }
373
374 static int
375 i915_gem_create(struct drm_file *file,
376                 struct drm_device *dev,
377                 uint64_t size,
378                 uint32_t *handle_p)
379 {
380         struct drm_i915_gem_object *obj;
381         int ret;
382         u32 handle;
383
384         size = roundup(size, PAGE_SIZE);
385         if (size == 0)
386                 return -EINVAL;
387
388         /* Allocate the new object */
389         obj = i915_gem_alloc_object(dev, size);
390         if (obj == NULL)
391                 return -ENOMEM;
392
393         ret = drm_gem_handle_create(file, &obj->base, &handle);
394         /* drop reference from allocate - handle holds it now */
395         drm_gem_object_unreference_unlocked(&obj->base);
396         if (ret)
397                 return ret;
398
399         *handle_p = handle;
400         return 0;
401 }
402
403 int
404 i915_gem_dumb_create(struct drm_file *file,
405                      struct drm_device *dev,
406                      struct drm_mode_create_dumb *args)
407 {
408         /* have to work out size/pitch and return them */
409         args->pitch = ALIGN(args->width * DIV_ROUND_UP(args->bpp, 8), 64);
410         args->size = args->pitch * args->height;
411         return i915_gem_create(file, dev,
412                                args->size, &args->handle);
413 }
414
415 /**
416  * Creates a new mm object and returns a handle to it.
417  */
418 int
419 i915_gem_create_ioctl(struct drm_device *dev, void *data,
420                       struct drm_file *file)
421 {
422         struct drm_i915_gem_create *args = data;
423
424         return i915_gem_create(file, dev,
425                                args->size, &args->handle);
426 }
427
428 static inline int
429 __copy_to_user_swizzled(char __user *cpu_vaddr,
430                         const char *gpu_vaddr, int gpu_offset,
431                         int length)
432 {
433         int ret, cpu_offset = 0;
434
435         while (length > 0) {
436                 int cacheline_end = ALIGN(gpu_offset + 1, 64);
437                 int this_length = min(cacheline_end - gpu_offset, length);
438                 int swizzled_gpu_offset = gpu_offset ^ 64;
439
440                 ret = __copy_to_user(cpu_vaddr + cpu_offset,
441                                      gpu_vaddr + swizzled_gpu_offset,
442                                      this_length);
443                 if (ret)
444                         return ret + length;
445
446                 cpu_offset += this_length;
447                 gpu_offset += this_length;
448                 length -= this_length;
449         }
450
451         return 0;
452 }
453
454 static inline int
455 __copy_from_user_swizzled(char *gpu_vaddr, int gpu_offset,
456                           const char __user *cpu_vaddr,
457                           int length)
458 {
459         int ret, cpu_offset = 0;
460
461         while (length > 0) {
462                 int cacheline_end = ALIGN(gpu_offset + 1, 64);
463                 int this_length = min(cacheline_end - gpu_offset, length);
464                 int swizzled_gpu_offset = gpu_offset ^ 64;
465
466                 ret = __copy_from_user(gpu_vaddr + swizzled_gpu_offset,
467                                        cpu_vaddr + cpu_offset,
468                                        this_length);
469                 if (ret)
470                         return ret + length;
471
472                 cpu_offset += this_length;
473                 gpu_offset += this_length;
474                 length -= this_length;
475         }
476
477         return 0;
478 }
479
480 /*
481  * Pins the specified object's pages and synchronizes the object with
482  * GPU accesses. Sets needs_clflush to non-zero if the caller should
483  * flush the object from the CPU cache.
484  */
485 int i915_gem_obj_prepare_shmem_read(struct drm_i915_gem_object *obj,
486                                     int *needs_clflush)
487 {
488         int ret;
489
490         *needs_clflush = 0;
491
492         if (!obj->base.filp)
493                 return -EINVAL;
494
495         if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU)) {
496                 /* If we're not in the cpu read domain, set ourself into the gtt
497                  * read domain and manually flush cachelines (if required). This
498                  * optimizes for the case when the gpu will dirty the data
499                  * anyway again before the next pread happens. */
500                 *needs_clflush = !cpu_cache_is_coherent(obj->base.dev,
501                                                         obj->cache_level);
502                 ret = i915_gem_object_wait_rendering(obj, true);
503                 if (ret)
504                         return ret;
505         }
506
507         ret = i915_gem_object_get_pages(obj);
508         if (ret)
509                 return ret;
510
511         i915_gem_object_pin_pages(obj);
512
513         return ret;
514 }
515
516 /* Per-page copy function for the shmem pread fastpath.
517  * Flushes invalid cachelines before reading the target if
518  * needs_clflush is set. */
519 static int
520 shmem_pread_fast(struct page *page, int shmem_page_offset, int page_length,
521                  char __user *user_data,
522                  bool page_do_bit17_swizzling, bool needs_clflush)
523 {
524         char *vaddr;
525         int ret;
526
527         if (unlikely(page_do_bit17_swizzling))
528                 return -EINVAL;
529
530         vaddr = kmap_atomic(page);
531         if (needs_clflush)
532                 drm_clflush_virt_range(vaddr + shmem_page_offset,
533                                        page_length);
534         ret = __copy_to_user_inatomic(user_data,
535                                       vaddr + shmem_page_offset,
536                                       page_length);
537         kunmap_atomic(vaddr);
538
539         return ret ? -EFAULT : 0;
540 }
541
542 static void
543 shmem_clflush_swizzled_range(char *addr, unsigned long length,
544                              bool swizzled)
545 {
546         if (unlikely(swizzled)) {
547                 unsigned long start = (unsigned long) addr;
548                 unsigned long end = (unsigned long) addr + length;
549
550                 /* For swizzling simply ensure that we always flush both
551                  * channels. Lame, but simple and it works. Swizzled
552                  * pwrite/pread is far from a hotpath - current userspace
553                  * doesn't use it at all. */
554                 start = round_down(start, 128);
555                 end = round_up(end, 128);
556
557                 drm_clflush_virt_range((void *)start, end - start);
558         } else {
559                 drm_clflush_virt_range(addr, length);
560         }
561
562 }
563
564 /* Only difference to the fast-path function is that this can handle bit17
565  * and uses non-atomic copy and kmap functions. */
566 static int
567 shmem_pread_slow(struct page *page, int shmem_page_offset, int page_length,
568                  char __user *user_data,
569                  bool page_do_bit17_swizzling, bool needs_clflush)
570 {
571         char *vaddr;
572         int ret;
573
574         vaddr = kmap(page);
575         if (needs_clflush)
576                 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
577                                              page_length,
578                                              page_do_bit17_swizzling);
579
580         if (page_do_bit17_swizzling)
581                 ret = __copy_to_user_swizzled(user_data,
582                                               vaddr, shmem_page_offset,
583                                               page_length);
584         else
585                 ret = __copy_to_user(user_data,
586                                      vaddr + shmem_page_offset,
587                                      page_length);
588         kunmap(page);
589
590         return ret ? - EFAULT : 0;
591 }
592
593 static int
594 i915_gem_shmem_pread(struct drm_device *dev,
595                      struct drm_i915_gem_object *obj,
596                      struct drm_i915_gem_pread *args,
597                      struct drm_file *file)
598 {
599         char __user *user_data;
600         ssize_t remain;
601         loff_t offset;
602         int shmem_page_offset, page_length, ret = 0;
603         int obj_do_bit17_swizzling, page_do_bit17_swizzling;
604         int prefaulted = 0;
605         int needs_clflush = 0;
606         struct sg_page_iter sg_iter;
607
608         user_data = to_user_ptr(args->data_ptr);
609         remain = args->size;
610
611         obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
612
613         ret = i915_gem_obj_prepare_shmem_read(obj, &needs_clflush);
614         if (ret)
615                 return ret;
616
617         offset = args->offset;
618
619         for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
620                          offset >> PAGE_SHIFT) {
621                 struct page *page = sg_page_iter_page(&sg_iter);
622
623                 if (remain <= 0)
624                         break;
625
626                 /* Operation in this page
627                  *
628                  * shmem_page_offset = offset within page in shmem file
629                  * page_length = bytes to copy for this page
630                  */
631                 shmem_page_offset = offset_in_page(offset);
632                 page_length = remain;
633                 if ((shmem_page_offset + page_length) > PAGE_SIZE)
634                         page_length = PAGE_SIZE - shmem_page_offset;
635
636                 page_do_bit17_swizzling = obj_do_bit17_swizzling &&
637                         (page_to_phys(page) & (1 << 17)) != 0;
638
639                 ret = shmem_pread_fast(page, shmem_page_offset, page_length,
640                                        user_data, page_do_bit17_swizzling,
641                                        needs_clflush);
642                 if (ret == 0)
643                         goto next_page;
644
645                 mutex_unlock(&dev->struct_mutex);
646
647                 if (likely(!i915.prefault_disable) && !prefaulted) {
648                         ret = fault_in_multipages_writeable(user_data, remain);
649                         /* Userspace is tricking us, but we've already clobbered
650                          * its pages with the prefault and promised to write the
651                          * data up to the first fault. Hence ignore any errors
652                          * and just continue. */
653                         (void)ret;
654                         prefaulted = 1;
655                 }
656
657                 ret = shmem_pread_slow(page, shmem_page_offset, page_length,
658                                        user_data, page_do_bit17_swizzling,
659                                        needs_clflush);
660
661                 mutex_lock(&dev->struct_mutex);
662
663                 if (ret)
664                         goto out;
665
666 next_page:
667                 remain -= page_length;
668                 user_data += page_length;
669                 offset += page_length;
670         }
671
672 out:
673         i915_gem_object_unpin_pages(obj);
674
675         return ret;
676 }
677
678 /**
679  * Reads data from the object referenced by handle.
680  *
681  * On error, the contents of *data are undefined.
682  */
683 int
684 i915_gem_pread_ioctl(struct drm_device *dev, void *data,
685                      struct drm_file *file)
686 {
687         struct drm_i915_gem_pread *args = data;
688         struct drm_i915_gem_object *obj;
689         int ret = 0;
690
691         if (args->size == 0)
692                 return 0;
693
694         if (!access_ok(VERIFY_WRITE,
695                        to_user_ptr(args->data_ptr),
696                        args->size))
697                 return -EFAULT;
698
699         ret = i915_mutex_lock_interruptible(dev);
700         if (ret)
701                 return ret;
702
703         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
704         if (&obj->base == NULL) {
705                 ret = -ENOENT;
706                 goto unlock;
707         }
708
709         /* Bounds check source.  */
710         if (args->offset > obj->base.size ||
711             args->size > obj->base.size - args->offset) {
712                 ret = -EINVAL;
713                 goto out;
714         }
715
716         /* prime objects have no backing filp to GEM pread/pwrite
717          * pages from.
718          */
719         if (!obj->base.filp) {
720                 ret = -EINVAL;
721                 goto out;
722         }
723
724         trace_i915_gem_object_pread(obj, args->offset, args->size);
725
726         ret = i915_gem_shmem_pread(dev, obj, args, file);
727
728 out:
729         drm_gem_object_unreference(&obj->base);
730 unlock:
731         mutex_unlock(&dev->struct_mutex);
732         return ret;
733 }
734
735 /* This is the fast write path which cannot handle
736  * page faults in the source data
737  */
738
739 static inline int
740 fast_user_write(struct io_mapping *mapping,
741                 loff_t page_base, int page_offset,
742                 char __user *user_data,
743                 int length)
744 {
745         void __iomem *vaddr_atomic;
746         void *vaddr;
747         unsigned long unwritten;
748
749         vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base);
750         /* We can use the cpu mem copy function because this is X86. */
751         vaddr = (void __force*)vaddr_atomic + page_offset;
752         unwritten = __copy_from_user_inatomic_nocache(vaddr,
753                                                       user_data, length);
754         io_mapping_unmap_atomic(vaddr_atomic);
755         return unwritten;
756 }
757
758 /**
759  * This is the fast pwrite path, where we copy the data directly from the
760  * user into the GTT, uncached.
761  */
762 static int
763 i915_gem_gtt_pwrite_fast(struct drm_device *dev,
764                          struct drm_i915_gem_object *obj,
765                          struct drm_i915_gem_pwrite *args,
766                          struct drm_file *file)
767 {
768         struct drm_i915_private *dev_priv = dev->dev_private;
769         ssize_t remain;
770         loff_t offset, page_base;
771         char __user *user_data;
772         int page_offset, page_length, ret;
773
774         ret = i915_gem_obj_ggtt_pin(obj, 0, PIN_MAPPABLE | PIN_NONBLOCK);
775         if (ret)
776                 goto out;
777
778         ret = i915_gem_object_set_to_gtt_domain(obj, true);
779         if (ret)
780                 goto out_unpin;
781
782         ret = i915_gem_object_put_fence(obj);
783         if (ret)
784                 goto out_unpin;
785
786         user_data = to_user_ptr(args->data_ptr);
787         remain = args->size;
788
789         offset = i915_gem_obj_ggtt_offset(obj) + args->offset;
790
791         intel_fb_obj_invalidate(obj, ORIGIN_GTT);
792
793         while (remain > 0) {
794                 /* Operation in this page
795                  *
796                  * page_base = page offset within aperture
797                  * page_offset = offset within page
798                  * page_length = bytes to copy for this page
799                  */
800                 page_base = offset & PAGE_MASK;
801                 page_offset = offset_in_page(offset);
802                 page_length = remain;
803                 if ((page_offset + remain) > PAGE_SIZE)
804                         page_length = PAGE_SIZE - page_offset;
805
806                 /* If we get a fault while copying data, then (presumably) our
807                  * source page isn't available.  Return the error and we'll
808                  * retry in the slow path.
809                  */
810                 if (fast_user_write(dev_priv->gtt.mappable, page_base,
811                                     page_offset, user_data, page_length)) {
812                         ret = -EFAULT;
813                         goto out_flush;
814                 }
815
816                 remain -= page_length;
817                 user_data += page_length;
818                 offset += page_length;
819         }
820
821 out_flush:
822         intel_fb_obj_flush(obj, false, ORIGIN_GTT);
823 out_unpin:
824         i915_gem_object_ggtt_unpin(obj);
825 out:
826         return ret;
827 }
828
829 /* Per-page copy function for the shmem pwrite fastpath.
830  * Flushes invalid cachelines before writing to the target if
831  * needs_clflush_before is set and flushes out any written cachelines after
832  * writing if needs_clflush is set. */
833 static int
834 shmem_pwrite_fast(struct page *page, int shmem_page_offset, int page_length,
835                   char __user *user_data,
836                   bool page_do_bit17_swizzling,
837                   bool needs_clflush_before,
838                   bool needs_clflush_after)
839 {
840         char *vaddr;
841         int ret;
842
843         if (unlikely(page_do_bit17_swizzling))
844                 return -EINVAL;
845
846         vaddr = kmap_atomic(page);
847         if (needs_clflush_before)
848                 drm_clflush_virt_range(vaddr + shmem_page_offset,
849                                        page_length);
850         ret = __copy_from_user_inatomic(vaddr + shmem_page_offset,
851                                         user_data, page_length);
852         if (needs_clflush_after)
853                 drm_clflush_virt_range(vaddr + shmem_page_offset,
854                                        page_length);
855         kunmap_atomic(vaddr);
856
857         return ret ? -EFAULT : 0;
858 }
859
860 /* Only difference to the fast-path function is that this can handle bit17
861  * and uses non-atomic copy and kmap functions. */
862 static int
863 shmem_pwrite_slow(struct page *page, int shmem_page_offset, int page_length,
864                   char __user *user_data,
865                   bool page_do_bit17_swizzling,
866                   bool needs_clflush_before,
867                   bool needs_clflush_after)
868 {
869         char *vaddr;
870         int ret;
871
872         vaddr = kmap(page);
873         if (unlikely(needs_clflush_before || page_do_bit17_swizzling))
874                 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
875                                              page_length,
876                                              page_do_bit17_swizzling);
877         if (page_do_bit17_swizzling)
878                 ret = __copy_from_user_swizzled(vaddr, shmem_page_offset,
879                                                 user_data,
880                                                 page_length);
881         else
882                 ret = __copy_from_user(vaddr + shmem_page_offset,
883                                        user_data,
884                                        page_length);
885         if (needs_clflush_after)
886                 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
887                                              page_length,
888                                              page_do_bit17_swizzling);
889         kunmap(page);
890
891         return ret ? -EFAULT : 0;
892 }
893
894 static int
895 i915_gem_shmem_pwrite(struct drm_device *dev,
896                       struct drm_i915_gem_object *obj,
897                       struct drm_i915_gem_pwrite *args,
898                       struct drm_file *file)
899 {
900         ssize_t remain;
901         loff_t offset;
902         char __user *user_data;
903         int shmem_page_offset, page_length, ret = 0;
904         int obj_do_bit17_swizzling, page_do_bit17_swizzling;
905         int hit_slowpath = 0;
906         int needs_clflush_after = 0;
907         int needs_clflush_before = 0;
908         struct sg_page_iter sg_iter;
909
910         user_data = to_user_ptr(args->data_ptr);
911         remain = args->size;
912
913         obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
914
915         if (obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
916                 /* If we're not in the cpu write domain, set ourself into the gtt
917                  * write domain and manually flush cachelines (if required). This
918                  * optimizes for the case when the gpu will use the data
919                  * right away and we therefore have to clflush anyway. */
920                 needs_clflush_after = cpu_write_needs_clflush(obj);
921                 ret = i915_gem_object_wait_rendering(obj, false);
922                 if (ret)
923                         return ret;
924         }
925         /* Same trick applies to invalidate partially written cachelines read
926          * before writing. */
927         if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0)
928                 needs_clflush_before =
929                         !cpu_cache_is_coherent(dev, obj->cache_level);
930
931         ret = i915_gem_object_get_pages(obj);
932         if (ret)
933                 return ret;
934
935         intel_fb_obj_invalidate(obj, ORIGIN_CPU);
936
937         i915_gem_object_pin_pages(obj);
938
939         offset = args->offset;
940         obj->dirty = 1;
941
942         for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
943                          offset >> PAGE_SHIFT) {
944                 struct page *page = sg_page_iter_page(&sg_iter);
945                 int partial_cacheline_write;
946
947                 if (remain <= 0)
948                         break;
949
950                 /* Operation in this page
951                  *
952                  * shmem_page_offset = offset within page in shmem file
953                  * page_length = bytes to copy for this page
954                  */
955                 shmem_page_offset = offset_in_page(offset);
956
957                 page_length = remain;
958                 if ((shmem_page_offset + page_length) > PAGE_SIZE)
959                         page_length = PAGE_SIZE - shmem_page_offset;
960
961                 /* If we don't overwrite a cacheline completely we need to be
962                  * careful to have up-to-date data by first clflushing. Don't
963                  * overcomplicate things and flush the entire patch. */
964                 partial_cacheline_write = needs_clflush_before &&
965                         ((shmem_page_offset | page_length)
966                                 & (boot_cpu_data.x86_clflush_size - 1));
967
968                 page_do_bit17_swizzling = obj_do_bit17_swizzling &&
969                         (page_to_phys(page) & (1 << 17)) != 0;
970
971                 ret = shmem_pwrite_fast(page, shmem_page_offset, page_length,
972                                         user_data, page_do_bit17_swizzling,
973                                         partial_cacheline_write,
974                                         needs_clflush_after);
975                 if (ret == 0)
976                         goto next_page;
977
978                 hit_slowpath = 1;
979                 mutex_unlock(&dev->struct_mutex);
980                 ret = shmem_pwrite_slow(page, shmem_page_offset, page_length,
981                                         user_data, page_do_bit17_swizzling,
982                                         partial_cacheline_write,
983                                         needs_clflush_after);
984
985                 mutex_lock(&dev->struct_mutex);
986
987                 if (ret)
988                         goto out;
989
990 next_page:
991                 remain -= page_length;
992                 user_data += page_length;
993                 offset += page_length;
994         }
995
996 out:
997         i915_gem_object_unpin_pages(obj);
998
999         if (hit_slowpath) {
1000                 /*
1001                  * Fixup: Flush cpu caches in case we didn't flush the dirty
1002                  * cachelines in-line while writing and the object moved
1003                  * out of the cpu write domain while we've dropped the lock.
1004                  */
1005                 if (!needs_clflush_after &&
1006                     obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
1007                         if (i915_gem_clflush_object(obj, obj->pin_display))
1008                                 needs_clflush_after = true;
1009                 }
1010         }
1011
1012         if (needs_clflush_after)
1013                 i915_gem_chipset_flush(dev);
1014         else
1015                 obj->cache_dirty = true;
1016
1017         intel_fb_obj_flush(obj, false, ORIGIN_CPU);
1018         return ret;
1019 }
1020
1021 /**
1022  * Writes data to the object referenced by handle.
1023  *
1024  * On error, the contents of the buffer that were to be modified are undefined.
1025  */
1026 int
1027 i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
1028                       struct drm_file *file)
1029 {
1030         struct drm_i915_private *dev_priv = dev->dev_private;
1031         struct drm_i915_gem_pwrite *args = data;
1032         struct drm_i915_gem_object *obj;
1033         int ret;
1034
1035         if (args->size == 0)
1036                 return 0;
1037
1038         if (!access_ok(VERIFY_READ,
1039                        to_user_ptr(args->data_ptr),
1040                        args->size))
1041                 return -EFAULT;
1042
1043         if (likely(!i915.prefault_disable)) {
1044                 ret = fault_in_multipages_readable(to_user_ptr(args->data_ptr),
1045                                                    args->size);
1046                 if (ret)
1047                         return -EFAULT;
1048         }
1049
1050         intel_runtime_pm_get(dev_priv);
1051
1052         ret = i915_mutex_lock_interruptible(dev);
1053         if (ret)
1054                 goto put_rpm;
1055
1056         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1057         if (&obj->base == NULL) {
1058                 ret = -ENOENT;
1059                 goto unlock;
1060         }
1061
1062         /* Bounds check destination. */
1063         if (args->offset > obj->base.size ||
1064             args->size > obj->base.size - args->offset) {
1065                 ret = -EINVAL;
1066                 goto out;
1067         }
1068
1069         /* prime objects have no backing filp to GEM pread/pwrite
1070          * pages from.
1071          */
1072         if (!obj->base.filp) {
1073                 ret = -EINVAL;
1074                 goto out;
1075         }
1076
1077         trace_i915_gem_object_pwrite(obj, args->offset, args->size);
1078
1079         ret = -EFAULT;
1080         /* We can only do the GTT pwrite on untiled buffers, as otherwise
1081          * it would end up going through the fenced access, and we'll get
1082          * different detiling behavior between reading and writing.
1083          * pread/pwrite currently are reading and writing from the CPU
1084          * perspective, requiring manual detiling by the client.
1085          */
1086         if (obj->tiling_mode == I915_TILING_NONE &&
1087             obj->base.write_domain != I915_GEM_DOMAIN_CPU &&
1088             cpu_write_needs_clflush(obj)) {
1089                 ret = i915_gem_gtt_pwrite_fast(dev, obj, args, file);
1090                 /* Note that the gtt paths might fail with non-page-backed user
1091                  * pointers (e.g. gtt mappings when moving data between
1092                  * textures). Fallback to the shmem path in that case. */
1093         }
1094
1095         if (ret == -EFAULT || ret == -ENOSPC) {
1096                 if (obj->phys_handle)
1097                         ret = i915_gem_phys_pwrite(obj, args, file);
1098                 else
1099                         ret = i915_gem_shmem_pwrite(dev, obj, args, file);
1100         }
1101
1102 out:
1103         drm_gem_object_unreference(&obj->base);
1104 unlock:
1105         mutex_unlock(&dev->struct_mutex);
1106 put_rpm:
1107         intel_runtime_pm_put(dev_priv);
1108
1109         return ret;
1110 }
1111
1112 int
1113 i915_gem_check_wedge(struct i915_gpu_error *error,
1114                      bool interruptible)
1115 {
1116         if (i915_reset_in_progress(error)) {
1117                 /* Non-interruptible callers can't handle -EAGAIN, hence return
1118                  * -EIO unconditionally for these. */
1119                 if (!interruptible)
1120                         return -EIO;
1121
1122                 /* Recovery complete, but the reset failed ... */
1123                 if (i915_terminally_wedged(error))
1124                         return -EIO;
1125
1126                 /*
1127                  * Check if GPU Reset is in progress - we need intel_ring_begin
1128                  * to work properly to reinit the hw state while the gpu is
1129                  * still marked as reset-in-progress. Handle this with a flag.
1130                  */
1131                 if (!error->reload_in_reset)
1132                         return -EAGAIN;
1133         }
1134
1135         return 0;
1136 }
1137
1138 static void fake_irq(unsigned long data)
1139 {
1140         wake_up_process((struct task_struct *)data);
1141 }
1142
1143 static bool missed_irq(struct drm_i915_private *dev_priv,
1144                        struct intel_engine_cs *ring)
1145 {
1146         return test_bit(ring->id, &dev_priv->gpu_error.missed_irq_rings);
1147 }
1148
1149 static int __i915_spin_request(struct drm_i915_gem_request *req)
1150 {
1151         unsigned long timeout;
1152
1153         if (i915_gem_request_get_ring(req)->irq_refcount)
1154                 return -EBUSY;
1155
1156         timeout = jiffies + 1;
1157         while (!need_resched()) {
1158                 if (i915_gem_request_completed(req, true))
1159                         return 0;
1160
1161                 if (time_after_eq(jiffies, timeout))
1162                         break;
1163
1164                 cpu_relax_lowlatency();
1165         }
1166         if (i915_gem_request_completed(req, false))
1167                 return 0;
1168
1169         return -EAGAIN;
1170 }
1171
1172 /**
1173  * __i915_wait_request - wait until execution of request has finished
1174  * @req: duh!
1175  * @reset_counter: reset sequence associated with the given request
1176  * @interruptible: do an interruptible wait (normally yes)
1177  * @timeout: in - how long to wait (NULL forever); out - how much time remaining
1178  *
1179  * Note: It is of utmost importance that the passed in seqno and reset_counter
1180  * values have been read by the caller in an smp safe manner. Where read-side
1181  * locks are involved, it is sufficient to read the reset_counter before
1182  * unlocking the lock that protects the seqno. For lockless tricks, the
1183  * reset_counter _must_ be read before, and an appropriate smp_rmb must be
1184  * inserted.
1185  *
1186  * Returns 0 if the request was found within the alloted time. Else returns the
1187  * errno with remaining time filled in timeout argument.
1188  */
1189 int __i915_wait_request(struct drm_i915_gem_request *req,
1190                         unsigned reset_counter,
1191                         bool interruptible,
1192                         s64 *timeout,
1193                         struct intel_rps_client *rps)
1194 {
1195         struct intel_engine_cs *ring = i915_gem_request_get_ring(req);
1196         struct drm_device *dev = ring->dev;
1197         struct drm_i915_private *dev_priv = dev->dev_private;
1198         const bool irq_test_in_progress =
1199                 ACCESS_ONCE(dev_priv->gpu_error.test_irq_rings) & intel_ring_flag(ring);
1200         DEFINE_WAIT(wait);
1201         unsigned long timeout_expire;
1202         s64 before, now;
1203         int ret;
1204
1205         WARN(!intel_irqs_enabled(dev_priv), "IRQs disabled");
1206
1207         if (list_empty(&req->list))
1208                 return 0;
1209
1210         if (i915_gem_request_completed(req, true))
1211                 return 0;
1212
1213         timeout_expire = 0;
1214         if (timeout) {
1215                 if (WARN_ON(*timeout < 0))
1216                         return -EINVAL;
1217
1218                 if (*timeout == 0)
1219                         return -ETIME;
1220
1221                 timeout_expire = jiffies + nsecs_to_jiffies_timeout(*timeout);
1222         }
1223
1224         if (INTEL_INFO(dev_priv)->gen >= 6)
1225                 gen6_rps_boost(dev_priv, rps, req->emitted_jiffies);
1226
1227         /* Record current time in case interrupted by signal, or wedged */
1228         trace_i915_gem_request_wait_begin(req);
1229         before = ktime_get_raw_ns();
1230
1231         /* Optimistic spin for the next jiffie before touching IRQs */
1232         ret = __i915_spin_request(req);
1233         if (ret == 0)
1234                 goto out;
1235
1236         if (!irq_test_in_progress && WARN_ON(!ring->irq_get(ring))) {
1237                 ret = -ENODEV;
1238                 goto out;
1239         }
1240
1241         for (;;) {
1242                 struct timer_list timer;
1243
1244                 prepare_to_wait(&ring->irq_queue, &wait,
1245                                 interruptible ? TASK_INTERRUPTIBLE : TASK_UNINTERRUPTIBLE);
1246
1247                 /* We need to check whether any gpu reset happened in between
1248                  * the caller grabbing the seqno and now ... */
1249                 if (reset_counter != atomic_read(&dev_priv->gpu_error.reset_counter)) {
1250                         /* ... but upgrade the -EAGAIN to an -EIO if the gpu
1251                          * is truely gone. */
1252                         ret = i915_gem_check_wedge(&dev_priv->gpu_error, interruptible);
1253                         if (ret == 0)
1254                                 ret = -EAGAIN;
1255                         break;
1256                 }
1257
1258                 if (i915_gem_request_completed(req, false)) {
1259                         ret = 0;
1260                         break;
1261                 }
1262
1263                 if (interruptible && signal_pending(current)) {
1264                         ret = -ERESTARTSYS;
1265                         break;
1266                 }
1267
1268                 if (timeout && time_after_eq(jiffies, timeout_expire)) {
1269                         ret = -ETIME;
1270                         break;
1271                 }
1272
1273                 timer.function = NULL;
1274                 if (timeout || missed_irq(dev_priv, ring)) {
1275                         unsigned long expire;
1276
1277                         setup_timer_on_stack(&timer, fake_irq, (unsigned long)current);
1278                         expire = missed_irq(dev_priv, ring) ? jiffies + 1 : timeout_expire;
1279                         mod_timer(&timer, expire);
1280                 }
1281
1282                 io_schedule();
1283
1284                 if (timer.function) {
1285                         del_singleshot_timer_sync(&timer);
1286                         destroy_timer_on_stack(&timer);
1287                 }
1288         }
1289         if (!irq_test_in_progress)
1290                 ring->irq_put(ring);
1291
1292         finish_wait(&ring->irq_queue, &wait);
1293
1294 out:
1295         now = ktime_get_raw_ns();
1296         trace_i915_gem_request_wait_end(req);
1297
1298         if (timeout) {
1299                 s64 tres = *timeout - (now - before);
1300
1301                 *timeout = tres < 0 ? 0 : tres;
1302
1303                 /*
1304                  * Apparently ktime isn't accurate enough and occasionally has a
1305                  * bit of mismatch in the jiffies<->nsecs<->ktime loop. So patch
1306                  * things up to make the test happy. We allow up to 1 jiffy.
1307                  *
1308                  * This is a regrssion from the timespec->ktime conversion.
1309                  */
1310                 if (ret == -ETIME && *timeout < jiffies_to_usecs(1)*1000)
1311                         *timeout = 0;
1312         }
1313
1314         return ret;
1315 }
1316
1317 int i915_gem_request_add_to_client(struct drm_i915_gem_request *req,
1318                                    struct drm_file *file)
1319 {
1320         struct drm_i915_private *dev_private;
1321         struct drm_i915_file_private *file_priv;
1322
1323         WARN_ON(!req || !file || req->file_priv);
1324
1325         if (!req || !file)
1326                 return -EINVAL;
1327
1328         if (req->file_priv)
1329                 return -EINVAL;
1330
1331         dev_private = req->ring->dev->dev_private;
1332         file_priv = file->driver_priv;
1333
1334         spin_lock(&file_priv->mm.lock);
1335         req->file_priv = file_priv;
1336         list_add_tail(&req->client_list, &file_priv->mm.request_list);
1337         spin_unlock(&file_priv->mm.lock);
1338
1339         req->pid = get_pid(task_pid(current));
1340
1341         return 0;
1342 }
1343
1344 static inline void
1345 i915_gem_request_remove_from_client(struct drm_i915_gem_request *request)
1346 {
1347         struct drm_i915_file_private *file_priv = request->file_priv;
1348
1349         if (!file_priv)
1350                 return;
1351
1352         spin_lock(&file_priv->mm.lock);
1353         list_del(&request->client_list);
1354         request->file_priv = NULL;
1355         spin_unlock(&file_priv->mm.lock);
1356
1357         put_pid(request->pid);
1358         request->pid = NULL;
1359 }
1360
1361 static void i915_gem_request_retire(struct drm_i915_gem_request *request)
1362 {
1363         trace_i915_gem_request_retire(request);
1364
1365         /* We know the GPU must have read the request to have
1366          * sent us the seqno + interrupt, so use the position
1367          * of tail of the request to update the last known position
1368          * of the GPU head.
1369          *
1370          * Note this requires that we are always called in request
1371          * completion order.
1372          */
1373         request->ringbuf->last_retired_head = request->postfix;
1374
1375         list_del_init(&request->list);
1376         i915_gem_request_remove_from_client(request);
1377
1378         i915_gem_request_unreference(request);
1379 }
1380
1381 static void
1382 __i915_gem_request_retire__upto(struct drm_i915_gem_request *req)
1383 {
1384         struct intel_engine_cs *engine = req->ring;
1385         struct drm_i915_gem_request *tmp;
1386
1387         lockdep_assert_held(&engine->dev->struct_mutex);
1388
1389         if (list_empty(&req->list))
1390                 return;
1391
1392         do {
1393                 tmp = list_first_entry(&engine->request_list,
1394                                        typeof(*tmp), list);
1395
1396                 i915_gem_request_retire(tmp);
1397         } while (tmp != req);
1398
1399         WARN_ON(i915_verify_lists(engine->dev));
1400 }
1401
1402 /**
1403  * Waits for a request to be signaled, and cleans up the
1404  * request and object lists appropriately for that event.
1405  */
1406 int
1407 i915_wait_request(struct drm_i915_gem_request *req)
1408 {
1409         struct drm_device *dev;
1410         struct drm_i915_private *dev_priv;
1411         bool interruptible;
1412         int ret;
1413
1414         BUG_ON(req == NULL);
1415
1416         dev = req->ring->dev;
1417         dev_priv = dev->dev_private;
1418         interruptible = dev_priv->mm.interruptible;
1419
1420         BUG_ON(!mutex_is_locked(&dev->struct_mutex));
1421
1422         ret = i915_gem_check_wedge(&dev_priv->gpu_error, interruptible);
1423         if (ret)
1424                 return ret;
1425
1426         ret = __i915_wait_request(req,
1427                                   atomic_read(&dev_priv->gpu_error.reset_counter),
1428                                   interruptible, NULL, NULL);
1429         if (ret)
1430                 return ret;
1431
1432         __i915_gem_request_retire__upto(req);
1433         return 0;
1434 }
1435
1436 /**
1437  * Ensures that all rendering to the object has completed and the object is
1438  * safe to unbind from the GTT or access from the CPU.
1439  */
1440 int
1441 i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj,
1442                                bool readonly)
1443 {
1444         int ret, i;
1445
1446         if (!obj->active)
1447                 return 0;
1448
1449         if (readonly) {
1450                 if (obj->last_write_req != NULL) {
1451                         ret = i915_wait_request(obj->last_write_req);
1452                         if (ret)
1453                                 return ret;
1454
1455                         i = obj->last_write_req->ring->id;
1456                         if (obj->last_read_req[i] == obj->last_write_req)
1457                                 i915_gem_object_retire__read(obj, i);
1458                         else
1459                                 i915_gem_object_retire__write(obj);
1460                 }
1461         } else {
1462                 for (i = 0; i < I915_NUM_RINGS; i++) {
1463                         if (obj->last_read_req[i] == NULL)
1464                                 continue;
1465
1466                         ret = i915_wait_request(obj->last_read_req[i]);
1467                         if (ret)
1468                                 return ret;
1469
1470                         i915_gem_object_retire__read(obj, i);
1471                 }
1472                 RQ_BUG_ON(obj->active);
1473         }
1474
1475         return 0;
1476 }
1477
1478 static void
1479 i915_gem_object_retire_request(struct drm_i915_gem_object *obj,
1480                                struct drm_i915_gem_request *req)
1481 {
1482         int ring = req->ring->id;
1483
1484         if (obj->last_read_req[ring] == req)
1485                 i915_gem_object_retire__read(obj, ring);
1486         else if (obj->last_write_req == req)
1487                 i915_gem_object_retire__write(obj);
1488
1489         __i915_gem_request_retire__upto(req);
1490 }
1491
1492 /* A nonblocking variant of the above wait. This is a highly dangerous routine
1493  * as the object state may change during this call.
1494  */
1495 static __must_check int
1496 i915_gem_object_wait_rendering__nonblocking(struct drm_i915_gem_object *obj,
1497                                             struct intel_rps_client *rps,
1498                                             bool readonly)
1499 {
1500         struct drm_device *dev = obj->base.dev;
1501         struct drm_i915_private *dev_priv = dev->dev_private;
1502         struct drm_i915_gem_request *requests[I915_NUM_RINGS];
1503         unsigned reset_counter;
1504         int ret, i, n = 0;
1505
1506         BUG_ON(!mutex_is_locked(&dev->struct_mutex));
1507         BUG_ON(!dev_priv->mm.interruptible);
1508
1509         if (!obj->active)
1510                 return 0;
1511
1512         ret = i915_gem_check_wedge(&dev_priv->gpu_error, true);
1513         if (ret)
1514                 return ret;
1515
1516         reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
1517
1518         if (readonly) {
1519                 struct drm_i915_gem_request *req;
1520
1521                 req = obj->last_write_req;
1522                 if (req == NULL)
1523                         return 0;
1524
1525                 requests[n++] = i915_gem_request_reference(req);
1526         } else {
1527                 for (i = 0; i < I915_NUM_RINGS; i++) {
1528                         struct drm_i915_gem_request *req;
1529
1530                         req = obj->last_read_req[i];
1531                         if (req == NULL)
1532                                 continue;
1533
1534                         requests[n++] = i915_gem_request_reference(req);
1535                 }
1536         }
1537
1538         mutex_unlock(&dev->struct_mutex);
1539         for (i = 0; ret == 0 && i < n; i++)
1540                 ret = __i915_wait_request(requests[i], reset_counter, true,
1541                                           NULL, rps);
1542         mutex_lock(&dev->struct_mutex);
1543
1544         for (i = 0; i < n; i++) {
1545                 if (ret == 0)
1546                         i915_gem_object_retire_request(obj, requests[i]);
1547                 i915_gem_request_unreference(requests[i]);
1548         }
1549
1550         return ret;
1551 }
1552
1553 static struct intel_rps_client *to_rps_client(struct drm_file *file)
1554 {
1555         struct drm_i915_file_private *fpriv = file->driver_priv;
1556         return &fpriv->rps;
1557 }
1558
1559 /**
1560  * Called when user space prepares to use an object with the CPU, either
1561  * through the mmap ioctl's mapping or a GTT mapping.
1562  */
1563 int
1564 i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
1565                           struct drm_file *file)
1566 {
1567         struct drm_i915_gem_set_domain *args = data;
1568         struct drm_i915_gem_object *obj;
1569         uint32_t read_domains = args->read_domains;
1570         uint32_t write_domain = args->write_domain;
1571         int ret;
1572
1573         /* Only handle setting domains to types used by the CPU. */
1574         if (write_domain & I915_GEM_GPU_DOMAINS)
1575                 return -EINVAL;
1576
1577         if (read_domains & I915_GEM_GPU_DOMAINS)
1578                 return -EINVAL;
1579
1580         /* Having something in the write domain implies it's in the read
1581          * domain, and only that read domain.  Enforce that in the request.
1582          */
1583         if (write_domain != 0 && read_domains != write_domain)
1584                 return -EINVAL;
1585
1586         ret = i915_mutex_lock_interruptible(dev);
1587         if (ret)
1588                 return ret;
1589
1590         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1591         if (&obj->base == NULL) {
1592                 ret = -ENOENT;
1593                 goto unlock;
1594         }
1595
1596         /* Try to flush the object off the GPU without holding the lock.
1597          * We will repeat the flush holding the lock in the normal manner
1598          * to catch cases where we are gazumped.
1599          */
1600         ret = i915_gem_object_wait_rendering__nonblocking(obj,
1601                                                           to_rps_client(file),
1602                                                           !write_domain);
1603         if (ret)
1604                 goto unref;
1605
1606         if (read_domains & I915_GEM_DOMAIN_GTT)
1607                 ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
1608         else
1609                 ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
1610
1611         if (write_domain != 0)
1612                 intel_fb_obj_invalidate(obj,
1613                                         write_domain == I915_GEM_DOMAIN_GTT ?
1614                                         ORIGIN_GTT : ORIGIN_CPU);
1615
1616 unref:
1617         drm_gem_object_unreference(&obj->base);
1618 unlock:
1619         mutex_unlock(&dev->struct_mutex);
1620         return ret;
1621 }
1622
1623 /**
1624  * Called when user space has done writes to this buffer
1625  */
1626 int
1627 i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
1628                          struct drm_file *file)
1629 {
1630         struct drm_i915_gem_sw_finish *args = data;
1631         struct drm_i915_gem_object *obj;
1632         int ret = 0;
1633
1634         ret = i915_mutex_lock_interruptible(dev);
1635         if (ret)
1636                 return ret;
1637
1638         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1639         if (&obj->base == NULL) {
1640                 ret = -ENOENT;
1641                 goto unlock;
1642         }
1643
1644         /* Pinned buffers may be scanout, so flush the cache */
1645         if (obj->pin_display)
1646                 i915_gem_object_flush_cpu_write_domain(obj);
1647
1648         drm_gem_object_unreference(&obj->base);
1649 unlock:
1650         mutex_unlock(&dev->struct_mutex);
1651         return ret;
1652 }
1653
1654 /**
1655  * Maps the contents of an object, returning the address it is mapped
1656  * into.
1657  *
1658  * While the mapping holds a reference on the contents of the object, it doesn't
1659  * imply a ref on the object itself.
1660  *
1661  * IMPORTANT:
1662  *
1663  * DRM driver writers who look a this function as an example for how to do GEM
1664  * mmap support, please don't implement mmap support like here. The modern way
1665  * to implement DRM mmap support is with an mmap offset ioctl (like
1666  * i915_gem_mmap_gtt) and then using the mmap syscall on the DRM fd directly.
1667  * That way debug tooling like valgrind will understand what's going on, hiding
1668  * the mmap call in a driver private ioctl will break that. The i915 driver only
1669  * does cpu mmaps this way because we didn't know better.
1670  */
1671 int
1672 i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
1673                     struct drm_file *file)
1674 {
1675         struct drm_i915_gem_mmap *args = data;
1676         struct drm_gem_object *obj;
1677         unsigned long addr;
1678
1679         if (args->flags & ~(I915_MMAP_WC))
1680                 return -EINVAL;
1681
1682         if (args->flags & I915_MMAP_WC && !cpu_has_pat)
1683                 return -ENODEV;
1684
1685         obj = drm_gem_object_lookup(dev, file, args->handle);
1686         if (obj == NULL)
1687                 return -ENOENT;
1688
1689         /* prime objects have no backing filp to GEM mmap
1690          * pages from.
1691          */
1692         if (!obj->filp) {
1693                 drm_gem_object_unreference_unlocked(obj);
1694                 return -EINVAL;
1695         }
1696
1697         addr = vm_mmap(obj->filp, 0, args->size,
1698                        PROT_READ | PROT_WRITE, MAP_SHARED,
1699                        args->offset);
1700         if (args->flags & I915_MMAP_WC) {
1701                 struct mm_struct *mm = current->mm;
1702                 struct vm_area_struct *vma;
1703
1704                 down_write(&mm->mmap_sem);
1705                 vma = find_vma(mm, addr);
1706                 if (vma)
1707                         vma->vm_page_prot =
1708                                 pgprot_writecombine(vm_get_page_prot(vma->vm_flags));
1709                 else
1710                         addr = -ENOMEM;
1711                 up_write(&mm->mmap_sem);
1712         }
1713         drm_gem_object_unreference_unlocked(obj);
1714         if (IS_ERR((void *)addr))
1715                 return addr;
1716
1717         args->addr_ptr = (uint64_t) addr;
1718
1719         return 0;
1720 }
1721
1722 /**
1723  * i915_gem_fault - fault a page into the GTT
1724  * @vma: VMA in question
1725  * @vmf: fault info
1726  *
1727  * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
1728  * from userspace.  The fault handler takes care of binding the object to
1729  * the GTT (if needed), allocating and programming a fence register (again,
1730  * only if needed based on whether the old reg is still valid or the object
1731  * is tiled) and inserting a new PTE into the faulting process.
1732  *
1733  * Note that the faulting process may involve evicting existing objects
1734  * from the GTT and/or fence registers to make room.  So performance may
1735  * suffer if the GTT working set is large or there are few fence registers
1736  * left.
1737  */
1738 int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1739 {
1740         struct drm_i915_gem_object *obj = to_intel_bo(vma->vm_private_data);
1741         struct drm_device *dev = obj->base.dev;
1742         struct drm_i915_private *dev_priv = dev->dev_private;
1743         struct i915_ggtt_view view = i915_ggtt_view_normal;
1744         pgoff_t page_offset;
1745         unsigned long pfn;
1746         int ret = 0;
1747         bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
1748
1749         intel_runtime_pm_get(dev_priv);
1750
1751         /* We don't use vmf->pgoff since that has the fake offset */
1752         page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >>
1753                 PAGE_SHIFT;
1754
1755         ret = i915_mutex_lock_interruptible(dev);
1756         if (ret)
1757                 goto out;
1758
1759         trace_i915_gem_object_fault(obj, page_offset, true, write);
1760
1761         /* Try to flush the object off the GPU first without holding the lock.
1762          * Upon reacquiring the lock, we will perform our sanity checks and then
1763          * repeat the flush holding the lock in the normal manner to catch cases
1764          * where we are gazumped.
1765          */
1766         ret = i915_gem_object_wait_rendering__nonblocking(obj, NULL, !write);
1767         if (ret)
1768                 goto unlock;
1769
1770         /* Access to snoopable pages through the GTT is incoherent. */
1771         if (obj->cache_level != I915_CACHE_NONE && !HAS_LLC(dev)) {
1772                 ret = -EFAULT;
1773                 goto unlock;
1774         }
1775
1776         /* Use a partial view if the object is bigger than the aperture. */
1777         if (obj->base.size >= dev_priv->gtt.mappable_end &&
1778             obj->tiling_mode == I915_TILING_NONE) {
1779                 static const unsigned int chunk_size = 256; // 1 MiB
1780
1781                 memset(&view, 0, sizeof(view));
1782                 view.type = I915_GGTT_VIEW_PARTIAL;
1783                 view.params.partial.offset = rounddown(page_offset, chunk_size);
1784                 view.params.partial.size =
1785                         min_t(unsigned int,
1786                               chunk_size,
1787                               (vma->vm_end - vma->vm_start)/PAGE_SIZE -
1788                               view.params.partial.offset);
1789         }
1790
1791         /* Now pin it into the GTT if needed */
1792         ret = i915_gem_object_ggtt_pin(obj, &view, 0, PIN_MAPPABLE);
1793         if (ret)
1794                 goto unlock;
1795
1796         ret = i915_gem_object_set_to_gtt_domain(obj, write);
1797         if (ret)
1798                 goto unpin;
1799
1800         ret = i915_gem_object_get_fence(obj);
1801         if (ret)
1802                 goto unpin;
1803
1804         /* Finally, remap it using the new GTT offset */
1805         pfn = dev_priv->gtt.mappable_base +
1806                 i915_gem_obj_ggtt_offset_view(obj, &view);
1807         pfn >>= PAGE_SHIFT;
1808
1809         if (unlikely(view.type == I915_GGTT_VIEW_PARTIAL)) {
1810                 /* Overriding existing pages in partial view does not cause
1811                  * us any trouble as TLBs are still valid because the fault
1812                  * is due to userspace losing part of the mapping or never
1813                  * having accessed it before (at this partials' range).
1814                  */
1815                 unsigned long base = vma->vm_start +
1816                                      (view.params.partial.offset << PAGE_SHIFT);
1817                 unsigned int i;
1818
1819                 for (i = 0; i < view.params.partial.size; i++) {
1820                         ret = vm_insert_pfn(vma, base + i * PAGE_SIZE, pfn + i);
1821                         if (ret)
1822                                 break;
1823                 }
1824
1825                 obj->fault_mappable = true;
1826         } else {
1827                 if (!obj->fault_mappable) {
1828                         unsigned long size = min_t(unsigned long,
1829                                                    vma->vm_end - vma->vm_start,
1830                                                    obj->base.size);
1831                         int i;
1832
1833                         for (i = 0; i < size >> PAGE_SHIFT; i++) {
1834                                 ret = vm_insert_pfn(vma,
1835                                                     (unsigned long)vma->vm_start + i * PAGE_SIZE,
1836                                                     pfn + i);
1837                                 if (ret)
1838                                         break;
1839                         }
1840
1841                         obj->fault_mappable = true;
1842                 } else
1843                         ret = vm_insert_pfn(vma,
1844                                             (unsigned long)vmf->virtual_address,
1845                                             pfn + page_offset);
1846         }
1847 unpin:
1848         i915_gem_object_ggtt_unpin_view(obj, &view);
1849 unlock:
1850         mutex_unlock(&dev->struct_mutex);
1851 out:
1852         switch (ret) {
1853         case -EIO:
1854                 /*
1855                  * We eat errors when the gpu is terminally wedged to avoid
1856                  * userspace unduly crashing (gl has no provisions for mmaps to
1857                  * fail). But any other -EIO isn't ours (e.g. swap in failure)
1858                  * and so needs to be reported.
1859                  */
1860                 if (!i915_terminally_wedged(&dev_priv->gpu_error)) {
1861                         ret = VM_FAULT_SIGBUS;
1862                         break;
1863                 }
1864         case -EAGAIN:
1865                 /*
1866                  * EAGAIN means the gpu is hung and we'll wait for the error
1867                  * handler to reset everything when re-faulting in
1868                  * i915_mutex_lock_interruptible.
1869                  */
1870         case 0:
1871         case -ERESTARTSYS:
1872         case -EINTR:
1873         case -EBUSY:
1874                 /*
1875                  * EBUSY is ok: this just means that another thread
1876                  * already did the job.
1877                  */
1878                 ret = VM_FAULT_NOPAGE;
1879                 break;
1880         case -ENOMEM:
1881                 ret = VM_FAULT_OOM;
1882                 break;
1883         case -ENOSPC:
1884         case -EFAULT:
1885                 ret = VM_FAULT_SIGBUS;
1886                 break;
1887         default:
1888                 WARN_ONCE(ret, "unhandled error in i915_gem_fault: %i\n", ret);
1889                 ret = VM_FAULT_SIGBUS;
1890                 break;
1891         }
1892
1893         intel_runtime_pm_put(dev_priv);
1894         return ret;
1895 }
1896
1897 /**
1898  * i915_gem_release_mmap - remove physical page mappings
1899  * @obj: obj in question
1900  *
1901  * Preserve the reservation of the mmapping with the DRM core code, but
1902  * relinquish ownership of the pages back to the system.
1903  *
1904  * It is vital that we remove the page mapping if we have mapped a tiled
1905  * object through the GTT and then lose the fence register due to
1906  * resource pressure. Similarly if the object has been moved out of the
1907  * aperture, than pages mapped into userspace must be revoked. Removing the
1908  * mapping will then trigger a page fault on the next user access, allowing
1909  * fixup by i915_gem_fault().
1910  */
1911 void
1912 i915_gem_release_mmap(struct drm_i915_gem_object *obj)
1913 {
1914         if (!obj->fault_mappable)
1915                 return;
1916
1917         drm_vma_node_unmap(&obj->base.vma_node,
1918                            obj->base.dev->anon_inode->i_mapping);
1919         obj->fault_mappable = false;
1920 }
1921
1922 void
1923 i915_gem_release_all_mmaps(struct drm_i915_private *dev_priv)
1924 {
1925         struct drm_i915_gem_object *obj;
1926
1927         list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list)
1928                 i915_gem_release_mmap(obj);
1929 }
1930
1931 uint32_t
1932 i915_gem_get_gtt_size(struct drm_device *dev, uint32_t size, int tiling_mode)
1933 {
1934         uint32_t gtt_size;
1935
1936         if (INTEL_INFO(dev)->gen >= 4 ||
1937             tiling_mode == I915_TILING_NONE)
1938                 return size;
1939
1940         /* Previous chips need a power-of-two fence region when tiling */
1941         if (INTEL_INFO(dev)->gen == 3)
1942                 gtt_size = 1024*1024;
1943         else
1944                 gtt_size = 512*1024;
1945
1946         while (gtt_size < size)
1947                 gtt_size <<= 1;
1948
1949         return gtt_size;
1950 }
1951
1952 /**
1953  * i915_gem_get_gtt_alignment - return required GTT alignment for an object
1954  * @obj: object to check
1955  *
1956  * Return the required GTT alignment for an object, taking into account
1957  * potential fence register mapping.
1958  */
1959 uint32_t
1960 i915_gem_get_gtt_alignment(struct drm_device *dev, uint32_t size,
1961                            int tiling_mode, bool fenced)
1962 {
1963         /*
1964          * Minimum alignment is 4k (GTT page size), but might be greater
1965          * if a fence register is needed for the object.
1966          */
1967         if (INTEL_INFO(dev)->gen >= 4 || (!fenced && IS_G33(dev)) ||
1968             tiling_mode == I915_TILING_NONE)
1969                 return 4096;
1970
1971         /*
1972          * Previous chips need to be aligned to the size of the smallest
1973          * fence register that can contain the object.
1974          */
1975         return i915_gem_get_gtt_size(dev, size, tiling_mode);
1976 }
1977
1978 static int i915_gem_object_create_mmap_offset(struct drm_i915_gem_object *obj)
1979 {
1980         struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
1981         int ret;
1982
1983         if (drm_vma_node_has_offset(&obj->base.vma_node))
1984                 return 0;
1985
1986         dev_priv->mm.shrinker_no_lock_stealing = true;
1987
1988         ret = drm_gem_create_mmap_offset(&obj->base);
1989         if (ret != -ENOSPC)
1990                 goto out;
1991
1992         /* Badly fragmented mmap space? The only way we can recover
1993          * space is by destroying unwanted objects. We can't randomly release
1994          * mmap_offsets as userspace expects them to be persistent for the
1995          * lifetime of the objects. The closest we can is to release the
1996          * offsets on purgeable objects by truncating it and marking it purged,
1997          * which prevents userspace from ever using that object again.
1998          */
1999         i915_gem_shrink(dev_priv,
2000                         obj->base.size >> PAGE_SHIFT,
2001                         I915_SHRINK_BOUND |
2002                         I915_SHRINK_UNBOUND |
2003                         I915_SHRINK_PURGEABLE);
2004         ret = drm_gem_create_mmap_offset(&obj->base);
2005         if (ret != -ENOSPC)
2006                 goto out;
2007
2008         i915_gem_shrink_all(dev_priv);
2009         ret = drm_gem_create_mmap_offset(&obj->base);
2010 out:
2011         dev_priv->mm.shrinker_no_lock_stealing = false;
2012
2013         return ret;
2014 }
2015
2016 static void i915_gem_object_free_mmap_offset(struct drm_i915_gem_object *obj)
2017 {
2018         drm_gem_free_mmap_offset(&obj->base);
2019 }
2020
2021 int
2022 i915_gem_mmap_gtt(struct drm_file *file,
2023                   struct drm_device *dev,
2024                   uint32_t handle,
2025                   uint64_t *offset)
2026 {
2027         struct drm_i915_gem_object *obj;
2028         int ret;
2029
2030         ret = i915_mutex_lock_interruptible(dev);
2031         if (ret)
2032                 return ret;
2033
2034         obj = to_intel_bo(drm_gem_object_lookup(dev, file, handle));
2035         if (&obj->base == NULL) {
2036                 ret = -ENOENT;
2037                 goto unlock;
2038         }
2039
2040         if (obj->madv != I915_MADV_WILLNEED) {
2041                 DRM_DEBUG("Attempting to mmap a purgeable buffer\n");
2042                 ret = -EFAULT;
2043                 goto out;
2044         }
2045
2046         ret = i915_gem_object_create_mmap_offset(obj);
2047         if (ret)
2048                 goto out;
2049
2050         *offset = drm_vma_node_offset_addr(&obj->base.vma_node);
2051
2052 out:
2053         drm_gem_object_unreference(&obj->base);
2054 unlock:
2055         mutex_unlock(&dev->struct_mutex);
2056         return ret;
2057 }
2058
2059 /**
2060  * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
2061  * @dev: DRM device
2062  * @data: GTT mapping ioctl data
2063  * @file: GEM object info
2064  *
2065  * Simply returns the fake offset to userspace so it can mmap it.
2066  * The mmap call will end up in drm_gem_mmap(), which will set things
2067  * up so we can get faults in the handler above.
2068  *
2069  * The fault handler will take care of binding the object into the GTT
2070  * (since it may have been evicted to make room for something), allocating
2071  * a fence register, and mapping the appropriate aperture address into
2072  * userspace.
2073  */
2074 int
2075 i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
2076                         struct drm_file *file)
2077 {
2078         struct drm_i915_gem_mmap_gtt *args = data;
2079
2080         return i915_gem_mmap_gtt(file, dev, args->handle, &args->offset);
2081 }
2082
2083 /* Immediately discard the backing storage */
2084 static void
2085 i915_gem_object_truncate(struct drm_i915_gem_object *obj)
2086 {
2087         i915_gem_object_free_mmap_offset(obj);
2088
2089         if (obj->base.filp == NULL)
2090                 return;
2091
2092         /* Our goal here is to return as much of the memory as
2093          * is possible back to the system as we are called from OOM.
2094          * To do this we must instruct the shmfs to drop all of its
2095          * backing pages, *now*.
2096          */
2097         shmem_truncate_range(file_inode(obj->base.filp), 0, (loff_t)-1);
2098         obj->madv = __I915_MADV_PURGED;
2099 }
2100
2101 /* Try to discard unwanted pages */
2102 static void
2103 i915_gem_object_invalidate(struct drm_i915_gem_object *obj)
2104 {
2105         struct address_space *mapping;
2106
2107         switch (obj->madv) {
2108         case I915_MADV_DONTNEED:
2109                 i915_gem_object_truncate(obj);
2110         case __I915_MADV_PURGED:
2111                 return;
2112         }
2113
2114         if (obj->base.filp == NULL)
2115                 return;
2116
2117         mapping = file_inode(obj->base.filp)->i_mapping,
2118         invalidate_mapping_pages(mapping, 0, (loff_t)-1);
2119 }
2120
2121 static void
2122 i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj)
2123 {
2124         struct sg_page_iter sg_iter;
2125         int ret;
2126
2127         BUG_ON(obj->madv == __I915_MADV_PURGED);
2128
2129         ret = i915_gem_object_set_to_cpu_domain(obj, true);
2130         if (ret) {
2131                 /* In the event of a disaster, abandon all caches and
2132                  * hope for the best.
2133                  */
2134                 WARN_ON(ret != -EIO);
2135                 i915_gem_clflush_object(obj, true);
2136                 obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
2137         }
2138
2139         i915_gem_gtt_finish_object(obj);
2140
2141         if (i915_gem_object_needs_bit17_swizzle(obj))
2142                 i915_gem_object_save_bit_17_swizzle(obj);
2143
2144         if (obj->madv == I915_MADV_DONTNEED)
2145                 obj->dirty = 0;
2146
2147         for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents, 0) {
2148                 struct page *page = sg_page_iter_page(&sg_iter);
2149
2150                 if (obj->dirty)
2151                         set_page_dirty(page);
2152
2153                 if (obj->madv == I915_MADV_WILLNEED)
2154                         mark_page_accessed(page);
2155
2156                 page_cache_release(page);
2157         }
2158         obj->dirty = 0;
2159
2160         sg_free_table(obj->pages);
2161         kfree(obj->pages);
2162 }
2163
2164 int
2165 i915_gem_object_put_pages(struct drm_i915_gem_object *obj)
2166 {
2167         const struct drm_i915_gem_object_ops *ops = obj->ops;
2168
2169         if (obj->pages == NULL)
2170                 return 0;
2171
2172         if (obj->pages_pin_count)
2173                 return -EBUSY;
2174
2175         BUG_ON(i915_gem_obj_bound_any(obj));
2176
2177         /* ->put_pages might need to allocate memory for the bit17 swizzle
2178          * array, hence protect them from being reaped by removing them from gtt
2179          * lists early. */
2180         list_del(&obj->global_list);
2181
2182         ops->put_pages(obj);
2183         obj->pages = NULL;
2184
2185         i915_gem_object_invalidate(obj);
2186
2187         return 0;
2188 }
2189
2190 static int
2191 i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj)
2192 {
2193         struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2194         int page_count, i;
2195         struct address_space *mapping;
2196         struct sg_table *st;
2197         struct scatterlist *sg;
2198         struct sg_page_iter sg_iter;
2199         struct page *page;
2200         unsigned long last_pfn = 0;     /* suppress gcc warning */
2201         int ret;
2202         gfp_t gfp;
2203
2204         /* Assert that the object is not currently in any GPU domain. As it
2205          * wasn't in the GTT, there shouldn't be any way it could have been in
2206          * a GPU cache
2207          */
2208         BUG_ON(obj->base.read_domains & I915_GEM_GPU_DOMAINS);
2209         BUG_ON(obj->base.write_domain & I915_GEM_GPU_DOMAINS);
2210
2211         st = kmalloc(sizeof(*st), GFP_KERNEL);
2212         if (st == NULL)
2213                 return -ENOMEM;
2214
2215         page_count = obj->base.size / PAGE_SIZE;
2216         if (sg_alloc_table(st, page_count, GFP_KERNEL)) {
2217                 kfree(st);
2218                 return -ENOMEM;
2219         }
2220
2221         /* Get the list of pages out of our struct file.  They'll be pinned
2222          * at this point until we release them.
2223          *
2224          * Fail silently without starting the shrinker
2225          */
2226         mapping = file_inode(obj->base.filp)->i_mapping;
2227         gfp = mapping_gfp_constraint(mapping, ~(__GFP_IO | __GFP_RECLAIM));
2228         gfp |= __GFP_NORETRY | __GFP_NOWARN;
2229         sg = st->sgl;
2230         st->nents = 0;
2231         for (i = 0; i < page_count; i++) {
2232                 page = shmem_read_mapping_page_gfp(mapping, i, gfp);
2233                 if (IS_ERR(page)) {
2234                         i915_gem_shrink(dev_priv,
2235                                         page_count,
2236                                         I915_SHRINK_BOUND |
2237                                         I915_SHRINK_UNBOUND |
2238                                         I915_SHRINK_PURGEABLE);
2239                         page = shmem_read_mapping_page_gfp(mapping, i, gfp);
2240                 }
2241                 if (IS_ERR(page)) {
2242                         /* We've tried hard to allocate the memory by reaping
2243                          * our own buffer, now let the real VM do its job and
2244                          * go down in flames if truly OOM.
2245                          */
2246                         i915_gem_shrink_all(dev_priv);
2247                         page = shmem_read_mapping_page(mapping, i);
2248                         if (IS_ERR(page)) {
2249                                 ret = PTR_ERR(page);
2250                                 goto err_pages;
2251                         }
2252                 }
2253 #ifdef CONFIG_SWIOTLB
2254                 if (swiotlb_nr_tbl()) {
2255                         st->nents++;
2256                         sg_set_page(sg, page, PAGE_SIZE, 0);
2257                         sg = sg_next(sg);
2258                         continue;
2259                 }
2260 #endif
2261                 if (!i || page_to_pfn(page) != last_pfn + 1) {
2262                         if (i)
2263                                 sg = sg_next(sg);
2264                         st->nents++;
2265                         sg_set_page(sg, page, PAGE_SIZE, 0);
2266                 } else {
2267                         sg->length += PAGE_SIZE;
2268                 }
2269                 last_pfn = page_to_pfn(page);
2270
2271                 /* Check that the i965g/gm workaround works. */
2272                 WARN_ON((gfp & __GFP_DMA32) && (last_pfn >= 0x00100000UL));
2273         }
2274 #ifdef CONFIG_SWIOTLB
2275         if (!swiotlb_nr_tbl())
2276 #endif
2277                 sg_mark_end(sg);
2278         obj->pages = st;
2279
2280         ret = i915_gem_gtt_prepare_object(obj);
2281         if (ret)
2282                 goto err_pages;
2283
2284         if (i915_gem_object_needs_bit17_swizzle(obj))
2285                 i915_gem_object_do_bit_17_swizzle(obj);
2286
2287         if (obj->tiling_mode != I915_TILING_NONE &&
2288             dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES)
2289                 i915_gem_object_pin_pages(obj);
2290
2291         return 0;
2292
2293 err_pages:
2294         sg_mark_end(sg);
2295         for_each_sg_page(st->sgl, &sg_iter, st->nents, 0)
2296                 page_cache_release(sg_page_iter_page(&sg_iter));
2297         sg_free_table(st);
2298         kfree(st);
2299
2300         /* shmemfs first checks if there is enough memory to allocate the page
2301          * and reports ENOSPC should there be insufficient, along with the usual
2302          * ENOMEM for a genuine allocation failure.
2303          *
2304          * We use ENOSPC in our driver to mean that we have run out of aperture
2305          * space and so want to translate the error from shmemfs back to our
2306          * usual understanding of ENOMEM.
2307          */
2308         if (ret == -ENOSPC)
2309                 ret = -ENOMEM;
2310
2311         return ret;
2312 }
2313
2314 /* Ensure that the associated pages are gathered from the backing storage
2315  * and pinned into our object. i915_gem_object_get_pages() may be called
2316  * multiple times before they are released by a single call to
2317  * i915_gem_object_put_pages() - once the pages are no longer referenced
2318  * either as a result of memory pressure (reaping pages under the shrinker)
2319  * or as the object is itself released.
2320  */
2321 int
2322 i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
2323 {
2324         struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2325         const struct drm_i915_gem_object_ops *ops = obj->ops;
2326         int ret;
2327
2328         if (obj->pages)
2329                 return 0;
2330
2331         if (obj->madv != I915_MADV_WILLNEED) {
2332                 DRM_DEBUG("Attempting to obtain a purgeable object\n");
2333                 return -EFAULT;
2334         }
2335
2336         BUG_ON(obj->pages_pin_count);
2337
2338         ret = ops->get_pages(obj);
2339         if (ret)
2340                 return ret;
2341
2342         list_add_tail(&obj->global_list, &dev_priv->mm.unbound_list);
2343
2344         obj->get_page.sg = obj->pages->sgl;
2345         obj->get_page.last = 0;
2346
2347         return 0;
2348 }
2349
2350 void i915_vma_move_to_active(struct i915_vma *vma,
2351                              struct drm_i915_gem_request *req)
2352 {
2353         struct drm_i915_gem_object *obj = vma->obj;
2354         struct intel_engine_cs *ring;
2355
2356         ring = i915_gem_request_get_ring(req);
2357
2358         /* Add a reference if we're newly entering the active list. */
2359         if (obj->active == 0)
2360                 drm_gem_object_reference(&obj->base);
2361         obj->active |= intel_ring_flag(ring);
2362
2363         list_move_tail(&obj->ring_list[ring->id], &ring->active_list);
2364         i915_gem_request_assign(&obj->last_read_req[ring->id], req);
2365
2366         list_move_tail(&vma->mm_list, &vma->vm->active_list);
2367 }
2368
2369 static void
2370 i915_gem_object_retire__write(struct drm_i915_gem_object *obj)
2371 {
2372         RQ_BUG_ON(obj->last_write_req == NULL);
2373         RQ_BUG_ON(!(obj->active & intel_ring_flag(obj->last_write_req->ring)));
2374
2375         i915_gem_request_assign(&obj->last_write_req, NULL);
2376         intel_fb_obj_flush(obj, true, ORIGIN_CS);
2377 }
2378
2379 static void
2380 i915_gem_object_retire__read(struct drm_i915_gem_object *obj, int ring)
2381 {
2382         struct i915_vma *vma;
2383
2384         RQ_BUG_ON(obj->last_read_req[ring] == NULL);
2385         RQ_BUG_ON(!(obj->active & (1 << ring)));
2386
2387         list_del_init(&obj->ring_list[ring]);
2388         i915_gem_request_assign(&obj->last_read_req[ring], NULL);
2389
2390         if (obj->last_write_req && obj->last_write_req->ring->id == ring)
2391                 i915_gem_object_retire__write(obj);
2392
2393         obj->active &= ~(1 << ring);
2394         if (obj->active)
2395                 return;
2396
2397         /* Bump our place on the bound list to keep it roughly in LRU order
2398          * so that we don't steal from recently used but inactive objects
2399          * (unless we are forced to ofc!)
2400          */
2401         list_move_tail(&obj->global_list,
2402                        &to_i915(obj->base.dev)->mm.bound_list);
2403
2404         list_for_each_entry(vma, &obj->vma_list, vma_link) {
2405                 if (!list_empty(&vma->mm_list))
2406                         list_move_tail(&vma->mm_list, &vma->vm->inactive_list);
2407         }
2408
2409         i915_gem_request_assign(&obj->last_fenced_req, NULL);
2410         drm_gem_object_unreference(&obj->base);
2411 }
2412
2413 static int
2414 i915_gem_init_seqno(struct drm_device *dev, u32 seqno)
2415 {
2416         struct drm_i915_private *dev_priv = dev->dev_private;
2417         struct intel_engine_cs *ring;
2418         int ret, i, j;
2419
2420         /* Carefully retire all requests without writing to the rings */
2421         for_each_ring(ring, dev_priv, i) {
2422                 ret = intel_ring_idle(ring);
2423                 if (ret)
2424                         return ret;
2425         }
2426         i915_gem_retire_requests(dev);
2427
2428         /* Finally reset hw state */
2429         for_each_ring(ring, dev_priv, i) {
2430                 intel_ring_init_seqno(ring, seqno);
2431
2432                 for (j = 0; j < ARRAY_SIZE(ring->semaphore.sync_seqno); j++)
2433                         ring->semaphore.sync_seqno[j] = 0;
2434         }
2435
2436         return 0;
2437 }
2438
2439 int i915_gem_set_seqno(struct drm_device *dev, u32 seqno)
2440 {
2441         struct drm_i915_private *dev_priv = dev->dev_private;
2442         int ret;
2443
2444         if (seqno == 0)
2445                 return -EINVAL;
2446
2447         /* HWS page needs to be set less than what we
2448          * will inject to ring
2449          */
2450         ret = i915_gem_init_seqno(dev, seqno - 1);
2451         if (ret)
2452                 return ret;
2453
2454         /* Carefully set the last_seqno value so that wrap
2455          * detection still works
2456          */
2457         dev_priv->next_seqno = seqno;
2458         dev_priv->last_seqno = seqno - 1;
2459         if (dev_priv->last_seqno == 0)
2460                 dev_priv->last_seqno--;
2461
2462         return 0;
2463 }
2464
2465 int
2466 i915_gem_get_seqno(struct drm_device *dev, u32 *seqno)
2467 {
2468         struct drm_i915_private *dev_priv = dev->dev_private;
2469
2470         /* reserve 0 for non-seqno */
2471         if (dev_priv->next_seqno == 0) {
2472                 int ret = i915_gem_init_seqno(dev, 0);
2473                 if (ret)
2474                         return ret;
2475
2476                 dev_priv->next_seqno = 1;
2477         }
2478
2479         *seqno = dev_priv->last_seqno = dev_priv->next_seqno++;
2480         return 0;
2481 }
2482
2483 /*
2484  * NB: This function is not allowed to fail. Doing so would mean the the
2485  * request is not being tracked for completion but the work itself is
2486  * going to happen on the hardware. This would be a Bad Thing(tm).
2487  */
2488 void __i915_add_request(struct drm_i915_gem_request *request,
2489                         struct drm_i915_gem_object *obj,
2490                         bool flush_caches)
2491 {
2492         struct intel_engine_cs *ring;
2493         struct drm_i915_private *dev_priv;
2494         struct intel_ringbuffer *ringbuf;
2495         u32 request_start;
2496         int ret;
2497
2498         if (WARN_ON(request == NULL))
2499                 return;
2500
2501         ring = request->ring;
2502         dev_priv = ring->dev->dev_private;
2503         ringbuf = request->ringbuf;
2504
2505         /*
2506          * To ensure that this call will not fail, space for its emissions
2507          * should already have been reserved in the ring buffer. Let the ring
2508          * know that it is time to use that space up.
2509          */
2510         intel_ring_reserved_space_use(ringbuf);
2511
2512         request_start = intel_ring_get_tail(ringbuf);
2513         /*
2514          * Emit any outstanding flushes - execbuf can fail to emit the flush
2515          * after having emitted the batchbuffer command. Hence we need to fix
2516          * things up similar to emitting the lazy request. The difference here
2517          * is that the flush _must_ happen before the next request, no matter
2518          * what.
2519          */
2520         if (flush_caches) {
2521                 if (i915.enable_execlists)
2522                         ret = logical_ring_flush_all_caches(request);
2523                 else
2524                         ret = intel_ring_flush_all_caches(request);
2525                 /* Not allowed to fail! */
2526                 WARN(ret, "*_ring_flush_all_caches failed: %d!\n", ret);
2527         }
2528
2529         /* Record the position of the start of the request so that
2530          * should we detect the updated seqno part-way through the
2531          * GPU processing the request, we never over-estimate the
2532          * position of the head.
2533          */
2534         request->postfix = intel_ring_get_tail(ringbuf);
2535
2536         if (i915.enable_execlists)
2537                 ret = ring->emit_request(request);
2538         else {
2539                 ret = ring->add_request(request);
2540
2541                 request->tail = intel_ring_get_tail(ringbuf);
2542         }
2543         /* Not allowed to fail! */
2544         WARN(ret, "emit|add_request failed: %d!\n", ret);
2545
2546         request->head = request_start;
2547
2548         /* Whilst this request exists, batch_obj will be on the
2549          * active_list, and so will hold the active reference. Only when this
2550          * request is retired will the the batch_obj be moved onto the
2551          * inactive_list and lose its active reference. Hence we do not need
2552          * to explicitly hold another reference here.
2553          */
2554         request->batch_obj = obj;
2555
2556         request->emitted_jiffies = jiffies;
2557         ring->last_submitted_seqno = request->seqno;
2558         list_add_tail(&request->list, &ring->request_list);
2559
2560         trace_i915_gem_request_add(request);
2561
2562         i915_queue_hangcheck(ring->dev);
2563
2564         queue_delayed_work(dev_priv->wq,
2565                            &dev_priv->mm.retire_work,
2566                            round_jiffies_up_relative(HZ));
2567         intel_mark_busy(dev_priv->dev);
2568
2569         /* Sanity check that the reserved size was large enough. */
2570         intel_ring_reserved_space_end(ringbuf);
2571 }
2572
2573 static bool i915_context_is_banned(struct drm_i915_private *dev_priv,
2574                                    const struct intel_context *ctx)
2575 {
2576         unsigned long elapsed;
2577
2578         elapsed = get_seconds() - ctx->hang_stats.guilty_ts;
2579
2580         if (ctx->hang_stats.banned)
2581                 return true;
2582
2583         if (ctx->hang_stats.ban_period_seconds &&
2584             elapsed <= ctx->hang_stats.ban_period_seconds) {
2585                 if (!i915_gem_context_is_default(ctx)) {
2586                         DRM_DEBUG("context hanging too fast, banning!\n");
2587                         return true;
2588                 } else if (i915_stop_ring_allow_ban(dev_priv)) {
2589                         if (i915_stop_ring_allow_warn(dev_priv))
2590                                 DRM_ERROR("gpu hanging too fast, banning!\n");
2591                         return true;
2592                 }
2593         }
2594
2595         return false;
2596 }
2597
2598 static void i915_set_reset_status(struct drm_i915_private *dev_priv,
2599                                   struct intel_context *ctx,
2600                                   const bool guilty)
2601 {
2602         struct i915_ctx_hang_stats *hs;
2603
2604         if (WARN_ON(!ctx))
2605                 return;
2606
2607         hs = &ctx->hang_stats;
2608
2609         if (guilty) {
2610                 hs->banned = i915_context_is_banned(dev_priv, ctx);
2611                 hs->batch_active++;
2612                 hs->guilty_ts = get_seconds();
2613         } else {
2614                 hs->batch_pending++;
2615         }
2616 }
2617
2618 void i915_gem_request_free(struct kref *req_ref)
2619 {
2620         struct drm_i915_gem_request *req = container_of(req_ref,
2621                                                  typeof(*req), ref);
2622         struct intel_context *ctx = req->ctx;
2623
2624         if (req->file_priv)
2625                 i915_gem_request_remove_from_client(req);
2626
2627         if (ctx) {
2628                 if (i915.enable_execlists) {
2629                         if (ctx != req->ring->default_context)
2630                                 intel_lr_context_unpin(req);
2631                 }
2632
2633                 i915_gem_context_unreference(ctx);
2634         }
2635
2636         kmem_cache_free(req->i915->requests, req);
2637 }
2638
2639 int i915_gem_request_alloc(struct intel_engine_cs *ring,
2640                            struct intel_context *ctx,
2641                            struct drm_i915_gem_request **req_out)
2642 {
2643         struct drm_i915_private *dev_priv = to_i915(ring->dev);
2644         struct drm_i915_gem_request *req;
2645         int ret;
2646
2647         if (!req_out)
2648                 return -EINVAL;
2649
2650         *req_out = NULL;
2651
2652         req = kmem_cache_zalloc(dev_priv->requests, GFP_KERNEL);
2653         if (req == NULL)
2654                 return -ENOMEM;
2655
2656         ret = i915_gem_get_seqno(ring->dev, &req->seqno);
2657         if (ret)
2658                 goto err;
2659
2660         kref_init(&req->ref);
2661         req->i915 = dev_priv;
2662         req->ring = ring;
2663         req->ctx  = ctx;
2664         i915_gem_context_reference(req->ctx);
2665
2666         if (i915.enable_execlists)
2667                 ret = intel_logical_ring_alloc_request_extras(req);
2668         else
2669                 ret = intel_ring_alloc_request_extras(req);
2670         if (ret) {
2671                 i915_gem_context_unreference(req->ctx);
2672                 goto err;
2673         }
2674
2675         /*
2676          * Reserve space in the ring buffer for all the commands required to
2677          * eventually emit this request. This is to guarantee that the
2678          * i915_add_request() call can't fail. Note that the reserve may need
2679          * to be redone if the request is not actually submitted straight
2680          * away, e.g. because a GPU scheduler has deferred it.
2681          */
2682         if (i915.enable_execlists)
2683                 ret = intel_logical_ring_reserve_space(req);
2684         else
2685                 ret = intel_ring_reserve_space(req);
2686         if (ret) {
2687                 /*
2688                  * At this point, the request is fully allocated even if not
2689                  * fully prepared. Thus it can be cleaned up using the proper
2690                  * free code.
2691                  */
2692                 i915_gem_request_cancel(req);
2693                 return ret;
2694         }
2695
2696         *req_out = req;
2697         return 0;
2698
2699 err:
2700         kmem_cache_free(dev_priv->requests, req);
2701         return ret;
2702 }
2703
2704 void i915_gem_request_cancel(struct drm_i915_gem_request *req)
2705 {
2706         intel_ring_reserved_space_cancel(req->ringbuf);
2707
2708         i915_gem_request_unreference(req);
2709 }
2710
2711 struct drm_i915_gem_request *
2712 i915_gem_find_active_request(struct intel_engine_cs *ring)
2713 {
2714         struct drm_i915_gem_request *request;
2715
2716         list_for_each_entry(request, &ring->request_list, list) {
2717                 if (i915_gem_request_completed(request, false))
2718                         continue;
2719
2720                 return request;
2721         }
2722
2723         return NULL;
2724 }
2725
2726 static void i915_gem_reset_ring_status(struct drm_i915_private *dev_priv,
2727                                        struct intel_engine_cs *ring)
2728 {
2729         struct drm_i915_gem_request *request;
2730         bool ring_hung;
2731
2732         request = i915_gem_find_active_request(ring);
2733
2734         if (request == NULL)
2735                 return;
2736
2737         ring_hung = ring->hangcheck.score >= HANGCHECK_SCORE_RING_HUNG;
2738
2739         i915_set_reset_status(dev_priv, request->ctx, ring_hung);
2740
2741         list_for_each_entry_continue(request, &ring->request_list, list)
2742                 i915_set_reset_status(dev_priv, request->ctx, false);
2743 }
2744
2745 static void i915_gem_reset_ring_cleanup(struct drm_i915_private *dev_priv,
2746                                         struct intel_engine_cs *ring)
2747 {
2748         while (!list_empty(&ring->active_list)) {
2749                 struct drm_i915_gem_object *obj;
2750
2751                 obj = list_first_entry(&ring->active_list,
2752                                        struct drm_i915_gem_object,
2753                                        ring_list[ring->id]);
2754
2755                 i915_gem_object_retire__read(obj, ring->id);
2756         }
2757
2758         /*
2759          * Clear the execlists queue up before freeing the requests, as those
2760          * are the ones that keep the context and ringbuffer backing objects
2761          * pinned in place.
2762          */
2763         while (!list_empty(&ring->execlist_queue)) {
2764                 struct drm_i915_gem_request *submit_req;
2765
2766                 submit_req = list_first_entry(&ring->execlist_queue,
2767                                 struct drm_i915_gem_request,
2768                                 execlist_link);
2769                 list_del(&submit_req->execlist_link);
2770
2771                 if (submit_req->ctx != ring->default_context)
2772                         intel_lr_context_unpin(submit_req);
2773
2774                 i915_gem_request_unreference(submit_req);
2775         }
2776
2777         /*
2778          * We must free the requests after all the corresponding objects have
2779          * been moved off active lists. Which is the same order as the normal
2780          * retire_requests function does. This is important if object hold
2781          * implicit references on things like e.g. ppgtt address spaces through
2782          * the request.
2783          */
2784         while (!list_empty(&ring->request_list)) {
2785                 struct drm_i915_gem_request *request;
2786
2787                 request = list_first_entry(&ring->request_list,
2788                                            struct drm_i915_gem_request,
2789                                            list);
2790
2791                 i915_gem_request_retire(request);
2792         }
2793 }
2794
2795 void i915_gem_reset(struct drm_device *dev)
2796 {
2797         struct drm_i915_private *dev_priv = dev->dev_private;
2798         struct intel_engine_cs *ring;
2799         int i;
2800
2801         /*
2802          * Before we free the objects from the requests, we need to inspect
2803          * them for finding the guilty party. As the requests only borrow
2804          * their reference to the objects, the inspection must be done first.
2805          */
2806         for_each_ring(ring, dev_priv, i)
2807                 i915_gem_reset_ring_status(dev_priv, ring);
2808
2809         for_each_ring(ring, dev_priv, i)
2810                 i915_gem_reset_ring_cleanup(dev_priv, ring);
2811
2812         i915_gem_context_reset(dev);
2813
2814         i915_gem_restore_fences(dev);
2815
2816         WARN_ON(i915_verify_lists(dev));
2817 }
2818
2819 /**
2820  * This function clears the request list as sequence numbers are passed.
2821  */
2822 void
2823 i915_gem_retire_requests_ring(struct intel_engine_cs *ring)
2824 {
2825         WARN_ON(i915_verify_lists(ring->dev));
2826
2827         /* Retire requests first as we use it above for the early return.
2828          * If we retire requests last, we may use a later seqno and so clear
2829          * the requests lists without clearing the active list, leading to
2830          * confusion.
2831          */
2832         while (!list_empty(&ring->request_list)) {
2833                 struct drm_i915_gem_request *request;
2834
2835                 request = list_first_entry(&ring->request_list,
2836                                            struct drm_i915_gem_request,
2837                                            list);
2838
2839                 if (!i915_gem_request_completed(request, true))
2840                         break;
2841
2842                 i915_gem_request_retire(request);
2843         }
2844
2845         /* Move any buffers on the active list that are no longer referenced
2846          * by the ringbuffer to the flushing/inactive lists as appropriate,
2847          * before we free the context associated with the requests.
2848          */
2849         while (!list_empty(&ring->active_list)) {
2850                 struct drm_i915_gem_object *obj;
2851
2852                 obj = list_first_entry(&ring->active_list,
2853                                       struct drm_i915_gem_object,
2854                                       ring_list[ring->id]);
2855
2856                 if (!list_empty(&obj->last_read_req[ring->id]->list))
2857                         break;
2858
2859                 i915_gem_object_retire__read(obj, ring->id);
2860         }
2861
2862         if (unlikely(ring->trace_irq_req &&
2863                      i915_gem_request_completed(ring->trace_irq_req, true))) {
2864                 ring->irq_put(ring);
2865                 i915_gem_request_assign(&ring->trace_irq_req, NULL);
2866         }
2867
2868         WARN_ON(i915_verify_lists(ring->dev));
2869 }
2870
2871 bool
2872 i915_gem_retire_requests(struct drm_device *dev)
2873 {
2874         struct drm_i915_private *dev_priv = dev->dev_private;
2875         struct intel_engine_cs *ring;
2876         bool idle = true;
2877         int i;
2878
2879         for_each_ring(ring, dev_priv, i) {
2880                 i915_gem_retire_requests_ring(ring);
2881                 idle &= list_empty(&ring->request_list);
2882                 if (i915.enable_execlists) {
2883                         unsigned long flags;
2884
2885                         spin_lock_irqsave(&ring->execlist_lock, flags);
2886                         idle &= list_empty(&ring->execlist_queue);
2887                         spin_unlock_irqrestore(&ring->execlist_lock, flags);
2888
2889                         intel_execlists_retire_requests(ring);
2890                 }
2891         }
2892
2893         if (idle)
2894                 mod_delayed_work(dev_priv->wq,
2895                                    &dev_priv->mm.idle_work,
2896                                    msecs_to_jiffies(100));
2897
2898         return idle;
2899 }
2900
2901 static void
2902 i915_gem_retire_work_handler(struct work_struct *work)
2903 {
2904         struct drm_i915_private *dev_priv =
2905                 container_of(work, typeof(*dev_priv), mm.retire_work.work);
2906         struct drm_device *dev = dev_priv->dev;
2907         bool idle;
2908
2909         /* Come back later if the device is busy... */
2910         idle = false;
2911         if (mutex_trylock(&dev->struct_mutex)) {
2912                 idle = i915_gem_retire_requests(dev);
2913                 mutex_unlock(&dev->struct_mutex);
2914         }
2915         if (!idle)
2916                 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work,
2917                                    round_jiffies_up_relative(HZ));
2918 }
2919
2920 static void
2921 i915_gem_idle_work_handler(struct work_struct *work)
2922 {
2923         struct drm_i915_private *dev_priv =
2924                 container_of(work, typeof(*dev_priv), mm.idle_work.work);
2925         struct drm_device *dev = dev_priv->dev;
2926         struct intel_engine_cs *ring;
2927         int i;
2928
2929         for_each_ring(ring, dev_priv, i)
2930                 if (!list_empty(&ring->request_list))
2931                         return;
2932
2933         intel_mark_idle(dev);
2934
2935         if (mutex_trylock(&dev->struct_mutex)) {
2936                 struct intel_engine_cs *ring;
2937                 int i;
2938
2939                 for_each_ring(ring, dev_priv, i)
2940                         i915_gem_batch_pool_fini(&ring->batch_pool);
2941
2942                 mutex_unlock(&dev->struct_mutex);
2943         }
2944 }
2945
2946 /**
2947  * Ensures that an object will eventually get non-busy by flushing any required
2948  * write domains, emitting any outstanding lazy request and retiring and
2949  * completed requests.
2950  */
2951 static int
2952 i915_gem_object_flush_active(struct drm_i915_gem_object *obj)
2953 {
2954         int i;
2955
2956         if (!obj->active)
2957                 return 0;
2958
2959         for (i = 0; i < I915_NUM_RINGS; i++) {
2960                 struct drm_i915_gem_request *req;
2961
2962                 req = obj->last_read_req[i];
2963                 if (req == NULL)
2964                         continue;
2965
2966                 if (list_empty(&req->list))
2967                         goto retire;
2968
2969                 if (i915_gem_request_completed(req, true)) {
2970                         __i915_gem_request_retire__upto(req);
2971 retire:
2972                         i915_gem_object_retire__read(obj, i);
2973                 }
2974         }
2975
2976         return 0;
2977 }
2978
2979 /**
2980  * i915_gem_wait_ioctl - implements DRM_IOCTL_I915_GEM_WAIT
2981  * @DRM_IOCTL_ARGS: standard ioctl arguments
2982  *
2983  * Returns 0 if successful, else an error is returned with the remaining time in
2984  * the timeout parameter.
2985  *  -ETIME: object is still busy after timeout
2986  *  -ERESTARTSYS: signal interrupted the wait
2987  *  -ENONENT: object doesn't exist
2988  * Also possible, but rare:
2989  *  -EAGAIN: GPU wedged
2990  *  -ENOMEM: damn
2991  *  -ENODEV: Internal IRQ fail
2992  *  -E?: The add request failed
2993  *
2994  * The wait ioctl with a timeout of 0 reimplements the busy ioctl. With any
2995  * non-zero timeout parameter the wait ioctl will wait for the given number of
2996  * nanoseconds on an object becoming unbusy. Since the wait itself does so
2997  * without holding struct_mutex the object may become re-busied before this
2998  * function completes. A similar but shorter * race condition exists in the busy
2999  * ioctl
3000  */
3001 int
3002 i915_gem_wait_ioctl(struct drm_device *dev, void *data, struct drm_file *file)
3003 {
3004         struct drm_i915_private *dev_priv = dev->dev_private;
3005         struct drm_i915_gem_wait *args = data;
3006         struct drm_i915_gem_object *obj;
3007         struct drm_i915_gem_request *req[I915_NUM_RINGS];
3008         unsigned reset_counter;
3009         int i, n = 0;
3010         int ret;
3011
3012         if (args->flags != 0)
3013                 return -EINVAL;
3014
3015         ret = i915_mutex_lock_interruptible(dev);
3016         if (ret)
3017                 return ret;
3018
3019         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->bo_handle));
3020         if (&obj->base == NULL) {
3021                 mutex_unlock(&dev->struct_mutex);
3022                 return -ENOENT;
3023         }
3024
3025         /* Need to make sure the object gets inactive eventually. */
3026         ret = i915_gem_object_flush_active(obj);
3027         if (ret)
3028                 goto out;
3029
3030         if (!obj->active)
3031                 goto out;
3032
3033         /* Do this after OLR check to make sure we make forward progress polling
3034          * on this IOCTL with a timeout == 0 (like busy ioctl)
3035          */
3036         if (args->timeout_ns == 0) {
3037                 ret = -ETIME;
3038                 goto out;
3039         }
3040
3041         drm_gem_object_unreference(&obj->base);
3042         reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
3043
3044         for (i = 0; i < I915_NUM_RINGS; i++) {
3045                 if (obj->last_read_req[i] == NULL)
3046                         continue;
3047
3048                 req[n++] = i915_gem_request_reference(obj->last_read_req[i]);
3049         }
3050
3051         mutex_unlock(&dev->struct_mutex);
3052
3053         for (i = 0; i < n; i++) {
3054                 if (ret == 0)
3055                         ret = __i915_wait_request(req[i], reset_counter, true,
3056                                                   args->timeout_ns > 0 ? &args->timeout_ns : NULL,
3057                                                   file->driver_priv);
3058                 i915_gem_request_unreference__unlocked(req[i]);
3059         }
3060         return ret;
3061
3062 out:
3063         drm_gem_object_unreference(&obj->base);
3064         mutex_unlock(&dev->struct_mutex);
3065         return ret;
3066 }
3067
3068 static int
3069 __i915_gem_object_sync(struct drm_i915_gem_object *obj,
3070                        struct intel_engine_cs *to,
3071                        struct drm_i915_gem_request *from_req,
3072                        struct drm_i915_gem_request **to_req)
3073 {
3074         struct intel_engine_cs *from;
3075         int ret;
3076
3077         from = i915_gem_request_get_ring(from_req);
3078         if (to == from)
3079                 return 0;
3080
3081         if (i915_gem_request_completed(from_req, true))
3082                 return 0;
3083
3084         if (!i915_semaphore_is_enabled(obj->base.dev)) {
3085                 struct drm_i915_private *i915 = to_i915(obj->base.dev);
3086                 ret = __i915_wait_request(from_req,
3087                                           atomic_read(&i915->gpu_error.reset_counter),
3088                                           i915->mm.interruptible,
3089                                           NULL,
3090                                           &i915->rps.semaphores);
3091                 if (ret)
3092                         return ret;
3093
3094                 i915_gem_object_retire_request(obj, from_req);
3095         } else {
3096                 int idx = intel_ring_sync_index(from, to);
3097                 u32 seqno = i915_gem_request_get_seqno(from_req);
3098
3099                 WARN_ON(!to_req);
3100
3101                 if (seqno <= from->semaphore.sync_seqno[idx])
3102                         return 0;
3103
3104                 if (*to_req == NULL) {
3105                         ret = i915_gem_request_alloc(to, to->default_context, to_req);
3106                         if (ret)
3107                                 return ret;
3108                 }
3109
3110                 trace_i915_gem_ring_sync_to(*to_req, from, from_req);
3111                 ret = to->semaphore.sync_to(*to_req, from, seqno);
3112                 if (ret)
3113                         return ret;
3114
3115                 /* We use last_read_req because sync_to()
3116                  * might have just caused seqno wrap under
3117                  * the radar.
3118                  */
3119                 from->semaphore.sync_seqno[idx] =
3120                         i915_gem_request_get_seqno(obj->last_read_req[from->id]);
3121         }
3122
3123         return 0;
3124 }
3125
3126 /**
3127  * i915_gem_object_sync - sync an object to a ring.
3128  *
3129  * @obj: object which may be in use on another ring.
3130  * @to: ring we wish to use the object on. May be NULL.
3131  * @to_req: request we wish to use the object for. See below.
3132  *          This will be allocated and returned if a request is
3133  *          required but not passed in.
3134  *
3135  * This code is meant to abstract object synchronization with the GPU.
3136  * Calling with NULL implies synchronizing the object with the CPU
3137  * rather than a particular GPU ring. Conceptually we serialise writes
3138  * between engines inside the GPU. We only allow one engine to write
3139  * into a buffer at any time, but multiple readers. To ensure each has
3140  * a coherent view of memory, we must:
3141  *
3142  * - If there is an outstanding write request to the object, the new
3143  *   request must wait for it to complete (either CPU or in hw, requests
3144  *   on the same ring will be naturally ordered).
3145  *
3146  * - If we are a write request (pending_write_domain is set), the new
3147  *   request must wait for outstanding read requests to complete.
3148  *
3149  * For CPU synchronisation (NULL to) no request is required. For syncing with
3150  * rings to_req must be non-NULL. However, a request does not have to be
3151  * pre-allocated. If *to_req is NULL and sync commands will be emitted then a
3152  * request will be allocated automatically and returned through *to_req. Note
3153  * that it is not guaranteed that commands will be emitted (because the system
3154  * might already be idle). Hence there is no need to create a request that
3155  * might never have any work submitted. Note further that if a request is
3156  * returned in *to_req, it is the responsibility of the caller to submit
3157  * that request (after potentially adding more work to it).
3158  *
3159  * Returns 0 if successful, else propagates up the lower layer error.
3160  */
3161 int
3162 i915_gem_object_sync(struct drm_i915_gem_object *obj,
3163                      struct intel_engine_cs *to,
3164                      struct drm_i915_gem_request **to_req)
3165 {
3166         const bool readonly = obj->base.pending_write_domain == 0;
3167         struct drm_i915_gem_request *req[I915_NUM_RINGS];
3168         int ret, i, n;
3169
3170         if (!obj->active)
3171                 return 0;
3172
3173         if (to == NULL)
3174                 return i915_gem_object_wait_rendering(obj, readonly);
3175
3176         n = 0;
3177         if (readonly) {
3178                 if (obj->last_write_req)
3179                         req[n++] = obj->last_write_req;
3180         } else {
3181                 for (i = 0; i < I915_NUM_RINGS; i++)
3182                         if (obj->last_read_req[i])
3183                                 req[n++] = obj->last_read_req[i];
3184         }
3185         for (i = 0; i < n; i++) {
3186                 ret = __i915_gem_object_sync(obj, to, req[i], to_req);
3187                 if (ret)
3188                         return ret;
3189         }
3190
3191         return 0;
3192 }
3193
3194 static void i915_gem_object_finish_gtt(struct drm_i915_gem_object *obj)
3195 {
3196         u32 old_write_domain, old_read_domains;
3197
3198         /* Force a pagefault for domain tracking on next user access */
3199         i915_gem_release_mmap(obj);
3200
3201         if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
3202                 return;
3203
3204         /* Wait for any direct GTT access to complete */
3205         mb();
3206
3207         old_read_domains = obj->base.read_domains;
3208         old_write_domain = obj->base.write_domain;
3209
3210         obj->base.read_domains &= ~I915_GEM_DOMAIN_GTT;
3211         obj->base.write_domain &= ~I915_GEM_DOMAIN_GTT;
3212
3213         trace_i915_gem_object_change_domain(obj,
3214                                             old_read_domains,
3215                                             old_write_domain);
3216 }
3217
3218 static int __i915_vma_unbind(struct i915_vma *vma, bool wait)
3219 {
3220         struct drm_i915_gem_object *obj = vma->obj;
3221         struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
3222         int ret;
3223
3224         if (list_empty(&vma->vma_link))
3225                 return 0;
3226
3227         if (!drm_mm_node_allocated(&vma->node)) {
3228                 i915_gem_vma_destroy(vma);
3229                 return 0;
3230         }
3231
3232         if (vma->pin_count)
3233                 return -EBUSY;
3234
3235         BUG_ON(obj->pages == NULL);
3236
3237         if (wait) {
3238                 ret = i915_gem_object_wait_rendering(obj, false);
3239                 if (ret)
3240                         return ret;
3241         }
3242
3243         if (i915_is_ggtt(vma->vm) &&
3244             vma->ggtt_view.type == I915_GGTT_VIEW_NORMAL) {
3245                 i915_gem_object_finish_gtt(obj);
3246
3247                 /* release the fence reg _after_ flushing */
3248                 ret = i915_gem_object_put_fence(obj);
3249                 if (ret)
3250                         return ret;
3251         }
3252
3253         trace_i915_vma_unbind(vma);
3254
3255         vma->vm->unbind_vma(vma);
3256         vma->bound = 0;
3257
3258         list_del_init(&vma->mm_list);
3259         if (i915_is_ggtt(vma->vm)) {
3260                 if (vma->ggtt_view.type == I915_GGTT_VIEW_NORMAL) {
3261                         obj->map_and_fenceable = false;
3262                 } else if (vma->ggtt_view.pages) {
3263                         sg_free_table(vma->ggtt_view.pages);
3264                         kfree(vma->ggtt_view.pages);
3265                 }
3266                 vma->ggtt_view.pages = NULL;
3267         }
3268
3269         drm_mm_remove_node(&vma->node);
3270         i915_gem_vma_destroy(vma);
3271
3272         /* Since the unbound list is global, only move to that list if
3273          * no more VMAs exist. */
3274         if (list_empty(&obj->vma_list))
3275                 list_move_tail(&obj->global_list, &dev_priv->mm.unbound_list);
3276
3277         /* And finally now the object is completely decoupled from this vma,
3278          * we can drop its hold on the backing storage and allow it to be
3279          * reaped by the shrinker.
3280          */
3281         i915_gem_object_unpin_pages(obj);
3282
3283         return 0;
3284 }
3285
3286 int i915_vma_unbind(struct i915_vma *vma)
3287 {
3288         return __i915_vma_unbind(vma, true);
3289 }
3290
3291 int __i915_vma_unbind_no_wait(struct i915_vma *vma)
3292 {
3293         return __i915_vma_unbind(vma, false);
3294 }
3295
3296 int i915_gpu_idle(struct drm_device *dev)
3297 {
3298         struct drm_i915_private *dev_priv = dev->dev_private;
3299         struct intel_engine_cs *ring;
3300         int ret, i;
3301
3302         /* Flush everything onto the inactive list. */
3303         for_each_ring(ring, dev_priv, i) {
3304                 if (!i915.enable_execlists) {
3305                         struct drm_i915_gem_request *req;
3306
3307                         ret = i915_gem_request_alloc(ring, ring->default_context, &req);
3308                         if (ret)
3309                                 return ret;
3310
3311                         ret = i915_switch_context(req);
3312                         if (ret) {
3313                                 i915_gem_request_cancel(req);
3314                                 return ret;
3315                         }
3316
3317                         i915_add_request_no_flush(req);
3318                 }
3319
3320                 ret = intel_ring_idle(ring);
3321                 if (ret)
3322                         return ret;
3323         }
3324
3325         WARN_ON(i915_verify_lists(dev));
3326         return 0;
3327 }
3328
3329 static bool i915_gem_valid_gtt_space(struct i915_vma *vma,
3330                                      unsigned long cache_level)
3331 {
3332         struct drm_mm_node *gtt_space = &vma->node;
3333         struct drm_mm_node *other;
3334
3335         /*
3336          * On some machines we have to be careful when putting differing types
3337          * of snoopable memory together to avoid the prefetcher crossing memory
3338          * domains and dying. During vm initialisation, we decide whether or not
3339          * these constraints apply and set the drm_mm.color_adjust
3340          * appropriately.
3341          */
3342         if (vma->vm->mm.color_adjust == NULL)
3343                 return true;
3344
3345         if (!drm_mm_node_allocated(gtt_space))
3346                 return true;
3347
3348         if (list_empty(&gtt_space->node_list))
3349                 return true;
3350
3351         other = list_entry(gtt_space->node_list.prev, struct drm_mm_node, node_list);
3352         if (other->allocated && !other->hole_follows && other->color != cache_level)
3353                 return false;
3354
3355         other = list_entry(gtt_space->node_list.next, struct drm_mm_node, node_list);
3356         if (other->allocated && !gtt_space->hole_follows && other->color != cache_level)
3357                 return false;
3358
3359         return true;
3360 }
3361
3362 /**
3363  * Finds free space in the GTT aperture and binds the object or a view of it
3364  * there.
3365  */
3366 static struct i915_vma *
3367 i915_gem_object_bind_to_vm(struct drm_i915_gem_object *obj,
3368                            struct i915_address_space *vm,
3369                            const struct i915_ggtt_view *ggtt_view,
3370                            unsigned alignment,
3371                            uint64_t flags)
3372 {
3373         struct drm_device *dev = obj->base.dev;
3374         struct drm_i915_private *dev_priv = dev->dev_private;
3375         u32 fence_alignment, unfenced_alignment;
3376         u32 search_flag, alloc_flag;
3377         u64 start, end;
3378         u64 size, fence_size;
3379         struct i915_vma *vma;
3380         int ret;
3381
3382         if (i915_is_ggtt(vm)) {
3383                 u32 view_size;
3384
3385                 if (WARN_ON(!ggtt_view))
3386                         return ERR_PTR(-EINVAL);
3387
3388                 view_size = i915_ggtt_view_size(obj, ggtt_view);
3389
3390                 fence_size = i915_gem_get_gtt_size(dev,
3391                                                    view_size,
3392                                                    obj->tiling_mode);
3393                 fence_alignment = i915_gem_get_gtt_alignment(dev,
3394                                                              view_size,
3395                                                              obj->tiling_mode,
3396                                                              true);
3397                 unfenced_alignment = i915_gem_get_gtt_alignment(dev,
3398                                                                 view_size,
3399                                                                 obj->tiling_mode,
3400                                                                 false);
3401                 size = flags & PIN_MAPPABLE ? fence_size : view_size;
3402         } else {
3403                 fence_size = i915_gem_get_gtt_size(dev,
3404                                                    obj->base.size,
3405                                                    obj->tiling_mode);
3406                 fence_alignment = i915_gem_get_gtt_alignment(dev,
3407                                                              obj->base.size,
3408                                                              obj->tiling_mode,
3409                                                              true);
3410                 unfenced_alignment =
3411                         i915_gem_get_gtt_alignment(dev,
3412                                                    obj->base.size,
3413                                                    obj->tiling_mode,
3414                                                    false);
3415                 size = flags & PIN_MAPPABLE ? fence_size : obj->base.size;
3416         }
3417
3418         start = flags & PIN_OFFSET_BIAS ? flags & PIN_OFFSET_MASK : 0;
3419         end = vm->total;
3420         if (flags & PIN_MAPPABLE)
3421                 end = min_t(u64, end, dev_priv->gtt.mappable_end);
3422         if (flags & PIN_ZONE_4G)
3423                 end = min_t(u64, end, (1ULL << 32));
3424
3425         if (alignment == 0)
3426                 alignment = flags & PIN_MAPPABLE ? fence_alignment :
3427                                                 unfenced_alignment;
3428         if (flags & PIN_MAPPABLE && alignment & (fence_alignment - 1)) {
3429                 DRM_DEBUG("Invalid object (view type=%u) alignment requested %u\n",
3430                           ggtt_view ? ggtt_view->type : 0,
3431                           alignment);
3432                 return ERR_PTR(-EINVAL);
3433         }
3434
3435         /* If binding the object/GGTT view requires more space than the entire
3436          * aperture has, reject it early before evicting everything in a vain
3437          * attempt to find space.
3438          */
3439         if (size > end) {
3440                 DRM_DEBUG("Attempting to bind an object (view type=%u) larger than the aperture: size=%llu > %s aperture=%llu\n",
3441                           ggtt_view ? ggtt_view->type : 0,
3442                           size,
3443                           flags & PIN_MAPPABLE ? "mappable" : "total",
3444                           end);
3445                 return ERR_PTR(-E2BIG);
3446         }
3447
3448         ret = i915_gem_object_get_pages(obj);
3449         if (ret)
3450                 return ERR_PTR(ret);
3451
3452         i915_gem_object_pin_pages(obj);
3453
3454         vma = ggtt_view ? i915_gem_obj_lookup_or_create_ggtt_vma(obj, ggtt_view) :
3455                           i915_gem_obj_lookup_or_create_vma(obj, vm);
3456
3457         if (IS_ERR(vma))
3458                 goto err_unpin;
3459
3460         if (flags & PIN_HIGH) {
3461                 search_flag = DRM_MM_SEARCH_BELOW;
3462                 alloc_flag = DRM_MM_CREATE_TOP;
3463         } else {
3464                 search_flag = DRM_MM_SEARCH_DEFAULT;
3465                 alloc_flag = DRM_MM_CREATE_DEFAULT;
3466         }
3467
3468 search_free:
3469         ret = drm_mm_insert_node_in_range_generic(&vm->mm, &vma->node,
3470                                                   size, alignment,
3471                                                   obj->cache_level,
3472                                                   start, end,
3473                                                   search_flag,
3474                                                   alloc_flag);
3475         if (ret) {
3476                 ret = i915_gem_evict_something(dev, vm, size, alignment,
3477                                                obj->cache_level,
3478                                                start, end,
3479                                                flags);
3480                 if (ret == 0)
3481                         goto search_free;
3482
3483                 goto err_free_vma;
3484         }
3485         if (WARN_ON(!i915_gem_valid_gtt_space(vma, obj->cache_level))) {
3486                 ret = -EINVAL;
3487                 goto err_remove_node;
3488         }
3489
3490         trace_i915_vma_bind(vma, flags);
3491         ret = i915_vma_bind(vma, obj->cache_level, flags);
3492         if (ret)
3493                 goto err_remove_node;
3494
3495         list_move_tail(&obj->global_list, &dev_priv->mm.bound_list);
3496         list_add_tail(&vma->mm_list, &vm->inactive_list);
3497
3498         return vma;
3499
3500 err_remove_node:
3501         drm_mm_remove_node(&vma->node);
3502 err_free_vma:
3503         i915_gem_vma_destroy(vma);
3504         vma = ERR_PTR(ret);
3505 err_unpin:
3506         i915_gem_object_unpin_pages(obj);
3507         return vma;
3508 }
3509
3510 bool
3511 i915_gem_clflush_object(struct drm_i915_gem_object *obj,
3512                         bool force)
3513 {
3514         /* If we don't have a page list set up, then we're not pinned
3515          * to GPU, and we can ignore the cache flush because it'll happen
3516          * again at bind time.
3517          */
3518         if (obj->pages == NULL)
3519                 return false;
3520
3521         /*
3522          * Stolen memory is always coherent with the GPU as it is explicitly
3523          * marked as wc by the system, or the system is cache-coherent.
3524          */
3525         if (obj->stolen || obj->phys_handle)
3526                 return false;
3527
3528         /* If the GPU is snooping the contents of the CPU cache,
3529          * we do not need to manually clear the CPU cache lines.  However,
3530          * the caches are only snooped when the render cache is
3531          * flushed/invalidated.  As we always have to emit invalidations
3532          * and flushes when moving into and out of the RENDER domain, correct
3533          * snooping behaviour occurs naturally as the result of our domain
3534          * tracking.
3535          */
3536         if (!force && cpu_cache_is_coherent(obj->base.dev, obj->cache_level)) {
3537                 obj->cache_dirty = true;
3538                 return false;
3539         }
3540
3541         trace_i915_gem_object_clflush(obj);
3542         drm_clflush_sg(obj->pages);
3543         obj->cache_dirty = false;
3544
3545         return true;
3546 }
3547
3548 /** Flushes the GTT write domain for the object if it's dirty. */
3549 static void
3550 i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj)
3551 {
3552         uint32_t old_write_domain;
3553
3554         if (obj->base.write_domain != I915_GEM_DOMAIN_GTT)
3555                 return;
3556
3557         /* No actual flushing is required for the GTT write domain.  Writes
3558          * to it immediately go to main memory as far as we know, so there's
3559          * no chipset flush.  It also doesn't land in render cache.
3560          *
3561          * However, we do have to enforce the order so that all writes through
3562          * the GTT land before any writes to the device, such as updates to
3563          * the GATT itself.
3564          */
3565         wmb();
3566
3567         old_write_domain = obj->base.write_domain;
3568         obj->base.write_domain = 0;
3569
3570         intel_fb_obj_flush(obj, false, ORIGIN_GTT);
3571
3572         trace_i915_gem_object_change_domain(obj,
3573                                             obj->base.read_domains,
3574                                             old_write_domain);
3575 }
3576
3577 /** Flushes the CPU write domain for the object if it's dirty. */
3578 static void
3579 i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj)
3580 {
3581         uint32_t old_write_domain;
3582
3583         if (obj->base.write_domain != I915_GEM_DOMAIN_CPU)
3584                 return;
3585
3586         if (i915_gem_clflush_object(obj, obj->pin_display))
3587                 i915_gem_chipset_flush(obj->base.dev);
3588
3589         old_write_domain = obj->base.write_domain;
3590         obj->base.write_domain = 0;
3591
3592         intel_fb_obj_flush(obj, false, ORIGIN_CPU);
3593
3594         trace_i915_gem_object_change_domain(obj,
3595                                             obj->base.read_domains,
3596                                             old_write_domain);
3597 }
3598
3599 /**
3600  * Moves a single object to the GTT read, and possibly write domain.
3601  *
3602  * This function returns when the move is complete, including waiting on
3603  * flushes to occur.
3604  */
3605 int
3606 i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write)
3607 {
3608         uint32_t old_write_domain, old_read_domains;
3609         struct i915_vma *vma;
3610         int ret;
3611
3612         if (obj->base.write_domain == I915_GEM_DOMAIN_GTT)
3613                 return 0;
3614
3615         ret = i915_gem_object_wait_rendering(obj, !write);
3616         if (ret)
3617                 return ret;
3618
3619         /* Flush and acquire obj->pages so that we are coherent through
3620          * direct access in memory with previous cached writes through
3621          * shmemfs and that our cache domain tracking remains valid.
3622          * For example, if the obj->filp was moved to swap without us
3623          * being notified and releasing the pages, we would mistakenly
3624          * continue to assume that the obj remained out of the CPU cached
3625          * domain.
3626          */
3627         ret = i915_gem_object_get_pages(obj);
3628         if (ret)
3629                 return ret;
3630
3631         i915_gem_object_flush_cpu_write_domain(obj);
3632
3633         /* Serialise direct access to this object with the barriers for
3634          * coherent writes from the GPU, by effectively invalidating the
3635          * GTT domain upon first access.
3636          */
3637         if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
3638                 mb();
3639
3640         old_write_domain = obj->base.write_domain;
3641         old_read_domains = obj->base.read_domains;
3642
3643         /* It should now be out of any other write domains, and we can update
3644          * the domain values for our changes.
3645          */
3646         BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
3647         obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
3648         if (write) {
3649                 obj->base.read_domains = I915_GEM_DOMAIN_GTT;
3650                 obj->base.write_domain = I915_GEM_DOMAIN_GTT;
3651                 obj->dirty = 1;
3652         }
3653
3654         trace_i915_gem_object_change_domain(obj,
3655                                             old_read_domains,
3656                                             old_write_domain);
3657
3658         /* And bump the LRU for this access */
3659         vma = i915_gem_obj_to_ggtt(obj);
3660         if (vma && drm_mm_node_allocated(&vma->node) && !obj->active)
3661                 list_move_tail(&vma->mm_list,
3662                                &to_i915(obj->base.dev)->gtt.base.inactive_list);
3663
3664         return 0;
3665 }
3666
3667 /**
3668  * Changes the cache-level of an object across all VMA.
3669  *
3670  * After this function returns, the object will be in the new cache-level
3671  * across all GTT and the contents of the backing storage will be coherent,
3672  * with respect to the new cache-level. In order to keep the backing storage
3673  * coherent for all users, we only allow a single cache level to be set
3674  * globally on the object and prevent it from being changed whilst the
3675  * hardware is reading from the object. That is if the object is currently
3676  * on the scanout it will be set to uncached (or equivalent display
3677  * cache coherency) and all non-MOCS GPU access will also be uncached so
3678  * that all direct access to the scanout remains coherent.
3679  */
3680 int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
3681                                     enum i915_cache_level cache_level)
3682 {
3683         struct drm_device *dev = obj->base.dev;
3684         struct i915_vma *vma, *next;
3685         bool bound = false;
3686         int ret = 0;
3687
3688         if (obj->cache_level == cache_level)
3689                 goto out;
3690
3691         /* Inspect the list of currently bound VMA and unbind any that would
3692          * be invalid given the new cache-level. This is principally to
3693          * catch the issue of the CS prefetch crossing page boundaries and
3694          * reading an invalid PTE on older architectures.
3695          */
3696         list_for_each_entry_safe(vma, next, &obj->vma_list, vma_link) {
3697                 if (!drm_mm_node_allocated(&vma->node))
3698                         continue;
3699
3700                 if (vma->pin_count) {
3701                         DRM_DEBUG("can not change the cache level of pinned objects\n");
3702                         return -EBUSY;
3703                 }
3704
3705                 if (!i915_gem_valid_gtt_space(vma, cache_level)) {
3706                         ret = i915_vma_unbind(vma);
3707                         if (ret)
3708                                 return ret;
3709                 } else
3710                         bound = true;
3711         }
3712
3713         /* We can reuse the existing drm_mm nodes but need to change the
3714          * cache-level on the PTE. We could simply unbind them all and
3715          * rebind with the correct cache-level on next use. However since
3716          * we already have a valid slot, dma mapping, pages etc, we may as
3717          * rewrite the PTE in the belief that doing so tramples upon less
3718          * state and so involves less work.
3719          */
3720         if (bound) {
3721                 /* Before we change the PTE, the GPU must not be accessing it.
3722                  * If we wait upon the object, we know that all the bound
3723                  * VMA are no longer active.
3724                  */
3725                 ret = i915_gem_object_wait_rendering(obj, false);
3726                 if (ret)
3727                         return ret;
3728
3729                 if (!HAS_LLC(dev) && cache_level != I915_CACHE_NONE) {
3730                         /* Access to snoopable pages through the GTT is
3731                          * incoherent and on some machines causes a hard
3732                          * lockup. Relinquish the CPU mmaping to force
3733                          * userspace to refault in the pages and we can
3734                          * then double check if the GTT mapping is still
3735                          * valid for that pointer access.
3736                          */
3737                         i915_gem_release_mmap(obj);
3738
3739                         /* As we no longer need a fence for GTT access,
3740                          * we can relinquish it now (and so prevent having
3741                          * to steal a fence from someone else on the next
3742                          * fence request). Note GPU activity would have
3743                          * dropped the fence as all snoopable access is
3744                          * supposed to be linear.
3745                          */
3746                         ret = i915_gem_object_put_fence(obj);
3747                         if (ret)
3748                                 return ret;
3749                 } else {
3750                         /* We either have incoherent backing store and
3751                          * so no GTT access or the architecture is fully
3752                          * coherent. In such cases, existing GTT mmaps
3753                          * ignore the cache bit in the PTE and we can
3754                          * rewrite it without confusing the GPU or having
3755                          * to force userspace to fault back in its mmaps.
3756                          */
3757                 }
3758
3759                 list_for_each_entry(vma, &obj->vma_list, vma_link) {
3760                         if (!drm_mm_node_allocated(&vma->node))
3761                                 continue;
3762
3763                         ret = i915_vma_bind(vma, cache_level, PIN_UPDATE);
3764                         if (ret)
3765                                 return ret;
3766                 }
3767         }
3768
3769         list_for_each_entry(vma, &obj->vma_list, vma_link)
3770                 vma->node.color = cache_level;
3771         obj->cache_level = cache_level;
3772
3773 out:
3774         /* Flush the dirty CPU caches to the backing storage so that the
3775          * object is now coherent at its new cache level (with respect
3776          * to the access domain).
3777          */
3778         if (obj->cache_dirty &&
3779             obj->base.write_domain != I915_GEM_DOMAIN_CPU &&
3780             cpu_write_needs_clflush(obj)) {
3781                 if (i915_gem_clflush_object(obj, true))
3782                         i915_gem_chipset_flush(obj->base.dev);
3783         }
3784
3785         return 0;
3786 }
3787
3788 int i915_gem_get_caching_ioctl(struct drm_device *dev, void *data,
3789                                struct drm_file *file)
3790 {
3791         struct drm_i915_gem_caching *args = data;
3792         struct drm_i915_gem_object *obj;
3793
3794         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3795         if (&obj->base == NULL)
3796                 return -ENOENT;
3797
3798         switch (obj->cache_level) {
3799         case I915_CACHE_LLC:
3800         case I915_CACHE_L3_LLC:
3801                 args->caching = I915_CACHING_CACHED;
3802                 break;
3803
3804         case I915_CACHE_WT:
3805                 args->caching = I915_CACHING_DISPLAY;
3806                 break;
3807
3808         default:
3809                 args->caching = I915_CACHING_NONE;
3810                 break;
3811         }
3812
3813         drm_gem_object_unreference_unlocked(&obj->base);
3814         return 0;
3815 }
3816
3817 int i915_gem_set_caching_ioctl(struct drm_device *dev, void *data,
3818                                struct drm_file *file)
3819 {
3820         struct drm_i915_private *dev_priv = dev->dev_private;
3821         struct drm_i915_gem_caching *args = data;
3822         struct drm_i915_gem_object *obj;
3823         enum i915_cache_level level;
3824         int ret;
3825
3826         switch (args->caching) {
3827         case I915_CACHING_NONE:
3828                 level = I915_CACHE_NONE;
3829                 break;
3830         case I915_CACHING_CACHED:
3831                 /*
3832                  * Due to a HW issue on BXT A stepping, GPU stores via a
3833                  * snooped mapping may leave stale data in a corresponding CPU
3834                  * cacheline, whereas normally such cachelines would get
3835                  * invalidated.
3836                  */
3837                 if (IS_BROXTON(dev) && INTEL_REVID(dev) < BXT_REVID_B0)
3838                         return -ENODEV;
3839
3840                 level = I915_CACHE_LLC;
3841                 break;
3842         case I915_CACHING_DISPLAY:
3843                 level = HAS_WT(dev) ? I915_CACHE_WT : I915_CACHE_NONE;
3844                 break;
3845         default:
3846                 return -EINVAL;
3847         }
3848
3849         intel_runtime_pm_get(dev_priv);
3850
3851         ret = i915_mutex_lock_interruptible(dev);
3852         if (ret)
3853                 goto rpm_put;
3854
3855         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3856         if (&obj->base == NULL) {
3857                 ret = -ENOENT;
3858                 goto unlock;
3859         }
3860
3861         ret = i915_gem_object_set_cache_level(obj, level);
3862
3863         drm_gem_object_unreference(&obj->base);
3864 unlock:
3865         mutex_unlock(&dev->struct_mutex);
3866 rpm_put:
3867         intel_runtime_pm_put(dev_priv);
3868
3869         return ret;
3870 }
3871
3872 /*
3873  * Prepare buffer for display plane (scanout, cursors, etc).
3874  * Can be called from an uninterruptible phase (modesetting) and allows
3875  * any flushes to be pipelined (for pageflips).
3876  */
3877 int
3878 i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
3879                                      u32 alignment,
3880                                      struct intel_engine_cs *pipelined,
3881                                      struct drm_i915_gem_request **pipelined_request,
3882                                      const struct i915_ggtt_view *view)
3883 {
3884         u32 old_read_domains, old_write_domain;
3885         int ret;
3886
3887         ret = i915_gem_object_sync(obj, pipelined, pipelined_request);
3888         if (ret)
3889                 return ret;
3890
3891         /* Mark the pin_display early so that we account for the
3892          * display coherency whilst setting up the cache domains.
3893          */
3894         obj->pin_display++;
3895
3896         /* The display engine is not coherent with the LLC cache on gen6.  As
3897          * a result, we make sure that the pinning that is about to occur is
3898          * done with uncached PTEs. This is lowest common denominator for all
3899          * chipsets.
3900          *
3901          * However for gen6+, we could do better by using the GFDT bit instead
3902          * of uncaching, which would allow us to flush all the LLC-cached data
3903          * with that bit in the PTE to main memory with just one PIPE_CONTROL.
3904          */
3905         ret = i915_gem_object_set_cache_level(obj,
3906                                               HAS_WT(obj->base.dev) ? I915_CACHE_WT : I915_CACHE_NONE);
3907         if (ret)
3908                 goto err_unpin_display;
3909
3910         /* As the user may map the buffer once pinned in the display plane
3911          * (e.g. libkms for the bootup splash), we have to ensure that we
3912          * always use map_and_fenceable for all scanout buffers.
3913          */
3914         ret = i915_gem_object_ggtt_pin(obj, view, alignment,
3915                                        view->type == I915_GGTT_VIEW_NORMAL ?
3916                                        PIN_MAPPABLE : 0);
3917         if (ret)
3918                 goto err_unpin_display;
3919
3920         i915_gem_object_flush_cpu_write_domain(obj);
3921
3922         old_write_domain = obj->base.write_domain;
3923         old_read_domains = obj->base.read_domains;
3924
3925         /* It should now be out of any other write domains, and we can update
3926          * the domain values for our changes.
3927          */
3928         obj->base.write_domain = 0;
3929         obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
3930
3931         trace_i915_gem_object_change_domain(obj,
3932                                             old_read_domains,
3933                                             old_write_domain);
3934
3935         return 0;
3936
3937 err_unpin_display:
3938         obj->pin_display--;
3939         return ret;
3940 }
3941
3942 void
3943 i915_gem_object_unpin_from_display_plane(struct drm_i915_gem_object *obj,
3944                                          const struct i915_ggtt_view *view)
3945 {
3946         if (WARN_ON(obj->pin_display == 0))
3947                 return;
3948
3949         i915_gem_object_ggtt_unpin_view(obj, view);
3950
3951         obj->pin_display--;
3952 }
3953
3954 /**
3955  * Moves a single object to the CPU read, and possibly write domain.
3956  *
3957  * This function returns when the move is complete, including waiting on
3958  * flushes to occur.
3959  */
3960 int
3961 i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write)
3962 {
3963         uint32_t old_write_domain, old_read_domains;
3964         int ret;
3965
3966         if (obj->base.write_domain == I915_GEM_DOMAIN_CPU)
3967                 return 0;
3968
3969         ret = i915_gem_object_wait_rendering(obj, !write);
3970         if (ret)
3971                 return ret;
3972
3973         i915_gem_object_flush_gtt_write_domain(obj);
3974
3975         old_write_domain = obj->base.write_domain;
3976         old_read_domains = obj->base.read_domains;
3977
3978         /* Flush the CPU cache if it's still invalid. */
3979         if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0) {
3980                 i915_gem_clflush_object(obj, false);
3981
3982                 obj->base.read_domains |= I915_GEM_DOMAIN_CPU;
3983         }
3984
3985         /* It should now be out of any other write domains, and we can update
3986          * the domain values for our changes.
3987          */
3988         BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
3989
3990         /* If we're writing through the CPU, then the GPU read domains will
3991          * need to be invalidated at next use.
3992          */
3993         if (write) {
3994                 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
3995                 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
3996         }
3997
3998         trace_i915_gem_object_change_domain(obj,
3999                                             old_read_domains,
4000                                             old_write_domain);
4001
4002         return 0;
4003 }
4004
4005 /* Throttle our rendering by waiting until the ring has completed our requests
4006  * emitted over 20 msec ago.
4007  *
4008  * Note that if we were to use the current jiffies each time around the loop,
4009  * we wouldn't escape the function with any frames outstanding if the time to
4010  * render a frame was over 20ms.
4011  *
4012  * This should get us reasonable parallelism between CPU and GPU but also
4013  * relatively low latency when blocking on a particular request to finish.
4014  */
4015 static int
4016 i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
4017 {
4018         struct drm_i915_private *dev_priv = dev->dev_private;
4019         struct drm_i915_file_private *file_priv = file->driver_priv;
4020         unsigned long recent_enough = jiffies - DRM_I915_THROTTLE_JIFFIES;
4021         struct drm_i915_gem_request *request, *target = NULL;
4022         unsigned reset_counter;
4023         int ret;
4024
4025         ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
4026         if (ret)
4027                 return ret;
4028
4029         ret = i915_gem_check_wedge(&dev_priv->gpu_error, false);
4030         if (ret)
4031                 return ret;
4032
4033         spin_lock(&file_priv->mm.lock);
4034         list_for_each_entry(request, &file_priv->mm.request_list, client_list) {
4035                 if (time_after_eq(request->emitted_jiffies, recent_enough))
4036                         break;
4037
4038                 /*
4039                  * Note that the request might not have been submitted yet.
4040                  * In which case emitted_jiffies will be zero.
4041                  */
4042                 if (!request->emitted_jiffies)
4043                         continue;
4044
4045                 target = request;
4046         }
4047         reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
4048         if (target)
4049                 i915_gem_request_reference(target);
4050         spin_unlock(&file_priv->mm.lock);
4051
4052         if (target == NULL)
4053                 return 0;
4054
4055         ret = __i915_wait_request(target, reset_counter, true, NULL, NULL);
4056         if (ret == 0)
4057                 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, 0);
4058
4059         i915_gem_request_unreference__unlocked(target);
4060
4061         return ret;
4062 }
4063
4064 static bool
4065 i915_vma_misplaced(struct i915_vma *vma, uint32_t alignment, uint64_t flags)
4066 {
4067         struct drm_i915_gem_object *obj = vma->obj;
4068
4069         if (alignment &&
4070             vma->node.start & (alignment - 1))
4071                 return true;
4072
4073         if (flags & PIN_MAPPABLE && !obj->map_and_fenceable)
4074                 return true;
4075
4076         if (flags & PIN_OFFSET_BIAS &&
4077             vma->node.start < (flags & PIN_OFFSET_MASK))
4078                 return true;
4079
4080         return false;
4081 }
4082
4083 static int
4084 i915_gem_object_do_pin(struct drm_i915_gem_object *obj,
4085                        struct i915_address_space *vm,
4086                        const struct i915_ggtt_view *ggtt_view,
4087                        uint32_t alignment,
4088                        uint64_t flags)
4089 {
4090         struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
4091         struct i915_vma *vma;
4092         unsigned bound;
4093         int ret;
4094
4095         if (WARN_ON(vm == &dev_priv->mm.aliasing_ppgtt->base))
4096                 return -ENODEV;
4097
4098         if (WARN_ON(flags & (PIN_GLOBAL | PIN_MAPPABLE) && !i915_is_ggtt(vm)))
4099                 return -EINVAL;
4100
4101         if (WARN_ON((flags & (PIN_MAPPABLE | PIN_GLOBAL)) == PIN_MAPPABLE))
4102                 return -EINVAL;
4103
4104         if (WARN_ON(i915_is_ggtt(vm) != !!ggtt_view))
4105                 return -EINVAL;
4106
4107         vma = ggtt_view ? i915_gem_obj_to_ggtt_view(obj, ggtt_view) :
4108                           i915_gem_obj_to_vma(obj, vm);
4109
4110         if (IS_ERR(vma))
4111                 return PTR_ERR(vma);
4112
4113         if (vma) {
4114                 if (WARN_ON(vma->pin_count == DRM_I915_GEM_OBJECT_MAX_PIN_COUNT))
4115                         return -EBUSY;
4116
4117                 if (i915_vma_misplaced(vma, alignment, flags)) {
4118                         WARN(vma->pin_count,
4119                              "bo is already pinned in %s with incorrect alignment:"
4120                              " offset=%08x %08x, req.alignment=%x, req.map_and_fenceable=%d,"
4121                              " obj->map_and_fenceable=%d\n",
4122                              ggtt_view ? "ggtt" : "ppgtt",
4123                              upper_32_bits(vma->node.start),
4124                              lower_32_bits(vma->node.start),
4125                              alignment,
4126                              !!(flags & PIN_MAPPABLE),
4127                              obj->map_and_fenceable);
4128                         ret = i915_vma_unbind(vma);
4129                         if (ret)
4130                                 return ret;
4131
4132                         vma = NULL;
4133                 }
4134         }
4135
4136         bound = vma ? vma->bound : 0;
4137         if (vma == NULL || !drm_mm_node_allocated(&vma->node)) {
4138                 vma = i915_gem_object_bind_to_vm(obj, vm, ggtt_view, alignment,
4139                                                  flags);
4140                 if (IS_ERR(vma))
4141                         return PTR_ERR(vma);
4142         } else {
4143                 ret = i915_vma_bind(vma, obj->cache_level, flags);
4144                 if (ret)
4145                         return ret;
4146         }
4147
4148         if (ggtt_view && ggtt_view->type == I915_GGTT_VIEW_NORMAL &&
4149             (bound ^ vma->bound) & GLOBAL_BIND) {
4150                 bool mappable, fenceable;
4151                 u32 fence_size, fence_alignment;
4152
4153                 fence_size = i915_gem_get_gtt_size(obj->base.dev,
4154                                                    obj->base.size,
4155                                                    obj->tiling_mode);
4156                 fence_alignment = i915_gem_get_gtt_alignment(obj->base.dev,
4157                                                              obj->base.size,
4158                                                              obj->tiling_mode,
4159                                                              true);
4160
4161                 fenceable = (vma->node.size == fence_size &&
4162                              (vma->node.start & (fence_alignment - 1)) == 0);
4163
4164                 mappable = (vma->node.start + fence_size <=
4165                             dev_priv->gtt.mappable_end);
4166
4167                 obj->map_and_fenceable = mappable && fenceable;
4168
4169                 WARN_ON(flags & PIN_MAPPABLE && !obj->map_and_fenceable);
4170         }
4171
4172         vma->pin_count++;
4173         return 0;
4174 }
4175
4176 int
4177 i915_gem_object_pin(struct drm_i915_gem_object *obj,
4178                     struct i915_address_space *vm,
4179                     uint32_t alignment,
4180                     uint64_t flags)
4181 {
4182         return i915_gem_object_do_pin(obj, vm,
4183                                       i915_is_ggtt(vm) ? &i915_ggtt_view_normal : NULL,
4184                                       alignment, flags);
4185 }
4186
4187 int
4188 i915_gem_object_ggtt_pin(struct drm_i915_gem_object *obj,
4189                          const struct i915_ggtt_view *view,
4190                          uint32_t alignment,
4191                          uint64_t flags)
4192 {
4193         if (WARN_ONCE(!view, "no view specified"))
4194                 return -EINVAL;
4195
4196         return i915_gem_object_do_pin(obj, i915_obj_to_ggtt(obj), view,
4197                                       alignment, flags | PIN_GLOBAL);
4198 }
4199
4200 void
4201 i915_gem_object_ggtt_unpin_view(struct drm_i915_gem_object *obj,
4202                                 const struct i915_ggtt_view *view)
4203 {
4204         struct i915_vma *vma = i915_gem_obj_to_ggtt_view(obj, view);
4205
4206         BUG_ON(!vma);
4207         WARN_ON(vma->pin_count == 0);
4208         WARN_ON(!i915_gem_obj_ggtt_bound_view(obj, view));
4209
4210         --vma->pin_count;
4211 }
4212
4213 int
4214 i915_gem_busy_ioctl(struct drm_device *dev, void *data,
4215                     struct drm_file *file)
4216 {
4217         struct drm_i915_gem_busy *args = data;
4218         struct drm_i915_gem_object *obj;
4219         int ret;
4220
4221         ret = i915_mutex_lock_interruptible(dev);
4222         if (ret)
4223                 return ret;
4224
4225         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
4226         if (&obj->base == NULL) {
4227                 ret = -ENOENT;
4228                 goto unlock;
4229         }
4230
4231         /* Count all active objects as busy, even if they are currently not used
4232          * by the gpu. Users of this interface expect objects to eventually
4233          * become non-busy without any further actions, therefore emit any
4234          * necessary flushes here.
4235          */
4236         ret = i915_gem_object_flush_active(obj);
4237         if (ret)
4238                 goto unref;
4239
4240         BUILD_BUG_ON(I915_NUM_RINGS > 16);
4241         args->busy = obj->active << 16;
4242         if (obj->last_write_req)
4243                 args->busy |= obj->last_write_req->ring->id;
4244
4245 unref:
4246         drm_gem_object_unreference(&obj->base);
4247 unlock:
4248         mutex_unlock(&dev->struct_mutex);
4249         return ret;
4250 }
4251
4252 int
4253 i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
4254                         struct drm_file *file_priv)
4255 {
4256         return i915_gem_ring_throttle(dev, file_priv);
4257 }
4258
4259 int
4260 i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
4261                        struct drm_file *file_priv)
4262 {
4263         struct drm_i915_private *dev_priv = dev->dev_private;
4264         struct drm_i915_gem_madvise *args = data;
4265         struct drm_i915_gem_object *obj;
4266         int ret;
4267
4268         switch (args->madv) {
4269         case I915_MADV_DONTNEED:
4270         case I915_MADV_WILLNEED:
4271             break;
4272         default:
4273             return -EINVAL;
4274         }
4275
4276         ret = i915_mutex_lock_interruptible(dev);
4277         if (ret)
4278                 return ret;
4279
4280         obj = to_intel_bo(drm_gem_object_lookup(dev, file_priv, args->handle));
4281         if (&obj->base == NULL) {
4282                 ret = -ENOENT;
4283                 goto unlock;
4284         }
4285
4286         if (i915_gem_obj_is_pinned(obj)) {
4287                 ret = -EINVAL;
4288                 goto out;
4289         }
4290
4291         if (obj->pages &&
4292             obj->tiling_mode != I915_TILING_NONE &&
4293             dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES) {
4294                 if (obj->madv == I915_MADV_WILLNEED)
4295                         i915_gem_object_unpin_pages(obj);
4296                 if (args->madv == I915_MADV_WILLNEED)
4297                         i915_gem_object_pin_pages(obj);
4298         }
4299
4300         if (obj->madv != __I915_MADV_PURGED)
4301                 obj->madv = args->madv;
4302
4303         /* if the object is no longer attached, discard its backing storage */
4304         if (obj->madv == I915_MADV_DONTNEED && obj->pages == NULL)
4305                 i915_gem_object_truncate(obj);
4306
4307         args->retained = obj->madv != __I915_MADV_PURGED;
4308
4309 out:
4310         drm_gem_object_unreference(&obj->base);
4311 unlock:
4312         mutex_unlock(&dev->struct_mutex);
4313         return ret;
4314 }
4315
4316 void i915_gem_object_init(struct drm_i915_gem_object *obj,
4317                           const struct drm_i915_gem_object_ops *ops)
4318 {
4319         int i;
4320
4321         INIT_LIST_HEAD(&obj->global_list);
4322         for (i = 0; i < I915_NUM_RINGS; i++)
4323                 INIT_LIST_HEAD(&obj->ring_list[i]);
4324         INIT_LIST_HEAD(&obj->obj_exec_link);
4325         INIT_LIST_HEAD(&obj->vma_list);
4326         INIT_LIST_HEAD(&obj->batch_pool_link);
4327
4328         obj->ops = ops;
4329
4330         obj->fence_reg = I915_FENCE_REG_NONE;
4331         obj->madv = I915_MADV_WILLNEED;
4332
4333         i915_gem_info_add_obj(obj->base.dev->dev_private, obj->base.size);
4334 }
4335
4336 static const struct drm_i915_gem_object_ops i915_gem_object_ops = {
4337         .get_pages = i915_gem_object_get_pages_gtt,
4338         .put_pages = i915_gem_object_put_pages_gtt,
4339 };
4340
4341 struct drm_i915_gem_object *i915_gem_alloc_object(struct drm_device *dev,
4342                                                   size_t size)
4343 {
4344         struct drm_i915_gem_object *obj;
4345         struct address_space *mapping;
4346         gfp_t mask;
4347
4348         obj = i915_gem_object_alloc(dev);
4349         if (obj == NULL)
4350                 return NULL;
4351
4352         if (drm_gem_object_init(dev, &obj->base, size) != 0) {
4353                 i915_gem_object_free(obj);
4354                 return NULL;
4355         }
4356
4357         mask = GFP_HIGHUSER | __GFP_RECLAIMABLE;
4358         if (IS_CRESTLINE(dev) || IS_BROADWATER(dev)) {
4359                 /* 965gm cannot relocate objects above 4GiB. */
4360                 mask &= ~__GFP_HIGHMEM;
4361                 mask |= __GFP_DMA32;
4362         }
4363
4364         mapping = file_inode(obj->base.filp)->i_mapping;
4365         mapping_set_gfp_mask(mapping, mask);
4366
4367         i915_gem_object_init(obj, &i915_gem_object_ops);
4368
4369         obj->base.write_domain = I915_GEM_DOMAIN_CPU;
4370         obj->base.read_domains = I915_GEM_DOMAIN_CPU;
4371
4372         if (HAS_LLC(dev)) {
4373                 /* On some devices, we can have the GPU use the LLC (the CPU
4374                  * cache) for about a 10% performance improvement
4375                  * compared to uncached.  Graphics requests other than
4376                  * display scanout are coherent with the CPU in
4377                  * accessing this cache.  This means in this mode we
4378                  * don't need to clflush on the CPU side, and on the
4379                  * GPU side we only need to flush internal caches to
4380                  * get data visible to the CPU.
4381                  *
4382                  * However, we maintain the display planes as UC, and so
4383                  * need to rebind when first used as such.
4384                  */
4385                 obj->cache_level = I915_CACHE_LLC;
4386         } else
4387                 obj->cache_level = I915_CACHE_NONE;
4388
4389         trace_i915_gem_object_create(obj);
4390
4391         return obj;
4392 }
4393
4394 static bool discard_backing_storage(struct drm_i915_gem_object *obj)
4395 {
4396         /* If we are the last user of the backing storage (be it shmemfs
4397          * pages or stolen etc), we know that the pages are going to be
4398          * immediately released. In this case, we can then skip copying
4399          * back the contents from the GPU.
4400          */
4401
4402         if (obj->madv != I915_MADV_WILLNEED)
4403                 return false;
4404
4405         if (obj->base.filp == NULL)
4406                 return true;
4407
4408         /* At first glance, this looks racy, but then again so would be
4409          * userspace racing mmap against close. However, the first external
4410          * reference to the filp can only be obtained through the
4411          * i915_gem_mmap_ioctl() which safeguards us against the user
4412          * acquiring such a reference whilst we are in the middle of
4413          * freeing the object.
4414          */
4415         return atomic_long_read(&obj->base.filp->f_count) == 1;
4416 }
4417
4418 void i915_gem_free_object(struct drm_gem_object *gem_obj)
4419 {
4420         struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
4421         struct drm_device *dev = obj->base.dev;
4422         struct drm_i915_private *dev_priv = dev->dev_private;
4423         struct i915_vma *vma, *next;
4424
4425         intel_runtime_pm_get(dev_priv);
4426
4427         trace_i915_gem_object_destroy(obj);
4428
4429         list_for_each_entry_safe(vma, next, &obj->vma_list, vma_link) {
4430                 int ret;
4431
4432                 vma->pin_count = 0;
4433                 ret = i915_vma_unbind(vma);
4434                 if (WARN_ON(ret == -ERESTARTSYS)) {
4435                         bool was_interruptible;
4436
4437                         was_interruptible = dev_priv->mm.interruptible;
4438                         dev_priv->mm.interruptible = false;
4439
4440                         WARN_ON(i915_vma_unbind(vma));
4441
4442                         dev_priv->mm.interruptible = was_interruptible;
4443                 }
4444         }
4445
4446         /* Stolen objects don't hold a ref, but do hold pin count. Fix that up
4447          * before progressing. */
4448         if (obj->stolen)
4449                 i915_gem_object_unpin_pages(obj);
4450
4451         WARN_ON(obj->frontbuffer_bits);
4452
4453         if (obj->pages && obj->madv == I915_MADV_WILLNEED &&
4454             dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES &&
4455             obj->tiling_mode != I915_TILING_NONE)
4456                 i915_gem_object_unpin_pages(obj);
4457
4458         if (WARN_ON(obj->pages_pin_count))
4459                 obj->pages_pin_count = 0;
4460         if (discard_backing_storage(obj))
4461                 obj->madv = I915_MADV_DONTNEED;
4462         i915_gem_object_put_pages(obj);
4463         i915_gem_object_free_mmap_offset(obj);
4464
4465         BUG_ON(obj->pages);
4466
4467         if (obj->base.import_attach)
4468                 drm_prime_gem_destroy(&obj->base, NULL);
4469
4470         if (obj->ops->release)
4471                 obj->ops->release(obj);
4472
4473         drm_gem_object_release(&obj->base);
4474         i915_gem_info_remove_obj(dev_priv, obj->base.size);
4475
4476         kfree(obj->bit_17);
4477         i915_gem_object_free(obj);
4478
4479         intel_runtime_pm_put(dev_priv);
4480 }
4481
4482 struct i915_vma *i915_gem_obj_to_vma(struct drm_i915_gem_object *obj,
4483                                      struct i915_address_space *vm)
4484 {
4485         struct i915_vma *vma;
4486         list_for_each_entry(vma, &obj->vma_list, vma_link) {
4487                 if (i915_is_ggtt(vma->vm) &&
4488                     vma->ggtt_view.type != I915_GGTT_VIEW_NORMAL)
4489                         continue;
4490                 if (vma->vm == vm)
4491                         return vma;
4492         }
4493         return NULL;
4494 }
4495
4496 struct i915_vma *i915_gem_obj_to_ggtt_view(struct drm_i915_gem_object *obj,
4497                                            const struct i915_ggtt_view *view)
4498 {
4499         struct i915_address_space *ggtt = i915_obj_to_ggtt(obj);
4500         struct i915_vma *vma;
4501
4502         if (WARN_ONCE(!view, "no view specified"))
4503                 return ERR_PTR(-EINVAL);
4504
4505         list_for_each_entry(vma, &obj->vma_list, vma_link)
4506                 if (vma->vm == ggtt &&
4507                     i915_ggtt_view_equal(&vma->ggtt_view, view))
4508                         return vma;
4509         return NULL;
4510 }
4511
4512 void i915_gem_vma_destroy(struct i915_vma *vma)
4513 {
4514         struct i915_address_space *vm = NULL;
4515         WARN_ON(vma->node.allocated);
4516
4517         /* Keep the vma as a placeholder in the execbuffer reservation lists */
4518         if (!list_empty(&vma->exec_list))
4519                 return;
4520
4521         vm = vma->vm;
4522
4523         if (!i915_is_ggtt(vm))
4524                 i915_ppgtt_put(i915_vm_to_ppgtt(vm));
4525
4526         list_del(&vma->vma_link);
4527
4528         kmem_cache_free(to_i915(vma->obj->base.dev)->vmas, vma);
4529 }
4530
4531 static void
4532 i915_gem_stop_ringbuffers(struct drm_device *dev)
4533 {
4534         struct drm_i915_private *dev_priv = dev->dev_private;
4535         struct intel_engine_cs *ring;
4536         int i;
4537
4538         for_each_ring(ring, dev_priv, i)
4539                 dev_priv->gt.stop_ring(ring);
4540 }
4541
4542 int
4543 i915_gem_suspend(struct drm_device *dev)
4544 {
4545         struct drm_i915_private *dev_priv = dev->dev_private;
4546         int ret = 0;
4547
4548         mutex_lock(&dev->struct_mutex);
4549         ret = i915_gpu_idle(dev);
4550         if (ret)
4551                 goto err;
4552
4553         i915_gem_retire_requests(dev);
4554
4555         i915_gem_stop_ringbuffers(dev);
4556         mutex_unlock(&dev->struct_mutex);
4557
4558         cancel_delayed_work_sync(&dev_priv->gpu_error.hangcheck_work);
4559         cancel_delayed_work_sync(&dev_priv->mm.retire_work);
4560         flush_delayed_work(&dev_priv->mm.idle_work);
4561
4562         /* Assert that we sucessfully flushed all the work and
4563          * reset the GPU back to its idle, low power state.
4564          */
4565         WARN_ON(dev_priv->mm.busy);
4566
4567         return 0;
4568
4569 err:
4570         mutex_unlock(&dev->struct_mutex);
4571         return ret;
4572 }
4573
4574 int i915_gem_l3_remap(struct drm_i915_gem_request *req, int slice)
4575 {
4576         struct intel_engine_cs *ring = req->ring;
4577         struct drm_device *dev = ring->dev;
4578         struct drm_i915_private *dev_priv = dev->dev_private;
4579         u32 reg_base = GEN7_L3LOG_BASE + (slice * 0x200);
4580         u32 *remap_info = dev_priv->l3_parity.remap_info[slice];
4581         int i, ret;
4582
4583         if (!HAS_L3_DPF(dev) || !remap_info)
4584                 return 0;
4585
4586         ret = intel_ring_begin(req, GEN7_L3LOG_SIZE / 4 * 3);
4587         if (ret)
4588                 return ret;
4589
4590         /*
4591          * Note: We do not worry about the concurrent register cacheline hang
4592          * here because no other code should access these registers other than
4593          * at initialization time.
4594          */
4595         for (i = 0; i < GEN7_L3LOG_SIZE; i += 4) {
4596                 intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
4597                 intel_ring_emit(ring, reg_base + i);
4598                 intel_ring_emit(ring, remap_info[i/4]);
4599         }
4600
4601         intel_ring_advance(ring);
4602
4603         return ret;
4604 }
4605
4606 void i915_gem_init_swizzling(struct drm_device *dev)
4607 {
4608         struct drm_i915_private *dev_priv = dev->dev_private;
4609
4610         if (INTEL_INFO(dev)->gen < 5 ||
4611             dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_NONE)
4612                 return;
4613
4614         I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
4615                                  DISP_TILE_SURFACE_SWIZZLING);
4616
4617         if (IS_GEN5(dev))
4618                 return;
4619
4620         I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_SWZCTL);
4621         if (IS_GEN6(dev))
4622                 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_SNB));
4623         else if (IS_GEN7(dev))
4624                 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_IVB));
4625         else if (IS_GEN8(dev))
4626                 I915_WRITE(GAMTARBMODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_BDW));
4627         else
4628                 BUG();
4629 }
4630
4631 static void init_unused_ring(struct drm_device *dev, u32 base)
4632 {
4633         struct drm_i915_private *dev_priv = dev->dev_private;
4634
4635         I915_WRITE(RING_CTL(base), 0);
4636         I915_WRITE(RING_HEAD(base), 0);
4637         I915_WRITE(RING_TAIL(base), 0);
4638         I915_WRITE(RING_START(base), 0);
4639 }
4640
4641 static void init_unused_rings(struct drm_device *dev)
4642 {
4643         if (IS_I830(dev)) {
4644                 init_unused_ring(dev, PRB1_BASE);
4645                 init_unused_ring(dev, SRB0_BASE);
4646                 init_unused_ring(dev, SRB1_BASE);
4647                 init_unused_ring(dev, SRB2_BASE);
4648                 init_unused_ring(dev, SRB3_BASE);
4649         } else if (IS_GEN2(dev)) {
4650                 init_unused_ring(dev, SRB0_BASE);
4651                 init_unused_ring(dev, SRB1_BASE);
4652         } else if (IS_GEN3(dev)) {
4653                 init_unused_ring(dev, PRB1_BASE);
4654                 init_unused_ring(dev, PRB2_BASE);
4655         }
4656 }
4657
4658 int i915_gem_init_rings(struct drm_device *dev)
4659 {
4660         struct drm_i915_private *dev_priv = dev->dev_private;
4661         int ret;
4662
4663         ret = intel_init_render_ring_buffer(dev);
4664         if (ret)
4665                 return ret;
4666
4667         if (HAS_BSD(dev)) {
4668                 ret = intel_init_bsd_ring_buffer(dev);
4669                 if (ret)
4670                         goto cleanup_render_ring;
4671         }
4672
4673         if (HAS_BLT(dev)) {
4674                 ret = intel_init_blt_ring_buffer(dev);
4675                 if (ret)
4676                         goto cleanup_bsd_ring;
4677         }
4678
4679         if (HAS_VEBOX(dev)) {
4680                 ret = intel_init_vebox_ring_buffer(dev);
4681                 if (ret)
4682                         goto cleanup_blt_ring;
4683         }
4684
4685         if (HAS_BSD2(dev)) {
4686                 ret = intel_init_bsd2_ring_buffer(dev);
4687                 if (ret)
4688                         goto cleanup_vebox_ring;
4689         }
4690
4691         return 0;
4692
4693 cleanup_vebox_ring:
4694         intel_cleanup_ring_buffer(&dev_priv->ring[VECS]);
4695 cleanup_blt_ring:
4696         intel_cleanup_ring_buffer(&dev_priv->ring[BCS]);
4697 cleanup_bsd_ring:
4698         intel_cleanup_ring_buffer(&dev_priv->ring[VCS]);
4699 cleanup_render_ring:
4700         intel_cleanup_ring_buffer(&dev_priv->ring[RCS]);
4701
4702         return ret;
4703 }
4704
4705 int
4706 i915_gem_init_hw(struct drm_device *dev)
4707 {
4708         struct drm_i915_private *dev_priv = dev->dev_private;
4709         struct intel_engine_cs *ring;
4710         int ret, i, j;
4711
4712         if (INTEL_INFO(dev)->gen < 6 && !intel_enable_gtt())
4713                 return -EIO;
4714
4715         /* Double layer security blanket, see i915_gem_init() */
4716         intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
4717
4718         if (dev_priv->ellc_size)
4719                 I915_WRITE(HSW_IDICR, I915_READ(HSW_IDICR) | IDIHASHMSK(0xf));
4720
4721         if (IS_HASWELL(dev))
4722                 I915_WRITE(MI_PREDICATE_RESULT_2, IS_HSW_GT3(dev) ?
4723                            LOWER_SLICE_ENABLED : LOWER_SLICE_DISABLED);
4724
4725         if (HAS_PCH_NOP(dev)) {
4726                 if (IS_IVYBRIDGE(dev)) {
4727                         u32 temp = I915_READ(GEN7_MSG_CTL);
4728                         temp &= ~(WAIT_FOR_PCH_FLR_ACK | WAIT_FOR_PCH_RESET_ACK);
4729                         I915_WRITE(GEN7_MSG_CTL, temp);
4730                 } else if (INTEL_INFO(dev)->gen >= 7) {
4731                         u32 temp = I915_READ(HSW_NDE_RSTWRN_OPT);
4732                         temp &= ~RESET_PCH_HANDSHAKE_ENABLE;
4733                         I915_WRITE(HSW_NDE_RSTWRN_OPT, temp);
4734                 }
4735         }
4736
4737         i915_gem_init_swizzling(dev);
4738
4739         /*
4740          * At least 830 can leave some of the unused rings
4741          * "active" (ie. head != tail) after resume which
4742          * will prevent c3 entry. Makes sure all unused rings
4743          * are totally idle.
4744          */
4745         init_unused_rings(dev);
4746
4747         BUG_ON(!dev_priv->ring[RCS].default_context);
4748
4749         ret = i915_ppgtt_init_hw(dev);
4750         if (ret) {
4751                 DRM_ERROR("PPGTT enable HW failed %d\n", ret);
4752                 goto out;
4753         }
4754
4755         /* Need to do basic initialisation of all rings first: */
4756         for_each_ring(ring, dev_priv, i) {
4757                 ret = ring->init_hw(ring);
4758                 if (ret)
4759                         goto out;
4760         }
4761
4762         /* We can't enable contexts until all firmware is loaded */
4763         if (HAS_GUC_UCODE(dev)) {
4764                 ret = intel_guc_ucode_load(dev);
4765                 if (ret) {
4766                         /*
4767                          * If we got an error and GuC submission is enabled, map
4768                          * the error to -EIO so the GPU will be declared wedged.
4769                          * OTOH, if we didn't intend to use the GuC anyway, just
4770                          * discard the error and carry on.
4771                          */
4772                         DRM_ERROR("Failed to initialize GuC, error %d%s\n", ret,
4773                                   i915.enable_guc_submission ? "" :
4774                                   " (ignored)");
4775                         ret = i915.enable_guc_submission ? -EIO : 0;
4776                         if (ret)
4777                                 goto out;
4778                 }
4779         }
4780
4781         /*
4782          * Increment the next seqno by 0x100 so we have a visible break
4783          * on re-initialisation
4784          */
4785         ret = i915_gem_set_seqno(dev, dev_priv->next_seqno+0x100);
4786         if (ret)
4787                 goto out;
4788
4789         /* Now it is safe to go back round and do everything else: */
4790         for_each_ring(ring, dev_priv, i) {
4791                 struct drm_i915_gem_request *req;
4792
4793                 WARN_ON(!ring->default_context);
4794
4795                 ret = i915_gem_request_alloc(ring, ring->default_context, &req);
4796                 if (ret) {
4797                         i915_gem_cleanup_ringbuffer(dev);
4798                         goto out;
4799                 }
4800
4801                 if (ring->id == RCS) {
4802                         for (j = 0; j < NUM_L3_SLICES(dev); j++)
4803                                 i915_gem_l3_remap(req, j);
4804                 }
4805
4806                 ret = i915_ppgtt_init_ring(req);
4807                 if (ret && ret != -EIO) {
4808                         DRM_ERROR("PPGTT enable ring #%d failed %d\n", i, ret);
4809                         i915_gem_request_cancel(req);
4810                         i915_gem_cleanup_ringbuffer(dev);
4811                         goto out;
4812                 }
4813
4814                 ret = i915_gem_context_enable(req);
4815                 if (ret && ret != -EIO) {
4816                         DRM_ERROR("Context enable ring #%d failed %d\n", i, ret);
4817                         i915_gem_request_cancel(req);
4818                         i915_gem_cleanup_ringbuffer(dev);
4819                         goto out;
4820                 }
4821
4822                 i915_add_request_no_flush(req);
4823         }
4824
4825 out:
4826         intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
4827         return ret;
4828 }
4829
4830 int i915_gem_init(struct drm_device *dev)
4831 {
4832         struct drm_i915_private *dev_priv = dev->dev_private;
4833         int ret;
4834
4835         i915.enable_execlists = intel_sanitize_enable_execlists(dev,
4836                         i915.enable_execlists);
4837
4838         mutex_lock(&dev->struct_mutex);
4839
4840         if (IS_VALLEYVIEW(dev)) {
4841                 /* VLVA0 (potential hack), BIOS isn't actually waking us */
4842                 I915_WRITE(VLV_GTLC_WAKE_CTRL, VLV_GTLC_ALLOWWAKEREQ);
4843                 if (wait_for((I915_READ(VLV_GTLC_PW_STATUS) &
4844                               VLV_GTLC_ALLOWWAKEACK), 10))
4845                         DRM_DEBUG_DRIVER("allow wake ack timed out\n");
4846         }
4847
4848         if (!i915.enable_execlists) {
4849                 dev_priv->gt.execbuf_submit = i915_gem_ringbuffer_submission;
4850                 dev_priv->gt.init_rings = i915_gem_init_rings;
4851                 dev_priv->gt.cleanup_ring = intel_cleanup_ring_buffer;
4852                 dev_priv->gt.stop_ring = intel_stop_ring_buffer;
4853         } else {
4854                 dev_priv->gt.execbuf_submit = intel_execlists_submission;
4855                 dev_priv->gt.init_rings = intel_logical_rings_init;
4856                 dev_priv->gt.cleanup_ring = intel_logical_ring_cleanup;
4857                 dev_priv->gt.stop_ring = intel_logical_ring_stop;
4858         }
4859
4860         /* This is just a security blanket to placate dragons.
4861          * On some systems, we very sporadically observe that the first TLBs
4862          * used by the CS may be stale, despite us poking the TLB reset. If
4863          * we hold the forcewake during initialisation these problems
4864          * just magically go away.
4865          */
4866         intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
4867
4868         ret = i915_gem_init_userptr(dev);
4869         if (ret)
4870                 goto out_unlock;
4871
4872         i915_gem_init_global_gtt(dev);
4873
4874         ret = i915_gem_context_init(dev);
4875         if (ret)
4876                 goto out_unlock;
4877
4878         ret = dev_priv->gt.init_rings(dev);
4879         if (ret)
4880                 goto out_unlock;
4881
4882         ret = i915_gem_init_hw(dev);
4883         if (ret == -EIO) {
4884                 /* Allow ring initialisation to fail by marking the GPU as
4885                  * wedged. But we only want to do this where the GPU is angry,
4886                  * for all other failure, such as an allocation failure, bail.
4887                  */
4888                 DRM_ERROR("Failed to initialize GPU, declaring it wedged\n");
4889                 atomic_or(I915_WEDGED, &dev_priv->gpu_error.reset_counter);
4890                 ret = 0;
4891         }
4892
4893 out_unlock:
4894         intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
4895         mutex_unlock(&dev->struct_mutex);
4896
4897         return ret;
4898 }
4899
4900 void
4901 i915_gem_cleanup_ringbuffer(struct drm_device *dev)
4902 {
4903         struct drm_i915_private *dev_priv = dev->dev_private;
4904         struct intel_engine_cs *ring;
4905         int i;
4906
4907         for_each_ring(ring, dev_priv, i)
4908                 dev_priv->gt.cleanup_ring(ring);
4909
4910     if (i915.enable_execlists)
4911             /*
4912              * Neither the BIOS, ourselves or any other kernel
4913              * expects the system to be in execlists mode on startup,
4914              * so we need to reset the GPU back to legacy mode.
4915              */
4916             intel_gpu_reset(dev);
4917 }
4918
4919 static void
4920 init_ring_lists(struct intel_engine_cs *ring)
4921 {
4922         INIT_LIST_HEAD(&ring->active_list);
4923         INIT_LIST_HEAD(&ring->request_list);
4924 }
4925
4926 void
4927 i915_gem_load(struct drm_device *dev)
4928 {
4929         struct drm_i915_private *dev_priv = dev->dev_private;
4930         int i;
4931
4932         dev_priv->objects =
4933                 kmem_cache_create("i915_gem_object",
4934                                   sizeof(struct drm_i915_gem_object), 0,
4935                                   SLAB_HWCACHE_ALIGN,
4936                                   NULL);
4937         dev_priv->vmas =
4938                 kmem_cache_create("i915_gem_vma",
4939                                   sizeof(struct i915_vma), 0,
4940                                   SLAB_HWCACHE_ALIGN,
4941                                   NULL);
4942         dev_priv->requests =
4943                 kmem_cache_create("i915_gem_request",
4944                                   sizeof(struct drm_i915_gem_request), 0,
4945                                   SLAB_HWCACHE_ALIGN,
4946                                   NULL);
4947
4948         INIT_LIST_HEAD(&dev_priv->vm_list);
4949         INIT_LIST_HEAD(&dev_priv->context_list);
4950         INIT_LIST_HEAD(&dev_priv->mm.unbound_list);
4951         INIT_LIST_HEAD(&dev_priv->mm.bound_list);
4952         INIT_LIST_HEAD(&dev_priv->mm.fence_list);
4953         for (i = 0; i < I915_NUM_RINGS; i++)
4954                 init_ring_lists(&dev_priv->ring[i]);
4955         for (i = 0; i < I915_MAX_NUM_FENCES; i++)
4956                 INIT_LIST_HEAD(&dev_priv->fence_regs[i].lru_list);
4957         INIT_DELAYED_WORK(&dev_priv->mm.retire_work,
4958                           i915_gem_retire_work_handler);
4959         INIT_DELAYED_WORK(&dev_priv->mm.idle_work,
4960                           i915_gem_idle_work_handler);
4961         init_waitqueue_head(&dev_priv->gpu_error.reset_queue);
4962
4963         dev_priv->relative_constants_mode = I915_EXEC_CONSTANTS_REL_GENERAL;
4964
4965         if (INTEL_INFO(dev)->gen >= 7 && !IS_VALLEYVIEW(dev))
4966                 dev_priv->num_fence_regs = 32;
4967         else if (INTEL_INFO(dev)->gen >= 4 || IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
4968                 dev_priv->num_fence_regs = 16;
4969         else
4970                 dev_priv->num_fence_regs = 8;
4971
4972         if (intel_vgpu_active(dev))
4973                 dev_priv->num_fence_regs =
4974                                 I915_READ(vgtif_reg(avail_rs.fence_num));
4975
4976         /*
4977          * Set initial sequence number for requests.
4978          * Using this number allows the wraparound to happen early,
4979          * catching any obvious problems.
4980          */
4981         dev_priv->next_seqno = ((u32)~0 - 0x1100);
4982         dev_priv->last_seqno = ((u32)~0 - 0x1101);
4983
4984         /* Initialize fence registers to zero */
4985         INIT_LIST_HEAD(&dev_priv->mm.fence_list);
4986         i915_gem_restore_fences(dev);
4987
4988         i915_gem_detect_bit_6_swizzle(dev);
4989         init_waitqueue_head(&dev_priv->pending_flip_queue);
4990
4991         dev_priv->mm.interruptible = true;
4992
4993         i915_gem_shrinker_init(dev_priv);
4994
4995         mutex_init(&dev_priv->fb_tracking.lock);
4996 }
4997
4998 void i915_gem_release(struct drm_device *dev, struct drm_file *file)
4999 {
5000         struct drm_i915_file_private *file_priv = file->driver_priv;
5001
5002         /* Clean up our request list when the client is going away, so that
5003          * later retire_requests won't dereference our soon-to-be-gone
5004          * file_priv.
5005          */
5006         spin_lock(&file_priv->mm.lock);
5007         while (!list_empty(&file_priv->mm.request_list)) {
5008                 struct drm_i915_gem_request *request;
5009
5010                 request = list_first_entry(&file_priv->mm.request_list,
5011                                            struct drm_i915_gem_request,
5012                                            client_list);
5013                 list_del(&request->client_list);
5014                 request->file_priv = NULL;
5015         }
5016         spin_unlock(&file_priv->mm.lock);
5017
5018         if (!list_empty(&file_priv->rps.link)) {
5019                 spin_lock(&to_i915(dev)->rps.client_lock);
5020                 list_del(&file_priv->rps.link);
5021                 spin_unlock(&to_i915(dev)->rps.client_lock);
5022         }
5023 }
5024
5025 int i915_gem_open(struct drm_device *dev, struct drm_file *file)
5026 {
5027         struct drm_i915_file_private *file_priv;
5028         int ret;
5029
5030         DRM_DEBUG_DRIVER("\n");
5031
5032         file_priv = kzalloc(sizeof(*file_priv), GFP_KERNEL);
5033         if (!file_priv)
5034                 return -ENOMEM;
5035
5036         file->driver_priv = file_priv;
5037         file_priv->dev_priv = dev->dev_private;
5038         file_priv->file = file;
5039         INIT_LIST_HEAD(&file_priv->rps.link);
5040
5041         spin_lock_init(&file_priv->mm.lock);
5042         INIT_LIST_HEAD(&file_priv->mm.request_list);
5043
5044         ret = i915_gem_context_open(dev, file);
5045         if (ret)
5046                 kfree(file_priv);
5047
5048         return ret;
5049 }
5050
5051 /**
5052  * i915_gem_track_fb - update frontbuffer tracking
5053  * @old: current GEM buffer for the frontbuffer slots
5054  * @new: new GEM buffer for the frontbuffer slots
5055  * @frontbuffer_bits: bitmask of frontbuffer slots
5056  *
5057  * This updates the frontbuffer tracking bits @frontbuffer_bits by clearing them
5058  * from @old and setting them in @new. Both @old and @new can be NULL.
5059  */
5060 void i915_gem_track_fb(struct drm_i915_gem_object *old,
5061                        struct drm_i915_gem_object *new,
5062                        unsigned frontbuffer_bits)
5063 {
5064         if (old) {
5065                 WARN_ON(!mutex_is_locked(&old->base.dev->struct_mutex));
5066                 WARN_ON(!(old->frontbuffer_bits & frontbuffer_bits));
5067                 old->frontbuffer_bits &= ~frontbuffer_bits;
5068         }
5069
5070         if (new) {
5071                 WARN_ON(!mutex_is_locked(&new->base.dev->struct_mutex));
5072                 WARN_ON(new->frontbuffer_bits & frontbuffer_bits);
5073                 new->frontbuffer_bits |= frontbuffer_bits;
5074         }
5075 }
5076
5077 /* All the new VM stuff */
5078 u64 i915_gem_obj_offset(struct drm_i915_gem_object *o,
5079                         struct i915_address_space *vm)
5080 {
5081         struct drm_i915_private *dev_priv = o->base.dev->dev_private;
5082         struct i915_vma *vma;
5083
5084         WARN_ON(vm == &dev_priv->mm.aliasing_ppgtt->base);
5085
5086         list_for_each_entry(vma, &o->vma_list, vma_link) {
5087                 if (i915_is_ggtt(vma->vm) &&
5088                     vma->ggtt_view.type != I915_GGTT_VIEW_NORMAL)
5089                         continue;
5090                 if (vma->vm == vm)
5091                         return vma->node.start;
5092         }
5093
5094         WARN(1, "%s vma for this object not found.\n",
5095              i915_is_ggtt(vm) ? "global" : "ppgtt");
5096         return -1;
5097 }
5098
5099 u64 i915_gem_obj_ggtt_offset_view(struct drm_i915_gem_object *o,
5100                                   const struct i915_ggtt_view *view)
5101 {
5102         struct i915_address_space *ggtt = i915_obj_to_ggtt(o);
5103         struct i915_vma *vma;
5104
5105         list_for_each_entry(vma, &o->vma_list, vma_link)
5106                 if (vma->vm == ggtt &&
5107                     i915_ggtt_view_equal(&vma->ggtt_view, view))
5108                         return vma->node.start;
5109
5110         WARN(1, "global vma for this object not found. (view=%u)\n", view->type);
5111         return -1;
5112 }
5113
5114 bool i915_gem_obj_bound(struct drm_i915_gem_object *o,
5115                         struct i915_address_space *vm)
5116 {
5117         struct i915_vma *vma;
5118
5119         list_for_each_entry(vma, &o->vma_list, vma_link) {
5120                 if (i915_is_ggtt(vma->vm) &&
5121                     vma->ggtt_view.type != I915_GGTT_VIEW_NORMAL)
5122                         continue;
5123                 if (vma->vm == vm && drm_mm_node_allocated(&vma->node))
5124                         return true;
5125         }
5126
5127         return false;
5128 }
5129
5130 bool i915_gem_obj_ggtt_bound_view(struct drm_i915_gem_object *o,
5131                                   const struct i915_ggtt_view *view)
5132 {
5133         struct i915_address_space *ggtt = i915_obj_to_ggtt(o);
5134         struct i915_vma *vma;
5135
5136         list_for_each_entry(vma, &o->vma_list, vma_link)
5137                 if (vma->vm == ggtt &&
5138                     i915_ggtt_view_equal(&vma->ggtt_view, view) &&
5139                     drm_mm_node_allocated(&vma->node))
5140                         return true;
5141
5142         return false;
5143 }
5144
5145 bool i915_gem_obj_bound_any(struct drm_i915_gem_object *o)
5146 {
5147         struct i915_vma *vma;
5148
5149         list_for_each_entry(vma, &o->vma_list, vma_link)
5150                 if (drm_mm_node_allocated(&vma->node))
5151                         return true;
5152
5153         return false;
5154 }
5155
5156 unsigned long i915_gem_obj_size(struct drm_i915_gem_object *o,
5157                                 struct i915_address_space *vm)
5158 {
5159         struct drm_i915_private *dev_priv = o->base.dev->dev_private;
5160         struct i915_vma *vma;
5161
5162         WARN_ON(vm == &dev_priv->mm.aliasing_ppgtt->base);
5163
5164         BUG_ON(list_empty(&o->vma_list));
5165
5166         list_for_each_entry(vma, &o->vma_list, vma_link) {
5167                 if (i915_is_ggtt(vma->vm) &&
5168                     vma->ggtt_view.type != I915_GGTT_VIEW_NORMAL)
5169                         continue;
5170                 if (vma->vm == vm)
5171                         return vma->node.size;
5172         }
5173         return 0;
5174 }
5175
5176 bool i915_gem_obj_is_pinned(struct drm_i915_gem_object *obj)
5177 {
5178         struct i915_vma *vma;
5179         list_for_each_entry(vma, &obj->vma_list, vma_link)
5180                 if (vma->pin_count > 0)
5181                         return true;
5182
5183         return false;
5184 }
5185
5186 /* Allocate a new GEM object and fill it with the supplied data */
5187 struct drm_i915_gem_object *
5188 i915_gem_object_create_from_data(struct drm_device *dev,
5189                                  const void *data, size_t size)
5190 {
5191         struct drm_i915_gem_object *obj;
5192         struct sg_table *sg;
5193         size_t bytes;
5194         int ret;
5195
5196         obj = i915_gem_alloc_object(dev, round_up(size, PAGE_SIZE));
5197         if (IS_ERR_OR_NULL(obj))
5198                 return obj;
5199
5200         ret = i915_gem_object_set_to_cpu_domain(obj, true);
5201         if (ret)
5202                 goto fail;
5203
5204         ret = i915_gem_object_get_pages(obj);
5205         if (ret)
5206                 goto fail;
5207
5208         i915_gem_object_pin_pages(obj);
5209         sg = obj->pages;
5210         bytes = sg_copy_from_buffer(sg->sgl, sg->nents, (void *)data, size);
5211         i915_gem_object_unpin_pages(obj);
5212
5213         if (WARN_ON(bytes != size)) {
5214                 DRM_ERROR("Incomplete copy, wrote %zu of %zu", bytes, size);
5215                 ret = -EFAULT;
5216                 goto fail;
5217         }
5218
5219         return obj;
5220
5221 fail:
5222         drm_gem_object_unreference(&obj->base);
5223         return ERR_PTR(ret);
5224 }