Merge tag 'v3.9-rc3' into drm-intel-next-queued
[firefly-linux-kernel-4.4.55.git] / drivers / gpu / drm / i915 / i915_gem.c
1 /*
2  * Copyright © 2008 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *    Eric Anholt <eric@anholt.net>
25  *
26  */
27
28 #include <drm/drmP.h>
29 #include <drm/i915_drm.h>
30 #include "i915_drv.h"
31 #include "i915_trace.h"
32 #include "intel_drv.h"
33 #include <linux/shmem_fs.h>
34 #include <linux/slab.h>
35 #include <linux/swap.h>
36 #include <linux/pci.h>
37 #include <linux/dma-buf.h>
38
39 static void i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj);
40 static void i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj);
41 static __must_check int i915_gem_object_bind_to_gtt(struct drm_i915_gem_object *obj,
42                                                     unsigned alignment,
43                                                     bool map_and_fenceable,
44                                                     bool nonblocking);
45 static int i915_gem_phys_pwrite(struct drm_device *dev,
46                                 struct drm_i915_gem_object *obj,
47                                 struct drm_i915_gem_pwrite *args,
48                                 struct drm_file *file);
49
50 static void i915_gem_write_fence(struct drm_device *dev, int reg,
51                                  struct drm_i915_gem_object *obj);
52 static void i915_gem_object_update_fence(struct drm_i915_gem_object *obj,
53                                          struct drm_i915_fence_reg *fence,
54                                          bool enable);
55
56 static int i915_gem_inactive_shrink(struct shrinker *shrinker,
57                                     struct shrink_control *sc);
58 static long i915_gem_purge(struct drm_i915_private *dev_priv, long target);
59 static void i915_gem_shrink_all(struct drm_i915_private *dev_priv);
60 static void i915_gem_object_truncate(struct drm_i915_gem_object *obj);
61
62 static inline void i915_gem_object_fence_lost(struct drm_i915_gem_object *obj)
63 {
64         if (obj->tiling_mode)
65                 i915_gem_release_mmap(obj);
66
67         /* As we do not have an associated fence register, we will force
68          * a tiling change if we ever need to acquire one.
69          */
70         obj->fence_dirty = false;
71         obj->fence_reg = I915_FENCE_REG_NONE;
72 }
73
74 /* some bookkeeping */
75 static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
76                                   size_t size)
77 {
78         dev_priv->mm.object_count++;
79         dev_priv->mm.object_memory += size;
80 }
81
82 static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
83                                      size_t size)
84 {
85         dev_priv->mm.object_count--;
86         dev_priv->mm.object_memory -= size;
87 }
88
89 static int
90 i915_gem_wait_for_error(struct i915_gpu_error *error)
91 {
92         int ret;
93
94 #define EXIT_COND (!i915_reset_in_progress(error))
95         if (EXIT_COND)
96                 return 0;
97
98         /* GPU is already declared terminally dead, give up. */
99         if (i915_terminally_wedged(error))
100                 return -EIO;
101
102         /*
103          * Only wait 10 seconds for the gpu reset to complete to avoid hanging
104          * userspace. If it takes that long something really bad is going on and
105          * we should simply try to bail out and fail as gracefully as possible.
106          */
107         ret = wait_event_interruptible_timeout(error->reset_queue,
108                                                EXIT_COND,
109                                                10*HZ);
110         if (ret == 0) {
111                 DRM_ERROR("Timed out waiting for the gpu reset to complete\n");
112                 return -EIO;
113         } else if (ret < 0) {
114                 return ret;
115         }
116 #undef EXIT_COND
117
118         return 0;
119 }
120
121 int i915_mutex_lock_interruptible(struct drm_device *dev)
122 {
123         struct drm_i915_private *dev_priv = dev->dev_private;
124         int ret;
125
126         ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
127         if (ret)
128                 return ret;
129
130         ret = mutex_lock_interruptible(&dev->struct_mutex);
131         if (ret)
132                 return ret;
133
134         WARN_ON(i915_verify_lists(dev));
135         return 0;
136 }
137
138 static inline bool
139 i915_gem_object_is_inactive(struct drm_i915_gem_object *obj)
140 {
141         return obj->gtt_space && !obj->active;
142 }
143
144 int
145 i915_gem_init_ioctl(struct drm_device *dev, void *data,
146                     struct drm_file *file)
147 {
148         struct drm_i915_private *dev_priv = dev->dev_private;
149         struct drm_i915_gem_init *args = data;
150
151         if (drm_core_check_feature(dev, DRIVER_MODESET))
152                 return -ENODEV;
153
154         if (args->gtt_start >= args->gtt_end ||
155             (args->gtt_end | args->gtt_start) & (PAGE_SIZE - 1))
156                 return -EINVAL;
157
158         /* GEM with user mode setting was never supported on ilk and later. */
159         if (INTEL_INFO(dev)->gen >= 5)
160                 return -ENODEV;
161
162         mutex_lock(&dev->struct_mutex);
163         i915_gem_setup_global_gtt(dev, args->gtt_start, args->gtt_end,
164                                   args->gtt_end);
165         dev_priv->gtt.mappable_end = args->gtt_end;
166         mutex_unlock(&dev->struct_mutex);
167
168         return 0;
169 }
170
171 int
172 i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
173                             struct drm_file *file)
174 {
175         struct drm_i915_private *dev_priv = dev->dev_private;
176         struct drm_i915_gem_get_aperture *args = data;
177         struct drm_i915_gem_object *obj;
178         size_t pinned;
179
180         pinned = 0;
181         mutex_lock(&dev->struct_mutex);
182         list_for_each_entry(obj, &dev_priv->mm.bound_list, gtt_list)
183                 if (obj->pin_count)
184                         pinned += obj->gtt_space->size;
185         mutex_unlock(&dev->struct_mutex);
186
187         args->aper_size = dev_priv->gtt.total;
188         args->aper_available_size = args->aper_size - pinned;
189
190         return 0;
191 }
192
193 void *i915_gem_object_alloc(struct drm_device *dev)
194 {
195         struct drm_i915_private *dev_priv = dev->dev_private;
196         return kmem_cache_alloc(dev_priv->slab, GFP_KERNEL | __GFP_ZERO);
197 }
198
199 void i915_gem_object_free(struct drm_i915_gem_object *obj)
200 {
201         struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
202         kmem_cache_free(dev_priv->slab, obj);
203 }
204
205 static int
206 i915_gem_create(struct drm_file *file,
207                 struct drm_device *dev,
208                 uint64_t size,
209                 uint32_t *handle_p)
210 {
211         struct drm_i915_gem_object *obj;
212         int ret;
213         u32 handle;
214
215         size = roundup(size, PAGE_SIZE);
216         if (size == 0)
217                 return -EINVAL;
218
219         /* Allocate the new object */
220         obj = i915_gem_alloc_object(dev, size);
221         if (obj == NULL)
222                 return -ENOMEM;
223
224         ret = drm_gem_handle_create(file, &obj->base, &handle);
225         if (ret) {
226                 drm_gem_object_release(&obj->base);
227                 i915_gem_info_remove_obj(dev->dev_private, obj->base.size);
228                 i915_gem_object_free(obj);
229                 return ret;
230         }
231
232         /* drop reference from allocate - handle holds it now */
233         drm_gem_object_unreference(&obj->base);
234         trace_i915_gem_object_create(obj);
235
236         *handle_p = handle;
237         return 0;
238 }
239
240 int
241 i915_gem_dumb_create(struct drm_file *file,
242                      struct drm_device *dev,
243                      struct drm_mode_create_dumb *args)
244 {
245         /* have to work out size/pitch and return them */
246         args->pitch = ALIGN(args->width * ((args->bpp + 7) / 8), 64);
247         args->size = args->pitch * args->height;
248         return i915_gem_create(file, dev,
249                                args->size, &args->handle);
250 }
251
252 int i915_gem_dumb_destroy(struct drm_file *file,
253                           struct drm_device *dev,
254                           uint32_t handle)
255 {
256         return drm_gem_handle_delete(file, handle);
257 }
258
259 /**
260  * Creates a new mm object and returns a handle to it.
261  */
262 int
263 i915_gem_create_ioctl(struct drm_device *dev, void *data,
264                       struct drm_file *file)
265 {
266         struct drm_i915_gem_create *args = data;
267
268         return i915_gem_create(file, dev,
269                                args->size, &args->handle);
270 }
271
272 static inline int
273 __copy_to_user_swizzled(char __user *cpu_vaddr,
274                         const char *gpu_vaddr, int gpu_offset,
275                         int length)
276 {
277         int ret, cpu_offset = 0;
278
279         while (length > 0) {
280                 int cacheline_end = ALIGN(gpu_offset + 1, 64);
281                 int this_length = min(cacheline_end - gpu_offset, length);
282                 int swizzled_gpu_offset = gpu_offset ^ 64;
283
284                 ret = __copy_to_user(cpu_vaddr + cpu_offset,
285                                      gpu_vaddr + swizzled_gpu_offset,
286                                      this_length);
287                 if (ret)
288                         return ret + length;
289
290                 cpu_offset += this_length;
291                 gpu_offset += this_length;
292                 length -= this_length;
293         }
294
295         return 0;
296 }
297
298 static inline int
299 __copy_from_user_swizzled(char *gpu_vaddr, int gpu_offset,
300                           const char __user *cpu_vaddr,
301                           int length)
302 {
303         int ret, cpu_offset = 0;
304
305         while (length > 0) {
306                 int cacheline_end = ALIGN(gpu_offset + 1, 64);
307                 int this_length = min(cacheline_end - gpu_offset, length);
308                 int swizzled_gpu_offset = gpu_offset ^ 64;
309
310                 ret = __copy_from_user(gpu_vaddr + swizzled_gpu_offset,
311                                        cpu_vaddr + cpu_offset,
312                                        this_length);
313                 if (ret)
314                         return ret + length;
315
316                 cpu_offset += this_length;
317                 gpu_offset += this_length;
318                 length -= this_length;
319         }
320
321         return 0;
322 }
323
324 /* Per-page copy function for the shmem pread fastpath.
325  * Flushes invalid cachelines before reading the target if
326  * needs_clflush is set. */
327 static int
328 shmem_pread_fast(struct page *page, int shmem_page_offset, int page_length,
329                  char __user *user_data,
330                  bool page_do_bit17_swizzling, bool needs_clflush)
331 {
332         char *vaddr;
333         int ret;
334
335         if (unlikely(page_do_bit17_swizzling))
336                 return -EINVAL;
337
338         vaddr = kmap_atomic(page);
339         if (needs_clflush)
340                 drm_clflush_virt_range(vaddr + shmem_page_offset,
341                                        page_length);
342         ret = __copy_to_user_inatomic(user_data,
343                                       vaddr + shmem_page_offset,
344                                       page_length);
345         kunmap_atomic(vaddr);
346
347         return ret ? -EFAULT : 0;
348 }
349
350 static void
351 shmem_clflush_swizzled_range(char *addr, unsigned long length,
352                              bool swizzled)
353 {
354         if (unlikely(swizzled)) {
355                 unsigned long start = (unsigned long) addr;
356                 unsigned long end = (unsigned long) addr + length;
357
358                 /* For swizzling simply ensure that we always flush both
359                  * channels. Lame, but simple and it works. Swizzled
360                  * pwrite/pread is far from a hotpath - current userspace
361                  * doesn't use it at all. */
362                 start = round_down(start, 128);
363                 end = round_up(end, 128);
364
365                 drm_clflush_virt_range((void *)start, end - start);
366         } else {
367                 drm_clflush_virt_range(addr, length);
368         }
369
370 }
371
372 /* Only difference to the fast-path function is that this can handle bit17
373  * and uses non-atomic copy and kmap functions. */
374 static int
375 shmem_pread_slow(struct page *page, int shmem_page_offset, int page_length,
376                  char __user *user_data,
377                  bool page_do_bit17_swizzling, bool needs_clflush)
378 {
379         char *vaddr;
380         int ret;
381
382         vaddr = kmap(page);
383         if (needs_clflush)
384                 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
385                                              page_length,
386                                              page_do_bit17_swizzling);
387
388         if (page_do_bit17_swizzling)
389                 ret = __copy_to_user_swizzled(user_data,
390                                               vaddr, shmem_page_offset,
391                                               page_length);
392         else
393                 ret = __copy_to_user(user_data,
394                                      vaddr + shmem_page_offset,
395                                      page_length);
396         kunmap(page);
397
398         return ret ? - EFAULT : 0;
399 }
400
401 static int
402 i915_gem_shmem_pread(struct drm_device *dev,
403                      struct drm_i915_gem_object *obj,
404                      struct drm_i915_gem_pread *args,
405                      struct drm_file *file)
406 {
407         char __user *user_data;
408         ssize_t remain;
409         loff_t offset;
410         int shmem_page_offset, page_length, ret = 0;
411         int obj_do_bit17_swizzling, page_do_bit17_swizzling;
412         int prefaulted = 0;
413         int needs_clflush = 0;
414         struct scatterlist *sg;
415         int i;
416
417         user_data = to_user_ptr(args->data_ptr);
418         remain = args->size;
419
420         obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
421
422         if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU)) {
423                 /* If we're not in the cpu read domain, set ourself into the gtt
424                  * read domain and manually flush cachelines (if required). This
425                  * optimizes for the case when the gpu will dirty the data
426                  * anyway again before the next pread happens. */
427                 if (obj->cache_level == I915_CACHE_NONE)
428                         needs_clflush = 1;
429                 if (obj->gtt_space) {
430                         ret = i915_gem_object_set_to_gtt_domain(obj, false);
431                         if (ret)
432                                 return ret;
433                 }
434         }
435
436         ret = i915_gem_object_get_pages(obj);
437         if (ret)
438                 return ret;
439
440         i915_gem_object_pin_pages(obj);
441
442         offset = args->offset;
443
444         for_each_sg(obj->pages->sgl, sg, obj->pages->nents, i) {
445                 struct page *page;
446
447                 if (i < offset >> PAGE_SHIFT)
448                         continue;
449
450                 if (remain <= 0)
451                         break;
452
453                 /* Operation in this page
454                  *
455                  * shmem_page_offset = offset within page in shmem file
456                  * page_length = bytes to copy for this page
457                  */
458                 shmem_page_offset = offset_in_page(offset);
459                 page_length = remain;
460                 if ((shmem_page_offset + page_length) > PAGE_SIZE)
461                         page_length = PAGE_SIZE - shmem_page_offset;
462
463                 page = sg_page(sg);
464                 page_do_bit17_swizzling = obj_do_bit17_swizzling &&
465                         (page_to_phys(page) & (1 << 17)) != 0;
466
467                 ret = shmem_pread_fast(page, shmem_page_offset, page_length,
468                                        user_data, page_do_bit17_swizzling,
469                                        needs_clflush);
470                 if (ret == 0)
471                         goto next_page;
472
473                 mutex_unlock(&dev->struct_mutex);
474
475                 if (!prefaulted) {
476                         ret = fault_in_multipages_writeable(user_data, remain);
477                         /* Userspace is tricking us, but we've already clobbered
478                          * its pages with the prefault and promised to write the
479                          * data up to the first fault. Hence ignore any errors
480                          * and just continue. */
481                         (void)ret;
482                         prefaulted = 1;
483                 }
484
485                 ret = shmem_pread_slow(page, shmem_page_offset, page_length,
486                                        user_data, page_do_bit17_swizzling,
487                                        needs_clflush);
488
489                 mutex_lock(&dev->struct_mutex);
490
491 next_page:
492                 mark_page_accessed(page);
493
494                 if (ret)
495                         goto out;
496
497                 remain -= page_length;
498                 user_data += page_length;
499                 offset += page_length;
500         }
501
502 out:
503         i915_gem_object_unpin_pages(obj);
504
505         return ret;
506 }
507
508 /**
509  * Reads data from the object referenced by handle.
510  *
511  * On error, the contents of *data are undefined.
512  */
513 int
514 i915_gem_pread_ioctl(struct drm_device *dev, void *data,
515                      struct drm_file *file)
516 {
517         struct drm_i915_gem_pread *args = data;
518         struct drm_i915_gem_object *obj;
519         int ret = 0;
520
521         if (args->size == 0)
522                 return 0;
523
524         if (!access_ok(VERIFY_WRITE,
525                        to_user_ptr(args->data_ptr),
526                        args->size))
527                 return -EFAULT;
528
529         ret = i915_mutex_lock_interruptible(dev);
530         if (ret)
531                 return ret;
532
533         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
534         if (&obj->base == NULL) {
535                 ret = -ENOENT;
536                 goto unlock;
537         }
538
539         /* Bounds check source.  */
540         if (args->offset > obj->base.size ||
541             args->size > obj->base.size - args->offset) {
542                 ret = -EINVAL;
543                 goto out;
544         }
545
546         /* prime objects have no backing filp to GEM pread/pwrite
547          * pages from.
548          */
549         if (!obj->base.filp) {
550                 ret = -EINVAL;
551                 goto out;
552         }
553
554         trace_i915_gem_object_pread(obj, args->offset, args->size);
555
556         ret = i915_gem_shmem_pread(dev, obj, args, file);
557
558 out:
559         drm_gem_object_unreference(&obj->base);
560 unlock:
561         mutex_unlock(&dev->struct_mutex);
562         return ret;
563 }
564
565 /* This is the fast write path which cannot handle
566  * page faults in the source data
567  */
568
569 static inline int
570 fast_user_write(struct io_mapping *mapping,
571                 loff_t page_base, int page_offset,
572                 char __user *user_data,
573                 int length)
574 {
575         void __iomem *vaddr_atomic;
576         void *vaddr;
577         unsigned long unwritten;
578
579         vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base);
580         /* We can use the cpu mem copy function because this is X86. */
581         vaddr = (void __force*)vaddr_atomic + page_offset;
582         unwritten = __copy_from_user_inatomic_nocache(vaddr,
583                                                       user_data, length);
584         io_mapping_unmap_atomic(vaddr_atomic);
585         return unwritten;
586 }
587
588 /**
589  * This is the fast pwrite path, where we copy the data directly from the
590  * user into the GTT, uncached.
591  */
592 static int
593 i915_gem_gtt_pwrite_fast(struct drm_device *dev,
594                          struct drm_i915_gem_object *obj,
595                          struct drm_i915_gem_pwrite *args,
596                          struct drm_file *file)
597 {
598         drm_i915_private_t *dev_priv = dev->dev_private;
599         ssize_t remain;
600         loff_t offset, page_base;
601         char __user *user_data;
602         int page_offset, page_length, ret;
603
604         ret = i915_gem_object_pin(obj, 0, true, true);
605         if (ret)
606                 goto out;
607
608         ret = i915_gem_object_set_to_gtt_domain(obj, true);
609         if (ret)
610                 goto out_unpin;
611
612         ret = i915_gem_object_put_fence(obj);
613         if (ret)
614                 goto out_unpin;
615
616         user_data = to_user_ptr(args->data_ptr);
617         remain = args->size;
618
619         offset = obj->gtt_offset + args->offset;
620
621         while (remain > 0) {
622                 /* Operation in this page
623                  *
624                  * page_base = page offset within aperture
625                  * page_offset = offset within page
626                  * page_length = bytes to copy for this page
627                  */
628                 page_base = offset & PAGE_MASK;
629                 page_offset = offset_in_page(offset);
630                 page_length = remain;
631                 if ((page_offset + remain) > PAGE_SIZE)
632                         page_length = PAGE_SIZE - page_offset;
633
634                 /* If we get a fault while copying data, then (presumably) our
635                  * source page isn't available.  Return the error and we'll
636                  * retry in the slow path.
637                  */
638                 if (fast_user_write(dev_priv->gtt.mappable, page_base,
639                                     page_offset, user_data, page_length)) {
640                         ret = -EFAULT;
641                         goto out_unpin;
642                 }
643
644                 remain -= page_length;
645                 user_data += page_length;
646                 offset += page_length;
647         }
648
649 out_unpin:
650         i915_gem_object_unpin(obj);
651 out:
652         return ret;
653 }
654
655 /* Per-page copy function for the shmem pwrite fastpath.
656  * Flushes invalid cachelines before writing to the target if
657  * needs_clflush_before is set and flushes out any written cachelines after
658  * writing if needs_clflush is set. */
659 static int
660 shmem_pwrite_fast(struct page *page, int shmem_page_offset, int page_length,
661                   char __user *user_data,
662                   bool page_do_bit17_swizzling,
663                   bool needs_clflush_before,
664                   bool needs_clflush_after)
665 {
666         char *vaddr;
667         int ret;
668
669         if (unlikely(page_do_bit17_swizzling))
670                 return -EINVAL;
671
672         vaddr = kmap_atomic(page);
673         if (needs_clflush_before)
674                 drm_clflush_virt_range(vaddr + shmem_page_offset,
675                                        page_length);
676         ret = __copy_from_user_inatomic_nocache(vaddr + shmem_page_offset,
677                                                 user_data,
678                                                 page_length);
679         if (needs_clflush_after)
680                 drm_clflush_virt_range(vaddr + shmem_page_offset,
681                                        page_length);
682         kunmap_atomic(vaddr);
683
684         return ret ? -EFAULT : 0;
685 }
686
687 /* Only difference to the fast-path function is that this can handle bit17
688  * and uses non-atomic copy and kmap functions. */
689 static int
690 shmem_pwrite_slow(struct page *page, int shmem_page_offset, int page_length,
691                   char __user *user_data,
692                   bool page_do_bit17_swizzling,
693                   bool needs_clflush_before,
694                   bool needs_clflush_after)
695 {
696         char *vaddr;
697         int ret;
698
699         vaddr = kmap(page);
700         if (unlikely(needs_clflush_before || page_do_bit17_swizzling))
701                 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
702                                              page_length,
703                                              page_do_bit17_swizzling);
704         if (page_do_bit17_swizzling)
705                 ret = __copy_from_user_swizzled(vaddr, shmem_page_offset,
706                                                 user_data,
707                                                 page_length);
708         else
709                 ret = __copy_from_user(vaddr + shmem_page_offset,
710                                        user_data,
711                                        page_length);
712         if (needs_clflush_after)
713                 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
714                                              page_length,
715                                              page_do_bit17_swizzling);
716         kunmap(page);
717
718         return ret ? -EFAULT : 0;
719 }
720
721 static int
722 i915_gem_shmem_pwrite(struct drm_device *dev,
723                       struct drm_i915_gem_object *obj,
724                       struct drm_i915_gem_pwrite *args,
725                       struct drm_file *file)
726 {
727         ssize_t remain;
728         loff_t offset;
729         char __user *user_data;
730         int shmem_page_offset, page_length, ret = 0;
731         int obj_do_bit17_swizzling, page_do_bit17_swizzling;
732         int hit_slowpath = 0;
733         int needs_clflush_after = 0;
734         int needs_clflush_before = 0;
735         int i;
736         struct scatterlist *sg;
737
738         user_data = to_user_ptr(args->data_ptr);
739         remain = args->size;
740
741         obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
742
743         if (obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
744                 /* If we're not in the cpu write domain, set ourself into the gtt
745                  * write domain and manually flush cachelines (if required). This
746                  * optimizes for the case when the gpu will use the data
747                  * right away and we therefore have to clflush anyway. */
748                 if (obj->cache_level == I915_CACHE_NONE)
749                         needs_clflush_after = 1;
750                 if (obj->gtt_space) {
751                         ret = i915_gem_object_set_to_gtt_domain(obj, true);
752                         if (ret)
753                                 return ret;
754                 }
755         }
756         /* Same trick applies for invalidate partially written cachelines before
757          * writing.  */
758         if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU)
759             && obj->cache_level == I915_CACHE_NONE)
760                 needs_clflush_before = 1;
761
762         ret = i915_gem_object_get_pages(obj);
763         if (ret)
764                 return ret;
765
766         i915_gem_object_pin_pages(obj);
767
768         offset = args->offset;
769         obj->dirty = 1;
770
771         for_each_sg(obj->pages->sgl, sg, obj->pages->nents, i) {
772                 struct page *page;
773                 int partial_cacheline_write;
774
775                 if (i < offset >> PAGE_SHIFT)
776                         continue;
777
778                 if (remain <= 0)
779                         break;
780
781                 /* Operation in this page
782                  *
783                  * shmem_page_offset = offset within page in shmem file
784                  * page_length = bytes to copy for this page
785                  */
786                 shmem_page_offset = offset_in_page(offset);
787
788                 page_length = remain;
789                 if ((shmem_page_offset + page_length) > PAGE_SIZE)
790                         page_length = PAGE_SIZE - shmem_page_offset;
791
792                 /* If we don't overwrite a cacheline completely we need to be
793                  * careful to have up-to-date data by first clflushing. Don't
794                  * overcomplicate things and flush the entire patch. */
795                 partial_cacheline_write = needs_clflush_before &&
796                         ((shmem_page_offset | page_length)
797                                 & (boot_cpu_data.x86_clflush_size - 1));
798
799                 page = sg_page(sg);
800                 page_do_bit17_swizzling = obj_do_bit17_swizzling &&
801                         (page_to_phys(page) & (1 << 17)) != 0;
802
803                 ret = shmem_pwrite_fast(page, shmem_page_offset, page_length,
804                                         user_data, page_do_bit17_swizzling,
805                                         partial_cacheline_write,
806                                         needs_clflush_after);
807                 if (ret == 0)
808                         goto next_page;
809
810                 hit_slowpath = 1;
811                 mutex_unlock(&dev->struct_mutex);
812                 ret = shmem_pwrite_slow(page, shmem_page_offset, page_length,
813                                         user_data, page_do_bit17_swizzling,
814                                         partial_cacheline_write,
815                                         needs_clflush_after);
816
817                 mutex_lock(&dev->struct_mutex);
818
819 next_page:
820                 set_page_dirty(page);
821                 mark_page_accessed(page);
822
823                 if (ret)
824                         goto out;
825
826                 remain -= page_length;
827                 user_data += page_length;
828                 offset += page_length;
829         }
830
831 out:
832         i915_gem_object_unpin_pages(obj);
833
834         if (hit_slowpath) {
835                 /*
836                  * Fixup: Flush cpu caches in case we didn't flush the dirty
837                  * cachelines in-line while writing and the object moved
838                  * out of the cpu write domain while we've dropped the lock.
839                  */
840                 if (!needs_clflush_after &&
841                     obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
842                         i915_gem_clflush_object(obj);
843                         i915_gem_chipset_flush(dev);
844                 }
845         }
846
847         if (needs_clflush_after)
848                 i915_gem_chipset_flush(dev);
849
850         return ret;
851 }
852
853 /**
854  * Writes data to the object referenced by handle.
855  *
856  * On error, the contents of the buffer that were to be modified are undefined.
857  */
858 int
859 i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
860                       struct drm_file *file)
861 {
862         struct drm_i915_gem_pwrite *args = data;
863         struct drm_i915_gem_object *obj;
864         int ret;
865
866         if (args->size == 0)
867                 return 0;
868
869         if (!access_ok(VERIFY_READ,
870                        to_user_ptr(args->data_ptr),
871                        args->size))
872                 return -EFAULT;
873
874         ret = fault_in_multipages_readable(to_user_ptr(args->data_ptr),
875                                            args->size);
876         if (ret)
877                 return -EFAULT;
878
879         ret = i915_mutex_lock_interruptible(dev);
880         if (ret)
881                 return ret;
882
883         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
884         if (&obj->base == NULL) {
885                 ret = -ENOENT;
886                 goto unlock;
887         }
888
889         /* Bounds check destination. */
890         if (args->offset > obj->base.size ||
891             args->size > obj->base.size - args->offset) {
892                 ret = -EINVAL;
893                 goto out;
894         }
895
896         /* prime objects have no backing filp to GEM pread/pwrite
897          * pages from.
898          */
899         if (!obj->base.filp) {
900                 ret = -EINVAL;
901                 goto out;
902         }
903
904         trace_i915_gem_object_pwrite(obj, args->offset, args->size);
905
906         ret = -EFAULT;
907         /* We can only do the GTT pwrite on untiled buffers, as otherwise
908          * it would end up going through the fenced access, and we'll get
909          * different detiling behavior between reading and writing.
910          * pread/pwrite currently are reading and writing from the CPU
911          * perspective, requiring manual detiling by the client.
912          */
913         if (obj->phys_obj) {
914                 ret = i915_gem_phys_pwrite(dev, obj, args, file);
915                 goto out;
916         }
917
918         if (obj->cache_level == I915_CACHE_NONE &&
919             obj->tiling_mode == I915_TILING_NONE &&
920             obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
921                 ret = i915_gem_gtt_pwrite_fast(dev, obj, args, file);
922                 /* Note that the gtt paths might fail with non-page-backed user
923                  * pointers (e.g. gtt mappings when moving data between
924                  * textures). Fallback to the shmem path in that case. */
925         }
926
927         if (ret == -EFAULT || ret == -ENOSPC)
928                 ret = i915_gem_shmem_pwrite(dev, obj, args, file);
929
930 out:
931         drm_gem_object_unreference(&obj->base);
932 unlock:
933         mutex_unlock(&dev->struct_mutex);
934         return ret;
935 }
936
937 int
938 i915_gem_check_wedge(struct i915_gpu_error *error,
939                      bool interruptible)
940 {
941         if (i915_reset_in_progress(error)) {
942                 /* Non-interruptible callers can't handle -EAGAIN, hence return
943                  * -EIO unconditionally for these. */
944                 if (!interruptible)
945                         return -EIO;
946
947                 /* Recovery complete, but the reset failed ... */
948                 if (i915_terminally_wedged(error))
949                         return -EIO;
950
951                 return -EAGAIN;
952         }
953
954         return 0;
955 }
956
957 /*
958  * Compare seqno against outstanding lazy request. Emit a request if they are
959  * equal.
960  */
961 static int
962 i915_gem_check_olr(struct intel_ring_buffer *ring, u32 seqno)
963 {
964         int ret;
965
966         BUG_ON(!mutex_is_locked(&ring->dev->struct_mutex));
967
968         ret = 0;
969         if (seqno == ring->outstanding_lazy_request)
970                 ret = i915_add_request(ring, NULL, NULL);
971
972         return ret;
973 }
974
975 /**
976  * __wait_seqno - wait until execution of seqno has finished
977  * @ring: the ring expected to report seqno
978  * @seqno: duh!
979  * @reset_counter: reset sequence associated with the given seqno
980  * @interruptible: do an interruptible wait (normally yes)
981  * @timeout: in - how long to wait (NULL forever); out - how much time remaining
982  *
983  * Note: It is of utmost importance that the passed in seqno and reset_counter
984  * values have been read by the caller in an smp safe manner. Where read-side
985  * locks are involved, it is sufficient to read the reset_counter before
986  * unlocking the lock that protects the seqno. For lockless tricks, the
987  * reset_counter _must_ be read before, and an appropriate smp_rmb must be
988  * inserted.
989  *
990  * Returns 0 if the seqno was found within the alloted time. Else returns the
991  * errno with remaining time filled in timeout argument.
992  */
993 static int __wait_seqno(struct intel_ring_buffer *ring, u32 seqno,
994                         unsigned reset_counter,
995                         bool interruptible, struct timespec *timeout)
996 {
997         drm_i915_private_t *dev_priv = ring->dev->dev_private;
998         struct timespec before, now, wait_time={1,0};
999         unsigned long timeout_jiffies;
1000         long end;
1001         bool wait_forever = true;
1002         int ret;
1003
1004         if (i915_seqno_passed(ring->get_seqno(ring, true), seqno))
1005                 return 0;
1006
1007         trace_i915_gem_request_wait_begin(ring, seqno);
1008
1009         if (timeout != NULL) {
1010                 wait_time = *timeout;
1011                 wait_forever = false;
1012         }
1013
1014         timeout_jiffies = timespec_to_jiffies(&wait_time);
1015
1016         if (WARN_ON(!ring->irq_get(ring)))
1017                 return -ENODEV;
1018
1019         /* Record current time in case interrupted by signal, or wedged * */
1020         getrawmonotonic(&before);
1021
1022 #define EXIT_COND \
1023         (i915_seqno_passed(ring->get_seqno(ring, false), seqno) || \
1024          i915_reset_in_progress(&dev_priv->gpu_error) || \
1025          reset_counter != atomic_read(&dev_priv->gpu_error.reset_counter))
1026         do {
1027                 if (interruptible)
1028                         end = wait_event_interruptible_timeout(ring->irq_queue,
1029                                                                EXIT_COND,
1030                                                                timeout_jiffies);
1031                 else
1032                         end = wait_event_timeout(ring->irq_queue, EXIT_COND,
1033                                                  timeout_jiffies);
1034
1035                 /* We need to check whether any gpu reset happened in between
1036                  * the caller grabbing the seqno and now ... */
1037                 if (reset_counter != atomic_read(&dev_priv->gpu_error.reset_counter))
1038                         end = -EAGAIN;
1039
1040                 /* ... but upgrade the -EGAIN to an -EIO if the gpu is truely
1041                  * gone. */
1042                 ret = i915_gem_check_wedge(&dev_priv->gpu_error, interruptible);
1043                 if (ret)
1044                         end = ret;
1045         } while (end == 0 && wait_forever);
1046
1047         getrawmonotonic(&now);
1048
1049         ring->irq_put(ring);
1050         trace_i915_gem_request_wait_end(ring, seqno);
1051 #undef EXIT_COND
1052
1053         if (timeout) {
1054                 struct timespec sleep_time = timespec_sub(now, before);
1055                 *timeout = timespec_sub(*timeout, sleep_time);
1056         }
1057
1058         switch (end) {
1059         case -EIO:
1060         case -EAGAIN: /* Wedged */
1061         case -ERESTARTSYS: /* Signal */
1062                 return (int)end;
1063         case 0: /* Timeout */
1064                 if (timeout)
1065                         set_normalized_timespec(timeout, 0, 0);
1066                 return -ETIME;
1067         default: /* Completed */
1068                 WARN_ON(end < 0); /* We're not aware of other errors */
1069                 return 0;
1070         }
1071 }
1072
1073 /**
1074  * Waits for a sequence number to be signaled, and cleans up the
1075  * request and object lists appropriately for that event.
1076  */
1077 int
1078 i915_wait_seqno(struct intel_ring_buffer *ring, uint32_t seqno)
1079 {
1080         struct drm_device *dev = ring->dev;
1081         struct drm_i915_private *dev_priv = dev->dev_private;
1082         bool interruptible = dev_priv->mm.interruptible;
1083         int ret;
1084
1085         BUG_ON(!mutex_is_locked(&dev->struct_mutex));
1086         BUG_ON(seqno == 0);
1087
1088         ret = i915_gem_check_wedge(&dev_priv->gpu_error, interruptible);
1089         if (ret)
1090                 return ret;
1091
1092         ret = i915_gem_check_olr(ring, seqno);
1093         if (ret)
1094                 return ret;
1095
1096         return __wait_seqno(ring, seqno,
1097                             atomic_read(&dev_priv->gpu_error.reset_counter),
1098                             interruptible, NULL);
1099 }
1100
1101 /**
1102  * Ensures that all rendering to the object has completed and the object is
1103  * safe to unbind from the GTT or access from the CPU.
1104  */
1105 static __must_check int
1106 i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj,
1107                                bool readonly)
1108 {
1109         struct intel_ring_buffer *ring = obj->ring;
1110         u32 seqno;
1111         int ret;
1112
1113         seqno = readonly ? obj->last_write_seqno : obj->last_read_seqno;
1114         if (seqno == 0)
1115                 return 0;
1116
1117         ret = i915_wait_seqno(ring, seqno);
1118         if (ret)
1119                 return ret;
1120
1121         i915_gem_retire_requests_ring(ring);
1122
1123         /* Manually manage the write flush as we may have not yet
1124          * retired the buffer.
1125          */
1126         if (obj->last_write_seqno &&
1127             i915_seqno_passed(seqno, obj->last_write_seqno)) {
1128                 obj->last_write_seqno = 0;
1129                 obj->base.write_domain &= ~I915_GEM_GPU_DOMAINS;
1130         }
1131
1132         return 0;
1133 }
1134
1135 /* A nonblocking variant of the above wait. This is a highly dangerous routine
1136  * as the object state may change during this call.
1137  */
1138 static __must_check int
1139 i915_gem_object_wait_rendering__nonblocking(struct drm_i915_gem_object *obj,
1140                                             bool readonly)
1141 {
1142         struct drm_device *dev = obj->base.dev;
1143         struct drm_i915_private *dev_priv = dev->dev_private;
1144         struct intel_ring_buffer *ring = obj->ring;
1145         unsigned reset_counter;
1146         u32 seqno;
1147         int ret;
1148
1149         BUG_ON(!mutex_is_locked(&dev->struct_mutex));
1150         BUG_ON(!dev_priv->mm.interruptible);
1151
1152         seqno = readonly ? obj->last_write_seqno : obj->last_read_seqno;
1153         if (seqno == 0)
1154                 return 0;
1155
1156         ret = i915_gem_check_wedge(&dev_priv->gpu_error, true);
1157         if (ret)
1158                 return ret;
1159
1160         ret = i915_gem_check_olr(ring, seqno);
1161         if (ret)
1162                 return ret;
1163
1164         reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
1165         mutex_unlock(&dev->struct_mutex);
1166         ret = __wait_seqno(ring, seqno, reset_counter, true, NULL);
1167         mutex_lock(&dev->struct_mutex);
1168
1169         i915_gem_retire_requests_ring(ring);
1170
1171         /* Manually manage the write flush as we may have not yet
1172          * retired the buffer.
1173          */
1174         if (obj->last_write_seqno &&
1175             i915_seqno_passed(seqno, obj->last_write_seqno)) {
1176                 obj->last_write_seqno = 0;
1177                 obj->base.write_domain &= ~I915_GEM_GPU_DOMAINS;
1178         }
1179
1180         return ret;
1181 }
1182
1183 /**
1184  * Called when user space prepares to use an object with the CPU, either
1185  * through the mmap ioctl's mapping or a GTT mapping.
1186  */
1187 int
1188 i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
1189                           struct drm_file *file)
1190 {
1191         struct drm_i915_gem_set_domain *args = data;
1192         struct drm_i915_gem_object *obj;
1193         uint32_t read_domains = args->read_domains;
1194         uint32_t write_domain = args->write_domain;
1195         int ret;
1196
1197         /* Only handle setting domains to types used by the CPU. */
1198         if (write_domain & I915_GEM_GPU_DOMAINS)
1199                 return -EINVAL;
1200
1201         if (read_domains & I915_GEM_GPU_DOMAINS)
1202                 return -EINVAL;
1203
1204         /* Having something in the write domain implies it's in the read
1205          * domain, and only that read domain.  Enforce that in the request.
1206          */
1207         if (write_domain != 0 && read_domains != write_domain)
1208                 return -EINVAL;
1209
1210         ret = i915_mutex_lock_interruptible(dev);
1211         if (ret)
1212                 return ret;
1213
1214         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1215         if (&obj->base == NULL) {
1216                 ret = -ENOENT;
1217                 goto unlock;
1218         }
1219
1220         /* Try to flush the object off the GPU without holding the lock.
1221          * We will repeat the flush holding the lock in the normal manner
1222          * to catch cases where we are gazumped.
1223          */
1224         ret = i915_gem_object_wait_rendering__nonblocking(obj, !write_domain);
1225         if (ret)
1226                 goto unref;
1227
1228         if (read_domains & I915_GEM_DOMAIN_GTT) {
1229                 ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
1230
1231                 /* Silently promote "you're not bound, there was nothing to do"
1232                  * to success, since the client was just asking us to
1233                  * make sure everything was done.
1234                  */
1235                 if (ret == -EINVAL)
1236                         ret = 0;
1237         } else {
1238                 ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
1239         }
1240
1241 unref:
1242         drm_gem_object_unreference(&obj->base);
1243 unlock:
1244         mutex_unlock(&dev->struct_mutex);
1245         return ret;
1246 }
1247
1248 /**
1249  * Called when user space has done writes to this buffer
1250  */
1251 int
1252 i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
1253                          struct drm_file *file)
1254 {
1255         struct drm_i915_gem_sw_finish *args = data;
1256         struct drm_i915_gem_object *obj;
1257         int ret = 0;
1258
1259         ret = i915_mutex_lock_interruptible(dev);
1260         if (ret)
1261                 return ret;
1262
1263         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1264         if (&obj->base == NULL) {
1265                 ret = -ENOENT;
1266                 goto unlock;
1267         }
1268
1269         /* Pinned buffers may be scanout, so flush the cache */
1270         if (obj->pin_count)
1271                 i915_gem_object_flush_cpu_write_domain(obj);
1272
1273         drm_gem_object_unreference(&obj->base);
1274 unlock:
1275         mutex_unlock(&dev->struct_mutex);
1276         return ret;
1277 }
1278
1279 /**
1280  * Maps the contents of an object, returning the address it is mapped
1281  * into.
1282  *
1283  * While the mapping holds a reference on the contents of the object, it doesn't
1284  * imply a ref on the object itself.
1285  */
1286 int
1287 i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
1288                     struct drm_file *file)
1289 {
1290         struct drm_i915_gem_mmap *args = data;
1291         struct drm_gem_object *obj;
1292         unsigned long addr;
1293
1294         obj = drm_gem_object_lookup(dev, file, args->handle);
1295         if (obj == NULL)
1296                 return -ENOENT;
1297
1298         /* prime objects have no backing filp to GEM mmap
1299          * pages from.
1300          */
1301         if (!obj->filp) {
1302                 drm_gem_object_unreference_unlocked(obj);
1303                 return -EINVAL;
1304         }
1305
1306         addr = vm_mmap(obj->filp, 0, args->size,
1307                        PROT_READ | PROT_WRITE, MAP_SHARED,
1308                        args->offset);
1309         drm_gem_object_unreference_unlocked(obj);
1310         if (IS_ERR((void *)addr))
1311                 return addr;
1312
1313         args->addr_ptr = (uint64_t) addr;
1314
1315         return 0;
1316 }
1317
1318 /**
1319  * i915_gem_fault - fault a page into the GTT
1320  * vma: VMA in question
1321  * vmf: fault info
1322  *
1323  * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
1324  * from userspace.  The fault handler takes care of binding the object to
1325  * the GTT (if needed), allocating and programming a fence register (again,
1326  * only if needed based on whether the old reg is still valid or the object
1327  * is tiled) and inserting a new PTE into the faulting process.
1328  *
1329  * Note that the faulting process may involve evicting existing objects
1330  * from the GTT and/or fence registers to make room.  So performance may
1331  * suffer if the GTT working set is large or there are few fence registers
1332  * left.
1333  */
1334 int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1335 {
1336         struct drm_i915_gem_object *obj = to_intel_bo(vma->vm_private_data);
1337         struct drm_device *dev = obj->base.dev;
1338         drm_i915_private_t *dev_priv = dev->dev_private;
1339         pgoff_t page_offset;
1340         unsigned long pfn;
1341         int ret = 0;
1342         bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
1343
1344         /* We don't use vmf->pgoff since that has the fake offset */
1345         page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >>
1346                 PAGE_SHIFT;
1347
1348         ret = i915_mutex_lock_interruptible(dev);
1349         if (ret)
1350                 goto out;
1351
1352         trace_i915_gem_object_fault(obj, page_offset, true, write);
1353
1354         /* Access to snoopable pages through the GTT is incoherent. */
1355         if (obj->cache_level != I915_CACHE_NONE && !HAS_LLC(dev)) {
1356                 ret = -EINVAL;
1357                 goto unlock;
1358         }
1359
1360         /* Now bind it into the GTT if needed */
1361         ret = i915_gem_object_pin(obj, 0, true, false);
1362         if (ret)
1363                 goto unlock;
1364
1365         ret = i915_gem_object_set_to_gtt_domain(obj, write);
1366         if (ret)
1367                 goto unpin;
1368
1369         ret = i915_gem_object_get_fence(obj);
1370         if (ret)
1371                 goto unpin;
1372
1373         obj->fault_mappable = true;
1374
1375         pfn = ((dev_priv->gtt.mappable_base + obj->gtt_offset) >> PAGE_SHIFT) +
1376                 page_offset;
1377
1378         /* Finally, remap it using the new GTT offset */
1379         ret = vm_insert_pfn(vma, (unsigned long)vmf->virtual_address, pfn);
1380 unpin:
1381         i915_gem_object_unpin(obj);
1382 unlock:
1383         mutex_unlock(&dev->struct_mutex);
1384 out:
1385         switch (ret) {
1386         case -EIO:
1387                 /* If this -EIO is due to a gpu hang, give the reset code a
1388                  * chance to clean up the mess. Otherwise return the proper
1389                  * SIGBUS. */
1390                 if (i915_terminally_wedged(&dev_priv->gpu_error))
1391                         return VM_FAULT_SIGBUS;
1392         case -EAGAIN:
1393                 /* Give the error handler a chance to run and move the
1394                  * objects off the GPU active list. Next time we service the
1395                  * fault, we should be able to transition the page into the
1396                  * GTT without touching the GPU (and so avoid further
1397                  * EIO/EGAIN). If the GPU is wedged, then there is no issue
1398                  * with coherency, just lost writes.
1399                  */
1400                 set_need_resched();
1401         case 0:
1402         case -ERESTARTSYS:
1403         case -EINTR:
1404         case -EBUSY:
1405                 /*
1406                  * EBUSY is ok: this just means that another thread
1407                  * already did the job.
1408                  */
1409                 return VM_FAULT_NOPAGE;
1410         case -ENOMEM:
1411                 return VM_FAULT_OOM;
1412         case -ENOSPC:
1413                 return VM_FAULT_SIGBUS;
1414         default:
1415                 WARN_ONCE(ret, "unhandled error in i915_gem_fault: %i\n", ret);
1416                 return VM_FAULT_SIGBUS;
1417         }
1418 }
1419
1420 /**
1421  * i915_gem_release_mmap - remove physical page mappings
1422  * @obj: obj in question
1423  *
1424  * Preserve the reservation of the mmapping with the DRM core code, but
1425  * relinquish ownership of the pages back to the system.
1426  *
1427  * It is vital that we remove the page mapping if we have mapped a tiled
1428  * object through the GTT and then lose the fence register due to
1429  * resource pressure. Similarly if the object has been moved out of the
1430  * aperture, than pages mapped into userspace must be revoked. Removing the
1431  * mapping will then trigger a page fault on the next user access, allowing
1432  * fixup by i915_gem_fault().
1433  */
1434 void
1435 i915_gem_release_mmap(struct drm_i915_gem_object *obj)
1436 {
1437         if (!obj->fault_mappable)
1438                 return;
1439
1440         if (obj->base.dev->dev_mapping)
1441                 unmap_mapping_range(obj->base.dev->dev_mapping,
1442                                     (loff_t)obj->base.map_list.hash.key<<PAGE_SHIFT,
1443                                     obj->base.size, 1);
1444
1445         obj->fault_mappable = false;
1446 }
1447
1448 uint32_t
1449 i915_gem_get_gtt_size(struct drm_device *dev, uint32_t size, int tiling_mode)
1450 {
1451         uint32_t gtt_size;
1452
1453         if (INTEL_INFO(dev)->gen >= 4 ||
1454             tiling_mode == I915_TILING_NONE)
1455                 return size;
1456
1457         /* Previous chips need a power-of-two fence region when tiling */
1458         if (INTEL_INFO(dev)->gen == 3)
1459                 gtt_size = 1024*1024;
1460         else
1461                 gtt_size = 512*1024;
1462
1463         while (gtt_size < size)
1464                 gtt_size <<= 1;
1465
1466         return gtt_size;
1467 }
1468
1469 /**
1470  * i915_gem_get_gtt_alignment - return required GTT alignment for an object
1471  * @obj: object to check
1472  *
1473  * Return the required GTT alignment for an object, taking into account
1474  * potential fence register mapping.
1475  */
1476 uint32_t
1477 i915_gem_get_gtt_alignment(struct drm_device *dev, uint32_t size,
1478                            int tiling_mode, bool fenced)
1479 {
1480         /*
1481          * Minimum alignment is 4k (GTT page size), but might be greater
1482          * if a fence register is needed for the object.
1483          */
1484         if (INTEL_INFO(dev)->gen >= 4 || (!fenced && IS_G33(dev)) ||
1485             tiling_mode == I915_TILING_NONE)
1486                 return 4096;
1487
1488         /*
1489          * Previous chips need to be aligned to the size of the smallest
1490          * fence register that can contain the object.
1491          */
1492         return i915_gem_get_gtt_size(dev, size, tiling_mode);
1493 }
1494
1495 static int i915_gem_object_create_mmap_offset(struct drm_i915_gem_object *obj)
1496 {
1497         struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
1498         int ret;
1499
1500         if (obj->base.map_list.map)
1501                 return 0;
1502
1503         dev_priv->mm.shrinker_no_lock_stealing = true;
1504
1505         ret = drm_gem_create_mmap_offset(&obj->base);
1506         if (ret != -ENOSPC)
1507                 goto out;
1508
1509         /* Badly fragmented mmap space? The only way we can recover
1510          * space is by destroying unwanted objects. We can't randomly release
1511          * mmap_offsets as userspace expects them to be persistent for the
1512          * lifetime of the objects. The closest we can is to release the
1513          * offsets on purgeable objects by truncating it and marking it purged,
1514          * which prevents userspace from ever using that object again.
1515          */
1516         i915_gem_purge(dev_priv, obj->base.size >> PAGE_SHIFT);
1517         ret = drm_gem_create_mmap_offset(&obj->base);
1518         if (ret != -ENOSPC)
1519                 goto out;
1520
1521         i915_gem_shrink_all(dev_priv);
1522         ret = drm_gem_create_mmap_offset(&obj->base);
1523 out:
1524         dev_priv->mm.shrinker_no_lock_stealing = false;
1525
1526         return ret;
1527 }
1528
1529 static void i915_gem_object_free_mmap_offset(struct drm_i915_gem_object *obj)
1530 {
1531         if (!obj->base.map_list.map)
1532                 return;
1533
1534         drm_gem_free_mmap_offset(&obj->base);
1535 }
1536
1537 int
1538 i915_gem_mmap_gtt(struct drm_file *file,
1539                   struct drm_device *dev,
1540                   uint32_t handle,
1541                   uint64_t *offset)
1542 {
1543         struct drm_i915_private *dev_priv = dev->dev_private;
1544         struct drm_i915_gem_object *obj;
1545         int ret;
1546
1547         ret = i915_mutex_lock_interruptible(dev);
1548         if (ret)
1549                 return ret;
1550
1551         obj = to_intel_bo(drm_gem_object_lookup(dev, file, handle));
1552         if (&obj->base == NULL) {
1553                 ret = -ENOENT;
1554                 goto unlock;
1555         }
1556
1557         if (obj->base.size > dev_priv->gtt.mappable_end) {
1558                 ret = -E2BIG;
1559                 goto out;
1560         }
1561
1562         if (obj->madv != I915_MADV_WILLNEED) {
1563                 DRM_ERROR("Attempting to mmap a purgeable buffer\n");
1564                 ret = -EINVAL;
1565                 goto out;
1566         }
1567
1568         ret = i915_gem_object_create_mmap_offset(obj);
1569         if (ret)
1570                 goto out;
1571
1572         *offset = (u64)obj->base.map_list.hash.key << PAGE_SHIFT;
1573
1574 out:
1575         drm_gem_object_unreference(&obj->base);
1576 unlock:
1577         mutex_unlock(&dev->struct_mutex);
1578         return ret;
1579 }
1580
1581 /**
1582  * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
1583  * @dev: DRM device
1584  * @data: GTT mapping ioctl data
1585  * @file: GEM object info
1586  *
1587  * Simply returns the fake offset to userspace so it can mmap it.
1588  * The mmap call will end up in drm_gem_mmap(), which will set things
1589  * up so we can get faults in the handler above.
1590  *
1591  * The fault handler will take care of binding the object into the GTT
1592  * (since it may have been evicted to make room for something), allocating
1593  * a fence register, and mapping the appropriate aperture address into
1594  * userspace.
1595  */
1596 int
1597 i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
1598                         struct drm_file *file)
1599 {
1600         struct drm_i915_gem_mmap_gtt *args = data;
1601
1602         return i915_gem_mmap_gtt(file, dev, args->handle, &args->offset);
1603 }
1604
1605 /* Immediately discard the backing storage */
1606 static void
1607 i915_gem_object_truncate(struct drm_i915_gem_object *obj)
1608 {
1609         struct inode *inode;
1610
1611         i915_gem_object_free_mmap_offset(obj);
1612
1613         if (obj->base.filp == NULL)
1614                 return;
1615
1616         /* Our goal here is to return as much of the memory as
1617          * is possible back to the system as we are called from OOM.
1618          * To do this we must instruct the shmfs to drop all of its
1619          * backing pages, *now*.
1620          */
1621         inode = file_inode(obj->base.filp);
1622         shmem_truncate_range(inode, 0, (loff_t)-1);
1623
1624         obj->madv = __I915_MADV_PURGED;
1625 }
1626
1627 static inline int
1628 i915_gem_object_is_purgeable(struct drm_i915_gem_object *obj)
1629 {
1630         return obj->madv == I915_MADV_DONTNEED;
1631 }
1632
1633 static void
1634 i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj)
1635 {
1636         int page_count = obj->base.size / PAGE_SIZE;
1637         struct scatterlist *sg;
1638         int ret, i;
1639
1640         BUG_ON(obj->madv == __I915_MADV_PURGED);
1641
1642         ret = i915_gem_object_set_to_cpu_domain(obj, true);
1643         if (ret) {
1644                 /* In the event of a disaster, abandon all caches and
1645                  * hope for the best.
1646                  */
1647                 WARN_ON(ret != -EIO);
1648                 i915_gem_clflush_object(obj);
1649                 obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
1650         }
1651
1652         if (i915_gem_object_needs_bit17_swizzle(obj))
1653                 i915_gem_object_save_bit_17_swizzle(obj);
1654
1655         if (obj->madv == I915_MADV_DONTNEED)
1656                 obj->dirty = 0;
1657
1658         for_each_sg(obj->pages->sgl, sg, page_count, i) {
1659                 struct page *page = sg_page(sg);
1660
1661                 if (obj->dirty)
1662                         set_page_dirty(page);
1663
1664                 if (obj->madv == I915_MADV_WILLNEED)
1665                         mark_page_accessed(page);
1666
1667                 page_cache_release(page);
1668         }
1669         obj->dirty = 0;
1670
1671         sg_free_table(obj->pages);
1672         kfree(obj->pages);
1673 }
1674
1675 int
1676 i915_gem_object_put_pages(struct drm_i915_gem_object *obj)
1677 {
1678         const struct drm_i915_gem_object_ops *ops = obj->ops;
1679
1680         if (obj->pages == NULL)
1681                 return 0;
1682
1683         BUG_ON(obj->gtt_space);
1684
1685         if (obj->pages_pin_count)
1686                 return -EBUSY;
1687
1688         /* ->put_pages might need to allocate memory for the bit17 swizzle
1689          * array, hence protect them from being reaped by removing them from gtt
1690          * lists early. */
1691         list_del(&obj->gtt_list);
1692
1693         ops->put_pages(obj);
1694         obj->pages = NULL;
1695
1696         if (i915_gem_object_is_purgeable(obj))
1697                 i915_gem_object_truncate(obj);
1698
1699         return 0;
1700 }
1701
1702 static long
1703 __i915_gem_shrink(struct drm_i915_private *dev_priv, long target,
1704                   bool purgeable_only)
1705 {
1706         struct drm_i915_gem_object *obj, *next;
1707         long count = 0;
1708
1709         list_for_each_entry_safe(obj, next,
1710                                  &dev_priv->mm.unbound_list,
1711                                  gtt_list) {
1712                 if ((i915_gem_object_is_purgeable(obj) || !purgeable_only) &&
1713                     i915_gem_object_put_pages(obj) == 0) {
1714                         count += obj->base.size >> PAGE_SHIFT;
1715                         if (count >= target)
1716                                 return count;
1717                 }
1718         }
1719
1720         list_for_each_entry_safe(obj, next,
1721                                  &dev_priv->mm.inactive_list,
1722                                  mm_list) {
1723                 if ((i915_gem_object_is_purgeable(obj) || !purgeable_only) &&
1724                     i915_gem_object_unbind(obj) == 0 &&
1725                     i915_gem_object_put_pages(obj) == 0) {
1726                         count += obj->base.size >> PAGE_SHIFT;
1727                         if (count >= target)
1728                                 return count;
1729                 }
1730         }
1731
1732         return count;
1733 }
1734
1735 static long
1736 i915_gem_purge(struct drm_i915_private *dev_priv, long target)
1737 {
1738         return __i915_gem_shrink(dev_priv, target, true);
1739 }
1740
1741 static void
1742 i915_gem_shrink_all(struct drm_i915_private *dev_priv)
1743 {
1744         struct drm_i915_gem_object *obj, *next;
1745
1746         i915_gem_evict_everything(dev_priv->dev);
1747
1748         list_for_each_entry_safe(obj, next, &dev_priv->mm.unbound_list, gtt_list)
1749                 i915_gem_object_put_pages(obj);
1750 }
1751
1752 static int
1753 i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj)
1754 {
1755         struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
1756         int page_count, i;
1757         struct address_space *mapping;
1758         struct sg_table *st;
1759         struct scatterlist *sg;
1760         struct page *page;
1761         gfp_t gfp;
1762
1763         /* Assert that the object is not currently in any GPU domain. As it
1764          * wasn't in the GTT, there shouldn't be any way it could have been in
1765          * a GPU cache
1766          */
1767         BUG_ON(obj->base.read_domains & I915_GEM_GPU_DOMAINS);
1768         BUG_ON(obj->base.write_domain & I915_GEM_GPU_DOMAINS);
1769
1770         st = kmalloc(sizeof(*st), GFP_KERNEL);
1771         if (st == NULL)
1772                 return -ENOMEM;
1773
1774         page_count = obj->base.size / PAGE_SIZE;
1775         if (sg_alloc_table(st, page_count, GFP_KERNEL)) {
1776                 sg_free_table(st);
1777                 kfree(st);
1778                 return -ENOMEM;
1779         }
1780
1781         /* Get the list of pages out of our struct file.  They'll be pinned
1782          * at this point until we release them.
1783          *
1784          * Fail silently without starting the shrinker
1785          */
1786         mapping = file_inode(obj->base.filp)->i_mapping;
1787         gfp = mapping_gfp_mask(mapping);
1788         gfp |= __GFP_NORETRY | __GFP_NOWARN | __GFP_NO_KSWAPD;
1789         gfp &= ~(__GFP_IO | __GFP_WAIT);
1790         for_each_sg(st->sgl, sg, page_count, i) {
1791                 page = shmem_read_mapping_page_gfp(mapping, i, gfp);
1792                 if (IS_ERR(page)) {
1793                         i915_gem_purge(dev_priv, page_count);
1794                         page = shmem_read_mapping_page_gfp(mapping, i, gfp);
1795                 }
1796                 if (IS_ERR(page)) {
1797                         /* We've tried hard to allocate the memory by reaping
1798                          * our own buffer, now let the real VM do its job and
1799                          * go down in flames if truly OOM.
1800                          */
1801                         gfp &= ~(__GFP_NORETRY | __GFP_NOWARN | __GFP_NO_KSWAPD);
1802                         gfp |= __GFP_IO | __GFP_WAIT;
1803
1804                         i915_gem_shrink_all(dev_priv);
1805                         page = shmem_read_mapping_page_gfp(mapping, i, gfp);
1806                         if (IS_ERR(page))
1807                                 goto err_pages;
1808
1809                         gfp |= __GFP_NORETRY | __GFP_NOWARN | __GFP_NO_KSWAPD;
1810                         gfp &= ~(__GFP_IO | __GFP_WAIT);
1811                 }
1812
1813                 sg_set_page(sg, page, PAGE_SIZE, 0);
1814         }
1815
1816         obj->pages = st;
1817
1818         if (i915_gem_object_needs_bit17_swizzle(obj))
1819                 i915_gem_object_do_bit_17_swizzle(obj);
1820
1821         return 0;
1822
1823 err_pages:
1824         for_each_sg(st->sgl, sg, i, page_count)
1825                 page_cache_release(sg_page(sg));
1826         sg_free_table(st);
1827         kfree(st);
1828         return PTR_ERR(page);
1829 }
1830
1831 /* Ensure that the associated pages are gathered from the backing storage
1832  * and pinned into our object. i915_gem_object_get_pages() may be called
1833  * multiple times before they are released by a single call to
1834  * i915_gem_object_put_pages() - once the pages are no longer referenced
1835  * either as a result of memory pressure (reaping pages under the shrinker)
1836  * or as the object is itself released.
1837  */
1838 int
1839 i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
1840 {
1841         struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
1842         const struct drm_i915_gem_object_ops *ops = obj->ops;
1843         int ret;
1844
1845         if (obj->pages)
1846                 return 0;
1847
1848         if (obj->madv != I915_MADV_WILLNEED) {
1849                 DRM_ERROR("Attempting to obtain a purgeable object\n");
1850                 return -EINVAL;
1851         }
1852
1853         BUG_ON(obj->pages_pin_count);
1854
1855         ret = ops->get_pages(obj);
1856         if (ret)
1857                 return ret;
1858
1859         list_add_tail(&obj->gtt_list, &dev_priv->mm.unbound_list);
1860         return 0;
1861 }
1862
1863 void
1864 i915_gem_object_move_to_active(struct drm_i915_gem_object *obj,
1865                                struct intel_ring_buffer *ring)
1866 {
1867         struct drm_device *dev = obj->base.dev;
1868         struct drm_i915_private *dev_priv = dev->dev_private;
1869         u32 seqno = intel_ring_get_seqno(ring);
1870
1871         BUG_ON(ring == NULL);
1872         obj->ring = ring;
1873
1874         /* Add a reference if we're newly entering the active list. */
1875         if (!obj->active) {
1876                 drm_gem_object_reference(&obj->base);
1877                 obj->active = 1;
1878         }
1879
1880         /* Move from whatever list we were on to the tail of execution. */
1881         list_move_tail(&obj->mm_list, &dev_priv->mm.active_list);
1882         list_move_tail(&obj->ring_list, &ring->active_list);
1883
1884         obj->last_read_seqno = seqno;
1885
1886         if (obj->fenced_gpu_access) {
1887                 obj->last_fenced_seqno = seqno;
1888
1889                 /* Bump MRU to take account of the delayed flush */
1890                 if (obj->fence_reg != I915_FENCE_REG_NONE) {
1891                         struct drm_i915_fence_reg *reg;
1892
1893                         reg = &dev_priv->fence_regs[obj->fence_reg];
1894                         list_move_tail(&reg->lru_list,
1895                                        &dev_priv->mm.fence_list);
1896                 }
1897         }
1898 }
1899
1900 static void
1901 i915_gem_object_move_to_inactive(struct drm_i915_gem_object *obj)
1902 {
1903         struct drm_device *dev = obj->base.dev;
1904         struct drm_i915_private *dev_priv = dev->dev_private;
1905
1906         BUG_ON(obj->base.write_domain & ~I915_GEM_GPU_DOMAINS);
1907         BUG_ON(!obj->active);
1908
1909         list_move_tail(&obj->mm_list, &dev_priv->mm.inactive_list);
1910
1911         list_del_init(&obj->ring_list);
1912         obj->ring = NULL;
1913
1914         obj->last_read_seqno = 0;
1915         obj->last_write_seqno = 0;
1916         obj->base.write_domain = 0;
1917
1918         obj->last_fenced_seqno = 0;
1919         obj->fenced_gpu_access = false;
1920
1921         obj->active = 0;
1922         drm_gem_object_unreference(&obj->base);
1923
1924         WARN_ON(i915_verify_lists(dev));
1925 }
1926
1927 static int
1928 i915_gem_init_seqno(struct drm_device *dev, u32 seqno)
1929 {
1930         struct drm_i915_private *dev_priv = dev->dev_private;
1931         struct intel_ring_buffer *ring;
1932         int ret, i, j;
1933
1934         /* Carefully retire all requests without writing to the rings */
1935         for_each_ring(ring, dev_priv, i) {
1936                 ret = intel_ring_idle(ring);
1937                 if (ret)
1938                         return ret;
1939         }
1940         i915_gem_retire_requests(dev);
1941
1942         /* Finally reset hw state */
1943         for_each_ring(ring, dev_priv, i) {
1944                 intel_ring_init_seqno(ring, seqno);
1945
1946                 for (j = 0; j < ARRAY_SIZE(ring->sync_seqno); j++)
1947                         ring->sync_seqno[j] = 0;
1948         }
1949
1950         return 0;
1951 }
1952
1953 int i915_gem_set_seqno(struct drm_device *dev, u32 seqno)
1954 {
1955         struct drm_i915_private *dev_priv = dev->dev_private;
1956         int ret;
1957
1958         if (seqno == 0)
1959                 return -EINVAL;
1960
1961         /* HWS page needs to be set less than what we
1962          * will inject to ring
1963          */
1964         ret = i915_gem_init_seqno(dev, seqno - 1);
1965         if (ret)
1966                 return ret;
1967
1968         /* Carefully set the last_seqno value so that wrap
1969          * detection still works
1970          */
1971         dev_priv->next_seqno = seqno;
1972         dev_priv->last_seqno = seqno - 1;
1973         if (dev_priv->last_seqno == 0)
1974                 dev_priv->last_seqno--;
1975
1976         return 0;
1977 }
1978
1979 int
1980 i915_gem_get_seqno(struct drm_device *dev, u32 *seqno)
1981 {
1982         struct drm_i915_private *dev_priv = dev->dev_private;
1983
1984         /* reserve 0 for non-seqno */
1985         if (dev_priv->next_seqno == 0) {
1986                 int ret = i915_gem_init_seqno(dev, 0);
1987                 if (ret)
1988                         return ret;
1989
1990                 dev_priv->next_seqno = 1;
1991         }
1992
1993         *seqno = dev_priv->last_seqno = dev_priv->next_seqno++;
1994         return 0;
1995 }
1996
1997 int
1998 i915_add_request(struct intel_ring_buffer *ring,
1999                  struct drm_file *file,
2000                  u32 *out_seqno)
2001 {
2002         drm_i915_private_t *dev_priv = ring->dev->dev_private;
2003         struct drm_i915_gem_request *request;
2004         u32 request_ring_position;
2005         int was_empty;
2006         int ret;
2007
2008         /*
2009          * Emit any outstanding flushes - execbuf can fail to emit the flush
2010          * after having emitted the batchbuffer command. Hence we need to fix
2011          * things up similar to emitting the lazy request. The difference here
2012          * is that the flush _must_ happen before the next request, no matter
2013          * what.
2014          */
2015         ret = intel_ring_flush_all_caches(ring);
2016         if (ret)
2017                 return ret;
2018
2019         request = kmalloc(sizeof(*request), GFP_KERNEL);
2020         if (request == NULL)
2021                 return -ENOMEM;
2022
2023
2024         /* Record the position of the start of the request so that
2025          * should we detect the updated seqno part-way through the
2026          * GPU processing the request, we never over-estimate the
2027          * position of the head.
2028          */
2029         request_ring_position = intel_ring_get_tail(ring);
2030
2031         ret = ring->add_request(ring);
2032         if (ret) {
2033                 kfree(request);
2034                 return ret;
2035         }
2036
2037         request->seqno = intel_ring_get_seqno(ring);
2038         request->ring = ring;
2039         request->tail = request_ring_position;
2040         request->emitted_jiffies = jiffies;
2041         was_empty = list_empty(&ring->request_list);
2042         list_add_tail(&request->list, &ring->request_list);
2043         request->file_priv = NULL;
2044
2045         if (file) {
2046                 struct drm_i915_file_private *file_priv = file->driver_priv;
2047
2048                 spin_lock(&file_priv->mm.lock);
2049                 request->file_priv = file_priv;
2050                 list_add_tail(&request->client_list,
2051                               &file_priv->mm.request_list);
2052                 spin_unlock(&file_priv->mm.lock);
2053         }
2054
2055         trace_i915_gem_request_add(ring, request->seqno);
2056         ring->outstanding_lazy_request = 0;
2057
2058         if (!dev_priv->mm.suspended) {
2059                 if (i915_enable_hangcheck) {
2060                         mod_timer(&dev_priv->gpu_error.hangcheck_timer,
2061                                   round_jiffies_up(jiffies + DRM_I915_HANGCHECK_JIFFIES));
2062                 }
2063                 if (was_empty) {
2064                         queue_delayed_work(dev_priv->wq,
2065                                            &dev_priv->mm.retire_work,
2066                                            round_jiffies_up_relative(HZ));
2067                         intel_mark_busy(dev_priv->dev);
2068                 }
2069         }
2070
2071         if (out_seqno)
2072                 *out_seqno = request->seqno;
2073         return 0;
2074 }
2075
2076 static inline void
2077 i915_gem_request_remove_from_client(struct drm_i915_gem_request *request)
2078 {
2079         struct drm_i915_file_private *file_priv = request->file_priv;
2080
2081         if (!file_priv)
2082                 return;
2083
2084         spin_lock(&file_priv->mm.lock);
2085         if (request->file_priv) {
2086                 list_del(&request->client_list);
2087                 request->file_priv = NULL;
2088         }
2089         spin_unlock(&file_priv->mm.lock);
2090 }
2091
2092 static void i915_gem_reset_ring_lists(struct drm_i915_private *dev_priv,
2093                                       struct intel_ring_buffer *ring)
2094 {
2095         while (!list_empty(&ring->request_list)) {
2096                 struct drm_i915_gem_request *request;
2097
2098                 request = list_first_entry(&ring->request_list,
2099                                            struct drm_i915_gem_request,
2100                                            list);
2101
2102                 list_del(&request->list);
2103                 i915_gem_request_remove_from_client(request);
2104                 kfree(request);
2105         }
2106
2107         while (!list_empty(&ring->active_list)) {
2108                 struct drm_i915_gem_object *obj;
2109
2110                 obj = list_first_entry(&ring->active_list,
2111                                        struct drm_i915_gem_object,
2112                                        ring_list);
2113
2114                 i915_gem_object_move_to_inactive(obj);
2115         }
2116 }
2117
2118 static void i915_gem_reset_fences(struct drm_device *dev)
2119 {
2120         struct drm_i915_private *dev_priv = dev->dev_private;
2121         int i;
2122
2123         for (i = 0; i < dev_priv->num_fence_regs; i++) {
2124                 struct drm_i915_fence_reg *reg = &dev_priv->fence_regs[i];
2125
2126                 i915_gem_write_fence(dev, i, NULL);
2127
2128                 if (reg->obj)
2129                         i915_gem_object_fence_lost(reg->obj);
2130
2131                 reg->pin_count = 0;
2132                 reg->obj = NULL;
2133                 INIT_LIST_HEAD(&reg->lru_list);
2134         }
2135
2136         INIT_LIST_HEAD(&dev_priv->mm.fence_list);
2137 }
2138
2139 void i915_gem_reset(struct drm_device *dev)
2140 {
2141         struct drm_i915_private *dev_priv = dev->dev_private;
2142         struct drm_i915_gem_object *obj;
2143         struct intel_ring_buffer *ring;
2144         int i;
2145
2146         for_each_ring(ring, dev_priv, i)
2147                 i915_gem_reset_ring_lists(dev_priv, ring);
2148
2149         /* Move everything out of the GPU domains to ensure we do any
2150          * necessary invalidation upon reuse.
2151          */
2152         list_for_each_entry(obj,
2153                             &dev_priv->mm.inactive_list,
2154                             mm_list)
2155         {
2156                 obj->base.read_domains &= ~I915_GEM_GPU_DOMAINS;
2157         }
2158
2159         /* The fence registers are invalidated so clear them out */
2160         i915_gem_reset_fences(dev);
2161 }
2162
2163 /**
2164  * This function clears the request list as sequence numbers are passed.
2165  */
2166 void
2167 i915_gem_retire_requests_ring(struct intel_ring_buffer *ring)
2168 {
2169         uint32_t seqno;
2170
2171         if (list_empty(&ring->request_list))
2172                 return;
2173
2174         WARN_ON(i915_verify_lists(ring->dev));
2175
2176         seqno = ring->get_seqno(ring, true);
2177
2178         while (!list_empty(&ring->request_list)) {
2179                 struct drm_i915_gem_request *request;
2180
2181                 request = list_first_entry(&ring->request_list,
2182                                            struct drm_i915_gem_request,
2183                                            list);
2184
2185                 if (!i915_seqno_passed(seqno, request->seqno))
2186                         break;
2187
2188                 trace_i915_gem_request_retire(ring, request->seqno);
2189                 /* We know the GPU must have read the request to have
2190                  * sent us the seqno + interrupt, so use the position
2191                  * of tail of the request to update the last known position
2192                  * of the GPU head.
2193                  */
2194                 ring->last_retired_head = request->tail;
2195
2196                 list_del(&request->list);
2197                 i915_gem_request_remove_from_client(request);
2198                 kfree(request);
2199         }
2200
2201         /* Move any buffers on the active list that are no longer referenced
2202          * by the ringbuffer to the flushing/inactive lists as appropriate.
2203          */
2204         while (!list_empty(&ring->active_list)) {
2205                 struct drm_i915_gem_object *obj;
2206
2207                 obj = list_first_entry(&ring->active_list,
2208                                       struct drm_i915_gem_object,
2209                                       ring_list);
2210
2211                 if (!i915_seqno_passed(seqno, obj->last_read_seqno))
2212                         break;
2213
2214                 i915_gem_object_move_to_inactive(obj);
2215         }
2216
2217         if (unlikely(ring->trace_irq_seqno &&
2218                      i915_seqno_passed(seqno, ring->trace_irq_seqno))) {
2219                 ring->irq_put(ring);
2220                 ring->trace_irq_seqno = 0;
2221         }
2222
2223         WARN_ON(i915_verify_lists(ring->dev));
2224 }
2225
2226 void
2227 i915_gem_retire_requests(struct drm_device *dev)
2228 {
2229         drm_i915_private_t *dev_priv = dev->dev_private;
2230         struct intel_ring_buffer *ring;
2231         int i;
2232
2233         for_each_ring(ring, dev_priv, i)
2234                 i915_gem_retire_requests_ring(ring);
2235 }
2236
2237 static void
2238 i915_gem_retire_work_handler(struct work_struct *work)
2239 {
2240         drm_i915_private_t *dev_priv;
2241         struct drm_device *dev;
2242         struct intel_ring_buffer *ring;
2243         bool idle;
2244         int i;
2245
2246         dev_priv = container_of(work, drm_i915_private_t,
2247                                 mm.retire_work.work);
2248         dev = dev_priv->dev;
2249
2250         /* Come back later if the device is busy... */
2251         if (!mutex_trylock(&dev->struct_mutex)) {
2252                 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work,
2253                                    round_jiffies_up_relative(HZ));
2254                 return;
2255         }
2256
2257         i915_gem_retire_requests(dev);
2258
2259         /* Send a periodic flush down the ring so we don't hold onto GEM
2260          * objects indefinitely.
2261          */
2262         idle = true;
2263         for_each_ring(ring, dev_priv, i) {
2264                 if (ring->gpu_caches_dirty)
2265                         i915_add_request(ring, NULL, NULL);
2266
2267                 idle &= list_empty(&ring->request_list);
2268         }
2269
2270         if (!dev_priv->mm.suspended && !idle)
2271                 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work,
2272                                    round_jiffies_up_relative(HZ));
2273         if (idle)
2274                 intel_mark_idle(dev);
2275
2276         mutex_unlock(&dev->struct_mutex);
2277 }
2278
2279 /**
2280  * Ensures that an object will eventually get non-busy by flushing any required
2281  * write domains, emitting any outstanding lazy request and retiring and
2282  * completed requests.
2283  */
2284 static int
2285 i915_gem_object_flush_active(struct drm_i915_gem_object *obj)
2286 {
2287         int ret;
2288
2289         if (obj->active) {
2290                 ret = i915_gem_check_olr(obj->ring, obj->last_read_seqno);
2291                 if (ret)
2292                         return ret;
2293
2294                 i915_gem_retire_requests_ring(obj->ring);
2295         }
2296
2297         return 0;
2298 }
2299
2300 /**
2301  * i915_gem_wait_ioctl - implements DRM_IOCTL_I915_GEM_WAIT
2302  * @DRM_IOCTL_ARGS: standard ioctl arguments
2303  *
2304  * Returns 0 if successful, else an error is returned with the remaining time in
2305  * the timeout parameter.
2306  *  -ETIME: object is still busy after timeout
2307  *  -ERESTARTSYS: signal interrupted the wait
2308  *  -ENONENT: object doesn't exist
2309  * Also possible, but rare:
2310  *  -EAGAIN: GPU wedged
2311  *  -ENOMEM: damn
2312  *  -ENODEV: Internal IRQ fail
2313  *  -E?: The add request failed
2314  *
2315  * The wait ioctl with a timeout of 0 reimplements the busy ioctl. With any
2316  * non-zero timeout parameter the wait ioctl will wait for the given number of
2317  * nanoseconds on an object becoming unbusy. Since the wait itself does so
2318  * without holding struct_mutex the object may become re-busied before this
2319  * function completes. A similar but shorter * race condition exists in the busy
2320  * ioctl
2321  */
2322 int
2323 i915_gem_wait_ioctl(struct drm_device *dev, void *data, struct drm_file *file)
2324 {
2325         drm_i915_private_t *dev_priv = dev->dev_private;
2326         struct drm_i915_gem_wait *args = data;
2327         struct drm_i915_gem_object *obj;
2328         struct intel_ring_buffer *ring = NULL;
2329         struct timespec timeout_stack, *timeout = NULL;
2330         unsigned reset_counter;
2331         u32 seqno = 0;
2332         int ret = 0;
2333
2334         if (args->timeout_ns >= 0) {
2335                 timeout_stack = ns_to_timespec(args->timeout_ns);
2336                 timeout = &timeout_stack;
2337         }
2338
2339         ret = i915_mutex_lock_interruptible(dev);
2340         if (ret)
2341                 return ret;
2342
2343         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->bo_handle));
2344         if (&obj->base == NULL) {
2345                 mutex_unlock(&dev->struct_mutex);
2346                 return -ENOENT;
2347         }
2348
2349         /* Need to make sure the object gets inactive eventually. */
2350         ret = i915_gem_object_flush_active(obj);
2351         if (ret)
2352                 goto out;
2353
2354         if (obj->active) {
2355                 seqno = obj->last_read_seqno;
2356                 ring = obj->ring;
2357         }
2358
2359         if (seqno == 0)
2360                  goto out;
2361
2362         /* Do this after OLR check to make sure we make forward progress polling
2363          * on this IOCTL with a 0 timeout (like busy ioctl)
2364          */
2365         if (!args->timeout_ns) {
2366                 ret = -ETIME;
2367                 goto out;
2368         }
2369
2370         drm_gem_object_unreference(&obj->base);
2371         reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
2372         mutex_unlock(&dev->struct_mutex);
2373
2374         ret = __wait_seqno(ring, seqno, reset_counter, true, timeout);
2375         if (timeout) {
2376                 WARN_ON(!timespec_valid(timeout));
2377                 args->timeout_ns = timespec_to_ns(timeout);
2378         }
2379         return ret;
2380
2381 out:
2382         drm_gem_object_unreference(&obj->base);
2383         mutex_unlock(&dev->struct_mutex);
2384         return ret;
2385 }
2386
2387 /**
2388  * i915_gem_object_sync - sync an object to a ring.
2389  *
2390  * @obj: object which may be in use on another ring.
2391  * @to: ring we wish to use the object on. May be NULL.
2392  *
2393  * This code is meant to abstract object synchronization with the GPU.
2394  * Calling with NULL implies synchronizing the object with the CPU
2395  * rather than a particular GPU ring.
2396  *
2397  * Returns 0 if successful, else propagates up the lower layer error.
2398  */
2399 int
2400 i915_gem_object_sync(struct drm_i915_gem_object *obj,
2401                      struct intel_ring_buffer *to)
2402 {
2403         struct intel_ring_buffer *from = obj->ring;
2404         u32 seqno;
2405         int ret, idx;
2406
2407         if (from == NULL || to == from)
2408                 return 0;
2409
2410         if (to == NULL || !i915_semaphore_is_enabled(obj->base.dev))
2411                 return i915_gem_object_wait_rendering(obj, false);
2412
2413         idx = intel_ring_sync_index(from, to);
2414
2415         seqno = obj->last_read_seqno;
2416         if (seqno <= from->sync_seqno[idx])
2417                 return 0;
2418
2419         ret = i915_gem_check_olr(obj->ring, seqno);
2420         if (ret)
2421                 return ret;
2422
2423         ret = to->sync_to(to, from, seqno);
2424         if (!ret)
2425                 /* We use last_read_seqno because sync_to()
2426                  * might have just caused seqno wrap under
2427                  * the radar.
2428                  */
2429                 from->sync_seqno[idx] = obj->last_read_seqno;
2430
2431         return ret;
2432 }
2433
2434 static void i915_gem_object_finish_gtt(struct drm_i915_gem_object *obj)
2435 {
2436         u32 old_write_domain, old_read_domains;
2437
2438         /* Force a pagefault for domain tracking on next user access */
2439         i915_gem_release_mmap(obj);
2440
2441         if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
2442                 return;
2443
2444         /* Wait for any direct GTT access to complete */
2445         mb();
2446
2447         old_read_domains = obj->base.read_domains;
2448         old_write_domain = obj->base.write_domain;
2449
2450         obj->base.read_domains &= ~I915_GEM_DOMAIN_GTT;
2451         obj->base.write_domain &= ~I915_GEM_DOMAIN_GTT;
2452
2453         trace_i915_gem_object_change_domain(obj,
2454                                             old_read_domains,
2455                                             old_write_domain);
2456 }
2457
2458 /**
2459  * Unbinds an object from the GTT aperture.
2460  */
2461 int
2462 i915_gem_object_unbind(struct drm_i915_gem_object *obj)
2463 {
2464         drm_i915_private_t *dev_priv = obj->base.dev->dev_private;
2465         int ret;
2466
2467         if (obj->gtt_space == NULL)
2468                 return 0;
2469
2470         if (obj->pin_count)
2471                 return -EBUSY;
2472
2473         BUG_ON(obj->pages == NULL);
2474
2475         ret = i915_gem_object_finish_gpu(obj);
2476         if (ret)
2477                 return ret;
2478         /* Continue on if we fail due to EIO, the GPU is hung so we
2479          * should be safe and we need to cleanup or else we might
2480          * cause memory corruption through use-after-free.
2481          */
2482
2483         i915_gem_object_finish_gtt(obj);
2484
2485         /* release the fence reg _after_ flushing */
2486         ret = i915_gem_object_put_fence(obj);
2487         if (ret)
2488                 return ret;
2489
2490         trace_i915_gem_object_unbind(obj);
2491
2492         if (obj->has_global_gtt_mapping)
2493                 i915_gem_gtt_unbind_object(obj);
2494         if (obj->has_aliasing_ppgtt_mapping) {
2495                 i915_ppgtt_unbind_object(dev_priv->mm.aliasing_ppgtt, obj);
2496                 obj->has_aliasing_ppgtt_mapping = 0;
2497         }
2498         i915_gem_gtt_finish_object(obj);
2499
2500         list_del(&obj->mm_list);
2501         list_move_tail(&obj->gtt_list, &dev_priv->mm.unbound_list);
2502         /* Avoid an unnecessary call to unbind on rebind. */
2503         obj->map_and_fenceable = true;
2504
2505         drm_mm_put_block(obj->gtt_space);
2506         obj->gtt_space = NULL;
2507         obj->gtt_offset = 0;
2508
2509         return 0;
2510 }
2511
2512 int i915_gpu_idle(struct drm_device *dev)
2513 {
2514         drm_i915_private_t *dev_priv = dev->dev_private;
2515         struct intel_ring_buffer *ring;
2516         int ret, i;
2517
2518         /* Flush everything onto the inactive list. */
2519         for_each_ring(ring, dev_priv, i) {
2520                 ret = i915_switch_context(ring, NULL, DEFAULT_CONTEXT_ID);
2521                 if (ret)
2522                         return ret;
2523
2524                 ret = intel_ring_idle(ring);
2525                 if (ret)
2526                         return ret;
2527         }
2528
2529         return 0;
2530 }
2531
2532 static void i965_write_fence_reg(struct drm_device *dev, int reg,
2533                                  struct drm_i915_gem_object *obj)
2534 {
2535         drm_i915_private_t *dev_priv = dev->dev_private;
2536         int fence_reg;
2537         int fence_pitch_shift;
2538         uint64_t val;
2539
2540         if (INTEL_INFO(dev)->gen >= 6) {
2541                 fence_reg = FENCE_REG_SANDYBRIDGE_0;
2542                 fence_pitch_shift = SANDYBRIDGE_FENCE_PITCH_SHIFT;
2543         } else {
2544                 fence_reg = FENCE_REG_965_0;
2545                 fence_pitch_shift = I965_FENCE_PITCH_SHIFT;
2546         }
2547
2548         if (obj) {
2549                 u32 size = obj->gtt_space->size;
2550
2551                 val = (uint64_t)((obj->gtt_offset + size - 4096) &
2552                                  0xfffff000) << 32;
2553                 val |= obj->gtt_offset & 0xfffff000;
2554                 val |= (uint64_t)((obj->stride / 128) - 1) << fence_pitch_shift;
2555                 if (obj->tiling_mode == I915_TILING_Y)
2556                         val |= 1 << I965_FENCE_TILING_Y_SHIFT;
2557                 val |= I965_FENCE_REG_VALID;
2558         } else
2559                 val = 0;
2560
2561         fence_reg += reg * 8;
2562         I915_WRITE64(fence_reg, val);
2563         POSTING_READ(fence_reg);
2564 }
2565
2566 static void i915_write_fence_reg(struct drm_device *dev, int reg,
2567                                  struct drm_i915_gem_object *obj)
2568 {
2569         drm_i915_private_t *dev_priv = dev->dev_private;
2570         u32 val;
2571
2572         if (obj) {
2573                 u32 size = obj->gtt_space->size;
2574                 int pitch_val;
2575                 int tile_width;
2576
2577                 WARN((obj->gtt_offset & ~I915_FENCE_START_MASK) ||
2578                      (size & -size) != size ||
2579                      (obj->gtt_offset & (size - 1)),
2580                      "object 0x%08x [fenceable? %d] not 1M or pot-size (0x%08x) aligned\n",
2581                      obj->gtt_offset, obj->map_and_fenceable, size);
2582
2583                 if (obj->tiling_mode == I915_TILING_Y && HAS_128_BYTE_Y_TILING(dev))
2584                         tile_width = 128;
2585                 else
2586                         tile_width = 512;
2587
2588                 /* Note: pitch better be a power of two tile widths */
2589                 pitch_val = obj->stride / tile_width;
2590                 pitch_val = ffs(pitch_val) - 1;
2591
2592                 val = obj->gtt_offset;
2593                 if (obj->tiling_mode == I915_TILING_Y)
2594                         val |= 1 << I830_FENCE_TILING_Y_SHIFT;
2595                 val |= I915_FENCE_SIZE_BITS(size);
2596                 val |= pitch_val << I830_FENCE_PITCH_SHIFT;
2597                 val |= I830_FENCE_REG_VALID;
2598         } else
2599                 val = 0;
2600
2601         if (reg < 8)
2602                 reg = FENCE_REG_830_0 + reg * 4;
2603         else
2604                 reg = FENCE_REG_945_8 + (reg - 8) * 4;
2605
2606         I915_WRITE(reg, val);
2607         POSTING_READ(reg);
2608 }
2609
2610 static void i830_write_fence_reg(struct drm_device *dev, int reg,
2611                                 struct drm_i915_gem_object *obj)
2612 {
2613         drm_i915_private_t *dev_priv = dev->dev_private;
2614         uint32_t val;
2615
2616         if (obj) {
2617                 u32 size = obj->gtt_space->size;
2618                 uint32_t pitch_val;
2619
2620                 WARN((obj->gtt_offset & ~I830_FENCE_START_MASK) ||
2621                      (size & -size) != size ||
2622                      (obj->gtt_offset & (size - 1)),
2623                      "object 0x%08x not 512K or pot-size 0x%08x aligned\n",
2624                      obj->gtt_offset, size);
2625
2626                 pitch_val = obj->stride / 128;
2627                 pitch_val = ffs(pitch_val) - 1;
2628
2629                 val = obj->gtt_offset;
2630                 if (obj->tiling_mode == I915_TILING_Y)
2631                         val |= 1 << I830_FENCE_TILING_Y_SHIFT;
2632                 val |= I830_FENCE_SIZE_BITS(size);
2633                 val |= pitch_val << I830_FENCE_PITCH_SHIFT;
2634                 val |= I830_FENCE_REG_VALID;
2635         } else
2636                 val = 0;
2637
2638         I915_WRITE(FENCE_REG_830_0 + reg * 4, val);
2639         POSTING_READ(FENCE_REG_830_0 + reg * 4);
2640 }
2641
2642 inline static bool i915_gem_object_needs_mb(struct drm_i915_gem_object *obj)
2643 {
2644         return obj && obj->base.read_domains & I915_GEM_DOMAIN_GTT;
2645 }
2646
2647 static void i915_gem_write_fence(struct drm_device *dev, int reg,
2648                                  struct drm_i915_gem_object *obj)
2649 {
2650         struct drm_i915_private *dev_priv = dev->dev_private;
2651
2652         /* Ensure that all CPU reads are completed before installing a fence
2653          * and all writes before removing the fence.
2654          */
2655         if (i915_gem_object_needs_mb(dev_priv->fence_regs[reg].obj))
2656                 mb();
2657
2658         switch (INTEL_INFO(dev)->gen) {
2659         case 7:
2660         case 6:
2661         case 5:
2662         case 4: i965_write_fence_reg(dev, reg, obj); break;
2663         case 3: i915_write_fence_reg(dev, reg, obj); break;
2664         case 2: i830_write_fence_reg(dev, reg, obj); break;
2665         default: BUG();
2666         }
2667
2668         /* And similarly be paranoid that no direct access to this region
2669          * is reordered to before the fence is installed.
2670          */
2671         if (i915_gem_object_needs_mb(obj))
2672                 mb();
2673 }
2674
2675 static inline int fence_number(struct drm_i915_private *dev_priv,
2676                                struct drm_i915_fence_reg *fence)
2677 {
2678         return fence - dev_priv->fence_regs;
2679 }
2680
2681 static void i915_gem_object_update_fence(struct drm_i915_gem_object *obj,
2682                                          struct drm_i915_fence_reg *fence,
2683                                          bool enable)
2684 {
2685         struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2686         int reg = fence_number(dev_priv, fence);
2687
2688         i915_gem_write_fence(obj->base.dev, reg, enable ? obj : NULL);
2689
2690         if (enable) {
2691                 obj->fence_reg = reg;
2692                 fence->obj = obj;
2693                 list_move_tail(&fence->lru_list, &dev_priv->mm.fence_list);
2694         } else {
2695                 obj->fence_reg = I915_FENCE_REG_NONE;
2696                 fence->obj = NULL;
2697                 list_del_init(&fence->lru_list);
2698         }
2699 }
2700
2701 static int
2702 i915_gem_object_wait_fence(struct drm_i915_gem_object *obj)
2703 {
2704         if (obj->last_fenced_seqno) {
2705                 int ret = i915_wait_seqno(obj->ring, obj->last_fenced_seqno);
2706                 if (ret)
2707                         return ret;
2708
2709                 obj->last_fenced_seqno = 0;
2710         }
2711
2712         obj->fenced_gpu_access = false;
2713         return 0;
2714 }
2715
2716 int
2717 i915_gem_object_put_fence(struct drm_i915_gem_object *obj)
2718 {
2719         struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2720         int ret;
2721
2722         ret = i915_gem_object_wait_fence(obj);
2723         if (ret)
2724                 return ret;
2725
2726         if (obj->fence_reg == I915_FENCE_REG_NONE)
2727                 return 0;
2728
2729         i915_gem_object_update_fence(obj,
2730                                      &dev_priv->fence_regs[obj->fence_reg],
2731                                      false);
2732         i915_gem_object_fence_lost(obj);
2733
2734         return 0;
2735 }
2736
2737 static struct drm_i915_fence_reg *
2738 i915_find_fence_reg(struct drm_device *dev)
2739 {
2740         struct drm_i915_private *dev_priv = dev->dev_private;
2741         struct drm_i915_fence_reg *reg, *avail;
2742         int i;
2743
2744         /* First try to find a free reg */
2745         avail = NULL;
2746         for (i = dev_priv->fence_reg_start; i < dev_priv->num_fence_regs; i++) {
2747                 reg = &dev_priv->fence_regs[i];
2748                 if (!reg->obj)
2749                         return reg;
2750
2751                 if (!reg->pin_count)
2752                         avail = reg;
2753         }
2754
2755         if (avail == NULL)
2756                 return NULL;
2757
2758         /* None available, try to steal one or wait for a user to finish */
2759         list_for_each_entry(reg, &dev_priv->mm.fence_list, lru_list) {
2760                 if (reg->pin_count)
2761                         continue;
2762
2763                 return reg;
2764         }
2765
2766         return NULL;
2767 }
2768
2769 /**
2770  * i915_gem_object_get_fence - set up fencing for an object
2771  * @obj: object to map through a fence reg
2772  *
2773  * When mapping objects through the GTT, userspace wants to be able to write
2774  * to them without having to worry about swizzling if the object is tiled.
2775  * This function walks the fence regs looking for a free one for @obj,
2776  * stealing one if it can't find any.
2777  *
2778  * It then sets up the reg based on the object's properties: address, pitch
2779  * and tiling format.
2780  *
2781  * For an untiled surface, this removes any existing fence.
2782  */
2783 int
2784 i915_gem_object_get_fence(struct drm_i915_gem_object *obj)
2785 {
2786         struct drm_device *dev = obj->base.dev;
2787         struct drm_i915_private *dev_priv = dev->dev_private;
2788         bool enable = obj->tiling_mode != I915_TILING_NONE;
2789         struct drm_i915_fence_reg *reg;
2790         int ret;
2791
2792         /* Have we updated the tiling parameters upon the object and so
2793          * will need to serialise the write to the associated fence register?
2794          */
2795         if (obj->fence_dirty) {
2796                 ret = i915_gem_object_wait_fence(obj);
2797                 if (ret)
2798                         return ret;
2799         }
2800
2801         /* Just update our place in the LRU if our fence is getting reused. */
2802         if (obj->fence_reg != I915_FENCE_REG_NONE) {
2803                 reg = &dev_priv->fence_regs[obj->fence_reg];
2804                 if (!obj->fence_dirty) {
2805                         list_move_tail(&reg->lru_list,
2806                                        &dev_priv->mm.fence_list);
2807                         return 0;
2808                 }
2809         } else if (enable) {
2810                 reg = i915_find_fence_reg(dev);
2811                 if (reg == NULL)
2812                         return -EDEADLK;
2813
2814                 if (reg->obj) {
2815                         struct drm_i915_gem_object *old = reg->obj;
2816
2817                         ret = i915_gem_object_wait_fence(old);
2818                         if (ret)
2819                                 return ret;
2820
2821                         i915_gem_object_fence_lost(old);
2822                 }
2823         } else
2824                 return 0;
2825
2826         i915_gem_object_update_fence(obj, reg, enable);
2827         obj->fence_dirty = false;
2828
2829         return 0;
2830 }
2831
2832 static bool i915_gem_valid_gtt_space(struct drm_device *dev,
2833                                      struct drm_mm_node *gtt_space,
2834                                      unsigned long cache_level)
2835 {
2836         struct drm_mm_node *other;
2837
2838         /* On non-LLC machines we have to be careful when putting differing
2839          * types of snoopable memory together to avoid the prefetcher
2840          * crossing memory domains and dying.
2841          */
2842         if (HAS_LLC(dev))
2843                 return true;
2844
2845         if (gtt_space == NULL)
2846                 return true;
2847
2848         if (list_empty(&gtt_space->node_list))
2849                 return true;
2850
2851         other = list_entry(gtt_space->node_list.prev, struct drm_mm_node, node_list);
2852         if (other->allocated && !other->hole_follows && other->color != cache_level)
2853                 return false;
2854
2855         other = list_entry(gtt_space->node_list.next, struct drm_mm_node, node_list);
2856         if (other->allocated && !gtt_space->hole_follows && other->color != cache_level)
2857                 return false;
2858
2859         return true;
2860 }
2861
2862 static void i915_gem_verify_gtt(struct drm_device *dev)
2863 {
2864 #if WATCH_GTT
2865         struct drm_i915_private *dev_priv = dev->dev_private;
2866         struct drm_i915_gem_object *obj;
2867         int err = 0;
2868
2869         list_for_each_entry(obj, &dev_priv->mm.gtt_list, gtt_list) {
2870                 if (obj->gtt_space == NULL) {
2871                         printk(KERN_ERR "object found on GTT list with no space reserved\n");
2872                         err++;
2873                         continue;
2874                 }
2875
2876                 if (obj->cache_level != obj->gtt_space->color) {
2877                         printk(KERN_ERR "object reserved space [%08lx, %08lx] with wrong color, cache_level=%x, color=%lx\n",
2878                                obj->gtt_space->start,
2879                                obj->gtt_space->start + obj->gtt_space->size,
2880                                obj->cache_level,
2881                                obj->gtt_space->color);
2882                         err++;
2883                         continue;
2884                 }
2885
2886                 if (!i915_gem_valid_gtt_space(dev,
2887                                               obj->gtt_space,
2888                                               obj->cache_level)) {
2889                         printk(KERN_ERR "invalid GTT space found at [%08lx, %08lx] - color=%x\n",
2890                                obj->gtt_space->start,
2891                                obj->gtt_space->start + obj->gtt_space->size,
2892                                obj->cache_level);
2893                         err++;
2894                         continue;
2895                 }
2896         }
2897
2898         WARN_ON(err);
2899 #endif
2900 }
2901
2902 /**
2903  * Finds free space in the GTT aperture and binds the object there.
2904  */
2905 static int
2906 i915_gem_object_bind_to_gtt(struct drm_i915_gem_object *obj,
2907                             unsigned alignment,
2908                             bool map_and_fenceable,
2909                             bool nonblocking)
2910 {
2911         struct drm_device *dev = obj->base.dev;
2912         drm_i915_private_t *dev_priv = dev->dev_private;
2913         struct drm_mm_node *node;
2914         u32 size, fence_size, fence_alignment, unfenced_alignment;
2915         bool mappable, fenceable;
2916         int ret;
2917
2918         fence_size = i915_gem_get_gtt_size(dev,
2919                                            obj->base.size,
2920                                            obj->tiling_mode);
2921         fence_alignment = i915_gem_get_gtt_alignment(dev,
2922                                                      obj->base.size,
2923                                                      obj->tiling_mode, true);
2924         unfenced_alignment =
2925                 i915_gem_get_gtt_alignment(dev,
2926                                                     obj->base.size,
2927                                                     obj->tiling_mode, false);
2928
2929         if (alignment == 0)
2930                 alignment = map_and_fenceable ? fence_alignment :
2931                                                 unfenced_alignment;
2932         if (map_and_fenceable && alignment & (fence_alignment - 1)) {
2933                 DRM_ERROR("Invalid object alignment requested %u\n", alignment);
2934                 return -EINVAL;
2935         }
2936
2937         size = map_and_fenceable ? fence_size : obj->base.size;
2938
2939         /* If the object is bigger than the entire aperture, reject it early
2940          * before evicting everything in a vain attempt to find space.
2941          */
2942         if (obj->base.size >
2943             (map_and_fenceable ? dev_priv->gtt.mappable_end : dev_priv->gtt.total)) {
2944                 DRM_ERROR("Attempting to bind an object larger than the aperture\n");
2945                 return -E2BIG;
2946         }
2947
2948         ret = i915_gem_object_get_pages(obj);
2949         if (ret)
2950                 return ret;
2951
2952         i915_gem_object_pin_pages(obj);
2953
2954         node = kzalloc(sizeof(*node), GFP_KERNEL);
2955         if (node == NULL) {
2956                 i915_gem_object_unpin_pages(obj);
2957                 return -ENOMEM;
2958         }
2959
2960  search_free:
2961         if (map_and_fenceable)
2962                 ret = drm_mm_insert_node_in_range_generic(&dev_priv->mm.gtt_space, node,
2963                                                           size, alignment, obj->cache_level,
2964                                                           0, dev_priv->gtt.mappable_end);
2965         else
2966                 ret = drm_mm_insert_node_generic(&dev_priv->mm.gtt_space, node,
2967                                                  size, alignment, obj->cache_level);
2968         if (ret) {
2969                 ret = i915_gem_evict_something(dev, size, alignment,
2970                                                obj->cache_level,
2971                                                map_and_fenceable,
2972                                                nonblocking);
2973                 if (ret == 0)
2974                         goto search_free;
2975
2976                 i915_gem_object_unpin_pages(obj);
2977                 kfree(node);
2978                 return ret;
2979         }
2980         if (WARN_ON(!i915_gem_valid_gtt_space(dev, node, obj->cache_level))) {
2981                 i915_gem_object_unpin_pages(obj);
2982                 drm_mm_put_block(node);
2983                 return -EINVAL;
2984         }
2985
2986         ret = i915_gem_gtt_prepare_object(obj);
2987         if (ret) {
2988                 i915_gem_object_unpin_pages(obj);
2989                 drm_mm_put_block(node);
2990                 return ret;
2991         }
2992
2993         list_move_tail(&obj->gtt_list, &dev_priv->mm.bound_list);
2994         list_add_tail(&obj->mm_list, &dev_priv->mm.inactive_list);
2995
2996         obj->gtt_space = node;
2997         obj->gtt_offset = node->start;
2998
2999         fenceable =
3000                 node->size == fence_size &&
3001                 (node->start & (fence_alignment - 1)) == 0;
3002
3003         mappable =
3004                 obj->gtt_offset + obj->base.size <= dev_priv->gtt.mappable_end;
3005
3006         obj->map_and_fenceable = mappable && fenceable;
3007
3008         i915_gem_object_unpin_pages(obj);
3009         trace_i915_gem_object_bind(obj, map_and_fenceable);
3010         i915_gem_verify_gtt(dev);
3011         return 0;
3012 }
3013
3014 void
3015 i915_gem_clflush_object(struct drm_i915_gem_object *obj)
3016 {
3017         /* If we don't have a page list set up, then we're not pinned
3018          * to GPU, and we can ignore the cache flush because it'll happen
3019          * again at bind time.
3020          */
3021         if (obj->pages == NULL)
3022                 return;
3023
3024         /*
3025          * Stolen memory is always coherent with the GPU as it is explicitly
3026          * marked as wc by the system, or the system is cache-coherent.
3027          */
3028         if (obj->stolen)
3029                 return;
3030
3031         /* If the GPU is snooping the contents of the CPU cache,
3032          * we do not need to manually clear the CPU cache lines.  However,
3033          * the caches are only snooped when the render cache is
3034          * flushed/invalidated.  As we always have to emit invalidations
3035          * and flushes when moving into and out of the RENDER domain, correct
3036          * snooping behaviour occurs naturally as the result of our domain
3037          * tracking.
3038          */
3039         if (obj->cache_level != I915_CACHE_NONE)
3040                 return;
3041
3042         trace_i915_gem_object_clflush(obj);
3043
3044         drm_clflush_sg(obj->pages);
3045 }
3046
3047 /** Flushes the GTT write domain for the object if it's dirty. */
3048 static void
3049 i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj)
3050 {
3051         uint32_t old_write_domain;
3052
3053         if (obj->base.write_domain != I915_GEM_DOMAIN_GTT)
3054                 return;
3055
3056         /* No actual flushing is required for the GTT write domain.  Writes
3057          * to it immediately go to main memory as far as we know, so there's
3058          * no chipset flush.  It also doesn't land in render cache.
3059          *
3060          * However, we do have to enforce the order so that all writes through
3061          * the GTT land before any writes to the device, such as updates to
3062          * the GATT itself.
3063          */
3064         wmb();
3065
3066         old_write_domain = obj->base.write_domain;
3067         obj->base.write_domain = 0;
3068
3069         trace_i915_gem_object_change_domain(obj,
3070                                             obj->base.read_domains,
3071                                             old_write_domain);
3072 }
3073
3074 /** Flushes the CPU write domain for the object if it's dirty. */
3075 static void
3076 i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj)
3077 {
3078         uint32_t old_write_domain;
3079
3080         if (obj->base.write_domain != I915_GEM_DOMAIN_CPU)
3081                 return;
3082
3083         i915_gem_clflush_object(obj);
3084         i915_gem_chipset_flush(obj->base.dev);
3085         old_write_domain = obj->base.write_domain;
3086         obj->base.write_domain = 0;
3087
3088         trace_i915_gem_object_change_domain(obj,
3089                                             obj->base.read_domains,
3090                                             old_write_domain);
3091 }
3092
3093 /**
3094  * Moves a single object to the GTT read, and possibly write domain.
3095  *
3096  * This function returns when the move is complete, including waiting on
3097  * flushes to occur.
3098  */
3099 int
3100 i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write)
3101 {
3102         drm_i915_private_t *dev_priv = obj->base.dev->dev_private;
3103         uint32_t old_write_domain, old_read_domains;
3104         int ret;
3105
3106         /* Not valid to be called on unbound objects. */
3107         if (obj->gtt_space == NULL)
3108                 return -EINVAL;
3109
3110         if (obj->base.write_domain == I915_GEM_DOMAIN_GTT)
3111                 return 0;
3112
3113         ret = i915_gem_object_wait_rendering(obj, !write);
3114         if (ret)
3115                 return ret;
3116
3117         i915_gem_object_flush_cpu_write_domain(obj);
3118
3119         /* Serialise direct access to this object with the barriers for
3120          * coherent writes from the GPU, by effectively invalidating the
3121          * GTT domain upon first access.
3122          */
3123         if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
3124                 mb();
3125
3126         old_write_domain = obj->base.write_domain;
3127         old_read_domains = obj->base.read_domains;
3128
3129         /* It should now be out of any other write domains, and we can update
3130          * the domain values for our changes.
3131          */
3132         BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
3133         obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
3134         if (write) {
3135                 obj->base.read_domains = I915_GEM_DOMAIN_GTT;
3136                 obj->base.write_domain = I915_GEM_DOMAIN_GTT;
3137                 obj->dirty = 1;
3138         }
3139
3140         trace_i915_gem_object_change_domain(obj,
3141                                             old_read_domains,
3142                                             old_write_domain);
3143
3144         /* And bump the LRU for this access */
3145         if (i915_gem_object_is_inactive(obj))
3146                 list_move_tail(&obj->mm_list, &dev_priv->mm.inactive_list);
3147
3148         return 0;
3149 }
3150
3151 int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
3152                                     enum i915_cache_level cache_level)
3153 {
3154         struct drm_device *dev = obj->base.dev;
3155         drm_i915_private_t *dev_priv = dev->dev_private;
3156         int ret;
3157
3158         if (obj->cache_level == cache_level)
3159                 return 0;
3160
3161         if (obj->pin_count) {
3162                 DRM_DEBUG("can not change the cache level of pinned objects\n");
3163                 return -EBUSY;
3164         }
3165
3166         if (!i915_gem_valid_gtt_space(dev, obj->gtt_space, cache_level)) {
3167                 ret = i915_gem_object_unbind(obj);
3168                 if (ret)
3169                         return ret;
3170         }
3171
3172         if (obj->gtt_space) {
3173                 ret = i915_gem_object_finish_gpu(obj);
3174                 if (ret)
3175                         return ret;
3176
3177                 i915_gem_object_finish_gtt(obj);
3178
3179                 /* Before SandyBridge, you could not use tiling or fence
3180                  * registers with snooped memory, so relinquish any fences
3181                  * currently pointing to our region in the aperture.
3182                  */
3183                 if (INTEL_INFO(dev)->gen < 6) {
3184                         ret = i915_gem_object_put_fence(obj);
3185                         if (ret)
3186                                 return ret;
3187                 }
3188
3189                 if (obj->has_global_gtt_mapping)
3190                         i915_gem_gtt_bind_object(obj, cache_level);
3191                 if (obj->has_aliasing_ppgtt_mapping)
3192                         i915_ppgtt_bind_object(dev_priv->mm.aliasing_ppgtt,
3193                                                obj, cache_level);
3194
3195                 obj->gtt_space->color = cache_level;
3196         }
3197
3198         if (cache_level == I915_CACHE_NONE) {
3199                 u32 old_read_domains, old_write_domain;
3200
3201                 /* If we're coming from LLC cached, then we haven't
3202                  * actually been tracking whether the data is in the
3203                  * CPU cache or not, since we only allow one bit set
3204                  * in obj->write_domain and have been skipping the clflushes.
3205                  * Just set it to the CPU cache for now.
3206                  */
3207                 WARN_ON(obj->base.write_domain & ~I915_GEM_DOMAIN_CPU);
3208                 WARN_ON(obj->base.read_domains & ~I915_GEM_DOMAIN_CPU);
3209
3210                 old_read_domains = obj->base.read_domains;
3211                 old_write_domain = obj->base.write_domain;
3212
3213                 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
3214                 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
3215
3216                 trace_i915_gem_object_change_domain(obj,
3217                                                     old_read_domains,
3218                                                     old_write_domain);
3219         }
3220
3221         obj->cache_level = cache_level;
3222         i915_gem_verify_gtt(dev);
3223         return 0;
3224 }
3225
3226 int i915_gem_get_caching_ioctl(struct drm_device *dev, void *data,
3227                                struct drm_file *file)
3228 {
3229         struct drm_i915_gem_caching *args = data;
3230         struct drm_i915_gem_object *obj;
3231         int ret;
3232
3233         ret = i915_mutex_lock_interruptible(dev);
3234         if (ret)
3235                 return ret;
3236
3237         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3238         if (&obj->base == NULL) {
3239                 ret = -ENOENT;
3240                 goto unlock;
3241         }
3242
3243         args->caching = obj->cache_level != I915_CACHE_NONE;
3244
3245         drm_gem_object_unreference(&obj->base);
3246 unlock:
3247         mutex_unlock(&dev->struct_mutex);
3248         return ret;
3249 }
3250
3251 int i915_gem_set_caching_ioctl(struct drm_device *dev, void *data,
3252                                struct drm_file *file)
3253 {
3254         struct drm_i915_gem_caching *args = data;
3255         struct drm_i915_gem_object *obj;
3256         enum i915_cache_level level;
3257         int ret;
3258
3259         switch (args->caching) {
3260         case I915_CACHING_NONE:
3261                 level = I915_CACHE_NONE;
3262                 break;
3263         case I915_CACHING_CACHED:
3264                 level = I915_CACHE_LLC;
3265                 break;
3266         default:
3267                 return -EINVAL;
3268         }
3269
3270         ret = i915_mutex_lock_interruptible(dev);
3271         if (ret)
3272                 return ret;
3273
3274         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3275         if (&obj->base == NULL) {
3276                 ret = -ENOENT;
3277                 goto unlock;
3278         }
3279
3280         ret = i915_gem_object_set_cache_level(obj, level);
3281
3282         drm_gem_object_unreference(&obj->base);
3283 unlock:
3284         mutex_unlock(&dev->struct_mutex);
3285         return ret;
3286 }
3287
3288 /*
3289  * Prepare buffer for display plane (scanout, cursors, etc).
3290  * Can be called from an uninterruptible phase (modesetting) and allows
3291  * any flushes to be pipelined (for pageflips).
3292  */
3293 int
3294 i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
3295                                      u32 alignment,
3296                                      struct intel_ring_buffer *pipelined)
3297 {
3298         u32 old_read_domains, old_write_domain;
3299         int ret;
3300
3301         if (pipelined != obj->ring) {
3302                 ret = i915_gem_object_sync(obj, pipelined);
3303                 if (ret)
3304                         return ret;
3305         }
3306
3307         /* The display engine is not coherent with the LLC cache on gen6.  As
3308          * a result, we make sure that the pinning that is about to occur is
3309          * done with uncached PTEs. This is lowest common denominator for all
3310          * chipsets.
3311          *
3312          * However for gen6+, we could do better by using the GFDT bit instead
3313          * of uncaching, which would allow us to flush all the LLC-cached data
3314          * with that bit in the PTE to main memory with just one PIPE_CONTROL.
3315          */
3316         ret = i915_gem_object_set_cache_level(obj, I915_CACHE_NONE);
3317         if (ret)
3318                 return ret;
3319
3320         /* As the user may map the buffer once pinned in the display plane
3321          * (e.g. libkms for the bootup splash), we have to ensure that we
3322          * always use map_and_fenceable for all scanout buffers.
3323          */
3324         ret = i915_gem_object_pin(obj, alignment, true, false);
3325         if (ret)
3326                 return ret;
3327
3328         i915_gem_object_flush_cpu_write_domain(obj);
3329
3330         old_write_domain = obj->base.write_domain;
3331         old_read_domains = obj->base.read_domains;
3332
3333         /* It should now be out of any other write domains, and we can update
3334          * the domain values for our changes.
3335          */
3336         obj->base.write_domain = 0;
3337         obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
3338
3339         trace_i915_gem_object_change_domain(obj,
3340                                             old_read_domains,
3341                                             old_write_domain);
3342
3343         return 0;
3344 }
3345
3346 int
3347 i915_gem_object_finish_gpu(struct drm_i915_gem_object *obj)
3348 {
3349         int ret;
3350
3351         if ((obj->base.read_domains & I915_GEM_GPU_DOMAINS) == 0)
3352                 return 0;
3353
3354         ret = i915_gem_object_wait_rendering(obj, false);
3355         if (ret)
3356                 return ret;
3357
3358         /* Ensure that we invalidate the GPU's caches and TLBs. */
3359         obj->base.read_domains &= ~I915_GEM_GPU_DOMAINS;
3360         return 0;
3361 }
3362
3363 /**
3364  * Moves a single object to the CPU read, and possibly write domain.
3365  *
3366  * This function returns when the move is complete, including waiting on
3367  * flushes to occur.
3368  */
3369 int
3370 i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write)
3371 {
3372         uint32_t old_write_domain, old_read_domains;
3373         int ret;
3374
3375         if (obj->base.write_domain == I915_GEM_DOMAIN_CPU)
3376                 return 0;
3377
3378         ret = i915_gem_object_wait_rendering(obj, !write);
3379         if (ret)
3380                 return ret;
3381
3382         i915_gem_object_flush_gtt_write_domain(obj);
3383
3384         old_write_domain = obj->base.write_domain;
3385         old_read_domains = obj->base.read_domains;
3386
3387         /* Flush the CPU cache if it's still invalid. */
3388         if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0) {
3389                 i915_gem_clflush_object(obj);
3390
3391                 obj->base.read_domains |= I915_GEM_DOMAIN_CPU;
3392         }
3393
3394         /* It should now be out of any other write domains, and we can update
3395          * the domain values for our changes.
3396          */
3397         BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
3398
3399         /* If we're writing through the CPU, then the GPU read domains will
3400          * need to be invalidated at next use.
3401          */
3402         if (write) {
3403                 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
3404                 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
3405         }
3406
3407         trace_i915_gem_object_change_domain(obj,
3408                                             old_read_domains,
3409                                             old_write_domain);
3410
3411         return 0;
3412 }
3413
3414 /* Throttle our rendering by waiting until the ring has completed our requests
3415  * emitted over 20 msec ago.
3416  *
3417  * Note that if we were to use the current jiffies each time around the loop,
3418  * we wouldn't escape the function with any frames outstanding if the time to
3419  * render a frame was over 20ms.
3420  *
3421  * This should get us reasonable parallelism between CPU and GPU but also
3422  * relatively low latency when blocking on a particular request to finish.
3423  */
3424 static int
3425 i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
3426 {
3427         struct drm_i915_private *dev_priv = dev->dev_private;
3428         struct drm_i915_file_private *file_priv = file->driver_priv;
3429         unsigned long recent_enough = jiffies - msecs_to_jiffies(20);
3430         struct drm_i915_gem_request *request;
3431         struct intel_ring_buffer *ring = NULL;
3432         unsigned reset_counter;
3433         u32 seqno = 0;
3434         int ret;
3435
3436         ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
3437         if (ret)
3438                 return ret;
3439
3440         ret = i915_gem_check_wedge(&dev_priv->gpu_error, false);
3441         if (ret)
3442                 return ret;
3443
3444         spin_lock(&file_priv->mm.lock);
3445         list_for_each_entry(request, &file_priv->mm.request_list, client_list) {
3446                 if (time_after_eq(request->emitted_jiffies, recent_enough))
3447                         break;
3448
3449                 ring = request->ring;
3450                 seqno = request->seqno;
3451         }
3452         reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
3453         spin_unlock(&file_priv->mm.lock);
3454
3455         if (seqno == 0)
3456                 return 0;
3457
3458         ret = __wait_seqno(ring, seqno, reset_counter, true, NULL);
3459         if (ret == 0)
3460                 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, 0);
3461
3462         return ret;
3463 }
3464
3465 int
3466 i915_gem_object_pin(struct drm_i915_gem_object *obj,
3467                     uint32_t alignment,
3468                     bool map_and_fenceable,
3469                     bool nonblocking)
3470 {
3471         int ret;
3472
3473         if (WARN_ON(obj->pin_count == DRM_I915_GEM_OBJECT_MAX_PIN_COUNT))
3474                 return -EBUSY;
3475
3476         if (obj->gtt_space != NULL) {
3477                 if ((alignment && obj->gtt_offset & (alignment - 1)) ||
3478                     (map_and_fenceable && !obj->map_and_fenceable)) {
3479                         WARN(obj->pin_count,
3480                              "bo is already pinned with incorrect alignment:"
3481                              " offset=%x, req.alignment=%x, req.map_and_fenceable=%d,"
3482                              " obj->map_and_fenceable=%d\n",
3483                              obj->gtt_offset, alignment,
3484                              map_and_fenceable,
3485                              obj->map_and_fenceable);
3486                         ret = i915_gem_object_unbind(obj);
3487                         if (ret)
3488                                 return ret;
3489                 }
3490         }
3491
3492         if (obj->gtt_space == NULL) {
3493                 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
3494
3495                 ret = i915_gem_object_bind_to_gtt(obj, alignment,
3496                                                   map_and_fenceable,
3497                                                   nonblocking);
3498                 if (ret)
3499                         return ret;
3500
3501                 if (!dev_priv->mm.aliasing_ppgtt)
3502                         i915_gem_gtt_bind_object(obj, obj->cache_level);
3503         }
3504
3505         if (!obj->has_global_gtt_mapping && map_and_fenceable)
3506                 i915_gem_gtt_bind_object(obj, obj->cache_level);
3507
3508         obj->pin_count++;
3509         obj->pin_mappable |= map_and_fenceable;
3510
3511         return 0;
3512 }
3513
3514 void
3515 i915_gem_object_unpin(struct drm_i915_gem_object *obj)
3516 {
3517         BUG_ON(obj->pin_count == 0);
3518         BUG_ON(obj->gtt_space == NULL);
3519
3520         if (--obj->pin_count == 0)
3521                 obj->pin_mappable = false;
3522 }
3523
3524 int
3525 i915_gem_pin_ioctl(struct drm_device *dev, void *data,
3526                    struct drm_file *file)
3527 {
3528         struct drm_i915_gem_pin *args = data;
3529         struct drm_i915_gem_object *obj;
3530         int ret;
3531
3532         ret = i915_mutex_lock_interruptible(dev);
3533         if (ret)
3534                 return ret;
3535
3536         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3537         if (&obj->base == NULL) {
3538                 ret = -ENOENT;
3539                 goto unlock;
3540         }
3541
3542         if (obj->madv != I915_MADV_WILLNEED) {
3543                 DRM_ERROR("Attempting to pin a purgeable buffer\n");
3544                 ret = -EINVAL;
3545                 goto out;
3546         }
3547
3548         if (obj->pin_filp != NULL && obj->pin_filp != file) {
3549                 DRM_ERROR("Already pinned in i915_gem_pin_ioctl(): %d\n",
3550                           args->handle);
3551                 ret = -EINVAL;
3552                 goto out;
3553         }
3554
3555         if (obj->user_pin_count == 0) {
3556                 ret = i915_gem_object_pin(obj, args->alignment, true, false);
3557                 if (ret)
3558                         goto out;
3559         }
3560
3561         obj->user_pin_count++;
3562         obj->pin_filp = file;
3563
3564         /* XXX - flush the CPU caches for pinned objects
3565          * as the X server doesn't manage domains yet
3566          */
3567         i915_gem_object_flush_cpu_write_domain(obj);
3568         args->offset = obj->gtt_offset;
3569 out:
3570         drm_gem_object_unreference(&obj->base);
3571 unlock:
3572         mutex_unlock(&dev->struct_mutex);
3573         return ret;
3574 }
3575
3576 int
3577 i915_gem_unpin_ioctl(struct drm_device *dev, void *data,
3578                      struct drm_file *file)
3579 {
3580         struct drm_i915_gem_pin *args = data;
3581         struct drm_i915_gem_object *obj;
3582         int ret;
3583
3584         ret = i915_mutex_lock_interruptible(dev);
3585         if (ret)
3586                 return ret;
3587
3588         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3589         if (&obj->base == NULL) {
3590                 ret = -ENOENT;
3591                 goto unlock;
3592         }
3593
3594         if (obj->pin_filp != file) {
3595                 DRM_ERROR("Not pinned by caller in i915_gem_pin_ioctl(): %d\n",
3596                           args->handle);
3597                 ret = -EINVAL;
3598                 goto out;
3599         }
3600         obj->user_pin_count--;
3601         if (obj->user_pin_count == 0) {
3602                 obj->pin_filp = NULL;
3603                 i915_gem_object_unpin(obj);
3604         }
3605
3606 out:
3607         drm_gem_object_unreference(&obj->base);
3608 unlock:
3609         mutex_unlock(&dev->struct_mutex);
3610         return ret;
3611 }
3612
3613 int
3614 i915_gem_busy_ioctl(struct drm_device *dev, void *data,
3615                     struct drm_file *file)
3616 {
3617         struct drm_i915_gem_busy *args = data;
3618         struct drm_i915_gem_object *obj;
3619         int ret;
3620
3621         ret = i915_mutex_lock_interruptible(dev);
3622         if (ret)
3623                 return ret;
3624
3625         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3626         if (&obj->base == NULL) {
3627                 ret = -ENOENT;
3628                 goto unlock;
3629         }
3630
3631         /* Count all active objects as busy, even if they are currently not used
3632          * by the gpu. Users of this interface expect objects to eventually
3633          * become non-busy without any further actions, therefore emit any
3634          * necessary flushes here.
3635          */
3636         ret = i915_gem_object_flush_active(obj);
3637
3638         args->busy = obj->active;
3639         if (obj->ring) {
3640                 BUILD_BUG_ON(I915_NUM_RINGS > 16);
3641                 args->busy |= intel_ring_flag(obj->ring) << 16;
3642         }
3643
3644         drm_gem_object_unreference(&obj->base);
3645 unlock:
3646         mutex_unlock(&dev->struct_mutex);
3647         return ret;
3648 }
3649
3650 int
3651 i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
3652                         struct drm_file *file_priv)
3653 {
3654         return i915_gem_ring_throttle(dev, file_priv);
3655 }
3656
3657 int
3658 i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
3659                        struct drm_file *file_priv)
3660 {
3661         struct drm_i915_gem_madvise *args = data;
3662         struct drm_i915_gem_object *obj;
3663         int ret;
3664
3665         switch (args->madv) {
3666         case I915_MADV_DONTNEED:
3667         case I915_MADV_WILLNEED:
3668             break;
3669         default:
3670             return -EINVAL;
3671         }
3672
3673         ret = i915_mutex_lock_interruptible(dev);
3674         if (ret)
3675                 return ret;
3676
3677         obj = to_intel_bo(drm_gem_object_lookup(dev, file_priv, args->handle));
3678         if (&obj->base == NULL) {
3679                 ret = -ENOENT;
3680                 goto unlock;
3681         }
3682
3683         if (obj->pin_count) {
3684                 ret = -EINVAL;
3685                 goto out;
3686         }
3687
3688         if (obj->madv != __I915_MADV_PURGED)
3689                 obj->madv = args->madv;
3690
3691         /* if the object is no longer attached, discard its backing storage */
3692         if (i915_gem_object_is_purgeable(obj) && obj->pages == NULL)
3693                 i915_gem_object_truncate(obj);
3694
3695         args->retained = obj->madv != __I915_MADV_PURGED;
3696
3697 out:
3698         drm_gem_object_unreference(&obj->base);
3699 unlock:
3700         mutex_unlock(&dev->struct_mutex);
3701         return ret;
3702 }
3703
3704 void i915_gem_object_init(struct drm_i915_gem_object *obj,
3705                           const struct drm_i915_gem_object_ops *ops)
3706 {
3707         INIT_LIST_HEAD(&obj->mm_list);
3708         INIT_LIST_HEAD(&obj->gtt_list);
3709         INIT_LIST_HEAD(&obj->ring_list);
3710         INIT_LIST_HEAD(&obj->exec_list);
3711
3712         obj->ops = ops;
3713
3714         obj->fence_reg = I915_FENCE_REG_NONE;
3715         obj->madv = I915_MADV_WILLNEED;
3716         /* Avoid an unnecessary call to unbind on the first bind. */
3717         obj->map_and_fenceable = true;
3718
3719         i915_gem_info_add_obj(obj->base.dev->dev_private, obj->base.size);
3720 }
3721
3722 static const struct drm_i915_gem_object_ops i915_gem_object_ops = {
3723         .get_pages = i915_gem_object_get_pages_gtt,
3724         .put_pages = i915_gem_object_put_pages_gtt,
3725 };
3726
3727 struct drm_i915_gem_object *i915_gem_alloc_object(struct drm_device *dev,
3728                                                   size_t size)
3729 {
3730         struct drm_i915_gem_object *obj;
3731         struct address_space *mapping;
3732         gfp_t mask;
3733
3734         obj = i915_gem_object_alloc(dev);
3735         if (obj == NULL)
3736                 return NULL;
3737
3738         if (drm_gem_object_init(dev, &obj->base, size) != 0) {
3739                 i915_gem_object_free(obj);
3740                 return NULL;
3741         }
3742
3743         mask = GFP_HIGHUSER | __GFP_RECLAIMABLE;
3744         if (IS_CRESTLINE(dev) || IS_BROADWATER(dev)) {
3745                 /* 965gm cannot relocate objects above 4GiB. */
3746                 mask &= ~__GFP_HIGHMEM;
3747                 mask |= __GFP_DMA32;
3748         }
3749
3750         mapping = file_inode(obj->base.filp)->i_mapping;
3751         mapping_set_gfp_mask(mapping, mask);
3752
3753         i915_gem_object_init(obj, &i915_gem_object_ops);
3754
3755         obj->base.write_domain = I915_GEM_DOMAIN_CPU;
3756         obj->base.read_domains = I915_GEM_DOMAIN_CPU;
3757
3758         if (HAS_LLC(dev)) {
3759                 /* On some devices, we can have the GPU use the LLC (the CPU
3760                  * cache) for about a 10% performance improvement
3761                  * compared to uncached.  Graphics requests other than
3762                  * display scanout are coherent with the CPU in
3763                  * accessing this cache.  This means in this mode we
3764                  * don't need to clflush on the CPU side, and on the
3765                  * GPU side we only need to flush internal caches to
3766                  * get data visible to the CPU.
3767                  *
3768                  * However, we maintain the display planes as UC, and so
3769                  * need to rebind when first used as such.
3770                  */
3771                 obj->cache_level = I915_CACHE_LLC;
3772         } else
3773                 obj->cache_level = I915_CACHE_NONE;
3774
3775         return obj;
3776 }
3777
3778 int i915_gem_init_object(struct drm_gem_object *obj)
3779 {
3780         BUG();
3781
3782         return 0;
3783 }
3784
3785 void i915_gem_free_object(struct drm_gem_object *gem_obj)
3786 {
3787         struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
3788         struct drm_device *dev = obj->base.dev;
3789         drm_i915_private_t *dev_priv = dev->dev_private;
3790
3791         trace_i915_gem_object_destroy(obj);
3792
3793         if (obj->phys_obj)
3794                 i915_gem_detach_phys_object(dev, obj);
3795
3796         obj->pin_count = 0;
3797         if (WARN_ON(i915_gem_object_unbind(obj) == -ERESTARTSYS)) {
3798                 bool was_interruptible;
3799
3800                 was_interruptible = dev_priv->mm.interruptible;
3801                 dev_priv->mm.interruptible = false;
3802
3803                 WARN_ON(i915_gem_object_unbind(obj));
3804
3805                 dev_priv->mm.interruptible = was_interruptible;
3806         }
3807
3808         obj->pages_pin_count = 0;
3809         i915_gem_object_put_pages(obj);
3810         i915_gem_object_free_mmap_offset(obj);
3811         i915_gem_object_release_stolen(obj);
3812
3813         BUG_ON(obj->pages);
3814
3815         if (obj->base.import_attach)
3816                 drm_prime_gem_destroy(&obj->base, NULL);
3817
3818         drm_gem_object_release(&obj->base);
3819         i915_gem_info_remove_obj(dev_priv, obj->base.size);
3820
3821         kfree(obj->bit_17);
3822         i915_gem_object_free(obj);
3823 }
3824
3825 int
3826 i915_gem_idle(struct drm_device *dev)
3827 {
3828         drm_i915_private_t *dev_priv = dev->dev_private;
3829         int ret;
3830
3831         mutex_lock(&dev->struct_mutex);
3832
3833         if (dev_priv->mm.suspended) {
3834                 mutex_unlock(&dev->struct_mutex);
3835                 return 0;
3836         }
3837
3838         ret = i915_gpu_idle(dev);
3839         if (ret) {
3840                 mutex_unlock(&dev->struct_mutex);
3841                 return ret;
3842         }
3843         i915_gem_retire_requests(dev);
3844
3845         /* Under UMS, be paranoid and evict. */
3846         if (!drm_core_check_feature(dev, DRIVER_MODESET))
3847                 i915_gem_evict_everything(dev);
3848
3849         i915_gem_reset_fences(dev);
3850
3851         /* Hack!  Don't let anybody do execbuf while we don't control the chip.
3852          * We need to replace this with a semaphore, or something.
3853          * And not confound mm.suspended!
3854          */
3855         dev_priv->mm.suspended = 1;
3856         del_timer_sync(&dev_priv->gpu_error.hangcheck_timer);
3857
3858         i915_kernel_lost_context(dev);
3859         i915_gem_cleanup_ringbuffer(dev);
3860
3861         mutex_unlock(&dev->struct_mutex);
3862
3863         /* Cancel the retire work handler, which should be idle now. */
3864         cancel_delayed_work_sync(&dev_priv->mm.retire_work);
3865
3866         return 0;
3867 }
3868
3869 void i915_gem_l3_remap(struct drm_device *dev)
3870 {
3871         drm_i915_private_t *dev_priv = dev->dev_private;
3872         u32 misccpctl;
3873         int i;
3874
3875         if (!HAS_L3_GPU_CACHE(dev))
3876                 return;
3877
3878         if (!dev_priv->l3_parity.remap_info)
3879                 return;
3880
3881         misccpctl = I915_READ(GEN7_MISCCPCTL);
3882         I915_WRITE(GEN7_MISCCPCTL, misccpctl & ~GEN7_DOP_CLOCK_GATE_ENABLE);
3883         POSTING_READ(GEN7_MISCCPCTL);
3884
3885         for (i = 0; i < GEN7_L3LOG_SIZE; i += 4) {
3886                 u32 remap = I915_READ(GEN7_L3LOG_BASE + i);
3887                 if (remap && remap != dev_priv->l3_parity.remap_info[i/4])
3888                         DRM_DEBUG("0x%x was already programmed to %x\n",
3889                                   GEN7_L3LOG_BASE + i, remap);
3890                 if (remap && !dev_priv->l3_parity.remap_info[i/4])
3891                         DRM_DEBUG_DRIVER("Clearing remapped register\n");
3892                 I915_WRITE(GEN7_L3LOG_BASE + i, dev_priv->l3_parity.remap_info[i/4]);
3893         }
3894
3895         /* Make sure all the writes land before disabling dop clock gating */
3896         POSTING_READ(GEN7_L3LOG_BASE);
3897
3898         I915_WRITE(GEN7_MISCCPCTL, misccpctl);
3899 }
3900
3901 void i915_gem_init_swizzling(struct drm_device *dev)
3902 {
3903         drm_i915_private_t *dev_priv = dev->dev_private;
3904
3905         if (INTEL_INFO(dev)->gen < 5 ||
3906             dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_NONE)
3907                 return;
3908
3909         I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
3910                                  DISP_TILE_SURFACE_SWIZZLING);
3911
3912         if (IS_GEN5(dev))
3913                 return;
3914
3915         I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_SWZCTL);
3916         if (IS_GEN6(dev))
3917                 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_SNB));
3918         else if (IS_GEN7(dev))
3919                 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_IVB));
3920         else
3921                 BUG();
3922 }
3923
3924 static bool
3925 intel_enable_blt(struct drm_device *dev)
3926 {
3927         if (!HAS_BLT(dev))
3928                 return false;
3929
3930         /* The blitter was dysfunctional on early prototypes */
3931         if (IS_GEN6(dev) && dev->pdev->revision < 8) {
3932                 DRM_INFO("BLT not supported on this pre-production hardware;"
3933                          " graphics performance will be degraded.\n");
3934                 return false;
3935         }
3936
3937         return true;
3938 }
3939
3940 static int i915_gem_init_rings(struct drm_device *dev)
3941 {
3942         struct drm_i915_private *dev_priv = dev->dev_private;
3943         int ret;
3944
3945         ret = intel_init_render_ring_buffer(dev);
3946         if (ret)
3947                 return ret;
3948
3949         if (HAS_BSD(dev)) {
3950                 ret = intel_init_bsd_ring_buffer(dev);
3951                 if (ret)
3952                         goto cleanup_render_ring;
3953         }
3954
3955         if (intel_enable_blt(dev)) {
3956                 ret = intel_init_blt_ring_buffer(dev);
3957                 if (ret)
3958                         goto cleanup_bsd_ring;
3959         }
3960
3961         ret = i915_gem_set_seqno(dev, ((u32)~0 - 0x1000));
3962         if (ret)
3963                 goto cleanup_blt_ring;
3964
3965         return 0;
3966
3967 cleanup_blt_ring:
3968         intel_cleanup_ring_buffer(&dev_priv->ring[BCS]);
3969 cleanup_bsd_ring:
3970         intel_cleanup_ring_buffer(&dev_priv->ring[VCS]);
3971 cleanup_render_ring:
3972         intel_cleanup_ring_buffer(&dev_priv->ring[RCS]);
3973
3974         return ret;
3975 }
3976
3977 int
3978 i915_gem_init_hw(struct drm_device *dev)
3979 {
3980         drm_i915_private_t *dev_priv = dev->dev_private;
3981         int ret;
3982
3983         if (INTEL_INFO(dev)->gen < 6 && !intel_enable_gtt())
3984                 return -EIO;
3985
3986         if (IS_HASWELL(dev) && (I915_READ(0x120010) == 1))
3987                 I915_WRITE(0x9008, I915_READ(0x9008) | 0xf0000);
3988
3989         i915_gem_l3_remap(dev);
3990
3991         i915_gem_init_swizzling(dev);
3992
3993         ret = i915_gem_init_rings(dev);
3994         if (ret)
3995                 return ret;
3996
3997         /*
3998          * XXX: There was some w/a described somewhere suggesting loading
3999          * contexts before PPGTT.
4000          */
4001         i915_gem_context_init(dev);
4002         i915_gem_init_ppgtt(dev);
4003
4004         return 0;
4005 }
4006
4007 int i915_gem_init(struct drm_device *dev)
4008 {
4009         struct drm_i915_private *dev_priv = dev->dev_private;
4010         int ret;
4011
4012         mutex_lock(&dev->struct_mutex);
4013
4014         if (IS_VALLEYVIEW(dev)) {
4015                 /* VLVA0 (potential hack), BIOS isn't actually waking us */
4016                 I915_WRITE(VLV_GTLC_WAKE_CTRL, 1);
4017                 if (wait_for((I915_READ(VLV_GTLC_PW_STATUS) & 1) == 1, 10))
4018                         DRM_DEBUG_DRIVER("allow wake ack timed out\n");
4019         }
4020
4021         i915_gem_init_global_gtt(dev);
4022
4023         ret = i915_gem_init_hw(dev);
4024         mutex_unlock(&dev->struct_mutex);
4025         if (ret) {
4026                 i915_gem_cleanup_aliasing_ppgtt(dev);
4027                 return ret;
4028         }
4029
4030         /* Allow hardware batchbuffers unless told otherwise, but not for KMS. */
4031         if (!drm_core_check_feature(dev, DRIVER_MODESET))
4032                 dev_priv->dri1.allow_batchbuffer = 1;
4033         return 0;
4034 }
4035
4036 void
4037 i915_gem_cleanup_ringbuffer(struct drm_device *dev)
4038 {
4039         drm_i915_private_t *dev_priv = dev->dev_private;
4040         struct intel_ring_buffer *ring;
4041         int i;
4042
4043         for_each_ring(ring, dev_priv, i)
4044                 intel_cleanup_ring_buffer(ring);
4045 }
4046
4047 int
4048 i915_gem_entervt_ioctl(struct drm_device *dev, void *data,
4049                        struct drm_file *file_priv)
4050 {
4051         drm_i915_private_t *dev_priv = dev->dev_private;
4052         int ret;
4053
4054         if (drm_core_check_feature(dev, DRIVER_MODESET))
4055                 return 0;
4056
4057         if (i915_reset_in_progress(&dev_priv->gpu_error)) {
4058                 DRM_ERROR("Reenabling wedged hardware, good luck\n");
4059                 atomic_set(&dev_priv->gpu_error.reset_counter, 0);
4060         }
4061
4062         mutex_lock(&dev->struct_mutex);
4063         dev_priv->mm.suspended = 0;
4064
4065         ret = i915_gem_init_hw(dev);
4066         if (ret != 0) {
4067                 mutex_unlock(&dev->struct_mutex);
4068                 return ret;
4069         }
4070
4071         BUG_ON(!list_empty(&dev_priv->mm.active_list));
4072         mutex_unlock(&dev->struct_mutex);
4073
4074         ret = drm_irq_install(dev);
4075         if (ret)
4076                 goto cleanup_ringbuffer;
4077
4078         return 0;
4079
4080 cleanup_ringbuffer:
4081         mutex_lock(&dev->struct_mutex);
4082         i915_gem_cleanup_ringbuffer(dev);
4083         dev_priv->mm.suspended = 1;
4084         mutex_unlock(&dev->struct_mutex);
4085
4086         return ret;
4087 }
4088
4089 int
4090 i915_gem_leavevt_ioctl(struct drm_device *dev, void *data,
4091                        struct drm_file *file_priv)
4092 {
4093         if (drm_core_check_feature(dev, DRIVER_MODESET))
4094                 return 0;
4095
4096         drm_irq_uninstall(dev);
4097         return i915_gem_idle(dev);
4098 }
4099
4100 void
4101 i915_gem_lastclose(struct drm_device *dev)
4102 {
4103         int ret;
4104
4105         if (drm_core_check_feature(dev, DRIVER_MODESET))
4106                 return;
4107
4108         ret = i915_gem_idle(dev);
4109         if (ret)
4110                 DRM_ERROR("failed to idle hardware: %d\n", ret);
4111 }
4112
4113 static void
4114 init_ring_lists(struct intel_ring_buffer *ring)
4115 {
4116         INIT_LIST_HEAD(&ring->active_list);
4117         INIT_LIST_HEAD(&ring->request_list);
4118 }
4119
4120 void
4121 i915_gem_load(struct drm_device *dev)
4122 {
4123         drm_i915_private_t *dev_priv = dev->dev_private;
4124         int i;
4125
4126         dev_priv->slab =
4127                 kmem_cache_create("i915_gem_object",
4128                                   sizeof(struct drm_i915_gem_object), 0,
4129                                   SLAB_HWCACHE_ALIGN,
4130                                   NULL);
4131
4132         INIT_LIST_HEAD(&dev_priv->mm.active_list);
4133         INIT_LIST_HEAD(&dev_priv->mm.inactive_list);
4134         INIT_LIST_HEAD(&dev_priv->mm.unbound_list);
4135         INIT_LIST_HEAD(&dev_priv->mm.bound_list);
4136         INIT_LIST_HEAD(&dev_priv->mm.fence_list);
4137         for (i = 0; i < I915_NUM_RINGS; i++)
4138                 init_ring_lists(&dev_priv->ring[i]);
4139         for (i = 0; i < I915_MAX_NUM_FENCES; i++)
4140                 INIT_LIST_HEAD(&dev_priv->fence_regs[i].lru_list);
4141         INIT_DELAYED_WORK(&dev_priv->mm.retire_work,
4142                           i915_gem_retire_work_handler);
4143         init_waitqueue_head(&dev_priv->gpu_error.reset_queue);
4144
4145         /* On GEN3 we really need to make sure the ARB C3 LP bit is set */
4146         if (IS_GEN3(dev)) {
4147                 I915_WRITE(MI_ARB_STATE,
4148                            _MASKED_BIT_ENABLE(MI_ARB_C3_LP_WRITE_ENABLE));
4149         }
4150
4151         dev_priv->relative_constants_mode = I915_EXEC_CONSTANTS_REL_GENERAL;
4152
4153         /* Old X drivers will take 0-2 for front, back, depth buffers */
4154         if (!drm_core_check_feature(dev, DRIVER_MODESET))
4155                 dev_priv->fence_reg_start = 3;
4156
4157         if (INTEL_INFO(dev)->gen >= 4 || IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
4158                 dev_priv->num_fence_regs = 16;
4159         else
4160                 dev_priv->num_fence_regs = 8;
4161
4162         /* Initialize fence registers to zero */
4163         i915_gem_reset_fences(dev);
4164
4165         i915_gem_detect_bit_6_swizzle(dev);
4166         init_waitqueue_head(&dev_priv->pending_flip_queue);
4167
4168         dev_priv->mm.interruptible = true;
4169
4170         dev_priv->mm.inactive_shrinker.shrink = i915_gem_inactive_shrink;
4171         dev_priv->mm.inactive_shrinker.seeks = DEFAULT_SEEKS;
4172         register_shrinker(&dev_priv->mm.inactive_shrinker);
4173 }
4174
4175 /*
4176  * Create a physically contiguous memory object for this object
4177  * e.g. for cursor + overlay regs
4178  */
4179 static int i915_gem_init_phys_object(struct drm_device *dev,
4180                                      int id, int size, int align)
4181 {
4182         drm_i915_private_t *dev_priv = dev->dev_private;
4183         struct drm_i915_gem_phys_object *phys_obj;
4184         int ret;
4185
4186         if (dev_priv->mm.phys_objs[id - 1] || !size)
4187                 return 0;
4188
4189         phys_obj = kzalloc(sizeof(struct drm_i915_gem_phys_object), GFP_KERNEL);
4190         if (!phys_obj)
4191                 return -ENOMEM;
4192
4193         phys_obj->id = id;
4194
4195         phys_obj->handle = drm_pci_alloc(dev, size, align);
4196         if (!phys_obj->handle) {
4197                 ret = -ENOMEM;
4198                 goto kfree_obj;
4199         }
4200 #ifdef CONFIG_X86
4201         set_memory_wc((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
4202 #endif
4203
4204         dev_priv->mm.phys_objs[id - 1] = phys_obj;
4205
4206         return 0;
4207 kfree_obj:
4208         kfree(phys_obj);
4209         return ret;
4210 }
4211
4212 static void i915_gem_free_phys_object(struct drm_device *dev, int id)
4213 {
4214         drm_i915_private_t *dev_priv = dev->dev_private;
4215         struct drm_i915_gem_phys_object *phys_obj;
4216
4217         if (!dev_priv->mm.phys_objs[id - 1])
4218                 return;
4219
4220         phys_obj = dev_priv->mm.phys_objs[id - 1];
4221         if (phys_obj->cur_obj) {
4222                 i915_gem_detach_phys_object(dev, phys_obj->cur_obj);
4223         }
4224
4225 #ifdef CONFIG_X86
4226         set_memory_wb((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
4227 #endif
4228         drm_pci_free(dev, phys_obj->handle);
4229         kfree(phys_obj);
4230         dev_priv->mm.phys_objs[id - 1] = NULL;
4231 }
4232
4233 void i915_gem_free_all_phys_object(struct drm_device *dev)
4234 {
4235         int i;
4236
4237         for (i = I915_GEM_PHYS_CURSOR_0; i <= I915_MAX_PHYS_OBJECT; i++)
4238                 i915_gem_free_phys_object(dev, i);
4239 }
4240
4241 void i915_gem_detach_phys_object(struct drm_device *dev,
4242                                  struct drm_i915_gem_object *obj)
4243 {
4244         struct address_space *mapping = file_inode(obj->base.filp)->i_mapping;
4245         char *vaddr;
4246         int i;
4247         int page_count;
4248
4249         if (!obj->phys_obj)
4250                 return;
4251         vaddr = obj->phys_obj->handle->vaddr;
4252
4253         page_count = obj->base.size / PAGE_SIZE;
4254         for (i = 0; i < page_count; i++) {
4255                 struct page *page = shmem_read_mapping_page(mapping, i);
4256                 if (!IS_ERR(page)) {
4257                         char *dst = kmap_atomic(page);
4258                         memcpy(dst, vaddr + i*PAGE_SIZE, PAGE_SIZE);
4259                         kunmap_atomic(dst);
4260
4261                         drm_clflush_pages(&page, 1);
4262
4263                         set_page_dirty(page);
4264                         mark_page_accessed(page);
4265                         page_cache_release(page);
4266                 }
4267         }
4268         i915_gem_chipset_flush(dev);
4269
4270         obj->phys_obj->cur_obj = NULL;
4271         obj->phys_obj = NULL;
4272 }
4273
4274 int
4275 i915_gem_attach_phys_object(struct drm_device *dev,
4276                             struct drm_i915_gem_object *obj,
4277                             int id,
4278                             int align)
4279 {
4280         struct address_space *mapping = file_inode(obj->base.filp)->i_mapping;
4281         drm_i915_private_t *dev_priv = dev->dev_private;
4282         int ret = 0;
4283         int page_count;
4284         int i;
4285
4286         if (id > I915_MAX_PHYS_OBJECT)
4287                 return -EINVAL;
4288
4289         if (obj->phys_obj) {
4290                 if (obj->phys_obj->id == id)
4291                         return 0;
4292                 i915_gem_detach_phys_object(dev, obj);
4293         }
4294
4295         /* create a new object */
4296         if (!dev_priv->mm.phys_objs[id - 1]) {
4297                 ret = i915_gem_init_phys_object(dev, id,
4298                                                 obj->base.size, align);
4299                 if (ret) {
4300                         DRM_ERROR("failed to init phys object %d size: %zu\n",
4301                                   id, obj->base.size);
4302                         return ret;
4303                 }
4304         }
4305
4306         /* bind to the object */
4307         obj->phys_obj = dev_priv->mm.phys_objs[id - 1];
4308         obj->phys_obj->cur_obj = obj;
4309
4310         page_count = obj->base.size / PAGE_SIZE;
4311
4312         for (i = 0; i < page_count; i++) {
4313                 struct page *page;
4314                 char *dst, *src;
4315
4316                 page = shmem_read_mapping_page(mapping, i);
4317                 if (IS_ERR(page))
4318                         return PTR_ERR(page);
4319
4320                 src = kmap_atomic(page);
4321                 dst = obj->phys_obj->handle->vaddr + (i * PAGE_SIZE);
4322                 memcpy(dst, src, PAGE_SIZE);
4323                 kunmap_atomic(src);
4324
4325                 mark_page_accessed(page);
4326                 page_cache_release(page);
4327         }
4328
4329         return 0;
4330 }
4331
4332 static int
4333 i915_gem_phys_pwrite(struct drm_device *dev,
4334                      struct drm_i915_gem_object *obj,
4335                      struct drm_i915_gem_pwrite *args,
4336                      struct drm_file *file_priv)
4337 {
4338         void *vaddr = obj->phys_obj->handle->vaddr + args->offset;
4339         char __user *user_data = to_user_ptr(args->data_ptr);
4340
4341         if (__copy_from_user_inatomic_nocache(vaddr, user_data, args->size)) {
4342                 unsigned long unwritten;
4343
4344                 /* The physical object once assigned is fixed for the lifetime
4345                  * of the obj, so we can safely drop the lock and continue
4346                  * to access vaddr.
4347                  */
4348                 mutex_unlock(&dev->struct_mutex);
4349                 unwritten = copy_from_user(vaddr, user_data, args->size);
4350                 mutex_lock(&dev->struct_mutex);
4351                 if (unwritten)
4352                         return -EFAULT;
4353         }
4354
4355         i915_gem_chipset_flush(dev);
4356         return 0;
4357 }
4358
4359 void i915_gem_release(struct drm_device *dev, struct drm_file *file)
4360 {
4361         struct drm_i915_file_private *file_priv = file->driver_priv;
4362
4363         /* Clean up our request list when the client is going away, so that
4364          * later retire_requests won't dereference our soon-to-be-gone
4365          * file_priv.
4366          */
4367         spin_lock(&file_priv->mm.lock);
4368         while (!list_empty(&file_priv->mm.request_list)) {
4369                 struct drm_i915_gem_request *request;
4370
4371                 request = list_first_entry(&file_priv->mm.request_list,
4372                                            struct drm_i915_gem_request,
4373                                            client_list);
4374                 list_del(&request->client_list);
4375                 request->file_priv = NULL;
4376         }
4377         spin_unlock(&file_priv->mm.lock);
4378 }
4379
4380 static bool mutex_is_locked_by(struct mutex *mutex, struct task_struct *task)
4381 {
4382         if (!mutex_is_locked(mutex))
4383                 return false;
4384
4385 #if defined(CONFIG_SMP) || defined(CONFIG_DEBUG_MUTEXES)
4386         return mutex->owner == task;
4387 #else
4388         /* Since UP may be pre-empted, we cannot assume that we own the lock */
4389         return false;
4390 #endif
4391 }
4392
4393 static int
4394 i915_gem_inactive_shrink(struct shrinker *shrinker, struct shrink_control *sc)
4395 {
4396         struct drm_i915_private *dev_priv =
4397                 container_of(shrinker,
4398                              struct drm_i915_private,
4399                              mm.inactive_shrinker);
4400         struct drm_device *dev = dev_priv->dev;
4401         struct drm_i915_gem_object *obj;
4402         int nr_to_scan = sc->nr_to_scan;
4403         bool unlock = true;
4404         int cnt;
4405
4406         if (!mutex_trylock(&dev->struct_mutex)) {
4407                 if (!mutex_is_locked_by(&dev->struct_mutex, current))
4408                         return 0;
4409
4410                 if (dev_priv->mm.shrinker_no_lock_stealing)
4411                         return 0;
4412
4413                 unlock = false;
4414         }
4415
4416         if (nr_to_scan) {
4417                 nr_to_scan -= i915_gem_purge(dev_priv, nr_to_scan);
4418                 if (nr_to_scan > 0)
4419                         nr_to_scan -= __i915_gem_shrink(dev_priv, nr_to_scan,
4420                                                         false);
4421                 if (nr_to_scan > 0)
4422                         i915_gem_shrink_all(dev_priv);
4423         }
4424
4425         cnt = 0;
4426         list_for_each_entry(obj, &dev_priv->mm.unbound_list, gtt_list)
4427                 if (obj->pages_pin_count == 0)
4428                         cnt += obj->base.size >> PAGE_SHIFT;
4429         list_for_each_entry(obj, &dev_priv->mm.inactive_list, gtt_list)
4430                 if (obj->pin_count == 0 && obj->pages_pin_count == 0)
4431                         cnt += obj->base.size >> PAGE_SHIFT;
4432
4433         if (unlock)
4434                 mutex_unlock(&dev->struct_mutex);
4435         return cnt;
4436 }