Merge commit 'ed30f24e8d07d30aa3e69d1f508f4d7bd2e8ea14' of git://git.linaro.org/landi...
[firefly-linux-kernel-4.4.55.git] / drivers / gpu / drm / i915 / i915_gem.c
1 /*
2  * Copyright © 2008 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *    Eric Anholt <eric@anholt.net>
25  *
26  */
27
28 #include <drm/drmP.h>
29 #include <drm/i915_drm.h>
30 #include "i915_drv.h"
31 #include "i915_trace.h"
32 #include "intel_drv.h"
33 #include <linux/shmem_fs.h>
34 #include <linux/slab.h>
35 #include <linux/swap.h>
36 #include <linux/pci.h>
37 #include <linux/dma-buf.h>
38
39 static void i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj);
40 static void i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj);
41 static __must_check int i915_gem_object_bind_to_gtt(struct drm_i915_gem_object *obj,
42                                                     unsigned alignment,
43                                                     bool map_and_fenceable,
44                                                     bool nonblocking);
45 static int i915_gem_phys_pwrite(struct drm_device *dev,
46                                 struct drm_i915_gem_object *obj,
47                                 struct drm_i915_gem_pwrite *args,
48                                 struct drm_file *file);
49
50 static void i915_gem_write_fence(struct drm_device *dev, int reg,
51                                  struct drm_i915_gem_object *obj);
52 static void i915_gem_object_update_fence(struct drm_i915_gem_object *obj,
53                                          struct drm_i915_fence_reg *fence,
54                                          bool enable);
55
56 static int i915_gem_inactive_shrink(struct shrinker *shrinker,
57                                     struct shrink_control *sc);
58 static long i915_gem_purge(struct drm_i915_private *dev_priv, long target);
59 static void i915_gem_shrink_all(struct drm_i915_private *dev_priv);
60 static void i915_gem_object_truncate(struct drm_i915_gem_object *obj);
61
62 static inline void i915_gem_object_fence_lost(struct drm_i915_gem_object *obj)
63 {
64         if (obj->tiling_mode)
65                 i915_gem_release_mmap(obj);
66
67         /* As we do not have an associated fence register, we will force
68          * a tiling change if we ever need to acquire one.
69          */
70         obj->fence_dirty = false;
71         obj->fence_reg = I915_FENCE_REG_NONE;
72 }
73
74 /* some bookkeeping */
75 static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
76                                   size_t size)
77 {
78         dev_priv->mm.object_count++;
79         dev_priv->mm.object_memory += size;
80 }
81
82 static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
83                                      size_t size)
84 {
85         dev_priv->mm.object_count--;
86         dev_priv->mm.object_memory -= size;
87 }
88
89 static int
90 i915_gem_wait_for_error(struct i915_gpu_error *error)
91 {
92         int ret;
93
94 #define EXIT_COND (!i915_reset_in_progress(error) || \
95                    i915_terminally_wedged(error))
96         if (EXIT_COND)
97                 return 0;
98
99         /*
100          * Only wait 10 seconds for the gpu reset to complete to avoid hanging
101          * userspace. If it takes that long something really bad is going on and
102          * we should simply try to bail out and fail as gracefully as possible.
103          */
104         ret = wait_event_interruptible_timeout(error->reset_queue,
105                                                EXIT_COND,
106                                                10*HZ);
107         if (ret == 0) {
108                 DRM_ERROR("Timed out waiting for the gpu reset to complete\n");
109                 return -EIO;
110         } else if (ret < 0) {
111                 return ret;
112         }
113 #undef EXIT_COND
114
115         return 0;
116 }
117
118 int i915_mutex_lock_interruptible(struct drm_device *dev)
119 {
120         struct drm_i915_private *dev_priv = dev->dev_private;
121         int ret;
122
123         ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
124         if (ret)
125                 return ret;
126
127         ret = mutex_lock_interruptible(&dev->struct_mutex);
128         if (ret)
129                 return ret;
130
131         WARN_ON(i915_verify_lists(dev));
132         return 0;
133 }
134
135 static inline bool
136 i915_gem_object_is_inactive(struct drm_i915_gem_object *obj)
137 {
138         return obj->gtt_space && !obj->active;
139 }
140
141 int
142 i915_gem_init_ioctl(struct drm_device *dev, void *data,
143                     struct drm_file *file)
144 {
145         struct drm_i915_private *dev_priv = dev->dev_private;
146         struct drm_i915_gem_init *args = data;
147
148         if (drm_core_check_feature(dev, DRIVER_MODESET))
149                 return -ENODEV;
150
151         if (args->gtt_start >= args->gtt_end ||
152             (args->gtt_end | args->gtt_start) & (PAGE_SIZE - 1))
153                 return -EINVAL;
154
155         /* GEM with user mode setting was never supported on ilk and later. */
156         if (INTEL_INFO(dev)->gen >= 5)
157                 return -ENODEV;
158
159         mutex_lock(&dev->struct_mutex);
160         i915_gem_setup_global_gtt(dev, args->gtt_start, args->gtt_end,
161                                   args->gtt_end);
162         dev_priv->gtt.mappable_end = args->gtt_end;
163         mutex_unlock(&dev->struct_mutex);
164
165         return 0;
166 }
167
168 int
169 i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
170                             struct drm_file *file)
171 {
172         struct drm_i915_private *dev_priv = dev->dev_private;
173         struct drm_i915_gem_get_aperture *args = data;
174         struct drm_i915_gem_object *obj;
175         size_t pinned;
176
177         pinned = 0;
178         mutex_lock(&dev->struct_mutex);
179         list_for_each_entry(obj, &dev_priv->mm.bound_list, gtt_list)
180                 if (obj->pin_count)
181                         pinned += obj->gtt_space->size;
182         mutex_unlock(&dev->struct_mutex);
183
184         args->aper_size = dev_priv->gtt.total;
185         args->aper_available_size = args->aper_size - pinned;
186
187         return 0;
188 }
189
190 void *i915_gem_object_alloc(struct drm_device *dev)
191 {
192         struct drm_i915_private *dev_priv = dev->dev_private;
193         return kmem_cache_alloc(dev_priv->slab, GFP_KERNEL | __GFP_ZERO);
194 }
195
196 void i915_gem_object_free(struct drm_i915_gem_object *obj)
197 {
198         struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
199         kmem_cache_free(dev_priv->slab, obj);
200 }
201
202 static int
203 i915_gem_create(struct drm_file *file,
204                 struct drm_device *dev,
205                 uint64_t size,
206                 uint32_t *handle_p)
207 {
208         struct drm_i915_gem_object *obj;
209         int ret;
210         u32 handle;
211
212         size = roundup(size, PAGE_SIZE);
213         if (size == 0)
214                 return -EINVAL;
215
216         /* Allocate the new object */
217         obj = i915_gem_alloc_object(dev, size);
218         if (obj == NULL)
219                 return -ENOMEM;
220
221         ret = drm_gem_handle_create(file, &obj->base, &handle);
222         if (ret) {
223                 drm_gem_object_release(&obj->base);
224                 i915_gem_info_remove_obj(dev->dev_private, obj->base.size);
225                 i915_gem_object_free(obj);
226                 return ret;
227         }
228
229         /* drop reference from allocate - handle holds it now */
230         drm_gem_object_unreference(&obj->base);
231         trace_i915_gem_object_create(obj);
232
233         *handle_p = handle;
234         return 0;
235 }
236
237 int
238 i915_gem_dumb_create(struct drm_file *file,
239                      struct drm_device *dev,
240                      struct drm_mode_create_dumb *args)
241 {
242         /* have to work out size/pitch and return them */
243         args->pitch = ALIGN(args->width * ((args->bpp + 7) / 8), 64);
244         args->size = args->pitch * args->height;
245         return i915_gem_create(file, dev,
246                                args->size, &args->handle);
247 }
248
249 int i915_gem_dumb_destroy(struct drm_file *file,
250                           struct drm_device *dev,
251                           uint32_t handle)
252 {
253         return drm_gem_handle_delete(file, handle);
254 }
255
256 /**
257  * Creates a new mm object and returns a handle to it.
258  */
259 int
260 i915_gem_create_ioctl(struct drm_device *dev, void *data,
261                       struct drm_file *file)
262 {
263         struct drm_i915_gem_create *args = data;
264
265         return i915_gem_create(file, dev,
266                                args->size, &args->handle);
267 }
268
269 static inline int
270 __copy_to_user_swizzled(char __user *cpu_vaddr,
271                         const char *gpu_vaddr, int gpu_offset,
272                         int length)
273 {
274         int ret, cpu_offset = 0;
275
276         while (length > 0) {
277                 int cacheline_end = ALIGN(gpu_offset + 1, 64);
278                 int this_length = min(cacheline_end - gpu_offset, length);
279                 int swizzled_gpu_offset = gpu_offset ^ 64;
280
281                 ret = __copy_to_user(cpu_vaddr + cpu_offset,
282                                      gpu_vaddr + swizzled_gpu_offset,
283                                      this_length);
284                 if (ret)
285                         return ret + length;
286
287                 cpu_offset += this_length;
288                 gpu_offset += this_length;
289                 length -= this_length;
290         }
291
292         return 0;
293 }
294
295 static inline int
296 __copy_from_user_swizzled(char *gpu_vaddr, int gpu_offset,
297                           const char __user *cpu_vaddr,
298                           int length)
299 {
300         int ret, cpu_offset = 0;
301
302         while (length > 0) {
303                 int cacheline_end = ALIGN(gpu_offset + 1, 64);
304                 int this_length = min(cacheline_end - gpu_offset, length);
305                 int swizzled_gpu_offset = gpu_offset ^ 64;
306
307                 ret = __copy_from_user(gpu_vaddr + swizzled_gpu_offset,
308                                        cpu_vaddr + cpu_offset,
309                                        this_length);
310                 if (ret)
311                         return ret + length;
312
313                 cpu_offset += this_length;
314                 gpu_offset += this_length;
315                 length -= this_length;
316         }
317
318         return 0;
319 }
320
321 /* Per-page copy function for the shmem pread fastpath.
322  * Flushes invalid cachelines before reading the target if
323  * needs_clflush is set. */
324 static int
325 shmem_pread_fast(struct page *page, int shmem_page_offset, int page_length,
326                  char __user *user_data,
327                  bool page_do_bit17_swizzling, bool needs_clflush)
328 {
329         char *vaddr;
330         int ret;
331
332         if (unlikely(page_do_bit17_swizzling))
333                 return -EINVAL;
334
335         vaddr = kmap_atomic(page);
336         if (needs_clflush)
337                 drm_clflush_virt_range(vaddr + shmem_page_offset,
338                                        page_length);
339         ret = __copy_to_user_inatomic(user_data,
340                                       vaddr + shmem_page_offset,
341                                       page_length);
342         kunmap_atomic(vaddr);
343
344         return ret ? -EFAULT : 0;
345 }
346
347 static void
348 shmem_clflush_swizzled_range(char *addr, unsigned long length,
349                              bool swizzled)
350 {
351         if (unlikely(swizzled)) {
352                 unsigned long start = (unsigned long) addr;
353                 unsigned long end = (unsigned long) addr + length;
354
355                 /* For swizzling simply ensure that we always flush both
356                  * channels. Lame, but simple and it works. Swizzled
357                  * pwrite/pread is far from a hotpath - current userspace
358                  * doesn't use it at all. */
359                 start = round_down(start, 128);
360                 end = round_up(end, 128);
361
362                 drm_clflush_virt_range((void *)start, end - start);
363         } else {
364                 drm_clflush_virt_range(addr, length);
365         }
366
367 }
368
369 /* Only difference to the fast-path function is that this can handle bit17
370  * and uses non-atomic copy and kmap functions. */
371 static int
372 shmem_pread_slow(struct page *page, int shmem_page_offset, int page_length,
373                  char __user *user_data,
374                  bool page_do_bit17_swizzling, bool needs_clflush)
375 {
376         char *vaddr;
377         int ret;
378
379         vaddr = kmap(page);
380         if (needs_clflush)
381                 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
382                                              page_length,
383                                              page_do_bit17_swizzling);
384
385         if (page_do_bit17_swizzling)
386                 ret = __copy_to_user_swizzled(user_data,
387                                               vaddr, shmem_page_offset,
388                                               page_length);
389         else
390                 ret = __copy_to_user(user_data,
391                                      vaddr + shmem_page_offset,
392                                      page_length);
393         kunmap(page);
394
395         return ret ? - EFAULT : 0;
396 }
397
398 static int
399 i915_gem_shmem_pread(struct drm_device *dev,
400                      struct drm_i915_gem_object *obj,
401                      struct drm_i915_gem_pread *args,
402                      struct drm_file *file)
403 {
404         char __user *user_data;
405         ssize_t remain;
406         loff_t offset;
407         int shmem_page_offset, page_length, ret = 0;
408         int obj_do_bit17_swizzling, page_do_bit17_swizzling;
409         int prefaulted = 0;
410         int needs_clflush = 0;
411         struct sg_page_iter sg_iter;
412
413         user_data = to_user_ptr(args->data_ptr);
414         remain = args->size;
415
416         obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
417
418         if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU)) {
419                 /* If we're not in the cpu read domain, set ourself into the gtt
420                  * read domain and manually flush cachelines (if required). This
421                  * optimizes for the case when the gpu will dirty the data
422                  * anyway again before the next pread happens. */
423                 if (obj->cache_level == I915_CACHE_NONE)
424                         needs_clflush = 1;
425                 if (obj->gtt_space) {
426                         ret = i915_gem_object_set_to_gtt_domain(obj, false);
427                         if (ret)
428                                 return ret;
429                 }
430         }
431
432         ret = i915_gem_object_get_pages(obj);
433         if (ret)
434                 return ret;
435
436         i915_gem_object_pin_pages(obj);
437
438         offset = args->offset;
439
440         for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
441                          offset >> PAGE_SHIFT) {
442                 struct page *page = sg_page_iter_page(&sg_iter);
443
444                 if (remain <= 0)
445                         break;
446
447                 /* Operation in this page
448                  *
449                  * shmem_page_offset = offset within page in shmem file
450                  * page_length = bytes to copy for this page
451                  */
452                 shmem_page_offset = offset_in_page(offset);
453                 page_length = remain;
454                 if ((shmem_page_offset + page_length) > PAGE_SIZE)
455                         page_length = PAGE_SIZE - shmem_page_offset;
456
457                 page_do_bit17_swizzling = obj_do_bit17_swizzling &&
458                         (page_to_phys(page) & (1 << 17)) != 0;
459
460                 ret = shmem_pread_fast(page, shmem_page_offset, page_length,
461                                        user_data, page_do_bit17_swizzling,
462                                        needs_clflush);
463                 if (ret == 0)
464                         goto next_page;
465
466                 mutex_unlock(&dev->struct_mutex);
467
468                 if (!prefaulted) {
469                         ret = fault_in_multipages_writeable(user_data, remain);
470                         /* Userspace is tricking us, but we've already clobbered
471                          * its pages with the prefault and promised to write the
472                          * data up to the first fault. Hence ignore any errors
473                          * and just continue. */
474                         (void)ret;
475                         prefaulted = 1;
476                 }
477
478                 ret = shmem_pread_slow(page, shmem_page_offset, page_length,
479                                        user_data, page_do_bit17_swizzling,
480                                        needs_clflush);
481
482                 mutex_lock(&dev->struct_mutex);
483
484 next_page:
485                 mark_page_accessed(page);
486
487                 if (ret)
488                         goto out;
489
490                 remain -= page_length;
491                 user_data += page_length;
492                 offset += page_length;
493         }
494
495 out:
496         i915_gem_object_unpin_pages(obj);
497
498         return ret;
499 }
500
501 /**
502  * Reads data from the object referenced by handle.
503  *
504  * On error, the contents of *data are undefined.
505  */
506 int
507 i915_gem_pread_ioctl(struct drm_device *dev, void *data,
508                      struct drm_file *file)
509 {
510         struct drm_i915_gem_pread *args = data;
511         struct drm_i915_gem_object *obj;
512         int ret = 0;
513
514         if (args->size == 0)
515                 return 0;
516
517         if (!access_ok(VERIFY_WRITE,
518                        to_user_ptr(args->data_ptr),
519                        args->size))
520                 return -EFAULT;
521
522         ret = i915_mutex_lock_interruptible(dev);
523         if (ret)
524                 return ret;
525
526         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
527         if (&obj->base == NULL) {
528                 ret = -ENOENT;
529                 goto unlock;
530         }
531
532         /* Bounds check source.  */
533         if (args->offset > obj->base.size ||
534             args->size > obj->base.size - args->offset) {
535                 ret = -EINVAL;
536                 goto out;
537         }
538
539         /* prime objects have no backing filp to GEM pread/pwrite
540          * pages from.
541          */
542         if (!obj->base.filp) {
543                 ret = -EINVAL;
544                 goto out;
545         }
546
547         trace_i915_gem_object_pread(obj, args->offset, args->size);
548
549         ret = i915_gem_shmem_pread(dev, obj, args, file);
550
551 out:
552         drm_gem_object_unreference(&obj->base);
553 unlock:
554         mutex_unlock(&dev->struct_mutex);
555         return ret;
556 }
557
558 /* This is the fast write path which cannot handle
559  * page faults in the source data
560  */
561
562 static inline int
563 fast_user_write(struct io_mapping *mapping,
564                 loff_t page_base, int page_offset,
565                 char __user *user_data,
566                 int length)
567 {
568         void __iomem *vaddr_atomic;
569         void *vaddr;
570         unsigned long unwritten;
571
572         vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base);
573         /* We can use the cpu mem copy function because this is X86. */
574         vaddr = (void __force*)vaddr_atomic + page_offset;
575         unwritten = __copy_from_user_inatomic_nocache(vaddr,
576                                                       user_data, length);
577         io_mapping_unmap_atomic(vaddr_atomic);
578         return unwritten;
579 }
580
581 /**
582  * This is the fast pwrite path, where we copy the data directly from the
583  * user into the GTT, uncached.
584  */
585 static int
586 i915_gem_gtt_pwrite_fast(struct drm_device *dev,
587                          struct drm_i915_gem_object *obj,
588                          struct drm_i915_gem_pwrite *args,
589                          struct drm_file *file)
590 {
591         drm_i915_private_t *dev_priv = dev->dev_private;
592         ssize_t remain;
593         loff_t offset, page_base;
594         char __user *user_data;
595         int page_offset, page_length, ret;
596
597         ret = i915_gem_object_pin(obj, 0, true, true);
598         if (ret)
599                 goto out;
600
601         ret = i915_gem_object_set_to_gtt_domain(obj, true);
602         if (ret)
603                 goto out_unpin;
604
605         ret = i915_gem_object_put_fence(obj);
606         if (ret)
607                 goto out_unpin;
608
609         user_data = to_user_ptr(args->data_ptr);
610         remain = args->size;
611
612         offset = obj->gtt_offset + args->offset;
613
614         while (remain > 0) {
615                 /* Operation in this page
616                  *
617                  * page_base = page offset within aperture
618                  * page_offset = offset within page
619                  * page_length = bytes to copy for this page
620                  */
621                 page_base = offset & PAGE_MASK;
622                 page_offset = offset_in_page(offset);
623                 page_length = remain;
624                 if ((page_offset + remain) > PAGE_SIZE)
625                         page_length = PAGE_SIZE - page_offset;
626
627                 /* If we get a fault while copying data, then (presumably) our
628                  * source page isn't available.  Return the error and we'll
629                  * retry in the slow path.
630                  */
631                 if (fast_user_write(dev_priv->gtt.mappable, page_base,
632                                     page_offset, user_data, page_length)) {
633                         ret = -EFAULT;
634                         goto out_unpin;
635                 }
636
637                 remain -= page_length;
638                 user_data += page_length;
639                 offset += page_length;
640         }
641
642 out_unpin:
643         i915_gem_object_unpin(obj);
644 out:
645         return ret;
646 }
647
648 /* Per-page copy function for the shmem pwrite fastpath.
649  * Flushes invalid cachelines before writing to the target if
650  * needs_clflush_before is set and flushes out any written cachelines after
651  * writing if needs_clflush is set. */
652 static int
653 shmem_pwrite_fast(struct page *page, int shmem_page_offset, int page_length,
654                   char __user *user_data,
655                   bool page_do_bit17_swizzling,
656                   bool needs_clflush_before,
657                   bool needs_clflush_after)
658 {
659         char *vaddr;
660         int ret;
661
662         if (unlikely(page_do_bit17_swizzling))
663                 return -EINVAL;
664
665         vaddr = kmap_atomic(page);
666         if (needs_clflush_before)
667                 drm_clflush_virt_range(vaddr + shmem_page_offset,
668                                        page_length);
669         ret = __copy_from_user_inatomic_nocache(vaddr + shmem_page_offset,
670                                                 user_data,
671                                                 page_length);
672         if (needs_clflush_after)
673                 drm_clflush_virt_range(vaddr + shmem_page_offset,
674                                        page_length);
675         kunmap_atomic(vaddr);
676
677         return ret ? -EFAULT : 0;
678 }
679
680 /* Only difference to the fast-path function is that this can handle bit17
681  * and uses non-atomic copy and kmap functions. */
682 static int
683 shmem_pwrite_slow(struct page *page, int shmem_page_offset, int page_length,
684                   char __user *user_data,
685                   bool page_do_bit17_swizzling,
686                   bool needs_clflush_before,
687                   bool needs_clflush_after)
688 {
689         char *vaddr;
690         int ret;
691
692         vaddr = kmap(page);
693         if (unlikely(needs_clflush_before || page_do_bit17_swizzling))
694                 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
695                                              page_length,
696                                              page_do_bit17_swizzling);
697         if (page_do_bit17_swizzling)
698                 ret = __copy_from_user_swizzled(vaddr, shmem_page_offset,
699                                                 user_data,
700                                                 page_length);
701         else
702                 ret = __copy_from_user(vaddr + shmem_page_offset,
703                                        user_data,
704                                        page_length);
705         if (needs_clflush_after)
706                 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
707                                              page_length,
708                                              page_do_bit17_swizzling);
709         kunmap(page);
710
711         return ret ? -EFAULT : 0;
712 }
713
714 static int
715 i915_gem_shmem_pwrite(struct drm_device *dev,
716                       struct drm_i915_gem_object *obj,
717                       struct drm_i915_gem_pwrite *args,
718                       struct drm_file *file)
719 {
720         ssize_t remain;
721         loff_t offset;
722         char __user *user_data;
723         int shmem_page_offset, page_length, ret = 0;
724         int obj_do_bit17_swizzling, page_do_bit17_swizzling;
725         int hit_slowpath = 0;
726         int needs_clflush_after = 0;
727         int needs_clflush_before = 0;
728         struct sg_page_iter sg_iter;
729
730         user_data = to_user_ptr(args->data_ptr);
731         remain = args->size;
732
733         obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
734
735         if (obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
736                 /* If we're not in the cpu write domain, set ourself into the gtt
737                  * write domain and manually flush cachelines (if required). This
738                  * optimizes for the case when the gpu will use the data
739                  * right away and we therefore have to clflush anyway. */
740                 if (obj->cache_level == I915_CACHE_NONE)
741                         needs_clflush_after = 1;
742                 if (obj->gtt_space) {
743                         ret = i915_gem_object_set_to_gtt_domain(obj, true);
744                         if (ret)
745                                 return ret;
746                 }
747         }
748         /* Same trick applies for invalidate partially written cachelines before
749          * writing.  */
750         if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU)
751             && obj->cache_level == I915_CACHE_NONE)
752                 needs_clflush_before = 1;
753
754         ret = i915_gem_object_get_pages(obj);
755         if (ret)
756                 return ret;
757
758         i915_gem_object_pin_pages(obj);
759
760         offset = args->offset;
761         obj->dirty = 1;
762
763         for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
764                          offset >> PAGE_SHIFT) {
765                 struct page *page = sg_page_iter_page(&sg_iter);
766                 int partial_cacheline_write;
767
768                 if (remain <= 0)
769                         break;
770
771                 /* Operation in this page
772                  *
773                  * shmem_page_offset = offset within page in shmem file
774                  * page_length = bytes to copy for this page
775                  */
776                 shmem_page_offset = offset_in_page(offset);
777
778                 page_length = remain;
779                 if ((shmem_page_offset + page_length) > PAGE_SIZE)
780                         page_length = PAGE_SIZE - shmem_page_offset;
781
782                 /* If we don't overwrite a cacheline completely we need to be
783                  * careful to have up-to-date data by first clflushing. Don't
784                  * overcomplicate things and flush the entire patch. */
785                 partial_cacheline_write = needs_clflush_before &&
786                         ((shmem_page_offset | page_length)
787                                 & (boot_cpu_data.x86_clflush_size - 1));
788
789                 page_do_bit17_swizzling = obj_do_bit17_swizzling &&
790                         (page_to_phys(page) & (1 << 17)) != 0;
791
792                 ret = shmem_pwrite_fast(page, shmem_page_offset, page_length,
793                                         user_data, page_do_bit17_swizzling,
794                                         partial_cacheline_write,
795                                         needs_clflush_after);
796                 if (ret == 0)
797                         goto next_page;
798
799                 hit_slowpath = 1;
800                 mutex_unlock(&dev->struct_mutex);
801                 ret = shmem_pwrite_slow(page, shmem_page_offset, page_length,
802                                         user_data, page_do_bit17_swizzling,
803                                         partial_cacheline_write,
804                                         needs_clflush_after);
805
806                 mutex_lock(&dev->struct_mutex);
807
808 next_page:
809                 set_page_dirty(page);
810                 mark_page_accessed(page);
811
812                 if (ret)
813                         goto out;
814
815                 remain -= page_length;
816                 user_data += page_length;
817                 offset += page_length;
818         }
819
820 out:
821         i915_gem_object_unpin_pages(obj);
822
823         if (hit_slowpath) {
824                 /*
825                  * Fixup: Flush cpu caches in case we didn't flush the dirty
826                  * cachelines in-line while writing and the object moved
827                  * out of the cpu write domain while we've dropped the lock.
828                  */
829                 if (!needs_clflush_after &&
830                     obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
831                         i915_gem_clflush_object(obj);
832                         i915_gem_chipset_flush(dev);
833                 }
834         }
835
836         if (needs_clflush_after)
837                 i915_gem_chipset_flush(dev);
838
839         return ret;
840 }
841
842 /**
843  * Writes data to the object referenced by handle.
844  *
845  * On error, the contents of the buffer that were to be modified are undefined.
846  */
847 int
848 i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
849                       struct drm_file *file)
850 {
851         struct drm_i915_gem_pwrite *args = data;
852         struct drm_i915_gem_object *obj;
853         int ret;
854
855         if (args->size == 0)
856                 return 0;
857
858         if (!access_ok(VERIFY_READ,
859                        to_user_ptr(args->data_ptr),
860                        args->size))
861                 return -EFAULT;
862
863         ret = fault_in_multipages_readable(to_user_ptr(args->data_ptr),
864                                            args->size);
865         if (ret)
866                 return -EFAULT;
867
868         ret = i915_mutex_lock_interruptible(dev);
869         if (ret)
870                 return ret;
871
872         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
873         if (&obj->base == NULL) {
874                 ret = -ENOENT;
875                 goto unlock;
876         }
877
878         /* Bounds check destination. */
879         if (args->offset > obj->base.size ||
880             args->size > obj->base.size - args->offset) {
881                 ret = -EINVAL;
882                 goto out;
883         }
884
885         /* prime objects have no backing filp to GEM pread/pwrite
886          * pages from.
887          */
888         if (!obj->base.filp) {
889                 ret = -EINVAL;
890                 goto out;
891         }
892
893         trace_i915_gem_object_pwrite(obj, args->offset, args->size);
894
895         ret = -EFAULT;
896         /* We can only do the GTT pwrite on untiled buffers, as otherwise
897          * it would end up going through the fenced access, and we'll get
898          * different detiling behavior between reading and writing.
899          * pread/pwrite currently are reading and writing from the CPU
900          * perspective, requiring manual detiling by the client.
901          */
902         if (obj->phys_obj) {
903                 ret = i915_gem_phys_pwrite(dev, obj, args, file);
904                 goto out;
905         }
906
907         if (obj->cache_level == I915_CACHE_NONE &&
908             obj->tiling_mode == I915_TILING_NONE &&
909             obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
910                 ret = i915_gem_gtt_pwrite_fast(dev, obj, args, file);
911                 /* Note that the gtt paths might fail with non-page-backed user
912                  * pointers (e.g. gtt mappings when moving data between
913                  * textures). Fallback to the shmem path in that case. */
914         }
915
916         if (ret == -EFAULT || ret == -ENOSPC)
917                 ret = i915_gem_shmem_pwrite(dev, obj, args, file);
918
919 out:
920         drm_gem_object_unreference(&obj->base);
921 unlock:
922         mutex_unlock(&dev->struct_mutex);
923         return ret;
924 }
925
926 int
927 i915_gem_check_wedge(struct i915_gpu_error *error,
928                      bool interruptible)
929 {
930         if (i915_reset_in_progress(error)) {
931                 /* Non-interruptible callers can't handle -EAGAIN, hence return
932                  * -EIO unconditionally for these. */
933                 if (!interruptible)
934                         return -EIO;
935
936                 /* Recovery complete, but the reset failed ... */
937                 if (i915_terminally_wedged(error))
938                         return -EIO;
939
940                 return -EAGAIN;
941         }
942
943         return 0;
944 }
945
946 /*
947  * Compare seqno against outstanding lazy request. Emit a request if they are
948  * equal.
949  */
950 static int
951 i915_gem_check_olr(struct intel_ring_buffer *ring, u32 seqno)
952 {
953         int ret;
954
955         BUG_ON(!mutex_is_locked(&ring->dev->struct_mutex));
956
957         ret = 0;
958         if (seqno == ring->outstanding_lazy_request)
959                 ret = i915_add_request(ring, NULL, NULL);
960
961         return ret;
962 }
963
964 /**
965  * __wait_seqno - wait until execution of seqno has finished
966  * @ring: the ring expected to report seqno
967  * @seqno: duh!
968  * @reset_counter: reset sequence associated with the given seqno
969  * @interruptible: do an interruptible wait (normally yes)
970  * @timeout: in - how long to wait (NULL forever); out - how much time remaining
971  *
972  * Note: It is of utmost importance that the passed in seqno and reset_counter
973  * values have been read by the caller in an smp safe manner. Where read-side
974  * locks are involved, it is sufficient to read the reset_counter before
975  * unlocking the lock that protects the seqno. For lockless tricks, the
976  * reset_counter _must_ be read before, and an appropriate smp_rmb must be
977  * inserted.
978  *
979  * Returns 0 if the seqno was found within the alloted time. Else returns the
980  * errno with remaining time filled in timeout argument.
981  */
982 static int __wait_seqno(struct intel_ring_buffer *ring, u32 seqno,
983                         unsigned reset_counter,
984                         bool interruptible, struct timespec *timeout)
985 {
986         drm_i915_private_t *dev_priv = ring->dev->dev_private;
987         struct timespec before, now, wait_time={1,0};
988         unsigned long timeout_jiffies;
989         long end;
990         bool wait_forever = true;
991         int ret;
992
993         if (i915_seqno_passed(ring->get_seqno(ring, true), seqno))
994                 return 0;
995
996         trace_i915_gem_request_wait_begin(ring, seqno);
997
998         if (timeout != NULL) {
999                 wait_time = *timeout;
1000                 wait_forever = false;
1001         }
1002
1003         timeout_jiffies = timespec_to_jiffies_timeout(&wait_time);
1004
1005         if (WARN_ON(!ring->irq_get(ring)))
1006                 return -ENODEV;
1007
1008         /* Record current time in case interrupted by signal, or wedged * */
1009         getrawmonotonic(&before);
1010
1011 #define EXIT_COND \
1012         (i915_seqno_passed(ring->get_seqno(ring, false), seqno) || \
1013          i915_reset_in_progress(&dev_priv->gpu_error) || \
1014          reset_counter != atomic_read(&dev_priv->gpu_error.reset_counter))
1015         do {
1016                 if (interruptible)
1017                         end = wait_event_interruptible_timeout(ring->irq_queue,
1018                                                                EXIT_COND,
1019                                                                timeout_jiffies);
1020                 else
1021                         end = wait_event_timeout(ring->irq_queue, EXIT_COND,
1022                                                  timeout_jiffies);
1023
1024                 /* We need to check whether any gpu reset happened in between
1025                  * the caller grabbing the seqno and now ... */
1026                 if (reset_counter != atomic_read(&dev_priv->gpu_error.reset_counter))
1027                         end = -EAGAIN;
1028
1029                 /* ... but upgrade the -EGAIN to an -EIO if the gpu is truely
1030                  * gone. */
1031                 ret = i915_gem_check_wedge(&dev_priv->gpu_error, interruptible);
1032                 if (ret)
1033                         end = ret;
1034         } while (end == 0 && wait_forever);
1035
1036         getrawmonotonic(&now);
1037
1038         ring->irq_put(ring);
1039         trace_i915_gem_request_wait_end(ring, seqno);
1040 #undef EXIT_COND
1041
1042         if (timeout) {
1043                 struct timespec sleep_time = timespec_sub(now, before);
1044                 *timeout = timespec_sub(*timeout, sleep_time);
1045                 if (!timespec_valid(timeout)) /* i.e. negative time remains */
1046                         set_normalized_timespec(timeout, 0, 0);
1047         }
1048
1049         switch (end) {
1050         case -EIO:
1051         case -EAGAIN: /* Wedged */
1052         case -ERESTARTSYS: /* Signal */
1053                 return (int)end;
1054         case 0: /* Timeout */
1055                 return -ETIME;
1056         default: /* Completed */
1057                 WARN_ON(end < 0); /* We're not aware of other errors */
1058                 return 0;
1059         }
1060 }
1061
1062 /**
1063  * Waits for a sequence number to be signaled, and cleans up the
1064  * request and object lists appropriately for that event.
1065  */
1066 int
1067 i915_wait_seqno(struct intel_ring_buffer *ring, uint32_t seqno)
1068 {
1069         struct drm_device *dev = ring->dev;
1070         struct drm_i915_private *dev_priv = dev->dev_private;
1071         bool interruptible = dev_priv->mm.interruptible;
1072         int ret;
1073
1074         BUG_ON(!mutex_is_locked(&dev->struct_mutex));
1075         BUG_ON(seqno == 0);
1076
1077         ret = i915_gem_check_wedge(&dev_priv->gpu_error, interruptible);
1078         if (ret)
1079                 return ret;
1080
1081         ret = i915_gem_check_olr(ring, seqno);
1082         if (ret)
1083                 return ret;
1084
1085         return __wait_seqno(ring, seqno,
1086                             atomic_read(&dev_priv->gpu_error.reset_counter),
1087                             interruptible, NULL);
1088 }
1089
1090 /**
1091  * Ensures that all rendering to the object has completed and the object is
1092  * safe to unbind from the GTT or access from the CPU.
1093  */
1094 static __must_check int
1095 i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj,
1096                                bool readonly)
1097 {
1098         struct intel_ring_buffer *ring = obj->ring;
1099         u32 seqno;
1100         int ret;
1101
1102         seqno = readonly ? obj->last_write_seqno : obj->last_read_seqno;
1103         if (seqno == 0)
1104                 return 0;
1105
1106         ret = i915_wait_seqno(ring, seqno);
1107         if (ret)
1108                 return ret;
1109
1110         i915_gem_retire_requests_ring(ring);
1111
1112         /* Manually manage the write flush as we may have not yet
1113          * retired the buffer.
1114          */
1115         if (obj->last_write_seqno &&
1116             i915_seqno_passed(seqno, obj->last_write_seqno)) {
1117                 obj->last_write_seqno = 0;
1118                 obj->base.write_domain &= ~I915_GEM_GPU_DOMAINS;
1119         }
1120
1121         return 0;
1122 }
1123
1124 /* A nonblocking variant of the above wait. This is a highly dangerous routine
1125  * as the object state may change during this call.
1126  */
1127 static __must_check int
1128 i915_gem_object_wait_rendering__nonblocking(struct drm_i915_gem_object *obj,
1129                                             bool readonly)
1130 {
1131         struct drm_device *dev = obj->base.dev;
1132         struct drm_i915_private *dev_priv = dev->dev_private;
1133         struct intel_ring_buffer *ring = obj->ring;
1134         unsigned reset_counter;
1135         u32 seqno;
1136         int ret;
1137
1138         BUG_ON(!mutex_is_locked(&dev->struct_mutex));
1139         BUG_ON(!dev_priv->mm.interruptible);
1140
1141         seqno = readonly ? obj->last_write_seqno : obj->last_read_seqno;
1142         if (seqno == 0)
1143                 return 0;
1144
1145         ret = i915_gem_check_wedge(&dev_priv->gpu_error, true);
1146         if (ret)
1147                 return ret;
1148
1149         ret = i915_gem_check_olr(ring, seqno);
1150         if (ret)
1151                 return ret;
1152
1153         reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
1154         mutex_unlock(&dev->struct_mutex);
1155         ret = __wait_seqno(ring, seqno, reset_counter, true, NULL);
1156         mutex_lock(&dev->struct_mutex);
1157
1158         i915_gem_retire_requests_ring(ring);
1159
1160         /* Manually manage the write flush as we may have not yet
1161          * retired the buffer.
1162          */
1163         if (obj->last_write_seqno &&
1164             i915_seqno_passed(seqno, obj->last_write_seqno)) {
1165                 obj->last_write_seqno = 0;
1166                 obj->base.write_domain &= ~I915_GEM_GPU_DOMAINS;
1167         }
1168
1169         return ret;
1170 }
1171
1172 /**
1173  * Called when user space prepares to use an object with the CPU, either
1174  * through the mmap ioctl's mapping or a GTT mapping.
1175  */
1176 int
1177 i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
1178                           struct drm_file *file)
1179 {
1180         struct drm_i915_gem_set_domain *args = data;
1181         struct drm_i915_gem_object *obj;
1182         uint32_t read_domains = args->read_domains;
1183         uint32_t write_domain = args->write_domain;
1184         int ret;
1185
1186         /* Only handle setting domains to types used by the CPU. */
1187         if (write_domain & I915_GEM_GPU_DOMAINS)
1188                 return -EINVAL;
1189
1190         if (read_domains & I915_GEM_GPU_DOMAINS)
1191                 return -EINVAL;
1192
1193         /* Having something in the write domain implies it's in the read
1194          * domain, and only that read domain.  Enforce that in the request.
1195          */
1196         if (write_domain != 0 && read_domains != write_domain)
1197                 return -EINVAL;
1198
1199         ret = i915_mutex_lock_interruptible(dev);
1200         if (ret)
1201                 return ret;
1202
1203         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1204         if (&obj->base == NULL) {
1205                 ret = -ENOENT;
1206                 goto unlock;
1207         }
1208
1209         /* Try to flush the object off the GPU without holding the lock.
1210          * We will repeat the flush holding the lock in the normal manner
1211          * to catch cases where we are gazumped.
1212          */
1213         ret = i915_gem_object_wait_rendering__nonblocking(obj, !write_domain);
1214         if (ret)
1215                 goto unref;
1216
1217         if (read_domains & I915_GEM_DOMAIN_GTT) {
1218                 ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
1219
1220                 /* Silently promote "you're not bound, there was nothing to do"
1221                  * to success, since the client was just asking us to
1222                  * make sure everything was done.
1223                  */
1224                 if (ret == -EINVAL)
1225                         ret = 0;
1226         } else {
1227                 ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
1228         }
1229
1230 unref:
1231         drm_gem_object_unreference(&obj->base);
1232 unlock:
1233         mutex_unlock(&dev->struct_mutex);
1234         return ret;
1235 }
1236
1237 /**
1238  * Called when user space has done writes to this buffer
1239  */
1240 int
1241 i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
1242                          struct drm_file *file)
1243 {
1244         struct drm_i915_gem_sw_finish *args = data;
1245         struct drm_i915_gem_object *obj;
1246         int ret = 0;
1247
1248         ret = i915_mutex_lock_interruptible(dev);
1249         if (ret)
1250                 return ret;
1251
1252         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1253         if (&obj->base == NULL) {
1254                 ret = -ENOENT;
1255                 goto unlock;
1256         }
1257
1258         /* Pinned buffers may be scanout, so flush the cache */
1259         if (obj->pin_count)
1260                 i915_gem_object_flush_cpu_write_domain(obj);
1261
1262         drm_gem_object_unreference(&obj->base);
1263 unlock:
1264         mutex_unlock(&dev->struct_mutex);
1265         return ret;
1266 }
1267
1268 /**
1269  * Maps the contents of an object, returning the address it is mapped
1270  * into.
1271  *
1272  * While the mapping holds a reference on the contents of the object, it doesn't
1273  * imply a ref on the object itself.
1274  */
1275 int
1276 i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
1277                     struct drm_file *file)
1278 {
1279         struct drm_i915_gem_mmap *args = data;
1280         struct drm_gem_object *obj;
1281         unsigned long addr;
1282
1283         obj = drm_gem_object_lookup(dev, file, args->handle);
1284         if (obj == NULL)
1285                 return -ENOENT;
1286
1287         /* prime objects have no backing filp to GEM mmap
1288          * pages from.
1289          */
1290         if (!obj->filp) {
1291                 drm_gem_object_unreference_unlocked(obj);
1292                 return -EINVAL;
1293         }
1294
1295         addr = vm_mmap(obj->filp, 0, args->size,
1296                        PROT_READ | PROT_WRITE, MAP_SHARED,
1297                        args->offset);
1298         drm_gem_object_unreference_unlocked(obj);
1299         if (IS_ERR((void *)addr))
1300                 return addr;
1301
1302         args->addr_ptr = (uint64_t) addr;
1303
1304         return 0;
1305 }
1306
1307 /**
1308  * i915_gem_fault - fault a page into the GTT
1309  * vma: VMA in question
1310  * vmf: fault info
1311  *
1312  * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
1313  * from userspace.  The fault handler takes care of binding the object to
1314  * the GTT (if needed), allocating and programming a fence register (again,
1315  * only if needed based on whether the old reg is still valid or the object
1316  * is tiled) and inserting a new PTE into the faulting process.
1317  *
1318  * Note that the faulting process may involve evicting existing objects
1319  * from the GTT and/or fence registers to make room.  So performance may
1320  * suffer if the GTT working set is large or there are few fence registers
1321  * left.
1322  */
1323 int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1324 {
1325         struct drm_i915_gem_object *obj = to_intel_bo(vma->vm_private_data);
1326         struct drm_device *dev = obj->base.dev;
1327         drm_i915_private_t *dev_priv = dev->dev_private;
1328         pgoff_t page_offset;
1329         unsigned long pfn;
1330         int ret = 0;
1331         bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
1332
1333         /* We don't use vmf->pgoff since that has the fake offset */
1334         page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >>
1335                 PAGE_SHIFT;
1336
1337         ret = i915_mutex_lock_interruptible(dev);
1338         if (ret)
1339                 goto out;
1340
1341         trace_i915_gem_object_fault(obj, page_offset, true, write);
1342
1343         /* Access to snoopable pages through the GTT is incoherent. */
1344         if (obj->cache_level != I915_CACHE_NONE && !HAS_LLC(dev)) {
1345                 ret = -EINVAL;
1346                 goto unlock;
1347         }
1348
1349         /* Now bind it into the GTT if needed */
1350         ret = i915_gem_object_pin(obj, 0, true, false);
1351         if (ret)
1352                 goto unlock;
1353
1354         ret = i915_gem_object_set_to_gtt_domain(obj, write);
1355         if (ret)
1356                 goto unpin;
1357
1358         ret = i915_gem_object_get_fence(obj);
1359         if (ret)
1360                 goto unpin;
1361
1362         obj->fault_mappable = true;
1363
1364         pfn = ((dev_priv->gtt.mappable_base + obj->gtt_offset) >> PAGE_SHIFT) +
1365                 page_offset;
1366
1367         /* Finally, remap it using the new GTT offset */
1368         ret = vm_insert_pfn(vma, (unsigned long)vmf->virtual_address, pfn);
1369 unpin:
1370         i915_gem_object_unpin(obj);
1371 unlock:
1372         mutex_unlock(&dev->struct_mutex);
1373 out:
1374         switch (ret) {
1375         case -EIO:
1376                 /* If this -EIO is due to a gpu hang, give the reset code a
1377                  * chance to clean up the mess. Otherwise return the proper
1378                  * SIGBUS. */
1379                 if (i915_terminally_wedged(&dev_priv->gpu_error))
1380                         return VM_FAULT_SIGBUS;
1381         case -EAGAIN:
1382                 /* Give the error handler a chance to run and move the
1383                  * objects off the GPU active list. Next time we service the
1384                  * fault, we should be able to transition the page into the
1385                  * GTT without touching the GPU (and so avoid further
1386                  * EIO/EGAIN). If the GPU is wedged, then there is no issue
1387                  * with coherency, just lost writes.
1388                  */
1389                 set_need_resched();
1390         case 0:
1391         case -ERESTARTSYS:
1392         case -EINTR:
1393         case -EBUSY:
1394                 /*
1395                  * EBUSY is ok: this just means that another thread
1396                  * already did the job.
1397                  */
1398                 return VM_FAULT_NOPAGE;
1399         case -ENOMEM:
1400                 return VM_FAULT_OOM;
1401         case -ENOSPC:
1402                 return VM_FAULT_SIGBUS;
1403         default:
1404                 WARN_ONCE(ret, "unhandled error in i915_gem_fault: %i\n", ret);
1405                 return VM_FAULT_SIGBUS;
1406         }
1407 }
1408
1409 /**
1410  * i915_gem_release_mmap - remove physical page mappings
1411  * @obj: obj in question
1412  *
1413  * Preserve the reservation of the mmapping with the DRM core code, but
1414  * relinquish ownership of the pages back to the system.
1415  *
1416  * It is vital that we remove the page mapping if we have mapped a tiled
1417  * object through the GTT and then lose the fence register due to
1418  * resource pressure. Similarly if the object has been moved out of the
1419  * aperture, than pages mapped into userspace must be revoked. Removing the
1420  * mapping will then trigger a page fault on the next user access, allowing
1421  * fixup by i915_gem_fault().
1422  */
1423 void
1424 i915_gem_release_mmap(struct drm_i915_gem_object *obj)
1425 {
1426         if (!obj->fault_mappable)
1427                 return;
1428
1429         if (obj->base.dev->dev_mapping)
1430                 unmap_mapping_range(obj->base.dev->dev_mapping,
1431                                     (loff_t)obj->base.map_list.hash.key<<PAGE_SHIFT,
1432                                     obj->base.size, 1);
1433
1434         obj->fault_mappable = false;
1435 }
1436
1437 uint32_t
1438 i915_gem_get_gtt_size(struct drm_device *dev, uint32_t size, int tiling_mode)
1439 {
1440         uint32_t gtt_size;
1441
1442         if (INTEL_INFO(dev)->gen >= 4 ||
1443             tiling_mode == I915_TILING_NONE)
1444                 return size;
1445
1446         /* Previous chips need a power-of-two fence region when tiling */
1447         if (INTEL_INFO(dev)->gen == 3)
1448                 gtt_size = 1024*1024;
1449         else
1450                 gtt_size = 512*1024;
1451
1452         while (gtt_size < size)
1453                 gtt_size <<= 1;
1454
1455         return gtt_size;
1456 }
1457
1458 /**
1459  * i915_gem_get_gtt_alignment - return required GTT alignment for an object
1460  * @obj: object to check
1461  *
1462  * Return the required GTT alignment for an object, taking into account
1463  * potential fence register mapping.
1464  */
1465 uint32_t
1466 i915_gem_get_gtt_alignment(struct drm_device *dev, uint32_t size,
1467                            int tiling_mode, bool fenced)
1468 {
1469         /*
1470          * Minimum alignment is 4k (GTT page size), but might be greater
1471          * if a fence register is needed for the object.
1472          */
1473         if (INTEL_INFO(dev)->gen >= 4 || (!fenced && IS_G33(dev)) ||
1474             tiling_mode == I915_TILING_NONE)
1475                 return 4096;
1476
1477         /*
1478          * Previous chips need to be aligned to the size of the smallest
1479          * fence register that can contain the object.
1480          */
1481         return i915_gem_get_gtt_size(dev, size, tiling_mode);
1482 }
1483
1484 static int i915_gem_object_create_mmap_offset(struct drm_i915_gem_object *obj)
1485 {
1486         struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
1487         int ret;
1488
1489         if (obj->base.map_list.map)
1490                 return 0;
1491
1492         dev_priv->mm.shrinker_no_lock_stealing = true;
1493
1494         ret = drm_gem_create_mmap_offset(&obj->base);
1495         if (ret != -ENOSPC)
1496                 goto out;
1497
1498         /* Badly fragmented mmap space? The only way we can recover
1499          * space is by destroying unwanted objects. We can't randomly release
1500          * mmap_offsets as userspace expects them to be persistent for the
1501          * lifetime of the objects. The closest we can is to release the
1502          * offsets on purgeable objects by truncating it and marking it purged,
1503          * which prevents userspace from ever using that object again.
1504          */
1505         i915_gem_purge(dev_priv, obj->base.size >> PAGE_SHIFT);
1506         ret = drm_gem_create_mmap_offset(&obj->base);
1507         if (ret != -ENOSPC)
1508                 goto out;
1509
1510         i915_gem_shrink_all(dev_priv);
1511         ret = drm_gem_create_mmap_offset(&obj->base);
1512 out:
1513         dev_priv->mm.shrinker_no_lock_stealing = false;
1514
1515         return ret;
1516 }
1517
1518 static void i915_gem_object_free_mmap_offset(struct drm_i915_gem_object *obj)
1519 {
1520         if (!obj->base.map_list.map)
1521                 return;
1522
1523         drm_gem_free_mmap_offset(&obj->base);
1524 }
1525
1526 int
1527 i915_gem_mmap_gtt(struct drm_file *file,
1528                   struct drm_device *dev,
1529                   uint32_t handle,
1530                   uint64_t *offset)
1531 {
1532         struct drm_i915_private *dev_priv = dev->dev_private;
1533         struct drm_i915_gem_object *obj;
1534         int ret;
1535
1536         ret = i915_mutex_lock_interruptible(dev);
1537         if (ret)
1538                 return ret;
1539
1540         obj = to_intel_bo(drm_gem_object_lookup(dev, file, handle));
1541         if (&obj->base == NULL) {
1542                 ret = -ENOENT;
1543                 goto unlock;
1544         }
1545
1546         if (obj->base.size > dev_priv->gtt.mappable_end) {
1547                 ret = -E2BIG;
1548                 goto out;
1549         }
1550
1551         if (obj->madv != I915_MADV_WILLNEED) {
1552                 DRM_ERROR("Attempting to mmap a purgeable buffer\n");
1553                 ret = -EINVAL;
1554                 goto out;
1555         }
1556
1557         ret = i915_gem_object_create_mmap_offset(obj);
1558         if (ret)
1559                 goto out;
1560
1561         *offset = (u64)obj->base.map_list.hash.key << PAGE_SHIFT;
1562
1563 out:
1564         drm_gem_object_unreference(&obj->base);
1565 unlock:
1566         mutex_unlock(&dev->struct_mutex);
1567         return ret;
1568 }
1569
1570 /**
1571  * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
1572  * @dev: DRM device
1573  * @data: GTT mapping ioctl data
1574  * @file: GEM object info
1575  *
1576  * Simply returns the fake offset to userspace so it can mmap it.
1577  * The mmap call will end up in drm_gem_mmap(), which will set things
1578  * up so we can get faults in the handler above.
1579  *
1580  * The fault handler will take care of binding the object into the GTT
1581  * (since it may have been evicted to make room for something), allocating
1582  * a fence register, and mapping the appropriate aperture address into
1583  * userspace.
1584  */
1585 int
1586 i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
1587                         struct drm_file *file)
1588 {
1589         struct drm_i915_gem_mmap_gtt *args = data;
1590
1591         return i915_gem_mmap_gtt(file, dev, args->handle, &args->offset);
1592 }
1593
1594 /* Immediately discard the backing storage */
1595 static void
1596 i915_gem_object_truncate(struct drm_i915_gem_object *obj)
1597 {
1598         struct inode *inode;
1599
1600         i915_gem_object_free_mmap_offset(obj);
1601
1602         if (obj->base.filp == NULL)
1603                 return;
1604
1605         /* Our goal here is to return as much of the memory as
1606          * is possible back to the system as we are called from OOM.
1607          * To do this we must instruct the shmfs to drop all of its
1608          * backing pages, *now*.
1609          */
1610         inode = file_inode(obj->base.filp);
1611         shmem_truncate_range(inode, 0, (loff_t)-1);
1612
1613         obj->madv = __I915_MADV_PURGED;
1614 }
1615
1616 static inline int
1617 i915_gem_object_is_purgeable(struct drm_i915_gem_object *obj)
1618 {
1619         return obj->madv == I915_MADV_DONTNEED;
1620 }
1621
1622 static void
1623 i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj)
1624 {
1625         struct sg_page_iter sg_iter;
1626         int ret;
1627
1628         BUG_ON(obj->madv == __I915_MADV_PURGED);
1629
1630         ret = i915_gem_object_set_to_cpu_domain(obj, true);
1631         if (ret) {
1632                 /* In the event of a disaster, abandon all caches and
1633                  * hope for the best.
1634                  */
1635                 WARN_ON(ret != -EIO);
1636                 i915_gem_clflush_object(obj);
1637                 obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
1638         }
1639
1640         if (i915_gem_object_needs_bit17_swizzle(obj))
1641                 i915_gem_object_save_bit_17_swizzle(obj);
1642
1643         if (obj->madv == I915_MADV_DONTNEED)
1644                 obj->dirty = 0;
1645
1646         for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents, 0) {
1647                 struct page *page = sg_page_iter_page(&sg_iter);
1648
1649                 if (obj->dirty)
1650                         set_page_dirty(page);
1651
1652                 if (obj->madv == I915_MADV_WILLNEED)
1653                         mark_page_accessed(page);
1654
1655                 page_cache_release(page);
1656         }
1657         obj->dirty = 0;
1658
1659         sg_free_table(obj->pages);
1660         kfree(obj->pages);
1661 }
1662
1663 int
1664 i915_gem_object_put_pages(struct drm_i915_gem_object *obj)
1665 {
1666         const struct drm_i915_gem_object_ops *ops = obj->ops;
1667
1668         if (obj->pages == NULL)
1669                 return 0;
1670
1671         BUG_ON(obj->gtt_space);
1672
1673         if (obj->pages_pin_count)
1674                 return -EBUSY;
1675
1676         /* ->put_pages might need to allocate memory for the bit17 swizzle
1677          * array, hence protect them from being reaped by removing them from gtt
1678          * lists early. */
1679         list_del(&obj->gtt_list);
1680
1681         ops->put_pages(obj);
1682         obj->pages = NULL;
1683
1684         if (i915_gem_object_is_purgeable(obj))
1685                 i915_gem_object_truncate(obj);
1686
1687         return 0;
1688 }
1689
1690 static long
1691 __i915_gem_shrink(struct drm_i915_private *dev_priv, long target,
1692                   bool purgeable_only)
1693 {
1694         struct drm_i915_gem_object *obj, *next;
1695         long count = 0;
1696
1697         list_for_each_entry_safe(obj, next,
1698                                  &dev_priv->mm.unbound_list,
1699                                  gtt_list) {
1700                 if ((i915_gem_object_is_purgeable(obj) || !purgeable_only) &&
1701                     i915_gem_object_put_pages(obj) == 0) {
1702                         count += obj->base.size >> PAGE_SHIFT;
1703                         if (count >= target)
1704                                 return count;
1705                 }
1706         }
1707
1708         list_for_each_entry_safe(obj, next,
1709                                  &dev_priv->mm.inactive_list,
1710                                  mm_list) {
1711                 if ((i915_gem_object_is_purgeable(obj) || !purgeable_only) &&
1712                     i915_gem_object_unbind(obj) == 0 &&
1713                     i915_gem_object_put_pages(obj) == 0) {
1714                         count += obj->base.size >> PAGE_SHIFT;
1715                         if (count >= target)
1716                                 return count;
1717                 }
1718         }
1719
1720         return count;
1721 }
1722
1723 static long
1724 i915_gem_purge(struct drm_i915_private *dev_priv, long target)
1725 {
1726         return __i915_gem_shrink(dev_priv, target, true);
1727 }
1728
1729 static void
1730 i915_gem_shrink_all(struct drm_i915_private *dev_priv)
1731 {
1732         struct drm_i915_gem_object *obj, *next;
1733
1734         i915_gem_evict_everything(dev_priv->dev);
1735
1736         list_for_each_entry_safe(obj, next, &dev_priv->mm.unbound_list, gtt_list)
1737                 i915_gem_object_put_pages(obj);
1738 }
1739
1740 static int
1741 i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj)
1742 {
1743         struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
1744         int page_count, i;
1745         struct address_space *mapping;
1746         struct sg_table *st;
1747         struct scatterlist *sg;
1748         struct sg_page_iter sg_iter;
1749         struct page *page;
1750         unsigned long last_pfn = 0;     /* suppress gcc warning */
1751         gfp_t gfp;
1752
1753         /* Assert that the object is not currently in any GPU domain. As it
1754          * wasn't in the GTT, there shouldn't be any way it could have been in
1755          * a GPU cache
1756          */
1757         BUG_ON(obj->base.read_domains & I915_GEM_GPU_DOMAINS);
1758         BUG_ON(obj->base.write_domain & I915_GEM_GPU_DOMAINS);
1759
1760         st = kmalloc(sizeof(*st), GFP_KERNEL);
1761         if (st == NULL)
1762                 return -ENOMEM;
1763
1764         page_count = obj->base.size / PAGE_SIZE;
1765         if (sg_alloc_table(st, page_count, GFP_KERNEL)) {
1766                 sg_free_table(st);
1767                 kfree(st);
1768                 return -ENOMEM;
1769         }
1770
1771         /* Get the list of pages out of our struct file.  They'll be pinned
1772          * at this point until we release them.
1773          *
1774          * Fail silently without starting the shrinker
1775          */
1776         mapping = file_inode(obj->base.filp)->i_mapping;
1777         gfp = mapping_gfp_mask(mapping);
1778         gfp |= __GFP_NORETRY | __GFP_NOWARN | __GFP_NO_KSWAPD;
1779         gfp &= ~(__GFP_IO | __GFP_WAIT);
1780         sg = st->sgl;
1781         st->nents = 0;
1782         for (i = 0; i < page_count; i++) {
1783                 page = shmem_read_mapping_page_gfp(mapping, i, gfp);
1784                 if (IS_ERR(page)) {
1785                         i915_gem_purge(dev_priv, page_count);
1786                         page = shmem_read_mapping_page_gfp(mapping, i, gfp);
1787                 }
1788                 if (IS_ERR(page)) {
1789                         /* We've tried hard to allocate the memory by reaping
1790                          * our own buffer, now let the real VM do its job and
1791                          * go down in flames if truly OOM.
1792                          */
1793                         gfp &= ~(__GFP_NORETRY | __GFP_NOWARN | __GFP_NO_KSWAPD);
1794                         gfp |= __GFP_IO | __GFP_WAIT;
1795
1796                         i915_gem_shrink_all(dev_priv);
1797                         page = shmem_read_mapping_page_gfp(mapping, i, gfp);
1798                         if (IS_ERR(page))
1799                                 goto err_pages;
1800
1801                         gfp |= __GFP_NORETRY | __GFP_NOWARN | __GFP_NO_KSWAPD;
1802                         gfp &= ~(__GFP_IO | __GFP_WAIT);
1803                 }
1804 #ifdef CONFIG_SWIOTLB
1805                 if (swiotlb_nr_tbl()) {
1806                         st->nents++;
1807                         sg_set_page(sg, page, PAGE_SIZE, 0);
1808                         sg = sg_next(sg);
1809                         continue;
1810                 }
1811 #endif
1812                 if (!i || page_to_pfn(page) != last_pfn + 1) {
1813                         if (i)
1814                                 sg = sg_next(sg);
1815                         st->nents++;
1816                         sg_set_page(sg, page, PAGE_SIZE, 0);
1817                 } else {
1818                         sg->length += PAGE_SIZE;
1819                 }
1820                 last_pfn = page_to_pfn(page);
1821         }
1822 #ifdef CONFIG_SWIOTLB
1823         if (!swiotlb_nr_tbl())
1824 #endif
1825                 sg_mark_end(sg);
1826         obj->pages = st;
1827
1828         if (i915_gem_object_needs_bit17_swizzle(obj))
1829                 i915_gem_object_do_bit_17_swizzle(obj);
1830
1831         return 0;
1832
1833 err_pages:
1834         sg_mark_end(sg);
1835         for_each_sg_page(st->sgl, &sg_iter, st->nents, 0)
1836                 page_cache_release(sg_page_iter_page(&sg_iter));
1837         sg_free_table(st);
1838         kfree(st);
1839         return PTR_ERR(page);
1840 }
1841
1842 /* Ensure that the associated pages are gathered from the backing storage
1843  * and pinned into our object. i915_gem_object_get_pages() may be called
1844  * multiple times before they are released by a single call to
1845  * i915_gem_object_put_pages() - once the pages are no longer referenced
1846  * either as a result of memory pressure (reaping pages under the shrinker)
1847  * or as the object is itself released.
1848  */
1849 int
1850 i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
1851 {
1852         struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
1853         const struct drm_i915_gem_object_ops *ops = obj->ops;
1854         int ret;
1855
1856         if (obj->pages)
1857                 return 0;
1858
1859         if (obj->madv != I915_MADV_WILLNEED) {
1860                 DRM_ERROR("Attempting to obtain a purgeable object\n");
1861                 return -EINVAL;
1862         }
1863
1864         BUG_ON(obj->pages_pin_count);
1865
1866         ret = ops->get_pages(obj);
1867         if (ret)
1868                 return ret;
1869
1870         list_add_tail(&obj->gtt_list, &dev_priv->mm.unbound_list);
1871         return 0;
1872 }
1873
1874 void
1875 i915_gem_object_move_to_active(struct drm_i915_gem_object *obj,
1876                                struct intel_ring_buffer *ring)
1877 {
1878         struct drm_device *dev = obj->base.dev;
1879         struct drm_i915_private *dev_priv = dev->dev_private;
1880         u32 seqno = intel_ring_get_seqno(ring);
1881
1882         BUG_ON(ring == NULL);
1883         obj->ring = ring;
1884
1885         /* Add a reference if we're newly entering the active list. */
1886         if (!obj->active) {
1887                 drm_gem_object_reference(&obj->base);
1888                 obj->active = 1;
1889         }
1890
1891         /* Move from whatever list we were on to the tail of execution. */
1892         list_move_tail(&obj->mm_list, &dev_priv->mm.active_list);
1893         list_move_tail(&obj->ring_list, &ring->active_list);
1894
1895         obj->last_read_seqno = seqno;
1896
1897         if (obj->fenced_gpu_access) {
1898                 obj->last_fenced_seqno = seqno;
1899
1900                 /* Bump MRU to take account of the delayed flush */
1901                 if (obj->fence_reg != I915_FENCE_REG_NONE) {
1902                         struct drm_i915_fence_reg *reg;
1903
1904                         reg = &dev_priv->fence_regs[obj->fence_reg];
1905                         list_move_tail(&reg->lru_list,
1906                                        &dev_priv->mm.fence_list);
1907                 }
1908         }
1909 }
1910
1911 static void
1912 i915_gem_object_move_to_inactive(struct drm_i915_gem_object *obj)
1913 {
1914         struct drm_device *dev = obj->base.dev;
1915         struct drm_i915_private *dev_priv = dev->dev_private;
1916
1917         BUG_ON(obj->base.write_domain & ~I915_GEM_GPU_DOMAINS);
1918         BUG_ON(!obj->active);
1919
1920         list_move_tail(&obj->mm_list, &dev_priv->mm.inactive_list);
1921
1922         list_del_init(&obj->ring_list);
1923         obj->ring = NULL;
1924
1925         obj->last_read_seqno = 0;
1926         obj->last_write_seqno = 0;
1927         obj->base.write_domain = 0;
1928
1929         obj->last_fenced_seqno = 0;
1930         obj->fenced_gpu_access = false;
1931
1932         obj->active = 0;
1933         drm_gem_object_unreference(&obj->base);
1934
1935         WARN_ON(i915_verify_lists(dev));
1936 }
1937
1938 static int
1939 i915_gem_init_seqno(struct drm_device *dev, u32 seqno)
1940 {
1941         struct drm_i915_private *dev_priv = dev->dev_private;
1942         struct intel_ring_buffer *ring;
1943         int ret, i, j;
1944
1945         /* Carefully retire all requests without writing to the rings */
1946         for_each_ring(ring, dev_priv, i) {
1947                 ret = intel_ring_idle(ring);
1948                 if (ret)
1949                         return ret;
1950         }
1951         i915_gem_retire_requests(dev);
1952
1953         /* Finally reset hw state */
1954         for_each_ring(ring, dev_priv, i) {
1955                 intel_ring_init_seqno(ring, seqno);
1956
1957                 for (j = 0; j < ARRAY_SIZE(ring->sync_seqno); j++)
1958                         ring->sync_seqno[j] = 0;
1959         }
1960
1961         return 0;
1962 }
1963
1964 int i915_gem_set_seqno(struct drm_device *dev, u32 seqno)
1965 {
1966         struct drm_i915_private *dev_priv = dev->dev_private;
1967         int ret;
1968
1969         if (seqno == 0)
1970                 return -EINVAL;
1971
1972         /* HWS page needs to be set less than what we
1973          * will inject to ring
1974          */
1975         ret = i915_gem_init_seqno(dev, seqno - 1);
1976         if (ret)
1977                 return ret;
1978
1979         /* Carefully set the last_seqno value so that wrap
1980          * detection still works
1981          */
1982         dev_priv->next_seqno = seqno;
1983         dev_priv->last_seqno = seqno - 1;
1984         if (dev_priv->last_seqno == 0)
1985                 dev_priv->last_seqno--;
1986
1987         return 0;
1988 }
1989
1990 int
1991 i915_gem_get_seqno(struct drm_device *dev, u32 *seqno)
1992 {
1993         struct drm_i915_private *dev_priv = dev->dev_private;
1994
1995         /* reserve 0 for non-seqno */
1996         if (dev_priv->next_seqno == 0) {
1997                 int ret = i915_gem_init_seqno(dev, 0);
1998                 if (ret)
1999                         return ret;
2000
2001                 dev_priv->next_seqno = 1;
2002         }
2003
2004         *seqno = dev_priv->last_seqno = dev_priv->next_seqno++;
2005         return 0;
2006 }
2007
2008 int
2009 i915_add_request(struct intel_ring_buffer *ring,
2010                  struct drm_file *file,
2011                  u32 *out_seqno)
2012 {
2013         drm_i915_private_t *dev_priv = ring->dev->dev_private;
2014         struct drm_i915_gem_request *request;
2015         u32 request_ring_position;
2016         int was_empty;
2017         int ret;
2018
2019         /*
2020          * Emit any outstanding flushes - execbuf can fail to emit the flush
2021          * after having emitted the batchbuffer command. Hence we need to fix
2022          * things up similar to emitting the lazy request. The difference here
2023          * is that the flush _must_ happen before the next request, no matter
2024          * what.
2025          */
2026         ret = intel_ring_flush_all_caches(ring);
2027         if (ret)
2028                 return ret;
2029
2030         request = kmalloc(sizeof(*request), GFP_KERNEL);
2031         if (request == NULL)
2032                 return -ENOMEM;
2033
2034
2035         /* Record the position of the start of the request so that
2036          * should we detect the updated seqno part-way through the
2037          * GPU processing the request, we never over-estimate the
2038          * position of the head.
2039          */
2040         request_ring_position = intel_ring_get_tail(ring);
2041
2042         ret = ring->add_request(ring);
2043         if (ret) {
2044                 kfree(request);
2045                 return ret;
2046         }
2047
2048         request->seqno = intel_ring_get_seqno(ring);
2049         request->ring = ring;
2050         request->tail = request_ring_position;
2051         request->emitted_jiffies = jiffies;
2052         was_empty = list_empty(&ring->request_list);
2053         list_add_tail(&request->list, &ring->request_list);
2054         request->file_priv = NULL;
2055
2056         if (file) {
2057                 struct drm_i915_file_private *file_priv = file->driver_priv;
2058
2059                 spin_lock(&file_priv->mm.lock);
2060                 request->file_priv = file_priv;
2061                 list_add_tail(&request->client_list,
2062                               &file_priv->mm.request_list);
2063                 spin_unlock(&file_priv->mm.lock);
2064         }
2065
2066         trace_i915_gem_request_add(ring, request->seqno);
2067         ring->outstanding_lazy_request = 0;
2068
2069         if (!dev_priv->mm.suspended) {
2070                 if (i915_enable_hangcheck) {
2071                         mod_timer(&dev_priv->gpu_error.hangcheck_timer,
2072                                   round_jiffies_up(jiffies + DRM_I915_HANGCHECK_JIFFIES));
2073                 }
2074                 if (was_empty) {
2075                         queue_delayed_work(dev_priv->wq,
2076                                            &dev_priv->mm.retire_work,
2077                                            round_jiffies_up_relative(HZ));
2078                         intel_mark_busy(dev_priv->dev);
2079                 }
2080         }
2081
2082         if (out_seqno)
2083                 *out_seqno = request->seqno;
2084         return 0;
2085 }
2086
2087 static inline void
2088 i915_gem_request_remove_from_client(struct drm_i915_gem_request *request)
2089 {
2090         struct drm_i915_file_private *file_priv = request->file_priv;
2091
2092         if (!file_priv)
2093                 return;
2094
2095         spin_lock(&file_priv->mm.lock);
2096         if (request->file_priv) {
2097                 list_del(&request->client_list);
2098                 request->file_priv = NULL;
2099         }
2100         spin_unlock(&file_priv->mm.lock);
2101 }
2102
2103 static void i915_gem_reset_ring_lists(struct drm_i915_private *dev_priv,
2104                                       struct intel_ring_buffer *ring)
2105 {
2106         while (!list_empty(&ring->request_list)) {
2107                 struct drm_i915_gem_request *request;
2108
2109                 request = list_first_entry(&ring->request_list,
2110                                            struct drm_i915_gem_request,
2111                                            list);
2112
2113                 list_del(&request->list);
2114                 i915_gem_request_remove_from_client(request);
2115                 kfree(request);
2116         }
2117
2118         while (!list_empty(&ring->active_list)) {
2119                 struct drm_i915_gem_object *obj;
2120
2121                 obj = list_first_entry(&ring->active_list,
2122                                        struct drm_i915_gem_object,
2123                                        ring_list);
2124
2125                 i915_gem_object_move_to_inactive(obj);
2126         }
2127 }
2128
2129 void i915_gem_restore_fences(struct drm_device *dev)
2130 {
2131         struct drm_i915_private *dev_priv = dev->dev_private;
2132         int i;
2133
2134         for (i = 0; i < dev_priv->num_fence_regs; i++) {
2135                 struct drm_i915_fence_reg *reg = &dev_priv->fence_regs[i];
2136                 i915_gem_write_fence(dev, i, reg->obj);
2137         }
2138 }
2139
2140 void i915_gem_reset(struct drm_device *dev)
2141 {
2142         struct drm_i915_private *dev_priv = dev->dev_private;
2143         struct drm_i915_gem_object *obj;
2144         struct intel_ring_buffer *ring;
2145         int i;
2146
2147         for_each_ring(ring, dev_priv, i)
2148                 i915_gem_reset_ring_lists(dev_priv, ring);
2149
2150         /* Move everything out of the GPU domains to ensure we do any
2151          * necessary invalidation upon reuse.
2152          */
2153         list_for_each_entry(obj,
2154                             &dev_priv->mm.inactive_list,
2155                             mm_list)
2156         {
2157                 obj->base.read_domains &= ~I915_GEM_GPU_DOMAINS;
2158         }
2159
2160         i915_gem_restore_fences(dev);
2161 }
2162
2163 /**
2164  * This function clears the request list as sequence numbers are passed.
2165  */
2166 void
2167 i915_gem_retire_requests_ring(struct intel_ring_buffer *ring)
2168 {
2169         uint32_t seqno;
2170
2171         if (list_empty(&ring->request_list))
2172                 return;
2173
2174         WARN_ON(i915_verify_lists(ring->dev));
2175
2176         seqno = ring->get_seqno(ring, true);
2177
2178         while (!list_empty(&ring->request_list)) {
2179                 struct drm_i915_gem_request *request;
2180
2181                 request = list_first_entry(&ring->request_list,
2182                                            struct drm_i915_gem_request,
2183                                            list);
2184
2185                 if (!i915_seqno_passed(seqno, request->seqno))
2186                         break;
2187
2188                 trace_i915_gem_request_retire(ring, request->seqno);
2189                 /* We know the GPU must have read the request to have
2190                  * sent us the seqno + interrupt, so use the position
2191                  * of tail of the request to update the last known position
2192                  * of the GPU head.
2193                  */
2194                 ring->last_retired_head = request->tail;
2195
2196                 list_del(&request->list);
2197                 i915_gem_request_remove_from_client(request);
2198                 kfree(request);
2199         }
2200
2201         /* Move any buffers on the active list that are no longer referenced
2202          * by the ringbuffer to the flushing/inactive lists as appropriate.
2203          */
2204         while (!list_empty(&ring->active_list)) {
2205                 struct drm_i915_gem_object *obj;
2206
2207                 obj = list_first_entry(&ring->active_list,
2208                                       struct drm_i915_gem_object,
2209                                       ring_list);
2210
2211                 if (!i915_seqno_passed(seqno, obj->last_read_seqno))
2212                         break;
2213
2214                 i915_gem_object_move_to_inactive(obj);
2215         }
2216
2217         if (unlikely(ring->trace_irq_seqno &&
2218                      i915_seqno_passed(seqno, ring->trace_irq_seqno))) {
2219                 ring->irq_put(ring);
2220                 ring->trace_irq_seqno = 0;
2221         }
2222
2223         WARN_ON(i915_verify_lists(ring->dev));
2224 }
2225
2226 void
2227 i915_gem_retire_requests(struct drm_device *dev)
2228 {
2229         drm_i915_private_t *dev_priv = dev->dev_private;
2230         struct intel_ring_buffer *ring;
2231         int i;
2232
2233         for_each_ring(ring, dev_priv, i)
2234                 i915_gem_retire_requests_ring(ring);
2235 }
2236
2237 static void
2238 i915_gem_retire_work_handler(struct work_struct *work)
2239 {
2240         drm_i915_private_t *dev_priv;
2241         struct drm_device *dev;
2242         struct intel_ring_buffer *ring;
2243         bool idle;
2244         int i;
2245
2246         dev_priv = container_of(work, drm_i915_private_t,
2247                                 mm.retire_work.work);
2248         dev = dev_priv->dev;
2249
2250         /* Come back later if the device is busy... */
2251         if (!mutex_trylock(&dev->struct_mutex)) {
2252                 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work,
2253                                    round_jiffies_up_relative(HZ));
2254                 return;
2255         }
2256
2257         i915_gem_retire_requests(dev);
2258
2259         /* Send a periodic flush down the ring so we don't hold onto GEM
2260          * objects indefinitely.
2261          */
2262         idle = true;
2263         for_each_ring(ring, dev_priv, i) {
2264                 if (ring->gpu_caches_dirty)
2265                         i915_add_request(ring, NULL, NULL);
2266
2267                 idle &= list_empty(&ring->request_list);
2268         }
2269
2270         if (!dev_priv->mm.suspended && !idle)
2271                 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work,
2272                                    round_jiffies_up_relative(HZ));
2273         if (idle)
2274                 intel_mark_idle(dev);
2275
2276         mutex_unlock(&dev->struct_mutex);
2277 }
2278
2279 /**
2280  * Ensures that an object will eventually get non-busy by flushing any required
2281  * write domains, emitting any outstanding lazy request and retiring and
2282  * completed requests.
2283  */
2284 static int
2285 i915_gem_object_flush_active(struct drm_i915_gem_object *obj)
2286 {
2287         int ret;
2288
2289         if (obj->active) {
2290                 ret = i915_gem_check_olr(obj->ring, obj->last_read_seqno);
2291                 if (ret)
2292                         return ret;
2293
2294                 i915_gem_retire_requests_ring(obj->ring);
2295         }
2296
2297         return 0;
2298 }
2299
2300 /**
2301  * i915_gem_wait_ioctl - implements DRM_IOCTL_I915_GEM_WAIT
2302  * @DRM_IOCTL_ARGS: standard ioctl arguments
2303  *
2304  * Returns 0 if successful, else an error is returned with the remaining time in
2305  * the timeout parameter.
2306  *  -ETIME: object is still busy after timeout
2307  *  -ERESTARTSYS: signal interrupted the wait
2308  *  -ENONENT: object doesn't exist
2309  * Also possible, but rare:
2310  *  -EAGAIN: GPU wedged
2311  *  -ENOMEM: damn
2312  *  -ENODEV: Internal IRQ fail
2313  *  -E?: The add request failed
2314  *
2315  * The wait ioctl with a timeout of 0 reimplements the busy ioctl. With any
2316  * non-zero timeout parameter the wait ioctl will wait for the given number of
2317  * nanoseconds on an object becoming unbusy. Since the wait itself does so
2318  * without holding struct_mutex the object may become re-busied before this
2319  * function completes. A similar but shorter * race condition exists in the busy
2320  * ioctl
2321  */
2322 int
2323 i915_gem_wait_ioctl(struct drm_device *dev, void *data, struct drm_file *file)
2324 {
2325         drm_i915_private_t *dev_priv = dev->dev_private;
2326         struct drm_i915_gem_wait *args = data;
2327         struct drm_i915_gem_object *obj;
2328         struct intel_ring_buffer *ring = NULL;
2329         struct timespec timeout_stack, *timeout = NULL;
2330         unsigned reset_counter;
2331         u32 seqno = 0;
2332         int ret = 0;
2333
2334         if (args->timeout_ns >= 0) {
2335                 timeout_stack = ns_to_timespec(args->timeout_ns);
2336                 timeout = &timeout_stack;
2337         }
2338
2339         ret = i915_mutex_lock_interruptible(dev);
2340         if (ret)
2341                 return ret;
2342
2343         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->bo_handle));
2344         if (&obj->base == NULL) {
2345                 mutex_unlock(&dev->struct_mutex);
2346                 return -ENOENT;
2347         }
2348
2349         /* Need to make sure the object gets inactive eventually. */
2350         ret = i915_gem_object_flush_active(obj);
2351         if (ret)
2352                 goto out;
2353
2354         if (obj->active) {
2355                 seqno = obj->last_read_seqno;
2356                 ring = obj->ring;
2357         }
2358
2359         if (seqno == 0)
2360                  goto out;
2361
2362         /* Do this after OLR check to make sure we make forward progress polling
2363          * on this IOCTL with a 0 timeout (like busy ioctl)
2364          */
2365         if (!args->timeout_ns) {
2366                 ret = -ETIME;
2367                 goto out;
2368         }
2369
2370         drm_gem_object_unreference(&obj->base);
2371         reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
2372         mutex_unlock(&dev->struct_mutex);
2373
2374         ret = __wait_seqno(ring, seqno, reset_counter, true, timeout);
2375         if (timeout)
2376                 args->timeout_ns = timespec_to_ns(timeout);
2377         return ret;
2378
2379 out:
2380         drm_gem_object_unreference(&obj->base);
2381         mutex_unlock(&dev->struct_mutex);
2382         return ret;
2383 }
2384
2385 /**
2386  * i915_gem_object_sync - sync an object to a ring.
2387  *
2388  * @obj: object which may be in use on another ring.
2389  * @to: ring we wish to use the object on. May be NULL.
2390  *
2391  * This code is meant to abstract object synchronization with the GPU.
2392  * Calling with NULL implies synchronizing the object with the CPU
2393  * rather than a particular GPU ring.
2394  *
2395  * Returns 0 if successful, else propagates up the lower layer error.
2396  */
2397 int
2398 i915_gem_object_sync(struct drm_i915_gem_object *obj,
2399                      struct intel_ring_buffer *to)
2400 {
2401         struct intel_ring_buffer *from = obj->ring;
2402         u32 seqno;
2403         int ret, idx;
2404
2405         if (from == NULL || to == from)
2406                 return 0;
2407
2408         if (to == NULL || !i915_semaphore_is_enabled(obj->base.dev))
2409                 return i915_gem_object_wait_rendering(obj, false);
2410
2411         idx = intel_ring_sync_index(from, to);
2412
2413         seqno = obj->last_read_seqno;
2414         if (seqno <= from->sync_seqno[idx])
2415                 return 0;
2416
2417         ret = i915_gem_check_olr(obj->ring, seqno);
2418         if (ret)
2419                 return ret;
2420
2421         ret = to->sync_to(to, from, seqno);
2422         if (!ret)
2423                 /* We use last_read_seqno because sync_to()
2424                  * might have just caused seqno wrap under
2425                  * the radar.
2426                  */
2427                 from->sync_seqno[idx] = obj->last_read_seqno;
2428
2429         return ret;
2430 }
2431
2432 static void i915_gem_object_finish_gtt(struct drm_i915_gem_object *obj)
2433 {
2434         u32 old_write_domain, old_read_domains;
2435
2436         /* Force a pagefault for domain tracking on next user access */
2437         i915_gem_release_mmap(obj);
2438
2439         if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
2440                 return;
2441
2442         /* Wait for any direct GTT access to complete */
2443         mb();
2444
2445         old_read_domains = obj->base.read_domains;
2446         old_write_domain = obj->base.write_domain;
2447
2448         obj->base.read_domains &= ~I915_GEM_DOMAIN_GTT;
2449         obj->base.write_domain &= ~I915_GEM_DOMAIN_GTT;
2450
2451         trace_i915_gem_object_change_domain(obj,
2452                                             old_read_domains,
2453                                             old_write_domain);
2454 }
2455
2456 /**
2457  * Unbinds an object from the GTT aperture.
2458  */
2459 int
2460 i915_gem_object_unbind(struct drm_i915_gem_object *obj)
2461 {
2462         drm_i915_private_t *dev_priv = obj->base.dev->dev_private;
2463         int ret;
2464
2465         if (obj->gtt_space == NULL)
2466                 return 0;
2467
2468         if (obj->pin_count)
2469                 return -EBUSY;
2470
2471         BUG_ON(obj->pages == NULL);
2472
2473         ret = i915_gem_object_finish_gpu(obj);
2474         if (ret)
2475                 return ret;
2476         /* Continue on if we fail due to EIO, the GPU is hung so we
2477          * should be safe and we need to cleanup or else we might
2478          * cause memory corruption through use-after-free.
2479          */
2480
2481         i915_gem_object_finish_gtt(obj);
2482
2483         /* release the fence reg _after_ flushing */
2484         ret = i915_gem_object_put_fence(obj);
2485         if (ret)
2486                 return ret;
2487
2488         trace_i915_gem_object_unbind(obj);
2489
2490         if (obj->has_global_gtt_mapping)
2491                 i915_gem_gtt_unbind_object(obj);
2492         if (obj->has_aliasing_ppgtt_mapping) {
2493                 i915_ppgtt_unbind_object(dev_priv->mm.aliasing_ppgtt, obj);
2494                 obj->has_aliasing_ppgtt_mapping = 0;
2495         }
2496         i915_gem_gtt_finish_object(obj);
2497
2498         list_del(&obj->mm_list);
2499         list_move_tail(&obj->gtt_list, &dev_priv->mm.unbound_list);
2500         /* Avoid an unnecessary call to unbind on rebind. */
2501         obj->map_and_fenceable = true;
2502
2503         drm_mm_put_block(obj->gtt_space);
2504         obj->gtt_space = NULL;
2505         obj->gtt_offset = 0;
2506
2507         return 0;
2508 }
2509
2510 int i915_gpu_idle(struct drm_device *dev)
2511 {
2512         drm_i915_private_t *dev_priv = dev->dev_private;
2513         struct intel_ring_buffer *ring;
2514         int ret, i;
2515
2516         /* Flush everything onto the inactive list. */
2517         for_each_ring(ring, dev_priv, i) {
2518                 ret = i915_switch_context(ring, NULL, DEFAULT_CONTEXT_ID);
2519                 if (ret)
2520                         return ret;
2521
2522                 ret = intel_ring_idle(ring);
2523                 if (ret)
2524                         return ret;
2525         }
2526
2527         return 0;
2528 }
2529
2530 static void i965_write_fence_reg(struct drm_device *dev, int reg,
2531                                  struct drm_i915_gem_object *obj)
2532 {
2533         drm_i915_private_t *dev_priv = dev->dev_private;
2534         int fence_reg;
2535         int fence_pitch_shift;
2536         uint64_t val;
2537
2538         if (INTEL_INFO(dev)->gen >= 6) {
2539                 fence_reg = FENCE_REG_SANDYBRIDGE_0;
2540                 fence_pitch_shift = SANDYBRIDGE_FENCE_PITCH_SHIFT;
2541         } else {
2542                 fence_reg = FENCE_REG_965_0;
2543                 fence_pitch_shift = I965_FENCE_PITCH_SHIFT;
2544         }
2545
2546         if (obj) {
2547                 u32 size = obj->gtt_space->size;
2548
2549                 val = (uint64_t)((obj->gtt_offset + size - 4096) &
2550                                  0xfffff000) << 32;
2551                 val |= obj->gtt_offset & 0xfffff000;
2552                 val |= (uint64_t)((obj->stride / 128) - 1) << fence_pitch_shift;
2553                 if (obj->tiling_mode == I915_TILING_Y)
2554                         val |= 1 << I965_FENCE_TILING_Y_SHIFT;
2555                 val |= I965_FENCE_REG_VALID;
2556         } else
2557                 val = 0;
2558
2559         fence_reg += reg * 8;
2560         I915_WRITE64(fence_reg, val);
2561         POSTING_READ(fence_reg);
2562 }
2563
2564 static void i915_write_fence_reg(struct drm_device *dev, int reg,
2565                                  struct drm_i915_gem_object *obj)
2566 {
2567         drm_i915_private_t *dev_priv = dev->dev_private;
2568         u32 val;
2569
2570         if (obj) {
2571                 u32 size = obj->gtt_space->size;
2572                 int pitch_val;
2573                 int tile_width;
2574
2575                 WARN((obj->gtt_offset & ~I915_FENCE_START_MASK) ||
2576                      (size & -size) != size ||
2577                      (obj->gtt_offset & (size - 1)),
2578                      "object 0x%08x [fenceable? %d] not 1M or pot-size (0x%08x) aligned\n",
2579                      obj->gtt_offset, obj->map_and_fenceable, size);
2580
2581                 if (obj->tiling_mode == I915_TILING_Y && HAS_128_BYTE_Y_TILING(dev))
2582                         tile_width = 128;
2583                 else
2584                         tile_width = 512;
2585
2586                 /* Note: pitch better be a power of two tile widths */
2587                 pitch_val = obj->stride / tile_width;
2588                 pitch_val = ffs(pitch_val) - 1;
2589
2590                 val = obj->gtt_offset;
2591                 if (obj->tiling_mode == I915_TILING_Y)
2592                         val |= 1 << I830_FENCE_TILING_Y_SHIFT;
2593                 val |= I915_FENCE_SIZE_BITS(size);
2594                 val |= pitch_val << I830_FENCE_PITCH_SHIFT;
2595                 val |= I830_FENCE_REG_VALID;
2596         } else
2597                 val = 0;
2598
2599         if (reg < 8)
2600                 reg = FENCE_REG_830_0 + reg * 4;
2601         else
2602                 reg = FENCE_REG_945_8 + (reg - 8) * 4;
2603
2604         I915_WRITE(reg, val);
2605         POSTING_READ(reg);
2606 }
2607
2608 static void i830_write_fence_reg(struct drm_device *dev, int reg,
2609                                 struct drm_i915_gem_object *obj)
2610 {
2611         drm_i915_private_t *dev_priv = dev->dev_private;
2612         uint32_t val;
2613
2614         if (obj) {
2615                 u32 size = obj->gtt_space->size;
2616                 uint32_t pitch_val;
2617
2618                 WARN((obj->gtt_offset & ~I830_FENCE_START_MASK) ||
2619                      (size & -size) != size ||
2620                      (obj->gtt_offset & (size - 1)),
2621                      "object 0x%08x not 512K or pot-size 0x%08x aligned\n",
2622                      obj->gtt_offset, size);
2623
2624                 pitch_val = obj->stride / 128;
2625                 pitch_val = ffs(pitch_val) - 1;
2626
2627                 val = obj->gtt_offset;
2628                 if (obj->tiling_mode == I915_TILING_Y)
2629                         val |= 1 << I830_FENCE_TILING_Y_SHIFT;
2630                 val |= I830_FENCE_SIZE_BITS(size);
2631                 val |= pitch_val << I830_FENCE_PITCH_SHIFT;
2632                 val |= I830_FENCE_REG_VALID;
2633         } else
2634                 val = 0;
2635
2636         I915_WRITE(FENCE_REG_830_0 + reg * 4, val);
2637         POSTING_READ(FENCE_REG_830_0 + reg * 4);
2638 }
2639
2640 inline static bool i915_gem_object_needs_mb(struct drm_i915_gem_object *obj)
2641 {
2642         return obj && obj->base.read_domains & I915_GEM_DOMAIN_GTT;
2643 }
2644
2645 static void i915_gem_write_fence(struct drm_device *dev, int reg,
2646                                  struct drm_i915_gem_object *obj)
2647 {
2648         struct drm_i915_private *dev_priv = dev->dev_private;
2649
2650         /* Ensure that all CPU reads are completed before installing a fence
2651          * and all writes before removing the fence.
2652          */
2653         if (i915_gem_object_needs_mb(dev_priv->fence_regs[reg].obj))
2654                 mb();
2655
2656         switch (INTEL_INFO(dev)->gen) {
2657         case 7:
2658         case 6:
2659         case 5:
2660         case 4: i965_write_fence_reg(dev, reg, obj); break;
2661         case 3: i915_write_fence_reg(dev, reg, obj); break;
2662         case 2: i830_write_fence_reg(dev, reg, obj); break;
2663         default: BUG();
2664         }
2665
2666         /* And similarly be paranoid that no direct access to this region
2667          * is reordered to before the fence is installed.
2668          */
2669         if (i915_gem_object_needs_mb(obj))
2670                 mb();
2671 }
2672
2673 static inline int fence_number(struct drm_i915_private *dev_priv,
2674                                struct drm_i915_fence_reg *fence)
2675 {
2676         return fence - dev_priv->fence_regs;
2677 }
2678
2679 static void i915_gem_write_fence__ipi(void *data)
2680 {
2681         wbinvd();
2682 }
2683
2684 static void i915_gem_object_update_fence(struct drm_i915_gem_object *obj,
2685                                          struct drm_i915_fence_reg *fence,
2686                                          bool enable)
2687 {
2688         struct drm_device *dev = obj->base.dev;
2689         struct drm_i915_private *dev_priv = dev->dev_private;
2690         int fence_reg = fence_number(dev_priv, fence);
2691
2692         /* In order to fully serialize access to the fenced region and
2693          * the update to the fence register we need to take extreme
2694          * measures on SNB+. In theory, the write to the fence register
2695          * flushes all memory transactions before, and coupled with the
2696          * mb() placed around the register write we serialise all memory
2697          * operations with respect to the changes in the tiler. Yet, on
2698          * SNB+ we need to take a step further and emit an explicit wbinvd()
2699          * on each processor in order to manually flush all memory
2700          * transactions before updating the fence register.
2701          */
2702         if (HAS_LLC(obj->base.dev))
2703                 on_each_cpu(i915_gem_write_fence__ipi, NULL, 1);
2704         i915_gem_write_fence(dev, fence_reg, enable ? obj : NULL);
2705
2706         if (enable) {
2707                 obj->fence_reg = fence_reg;
2708                 fence->obj = obj;
2709                 list_move_tail(&fence->lru_list, &dev_priv->mm.fence_list);
2710         } else {
2711                 obj->fence_reg = I915_FENCE_REG_NONE;
2712                 fence->obj = NULL;
2713                 list_del_init(&fence->lru_list);
2714         }
2715 }
2716
2717 static int
2718 i915_gem_object_wait_fence(struct drm_i915_gem_object *obj)
2719 {
2720         if (obj->last_fenced_seqno) {
2721                 int ret = i915_wait_seqno(obj->ring, obj->last_fenced_seqno);
2722                 if (ret)
2723                         return ret;
2724
2725                 obj->last_fenced_seqno = 0;
2726         }
2727
2728         obj->fenced_gpu_access = false;
2729         return 0;
2730 }
2731
2732 int
2733 i915_gem_object_put_fence(struct drm_i915_gem_object *obj)
2734 {
2735         struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2736         struct drm_i915_fence_reg *fence;
2737         int ret;
2738
2739         ret = i915_gem_object_wait_fence(obj);
2740         if (ret)
2741                 return ret;
2742
2743         if (obj->fence_reg == I915_FENCE_REG_NONE)
2744                 return 0;
2745
2746         fence = &dev_priv->fence_regs[obj->fence_reg];
2747
2748         i915_gem_object_fence_lost(obj);
2749         i915_gem_object_update_fence(obj, fence, false);
2750
2751         return 0;
2752 }
2753
2754 static struct drm_i915_fence_reg *
2755 i915_find_fence_reg(struct drm_device *dev)
2756 {
2757         struct drm_i915_private *dev_priv = dev->dev_private;
2758         struct drm_i915_fence_reg *reg, *avail;
2759         int i;
2760
2761         /* First try to find a free reg */
2762         avail = NULL;
2763         for (i = dev_priv->fence_reg_start; i < dev_priv->num_fence_regs; i++) {
2764                 reg = &dev_priv->fence_regs[i];
2765                 if (!reg->obj)
2766                         return reg;
2767
2768                 if (!reg->pin_count)
2769                         avail = reg;
2770         }
2771
2772         if (avail == NULL)
2773                 return NULL;
2774
2775         /* None available, try to steal one or wait for a user to finish */
2776         list_for_each_entry(reg, &dev_priv->mm.fence_list, lru_list) {
2777                 if (reg->pin_count)
2778                         continue;
2779
2780                 return reg;
2781         }
2782
2783         return NULL;
2784 }
2785
2786 /**
2787  * i915_gem_object_get_fence - set up fencing for an object
2788  * @obj: object to map through a fence reg
2789  *
2790  * When mapping objects through the GTT, userspace wants to be able to write
2791  * to them without having to worry about swizzling if the object is tiled.
2792  * This function walks the fence regs looking for a free one for @obj,
2793  * stealing one if it can't find any.
2794  *
2795  * It then sets up the reg based on the object's properties: address, pitch
2796  * and tiling format.
2797  *
2798  * For an untiled surface, this removes any existing fence.
2799  */
2800 int
2801 i915_gem_object_get_fence(struct drm_i915_gem_object *obj)
2802 {
2803         struct drm_device *dev = obj->base.dev;
2804         struct drm_i915_private *dev_priv = dev->dev_private;
2805         bool enable = obj->tiling_mode != I915_TILING_NONE;
2806         struct drm_i915_fence_reg *reg;
2807         int ret;
2808
2809         /* Have we updated the tiling parameters upon the object and so
2810          * will need to serialise the write to the associated fence register?
2811          */
2812         if (obj->fence_dirty) {
2813                 ret = i915_gem_object_wait_fence(obj);
2814                 if (ret)
2815                         return ret;
2816         }
2817
2818         /* Just update our place in the LRU if our fence is getting reused. */
2819         if (obj->fence_reg != I915_FENCE_REG_NONE) {
2820                 reg = &dev_priv->fence_regs[obj->fence_reg];
2821                 if (!obj->fence_dirty) {
2822                         list_move_tail(&reg->lru_list,
2823                                        &dev_priv->mm.fence_list);
2824                         return 0;
2825                 }
2826         } else if (enable) {
2827                 reg = i915_find_fence_reg(dev);
2828                 if (reg == NULL)
2829                         return -EDEADLK;
2830
2831                 if (reg->obj) {
2832                         struct drm_i915_gem_object *old = reg->obj;
2833
2834                         ret = i915_gem_object_wait_fence(old);
2835                         if (ret)
2836                                 return ret;
2837
2838                         i915_gem_object_fence_lost(old);
2839                 }
2840         } else
2841                 return 0;
2842
2843         i915_gem_object_update_fence(obj, reg, enable);
2844         obj->fence_dirty = false;
2845
2846         return 0;
2847 }
2848
2849 static bool i915_gem_valid_gtt_space(struct drm_device *dev,
2850                                      struct drm_mm_node *gtt_space,
2851                                      unsigned long cache_level)
2852 {
2853         struct drm_mm_node *other;
2854
2855         /* On non-LLC machines we have to be careful when putting differing
2856          * types of snoopable memory together to avoid the prefetcher
2857          * crossing memory domains and dying.
2858          */
2859         if (HAS_LLC(dev))
2860                 return true;
2861
2862         if (gtt_space == NULL)
2863                 return true;
2864
2865         if (list_empty(&gtt_space->node_list))
2866                 return true;
2867
2868         other = list_entry(gtt_space->node_list.prev, struct drm_mm_node, node_list);
2869         if (other->allocated && !other->hole_follows && other->color != cache_level)
2870                 return false;
2871
2872         other = list_entry(gtt_space->node_list.next, struct drm_mm_node, node_list);
2873         if (other->allocated && !gtt_space->hole_follows && other->color != cache_level)
2874                 return false;
2875
2876         return true;
2877 }
2878
2879 static void i915_gem_verify_gtt(struct drm_device *dev)
2880 {
2881 #if WATCH_GTT
2882         struct drm_i915_private *dev_priv = dev->dev_private;
2883         struct drm_i915_gem_object *obj;
2884         int err = 0;
2885
2886         list_for_each_entry(obj, &dev_priv->mm.gtt_list, gtt_list) {
2887                 if (obj->gtt_space == NULL) {
2888                         printk(KERN_ERR "object found on GTT list with no space reserved\n");
2889                         err++;
2890                         continue;
2891                 }
2892
2893                 if (obj->cache_level != obj->gtt_space->color) {
2894                         printk(KERN_ERR "object reserved space [%08lx, %08lx] with wrong color, cache_level=%x, color=%lx\n",
2895                                obj->gtt_space->start,
2896                                obj->gtt_space->start + obj->gtt_space->size,
2897                                obj->cache_level,
2898                                obj->gtt_space->color);
2899                         err++;
2900                         continue;
2901                 }
2902
2903                 if (!i915_gem_valid_gtt_space(dev,
2904                                               obj->gtt_space,
2905                                               obj->cache_level)) {
2906                         printk(KERN_ERR "invalid GTT space found at [%08lx, %08lx] - color=%x\n",
2907                                obj->gtt_space->start,
2908                                obj->gtt_space->start + obj->gtt_space->size,
2909                                obj->cache_level);
2910                         err++;
2911                         continue;
2912                 }
2913         }
2914
2915         WARN_ON(err);
2916 #endif
2917 }
2918
2919 /**
2920  * Finds free space in the GTT aperture and binds the object there.
2921  */
2922 static int
2923 i915_gem_object_bind_to_gtt(struct drm_i915_gem_object *obj,
2924                             unsigned alignment,
2925                             bool map_and_fenceable,
2926                             bool nonblocking)
2927 {
2928         struct drm_device *dev = obj->base.dev;
2929         drm_i915_private_t *dev_priv = dev->dev_private;
2930         struct drm_mm_node *node;
2931         u32 size, fence_size, fence_alignment, unfenced_alignment;
2932         bool mappable, fenceable;
2933         int ret;
2934
2935         fence_size = i915_gem_get_gtt_size(dev,
2936                                            obj->base.size,
2937                                            obj->tiling_mode);
2938         fence_alignment = i915_gem_get_gtt_alignment(dev,
2939                                                      obj->base.size,
2940                                                      obj->tiling_mode, true);
2941         unfenced_alignment =
2942                 i915_gem_get_gtt_alignment(dev,
2943                                                     obj->base.size,
2944                                                     obj->tiling_mode, false);
2945
2946         if (alignment == 0)
2947                 alignment = map_and_fenceable ? fence_alignment :
2948                                                 unfenced_alignment;
2949         if (map_and_fenceable && alignment & (fence_alignment - 1)) {
2950                 DRM_ERROR("Invalid object alignment requested %u\n", alignment);
2951                 return -EINVAL;
2952         }
2953
2954         size = map_and_fenceable ? fence_size : obj->base.size;
2955
2956         /* If the object is bigger than the entire aperture, reject it early
2957          * before evicting everything in a vain attempt to find space.
2958          */
2959         if (obj->base.size >
2960             (map_and_fenceable ? dev_priv->gtt.mappable_end : dev_priv->gtt.total)) {
2961                 DRM_ERROR("Attempting to bind an object larger than the aperture\n");
2962                 return -E2BIG;
2963         }
2964
2965         ret = i915_gem_object_get_pages(obj);
2966         if (ret)
2967                 return ret;
2968
2969         i915_gem_object_pin_pages(obj);
2970
2971         node = kzalloc(sizeof(*node), GFP_KERNEL);
2972         if (node == NULL) {
2973                 i915_gem_object_unpin_pages(obj);
2974                 return -ENOMEM;
2975         }
2976
2977  search_free:
2978         if (map_and_fenceable)
2979                 ret = drm_mm_insert_node_in_range_generic(&dev_priv->mm.gtt_space, node,
2980                                                           size, alignment, obj->cache_level,
2981                                                           0, dev_priv->gtt.mappable_end);
2982         else
2983                 ret = drm_mm_insert_node_generic(&dev_priv->mm.gtt_space, node,
2984                                                  size, alignment, obj->cache_level);
2985         if (ret) {
2986                 ret = i915_gem_evict_something(dev, size, alignment,
2987                                                obj->cache_level,
2988                                                map_and_fenceable,
2989                                                nonblocking);
2990                 if (ret == 0)
2991                         goto search_free;
2992
2993                 i915_gem_object_unpin_pages(obj);
2994                 kfree(node);
2995                 return ret;
2996         }
2997         if (WARN_ON(!i915_gem_valid_gtt_space(dev, node, obj->cache_level))) {
2998                 i915_gem_object_unpin_pages(obj);
2999                 drm_mm_put_block(node);
3000                 return -EINVAL;
3001         }
3002
3003         ret = i915_gem_gtt_prepare_object(obj);
3004         if (ret) {
3005                 i915_gem_object_unpin_pages(obj);
3006                 drm_mm_put_block(node);
3007                 return ret;
3008         }
3009
3010         list_move_tail(&obj->gtt_list, &dev_priv->mm.bound_list);
3011         list_add_tail(&obj->mm_list, &dev_priv->mm.inactive_list);
3012
3013         obj->gtt_space = node;
3014         obj->gtt_offset = node->start;
3015
3016         fenceable =
3017                 node->size == fence_size &&
3018                 (node->start & (fence_alignment - 1)) == 0;
3019
3020         mappable =
3021                 obj->gtt_offset + obj->base.size <= dev_priv->gtt.mappable_end;
3022
3023         obj->map_and_fenceable = mappable && fenceable;
3024
3025         i915_gem_object_unpin_pages(obj);
3026         trace_i915_gem_object_bind(obj, map_and_fenceable);
3027         i915_gem_verify_gtt(dev);
3028         return 0;
3029 }
3030
3031 void
3032 i915_gem_clflush_object(struct drm_i915_gem_object *obj)
3033 {
3034         /* If we don't have a page list set up, then we're not pinned
3035          * to GPU, and we can ignore the cache flush because it'll happen
3036          * again at bind time.
3037          */
3038         if (obj->pages == NULL)
3039                 return;
3040
3041         /*
3042          * Stolen memory is always coherent with the GPU as it is explicitly
3043          * marked as wc by the system, or the system is cache-coherent.
3044          */
3045         if (obj->stolen)
3046                 return;
3047
3048         /* If the GPU is snooping the contents of the CPU cache,
3049          * we do not need to manually clear the CPU cache lines.  However,
3050          * the caches are only snooped when the render cache is
3051          * flushed/invalidated.  As we always have to emit invalidations
3052          * and flushes when moving into and out of the RENDER domain, correct
3053          * snooping behaviour occurs naturally as the result of our domain
3054          * tracking.
3055          */
3056         if (obj->cache_level != I915_CACHE_NONE)
3057                 return;
3058
3059         trace_i915_gem_object_clflush(obj);
3060
3061         drm_clflush_sg(obj->pages);
3062 }
3063
3064 /** Flushes the GTT write domain for the object if it's dirty. */
3065 static void
3066 i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj)
3067 {
3068         uint32_t old_write_domain;
3069
3070         if (obj->base.write_domain != I915_GEM_DOMAIN_GTT)
3071                 return;
3072
3073         /* No actual flushing is required for the GTT write domain.  Writes
3074          * to it immediately go to main memory as far as we know, so there's
3075          * no chipset flush.  It also doesn't land in render cache.
3076          *
3077          * However, we do have to enforce the order so that all writes through
3078          * the GTT land before any writes to the device, such as updates to
3079          * the GATT itself.
3080          */
3081         wmb();
3082
3083         old_write_domain = obj->base.write_domain;
3084         obj->base.write_domain = 0;
3085
3086         trace_i915_gem_object_change_domain(obj,
3087                                             obj->base.read_domains,
3088                                             old_write_domain);
3089 }
3090
3091 /** Flushes the CPU write domain for the object if it's dirty. */
3092 static void
3093 i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj)
3094 {
3095         uint32_t old_write_domain;
3096
3097         if (obj->base.write_domain != I915_GEM_DOMAIN_CPU)
3098                 return;
3099
3100         i915_gem_clflush_object(obj);
3101         i915_gem_chipset_flush(obj->base.dev);
3102         old_write_domain = obj->base.write_domain;
3103         obj->base.write_domain = 0;
3104
3105         trace_i915_gem_object_change_domain(obj,
3106                                             obj->base.read_domains,
3107                                             old_write_domain);
3108 }
3109
3110 /**
3111  * Moves a single object to the GTT read, and possibly write domain.
3112  *
3113  * This function returns when the move is complete, including waiting on
3114  * flushes to occur.
3115  */
3116 int
3117 i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write)
3118 {
3119         drm_i915_private_t *dev_priv = obj->base.dev->dev_private;
3120         uint32_t old_write_domain, old_read_domains;
3121         int ret;
3122
3123         /* Not valid to be called on unbound objects. */
3124         if (obj->gtt_space == NULL)
3125                 return -EINVAL;
3126
3127         if (obj->base.write_domain == I915_GEM_DOMAIN_GTT)
3128                 return 0;
3129
3130         ret = i915_gem_object_wait_rendering(obj, !write);
3131         if (ret)
3132                 return ret;
3133
3134         i915_gem_object_flush_cpu_write_domain(obj);
3135
3136         /* Serialise direct access to this object with the barriers for
3137          * coherent writes from the GPU, by effectively invalidating the
3138          * GTT domain upon first access.
3139          */
3140         if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
3141                 mb();
3142
3143         old_write_domain = obj->base.write_domain;
3144         old_read_domains = obj->base.read_domains;
3145
3146         /* It should now be out of any other write domains, and we can update
3147          * the domain values for our changes.
3148          */
3149         BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
3150         obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
3151         if (write) {
3152                 obj->base.read_domains = I915_GEM_DOMAIN_GTT;
3153                 obj->base.write_domain = I915_GEM_DOMAIN_GTT;
3154                 obj->dirty = 1;
3155         }
3156
3157         trace_i915_gem_object_change_domain(obj,
3158                                             old_read_domains,
3159                                             old_write_domain);
3160
3161         /* And bump the LRU for this access */
3162         if (i915_gem_object_is_inactive(obj))
3163                 list_move_tail(&obj->mm_list, &dev_priv->mm.inactive_list);
3164
3165         return 0;
3166 }
3167
3168 int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
3169                                     enum i915_cache_level cache_level)
3170 {
3171         struct drm_device *dev = obj->base.dev;
3172         drm_i915_private_t *dev_priv = dev->dev_private;
3173         int ret;
3174
3175         if (obj->cache_level == cache_level)
3176                 return 0;
3177
3178         if (obj->pin_count) {
3179                 DRM_DEBUG("can not change the cache level of pinned objects\n");
3180                 return -EBUSY;
3181         }
3182
3183         if (!i915_gem_valid_gtt_space(dev, obj->gtt_space, cache_level)) {
3184                 ret = i915_gem_object_unbind(obj);
3185                 if (ret)
3186                         return ret;
3187         }
3188
3189         if (obj->gtt_space) {
3190                 ret = i915_gem_object_finish_gpu(obj);
3191                 if (ret)
3192                         return ret;
3193
3194                 i915_gem_object_finish_gtt(obj);
3195
3196                 /* Before SandyBridge, you could not use tiling or fence
3197                  * registers with snooped memory, so relinquish any fences
3198                  * currently pointing to our region in the aperture.
3199                  */
3200                 if (INTEL_INFO(dev)->gen < 6) {
3201                         ret = i915_gem_object_put_fence(obj);
3202                         if (ret)
3203                                 return ret;
3204                 }
3205
3206                 if (obj->has_global_gtt_mapping)
3207                         i915_gem_gtt_bind_object(obj, cache_level);
3208                 if (obj->has_aliasing_ppgtt_mapping)
3209                         i915_ppgtt_bind_object(dev_priv->mm.aliasing_ppgtt,
3210                                                obj, cache_level);
3211
3212                 obj->gtt_space->color = cache_level;
3213         }
3214
3215         if (cache_level == I915_CACHE_NONE) {
3216                 u32 old_read_domains, old_write_domain;
3217
3218                 /* If we're coming from LLC cached, then we haven't
3219                  * actually been tracking whether the data is in the
3220                  * CPU cache or not, since we only allow one bit set
3221                  * in obj->write_domain and have been skipping the clflushes.
3222                  * Just set it to the CPU cache for now.
3223                  */
3224                 WARN_ON(obj->base.write_domain & ~I915_GEM_DOMAIN_CPU);
3225                 WARN_ON(obj->base.read_domains & ~I915_GEM_DOMAIN_CPU);
3226
3227                 old_read_domains = obj->base.read_domains;
3228                 old_write_domain = obj->base.write_domain;
3229
3230                 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
3231                 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
3232
3233                 trace_i915_gem_object_change_domain(obj,
3234                                                     old_read_domains,
3235                                                     old_write_domain);
3236         }
3237
3238         obj->cache_level = cache_level;
3239         i915_gem_verify_gtt(dev);
3240         return 0;
3241 }
3242
3243 int i915_gem_get_caching_ioctl(struct drm_device *dev, void *data,
3244                                struct drm_file *file)
3245 {
3246         struct drm_i915_gem_caching *args = data;
3247         struct drm_i915_gem_object *obj;
3248         int ret;
3249
3250         ret = i915_mutex_lock_interruptible(dev);
3251         if (ret)
3252                 return ret;
3253
3254         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3255         if (&obj->base == NULL) {
3256                 ret = -ENOENT;
3257                 goto unlock;
3258         }
3259
3260         args->caching = obj->cache_level != I915_CACHE_NONE;
3261
3262         drm_gem_object_unreference(&obj->base);
3263 unlock:
3264         mutex_unlock(&dev->struct_mutex);
3265         return ret;
3266 }
3267
3268 int i915_gem_set_caching_ioctl(struct drm_device *dev, void *data,
3269                                struct drm_file *file)
3270 {
3271         struct drm_i915_gem_caching *args = data;
3272         struct drm_i915_gem_object *obj;
3273         enum i915_cache_level level;
3274         int ret;
3275
3276         switch (args->caching) {
3277         case I915_CACHING_NONE:
3278                 level = I915_CACHE_NONE;
3279                 break;
3280         case I915_CACHING_CACHED:
3281                 level = I915_CACHE_LLC;
3282                 break;
3283         default:
3284                 return -EINVAL;
3285         }
3286
3287         ret = i915_mutex_lock_interruptible(dev);
3288         if (ret)
3289                 return ret;
3290
3291         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3292         if (&obj->base == NULL) {
3293                 ret = -ENOENT;
3294                 goto unlock;
3295         }
3296
3297         ret = i915_gem_object_set_cache_level(obj, level);
3298
3299         drm_gem_object_unreference(&obj->base);
3300 unlock:
3301         mutex_unlock(&dev->struct_mutex);
3302         return ret;
3303 }
3304
3305 /*
3306  * Prepare buffer for display plane (scanout, cursors, etc).
3307  * Can be called from an uninterruptible phase (modesetting) and allows
3308  * any flushes to be pipelined (for pageflips).
3309  */
3310 int
3311 i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
3312                                      u32 alignment,
3313                                      struct intel_ring_buffer *pipelined)
3314 {
3315         u32 old_read_domains, old_write_domain;
3316         int ret;
3317
3318         if (pipelined != obj->ring) {
3319                 ret = i915_gem_object_sync(obj, pipelined);
3320                 if (ret)
3321                         return ret;
3322         }
3323
3324         /* The display engine is not coherent with the LLC cache on gen6.  As
3325          * a result, we make sure that the pinning that is about to occur is
3326          * done with uncached PTEs. This is lowest common denominator for all
3327          * chipsets.
3328          *
3329          * However for gen6+, we could do better by using the GFDT bit instead
3330          * of uncaching, which would allow us to flush all the LLC-cached data
3331          * with that bit in the PTE to main memory with just one PIPE_CONTROL.
3332          */
3333         ret = i915_gem_object_set_cache_level(obj, I915_CACHE_NONE);
3334         if (ret)
3335                 return ret;
3336
3337         /* As the user may map the buffer once pinned in the display plane
3338          * (e.g. libkms for the bootup splash), we have to ensure that we
3339          * always use map_and_fenceable for all scanout buffers.
3340          */
3341         ret = i915_gem_object_pin(obj, alignment, true, false);
3342         if (ret)
3343                 return ret;
3344
3345         i915_gem_object_flush_cpu_write_domain(obj);
3346
3347         old_write_domain = obj->base.write_domain;
3348         old_read_domains = obj->base.read_domains;
3349
3350         /* It should now be out of any other write domains, and we can update
3351          * the domain values for our changes.
3352          */
3353         obj->base.write_domain = 0;
3354         obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
3355
3356         trace_i915_gem_object_change_domain(obj,
3357                                             old_read_domains,
3358                                             old_write_domain);
3359
3360         return 0;
3361 }
3362
3363 int
3364 i915_gem_object_finish_gpu(struct drm_i915_gem_object *obj)
3365 {
3366         int ret;
3367
3368         if ((obj->base.read_domains & I915_GEM_GPU_DOMAINS) == 0)
3369                 return 0;
3370
3371         ret = i915_gem_object_wait_rendering(obj, false);
3372         if (ret)
3373                 return ret;
3374
3375         /* Ensure that we invalidate the GPU's caches and TLBs. */
3376         obj->base.read_domains &= ~I915_GEM_GPU_DOMAINS;
3377         return 0;
3378 }
3379
3380 /**
3381  * Moves a single object to the CPU read, and possibly write domain.
3382  *
3383  * This function returns when the move is complete, including waiting on
3384  * flushes to occur.
3385  */
3386 int
3387 i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write)
3388 {
3389         uint32_t old_write_domain, old_read_domains;
3390         int ret;
3391
3392         if (obj->base.write_domain == I915_GEM_DOMAIN_CPU)
3393                 return 0;
3394
3395         ret = i915_gem_object_wait_rendering(obj, !write);
3396         if (ret)
3397                 return ret;
3398
3399         i915_gem_object_flush_gtt_write_domain(obj);
3400
3401         old_write_domain = obj->base.write_domain;
3402         old_read_domains = obj->base.read_domains;
3403
3404         /* Flush the CPU cache if it's still invalid. */
3405         if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0) {
3406                 i915_gem_clflush_object(obj);
3407
3408                 obj->base.read_domains |= I915_GEM_DOMAIN_CPU;
3409         }
3410
3411         /* It should now be out of any other write domains, and we can update
3412          * the domain values for our changes.
3413          */
3414         BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
3415
3416         /* If we're writing through the CPU, then the GPU read domains will
3417          * need to be invalidated at next use.
3418          */
3419         if (write) {
3420                 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
3421                 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
3422         }
3423
3424         trace_i915_gem_object_change_domain(obj,
3425                                             old_read_domains,
3426                                             old_write_domain);
3427
3428         return 0;
3429 }
3430
3431 /* Throttle our rendering by waiting until the ring has completed our requests
3432  * emitted over 20 msec ago.
3433  *
3434  * Note that if we were to use the current jiffies each time around the loop,
3435  * we wouldn't escape the function with any frames outstanding if the time to
3436  * render a frame was over 20ms.
3437  *
3438  * This should get us reasonable parallelism between CPU and GPU but also
3439  * relatively low latency when blocking on a particular request to finish.
3440  */
3441 static int
3442 i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
3443 {
3444         struct drm_i915_private *dev_priv = dev->dev_private;
3445         struct drm_i915_file_private *file_priv = file->driver_priv;
3446         unsigned long recent_enough = jiffies - msecs_to_jiffies(20);
3447         struct drm_i915_gem_request *request;
3448         struct intel_ring_buffer *ring = NULL;
3449         unsigned reset_counter;
3450         u32 seqno = 0;
3451         int ret;
3452
3453         ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
3454         if (ret)
3455                 return ret;
3456
3457         ret = i915_gem_check_wedge(&dev_priv->gpu_error, false);
3458         if (ret)
3459                 return ret;
3460
3461         spin_lock(&file_priv->mm.lock);
3462         list_for_each_entry(request, &file_priv->mm.request_list, client_list) {
3463                 if (time_after_eq(request->emitted_jiffies, recent_enough))
3464                         break;
3465
3466                 ring = request->ring;
3467                 seqno = request->seqno;
3468         }
3469         reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
3470         spin_unlock(&file_priv->mm.lock);
3471
3472         if (seqno == 0)
3473                 return 0;
3474
3475         ret = __wait_seqno(ring, seqno, reset_counter, true, NULL);
3476         if (ret == 0)
3477                 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, 0);
3478
3479         return ret;
3480 }
3481
3482 int
3483 i915_gem_object_pin(struct drm_i915_gem_object *obj,
3484                     uint32_t alignment,
3485                     bool map_and_fenceable,
3486                     bool nonblocking)
3487 {
3488         int ret;
3489
3490         if (WARN_ON(obj->pin_count == DRM_I915_GEM_OBJECT_MAX_PIN_COUNT))
3491                 return -EBUSY;
3492
3493         if (obj->gtt_space != NULL) {
3494                 if ((alignment && obj->gtt_offset & (alignment - 1)) ||
3495                     (map_and_fenceable && !obj->map_and_fenceable)) {
3496                         WARN(obj->pin_count,
3497                              "bo is already pinned with incorrect alignment:"
3498                              " offset=%x, req.alignment=%x, req.map_and_fenceable=%d,"
3499                              " obj->map_and_fenceable=%d\n",
3500                              obj->gtt_offset, alignment,
3501                              map_and_fenceable,
3502                              obj->map_and_fenceable);
3503                         ret = i915_gem_object_unbind(obj);
3504                         if (ret)
3505                                 return ret;
3506                 }
3507         }
3508
3509         if (obj->gtt_space == NULL) {
3510                 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
3511
3512                 ret = i915_gem_object_bind_to_gtt(obj, alignment,
3513                                                   map_and_fenceable,
3514                                                   nonblocking);
3515                 if (ret)
3516                         return ret;
3517
3518                 if (!dev_priv->mm.aliasing_ppgtt)
3519                         i915_gem_gtt_bind_object(obj, obj->cache_level);
3520         }
3521
3522         if (!obj->has_global_gtt_mapping && map_and_fenceable)
3523                 i915_gem_gtt_bind_object(obj, obj->cache_level);
3524
3525         obj->pin_count++;
3526         obj->pin_mappable |= map_and_fenceable;
3527
3528         return 0;
3529 }
3530
3531 void
3532 i915_gem_object_unpin(struct drm_i915_gem_object *obj)
3533 {
3534         BUG_ON(obj->pin_count == 0);
3535         BUG_ON(obj->gtt_space == NULL);
3536
3537         if (--obj->pin_count == 0)
3538                 obj->pin_mappable = false;
3539 }
3540
3541 int
3542 i915_gem_pin_ioctl(struct drm_device *dev, void *data,
3543                    struct drm_file *file)
3544 {
3545         struct drm_i915_gem_pin *args = data;
3546         struct drm_i915_gem_object *obj;
3547         int ret;
3548
3549         ret = i915_mutex_lock_interruptible(dev);
3550         if (ret)
3551                 return ret;
3552
3553         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3554         if (&obj->base == NULL) {
3555                 ret = -ENOENT;
3556                 goto unlock;
3557         }
3558
3559         if (obj->madv != I915_MADV_WILLNEED) {
3560                 DRM_ERROR("Attempting to pin a purgeable buffer\n");
3561                 ret = -EINVAL;
3562                 goto out;
3563         }
3564
3565         if (obj->pin_filp != NULL && obj->pin_filp != file) {
3566                 DRM_ERROR("Already pinned in i915_gem_pin_ioctl(): %d\n",
3567                           args->handle);
3568                 ret = -EINVAL;
3569                 goto out;
3570         }
3571
3572         if (obj->user_pin_count == 0) {
3573                 ret = i915_gem_object_pin(obj, args->alignment, true, false);
3574                 if (ret)
3575                         goto out;
3576         }
3577
3578         obj->user_pin_count++;
3579         obj->pin_filp = file;
3580
3581         /* XXX - flush the CPU caches for pinned objects
3582          * as the X server doesn't manage domains yet
3583          */
3584         i915_gem_object_flush_cpu_write_domain(obj);
3585         args->offset = obj->gtt_offset;
3586 out:
3587         drm_gem_object_unreference(&obj->base);
3588 unlock:
3589         mutex_unlock(&dev->struct_mutex);
3590         return ret;
3591 }
3592
3593 int
3594 i915_gem_unpin_ioctl(struct drm_device *dev, void *data,
3595                      struct drm_file *file)
3596 {
3597         struct drm_i915_gem_pin *args = data;
3598         struct drm_i915_gem_object *obj;
3599         int ret;
3600
3601         ret = i915_mutex_lock_interruptible(dev);
3602         if (ret)
3603                 return ret;
3604
3605         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3606         if (&obj->base == NULL) {
3607                 ret = -ENOENT;
3608                 goto unlock;
3609         }
3610
3611         if (obj->pin_filp != file) {
3612                 DRM_ERROR("Not pinned by caller in i915_gem_pin_ioctl(): %d\n",
3613                           args->handle);
3614                 ret = -EINVAL;
3615                 goto out;
3616         }
3617         obj->user_pin_count--;
3618         if (obj->user_pin_count == 0) {
3619                 obj->pin_filp = NULL;
3620                 i915_gem_object_unpin(obj);
3621         }
3622
3623 out:
3624         drm_gem_object_unreference(&obj->base);
3625 unlock:
3626         mutex_unlock(&dev->struct_mutex);
3627         return ret;
3628 }
3629
3630 int
3631 i915_gem_busy_ioctl(struct drm_device *dev, void *data,
3632                     struct drm_file *file)
3633 {
3634         struct drm_i915_gem_busy *args = data;
3635         struct drm_i915_gem_object *obj;
3636         int ret;
3637
3638         ret = i915_mutex_lock_interruptible(dev);
3639         if (ret)
3640                 return ret;
3641
3642         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3643         if (&obj->base == NULL) {
3644                 ret = -ENOENT;
3645                 goto unlock;
3646         }
3647
3648         /* Count all active objects as busy, even if they are currently not used
3649          * by the gpu. Users of this interface expect objects to eventually
3650          * become non-busy without any further actions, therefore emit any
3651          * necessary flushes here.
3652          */
3653         ret = i915_gem_object_flush_active(obj);
3654
3655         args->busy = obj->active;
3656         if (obj->ring) {
3657                 BUILD_BUG_ON(I915_NUM_RINGS > 16);
3658                 args->busy |= intel_ring_flag(obj->ring) << 16;
3659         }
3660
3661         drm_gem_object_unreference(&obj->base);
3662 unlock:
3663         mutex_unlock(&dev->struct_mutex);
3664         return ret;
3665 }
3666
3667 int
3668 i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
3669                         struct drm_file *file_priv)
3670 {
3671         return i915_gem_ring_throttle(dev, file_priv);
3672 }
3673
3674 int
3675 i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
3676                        struct drm_file *file_priv)
3677 {
3678         struct drm_i915_gem_madvise *args = data;
3679         struct drm_i915_gem_object *obj;
3680         int ret;
3681
3682         switch (args->madv) {
3683         case I915_MADV_DONTNEED:
3684         case I915_MADV_WILLNEED:
3685             break;
3686         default:
3687             return -EINVAL;
3688         }
3689
3690         ret = i915_mutex_lock_interruptible(dev);
3691         if (ret)
3692                 return ret;
3693
3694         obj = to_intel_bo(drm_gem_object_lookup(dev, file_priv, args->handle));
3695         if (&obj->base == NULL) {
3696                 ret = -ENOENT;
3697                 goto unlock;
3698         }
3699
3700         if (obj->pin_count) {
3701                 ret = -EINVAL;
3702                 goto out;
3703         }
3704
3705         if (obj->madv != __I915_MADV_PURGED)
3706                 obj->madv = args->madv;
3707
3708         /* if the object is no longer attached, discard its backing storage */
3709         if (i915_gem_object_is_purgeable(obj) && obj->pages == NULL)
3710                 i915_gem_object_truncate(obj);
3711
3712         args->retained = obj->madv != __I915_MADV_PURGED;
3713
3714 out:
3715         drm_gem_object_unreference(&obj->base);
3716 unlock:
3717         mutex_unlock(&dev->struct_mutex);
3718         return ret;
3719 }
3720
3721 void i915_gem_object_init(struct drm_i915_gem_object *obj,
3722                           const struct drm_i915_gem_object_ops *ops)
3723 {
3724         INIT_LIST_HEAD(&obj->mm_list);
3725         INIT_LIST_HEAD(&obj->gtt_list);
3726         INIT_LIST_HEAD(&obj->ring_list);
3727         INIT_LIST_HEAD(&obj->exec_list);
3728
3729         obj->ops = ops;
3730
3731         obj->fence_reg = I915_FENCE_REG_NONE;
3732         obj->madv = I915_MADV_WILLNEED;
3733         /* Avoid an unnecessary call to unbind on the first bind. */
3734         obj->map_and_fenceable = true;
3735
3736         i915_gem_info_add_obj(obj->base.dev->dev_private, obj->base.size);
3737 }
3738
3739 static const struct drm_i915_gem_object_ops i915_gem_object_ops = {
3740         .get_pages = i915_gem_object_get_pages_gtt,
3741         .put_pages = i915_gem_object_put_pages_gtt,
3742 };
3743
3744 struct drm_i915_gem_object *i915_gem_alloc_object(struct drm_device *dev,
3745                                                   size_t size)
3746 {
3747         struct drm_i915_gem_object *obj;
3748         struct address_space *mapping;
3749         gfp_t mask;
3750
3751         obj = i915_gem_object_alloc(dev);
3752         if (obj == NULL)
3753                 return NULL;
3754
3755         if (drm_gem_object_init(dev, &obj->base, size) != 0) {
3756                 i915_gem_object_free(obj);
3757                 return NULL;
3758         }
3759
3760         mask = GFP_HIGHUSER | __GFP_RECLAIMABLE;
3761         if (IS_CRESTLINE(dev) || IS_BROADWATER(dev)) {
3762                 /* 965gm cannot relocate objects above 4GiB. */
3763                 mask &= ~__GFP_HIGHMEM;
3764                 mask |= __GFP_DMA32;
3765         }
3766
3767         mapping = file_inode(obj->base.filp)->i_mapping;
3768         mapping_set_gfp_mask(mapping, mask);
3769
3770         i915_gem_object_init(obj, &i915_gem_object_ops);
3771
3772         obj->base.write_domain = I915_GEM_DOMAIN_CPU;
3773         obj->base.read_domains = I915_GEM_DOMAIN_CPU;
3774
3775         if (HAS_LLC(dev)) {
3776                 /* On some devices, we can have the GPU use the LLC (the CPU
3777                  * cache) for about a 10% performance improvement
3778                  * compared to uncached.  Graphics requests other than
3779                  * display scanout are coherent with the CPU in
3780                  * accessing this cache.  This means in this mode we
3781                  * don't need to clflush on the CPU side, and on the
3782                  * GPU side we only need to flush internal caches to
3783                  * get data visible to the CPU.
3784                  *
3785                  * However, we maintain the display planes as UC, and so
3786                  * need to rebind when first used as such.
3787                  */
3788                 obj->cache_level = I915_CACHE_LLC;
3789         } else
3790                 obj->cache_level = I915_CACHE_NONE;
3791
3792         return obj;
3793 }
3794
3795 int i915_gem_init_object(struct drm_gem_object *obj)
3796 {
3797         BUG();
3798
3799         return 0;
3800 }
3801
3802 void i915_gem_free_object(struct drm_gem_object *gem_obj)
3803 {
3804         struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
3805         struct drm_device *dev = obj->base.dev;
3806         drm_i915_private_t *dev_priv = dev->dev_private;
3807
3808         trace_i915_gem_object_destroy(obj);
3809
3810         if (obj->phys_obj)
3811                 i915_gem_detach_phys_object(dev, obj);
3812
3813         obj->pin_count = 0;
3814         if (WARN_ON(i915_gem_object_unbind(obj) == -ERESTARTSYS)) {
3815                 bool was_interruptible;
3816
3817                 was_interruptible = dev_priv->mm.interruptible;
3818                 dev_priv->mm.interruptible = false;
3819
3820                 WARN_ON(i915_gem_object_unbind(obj));
3821
3822                 dev_priv->mm.interruptible = was_interruptible;
3823         }
3824
3825         obj->pages_pin_count = 0;
3826         i915_gem_object_put_pages(obj);
3827         i915_gem_object_free_mmap_offset(obj);
3828         i915_gem_object_release_stolen(obj);
3829
3830         BUG_ON(obj->pages);
3831
3832         if (obj->base.import_attach)
3833                 drm_prime_gem_destroy(&obj->base, NULL);
3834
3835         drm_gem_object_release(&obj->base);
3836         i915_gem_info_remove_obj(dev_priv, obj->base.size);
3837
3838         kfree(obj->bit_17);
3839         i915_gem_object_free(obj);
3840 }
3841
3842 int
3843 i915_gem_idle(struct drm_device *dev)
3844 {
3845         drm_i915_private_t *dev_priv = dev->dev_private;
3846         int ret;
3847
3848         mutex_lock(&dev->struct_mutex);
3849
3850         if (dev_priv->mm.suspended) {
3851                 mutex_unlock(&dev->struct_mutex);
3852                 return 0;
3853         }
3854
3855         ret = i915_gpu_idle(dev);
3856         if (ret) {
3857                 mutex_unlock(&dev->struct_mutex);
3858                 return ret;
3859         }
3860         i915_gem_retire_requests(dev);
3861
3862         /* Under UMS, be paranoid and evict. */
3863         if (!drm_core_check_feature(dev, DRIVER_MODESET))
3864                 i915_gem_evict_everything(dev);
3865
3866         /* Hack!  Don't let anybody do execbuf while we don't control the chip.
3867          * We need to replace this with a semaphore, or something.
3868          * And not confound mm.suspended!
3869          */
3870         dev_priv->mm.suspended = 1;
3871         del_timer_sync(&dev_priv->gpu_error.hangcheck_timer);
3872
3873         i915_kernel_lost_context(dev);
3874         i915_gem_cleanup_ringbuffer(dev);
3875
3876         mutex_unlock(&dev->struct_mutex);
3877
3878         /* Cancel the retire work handler, which should be idle now. */
3879         cancel_delayed_work_sync(&dev_priv->mm.retire_work);
3880
3881         return 0;
3882 }
3883
3884 void i915_gem_l3_remap(struct drm_device *dev)
3885 {
3886         drm_i915_private_t *dev_priv = dev->dev_private;
3887         u32 misccpctl;
3888         int i;
3889
3890         if (!HAS_L3_GPU_CACHE(dev))
3891                 return;
3892
3893         if (!dev_priv->l3_parity.remap_info)
3894                 return;
3895
3896         misccpctl = I915_READ(GEN7_MISCCPCTL);
3897         I915_WRITE(GEN7_MISCCPCTL, misccpctl & ~GEN7_DOP_CLOCK_GATE_ENABLE);
3898         POSTING_READ(GEN7_MISCCPCTL);
3899
3900         for (i = 0; i < GEN7_L3LOG_SIZE; i += 4) {
3901                 u32 remap = I915_READ(GEN7_L3LOG_BASE + i);
3902                 if (remap && remap != dev_priv->l3_parity.remap_info[i/4])
3903                         DRM_DEBUG("0x%x was already programmed to %x\n",
3904                                   GEN7_L3LOG_BASE + i, remap);
3905                 if (remap && !dev_priv->l3_parity.remap_info[i/4])
3906                         DRM_DEBUG_DRIVER("Clearing remapped register\n");
3907                 I915_WRITE(GEN7_L3LOG_BASE + i, dev_priv->l3_parity.remap_info[i/4]);
3908         }
3909
3910         /* Make sure all the writes land before disabling dop clock gating */
3911         POSTING_READ(GEN7_L3LOG_BASE);
3912
3913         I915_WRITE(GEN7_MISCCPCTL, misccpctl);
3914 }
3915
3916 void i915_gem_init_swizzling(struct drm_device *dev)
3917 {
3918         drm_i915_private_t *dev_priv = dev->dev_private;
3919
3920         if (INTEL_INFO(dev)->gen < 5 ||
3921             dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_NONE)
3922                 return;
3923
3924         I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
3925                                  DISP_TILE_SURFACE_SWIZZLING);
3926
3927         if (IS_GEN5(dev))
3928                 return;
3929
3930         I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_SWZCTL);
3931         if (IS_GEN6(dev))
3932                 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_SNB));
3933         else if (IS_GEN7(dev))
3934                 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_IVB));
3935         else
3936                 BUG();
3937 }
3938
3939 static bool
3940 intel_enable_blt(struct drm_device *dev)
3941 {
3942         if (!HAS_BLT(dev))
3943                 return false;
3944
3945         /* The blitter was dysfunctional on early prototypes */
3946         if (IS_GEN6(dev) && dev->pdev->revision < 8) {
3947                 DRM_INFO("BLT not supported on this pre-production hardware;"
3948                          " graphics performance will be degraded.\n");
3949                 return false;
3950         }
3951
3952         return true;
3953 }
3954
3955 static int i915_gem_init_rings(struct drm_device *dev)
3956 {
3957         struct drm_i915_private *dev_priv = dev->dev_private;
3958         int ret;
3959
3960         ret = intel_init_render_ring_buffer(dev);
3961         if (ret)
3962                 return ret;
3963
3964         if (HAS_BSD(dev)) {
3965                 ret = intel_init_bsd_ring_buffer(dev);
3966                 if (ret)
3967                         goto cleanup_render_ring;
3968         }
3969
3970         if (intel_enable_blt(dev)) {
3971                 ret = intel_init_blt_ring_buffer(dev);
3972                 if (ret)
3973                         goto cleanup_bsd_ring;
3974         }
3975
3976         ret = i915_gem_set_seqno(dev, ((u32)~0 - 0x1000));
3977         if (ret)
3978                 goto cleanup_blt_ring;
3979
3980         return 0;
3981
3982 cleanup_blt_ring:
3983         intel_cleanup_ring_buffer(&dev_priv->ring[BCS]);
3984 cleanup_bsd_ring:
3985         intel_cleanup_ring_buffer(&dev_priv->ring[VCS]);
3986 cleanup_render_ring:
3987         intel_cleanup_ring_buffer(&dev_priv->ring[RCS]);
3988
3989         return ret;
3990 }
3991
3992 int
3993 i915_gem_init_hw(struct drm_device *dev)
3994 {
3995         drm_i915_private_t *dev_priv = dev->dev_private;
3996         int ret;
3997
3998         if (INTEL_INFO(dev)->gen < 6 && !intel_enable_gtt())
3999                 return -EIO;
4000
4001         if (IS_HASWELL(dev) && (I915_READ(0x120010) == 1))
4002                 I915_WRITE(0x9008, I915_READ(0x9008) | 0xf0000);
4003
4004         if (HAS_PCH_NOP(dev)) {
4005                 u32 temp = I915_READ(GEN7_MSG_CTL);
4006                 temp &= ~(WAIT_FOR_PCH_FLR_ACK | WAIT_FOR_PCH_RESET_ACK);
4007                 I915_WRITE(GEN7_MSG_CTL, temp);
4008         }
4009
4010         i915_gem_l3_remap(dev);
4011
4012         i915_gem_init_swizzling(dev);
4013
4014         ret = i915_gem_init_rings(dev);
4015         if (ret)
4016                 return ret;
4017
4018         /*
4019          * XXX: There was some w/a described somewhere suggesting loading
4020          * contexts before PPGTT.
4021          */
4022         i915_gem_context_init(dev);
4023         if (dev_priv->mm.aliasing_ppgtt) {
4024                 ret = dev_priv->mm.aliasing_ppgtt->enable(dev);
4025                 if (ret) {
4026                         i915_gem_cleanup_aliasing_ppgtt(dev);
4027                         DRM_INFO("PPGTT enable failed. This is not fatal, but unexpected\n");
4028                 }
4029         }
4030
4031         return 0;
4032 }
4033
4034 int i915_gem_init(struct drm_device *dev)
4035 {
4036         struct drm_i915_private *dev_priv = dev->dev_private;
4037         int ret;
4038
4039         mutex_lock(&dev->struct_mutex);
4040
4041         if (IS_VALLEYVIEW(dev)) {
4042                 /* VLVA0 (potential hack), BIOS isn't actually waking us */
4043                 I915_WRITE(VLV_GTLC_WAKE_CTRL, 1);
4044                 if (wait_for((I915_READ(VLV_GTLC_PW_STATUS) & 1) == 1, 10))
4045                         DRM_DEBUG_DRIVER("allow wake ack timed out\n");
4046         }
4047
4048         i915_gem_init_global_gtt(dev);
4049
4050         ret = i915_gem_init_hw(dev);
4051         mutex_unlock(&dev->struct_mutex);
4052         if (ret) {
4053                 i915_gem_cleanup_aliasing_ppgtt(dev);
4054                 return ret;
4055         }
4056
4057         /* Allow hardware batchbuffers unless told otherwise, but not for KMS. */
4058         if (!drm_core_check_feature(dev, DRIVER_MODESET))
4059                 dev_priv->dri1.allow_batchbuffer = 1;
4060         return 0;
4061 }
4062
4063 void
4064 i915_gem_cleanup_ringbuffer(struct drm_device *dev)
4065 {
4066         drm_i915_private_t *dev_priv = dev->dev_private;
4067         struct intel_ring_buffer *ring;
4068         int i;
4069
4070         for_each_ring(ring, dev_priv, i)
4071                 intel_cleanup_ring_buffer(ring);
4072 }
4073
4074 int
4075 i915_gem_entervt_ioctl(struct drm_device *dev, void *data,
4076                        struct drm_file *file_priv)
4077 {
4078         drm_i915_private_t *dev_priv = dev->dev_private;
4079         int ret;
4080
4081         if (drm_core_check_feature(dev, DRIVER_MODESET))
4082                 return 0;
4083
4084         if (i915_reset_in_progress(&dev_priv->gpu_error)) {
4085                 DRM_ERROR("Reenabling wedged hardware, good luck\n");
4086                 atomic_set(&dev_priv->gpu_error.reset_counter, 0);
4087         }
4088
4089         mutex_lock(&dev->struct_mutex);
4090         dev_priv->mm.suspended = 0;
4091
4092         ret = i915_gem_init_hw(dev);
4093         if (ret != 0) {
4094                 mutex_unlock(&dev->struct_mutex);
4095                 return ret;
4096         }
4097
4098         BUG_ON(!list_empty(&dev_priv->mm.active_list));
4099         mutex_unlock(&dev->struct_mutex);
4100
4101         ret = drm_irq_install(dev);
4102         if (ret)
4103                 goto cleanup_ringbuffer;
4104
4105         return 0;
4106
4107 cleanup_ringbuffer:
4108         mutex_lock(&dev->struct_mutex);
4109         i915_gem_cleanup_ringbuffer(dev);
4110         dev_priv->mm.suspended = 1;
4111         mutex_unlock(&dev->struct_mutex);
4112
4113         return ret;
4114 }
4115
4116 int
4117 i915_gem_leavevt_ioctl(struct drm_device *dev, void *data,
4118                        struct drm_file *file_priv)
4119 {
4120         if (drm_core_check_feature(dev, DRIVER_MODESET))
4121                 return 0;
4122
4123         drm_irq_uninstall(dev);
4124         return i915_gem_idle(dev);
4125 }
4126
4127 void
4128 i915_gem_lastclose(struct drm_device *dev)
4129 {
4130         int ret;
4131
4132         if (drm_core_check_feature(dev, DRIVER_MODESET))
4133                 return;
4134
4135         ret = i915_gem_idle(dev);
4136         if (ret)
4137                 DRM_ERROR("failed to idle hardware: %d\n", ret);
4138 }
4139
4140 static void
4141 init_ring_lists(struct intel_ring_buffer *ring)
4142 {
4143         INIT_LIST_HEAD(&ring->active_list);
4144         INIT_LIST_HEAD(&ring->request_list);
4145 }
4146
4147 void
4148 i915_gem_load(struct drm_device *dev)
4149 {
4150         drm_i915_private_t *dev_priv = dev->dev_private;
4151         int i;
4152
4153         dev_priv->slab =
4154                 kmem_cache_create("i915_gem_object",
4155                                   sizeof(struct drm_i915_gem_object), 0,
4156                                   SLAB_HWCACHE_ALIGN,
4157                                   NULL);
4158
4159         INIT_LIST_HEAD(&dev_priv->mm.active_list);
4160         INIT_LIST_HEAD(&dev_priv->mm.inactive_list);
4161         INIT_LIST_HEAD(&dev_priv->mm.unbound_list);
4162         INIT_LIST_HEAD(&dev_priv->mm.bound_list);
4163         INIT_LIST_HEAD(&dev_priv->mm.fence_list);
4164         for (i = 0; i < I915_NUM_RINGS; i++)
4165                 init_ring_lists(&dev_priv->ring[i]);
4166         for (i = 0; i < I915_MAX_NUM_FENCES; i++)
4167                 INIT_LIST_HEAD(&dev_priv->fence_regs[i].lru_list);
4168         INIT_DELAYED_WORK(&dev_priv->mm.retire_work,
4169                           i915_gem_retire_work_handler);
4170         init_waitqueue_head(&dev_priv->gpu_error.reset_queue);
4171
4172         /* On GEN3 we really need to make sure the ARB C3 LP bit is set */
4173         if (IS_GEN3(dev)) {
4174                 I915_WRITE(MI_ARB_STATE,
4175                            _MASKED_BIT_ENABLE(MI_ARB_C3_LP_WRITE_ENABLE));
4176         }
4177
4178         dev_priv->relative_constants_mode = I915_EXEC_CONSTANTS_REL_GENERAL;
4179
4180         /* Old X drivers will take 0-2 for front, back, depth buffers */
4181         if (!drm_core_check_feature(dev, DRIVER_MODESET))
4182                 dev_priv->fence_reg_start = 3;
4183
4184         if (INTEL_INFO(dev)->gen >= 7 && !IS_VALLEYVIEW(dev))
4185                 dev_priv->num_fence_regs = 32;
4186         else if (INTEL_INFO(dev)->gen >= 4 || IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
4187                 dev_priv->num_fence_regs = 16;
4188         else
4189                 dev_priv->num_fence_regs = 8;
4190
4191         /* Initialize fence registers to zero */
4192         INIT_LIST_HEAD(&dev_priv->mm.fence_list);
4193         i915_gem_restore_fences(dev);
4194
4195         i915_gem_detect_bit_6_swizzle(dev);
4196         init_waitqueue_head(&dev_priv->pending_flip_queue);
4197
4198         dev_priv->mm.interruptible = true;
4199
4200         dev_priv->mm.inactive_shrinker.shrink = i915_gem_inactive_shrink;
4201         dev_priv->mm.inactive_shrinker.seeks = DEFAULT_SEEKS;
4202         register_shrinker(&dev_priv->mm.inactive_shrinker);
4203 }
4204
4205 /*
4206  * Create a physically contiguous memory object for this object
4207  * e.g. for cursor + overlay regs
4208  */
4209 static int i915_gem_init_phys_object(struct drm_device *dev,
4210                                      int id, int size, int align)
4211 {
4212         drm_i915_private_t *dev_priv = dev->dev_private;
4213         struct drm_i915_gem_phys_object *phys_obj;
4214         int ret;
4215
4216         if (dev_priv->mm.phys_objs[id - 1] || !size)
4217                 return 0;
4218
4219         phys_obj = kzalloc(sizeof(struct drm_i915_gem_phys_object), GFP_KERNEL);
4220         if (!phys_obj)
4221                 return -ENOMEM;
4222
4223         phys_obj->id = id;
4224
4225         phys_obj->handle = drm_pci_alloc(dev, size, align);
4226         if (!phys_obj->handle) {
4227                 ret = -ENOMEM;
4228                 goto kfree_obj;
4229         }
4230 #ifdef CONFIG_X86
4231         set_memory_wc((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
4232 #endif
4233
4234         dev_priv->mm.phys_objs[id - 1] = phys_obj;
4235
4236         return 0;
4237 kfree_obj:
4238         kfree(phys_obj);
4239         return ret;
4240 }
4241
4242 static void i915_gem_free_phys_object(struct drm_device *dev, int id)
4243 {
4244         drm_i915_private_t *dev_priv = dev->dev_private;
4245         struct drm_i915_gem_phys_object *phys_obj;
4246
4247         if (!dev_priv->mm.phys_objs[id - 1])
4248                 return;
4249
4250         phys_obj = dev_priv->mm.phys_objs[id - 1];
4251         if (phys_obj->cur_obj) {
4252                 i915_gem_detach_phys_object(dev, phys_obj->cur_obj);
4253         }
4254
4255 #ifdef CONFIG_X86
4256         set_memory_wb((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
4257 #endif
4258         drm_pci_free(dev, phys_obj->handle);
4259         kfree(phys_obj);
4260         dev_priv->mm.phys_objs[id - 1] = NULL;
4261 }
4262
4263 void i915_gem_free_all_phys_object(struct drm_device *dev)
4264 {
4265         int i;
4266
4267         for (i = I915_GEM_PHYS_CURSOR_0; i <= I915_MAX_PHYS_OBJECT; i++)
4268                 i915_gem_free_phys_object(dev, i);
4269 }
4270
4271 void i915_gem_detach_phys_object(struct drm_device *dev,
4272                                  struct drm_i915_gem_object *obj)
4273 {
4274         struct address_space *mapping = file_inode(obj->base.filp)->i_mapping;
4275         char *vaddr;
4276         int i;
4277         int page_count;
4278
4279         if (!obj->phys_obj)
4280                 return;
4281         vaddr = obj->phys_obj->handle->vaddr;
4282
4283         page_count = obj->base.size / PAGE_SIZE;
4284         for (i = 0; i < page_count; i++) {
4285                 struct page *page = shmem_read_mapping_page(mapping, i);
4286                 if (!IS_ERR(page)) {
4287                         char *dst = kmap_atomic(page);
4288                         memcpy(dst, vaddr + i*PAGE_SIZE, PAGE_SIZE);
4289                         kunmap_atomic(dst);
4290
4291                         drm_clflush_pages(&page, 1);
4292
4293                         set_page_dirty(page);
4294                         mark_page_accessed(page);
4295                         page_cache_release(page);
4296                 }
4297         }
4298         i915_gem_chipset_flush(dev);
4299
4300         obj->phys_obj->cur_obj = NULL;
4301         obj->phys_obj = NULL;
4302 }
4303
4304 int
4305 i915_gem_attach_phys_object(struct drm_device *dev,
4306                             struct drm_i915_gem_object *obj,
4307                             int id,
4308                             int align)
4309 {
4310         struct address_space *mapping = file_inode(obj->base.filp)->i_mapping;
4311         drm_i915_private_t *dev_priv = dev->dev_private;
4312         int ret = 0;
4313         int page_count;
4314         int i;
4315
4316         if (id > I915_MAX_PHYS_OBJECT)
4317                 return -EINVAL;
4318
4319         if (obj->phys_obj) {
4320                 if (obj->phys_obj->id == id)
4321                         return 0;
4322                 i915_gem_detach_phys_object(dev, obj);
4323         }
4324
4325         /* create a new object */
4326         if (!dev_priv->mm.phys_objs[id - 1]) {
4327                 ret = i915_gem_init_phys_object(dev, id,
4328                                                 obj->base.size, align);
4329                 if (ret) {
4330                         DRM_ERROR("failed to init phys object %d size: %zu\n",
4331                                   id, obj->base.size);
4332                         return ret;
4333                 }
4334         }
4335
4336         /* bind to the object */
4337         obj->phys_obj = dev_priv->mm.phys_objs[id - 1];
4338         obj->phys_obj->cur_obj = obj;
4339
4340         page_count = obj->base.size / PAGE_SIZE;
4341
4342         for (i = 0; i < page_count; i++) {
4343                 struct page *page;
4344                 char *dst, *src;
4345
4346                 page = shmem_read_mapping_page(mapping, i);
4347                 if (IS_ERR(page))
4348                         return PTR_ERR(page);
4349
4350                 src = kmap_atomic(page);
4351                 dst = obj->phys_obj->handle->vaddr + (i * PAGE_SIZE);
4352                 memcpy(dst, src, PAGE_SIZE);
4353                 kunmap_atomic(src);
4354
4355                 mark_page_accessed(page);
4356                 page_cache_release(page);
4357         }
4358
4359         return 0;
4360 }
4361
4362 static int
4363 i915_gem_phys_pwrite(struct drm_device *dev,
4364                      struct drm_i915_gem_object *obj,
4365                      struct drm_i915_gem_pwrite *args,
4366                      struct drm_file *file_priv)
4367 {
4368         void *vaddr = obj->phys_obj->handle->vaddr + args->offset;
4369         char __user *user_data = to_user_ptr(args->data_ptr);
4370
4371         if (__copy_from_user_inatomic_nocache(vaddr, user_data, args->size)) {
4372                 unsigned long unwritten;
4373
4374                 /* The physical object once assigned is fixed for the lifetime
4375                  * of the obj, so we can safely drop the lock and continue
4376                  * to access vaddr.
4377                  */
4378                 mutex_unlock(&dev->struct_mutex);
4379                 unwritten = copy_from_user(vaddr, user_data, args->size);
4380                 mutex_lock(&dev->struct_mutex);
4381                 if (unwritten)
4382                         return -EFAULT;
4383         }
4384
4385         i915_gem_chipset_flush(dev);
4386         return 0;
4387 }
4388
4389 void i915_gem_release(struct drm_device *dev, struct drm_file *file)
4390 {
4391         struct drm_i915_file_private *file_priv = file->driver_priv;
4392
4393         /* Clean up our request list when the client is going away, so that
4394          * later retire_requests won't dereference our soon-to-be-gone
4395          * file_priv.
4396          */
4397         spin_lock(&file_priv->mm.lock);
4398         while (!list_empty(&file_priv->mm.request_list)) {
4399                 struct drm_i915_gem_request *request;
4400
4401                 request = list_first_entry(&file_priv->mm.request_list,
4402                                            struct drm_i915_gem_request,
4403                                            client_list);
4404                 list_del(&request->client_list);
4405                 request->file_priv = NULL;
4406         }
4407         spin_unlock(&file_priv->mm.lock);
4408 }
4409
4410 static bool mutex_is_locked_by(struct mutex *mutex, struct task_struct *task)
4411 {
4412         if (!mutex_is_locked(mutex))
4413                 return false;
4414
4415 #if defined(CONFIG_SMP) || defined(CONFIG_DEBUG_MUTEXES)
4416         return mutex->owner == task;
4417 #else
4418         /* Since UP may be pre-empted, we cannot assume that we own the lock */
4419         return false;
4420 #endif
4421 }
4422
4423 static int
4424 i915_gem_inactive_shrink(struct shrinker *shrinker, struct shrink_control *sc)
4425 {
4426         struct drm_i915_private *dev_priv =
4427                 container_of(shrinker,
4428                              struct drm_i915_private,
4429                              mm.inactive_shrinker);
4430         struct drm_device *dev = dev_priv->dev;
4431         struct drm_i915_gem_object *obj;
4432         int nr_to_scan = sc->nr_to_scan;
4433         bool unlock = true;
4434         int cnt;
4435
4436         if (!mutex_trylock(&dev->struct_mutex)) {
4437                 if (!mutex_is_locked_by(&dev->struct_mutex, current))
4438                         return 0;
4439
4440                 if (dev_priv->mm.shrinker_no_lock_stealing)
4441                         return 0;
4442
4443                 unlock = false;
4444         }
4445
4446         if (nr_to_scan) {
4447                 nr_to_scan -= i915_gem_purge(dev_priv, nr_to_scan);
4448                 if (nr_to_scan > 0)
4449                         nr_to_scan -= __i915_gem_shrink(dev_priv, nr_to_scan,
4450                                                         false);
4451                 if (nr_to_scan > 0)
4452                         i915_gem_shrink_all(dev_priv);
4453         }
4454
4455         cnt = 0;
4456         list_for_each_entry(obj, &dev_priv->mm.unbound_list, gtt_list)
4457                 if (obj->pages_pin_count == 0)
4458                         cnt += obj->base.size >> PAGE_SHIFT;
4459         list_for_each_entry(obj, &dev_priv->mm.inactive_list, gtt_list)
4460                 if (obj->pin_count == 0 && obj->pages_pin_count == 0)
4461                         cnt += obj->base.size >> PAGE_SHIFT;
4462
4463         if (unlock)
4464                 mutex_unlock(&dev->struct_mutex);
4465         return cnt;
4466 }