Merge remote-tracking branch 'lsk/v3.10/topic/gator' into linux-linaro-lsk
[firefly-linux-kernel-4.4.55.git] / drivers / gpu / drm / i915 / i915_gem.c
1 /*
2  * Copyright © 2008 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *    Eric Anholt <eric@anholt.net>
25  *
26  */
27
28 #include <drm/drmP.h>
29 #include <drm/i915_drm.h>
30 #include "i915_drv.h"
31 #include "i915_trace.h"
32 #include "intel_drv.h"
33 #include <linux/shmem_fs.h>
34 #include <linux/slab.h>
35 #include <linux/swap.h>
36 #include <linux/pci.h>
37 #include <linux/dma-buf.h>
38
39 static void i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj);
40 static void i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj);
41 static __must_check int i915_gem_object_bind_to_gtt(struct drm_i915_gem_object *obj,
42                                                     unsigned alignment,
43                                                     bool map_and_fenceable,
44                                                     bool nonblocking);
45 static int i915_gem_phys_pwrite(struct drm_device *dev,
46                                 struct drm_i915_gem_object *obj,
47                                 struct drm_i915_gem_pwrite *args,
48                                 struct drm_file *file);
49
50 static void i915_gem_write_fence(struct drm_device *dev, int reg,
51                                  struct drm_i915_gem_object *obj);
52 static void i915_gem_object_update_fence(struct drm_i915_gem_object *obj,
53                                          struct drm_i915_fence_reg *fence,
54                                          bool enable);
55
56 static int i915_gem_inactive_shrink(struct shrinker *shrinker,
57                                     struct shrink_control *sc);
58 static long i915_gem_purge(struct drm_i915_private *dev_priv, long target);
59 static void i915_gem_shrink_all(struct drm_i915_private *dev_priv);
60 static void i915_gem_object_truncate(struct drm_i915_gem_object *obj);
61
62 static inline void i915_gem_object_fence_lost(struct drm_i915_gem_object *obj)
63 {
64         if (obj->tiling_mode)
65                 i915_gem_release_mmap(obj);
66
67         /* As we do not have an associated fence register, we will force
68          * a tiling change if we ever need to acquire one.
69          */
70         obj->fence_dirty = false;
71         obj->fence_reg = I915_FENCE_REG_NONE;
72 }
73
74 /* some bookkeeping */
75 static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
76                                   size_t size)
77 {
78         dev_priv->mm.object_count++;
79         dev_priv->mm.object_memory += size;
80 }
81
82 static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
83                                      size_t size)
84 {
85         dev_priv->mm.object_count--;
86         dev_priv->mm.object_memory -= size;
87 }
88
89 static int
90 i915_gem_wait_for_error(struct i915_gpu_error *error)
91 {
92         int ret;
93
94 #define EXIT_COND (!i915_reset_in_progress(error) || \
95                    i915_terminally_wedged(error))
96         if (EXIT_COND)
97                 return 0;
98
99         /*
100          * Only wait 10 seconds for the gpu reset to complete to avoid hanging
101          * userspace. If it takes that long something really bad is going on and
102          * we should simply try to bail out and fail as gracefully as possible.
103          */
104         ret = wait_event_interruptible_timeout(error->reset_queue,
105                                                EXIT_COND,
106                                                10*HZ);
107         if (ret == 0) {
108                 DRM_ERROR("Timed out waiting for the gpu reset to complete\n");
109                 return -EIO;
110         } else if (ret < 0) {
111                 return ret;
112         }
113 #undef EXIT_COND
114
115         return 0;
116 }
117
118 int i915_mutex_lock_interruptible(struct drm_device *dev)
119 {
120         struct drm_i915_private *dev_priv = dev->dev_private;
121         int ret;
122
123         ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
124         if (ret)
125                 return ret;
126
127         ret = mutex_lock_interruptible(&dev->struct_mutex);
128         if (ret)
129                 return ret;
130
131         WARN_ON(i915_verify_lists(dev));
132         return 0;
133 }
134
135 static inline bool
136 i915_gem_object_is_inactive(struct drm_i915_gem_object *obj)
137 {
138         return obj->gtt_space && !obj->active;
139 }
140
141 int
142 i915_gem_init_ioctl(struct drm_device *dev, void *data,
143                     struct drm_file *file)
144 {
145         struct drm_i915_private *dev_priv = dev->dev_private;
146         struct drm_i915_gem_init *args = data;
147
148         if (drm_core_check_feature(dev, DRIVER_MODESET))
149                 return -ENODEV;
150
151         if (args->gtt_start >= args->gtt_end ||
152             (args->gtt_end | args->gtt_start) & (PAGE_SIZE - 1))
153                 return -EINVAL;
154
155         /* GEM with user mode setting was never supported on ilk and later. */
156         if (INTEL_INFO(dev)->gen >= 5)
157                 return -ENODEV;
158
159         mutex_lock(&dev->struct_mutex);
160         i915_gem_setup_global_gtt(dev, args->gtt_start, args->gtt_end,
161                                   args->gtt_end);
162         dev_priv->gtt.mappable_end = args->gtt_end;
163         mutex_unlock(&dev->struct_mutex);
164
165         return 0;
166 }
167
168 int
169 i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
170                             struct drm_file *file)
171 {
172         struct drm_i915_private *dev_priv = dev->dev_private;
173         struct drm_i915_gem_get_aperture *args = data;
174         struct drm_i915_gem_object *obj;
175         size_t pinned;
176
177         pinned = 0;
178         mutex_lock(&dev->struct_mutex);
179         list_for_each_entry(obj, &dev_priv->mm.bound_list, gtt_list)
180                 if (obj->pin_count)
181                         pinned += obj->gtt_space->size;
182         mutex_unlock(&dev->struct_mutex);
183
184         args->aper_size = dev_priv->gtt.total;
185         args->aper_available_size = args->aper_size - pinned;
186
187         return 0;
188 }
189
190 void *i915_gem_object_alloc(struct drm_device *dev)
191 {
192         struct drm_i915_private *dev_priv = dev->dev_private;
193         return kmem_cache_alloc(dev_priv->slab, GFP_KERNEL | __GFP_ZERO);
194 }
195
196 void i915_gem_object_free(struct drm_i915_gem_object *obj)
197 {
198         struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
199         kmem_cache_free(dev_priv->slab, obj);
200 }
201
202 static int
203 i915_gem_create(struct drm_file *file,
204                 struct drm_device *dev,
205                 uint64_t size,
206                 uint32_t *handle_p)
207 {
208         struct drm_i915_gem_object *obj;
209         int ret;
210         u32 handle;
211
212         size = roundup(size, PAGE_SIZE);
213         if (size == 0)
214                 return -EINVAL;
215
216         /* Allocate the new object */
217         obj = i915_gem_alloc_object(dev, size);
218         if (obj == NULL)
219                 return -ENOMEM;
220
221         ret = drm_gem_handle_create(file, &obj->base, &handle);
222         if (ret) {
223                 drm_gem_object_release(&obj->base);
224                 i915_gem_info_remove_obj(dev->dev_private, obj->base.size);
225                 i915_gem_object_free(obj);
226                 return ret;
227         }
228
229         /* drop reference from allocate - handle holds it now */
230         drm_gem_object_unreference(&obj->base);
231         trace_i915_gem_object_create(obj);
232
233         *handle_p = handle;
234         return 0;
235 }
236
237 int
238 i915_gem_dumb_create(struct drm_file *file,
239                      struct drm_device *dev,
240                      struct drm_mode_create_dumb *args)
241 {
242         /* have to work out size/pitch and return them */
243         args->pitch = ALIGN(args->width * ((args->bpp + 7) / 8), 64);
244         args->size = args->pitch * args->height;
245         return i915_gem_create(file, dev,
246                                args->size, &args->handle);
247 }
248
249 int i915_gem_dumb_destroy(struct drm_file *file,
250                           struct drm_device *dev,
251                           uint32_t handle)
252 {
253         return drm_gem_handle_delete(file, handle);
254 }
255
256 /**
257  * Creates a new mm object and returns a handle to it.
258  */
259 int
260 i915_gem_create_ioctl(struct drm_device *dev, void *data,
261                       struct drm_file *file)
262 {
263         struct drm_i915_gem_create *args = data;
264
265         return i915_gem_create(file, dev,
266                                args->size, &args->handle);
267 }
268
269 static inline int
270 __copy_to_user_swizzled(char __user *cpu_vaddr,
271                         const char *gpu_vaddr, int gpu_offset,
272                         int length)
273 {
274         int ret, cpu_offset = 0;
275
276         while (length > 0) {
277                 int cacheline_end = ALIGN(gpu_offset + 1, 64);
278                 int this_length = min(cacheline_end - gpu_offset, length);
279                 int swizzled_gpu_offset = gpu_offset ^ 64;
280
281                 ret = __copy_to_user(cpu_vaddr + cpu_offset,
282                                      gpu_vaddr + swizzled_gpu_offset,
283                                      this_length);
284                 if (ret)
285                         return ret + length;
286
287                 cpu_offset += this_length;
288                 gpu_offset += this_length;
289                 length -= this_length;
290         }
291
292         return 0;
293 }
294
295 static inline int
296 __copy_from_user_swizzled(char *gpu_vaddr, int gpu_offset,
297                           const char __user *cpu_vaddr,
298                           int length)
299 {
300         int ret, cpu_offset = 0;
301
302         while (length > 0) {
303                 int cacheline_end = ALIGN(gpu_offset + 1, 64);
304                 int this_length = min(cacheline_end - gpu_offset, length);
305                 int swizzled_gpu_offset = gpu_offset ^ 64;
306
307                 ret = __copy_from_user(gpu_vaddr + swizzled_gpu_offset,
308                                        cpu_vaddr + cpu_offset,
309                                        this_length);
310                 if (ret)
311                         return ret + length;
312
313                 cpu_offset += this_length;
314                 gpu_offset += this_length;
315                 length -= this_length;
316         }
317
318         return 0;
319 }
320
321 /* Per-page copy function for the shmem pread fastpath.
322  * Flushes invalid cachelines before reading the target if
323  * needs_clflush is set. */
324 static int
325 shmem_pread_fast(struct page *page, int shmem_page_offset, int page_length,
326                  char __user *user_data,
327                  bool page_do_bit17_swizzling, bool needs_clflush)
328 {
329         char *vaddr;
330         int ret;
331
332         if (unlikely(page_do_bit17_swizzling))
333                 return -EINVAL;
334
335         vaddr = kmap_atomic(page);
336         if (needs_clflush)
337                 drm_clflush_virt_range(vaddr + shmem_page_offset,
338                                        page_length);
339         ret = __copy_to_user_inatomic(user_data,
340                                       vaddr + shmem_page_offset,
341                                       page_length);
342         kunmap_atomic(vaddr);
343
344         return ret ? -EFAULT : 0;
345 }
346
347 static void
348 shmem_clflush_swizzled_range(char *addr, unsigned long length,
349                              bool swizzled)
350 {
351         if (unlikely(swizzled)) {
352                 unsigned long start = (unsigned long) addr;
353                 unsigned long end = (unsigned long) addr + length;
354
355                 /* For swizzling simply ensure that we always flush both
356                  * channels. Lame, but simple and it works. Swizzled
357                  * pwrite/pread is far from a hotpath - current userspace
358                  * doesn't use it at all. */
359                 start = round_down(start, 128);
360                 end = round_up(end, 128);
361
362                 drm_clflush_virt_range((void *)start, end - start);
363         } else {
364                 drm_clflush_virt_range(addr, length);
365         }
366
367 }
368
369 /* Only difference to the fast-path function is that this can handle bit17
370  * and uses non-atomic copy and kmap functions. */
371 static int
372 shmem_pread_slow(struct page *page, int shmem_page_offset, int page_length,
373                  char __user *user_data,
374                  bool page_do_bit17_swizzling, bool needs_clflush)
375 {
376         char *vaddr;
377         int ret;
378
379         vaddr = kmap(page);
380         if (needs_clflush)
381                 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
382                                              page_length,
383                                              page_do_bit17_swizzling);
384
385         if (page_do_bit17_swizzling)
386                 ret = __copy_to_user_swizzled(user_data,
387                                               vaddr, shmem_page_offset,
388                                               page_length);
389         else
390                 ret = __copy_to_user(user_data,
391                                      vaddr + shmem_page_offset,
392                                      page_length);
393         kunmap(page);
394
395         return ret ? - EFAULT : 0;
396 }
397
398 static int
399 i915_gem_shmem_pread(struct drm_device *dev,
400                      struct drm_i915_gem_object *obj,
401                      struct drm_i915_gem_pread *args,
402                      struct drm_file *file)
403 {
404         char __user *user_data;
405         ssize_t remain;
406         loff_t offset;
407         int shmem_page_offset, page_length, ret = 0;
408         int obj_do_bit17_swizzling, page_do_bit17_swizzling;
409         int prefaulted = 0;
410         int needs_clflush = 0;
411         struct sg_page_iter sg_iter;
412
413         user_data = to_user_ptr(args->data_ptr);
414         remain = args->size;
415
416         obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
417
418         if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU)) {
419                 /* If we're not in the cpu read domain, set ourself into the gtt
420                  * read domain and manually flush cachelines (if required). This
421                  * optimizes for the case when the gpu will dirty the data
422                  * anyway again before the next pread happens. */
423                 if (obj->cache_level == I915_CACHE_NONE)
424                         needs_clflush = 1;
425                 if (obj->gtt_space) {
426                         ret = i915_gem_object_set_to_gtt_domain(obj, false);
427                         if (ret)
428                                 return ret;
429                 }
430         }
431
432         ret = i915_gem_object_get_pages(obj);
433         if (ret)
434                 return ret;
435
436         i915_gem_object_pin_pages(obj);
437
438         offset = args->offset;
439
440         for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
441                          offset >> PAGE_SHIFT) {
442                 struct page *page = sg_page_iter_page(&sg_iter);
443
444                 if (remain <= 0)
445                         break;
446
447                 /* Operation in this page
448                  *
449                  * shmem_page_offset = offset within page in shmem file
450                  * page_length = bytes to copy for this page
451                  */
452                 shmem_page_offset = offset_in_page(offset);
453                 page_length = remain;
454                 if ((shmem_page_offset + page_length) > PAGE_SIZE)
455                         page_length = PAGE_SIZE - shmem_page_offset;
456
457                 page_do_bit17_swizzling = obj_do_bit17_swizzling &&
458                         (page_to_phys(page) & (1 << 17)) != 0;
459
460                 ret = shmem_pread_fast(page, shmem_page_offset, page_length,
461                                        user_data, page_do_bit17_swizzling,
462                                        needs_clflush);
463                 if (ret == 0)
464                         goto next_page;
465
466                 mutex_unlock(&dev->struct_mutex);
467
468                 if (!prefaulted) {
469                         ret = fault_in_multipages_writeable(user_data, remain);
470                         /* Userspace is tricking us, but we've already clobbered
471                          * its pages with the prefault and promised to write the
472                          * data up to the first fault. Hence ignore any errors
473                          * and just continue. */
474                         (void)ret;
475                         prefaulted = 1;
476                 }
477
478                 ret = shmem_pread_slow(page, shmem_page_offset, page_length,
479                                        user_data, page_do_bit17_swizzling,
480                                        needs_clflush);
481
482                 mutex_lock(&dev->struct_mutex);
483
484 next_page:
485                 mark_page_accessed(page);
486
487                 if (ret)
488                         goto out;
489
490                 remain -= page_length;
491                 user_data += page_length;
492                 offset += page_length;
493         }
494
495 out:
496         i915_gem_object_unpin_pages(obj);
497
498         return ret;
499 }
500
501 /**
502  * Reads data from the object referenced by handle.
503  *
504  * On error, the contents of *data are undefined.
505  */
506 int
507 i915_gem_pread_ioctl(struct drm_device *dev, void *data,
508                      struct drm_file *file)
509 {
510         struct drm_i915_gem_pread *args = data;
511         struct drm_i915_gem_object *obj;
512         int ret = 0;
513
514         if (args->size == 0)
515                 return 0;
516
517         if (!access_ok(VERIFY_WRITE,
518                        to_user_ptr(args->data_ptr),
519                        args->size))
520                 return -EFAULT;
521
522         ret = i915_mutex_lock_interruptible(dev);
523         if (ret)
524                 return ret;
525
526         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
527         if (&obj->base == NULL) {
528                 ret = -ENOENT;
529                 goto unlock;
530         }
531
532         /* Bounds check source.  */
533         if (args->offset > obj->base.size ||
534             args->size > obj->base.size - args->offset) {
535                 ret = -EINVAL;
536                 goto out;
537         }
538
539         /* prime objects have no backing filp to GEM pread/pwrite
540          * pages from.
541          */
542         if (!obj->base.filp) {
543                 ret = -EINVAL;
544                 goto out;
545         }
546
547         trace_i915_gem_object_pread(obj, args->offset, args->size);
548
549         ret = i915_gem_shmem_pread(dev, obj, args, file);
550
551 out:
552         drm_gem_object_unreference(&obj->base);
553 unlock:
554         mutex_unlock(&dev->struct_mutex);
555         return ret;
556 }
557
558 /* This is the fast write path which cannot handle
559  * page faults in the source data
560  */
561
562 static inline int
563 fast_user_write(struct io_mapping *mapping,
564                 loff_t page_base, int page_offset,
565                 char __user *user_data,
566                 int length)
567 {
568         void __iomem *vaddr_atomic;
569         void *vaddr;
570         unsigned long unwritten;
571
572         vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base);
573         /* We can use the cpu mem copy function because this is X86. */
574         vaddr = (void __force*)vaddr_atomic + page_offset;
575         unwritten = __copy_from_user_inatomic_nocache(vaddr,
576                                                       user_data, length);
577         io_mapping_unmap_atomic(vaddr_atomic);
578         return unwritten;
579 }
580
581 /**
582  * This is the fast pwrite path, where we copy the data directly from the
583  * user into the GTT, uncached.
584  */
585 static int
586 i915_gem_gtt_pwrite_fast(struct drm_device *dev,
587                          struct drm_i915_gem_object *obj,
588                          struct drm_i915_gem_pwrite *args,
589                          struct drm_file *file)
590 {
591         drm_i915_private_t *dev_priv = dev->dev_private;
592         ssize_t remain;
593         loff_t offset, page_base;
594         char __user *user_data;
595         int page_offset, page_length, ret;
596
597         ret = i915_gem_object_pin(obj, 0, true, true);
598         if (ret)
599                 goto out;
600
601         ret = i915_gem_object_set_to_gtt_domain(obj, true);
602         if (ret)
603                 goto out_unpin;
604
605         ret = i915_gem_object_put_fence(obj);
606         if (ret)
607                 goto out_unpin;
608
609         user_data = to_user_ptr(args->data_ptr);
610         remain = args->size;
611
612         offset = obj->gtt_offset + args->offset;
613
614         while (remain > 0) {
615                 /* Operation in this page
616                  *
617                  * page_base = page offset within aperture
618                  * page_offset = offset within page
619                  * page_length = bytes to copy for this page
620                  */
621                 page_base = offset & PAGE_MASK;
622                 page_offset = offset_in_page(offset);
623                 page_length = remain;
624                 if ((page_offset + remain) > PAGE_SIZE)
625                         page_length = PAGE_SIZE - page_offset;
626
627                 /* If we get a fault while copying data, then (presumably) our
628                  * source page isn't available.  Return the error and we'll
629                  * retry in the slow path.
630                  */
631                 if (fast_user_write(dev_priv->gtt.mappable, page_base,
632                                     page_offset, user_data, page_length)) {
633                         ret = -EFAULT;
634                         goto out_unpin;
635                 }
636
637                 remain -= page_length;
638                 user_data += page_length;
639                 offset += page_length;
640         }
641
642 out_unpin:
643         i915_gem_object_unpin(obj);
644 out:
645         return ret;
646 }
647
648 /* Per-page copy function for the shmem pwrite fastpath.
649  * Flushes invalid cachelines before writing to the target if
650  * needs_clflush_before is set and flushes out any written cachelines after
651  * writing if needs_clflush is set. */
652 static int
653 shmem_pwrite_fast(struct page *page, int shmem_page_offset, int page_length,
654                   char __user *user_data,
655                   bool page_do_bit17_swizzling,
656                   bool needs_clflush_before,
657                   bool needs_clflush_after)
658 {
659         char *vaddr;
660         int ret;
661
662         if (unlikely(page_do_bit17_swizzling))
663                 return -EINVAL;
664
665         vaddr = kmap_atomic(page);
666         if (needs_clflush_before)
667                 drm_clflush_virt_range(vaddr + shmem_page_offset,
668                                        page_length);
669         ret = __copy_from_user_inatomic_nocache(vaddr + shmem_page_offset,
670                                                 user_data,
671                                                 page_length);
672         if (needs_clflush_after)
673                 drm_clflush_virt_range(vaddr + shmem_page_offset,
674                                        page_length);
675         kunmap_atomic(vaddr);
676
677         return ret ? -EFAULT : 0;
678 }
679
680 /* Only difference to the fast-path function is that this can handle bit17
681  * and uses non-atomic copy and kmap functions. */
682 static int
683 shmem_pwrite_slow(struct page *page, int shmem_page_offset, int page_length,
684                   char __user *user_data,
685                   bool page_do_bit17_swizzling,
686                   bool needs_clflush_before,
687                   bool needs_clflush_after)
688 {
689         char *vaddr;
690         int ret;
691
692         vaddr = kmap(page);
693         if (unlikely(needs_clflush_before || page_do_bit17_swizzling))
694                 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
695                                              page_length,
696                                              page_do_bit17_swizzling);
697         if (page_do_bit17_swizzling)
698                 ret = __copy_from_user_swizzled(vaddr, shmem_page_offset,
699                                                 user_data,
700                                                 page_length);
701         else
702                 ret = __copy_from_user(vaddr + shmem_page_offset,
703                                        user_data,
704                                        page_length);
705         if (needs_clflush_after)
706                 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
707                                              page_length,
708                                              page_do_bit17_swizzling);
709         kunmap(page);
710
711         return ret ? -EFAULT : 0;
712 }
713
714 static int
715 i915_gem_shmem_pwrite(struct drm_device *dev,
716                       struct drm_i915_gem_object *obj,
717                       struct drm_i915_gem_pwrite *args,
718                       struct drm_file *file)
719 {
720         ssize_t remain;
721         loff_t offset;
722         char __user *user_data;
723         int shmem_page_offset, page_length, ret = 0;
724         int obj_do_bit17_swizzling, page_do_bit17_swizzling;
725         int hit_slowpath = 0;
726         int needs_clflush_after = 0;
727         int needs_clflush_before = 0;
728         struct sg_page_iter sg_iter;
729
730         user_data = to_user_ptr(args->data_ptr);
731         remain = args->size;
732
733         obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
734
735         if (obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
736                 /* If we're not in the cpu write domain, set ourself into the gtt
737                  * write domain and manually flush cachelines (if required). This
738                  * optimizes for the case when the gpu will use the data
739                  * right away and we therefore have to clflush anyway. */
740                 if (obj->cache_level == I915_CACHE_NONE)
741                         needs_clflush_after = 1;
742                 if (obj->gtt_space) {
743                         ret = i915_gem_object_set_to_gtt_domain(obj, true);
744                         if (ret)
745                                 return ret;
746                 }
747         }
748         /* Same trick applies for invalidate partially written cachelines before
749          * writing.  */
750         if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU)
751             && obj->cache_level == I915_CACHE_NONE)
752                 needs_clflush_before = 1;
753
754         ret = i915_gem_object_get_pages(obj);
755         if (ret)
756                 return ret;
757
758         i915_gem_object_pin_pages(obj);
759
760         offset = args->offset;
761         obj->dirty = 1;
762
763         for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
764                          offset >> PAGE_SHIFT) {
765                 struct page *page = sg_page_iter_page(&sg_iter);
766                 int partial_cacheline_write;
767
768                 if (remain <= 0)
769                         break;
770
771                 /* Operation in this page
772                  *
773                  * shmem_page_offset = offset within page in shmem file
774                  * page_length = bytes to copy for this page
775                  */
776                 shmem_page_offset = offset_in_page(offset);
777
778                 page_length = remain;
779                 if ((shmem_page_offset + page_length) > PAGE_SIZE)
780                         page_length = PAGE_SIZE - shmem_page_offset;
781
782                 /* If we don't overwrite a cacheline completely we need to be
783                  * careful to have up-to-date data by first clflushing. Don't
784                  * overcomplicate things and flush the entire patch. */
785                 partial_cacheline_write = needs_clflush_before &&
786                         ((shmem_page_offset | page_length)
787                                 & (boot_cpu_data.x86_clflush_size - 1));
788
789                 page_do_bit17_swizzling = obj_do_bit17_swizzling &&
790                         (page_to_phys(page) & (1 << 17)) != 0;
791
792                 ret = shmem_pwrite_fast(page, shmem_page_offset, page_length,
793                                         user_data, page_do_bit17_swizzling,
794                                         partial_cacheline_write,
795                                         needs_clflush_after);
796                 if (ret == 0)
797                         goto next_page;
798
799                 hit_slowpath = 1;
800                 mutex_unlock(&dev->struct_mutex);
801                 ret = shmem_pwrite_slow(page, shmem_page_offset, page_length,
802                                         user_data, page_do_bit17_swizzling,
803                                         partial_cacheline_write,
804                                         needs_clflush_after);
805
806                 mutex_lock(&dev->struct_mutex);
807
808 next_page:
809                 set_page_dirty(page);
810                 mark_page_accessed(page);
811
812                 if (ret)
813                         goto out;
814
815                 remain -= page_length;
816                 user_data += page_length;
817                 offset += page_length;
818         }
819
820 out:
821         i915_gem_object_unpin_pages(obj);
822
823         if (hit_slowpath) {
824                 /*
825                  * Fixup: Flush cpu caches in case we didn't flush the dirty
826                  * cachelines in-line while writing and the object moved
827                  * out of the cpu write domain while we've dropped the lock.
828                  */
829                 if (!needs_clflush_after &&
830                     obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
831                         i915_gem_clflush_object(obj);
832                         i915_gem_chipset_flush(dev);
833                 }
834         }
835
836         if (needs_clflush_after)
837                 i915_gem_chipset_flush(dev);
838
839         return ret;
840 }
841
842 /**
843  * Writes data to the object referenced by handle.
844  *
845  * On error, the contents of the buffer that were to be modified are undefined.
846  */
847 int
848 i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
849                       struct drm_file *file)
850 {
851         struct drm_i915_gem_pwrite *args = data;
852         struct drm_i915_gem_object *obj;
853         int ret;
854
855         if (args->size == 0)
856                 return 0;
857
858         if (!access_ok(VERIFY_READ,
859                        to_user_ptr(args->data_ptr),
860                        args->size))
861                 return -EFAULT;
862
863         ret = fault_in_multipages_readable(to_user_ptr(args->data_ptr),
864                                            args->size);
865         if (ret)
866                 return -EFAULT;
867
868         ret = i915_mutex_lock_interruptible(dev);
869         if (ret)
870                 return ret;
871
872         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
873         if (&obj->base == NULL) {
874                 ret = -ENOENT;
875                 goto unlock;
876         }
877
878         /* Bounds check destination. */
879         if (args->offset > obj->base.size ||
880             args->size > obj->base.size - args->offset) {
881                 ret = -EINVAL;
882                 goto out;
883         }
884
885         /* prime objects have no backing filp to GEM pread/pwrite
886          * pages from.
887          */
888         if (!obj->base.filp) {
889                 ret = -EINVAL;
890                 goto out;
891         }
892
893         trace_i915_gem_object_pwrite(obj, args->offset, args->size);
894
895         ret = -EFAULT;
896         /* We can only do the GTT pwrite on untiled buffers, as otherwise
897          * it would end up going through the fenced access, and we'll get
898          * different detiling behavior between reading and writing.
899          * pread/pwrite currently are reading and writing from the CPU
900          * perspective, requiring manual detiling by the client.
901          */
902         if (obj->phys_obj) {
903                 ret = i915_gem_phys_pwrite(dev, obj, args, file);
904                 goto out;
905         }
906
907         if (obj->cache_level == I915_CACHE_NONE &&
908             obj->tiling_mode == I915_TILING_NONE &&
909             obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
910                 ret = i915_gem_gtt_pwrite_fast(dev, obj, args, file);
911                 /* Note that the gtt paths might fail with non-page-backed user
912                  * pointers (e.g. gtt mappings when moving data between
913                  * textures). Fallback to the shmem path in that case. */
914         }
915
916         if (ret == -EFAULT || ret == -ENOSPC)
917                 ret = i915_gem_shmem_pwrite(dev, obj, args, file);
918
919 out:
920         drm_gem_object_unreference(&obj->base);
921 unlock:
922         mutex_unlock(&dev->struct_mutex);
923         return ret;
924 }
925
926 int
927 i915_gem_check_wedge(struct i915_gpu_error *error,
928                      bool interruptible)
929 {
930         if (i915_reset_in_progress(error)) {
931                 /* Non-interruptible callers can't handle -EAGAIN, hence return
932                  * -EIO unconditionally for these. */
933                 if (!interruptible)
934                         return -EIO;
935
936                 /* Recovery complete, but the reset failed ... */
937                 if (i915_terminally_wedged(error))
938                         return -EIO;
939
940                 return -EAGAIN;
941         }
942
943         return 0;
944 }
945
946 /*
947  * Compare seqno against outstanding lazy request. Emit a request if they are
948  * equal.
949  */
950 static int
951 i915_gem_check_olr(struct intel_ring_buffer *ring, u32 seqno)
952 {
953         int ret;
954
955         BUG_ON(!mutex_is_locked(&ring->dev->struct_mutex));
956
957         ret = 0;
958         if (seqno == ring->outstanding_lazy_request)
959                 ret = i915_add_request(ring, NULL, NULL);
960
961         return ret;
962 }
963
964 /**
965  * __wait_seqno - wait until execution of seqno has finished
966  * @ring: the ring expected to report seqno
967  * @seqno: duh!
968  * @reset_counter: reset sequence associated with the given seqno
969  * @interruptible: do an interruptible wait (normally yes)
970  * @timeout: in - how long to wait (NULL forever); out - how much time remaining
971  *
972  * Note: It is of utmost importance that the passed in seqno and reset_counter
973  * values have been read by the caller in an smp safe manner. Where read-side
974  * locks are involved, it is sufficient to read the reset_counter before
975  * unlocking the lock that protects the seqno. For lockless tricks, the
976  * reset_counter _must_ be read before, and an appropriate smp_rmb must be
977  * inserted.
978  *
979  * Returns 0 if the seqno was found within the alloted time. Else returns the
980  * errno with remaining time filled in timeout argument.
981  */
982 static int __wait_seqno(struct intel_ring_buffer *ring, u32 seqno,
983                         unsigned reset_counter,
984                         bool interruptible, struct timespec *timeout)
985 {
986         drm_i915_private_t *dev_priv = ring->dev->dev_private;
987         struct timespec before, now, wait_time={1,0};
988         unsigned long timeout_jiffies;
989         long end;
990         bool wait_forever = true;
991         int ret;
992
993         if (i915_seqno_passed(ring->get_seqno(ring, true), seqno))
994                 return 0;
995
996         trace_i915_gem_request_wait_begin(ring, seqno);
997
998         if (timeout != NULL) {
999                 wait_time = *timeout;
1000                 wait_forever = false;
1001         }
1002
1003         timeout_jiffies = timespec_to_jiffies_timeout(&wait_time);
1004
1005         if (WARN_ON(!ring->irq_get(ring)))
1006                 return -ENODEV;
1007
1008         /* Record current time in case interrupted by signal, or wedged * */
1009         getrawmonotonic(&before);
1010
1011 #define EXIT_COND \
1012         (i915_seqno_passed(ring->get_seqno(ring, false), seqno) || \
1013          i915_reset_in_progress(&dev_priv->gpu_error) || \
1014          reset_counter != atomic_read(&dev_priv->gpu_error.reset_counter))
1015         do {
1016                 if (interruptible)
1017                         end = wait_event_interruptible_timeout(ring->irq_queue,
1018                                                                EXIT_COND,
1019                                                                timeout_jiffies);
1020                 else
1021                         end = wait_event_timeout(ring->irq_queue, EXIT_COND,
1022                                                  timeout_jiffies);
1023
1024                 /* We need to check whether any gpu reset happened in between
1025                  * the caller grabbing the seqno and now ... */
1026                 if (reset_counter != atomic_read(&dev_priv->gpu_error.reset_counter))
1027                         end = -EAGAIN;
1028
1029                 /* ... but upgrade the -EGAIN to an -EIO if the gpu is truely
1030                  * gone. */
1031                 ret = i915_gem_check_wedge(&dev_priv->gpu_error, interruptible);
1032                 if (ret)
1033                         end = ret;
1034         } while (end == 0 && wait_forever);
1035
1036         getrawmonotonic(&now);
1037
1038         ring->irq_put(ring);
1039         trace_i915_gem_request_wait_end(ring, seqno);
1040 #undef EXIT_COND
1041
1042         if (timeout) {
1043                 struct timespec sleep_time = timespec_sub(now, before);
1044                 *timeout = timespec_sub(*timeout, sleep_time);
1045                 if (!timespec_valid(timeout)) /* i.e. negative time remains */
1046                         set_normalized_timespec(timeout, 0, 0);
1047         }
1048
1049         switch (end) {
1050         case -EIO:
1051         case -EAGAIN: /* Wedged */
1052         case -ERESTARTSYS: /* Signal */
1053                 return (int)end;
1054         case 0: /* Timeout */
1055                 return -ETIME;
1056         default: /* Completed */
1057                 WARN_ON(end < 0); /* We're not aware of other errors */
1058                 return 0;
1059         }
1060 }
1061
1062 /**
1063  * Waits for a sequence number to be signaled, and cleans up the
1064  * request and object lists appropriately for that event.
1065  */
1066 int
1067 i915_wait_seqno(struct intel_ring_buffer *ring, uint32_t seqno)
1068 {
1069         struct drm_device *dev = ring->dev;
1070         struct drm_i915_private *dev_priv = dev->dev_private;
1071         bool interruptible = dev_priv->mm.interruptible;
1072         int ret;
1073
1074         BUG_ON(!mutex_is_locked(&dev->struct_mutex));
1075         BUG_ON(seqno == 0);
1076
1077         ret = i915_gem_check_wedge(&dev_priv->gpu_error, interruptible);
1078         if (ret)
1079                 return ret;
1080
1081         ret = i915_gem_check_olr(ring, seqno);
1082         if (ret)
1083                 return ret;
1084
1085         return __wait_seqno(ring, seqno,
1086                             atomic_read(&dev_priv->gpu_error.reset_counter),
1087                             interruptible, NULL);
1088 }
1089
1090 /**
1091  * Ensures that all rendering to the object has completed and the object is
1092  * safe to unbind from the GTT or access from the CPU.
1093  */
1094 static __must_check int
1095 i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj,
1096                                bool readonly)
1097 {
1098         struct intel_ring_buffer *ring = obj->ring;
1099         u32 seqno;
1100         int ret;
1101
1102         seqno = readonly ? obj->last_write_seqno : obj->last_read_seqno;
1103         if (seqno == 0)
1104                 return 0;
1105
1106         ret = i915_wait_seqno(ring, seqno);
1107         if (ret)
1108                 return ret;
1109
1110         i915_gem_retire_requests_ring(ring);
1111
1112         /* Manually manage the write flush as we may have not yet
1113          * retired the buffer.
1114          */
1115         if (obj->last_write_seqno &&
1116             i915_seqno_passed(seqno, obj->last_write_seqno)) {
1117                 obj->last_write_seqno = 0;
1118                 obj->base.write_domain &= ~I915_GEM_GPU_DOMAINS;
1119         }
1120
1121         return 0;
1122 }
1123
1124 /* A nonblocking variant of the above wait. This is a highly dangerous routine
1125  * as the object state may change during this call.
1126  */
1127 static __must_check int
1128 i915_gem_object_wait_rendering__nonblocking(struct drm_i915_gem_object *obj,
1129                                             bool readonly)
1130 {
1131         struct drm_device *dev = obj->base.dev;
1132         struct drm_i915_private *dev_priv = dev->dev_private;
1133         struct intel_ring_buffer *ring = obj->ring;
1134         unsigned reset_counter;
1135         u32 seqno;
1136         int ret;
1137
1138         BUG_ON(!mutex_is_locked(&dev->struct_mutex));
1139         BUG_ON(!dev_priv->mm.interruptible);
1140
1141         seqno = readonly ? obj->last_write_seqno : obj->last_read_seqno;
1142         if (seqno == 0)
1143                 return 0;
1144
1145         ret = i915_gem_check_wedge(&dev_priv->gpu_error, true);
1146         if (ret)
1147                 return ret;
1148
1149         ret = i915_gem_check_olr(ring, seqno);
1150         if (ret)
1151                 return ret;
1152
1153         reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
1154         mutex_unlock(&dev->struct_mutex);
1155         ret = __wait_seqno(ring, seqno, reset_counter, true, NULL);
1156         mutex_lock(&dev->struct_mutex);
1157
1158         i915_gem_retire_requests_ring(ring);
1159
1160         /* Manually manage the write flush as we may have not yet
1161          * retired the buffer.
1162          */
1163         if (ret == 0 &&
1164             obj->last_write_seqno &&
1165             i915_seqno_passed(seqno, obj->last_write_seqno)) {
1166                 obj->last_write_seqno = 0;
1167                 obj->base.write_domain &= ~I915_GEM_GPU_DOMAINS;
1168         }
1169
1170         return ret;
1171 }
1172
1173 /**
1174  * Called when user space prepares to use an object with the CPU, either
1175  * through the mmap ioctl's mapping or a GTT mapping.
1176  */
1177 int
1178 i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
1179                           struct drm_file *file)
1180 {
1181         struct drm_i915_gem_set_domain *args = data;
1182         struct drm_i915_gem_object *obj;
1183         uint32_t read_domains = args->read_domains;
1184         uint32_t write_domain = args->write_domain;
1185         int ret;
1186
1187         /* Only handle setting domains to types used by the CPU. */
1188         if (write_domain & I915_GEM_GPU_DOMAINS)
1189                 return -EINVAL;
1190
1191         if (read_domains & I915_GEM_GPU_DOMAINS)
1192                 return -EINVAL;
1193
1194         /* Having something in the write domain implies it's in the read
1195          * domain, and only that read domain.  Enforce that in the request.
1196          */
1197         if (write_domain != 0 && read_domains != write_domain)
1198                 return -EINVAL;
1199
1200         ret = i915_mutex_lock_interruptible(dev);
1201         if (ret)
1202                 return ret;
1203
1204         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1205         if (&obj->base == NULL) {
1206                 ret = -ENOENT;
1207                 goto unlock;
1208         }
1209
1210         /* Try to flush the object off the GPU without holding the lock.
1211          * We will repeat the flush holding the lock in the normal manner
1212          * to catch cases where we are gazumped.
1213          */
1214         ret = i915_gem_object_wait_rendering__nonblocking(obj, !write_domain);
1215         if (ret)
1216                 goto unref;
1217
1218         if (read_domains & I915_GEM_DOMAIN_GTT) {
1219                 ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
1220
1221                 /* Silently promote "you're not bound, there was nothing to do"
1222                  * to success, since the client was just asking us to
1223                  * make sure everything was done.
1224                  */
1225                 if (ret == -EINVAL)
1226                         ret = 0;
1227         } else {
1228                 ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
1229         }
1230
1231 unref:
1232         drm_gem_object_unreference(&obj->base);
1233 unlock:
1234         mutex_unlock(&dev->struct_mutex);
1235         return ret;
1236 }
1237
1238 /**
1239  * Called when user space has done writes to this buffer
1240  */
1241 int
1242 i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
1243                          struct drm_file *file)
1244 {
1245         struct drm_i915_gem_sw_finish *args = data;
1246         struct drm_i915_gem_object *obj;
1247         int ret = 0;
1248
1249         ret = i915_mutex_lock_interruptible(dev);
1250         if (ret)
1251                 return ret;
1252
1253         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1254         if (&obj->base == NULL) {
1255                 ret = -ENOENT;
1256                 goto unlock;
1257         }
1258
1259         /* Pinned buffers may be scanout, so flush the cache */
1260         if (obj->pin_count)
1261                 i915_gem_object_flush_cpu_write_domain(obj);
1262
1263         drm_gem_object_unreference(&obj->base);
1264 unlock:
1265         mutex_unlock(&dev->struct_mutex);
1266         return ret;
1267 }
1268
1269 /**
1270  * Maps the contents of an object, returning the address it is mapped
1271  * into.
1272  *
1273  * While the mapping holds a reference on the contents of the object, it doesn't
1274  * imply a ref on the object itself.
1275  */
1276 int
1277 i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
1278                     struct drm_file *file)
1279 {
1280         struct drm_i915_gem_mmap *args = data;
1281         struct drm_gem_object *obj;
1282         unsigned long addr;
1283
1284         obj = drm_gem_object_lookup(dev, file, args->handle);
1285         if (obj == NULL)
1286                 return -ENOENT;
1287
1288         /* prime objects have no backing filp to GEM mmap
1289          * pages from.
1290          */
1291         if (!obj->filp) {
1292                 drm_gem_object_unreference_unlocked(obj);
1293                 return -EINVAL;
1294         }
1295
1296         addr = vm_mmap(obj->filp, 0, args->size,
1297                        PROT_READ | PROT_WRITE, MAP_SHARED,
1298                        args->offset);
1299         drm_gem_object_unreference_unlocked(obj);
1300         if (IS_ERR((void *)addr))
1301                 return addr;
1302
1303         args->addr_ptr = (uint64_t) addr;
1304
1305         return 0;
1306 }
1307
1308 /**
1309  * i915_gem_fault - fault a page into the GTT
1310  * vma: VMA in question
1311  * vmf: fault info
1312  *
1313  * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
1314  * from userspace.  The fault handler takes care of binding the object to
1315  * the GTT (if needed), allocating and programming a fence register (again,
1316  * only if needed based on whether the old reg is still valid or the object
1317  * is tiled) and inserting a new PTE into the faulting process.
1318  *
1319  * Note that the faulting process may involve evicting existing objects
1320  * from the GTT and/or fence registers to make room.  So performance may
1321  * suffer if the GTT working set is large or there are few fence registers
1322  * left.
1323  */
1324 int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1325 {
1326         struct drm_i915_gem_object *obj = to_intel_bo(vma->vm_private_data);
1327         struct drm_device *dev = obj->base.dev;
1328         drm_i915_private_t *dev_priv = dev->dev_private;
1329         pgoff_t page_offset;
1330         unsigned long pfn;
1331         int ret = 0;
1332         bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
1333
1334         /* We don't use vmf->pgoff since that has the fake offset */
1335         page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >>
1336                 PAGE_SHIFT;
1337
1338         ret = i915_mutex_lock_interruptible(dev);
1339         if (ret)
1340                 goto out;
1341
1342         trace_i915_gem_object_fault(obj, page_offset, true, write);
1343
1344         /* Access to snoopable pages through the GTT is incoherent. */
1345         if (obj->cache_level != I915_CACHE_NONE && !HAS_LLC(dev)) {
1346                 ret = -EINVAL;
1347                 goto unlock;
1348         }
1349
1350         /* Now bind it into the GTT if needed */
1351         ret = i915_gem_object_pin(obj, 0, true, false);
1352         if (ret)
1353                 goto unlock;
1354
1355         ret = i915_gem_object_set_to_gtt_domain(obj, write);
1356         if (ret)
1357                 goto unpin;
1358
1359         ret = i915_gem_object_get_fence(obj);
1360         if (ret)
1361                 goto unpin;
1362
1363         obj->fault_mappable = true;
1364
1365         pfn = ((dev_priv->gtt.mappable_base + obj->gtt_offset) >> PAGE_SHIFT) +
1366                 page_offset;
1367
1368         /* Finally, remap it using the new GTT offset */
1369         ret = vm_insert_pfn(vma, (unsigned long)vmf->virtual_address, pfn);
1370 unpin:
1371         i915_gem_object_unpin(obj);
1372 unlock:
1373         mutex_unlock(&dev->struct_mutex);
1374 out:
1375         switch (ret) {
1376         case -EIO:
1377                 /* If this -EIO is due to a gpu hang, give the reset code a
1378                  * chance to clean up the mess. Otherwise return the proper
1379                  * SIGBUS. */
1380                 if (i915_terminally_wedged(&dev_priv->gpu_error))
1381                         return VM_FAULT_SIGBUS;
1382         case -EAGAIN:
1383                 /* Give the error handler a chance to run and move the
1384                  * objects off the GPU active list. Next time we service the
1385                  * fault, we should be able to transition the page into the
1386                  * GTT without touching the GPU (and so avoid further
1387                  * EIO/EGAIN). If the GPU is wedged, then there is no issue
1388                  * with coherency, just lost writes.
1389                  */
1390                 set_need_resched();
1391         case 0:
1392         case -ERESTARTSYS:
1393         case -EINTR:
1394         case -EBUSY:
1395                 /*
1396                  * EBUSY is ok: this just means that another thread
1397                  * already did the job.
1398                  */
1399                 return VM_FAULT_NOPAGE;
1400         case -ENOMEM:
1401                 return VM_FAULT_OOM;
1402         case -ENOSPC:
1403                 return VM_FAULT_SIGBUS;
1404         default:
1405                 WARN_ONCE(ret, "unhandled error in i915_gem_fault: %i\n", ret);
1406                 return VM_FAULT_SIGBUS;
1407         }
1408 }
1409
1410 /**
1411  * i915_gem_release_mmap - remove physical page mappings
1412  * @obj: obj in question
1413  *
1414  * Preserve the reservation of the mmapping with the DRM core code, but
1415  * relinquish ownership of the pages back to the system.
1416  *
1417  * It is vital that we remove the page mapping if we have mapped a tiled
1418  * object through the GTT and then lose the fence register due to
1419  * resource pressure. Similarly if the object has been moved out of the
1420  * aperture, than pages mapped into userspace must be revoked. Removing the
1421  * mapping will then trigger a page fault on the next user access, allowing
1422  * fixup by i915_gem_fault().
1423  */
1424 void
1425 i915_gem_release_mmap(struct drm_i915_gem_object *obj)
1426 {
1427         if (!obj->fault_mappable)
1428                 return;
1429
1430         if (obj->base.dev->dev_mapping)
1431                 unmap_mapping_range(obj->base.dev->dev_mapping,
1432                                     (loff_t)obj->base.map_list.hash.key<<PAGE_SHIFT,
1433                                     obj->base.size, 1);
1434
1435         obj->fault_mappable = false;
1436 }
1437
1438 uint32_t
1439 i915_gem_get_gtt_size(struct drm_device *dev, uint32_t size, int tiling_mode)
1440 {
1441         uint32_t gtt_size;
1442
1443         if (INTEL_INFO(dev)->gen >= 4 ||
1444             tiling_mode == I915_TILING_NONE)
1445                 return size;
1446
1447         /* Previous chips need a power-of-two fence region when tiling */
1448         if (INTEL_INFO(dev)->gen == 3)
1449                 gtt_size = 1024*1024;
1450         else
1451                 gtt_size = 512*1024;
1452
1453         while (gtt_size < size)
1454                 gtt_size <<= 1;
1455
1456         return gtt_size;
1457 }
1458
1459 /**
1460  * i915_gem_get_gtt_alignment - return required GTT alignment for an object
1461  * @obj: object to check
1462  *
1463  * Return the required GTT alignment for an object, taking into account
1464  * potential fence register mapping.
1465  */
1466 uint32_t
1467 i915_gem_get_gtt_alignment(struct drm_device *dev, uint32_t size,
1468                            int tiling_mode, bool fenced)
1469 {
1470         /*
1471          * Minimum alignment is 4k (GTT page size), but might be greater
1472          * if a fence register is needed for the object.
1473          */
1474         if (INTEL_INFO(dev)->gen >= 4 || (!fenced && IS_G33(dev)) ||
1475             tiling_mode == I915_TILING_NONE)
1476                 return 4096;
1477
1478         /*
1479          * Previous chips need to be aligned to the size of the smallest
1480          * fence register that can contain the object.
1481          */
1482         return i915_gem_get_gtt_size(dev, size, tiling_mode);
1483 }
1484
1485 static int i915_gem_object_create_mmap_offset(struct drm_i915_gem_object *obj)
1486 {
1487         struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
1488         int ret;
1489
1490         if (obj->base.map_list.map)
1491                 return 0;
1492
1493         dev_priv->mm.shrinker_no_lock_stealing = true;
1494
1495         ret = drm_gem_create_mmap_offset(&obj->base);
1496         if (ret != -ENOSPC)
1497                 goto out;
1498
1499         /* Badly fragmented mmap space? The only way we can recover
1500          * space is by destroying unwanted objects. We can't randomly release
1501          * mmap_offsets as userspace expects them to be persistent for the
1502          * lifetime of the objects. The closest we can is to release the
1503          * offsets on purgeable objects by truncating it and marking it purged,
1504          * which prevents userspace from ever using that object again.
1505          */
1506         i915_gem_purge(dev_priv, obj->base.size >> PAGE_SHIFT);
1507         ret = drm_gem_create_mmap_offset(&obj->base);
1508         if (ret != -ENOSPC)
1509                 goto out;
1510
1511         i915_gem_shrink_all(dev_priv);
1512         ret = drm_gem_create_mmap_offset(&obj->base);
1513 out:
1514         dev_priv->mm.shrinker_no_lock_stealing = false;
1515
1516         return ret;
1517 }
1518
1519 static void i915_gem_object_free_mmap_offset(struct drm_i915_gem_object *obj)
1520 {
1521         if (!obj->base.map_list.map)
1522                 return;
1523
1524         drm_gem_free_mmap_offset(&obj->base);
1525 }
1526
1527 int
1528 i915_gem_mmap_gtt(struct drm_file *file,
1529                   struct drm_device *dev,
1530                   uint32_t handle,
1531                   uint64_t *offset)
1532 {
1533         struct drm_i915_private *dev_priv = dev->dev_private;
1534         struct drm_i915_gem_object *obj;
1535         int ret;
1536
1537         ret = i915_mutex_lock_interruptible(dev);
1538         if (ret)
1539                 return ret;
1540
1541         obj = to_intel_bo(drm_gem_object_lookup(dev, file, handle));
1542         if (&obj->base == NULL) {
1543                 ret = -ENOENT;
1544                 goto unlock;
1545         }
1546
1547         if (obj->base.size > dev_priv->gtt.mappable_end) {
1548                 ret = -E2BIG;
1549                 goto out;
1550         }
1551
1552         if (obj->madv != I915_MADV_WILLNEED) {
1553                 DRM_ERROR("Attempting to mmap a purgeable buffer\n");
1554                 ret = -EINVAL;
1555                 goto out;
1556         }
1557
1558         ret = i915_gem_object_create_mmap_offset(obj);
1559         if (ret)
1560                 goto out;
1561
1562         *offset = (u64)obj->base.map_list.hash.key << PAGE_SHIFT;
1563
1564 out:
1565         drm_gem_object_unreference(&obj->base);
1566 unlock:
1567         mutex_unlock(&dev->struct_mutex);
1568         return ret;
1569 }
1570
1571 /**
1572  * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
1573  * @dev: DRM device
1574  * @data: GTT mapping ioctl data
1575  * @file: GEM object info
1576  *
1577  * Simply returns the fake offset to userspace so it can mmap it.
1578  * The mmap call will end up in drm_gem_mmap(), which will set things
1579  * up so we can get faults in the handler above.
1580  *
1581  * The fault handler will take care of binding the object into the GTT
1582  * (since it may have been evicted to make room for something), allocating
1583  * a fence register, and mapping the appropriate aperture address into
1584  * userspace.
1585  */
1586 int
1587 i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
1588                         struct drm_file *file)
1589 {
1590         struct drm_i915_gem_mmap_gtt *args = data;
1591
1592         return i915_gem_mmap_gtt(file, dev, args->handle, &args->offset);
1593 }
1594
1595 /* Immediately discard the backing storage */
1596 static void
1597 i915_gem_object_truncate(struct drm_i915_gem_object *obj)
1598 {
1599         struct inode *inode;
1600
1601         i915_gem_object_free_mmap_offset(obj);
1602
1603         if (obj->base.filp == NULL)
1604                 return;
1605
1606         /* Our goal here is to return as much of the memory as
1607          * is possible back to the system as we are called from OOM.
1608          * To do this we must instruct the shmfs to drop all of its
1609          * backing pages, *now*.
1610          */
1611         inode = file_inode(obj->base.filp);
1612         shmem_truncate_range(inode, 0, (loff_t)-1);
1613
1614         obj->madv = __I915_MADV_PURGED;
1615 }
1616
1617 static inline int
1618 i915_gem_object_is_purgeable(struct drm_i915_gem_object *obj)
1619 {
1620         return obj->madv == I915_MADV_DONTNEED;
1621 }
1622
1623 static void
1624 i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj)
1625 {
1626         struct sg_page_iter sg_iter;
1627         int ret;
1628
1629         BUG_ON(obj->madv == __I915_MADV_PURGED);
1630
1631         ret = i915_gem_object_set_to_cpu_domain(obj, true);
1632         if (ret) {
1633                 /* In the event of a disaster, abandon all caches and
1634                  * hope for the best.
1635                  */
1636                 WARN_ON(ret != -EIO);
1637                 i915_gem_clflush_object(obj);
1638                 obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
1639         }
1640
1641         if (i915_gem_object_needs_bit17_swizzle(obj))
1642                 i915_gem_object_save_bit_17_swizzle(obj);
1643
1644         if (obj->madv == I915_MADV_DONTNEED)
1645                 obj->dirty = 0;
1646
1647         for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents, 0) {
1648                 struct page *page = sg_page_iter_page(&sg_iter);
1649
1650                 if (obj->dirty)
1651                         set_page_dirty(page);
1652
1653                 if (obj->madv == I915_MADV_WILLNEED)
1654                         mark_page_accessed(page);
1655
1656                 page_cache_release(page);
1657         }
1658         obj->dirty = 0;
1659
1660         sg_free_table(obj->pages);
1661         kfree(obj->pages);
1662 }
1663
1664 int
1665 i915_gem_object_put_pages(struct drm_i915_gem_object *obj)
1666 {
1667         const struct drm_i915_gem_object_ops *ops = obj->ops;
1668
1669         if (obj->pages == NULL)
1670                 return 0;
1671
1672         BUG_ON(obj->gtt_space);
1673
1674         if (obj->pages_pin_count)
1675                 return -EBUSY;
1676
1677         /* ->put_pages might need to allocate memory for the bit17 swizzle
1678          * array, hence protect them from being reaped by removing them from gtt
1679          * lists early. */
1680         list_del(&obj->gtt_list);
1681
1682         ops->put_pages(obj);
1683         obj->pages = NULL;
1684
1685         if (i915_gem_object_is_purgeable(obj))
1686                 i915_gem_object_truncate(obj);
1687
1688         return 0;
1689 }
1690
1691 static long
1692 __i915_gem_shrink(struct drm_i915_private *dev_priv, long target,
1693                   bool purgeable_only)
1694 {
1695         struct drm_i915_gem_object *obj, *next;
1696         long count = 0;
1697
1698         list_for_each_entry_safe(obj, next,
1699                                  &dev_priv->mm.unbound_list,
1700                                  gtt_list) {
1701                 if ((i915_gem_object_is_purgeable(obj) || !purgeable_only) &&
1702                     i915_gem_object_put_pages(obj) == 0) {
1703                         count += obj->base.size >> PAGE_SHIFT;
1704                         if (count >= target)
1705                                 return count;
1706                 }
1707         }
1708
1709         list_for_each_entry_safe(obj, next,
1710                                  &dev_priv->mm.inactive_list,
1711                                  mm_list) {
1712                 if ((i915_gem_object_is_purgeable(obj) || !purgeable_only) &&
1713                     i915_gem_object_unbind(obj) == 0 &&
1714                     i915_gem_object_put_pages(obj) == 0) {
1715                         count += obj->base.size >> PAGE_SHIFT;
1716                         if (count >= target)
1717                                 return count;
1718                 }
1719         }
1720
1721         return count;
1722 }
1723
1724 static long
1725 i915_gem_purge(struct drm_i915_private *dev_priv, long target)
1726 {
1727         return __i915_gem_shrink(dev_priv, target, true);
1728 }
1729
1730 static void
1731 i915_gem_shrink_all(struct drm_i915_private *dev_priv)
1732 {
1733         struct drm_i915_gem_object *obj, *next;
1734
1735         i915_gem_evict_everything(dev_priv->dev);
1736
1737         list_for_each_entry_safe(obj, next, &dev_priv->mm.unbound_list, gtt_list)
1738                 i915_gem_object_put_pages(obj);
1739 }
1740
1741 static int
1742 i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj)
1743 {
1744         struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
1745         int page_count, i;
1746         struct address_space *mapping;
1747         struct sg_table *st;
1748         struct scatterlist *sg;
1749         struct sg_page_iter sg_iter;
1750         struct page *page;
1751         unsigned long last_pfn = 0;     /* suppress gcc warning */
1752         gfp_t gfp;
1753
1754         /* Assert that the object is not currently in any GPU domain. As it
1755          * wasn't in the GTT, there shouldn't be any way it could have been in
1756          * a GPU cache
1757          */
1758         BUG_ON(obj->base.read_domains & I915_GEM_GPU_DOMAINS);
1759         BUG_ON(obj->base.write_domain & I915_GEM_GPU_DOMAINS);
1760
1761         st = kmalloc(sizeof(*st), GFP_KERNEL);
1762         if (st == NULL)
1763                 return -ENOMEM;
1764
1765         page_count = obj->base.size / PAGE_SIZE;
1766         if (sg_alloc_table(st, page_count, GFP_KERNEL)) {
1767                 sg_free_table(st);
1768                 kfree(st);
1769                 return -ENOMEM;
1770         }
1771
1772         /* Get the list of pages out of our struct file.  They'll be pinned
1773          * at this point until we release them.
1774          *
1775          * Fail silently without starting the shrinker
1776          */
1777         mapping = file_inode(obj->base.filp)->i_mapping;
1778         gfp = mapping_gfp_mask(mapping);
1779         gfp |= __GFP_NORETRY | __GFP_NOWARN | __GFP_NO_KSWAPD;
1780         gfp &= ~(__GFP_IO | __GFP_WAIT);
1781         sg = st->sgl;
1782         st->nents = 0;
1783         for (i = 0; i < page_count; i++) {
1784                 page = shmem_read_mapping_page_gfp(mapping, i, gfp);
1785                 if (IS_ERR(page)) {
1786                         i915_gem_purge(dev_priv, page_count);
1787                         page = shmem_read_mapping_page_gfp(mapping, i, gfp);
1788                 }
1789                 if (IS_ERR(page)) {
1790                         /* We've tried hard to allocate the memory by reaping
1791                          * our own buffer, now let the real VM do its job and
1792                          * go down in flames if truly OOM.
1793                          */
1794                         gfp &= ~(__GFP_NORETRY | __GFP_NOWARN | __GFP_NO_KSWAPD);
1795                         gfp |= __GFP_IO | __GFP_WAIT;
1796
1797                         i915_gem_shrink_all(dev_priv);
1798                         page = shmem_read_mapping_page_gfp(mapping, i, gfp);
1799                         if (IS_ERR(page))
1800                                 goto err_pages;
1801
1802                         gfp |= __GFP_NORETRY | __GFP_NOWARN | __GFP_NO_KSWAPD;
1803                         gfp &= ~(__GFP_IO | __GFP_WAIT);
1804                 }
1805 #ifdef CONFIG_SWIOTLB
1806                 if (swiotlb_nr_tbl()) {
1807                         st->nents++;
1808                         sg_set_page(sg, page, PAGE_SIZE, 0);
1809                         sg = sg_next(sg);
1810                         continue;
1811                 }
1812 #endif
1813                 if (!i || page_to_pfn(page) != last_pfn + 1) {
1814                         if (i)
1815                                 sg = sg_next(sg);
1816                         st->nents++;
1817                         sg_set_page(sg, page, PAGE_SIZE, 0);
1818                 } else {
1819                         sg->length += PAGE_SIZE;
1820                 }
1821                 last_pfn = page_to_pfn(page);
1822         }
1823 #ifdef CONFIG_SWIOTLB
1824         if (!swiotlb_nr_tbl())
1825 #endif
1826                 sg_mark_end(sg);
1827         obj->pages = st;
1828
1829         if (i915_gem_object_needs_bit17_swizzle(obj))
1830                 i915_gem_object_do_bit_17_swizzle(obj);
1831
1832         return 0;
1833
1834 err_pages:
1835         sg_mark_end(sg);
1836         for_each_sg_page(st->sgl, &sg_iter, st->nents, 0)
1837                 page_cache_release(sg_page_iter_page(&sg_iter));
1838         sg_free_table(st);
1839         kfree(st);
1840         return PTR_ERR(page);
1841 }
1842
1843 /* Ensure that the associated pages are gathered from the backing storage
1844  * and pinned into our object. i915_gem_object_get_pages() may be called
1845  * multiple times before they are released by a single call to
1846  * i915_gem_object_put_pages() - once the pages are no longer referenced
1847  * either as a result of memory pressure (reaping pages under the shrinker)
1848  * or as the object is itself released.
1849  */
1850 int
1851 i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
1852 {
1853         struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
1854         const struct drm_i915_gem_object_ops *ops = obj->ops;
1855         int ret;
1856
1857         if (obj->pages)
1858                 return 0;
1859
1860         if (obj->madv != I915_MADV_WILLNEED) {
1861                 DRM_ERROR("Attempting to obtain a purgeable object\n");
1862                 return -EINVAL;
1863         }
1864
1865         BUG_ON(obj->pages_pin_count);
1866
1867         ret = ops->get_pages(obj);
1868         if (ret)
1869                 return ret;
1870
1871         list_add_tail(&obj->gtt_list, &dev_priv->mm.unbound_list);
1872         return 0;
1873 }
1874
1875 void
1876 i915_gem_object_move_to_active(struct drm_i915_gem_object *obj,
1877                                struct intel_ring_buffer *ring)
1878 {
1879         struct drm_device *dev = obj->base.dev;
1880         struct drm_i915_private *dev_priv = dev->dev_private;
1881         u32 seqno = intel_ring_get_seqno(ring);
1882
1883         BUG_ON(ring == NULL);
1884         if (obj->ring != ring && obj->last_write_seqno) {
1885                 /* Keep the seqno relative to the current ring */
1886                 obj->last_write_seqno = seqno;
1887         }
1888         obj->ring = ring;
1889
1890         /* Add a reference if we're newly entering the active list. */
1891         if (!obj->active) {
1892                 drm_gem_object_reference(&obj->base);
1893                 obj->active = 1;
1894         }
1895
1896         /* Move from whatever list we were on to the tail of execution. */
1897         list_move_tail(&obj->mm_list, &dev_priv->mm.active_list);
1898         list_move_tail(&obj->ring_list, &ring->active_list);
1899
1900         obj->last_read_seqno = seqno;
1901
1902         if (obj->fenced_gpu_access) {
1903                 obj->last_fenced_seqno = seqno;
1904
1905                 /* Bump MRU to take account of the delayed flush */
1906                 if (obj->fence_reg != I915_FENCE_REG_NONE) {
1907                         struct drm_i915_fence_reg *reg;
1908
1909                         reg = &dev_priv->fence_regs[obj->fence_reg];
1910                         list_move_tail(&reg->lru_list,
1911                                        &dev_priv->mm.fence_list);
1912                 }
1913         }
1914 }
1915
1916 static void
1917 i915_gem_object_move_to_inactive(struct drm_i915_gem_object *obj)
1918 {
1919         struct drm_device *dev = obj->base.dev;
1920         struct drm_i915_private *dev_priv = dev->dev_private;
1921
1922         BUG_ON(obj->base.write_domain & ~I915_GEM_GPU_DOMAINS);
1923         BUG_ON(!obj->active);
1924
1925         list_move_tail(&obj->mm_list, &dev_priv->mm.inactive_list);
1926
1927         list_del_init(&obj->ring_list);
1928         obj->ring = NULL;
1929
1930         obj->last_read_seqno = 0;
1931         obj->last_write_seqno = 0;
1932         obj->base.write_domain = 0;
1933
1934         obj->last_fenced_seqno = 0;
1935         obj->fenced_gpu_access = false;
1936
1937         obj->active = 0;
1938         drm_gem_object_unreference(&obj->base);
1939
1940         WARN_ON(i915_verify_lists(dev));
1941 }
1942
1943 static int
1944 i915_gem_init_seqno(struct drm_device *dev, u32 seqno)
1945 {
1946         struct drm_i915_private *dev_priv = dev->dev_private;
1947         struct intel_ring_buffer *ring;
1948         int ret, i, j;
1949
1950         /* Carefully retire all requests without writing to the rings */
1951         for_each_ring(ring, dev_priv, i) {
1952                 ret = intel_ring_idle(ring);
1953                 if (ret)
1954                         return ret;
1955         }
1956         i915_gem_retire_requests(dev);
1957
1958         /* Finally reset hw state */
1959         for_each_ring(ring, dev_priv, i) {
1960                 intel_ring_init_seqno(ring, seqno);
1961
1962                 for (j = 0; j < ARRAY_SIZE(ring->sync_seqno); j++)
1963                         ring->sync_seqno[j] = 0;
1964         }
1965
1966         return 0;
1967 }
1968
1969 int i915_gem_set_seqno(struct drm_device *dev, u32 seqno)
1970 {
1971         struct drm_i915_private *dev_priv = dev->dev_private;
1972         int ret;
1973
1974         if (seqno == 0)
1975                 return -EINVAL;
1976
1977         /* HWS page needs to be set less than what we
1978          * will inject to ring
1979          */
1980         ret = i915_gem_init_seqno(dev, seqno - 1);
1981         if (ret)
1982                 return ret;
1983
1984         /* Carefully set the last_seqno value so that wrap
1985          * detection still works
1986          */
1987         dev_priv->next_seqno = seqno;
1988         dev_priv->last_seqno = seqno - 1;
1989         if (dev_priv->last_seqno == 0)
1990                 dev_priv->last_seqno--;
1991
1992         return 0;
1993 }
1994
1995 int
1996 i915_gem_get_seqno(struct drm_device *dev, u32 *seqno)
1997 {
1998         struct drm_i915_private *dev_priv = dev->dev_private;
1999
2000         /* reserve 0 for non-seqno */
2001         if (dev_priv->next_seqno == 0) {
2002                 int ret = i915_gem_init_seqno(dev, 0);
2003                 if (ret)
2004                         return ret;
2005
2006                 dev_priv->next_seqno = 1;
2007         }
2008
2009         *seqno = dev_priv->last_seqno = dev_priv->next_seqno++;
2010         return 0;
2011 }
2012
2013 int
2014 i915_add_request(struct intel_ring_buffer *ring,
2015                  struct drm_file *file,
2016                  u32 *out_seqno)
2017 {
2018         drm_i915_private_t *dev_priv = ring->dev->dev_private;
2019         struct drm_i915_gem_request *request;
2020         u32 request_ring_position;
2021         int was_empty;
2022         int ret;
2023
2024         /*
2025          * Emit any outstanding flushes - execbuf can fail to emit the flush
2026          * after having emitted the batchbuffer command. Hence we need to fix
2027          * things up similar to emitting the lazy request. The difference here
2028          * is that the flush _must_ happen before the next request, no matter
2029          * what.
2030          */
2031         ret = intel_ring_flush_all_caches(ring);
2032         if (ret)
2033                 return ret;
2034
2035         request = kmalloc(sizeof(*request), GFP_KERNEL);
2036         if (request == NULL)
2037                 return -ENOMEM;
2038
2039
2040         /* Record the position of the start of the request so that
2041          * should we detect the updated seqno part-way through the
2042          * GPU processing the request, we never over-estimate the
2043          * position of the head.
2044          */
2045         request_ring_position = intel_ring_get_tail(ring);
2046
2047         ret = ring->add_request(ring);
2048         if (ret) {
2049                 kfree(request);
2050                 return ret;
2051         }
2052
2053         request->seqno = intel_ring_get_seqno(ring);
2054         request->ring = ring;
2055         request->tail = request_ring_position;
2056         request->emitted_jiffies = jiffies;
2057         was_empty = list_empty(&ring->request_list);
2058         list_add_tail(&request->list, &ring->request_list);
2059         request->file_priv = NULL;
2060
2061         if (file) {
2062                 struct drm_i915_file_private *file_priv = file->driver_priv;
2063
2064                 spin_lock(&file_priv->mm.lock);
2065                 request->file_priv = file_priv;
2066                 list_add_tail(&request->client_list,
2067                               &file_priv->mm.request_list);
2068                 spin_unlock(&file_priv->mm.lock);
2069         }
2070
2071         trace_i915_gem_request_add(ring, request->seqno);
2072         ring->outstanding_lazy_request = 0;
2073
2074         if (!dev_priv->mm.suspended) {
2075                 if (i915_enable_hangcheck) {
2076                         mod_timer(&dev_priv->gpu_error.hangcheck_timer,
2077                                   round_jiffies_up(jiffies + DRM_I915_HANGCHECK_JIFFIES));
2078                 }
2079                 if (was_empty) {
2080                         queue_delayed_work(dev_priv->wq,
2081                                            &dev_priv->mm.retire_work,
2082                                            round_jiffies_up_relative(HZ));
2083                         intel_mark_busy(dev_priv->dev);
2084                 }
2085         }
2086
2087         if (out_seqno)
2088                 *out_seqno = request->seqno;
2089         return 0;
2090 }
2091
2092 static inline void
2093 i915_gem_request_remove_from_client(struct drm_i915_gem_request *request)
2094 {
2095         struct drm_i915_file_private *file_priv = request->file_priv;
2096
2097         if (!file_priv)
2098                 return;
2099
2100         spin_lock(&file_priv->mm.lock);
2101         if (request->file_priv) {
2102                 list_del(&request->client_list);
2103                 request->file_priv = NULL;
2104         }
2105         spin_unlock(&file_priv->mm.lock);
2106 }
2107
2108 static void i915_gem_reset_ring_lists(struct drm_i915_private *dev_priv,
2109                                       struct intel_ring_buffer *ring)
2110 {
2111         while (!list_empty(&ring->request_list)) {
2112                 struct drm_i915_gem_request *request;
2113
2114                 request = list_first_entry(&ring->request_list,
2115                                            struct drm_i915_gem_request,
2116                                            list);
2117
2118                 list_del(&request->list);
2119                 i915_gem_request_remove_from_client(request);
2120                 kfree(request);
2121         }
2122
2123         while (!list_empty(&ring->active_list)) {
2124                 struct drm_i915_gem_object *obj;
2125
2126                 obj = list_first_entry(&ring->active_list,
2127                                        struct drm_i915_gem_object,
2128                                        ring_list);
2129
2130                 i915_gem_object_move_to_inactive(obj);
2131         }
2132 }
2133
2134 void i915_gem_restore_fences(struct drm_device *dev)
2135 {
2136         struct drm_i915_private *dev_priv = dev->dev_private;
2137         int i;
2138
2139         for (i = 0; i < dev_priv->num_fence_regs; i++) {
2140                 struct drm_i915_fence_reg *reg = &dev_priv->fence_regs[i];
2141
2142                 /*
2143                  * Commit delayed tiling changes if we have an object still
2144                  * attached to the fence, otherwise just clear the fence.
2145                  */
2146                 if (reg->obj) {
2147                         i915_gem_object_update_fence(reg->obj, reg,
2148                                                      reg->obj->tiling_mode);
2149                 } else {
2150                         i915_gem_write_fence(dev, i, NULL);
2151                 }
2152         }
2153 }
2154
2155 void i915_gem_reset(struct drm_device *dev)
2156 {
2157         struct drm_i915_private *dev_priv = dev->dev_private;
2158         struct drm_i915_gem_object *obj;
2159         struct intel_ring_buffer *ring;
2160         int i;
2161
2162         for_each_ring(ring, dev_priv, i)
2163                 i915_gem_reset_ring_lists(dev_priv, ring);
2164
2165         /* Move everything out of the GPU domains to ensure we do any
2166          * necessary invalidation upon reuse.
2167          */
2168         list_for_each_entry(obj,
2169                             &dev_priv->mm.inactive_list,
2170                             mm_list)
2171         {
2172                 obj->base.read_domains &= ~I915_GEM_GPU_DOMAINS;
2173         }
2174
2175         i915_gem_restore_fences(dev);
2176 }
2177
2178 /**
2179  * This function clears the request list as sequence numbers are passed.
2180  */
2181 void
2182 i915_gem_retire_requests_ring(struct intel_ring_buffer *ring)
2183 {
2184         uint32_t seqno;
2185
2186         if (list_empty(&ring->request_list))
2187                 return;
2188
2189         WARN_ON(i915_verify_lists(ring->dev));
2190
2191         seqno = ring->get_seqno(ring, true);
2192
2193         while (!list_empty(&ring->request_list)) {
2194                 struct drm_i915_gem_request *request;
2195
2196                 request = list_first_entry(&ring->request_list,
2197                                            struct drm_i915_gem_request,
2198                                            list);
2199
2200                 if (!i915_seqno_passed(seqno, request->seqno))
2201                         break;
2202
2203                 trace_i915_gem_request_retire(ring, request->seqno);
2204                 /* We know the GPU must have read the request to have
2205                  * sent us the seqno + interrupt, so use the position
2206                  * of tail of the request to update the last known position
2207                  * of the GPU head.
2208                  */
2209                 ring->last_retired_head = request->tail;
2210
2211                 list_del(&request->list);
2212                 i915_gem_request_remove_from_client(request);
2213                 kfree(request);
2214         }
2215
2216         /* Move any buffers on the active list that are no longer referenced
2217          * by the ringbuffer to the flushing/inactive lists as appropriate.
2218          */
2219         while (!list_empty(&ring->active_list)) {
2220                 struct drm_i915_gem_object *obj;
2221
2222                 obj = list_first_entry(&ring->active_list,
2223                                       struct drm_i915_gem_object,
2224                                       ring_list);
2225
2226                 if (!i915_seqno_passed(seqno, obj->last_read_seqno))
2227                         break;
2228
2229                 i915_gem_object_move_to_inactive(obj);
2230         }
2231
2232         if (unlikely(ring->trace_irq_seqno &&
2233                      i915_seqno_passed(seqno, ring->trace_irq_seqno))) {
2234                 ring->irq_put(ring);
2235                 ring->trace_irq_seqno = 0;
2236         }
2237
2238         WARN_ON(i915_verify_lists(ring->dev));
2239 }
2240
2241 void
2242 i915_gem_retire_requests(struct drm_device *dev)
2243 {
2244         drm_i915_private_t *dev_priv = dev->dev_private;
2245         struct intel_ring_buffer *ring;
2246         int i;
2247
2248         for_each_ring(ring, dev_priv, i)
2249                 i915_gem_retire_requests_ring(ring);
2250 }
2251
2252 static void
2253 i915_gem_retire_work_handler(struct work_struct *work)
2254 {
2255         drm_i915_private_t *dev_priv;
2256         struct drm_device *dev;
2257         struct intel_ring_buffer *ring;
2258         bool idle;
2259         int i;
2260
2261         dev_priv = container_of(work, drm_i915_private_t,
2262                                 mm.retire_work.work);
2263         dev = dev_priv->dev;
2264
2265         /* Come back later if the device is busy... */
2266         if (!mutex_trylock(&dev->struct_mutex)) {
2267                 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work,
2268                                    round_jiffies_up_relative(HZ));
2269                 return;
2270         }
2271
2272         i915_gem_retire_requests(dev);
2273
2274         /* Send a periodic flush down the ring so we don't hold onto GEM
2275          * objects indefinitely.
2276          */
2277         idle = true;
2278         for_each_ring(ring, dev_priv, i) {
2279                 if (ring->gpu_caches_dirty)
2280                         i915_add_request(ring, NULL, NULL);
2281
2282                 idle &= list_empty(&ring->request_list);
2283         }
2284
2285         if (!dev_priv->mm.suspended && !idle)
2286                 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work,
2287                                    round_jiffies_up_relative(HZ));
2288         if (idle)
2289                 intel_mark_idle(dev);
2290
2291         mutex_unlock(&dev->struct_mutex);
2292 }
2293
2294 /**
2295  * Ensures that an object will eventually get non-busy by flushing any required
2296  * write domains, emitting any outstanding lazy request and retiring and
2297  * completed requests.
2298  */
2299 static int
2300 i915_gem_object_flush_active(struct drm_i915_gem_object *obj)
2301 {
2302         int ret;
2303
2304         if (obj->active) {
2305                 ret = i915_gem_check_olr(obj->ring, obj->last_read_seqno);
2306                 if (ret)
2307                         return ret;
2308
2309                 i915_gem_retire_requests_ring(obj->ring);
2310         }
2311
2312         return 0;
2313 }
2314
2315 /**
2316  * i915_gem_wait_ioctl - implements DRM_IOCTL_I915_GEM_WAIT
2317  * @DRM_IOCTL_ARGS: standard ioctl arguments
2318  *
2319  * Returns 0 if successful, else an error is returned with the remaining time in
2320  * the timeout parameter.
2321  *  -ETIME: object is still busy after timeout
2322  *  -ERESTARTSYS: signal interrupted the wait
2323  *  -ENONENT: object doesn't exist
2324  * Also possible, but rare:
2325  *  -EAGAIN: GPU wedged
2326  *  -ENOMEM: damn
2327  *  -ENODEV: Internal IRQ fail
2328  *  -E?: The add request failed
2329  *
2330  * The wait ioctl with a timeout of 0 reimplements the busy ioctl. With any
2331  * non-zero timeout parameter the wait ioctl will wait for the given number of
2332  * nanoseconds on an object becoming unbusy. Since the wait itself does so
2333  * without holding struct_mutex the object may become re-busied before this
2334  * function completes. A similar but shorter * race condition exists in the busy
2335  * ioctl
2336  */
2337 int
2338 i915_gem_wait_ioctl(struct drm_device *dev, void *data, struct drm_file *file)
2339 {
2340         drm_i915_private_t *dev_priv = dev->dev_private;
2341         struct drm_i915_gem_wait *args = data;
2342         struct drm_i915_gem_object *obj;
2343         struct intel_ring_buffer *ring = NULL;
2344         struct timespec timeout_stack, *timeout = NULL;
2345         unsigned reset_counter;
2346         u32 seqno = 0;
2347         int ret = 0;
2348
2349         if (args->timeout_ns >= 0) {
2350                 timeout_stack = ns_to_timespec(args->timeout_ns);
2351                 timeout = &timeout_stack;
2352         }
2353
2354         ret = i915_mutex_lock_interruptible(dev);
2355         if (ret)
2356                 return ret;
2357
2358         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->bo_handle));
2359         if (&obj->base == NULL) {
2360                 mutex_unlock(&dev->struct_mutex);
2361                 return -ENOENT;
2362         }
2363
2364         /* Need to make sure the object gets inactive eventually. */
2365         ret = i915_gem_object_flush_active(obj);
2366         if (ret)
2367                 goto out;
2368
2369         if (obj->active) {
2370                 seqno = obj->last_read_seqno;
2371                 ring = obj->ring;
2372         }
2373
2374         if (seqno == 0)
2375                  goto out;
2376
2377         /* Do this after OLR check to make sure we make forward progress polling
2378          * on this IOCTL with a 0 timeout (like busy ioctl)
2379          */
2380         if (!args->timeout_ns) {
2381                 ret = -ETIME;
2382                 goto out;
2383         }
2384
2385         drm_gem_object_unreference(&obj->base);
2386         reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
2387         mutex_unlock(&dev->struct_mutex);
2388
2389         ret = __wait_seqno(ring, seqno, reset_counter, true, timeout);
2390         if (timeout)
2391                 args->timeout_ns = timespec_to_ns(timeout);
2392         return ret;
2393
2394 out:
2395         drm_gem_object_unreference(&obj->base);
2396         mutex_unlock(&dev->struct_mutex);
2397         return ret;
2398 }
2399
2400 /**
2401  * i915_gem_object_sync - sync an object to a ring.
2402  *
2403  * @obj: object which may be in use on another ring.
2404  * @to: ring we wish to use the object on. May be NULL.
2405  *
2406  * This code is meant to abstract object synchronization with the GPU.
2407  * Calling with NULL implies synchronizing the object with the CPU
2408  * rather than a particular GPU ring.
2409  *
2410  * Returns 0 if successful, else propagates up the lower layer error.
2411  */
2412 int
2413 i915_gem_object_sync(struct drm_i915_gem_object *obj,
2414                      struct intel_ring_buffer *to)
2415 {
2416         struct intel_ring_buffer *from = obj->ring;
2417         u32 seqno;
2418         int ret, idx;
2419
2420         if (from == NULL || to == from)
2421                 return 0;
2422
2423         if (to == NULL || !i915_semaphore_is_enabled(obj->base.dev))
2424                 return i915_gem_object_wait_rendering(obj, false);
2425
2426         idx = intel_ring_sync_index(from, to);
2427
2428         seqno = obj->last_read_seqno;
2429         if (seqno <= from->sync_seqno[idx])
2430                 return 0;
2431
2432         ret = i915_gem_check_olr(obj->ring, seqno);
2433         if (ret)
2434                 return ret;
2435
2436         ret = to->sync_to(to, from, seqno);
2437         if (!ret)
2438                 /* We use last_read_seqno because sync_to()
2439                  * might have just caused seqno wrap under
2440                  * the radar.
2441                  */
2442                 from->sync_seqno[idx] = obj->last_read_seqno;
2443
2444         return ret;
2445 }
2446
2447 static void i915_gem_object_finish_gtt(struct drm_i915_gem_object *obj)
2448 {
2449         u32 old_write_domain, old_read_domains;
2450
2451         /* Force a pagefault for domain tracking on next user access */
2452         i915_gem_release_mmap(obj);
2453
2454         if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
2455                 return;
2456
2457         /* Wait for any direct GTT access to complete */
2458         mb();
2459
2460         old_read_domains = obj->base.read_domains;
2461         old_write_domain = obj->base.write_domain;
2462
2463         obj->base.read_domains &= ~I915_GEM_DOMAIN_GTT;
2464         obj->base.write_domain &= ~I915_GEM_DOMAIN_GTT;
2465
2466         trace_i915_gem_object_change_domain(obj,
2467                                             old_read_domains,
2468                                             old_write_domain);
2469 }
2470
2471 /**
2472  * Unbinds an object from the GTT aperture.
2473  */
2474 int
2475 i915_gem_object_unbind(struct drm_i915_gem_object *obj)
2476 {
2477         drm_i915_private_t *dev_priv = obj->base.dev->dev_private;
2478         int ret;
2479
2480         if (obj->gtt_space == NULL)
2481                 return 0;
2482
2483         if (obj->pin_count)
2484                 return -EBUSY;
2485
2486         BUG_ON(obj->pages == NULL);
2487
2488         ret = i915_gem_object_finish_gpu(obj);
2489         if (ret)
2490                 return ret;
2491         /* Continue on if we fail due to EIO, the GPU is hung so we
2492          * should be safe and we need to cleanup or else we might
2493          * cause memory corruption through use-after-free.
2494          */
2495
2496         i915_gem_object_finish_gtt(obj);
2497
2498         /* release the fence reg _after_ flushing */
2499         ret = i915_gem_object_put_fence(obj);
2500         if (ret)
2501                 return ret;
2502
2503         trace_i915_gem_object_unbind(obj);
2504
2505         if (obj->has_global_gtt_mapping)
2506                 i915_gem_gtt_unbind_object(obj);
2507         if (obj->has_aliasing_ppgtt_mapping) {
2508                 i915_ppgtt_unbind_object(dev_priv->mm.aliasing_ppgtt, obj);
2509                 obj->has_aliasing_ppgtt_mapping = 0;
2510         }
2511         i915_gem_gtt_finish_object(obj);
2512
2513         list_del(&obj->mm_list);
2514         list_move_tail(&obj->gtt_list, &dev_priv->mm.unbound_list);
2515         /* Avoid an unnecessary call to unbind on rebind. */
2516         obj->map_and_fenceable = true;
2517
2518         drm_mm_put_block(obj->gtt_space);
2519         obj->gtt_space = NULL;
2520         obj->gtt_offset = 0;
2521
2522         return 0;
2523 }
2524
2525 int i915_gpu_idle(struct drm_device *dev)
2526 {
2527         drm_i915_private_t *dev_priv = dev->dev_private;
2528         struct intel_ring_buffer *ring;
2529         int ret, i;
2530
2531         /* Flush everything onto the inactive list. */
2532         for_each_ring(ring, dev_priv, i) {
2533                 ret = i915_switch_context(ring, NULL, DEFAULT_CONTEXT_ID);
2534                 if (ret)
2535                         return ret;
2536
2537                 ret = intel_ring_idle(ring);
2538                 if (ret)
2539                         return ret;
2540         }
2541
2542         return 0;
2543 }
2544
2545 static void i965_write_fence_reg(struct drm_device *dev, int reg,
2546                                  struct drm_i915_gem_object *obj)
2547 {
2548         drm_i915_private_t *dev_priv = dev->dev_private;
2549         int fence_reg;
2550         int fence_pitch_shift;
2551
2552         if (INTEL_INFO(dev)->gen >= 6) {
2553                 fence_reg = FENCE_REG_SANDYBRIDGE_0;
2554                 fence_pitch_shift = SANDYBRIDGE_FENCE_PITCH_SHIFT;
2555         } else {
2556                 fence_reg = FENCE_REG_965_0;
2557                 fence_pitch_shift = I965_FENCE_PITCH_SHIFT;
2558         }
2559
2560         fence_reg += reg * 8;
2561
2562         /* To w/a incoherency with non-atomic 64-bit register updates,
2563          * we split the 64-bit update into two 32-bit writes. In order
2564          * for a partial fence not to be evaluated between writes, we
2565          * precede the update with write to turn off the fence register,
2566          * and only enable the fence as the last step.
2567          *
2568          * For extra levels of paranoia, we make sure each step lands
2569          * before applying the next step.
2570          */
2571         I915_WRITE(fence_reg, 0);
2572         POSTING_READ(fence_reg);
2573
2574         if (obj) {
2575                 u32 size = obj->gtt_space->size;
2576                 uint64_t val;
2577
2578                 val = (uint64_t)((obj->gtt_offset + size - 4096) &
2579                                  0xfffff000) << 32;
2580                 val |= obj->gtt_offset & 0xfffff000;
2581                 val |= (uint64_t)((obj->stride / 128) - 1) << fence_pitch_shift;
2582                 if (obj->tiling_mode == I915_TILING_Y)
2583                         val |= 1 << I965_FENCE_TILING_Y_SHIFT;
2584                 val |= I965_FENCE_REG_VALID;
2585
2586                 I915_WRITE(fence_reg + 4, val >> 32);
2587                 POSTING_READ(fence_reg + 4);
2588
2589                 I915_WRITE(fence_reg + 0, val);
2590                 POSTING_READ(fence_reg);
2591         } else {
2592                 I915_WRITE(fence_reg + 4, 0);
2593                 POSTING_READ(fence_reg + 4);
2594         }
2595 }
2596
2597 static void i915_write_fence_reg(struct drm_device *dev, int reg,
2598                                  struct drm_i915_gem_object *obj)
2599 {
2600         drm_i915_private_t *dev_priv = dev->dev_private;
2601         u32 val;
2602
2603         if (obj) {
2604                 u32 size = obj->gtt_space->size;
2605                 int pitch_val;
2606                 int tile_width;
2607
2608                 WARN((obj->gtt_offset & ~I915_FENCE_START_MASK) ||
2609                      (size & -size) != size ||
2610                      (obj->gtt_offset & (size - 1)),
2611                      "object 0x%08x [fenceable? %d] not 1M or pot-size (0x%08x) aligned\n",
2612                      obj->gtt_offset, obj->map_and_fenceable, size);
2613
2614                 if (obj->tiling_mode == I915_TILING_Y && HAS_128_BYTE_Y_TILING(dev))
2615                         tile_width = 128;
2616                 else
2617                         tile_width = 512;
2618
2619                 /* Note: pitch better be a power of two tile widths */
2620                 pitch_val = obj->stride / tile_width;
2621                 pitch_val = ffs(pitch_val) - 1;
2622
2623                 val = obj->gtt_offset;
2624                 if (obj->tiling_mode == I915_TILING_Y)
2625                         val |= 1 << I830_FENCE_TILING_Y_SHIFT;
2626                 val |= I915_FENCE_SIZE_BITS(size);
2627                 val |= pitch_val << I830_FENCE_PITCH_SHIFT;
2628                 val |= I830_FENCE_REG_VALID;
2629         } else
2630                 val = 0;
2631
2632         if (reg < 8)
2633                 reg = FENCE_REG_830_0 + reg * 4;
2634         else
2635                 reg = FENCE_REG_945_8 + (reg - 8) * 4;
2636
2637         I915_WRITE(reg, val);
2638         POSTING_READ(reg);
2639 }
2640
2641 static void i830_write_fence_reg(struct drm_device *dev, int reg,
2642                                 struct drm_i915_gem_object *obj)
2643 {
2644         drm_i915_private_t *dev_priv = dev->dev_private;
2645         uint32_t val;
2646
2647         if (obj) {
2648                 u32 size = obj->gtt_space->size;
2649                 uint32_t pitch_val;
2650
2651                 WARN((obj->gtt_offset & ~I830_FENCE_START_MASK) ||
2652                      (size & -size) != size ||
2653                      (obj->gtt_offset & (size - 1)),
2654                      "object 0x%08x not 512K or pot-size 0x%08x aligned\n",
2655                      obj->gtt_offset, size);
2656
2657                 pitch_val = obj->stride / 128;
2658                 pitch_val = ffs(pitch_val) - 1;
2659
2660                 val = obj->gtt_offset;
2661                 if (obj->tiling_mode == I915_TILING_Y)
2662                         val |= 1 << I830_FENCE_TILING_Y_SHIFT;
2663                 val |= I830_FENCE_SIZE_BITS(size);
2664                 val |= pitch_val << I830_FENCE_PITCH_SHIFT;
2665                 val |= I830_FENCE_REG_VALID;
2666         } else
2667                 val = 0;
2668
2669         I915_WRITE(FENCE_REG_830_0 + reg * 4, val);
2670         POSTING_READ(FENCE_REG_830_0 + reg * 4);
2671 }
2672
2673 inline static bool i915_gem_object_needs_mb(struct drm_i915_gem_object *obj)
2674 {
2675         return obj && obj->base.read_domains & I915_GEM_DOMAIN_GTT;
2676 }
2677
2678 static void i915_gem_write_fence(struct drm_device *dev, int reg,
2679                                  struct drm_i915_gem_object *obj)
2680 {
2681         struct drm_i915_private *dev_priv = dev->dev_private;
2682
2683         /* Ensure that all CPU reads are completed before installing a fence
2684          * and all writes before removing the fence.
2685          */
2686         if (i915_gem_object_needs_mb(dev_priv->fence_regs[reg].obj))
2687                 mb();
2688
2689         WARN(obj && (!obj->stride || !obj->tiling_mode),
2690              "bogus fence setup with stride: 0x%x, tiling mode: %i\n",
2691              obj->stride, obj->tiling_mode);
2692
2693         switch (INTEL_INFO(dev)->gen) {
2694         case 7:
2695         case 6:
2696         case 5:
2697         case 4: i965_write_fence_reg(dev, reg, obj); break;
2698         case 3: i915_write_fence_reg(dev, reg, obj); break;
2699         case 2: i830_write_fence_reg(dev, reg, obj); break;
2700         default: BUG();
2701         }
2702
2703         /* And similarly be paranoid that no direct access to this region
2704          * is reordered to before the fence is installed.
2705          */
2706         if (i915_gem_object_needs_mb(obj))
2707                 mb();
2708 }
2709
2710 static inline int fence_number(struct drm_i915_private *dev_priv,
2711                                struct drm_i915_fence_reg *fence)
2712 {
2713         return fence - dev_priv->fence_regs;
2714 }
2715
2716 static void i915_gem_write_fence__ipi(void *data)
2717 {
2718         wbinvd();
2719 }
2720
2721 static void i915_gem_object_update_fence(struct drm_i915_gem_object *obj,
2722                                          struct drm_i915_fence_reg *fence,
2723                                          bool enable)
2724 {
2725         struct drm_device *dev = obj->base.dev;
2726         struct drm_i915_private *dev_priv = dev->dev_private;
2727         int fence_reg = fence_number(dev_priv, fence);
2728
2729         /* In order to fully serialize access to the fenced region and
2730          * the update to the fence register we need to take extreme
2731          * measures on SNB+. In theory, the write to the fence register
2732          * flushes all memory transactions before, and coupled with the
2733          * mb() placed around the register write we serialise all memory
2734          * operations with respect to the changes in the tiler. Yet, on
2735          * SNB+ we need to take a step further and emit an explicit wbinvd()
2736          * on each processor in order to manually flush all memory
2737          * transactions before updating the fence register.
2738          */
2739         if (HAS_LLC(obj->base.dev))
2740                 on_each_cpu(i915_gem_write_fence__ipi, NULL, 1);
2741         i915_gem_write_fence(dev, fence_reg, enable ? obj : NULL);
2742
2743         if (enable) {
2744                 obj->fence_reg = fence_reg;
2745                 fence->obj = obj;
2746                 list_move_tail(&fence->lru_list, &dev_priv->mm.fence_list);
2747         } else {
2748                 obj->fence_reg = I915_FENCE_REG_NONE;
2749                 fence->obj = NULL;
2750                 list_del_init(&fence->lru_list);
2751         }
2752         obj->fence_dirty = false;
2753 }
2754
2755 static int
2756 i915_gem_object_wait_fence(struct drm_i915_gem_object *obj)
2757 {
2758         if (obj->last_fenced_seqno) {
2759                 int ret = i915_wait_seqno(obj->ring, obj->last_fenced_seqno);
2760                 if (ret)
2761                         return ret;
2762
2763                 obj->last_fenced_seqno = 0;
2764         }
2765
2766         obj->fenced_gpu_access = false;
2767         return 0;
2768 }
2769
2770 int
2771 i915_gem_object_put_fence(struct drm_i915_gem_object *obj)
2772 {
2773         struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2774         struct drm_i915_fence_reg *fence;
2775         int ret;
2776
2777         ret = i915_gem_object_wait_fence(obj);
2778         if (ret)
2779                 return ret;
2780
2781         if (obj->fence_reg == I915_FENCE_REG_NONE)
2782                 return 0;
2783
2784         fence = &dev_priv->fence_regs[obj->fence_reg];
2785
2786         i915_gem_object_fence_lost(obj);
2787         i915_gem_object_update_fence(obj, fence, false);
2788
2789         return 0;
2790 }
2791
2792 static struct drm_i915_fence_reg *
2793 i915_find_fence_reg(struct drm_device *dev)
2794 {
2795         struct drm_i915_private *dev_priv = dev->dev_private;
2796         struct drm_i915_fence_reg *reg, *avail;
2797         int i;
2798
2799         /* First try to find a free reg */
2800         avail = NULL;
2801         for (i = dev_priv->fence_reg_start; i < dev_priv->num_fence_regs; i++) {
2802                 reg = &dev_priv->fence_regs[i];
2803                 if (!reg->obj)
2804                         return reg;
2805
2806                 if (!reg->pin_count)
2807                         avail = reg;
2808         }
2809
2810         if (avail == NULL)
2811                 return NULL;
2812
2813         /* None available, try to steal one or wait for a user to finish */
2814         list_for_each_entry(reg, &dev_priv->mm.fence_list, lru_list) {
2815                 if (reg->pin_count)
2816                         continue;
2817
2818                 return reg;
2819         }
2820
2821         return NULL;
2822 }
2823
2824 /**
2825  * i915_gem_object_get_fence - set up fencing for an object
2826  * @obj: object to map through a fence reg
2827  *
2828  * When mapping objects through the GTT, userspace wants to be able to write
2829  * to them without having to worry about swizzling if the object is tiled.
2830  * This function walks the fence regs looking for a free one for @obj,
2831  * stealing one if it can't find any.
2832  *
2833  * It then sets up the reg based on the object's properties: address, pitch
2834  * and tiling format.
2835  *
2836  * For an untiled surface, this removes any existing fence.
2837  */
2838 int
2839 i915_gem_object_get_fence(struct drm_i915_gem_object *obj)
2840 {
2841         struct drm_device *dev = obj->base.dev;
2842         struct drm_i915_private *dev_priv = dev->dev_private;
2843         bool enable = obj->tiling_mode != I915_TILING_NONE;
2844         struct drm_i915_fence_reg *reg;
2845         int ret;
2846
2847         /* Have we updated the tiling parameters upon the object and so
2848          * will need to serialise the write to the associated fence register?
2849          */
2850         if (obj->fence_dirty) {
2851                 ret = i915_gem_object_wait_fence(obj);
2852                 if (ret)
2853                         return ret;
2854         }
2855
2856         /* Just update our place in the LRU if our fence is getting reused. */
2857         if (obj->fence_reg != I915_FENCE_REG_NONE) {
2858                 reg = &dev_priv->fence_regs[obj->fence_reg];
2859                 if (!obj->fence_dirty) {
2860                         list_move_tail(&reg->lru_list,
2861                                        &dev_priv->mm.fence_list);
2862                         return 0;
2863                 }
2864         } else if (enable) {
2865                 reg = i915_find_fence_reg(dev);
2866                 if (reg == NULL)
2867                         return -EDEADLK;
2868
2869                 if (reg->obj) {
2870                         struct drm_i915_gem_object *old = reg->obj;
2871
2872                         ret = i915_gem_object_wait_fence(old);
2873                         if (ret)
2874                                 return ret;
2875
2876                         i915_gem_object_fence_lost(old);
2877                 }
2878         } else
2879                 return 0;
2880
2881         i915_gem_object_update_fence(obj, reg, enable);
2882
2883         return 0;
2884 }
2885
2886 static bool i915_gem_valid_gtt_space(struct drm_device *dev,
2887                                      struct drm_mm_node *gtt_space,
2888                                      unsigned long cache_level)
2889 {
2890         struct drm_mm_node *other;
2891
2892         /* On non-LLC machines we have to be careful when putting differing
2893          * types of snoopable memory together to avoid the prefetcher
2894          * crossing memory domains and dying.
2895          */
2896         if (HAS_LLC(dev))
2897                 return true;
2898
2899         if (gtt_space == NULL)
2900                 return true;
2901
2902         if (list_empty(&gtt_space->node_list))
2903                 return true;
2904
2905         other = list_entry(gtt_space->node_list.prev, struct drm_mm_node, node_list);
2906         if (other->allocated && !other->hole_follows && other->color != cache_level)
2907                 return false;
2908
2909         other = list_entry(gtt_space->node_list.next, struct drm_mm_node, node_list);
2910         if (other->allocated && !gtt_space->hole_follows && other->color != cache_level)
2911                 return false;
2912
2913         return true;
2914 }
2915
2916 static void i915_gem_verify_gtt(struct drm_device *dev)
2917 {
2918 #if WATCH_GTT
2919         struct drm_i915_private *dev_priv = dev->dev_private;
2920         struct drm_i915_gem_object *obj;
2921         int err = 0;
2922
2923         list_for_each_entry(obj, &dev_priv->mm.gtt_list, gtt_list) {
2924                 if (obj->gtt_space == NULL) {
2925                         printk(KERN_ERR "object found on GTT list with no space reserved\n");
2926                         err++;
2927                         continue;
2928                 }
2929
2930                 if (obj->cache_level != obj->gtt_space->color) {
2931                         printk(KERN_ERR "object reserved space [%08lx, %08lx] with wrong color, cache_level=%x, color=%lx\n",
2932                                obj->gtt_space->start,
2933                                obj->gtt_space->start + obj->gtt_space->size,
2934                                obj->cache_level,
2935                                obj->gtt_space->color);
2936                         err++;
2937                         continue;
2938                 }
2939
2940                 if (!i915_gem_valid_gtt_space(dev,
2941                                               obj->gtt_space,
2942                                               obj->cache_level)) {
2943                         printk(KERN_ERR "invalid GTT space found at [%08lx, %08lx] - color=%x\n",
2944                                obj->gtt_space->start,
2945                                obj->gtt_space->start + obj->gtt_space->size,
2946                                obj->cache_level);
2947                         err++;
2948                         continue;
2949                 }
2950         }
2951
2952         WARN_ON(err);
2953 #endif
2954 }
2955
2956 /**
2957  * Finds free space in the GTT aperture and binds the object there.
2958  */
2959 static int
2960 i915_gem_object_bind_to_gtt(struct drm_i915_gem_object *obj,
2961                             unsigned alignment,
2962                             bool map_and_fenceable,
2963                             bool nonblocking)
2964 {
2965         struct drm_device *dev = obj->base.dev;
2966         drm_i915_private_t *dev_priv = dev->dev_private;
2967         struct drm_mm_node *node;
2968         u32 size, fence_size, fence_alignment, unfenced_alignment;
2969         bool mappable, fenceable;
2970         int ret;
2971
2972         fence_size = i915_gem_get_gtt_size(dev,
2973                                            obj->base.size,
2974                                            obj->tiling_mode);
2975         fence_alignment = i915_gem_get_gtt_alignment(dev,
2976                                                      obj->base.size,
2977                                                      obj->tiling_mode, true);
2978         unfenced_alignment =
2979                 i915_gem_get_gtt_alignment(dev,
2980                                                     obj->base.size,
2981                                                     obj->tiling_mode, false);
2982
2983         if (alignment == 0)
2984                 alignment = map_and_fenceable ? fence_alignment :
2985                                                 unfenced_alignment;
2986         if (map_and_fenceable && alignment & (fence_alignment - 1)) {
2987                 DRM_ERROR("Invalid object alignment requested %u\n", alignment);
2988                 return -EINVAL;
2989         }
2990
2991         size = map_and_fenceable ? fence_size : obj->base.size;
2992
2993         /* If the object is bigger than the entire aperture, reject it early
2994          * before evicting everything in a vain attempt to find space.
2995          */
2996         if (obj->base.size >
2997             (map_and_fenceable ? dev_priv->gtt.mappable_end : dev_priv->gtt.total)) {
2998                 DRM_ERROR("Attempting to bind an object larger than the aperture\n");
2999                 return -E2BIG;
3000         }
3001
3002         ret = i915_gem_object_get_pages(obj);
3003         if (ret)
3004                 return ret;
3005
3006         i915_gem_object_pin_pages(obj);
3007
3008         node = kzalloc(sizeof(*node), GFP_KERNEL);
3009         if (node == NULL) {
3010                 i915_gem_object_unpin_pages(obj);
3011                 return -ENOMEM;
3012         }
3013
3014  search_free:
3015         if (map_and_fenceable)
3016                 ret = drm_mm_insert_node_in_range_generic(&dev_priv->mm.gtt_space, node,
3017                                                           size, alignment, obj->cache_level,
3018                                                           0, dev_priv->gtt.mappable_end);
3019         else
3020                 ret = drm_mm_insert_node_generic(&dev_priv->mm.gtt_space, node,
3021                                                  size, alignment, obj->cache_level);
3022         if (ret) {
3023                 ret = i915_gem_evict_something(dev, size, alignment,
3024                                                obj->cache_level,
3025                                                map_and_fenceable,
3026                                                nonblocking);
3027                 if (ret == 0)
3028                         goto search_free;
3029
3030                 i915_gem_object_unpin_pages(obj);
3031                 kfree(node);
3032                 return ret;
3033         }
3034         if (WARN_ON(!i915_gem_valid_gtt_space(dev, node, obj->cache_level))) {
3035                 i915_gem_object_unpin_pages(obj);
3036                 drm_mm_put_block(node);
3037                 return -EINVAL;
3038         }
3039
3040         ret = i915_gem_gtt_prepare_object(obj);
3041         if (ret) {
3042                 i915_gem_object_unpin_pages(obj);
3043                 drm_mm_put_block(node);
3044                 return ret;
3045         }
3046
3047         list_move_tail(&obj->gtt_list, &dev_priv->mm.bound_list);
3048         list_add_tail(&obj->mm_list, &dev_priv->mm.inactive_list);
3049
3050         obj->gtt_space = node;
3051         obj->gtt_offset = node->start;
3052
3053         fenceable =
3054                 node->size == fence_size &&
3055                 (node->start & (fence_alignment - 1)) == 0;
3056
3057         mappable =
3058                 obj->gtt_offset + obj->base.size <= dev_priv->gtt.mappable_end;
3059
3060         obj->map_and_fenceable = mappable && fenceable;
3061
3062         i915_gem_object_unpin_pages(obj);
3063         trace_i915_gem_object_bind(obj, map_and_fenceable);
3064         i915_gem_verify_gtt(dev);
3065         return 0;
3066 }
3067
3068 void
3069 i915_gem_clflush_object(struct drm_i915_gem_object *obj)
3070 {
3071         /* If we don't have a page list set up, then we're not pinned
3072          * to GPU, and we can ignore the cache flush because it'll happen
3073          * again at bind time.
3074          */
3075         if (obj->pages == NULL)
3076                 return;
3077
3078         /*
3079          * Stolen memory is always coherent with the GPU as it is explicitly
3080          * marked as wc by the system, or the system is cache-coherent.
3081          */
3082         if (obj->stolen)
3083                 return;
3084
3085         /* If the GPU is snooping the contents of the CPU cache,
3086          * we do not need to manually clear the CPU cache lines.  However,
3087          * the caches are only snooped when the render cache is
3088          * flushed/invalidated.  As we always have to emit invalidations
3089          * and flushes when moving into and out of the RENDER domain, correct
3090          * snooping behaviour occurs naturally as the result of our domain
3091          * tracking.
3092          */
3093         if (obj->cache_level != I915_CACHE_NONE)
3094                 return;
3095
3096         trace_i915_gem_object_clflush(obj);
3097
3098         drm_clflush_sg(obj->pages);
3099 }
3100
3101 /** Flushes the GTT write domain for the object if it's dirty. */
3102 static void
3103 i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj)
3104 {
3105         uint32_t old_write_domain;
3106
3107         if (obj->base.write_domain != I915_GEM_DOMAIN_GTT)
3108                 return;
3109
3110         /* No actual flushing is required for the GTT write domain.  Writes
3111          * to it immediately go to main memory as far as we know, so there's
3112          * no chipset flush.  It also doesn't land in render cache.
3113          *
3114          * However, we do have to enforce the order so that all writes through
3115          * the GTT land before any writes to the device, such as updates to
3116          * the GATT itself.
3117          */
3118         wmb();
3119
3120         old_write_domain = obj->base.write_domain;
3121         obj->base.write_domain = 0;
3122
3123         trace_i915_gem_object_change_domain(obj,
3124                                             obj->base.read_domains,
3125                                             old_write_domain);
3126 }
3127
3128 /** Flushes the CPU write domain for the object if it's dirty. */
3129 static void
3130 i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj)
3131 {
3132         uint32_t old_write_domain;
3133
3134         if (obj->base.write_domain != I915_GEM_DOMAIN_CPU)
3135                 return;
3136
3137         i915_gem_clflush_object(obj);
3138         i915_gem_chipset_flush(obj->base.dev);
3139         old_write_domain = obj->base.write_domain;
3140         obj->base.write_domain = 0;
3141
3142         trace_i915_gem_object_change_domain(obj,
3143                                             obj->base.read_domains,
3144                                             old_write_domain);
3145 }
3146
3147 /**
3148  * Moves a single object to the GTT read, and possibly write domain.
3149  *
3150  * This function returns when the move is complete, including waiting on
3151  * flushes to occur.
3152  */
3153 int
3154 i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write)
3155 {
3156         drm_i915_private_t *dev_priv = obj->base.dev->dev_private;
3157         uint32_t old_write_domain, old_read_domains;
3158         int ret;
3159
3160         /* Not valid to be called on unbound objects. */
3161         if (obj->gtt_space == NULL)
3162                 return -EINVAL;
3163
3164         if (obj->base.write_domain == I915_GEM_DOMAIN_GTT)
3165                 return 0;
3166
3167         ret = i915_gem_object_wait_rendering(obj, !write);
3168         if (ret)
3169                 return ret;
3170
3171         i915_gem_object_flush_cpu_write_domain(obj);
3172
3173         /* Serialise direct access to this object with the barriers for
3174          * coherent writes from the GPU, by effectively invalidating the
3175          * GTT domain upon first access.
3176          */
3177         if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
3178                 mb();
3179
3180         old_write_domain = obj->base.write_domain;
3181         old_read_domains = obj->base.read_domains;
3182
3183         /* It should now be out of any other write domains, and we can update
3184          * the domain values for our changes.
3185          */
3186         BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
3187         obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
3188         if (write) {
3189                 obj->base.read_domains = I915_GEM_DOMAIN_GTT;
3190                 obj->base.write_domain = I915_GEM_DOMAIN_GTT;
3191                 obj->dirty = 1;
3192         }
3193
3194         trace_i915_gem_object_change_domain(obj,
3195                                             old_read_domains,
3196                                             old_write_domain);
3197
3198         /* And bump the LRU for this access */
3199         if (i915_gem_object_is_inactive(obj))
3200                 list_move_tail(&obj->mm_list, &dev_priv->mm.inactive_list);
3201
3202         return 0;
3203 }
3204
3205 int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
3206                                     enum i915_cache_level cache_level)
3207 {
3208         struct drm_device *dev = obj->base.dev;
3209         drm_i915_private_t *dev_priv = dev->dev_private;
3210         int ret;
3211
3212         if (obj->cache_level == cache_level)
3213                 return 0;
3214
3215         if (obj->pin_count) {
3216                 DRM_DEBUG("can not change the cache level of pinned objects\n");
3217                 return -EBUSY;
3218         }
3219
3220         if (!i915_gem_valid_gtt_space(dev, obj->gtt_space, cache_level)) {
3221                 ret = i915_gem_object_unbind(obj);
3222                 if (ret)
3223                         return ret;
3224         }
3225
3226         if (obj->gtt_space) {
3227                 ret = i915_gem_object_finish_gpu(obj);
3228                 if (ret)
3229                         return ret;
3230
3231                 i915_gem_object_finish_gtt(obj);
3232
3233                 /* Before SandyBridge, you could not use tiling or fence
3234                  * registers with snooped memory, so relinquish any fences
3235                  * currently pointing to our region in the aperture.
3236                  */
3237                 if (INTEL_INFO(dev)->gen < 6) {
3238                         ret = i915_gem_object_put_fence(obj);
3239                         if (ret)
3240                                 return ret;
3241                 }
3242
3243                 if (obj->has_global_gtt_mapping)
3244                         i915_gem_gtt_bind_object(obj, cache_level);
3245                 if (obj->has_aliasing_ppgtt_mapping)
3246                         i915_ppgtt_bind_object(dev_priv->mm.aliasing_ppgtt,
3247                                                obj, cache_level);
3248
3249                 obj->gtt_space->color = cache_level;
3250         }
3251
3252         if (cache_level == I915_CACHE_NONE) {
3253                 u32 old_read_domains, old_write_domain;
3254
3255                 /* If we're coming from LLC cached, then we haven't
3256                  * actually been tracking whether the data is in the
3257                  * CPU cache or not, since we only allow one bit set
3258                  * in obj->write_domain and have been skipping the clflushes.
3259                  * Just set it to the CPU cache for now.
3260                  */
3261                 WARN_ON(obj->base.write_domain & ~I915_GEM_DOMAIN_CPU);
3262                 WARN_ON(obj->base.read_domains & ~I915_GEM_DOMAIN_CPU);
3263
3264                 old_read_domains = obj->base.read_domains;
3265                 old_write_domain = obj->base.write_domain;
3266
3267                 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
3268                 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
3269
3270                 trace_i915_gem_object_change_domain(obj,
3271                                                     old_read_domains,
3272                                                     old_write_domain);
3273         }
3274
3275         obj->cache_level = cache_level;
3276         i915_gem_verify_gtt(dev);
3277         return 0;
3278 }
3279
3280 int i915_gem_get_caching_ioctl(struct drm_device *dev, void *data,
3281                                struct drm_file *file)
3282 {
3283         struct drm_i915_gem_caching *args = data;
3284         struct drm_i915_gem_object *obj;
3285         int ret;
3286
3287         ret = i915_mutex_lock_interruptible(dev);
3288         if (ret)
3289                 return ret;
3290
3291         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3292         if (&obj->base == NULL) {
3293                 ret = -ENOENT;
3294                 goto unlock;
3295         }
3296
3297         args->caching = obj->cache_level != I915_CACHE_NONE;
3298
3299         drm_gem_object_unreference(&obj->base);
3300 unlock:
3301         mutex_unlock(&dev->struct_mutex);
3302         return ret;
3303 }
3304
3305 int i915_gem_set_caching_ioctl(struct drm_device *dev, void *data,
3306                                struct drm_file *file)
3307 {
3308         struct drm_i915_gem_caching *args = data;
3309         struct drm_i915_gem_object *obj;
3310         enum i915_cache_level level;
3311         int ret;
3312
3313         switch (args->caching) {
3314         case I915_CACHING_NONE:
3315                 level = I915_CACHE_NONE;
3316                 break;
3317         case I915_CACHING_CACHED:
3318                 level = I915_CACHE_LLC;
3319                 break;
3320         default:
3321                 return -EINVAL;
3322         }
3323
3324         ret = i915_mutex_lock_interruptible(dev);
3325         if (ret)
3326                 return ret;
3327
3328         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3329         if (&obj->base == NULL) {
3330                 ret = -ENOENT;
3331                 goto unlock;
3332         }
3333
3334         ret = i915_gem_object_set_cache_level(obj, level);
3335
3336         drm_gem_object_unreference(&obj->base);
3337 unlock:
3338         mutex_unlock(&dev->struct_mutex);
3339         return ret;
3340 }
3341
3342 /*
3343  * Prepare buffer for display plane (scanout, cursors, etc).
3344  * Can be called from an uninterruptible phase (modesetting) and allows
3345  * any flushes to be pipelined (for pageflips).
3346  */
3347 int
3348 i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
3349                                      u32 alignment,
3350                                      struct intel_ring_buffer *pipelined)
3351 {
3352         u32 old_read_domains, old_write_domain;
3353         int ret;
3354
3355         if (pipelined != obj->ring) {
3356                 ret = i915_gem_object_sync(obj, pipelined);
3357                 if (ret)
3358                         return ret;
3359         }
3360
3361         /* The display engine is not coherent with the LLC cache on gen6.  As
3362          * a result, we make sure that the pinning that is about to occur is
3363          * done with uncached PTEs. This is lowest common denominator for all
3364          * chipsets.
3365          *
3366          * However for gen6+, we could do better by using the GFDT bit instead
3367          * of uncaching, which would allow us to flush all the LLC-cached data
3368          * with that bit in the PTE to main memory with just one PIPE_CONTROL.
3369          */
3370         ret = i915_gem_object_set_cache_level(obj, I915_CACHE_NONE);
3371         if (ret)
3372                 return ret;
3373
3374         /* As the user may map the buffer once pinned in the display plane
3375          * (e.g. libkms for the bootup splash), we have to ensure that we
3376          * always use map_and_fenceable for all scanout buffers.
3377          */
3378         ret = i915_gem_object_pin(obj, alignment, true, false);
3379         if (ret)
3380                 return ret;
3381
3382         i915_gem_object_flush_cpu_write_domain(obj);
3383
3384         old_write_domain = obj->base.write_domain;
3385         old_read_domains = obj->base.read_domains;
3386
3387         /* It should now be out of any other write domains, and we can update
3388          * the domain values for our changes.
3389          */
3390         obj->base.write_domain = 0;
3391         obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
3392
3393         trace_i915_gem_object_change_domain(obj,
3394                                             old_read_domains,
3395                                             old_write_domain);
3396
3397         return 0;
3398 }
3399
3400 int
3401 i915_gem_object_finish_gpu(struct drm_i915_gem_object *obj)
3402 {
3403         int ret;
3404
3405         if ((obj->base.read_domains & I915_GEM_GPU_DOMAINS) == 0)
3406                 return 0;
3407
3408         ret = i915_gem_object_wait_rendering(obj, false);
3409         if (ret)
3410                 return ret;
3411
3412         /* Ensure that we invalidate the GPU's caches and TLBs. */
3413         obj->base.read_domains &= ~I915_GEM_GPU_DOMAINS;
3414         return 0;
3415 }
3416
3417 /**
3418  * Moves a single object to the CPU read, and possibly write domain.
3419  *
3420  * This function returns when the move is complete, including waiting on
3421  * flushes to occur.
3422  */
3423 int
3424 i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write)
3425 {
3426         uint32_t old_write_domain, old_read_domains;
3427         int ret;
3428
3429         if (obj->base.write_domain == I915_GEM_DOMAIN_CPU)
3430                 return 0;
3431
3432         ret = i915_gem_object_wait_rendering(obj, !write);
3433         if (ret)
3434                 return ret;
3435
3436         i915_gem_object_flush_gtt_write_domain(obj);
3437
3438         old_write_domain = obj->base.write_domain;
3439         old_read_domains = obj->base.read_domains;
3440
3441         /* Flush the CPU cache if it's still invalid. */
3442         if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0) {
3443                 i915_gem_clflush_object(obj);
3444
3445                 obj->base.read_domains |= I915_GEM_DOMAIN_CPU;
3446         }
3447
3448         /* It should now be out of any other write domains, and we can update
3449          * the domain values for our changes.
3450          */
3451         BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
3452
3453         /* If we're writing through the CPU, then the GPU read domains will
3454          * need to be invalidated at next use.
3455          */
3456         if (write) {
3457                 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
3458                 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
3459         }
3460
3461         trace_i915_gem_object_change_domain(obj,
3462                                             old_read_domains,
3463                                             old_write_domain);
3464
3465         return 0;
3466 }
3467
3468 /* Throttle our rendering by waiting until the ring has completed our requests
3469  * emitted over 20 msec ago.
3470  *
3471  * Note that if we were to use the current jiffies each time around the loop,
3472  * we wouldn't escape the function with any frames outstanding if the time to
3473  * render a frame was over 20ms.
3474  *
3475  * This should get us reasonable parallelism between CPU and GPU but also
3476  * relatively low latency when blocking on a particular request to finish.
3477  */
3478 static int
3479 i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
3480 {
3481         struct drm_i915_private *dev_priv = dev->dev_private;
3482         struct drm_i915_file_private *file_priv = file->driver_priv;
3483         unsigned long recent_enough = jiffies - msecs_to_jiffies(20);
3484         struct drm_i915_gem_request *request;
3485         struct intel_ring_buffer *ring = NULL;
3486         unsigned reset_counter;
3487         u32 seqno = 0;
3488         int ret;
3489
3490         ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
3491         if (ret)
3492                 return ret;
3493
3494         ret = i915_gem_check_wedge(&dev_priv->gpu_error, false);
3495         if (ret)
3496                 return ret;
3497
3498         spin_lock(&file_priv->mm.lock);
3499         list_for_each_entry(request, &file_priv->mm.request_list, client_list) {
3500                 if (time_after_eq(request->emitted_jiffies, recent_enough))
3501                         break;
3502
3503                 ring = request->ring;
3504                 seqno = request->seqno;
3505         }
3506         reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
3507         spin_unlock(&file_priv->mm.lock);
3508
3509         if (seqno == 0)
3510                 return 0;
3511
3512         ret = __wait_seqno(ring, seqno, reset_counter, true, NULL);
3513         if (ret == 0)
3514                 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, 0);
3515
3516         return ret;
3517 }
3518
3519 int
3520 i915_gem_object_pin(struct drm_i915_gem_object *obj,
3521                     uint32_t alignment,
3522                     bool map_and_fenceable,
3523                     bool nonblocking)
3524 {
3525         int ret;
3526
3527         if (WARN_ON(obj->pin_count == DRM_I915_GEM_OBJECT_MAX_PIN_COUNT))
3528                 return -EBUSY;
3529
3530         if (obj->gtt_space != NULL) {
3531                 if ((alignment && obj->gtt_offset & (alignment - 1)) ||
3532                     (map_and_fenceable && !obj->map_and_fenceable)) {
3533                         WARN(obj->pin_count,
3534                              "bo is already pinned with incorrect alignment:"
3535                              " offset=%x, req.alignment=%x, req.map_and_fenceable=%d,"
3536                              " obj->map_and_fenceable=%d\n",
3537                              obj->gtt_offset, alignment,
3538                              map_and_fenceable,
3539                              obj->map_and_fenceable);
3540                         ret = i915_gem_object_unbind(obj);
3541                         if (ret)
3542                                 return ret;
3543                 }
3544         }
3545
3546         if (obj->gtt_space == NULL) {
3547                 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
3548
3549                 ret = i915_gem_object_bind_to_gtt(obj, alignment,
3550                                                   map_and_fenceable,
3551                                                   nonblocking);
3552                 if (ret)
3553                         return ret;
3554
3555                 if (!dev_priv->mm.aliasing_ppgtt)
3556                         i915_gem_gtt_bind_object(obj, obj->cache_level);
3557         }
3558
3559         if (!obj->has_global_gtt_mapping && map_and_fenceable)
3560                 i915_gem_gtt_bind_object(obj, obj->cache_level);
3561
3562         obj->pin_count++;
3563         obj->pin_mappable |= map_and_fenceable;
3564
3565         return 0;
3566 }
3567
3568 void
3569 i915_gem_object_unpin(struct drm_i915_gem_object *obj)
3570 {
3571         BUG_ON(obj->pin_count == 0);
3572         BUG_ON(obj->gtt_space == NULL);
3573
3574         if (--obj->pin_count == 0)
3575                 obj->pin_mappable = false;
3576 }
3577
3578 int
3579 i915_gem_pin_ioctl(struct drm_device *dev, void *data,
3580                    struct drm_file *file)
3581 {
3582         struct drm_i915_gem_pin *args = data;
3583         struct drm_i915_gem_object *obj;
3584         int ret;
3585
3586         ret = i915_mutex_lock_interruptible(dev);
3587         if (ret)
3588                 return ret;
3589
3590         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3591         if (&obj->base == NULL) {
3592                 ret = -ENOENT;
3593                 goto unlock;
3594         }
3595
3596         if (obj->madv != I915_MADV_WILLNEED) {
3597                 DRM_ERROR("Attempting to pin a purgeable buffer\n");
3598                 ret = -EINVAL;
3599                 goto out;
3600         }
3601
3602         if (obj->pin_filp != NULL && obj->pin_filp != file) {
3603                 DRM_ERROR("Already pinned in i915_gem_pin_ioctl(): %d\n",
3604                           args->handle);
3605                 ret = -EINVAL;
3606                 goto out;
3607         }
3608
3609         if (obj->user_pin_count == 0) {
3610                 ret = i915_gem_object_pin(obj, args->alignment, true, false);
3611                 if (ret)
3612                         goto out;
3613         }
3614
3615         obj->user_pin_count++;
3616         obj->pin_filp = file;
3617
3618         /* XXX - flush the CPU caches for pinned objects
3619          * as the X server doesn't manage domains yet
3620          */
3621         i915_gem_object_flush_cpu_write_domain(obj);
3622         args->offset = obj->gtt_offset;
3623 out:
3624         drm_gem_object_unreference(&obj->base);
3625 unlock:
3626         mutex_unlock(&dev->struct_mutex);
3627         return ret;
3628 }
3629
3630 int
3631 i915_gem_unpin_ioctl(struct drm_device *dev, void *data,
3632                      struct drm_file *file)
3633 {
3634         struct drm_i915_gem_pin *args = data;
3635         struct drm_i915_gem_object *obj;
3636         int ret;
3637
3638         ret = i915_mutex_lock_interruptible(dev);
3639         if (ret)
3640                 return ret;
3641
3642         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3643         if (&obj->base == NULL) {
3644                 ret = -ENOENT;
3645                 goto unlock;
3646         }
3647
3648         if (obj->pin_filp != file) {
3649                 DRM_ERROR("Not pinned by caller in i915_gem_pin_ioctl(): %d\n",
3650                           args->handle);
3651                 ret = -EINVAL;
3652                 goto out;
3653         }
3654         obj->user_pin_count--;
3655         if (obj->user_pin_count == 0) {
3656                 obj->pin_filp = NULL;
3657                 i915_gem_object_unpin(obj);
3658         }
3659
3660 out:
3661         drm_gem_object_unreference(&obj->base);
3662 unlock:
3663         mutex_unlock(&dev->struct_mutex);
3664         return ret;
3665 }
3666
3667 int
3668 i915_gem_busy_ioctl(struct drm_device *dev, void *data,
3669                     struct drm_file *file)
3670 {
3671         struct drm_i915_gem_busy *args = data;
3672         struct drm_i915_gem_object *obj;
3673         int ret;
3674
3675         ret = i915_mutex_lock_interruptible(dev);
3676         if (ret)
3677                 return ret;
3678
3679         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3680         if (&obj->base == NULL) {
3681                 ret = -ENOENT;
3682                 goto unlock;
3683         }
3684
3685         /* Count all active objects as busy, even if they are currently not used
3686          * by the gpu. Users of this interface expect objects to eventually
3687          * become non-busy without any further actions, therefore emit any
3688          * necessary flushes here.
3689          */
3690         ret = i915_gem_object_flush_active(obj);
3691
3692         args->busy = obj->active;
3693         if (obj->ring) {
3694                 BUILD_BUG_ON(I915_NUM_RINGS > 16);
3695                 args->busy |= intel_ring_flag(obj->ring) << 16;
3696         }
3697
3698         drm_gem_object_unreference(&obj->base);
3699 unlock:
3700         mutex_unlock(&dev->struct_mutex);
3701         return ret;
3702 }
3703
3704 int
3705 i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
3706                         struct drm_file *file_priv)
3707 {
3708         return i915_gem_ring_throttle(dev, file_priv);
3709 }
3710
3711 int
3712 i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
3713                        struct drm_file *file_priv)
3714 {
3715         struct drm_i915_gem_madvise *args = data;
3716         struct drm_i915_gem_object *obj;
3717         int ret;
3718
3719         switch (args->madv) {
3720         case I915_MADV_DONTNEED:
3721         case I915_MADV_WILLNEED:
3722             break;
3723         default:
3724             return -EINVAL;
3725         }
3726
3727         ret = i915_mutex_lock_interruptible(dev);
3728         if (ret)
3729                 return ret;
3730
3731         obj = to_intel_bo(drm_gem_object_lookup(dev, file_priv, args->handle));
3732         if (&obj->base == NULL) {
3733                 ret = -ENOENT;
3734                 goto unlock;
3735         }
3736
3737         if (obj->pin_count) {
3738                 ret = -EINVAL;
3739                 goto out;
3740         }
3741
3742         if (obj->madv != __I915_MADV_PURGED)
3743                 obj->madv = args->madv;
3744
3745         /* if the object is no longer attached, discard its backing storage */
3746         if (i915_gem_object_is_purgeable(obj) && obj->pages == NULL)
3747                 i915_gem_object_truncate(obj);
3748
3749         args->retained = obj->madv != __I915_MADV_PURGED;
3750
3751 out:
3752         drm_gem_object_unreference(&obj->base);
3753 unlock:
3754         mutex_unlock(&dev->struct_mutex);
3755         return ret;
3756 }
3757
3758 void i915_gem_object_init(struct drm_i915_gem_object *obj,
3759                           const struct drm_i915_gem_object_ops *ops)
3760 {
3761         INIT_LIST_HEAD(&obj->mm_list);
3762         INIT_LIST_HEAD(&obj->gtt_list);
3763         INIT_LIST_HEAD(&obj->ring_list);
3764         INIT_LIST_HEAD(&obj->exec_list);
3765
3766         obj->ops = ops;
3767
3768         obj->fence_reg = I915_FENCE_REG_NONE;
3769         obj->madv = I915_MADV_WILLNEED;
3770         /* Avoid an unnecessary call to unbind on the first bind. */
3771         obj->map_and_fenceable = true;
3772
3773         i915_gem_info_add_obj(obj->base.dev->dev_private, obj->base.size);
3774 }
3775
3776 static const struct drm_i915_gem_object_ops i915_gem_object_ops = {
3777         .get_pages = i915_gem_object_get_pages_gtt,
3778         .put_pages = i915_gem_object_put_pages_gtt,
3779 };
3780
3781 struct drm_i915_gem_object *i915_gem_alloc_object(struct drm_device *dev,
3782                                                   size_t size)
3783 {
3784         struct drm_i915_gem_object *obj;
3785         struct address_space *mapping;
3786         gfp_t mask;
3787
3788         obj = i915_gem_object_alloc(dev);
3789         if (obj == NULL)
3790                 return NULL;
3791
3792         if (drm_gem_object_init(dev, &obj->base, size) != 0) {
3793                 i915_gem_object_free(obj);
3794                 return NULL;
3795         }
3796
3797         mask = GFP_HIGHUSER | __GFP_RECLAIMABLE;
3798         if (IS_CRESTLINE(dev) || IS_BROADWATER(dev)) {
3799                 /* 965gm cannot relocate objects above 4GiB. */
3800                 mask &= ~__GFP_HIGHMEM;
3801                 mask |= __GFP_DMA32;
3802         }
3803
3804         mapping = file_inode(obj->base.filp)->i_mapping;
3805         mapping_set_gfp_mask(mapping, mask);
3806
3807         i915_gem_object_init(obj, &i915_gem_object_ops);
3808
3809         obj->base.write_domain = I915_GEM_DOMAIN_CPU;
3810         obj->base.read_domains = I915_GEM_DOMAIN_CPU;
3811
3812         if (HAS_LLC(dev)) {
3813                 /* On some devices, we can have the GPU use the LLC (the CPU
3814                  * cache) for about a 10% performance improvement
3815                  * compared to uncached.  Graphics requests other than
3816                  * display scanout are coherent with the CPU in
3817                  * accessing this cache.  This means in this mode we
3818                  * don't need to clflush on the CPU side, and on the
3819                  * GPU side we only need to flush internal caches to
3820                  * get data visible to the CPU.
3821                  *
3822                  * However, we maintain the display planes as UC, and so
3823                  * need to rebind when first used as such.
3824                  */
3825                 obj->cache_level = I915_CACHE_LLC;
3826         } else
3827                 obj->cache_level = I915_CACHE_NONE;
3828
3829         return obj;
3830 }
3831
3832 int i915_gem_init_object(struct drm_gem_object *obj)
3833 {
3834         BUG();
3835
3836         return 0;
3837 }
3838
3839 void i915_gem_free_object(struct drm_gem_object *gem_obj)
3840 {
3841         struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
3842         struct drm_device *dev = obj->base.dev;
3843         drm_i915_private_t *dev_priv = dev->dev_private;
3844
3845         trace_i915_gem_object_destroy(obj);
3846
3847         if (obj->phys_obj)
3848                 i915_gem_detach_phys_object(dev, obj);
3849
3850         obj->pin_count = 0;
3851         if (WARN_ON(i915_gem_object_unbind(obj) == -ERESTARTSYS)) {
3852                 bool was_interruptible;
3853
3854                 was_interruptible = dev_priv->mm.interruptible;
3855                 dev_priv->mm.interruptible = false;
3856
3857                 WARN_ON(i915_gem_object_unbind(obj));
3858
3859                 dev_priv->mm.interruptible = was_interruptible;
3860         }
3861
3862         obj->pages_pin_count = 0;
3863         i915_gem_object_put_pages(obj);
3864         i915_gem_object_free_mmap_offset(obj);
3865         i915_gem_object_release_stolen(obj);
3866
3867         BUG_ON(obj->pages);
3868
3869         if (obj->base.import_attach)
3870                 drm_prime_gem_destroy(&obj->base, NULL);
3871
3872         drm_gem_object_release(&obj->base);
3873         i915_gem_info_remove_obj(dev_priv, obj->base.size);
3874
3875         kfree(obj->bit_17);
3876         i915_gem_object_free(obj);
3877 }
3878
3879 int
3880 i915_gem_idle(struct drm_device *dev)
3881 {
3882         drm_i915_private_t *dev_priv = dev->dev_private;
3883         int ret;
3884
3885         mutex_lock(&dev->struct_mutex);
3886
3887         if (dev_priv->mm.suspended) {
3888                 mutex_unlock(&dev->struct_mutex);
3889                 return 0;
3890         }
3891
3892         ret = i915_gpu_idle(dev);
3893         if (ret) {
3894                 mutex_unlock(&dev->struct_mutex);
3895                 return ret;
3896         }
3897         i915_gem_retire_requests(dev);
3898
3899         /* Under UMS, be paranoid and evict. */
3900         if (!drm_core_check_feature(dev, DRIVER_MODESET))
3901                 i915_gem_evict_everything(dev);
3902
3903         /* Hack!  Don't let anybody do execbuf while we don't control the chip.
3904          * We need to replace this with a semaphore, or something.
3905          * And not confound mm.suspended!
3906          */
3907         dev_priv->mm.suspended = 1;
3908         del_timer_sync(&dev_priv->gpu_error.hangcheck_timer);
3909
3910         i915_kernel_lost_context(dev);
3911         i915_gem_cleanup_ringbuffer(dev);
3912
3913         mutex_unlock(&dev->struct_mutex);
3914
3915         /* Cancel the retire work handler, which should be idle now. */
3916         cancel_delayed_work_sync(&dev_priv->mm.retire_work);
3917
3918         return 0;
3919 }
3920
3921 void i915_gem_l3_remap(struct drm_device *dev)
3922 {
3923         drm_i915_private_t *dev_priv = dev->dev_private;
3924         u32 misccpctl;
3925         int i;
3926
3927         if (!HAS_L3_GPU_CACHE(dev))
3928                 return;
3929
3930         if (!dev_priv->l3_parity.remap_info)
3931                 return;
3932
3933         misccpctl = I915_READ(GEN7_MISCCPCTL);
3934         I915_WRITE(GEN7_MISCCPCTL, misccpctl & ~GEN7_DOP_CLOCK_GATE_ENABLE);
3935         POSTING_READ(GEN7_MISCCPCTL);
3936
3937         for (i = 0; i < GEN7_L3LOG_SIZE; i += 4) {
3938                 u32 remap = I915_READ(GEN7_L3LOG_BASE + i);
3939                 if (remap && remap != dev_priv->l3_parity.remap_info[i/4])
3940                         DRM_DEBUG("0x%x was already programmed to %x\n",
3941                                   GEN7_L3LOG_BASE + i, remap);
3942                 if (remap && !dev_priv->l3_parity.remap_info[i/4])
3943                         DRM_DEBUG_DRIVER("Clearing remapped register\n");
3944                 I915_WRITE(GEN7_L3LOG_BASE + i, dev_priv->l3_parity.remap_info[i/4]);
3945         }
3946
3947         /* Make sure all the writes land before disabling dop clock gating */
3948         POSTING_READ(GEN7_L3LOG_BASE);
3949
3950         I915_WRITE(GEN7_MISCCPCTL, misccpctl);
3951 }
3952
3953 void i915_gem_init_swizzling(struct drm_device *dev)
3954 {
3955         drm_i915_private_t *dev_priv = dev->dev_private;
3956
3957         if (INTEL_INFO(dev)->gen < 5 ||
3958             dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_NONE)
3959                 return;
3960
3961         I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
3962                                  DISP_TILE_SURFACE_SWIZZLING);
3963
3964         if (IS_GEN5(dev))
3965                 return;
3966
3967         I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_SWZCTL);
3968         if (IS_GEN6(dev))
3969                 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_SNB));
3970         else if (IS_GEN7(dev))
3971                 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_IVB));
3972         else
3973                 BUG();
3974 }
3975
3976 static bool
3977 intel_enable_blt(struct drm_device *dev)
3978 {
3979         if (!HAS_BLT(dev))
3980                 return false;
3981
3982         /* The blitter was dysfunctional on early prototypes */
3983         if (IS_GEN6(dev) && dev->pdev->revision < 8) {
3984                 DRM_INFO("BLT not supported on this pre-production hardware;"
3985                          " graphics performance will be degraded.\n");
3986                 return false;
3987         }
3988
3989         return true;
3990 }
3991
3992 static int i915_gem_init_rings(struct drm_device *dev)
3993 {
3994         struct drm_i915_private *dev_priv = dev->dev_private;
3995         int ret;
3996
3997         ret = intel_init_render_ring_buffer(dev);
3998         if (ret)
3999                 return ret;
4000
4001         if (HAS_BSD(dev)) {
4002                 ret = intel_init_bsd_ring_buffer(dev);
4003                 if (ret)
4004                         goto cleanup_render_ring;
4005         }
4006
4007         if (intel_enable_blt(dev)) {
4008                 ret = intel_init_blt_ring_buffer(dev);
4009                 if (ret)
4010                         goto cleanup_bsd_ring;
4011         }
4012
4013         ret = i915_gem_set_seqno(dev, ((u32)~0 - 0x1000));
4014         if (ret)
4015                 goto cleanup_blt_ring;
4016
4017         return 0;
4018
4019 cleanup_blt_ring:
4020         intel_cleanup_ring_buffer(&dev_priv->ring[BCS]);
4021 cleanup_bsd_ring:
4022         intel_cleanup_ring_buffer(&dev_priv->ring[VCS]);
4023 cleanup_render_ring:
4024         intel_cleanup_ring_buffer(&dev_priv->ring[RCS]);
4025
4026         return ret;
4027 }
4028
4029 int
4030 i915_gem_init_hw(struct drm_device *dev)
4031 {
4032         drm_i915_private_t *dev_priv = dev->dev_private;
4033         int ret;
4034
4035         if (INTEL_INFO(dev)->gen < 6 && !intel_enable_gtt())
4036                 return -EIO;
4037
4038         if (IS_HASWELL(dev) && (I915_READ(0x120010) == 1))
4039                 I915_WRITE(0x9008, I915_READ(0x9008) | 0xf0000);
4040
4041         if (HAS_PCH_NOP(dev)) {
4042                 u32 temp = I915_READ(GEN7_MSG_CTL);
4043                 temp &= ~(WAIT_FOR_PCH_FLR_ACK | WAIT_FOR_PCH_RESET_ACK);
4044                 I915_WRITE(GEN7_MSG_CTL, temp);
4045         }
4046
4047         i915_gem_l3_remap(dev);
4048
4049         i915_gem_init_swizzling(dev);
4050
4051         ret = i915_gem_init_rings(dev);
4052         if (ret)
4053                 return ret;
4054
4055         /*
4056          * XXX: There was some w/a described somewhere suggesting loading
4057          * contexts before PPGTT.
4058          */
4059         i915_gem_context_init(dev);
4060         if (dev_priv->mm.aliasing_ppgtt) {
4061                 ret = dev_priv->mm.aliasing_ppgtt->enable(dev);
4062                 if (ret) {
4063                         i915_gem_cleanup_aliasing_ppgtt(dev);
4064                         DRM_INFO("PPGTT enable failed. This is not fatal, but unexpected\n");
4065                 }
4066         }
4067
4068         return 0;
4069 }
4070
4071 int i915_gem_init(struct drm_device *dev)
4072 {
4073         struct drm_i915_private *dev_priv = dev->dev_private;
4074         int ret;
4075
4076         mutex_lock(&dev->struct_mutex);
4077
4078         if (IS_VALLEYVIEW(dev)) {
4079                 /* VLVA0 (potential hack), BIOS isn't actually waking us */
4080                 I915_WRITE(VLV_GTLC_WAKE_CTRL, 1);
4081                 if (wait_for((I915_READ(VLV_GTLC_PW_STATUS) & 1) == 1, 10))
4082                         DRM_DEBUG_DRIVER("allow wake ack timed out\n");
4083         }
4084
4085         i915_gem_init_global_gtt(dev);
4086
4087         ret = i915_gem_init_hw(dev);
4088         mutex_unlock(&dev->struct_mutex);
4089         if (ret) {
4090                 i915_gem_cleanup_aliasing_ppgtt(dev);
4091                 return ret;
4092         }
4093
4094         /* Allow hardware batchbuffers unless told otherwise, but not for KMS. */
4095         if (!drm_core_check_feature(dev, DRIVER_MODESET))
4096                 dev_priv->dri1.allow_batchbuffer = 1;
4097         return 0;
4098 }
4099
4100 void
4101 i915_gem_cleanup_ringbuffer(struct drm_device *dev)
4102 {
4103         drm_i915_private_t *dev_priv = dev->dev_private;
4104         struct intel_ring_buffer *ring;
4105         int i;
4106
4107         for_each_ring(ring, dev_priv, i)
4108                 intel_cleanup_ring_buffer(ring);
4109 }
4110
4111 int
4112 i915_gem_entervt_ioctl(struct drm_device *dev, void *data,
4113                        struct drm_file *file_priv)
4114 {
4115         drm_i915_private_t *dev_priv = dev->dev_private;
4116         int ret;
4117
4118         if (drm_core_check_feature(dev, DRIVER_MODESET))
4119                 return 0;
4120
4121         if (i915_reset_in_progress(&dev_priv->gpu_error)) {
4122                 DRM_ERROR("Reenabling wedged hardware, good luck\n");
4123                 atomic_set(&dev_priv->gpu_error.reset_counter, 0);
4124         }
4125
4126         mutex_lock(&dev->struct_mutex);
4127         dev_priv->mm.suspended = 0;
4128
4129         ret = i915_gem_init_hw(dev);
4130         if (ret != 0) {
4131                 mutex_unlock(&dev->struct_mutex);
4132                 return ret;
4133         }
4134
4135         BUG_ON(!list_empty(&dev_priv->mm.active_list));
4136         mutex_unlock(&dev->struct_mutex);
4137
4138         ret = drm_irq_install(dev);
4139         if (ret)
4140                 goto cleanup_ringbuffer;
4141
4142         return 0;
4143
4144 cleanup_ringbuffer:
4145         mutex_lock(&dev->struct_mutex);
4146         i915_gem_cleanup_ringbuffer(dev);
4147         dev_priv->mm.suspended = 1;
4148         mutex_unlock(&dev->struct_mutex);
4149
4150         return ret;
4151 }
4152
4153 int
4154 i915_gem_leavevt_ioctl(struct drm_device *dev, void *data,
4155                        struct drm_file *file_priv)
4156 {
4157         if (drm_core_check_feature(dev, DRIVER_MODESET))
4158                 return 0;
4159
4160         drm_irq_uninstall(dev);
4161         return i915_gem_idle(dev);
4162 }
4163
4164 void
4165 i915_gem_lastclose(struct drm_device *dev)
4166 {
4167         int ret;
4168
4169         if (drm_core_check_feature(dev, DRIVER_MODESET))
4170                 return;
4171
4172         ret = i915_gem_idle(dev);
4173         if (ret)
4174                 DRM_ERROR("failed to idle hardware: %d\n", ret);
4175 }
4176
4177 static void
4178 init_ring_lists(struct intel_ring_buffer *ring)
4179 {
4180         INIT_LIST_HEAD(&ring->active_list);
4181         INIT_LIST_HEAD(&ring->request_list);
4182 }
4183
4184 void
4185 i915_gem_load(struct drm_device *dev)
4186 {
4187         drm_i915_private_t *dev_priv = dev->dev_private;
4188         int i;
4189
4190         dev_priv->slab =
4191                 kmem_cache_create("i915_gem_object",
4192                                   sizeof(struct drm_i915_gem_object), 0,
4193                                   SLAB_HWCACHE_ALIGN,
4194                                   NULL);
4195
4196         INIT_LIST_HEAD(&dev_priv->mm.active_list);
4197         INIT_LIST_HEAD(&dev_priv->mm.inactive_list);
4198         INIT_LIST_HEAD(&dev_priv->mm.unbound_list);
4199         INIT_LIST_HEAD(&dev_priv->mm.bound_list);
4200         INIT_LIST_HEAD(&dev_priv->mm.fence_list);
4201         for (i = 0; i < I915_NUM_RINGS; i++)
4202                 init_ring_lists(&dev_priv->ring[i]);
4203         for (i = 0; i < I915_MAX_NUM_FENCES; i++)
4204                 INIT_LIST_HEAD(&dev_priv->fence_regs[i].lru_list);
4205         INIT_DELAYED_WORK(&dev_priv->mm.retire_work,
4206                           i915_gem_retire_work_handler);
4207         init_waitqueue_head(&dev_priv->gpu_error.reset_queue);
4208
4209         /* On GEN3 we really need to make sure the ARB C3 LP bit is set */
4210         if (IS_GEN3(dev)) {
4211                 I915_WRITE(MI_ARB_STATE,
4212                            _MASKED_BIT_ENABLE(MI_ARB_C3_LP_WRITE_ENABLE));
4213         }
4214
4215         dev_priv->relative_constants_mode = I915_EXEC_CONSTANTS_REL_GENERAL;
4216
4217         /* Old X drivers will take 0-2 for front, back, depth buffers */
4218         if (!drm_core_check_feature(dev, DRIVER_MODESET))
4219                 dev_priv->fence_reg_start = 3;
4220
4221         if (INTEL_INFO(dev)->gen >= 7 && !IS_VALLEYVIEW(dev))
4222                 dev_priv->num_fence_regs = 32;
4223         else if (INTEL_INFO(dev)->gen >= 4 || IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
4224                 dev_priv->num_fence_regs = 16;
4225         else
4226                 dev_priv->num_fence_regs = 8;
4227
4228         /* Initialize fence registers to zero */
4229         INIT_LIST_HEAD(&dev_priv->mm.fence_list);
4230         i915_gem_restore_fences(dev);
4231
4232         i915_gem_detect_bit_6_swizzle(dev);
4233         init_waitqueue_head(&dev_priv->pending_flip_queue);
4234
4235         dev_priv->mm.interruptible = true;
4236
4237         dev_priv->mm.inactive_shrinker.shrink = i915_gem_inactive_shrink;
4238         dev_priv->mm.inactive_shrinker.seeks = DEFAULT_SEEKS;
4239         register_shrinker(&dev_priv->mm.inactive_shrinker);
4240 }
4241
4242 /*
4243  * Create a physically contiguous memory object for this object
4244  * e.g. for cursor + overlay regs
4245  */
4246 static int i915_gem_init_phys_object(struct drm_device *dev,
4247                                      int id, int size, int align)
4248 {
4249         drm_i915_private_t *dev_priv = dev->dev_private;
4250         struct drm_i915_gem_phys_object *phys_obj;
4251         int ret;
4252
4253         if (dev_priv->mm.phys_objs[id - 1] || !size)
4254                 return 0;
4255
4256         phys_obj = kzalloc(sizeof(struct drm_i915_gem_phys_object), GFP_KERNEL);
4257         if (!phys_obj)
4258                 return -ENOMEM;
4259
4260         phys_obj->id = id;
4261
4262         phys_obj->handle = drm_pci_alloc(dev, size, align);
4263         if (!phys_obj->handle) {
4264                 ret = -ENOMEM;
4265                 goto kfree_obj;
4266         }
4267 #ifdef CONFIG_X86
4268         set_memory_wc((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
4269 #endif
4270
4271         dev_priv->mm.phys_objs[id - 1] = phys_obj;
4272
4273         return 0;
4274 kfree_obj:
4275         kfree(phys_obj);
4276         return ret;
4277 }
4278
4279 static void i915_gem_free_phys_object(struct drm_device *dev, int id)
4280 {
4281         drm_i915_private_t *dev_priv = dev->dev_private;
4282         struct drm_i915_gem_phys_object *phys_obj;
4283
4284         if (!dev_priv->mm.phys_objs[id - 1])
4285                 return;
4286
4287         phys_obj = dev_priv->mm.phys_objs[id - 1];
4288         if (phys_obj->cur_obj) {
4289                 i915_gem_detach_phys_object(dev, phys_obj->cur_obj);
4290         }
4291
4292 #ifdef CONFIG_X86
4293         set_memory_wb((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
4294 #endif
4295         drm_pci_free(dev, phys_obj->handle);
4296         kfree(phys_obj);
4297         dev_priv->mm.phys_objs[id - 1] = NULL;
4298 }
4299
4300 void i915_gem_free_all_phys_object(struct drm_device *dev)
4301 {
4302         int i;
4303
4304         for (i = I915_GEM_PHYS_CURSOR_0; i <= I915_MAX_PHYS_OBJECT; i++)
4305                 i915_gem_free_phys_object(dev, i);
4306 }
4307
4308 void i915_gem_detach_phys_object(struct drm_device *dev,
4309                                  struct drm_i915_gem_object *obj)
4310 {
4311         struct address_space *mapping = file_inode(obj->base.filp)->i_mapping;
4312         char *vaddr;
4313         int i;
4314         int page_count;
4315
4316         if (!obj->phys_obj)
4317                 return;
4318         vaddr = obj->phys_obj->handle->vaddr;
4319
4320         page_count = obj->base.size / PAGE_SIZE;
4321         for (i = 0; i < page_count; i++) {
4322                 struct page *page = shmem_read_mapping_page(mapping, i);
4323                 if (!IS_ERR(page)) {
4324                         char *dst = kmap_atomic(page);
4325                         memcpy(dst, vaddr + i*PAGE_SIZE, PAGE_SIZE);
4326                         kunmap_atomic(dst);
4327
4328                         drm_clflush_pages(&page, 1);
4329
4330                         set_page_dirty(page);
4331                         mark_page_accessed(page);
4332                         page_cache_release(page);
4333                 }
4334         }
4335         i915_gem_chipset_flush(dev);
4336
4337         obj->phys_obj->cur_obj = NULL;
4338         obj->phys_obj = NULL;
4339 }
4340
4341 int
4342 i915_gem_attach_phys_object(struct drm_device *dev,
4343                             struct drm_i915_gem_object *obj,
4344                             int id,
4345                             int align)
4346 {
4347         struct address_space *mapping = file_inode(obj->base.filp)->i_mapping;
4348         drm_i915_private_t *dev_priv = dev->dev_private;
4349         int ret = 0;
4350         int page_count;
4351         int i;
4352
4353         if (id > I915_MAX_PHYS_OBJECT)
4354                 return -EINVAL;
4355
4356         if (obj->phys_obj) {
4357                 if (obj->phys_obj->id == id)
4358                         return 0;
4359                 i915_gem_detach_phys_object(dev, obj);
4360         }
4361
4362         /* create a new object */
4363         if (!dev_priv->mm.phys_objs[id - 1]) {
4364                 ret = i915_gem_init_phys_object(dev, id,
4365                                                 obj->base.size, align);
4366                 if (ret) {
4367                         DRM_ERROR("failed to init phys object %d size: %zu\n",
4368                                   id, obj->base.size);
4369                         return ret;
4370                 }
4371         }
4372
4373         /* bind to the object */
4374         obj->phys_obj = dev_priv->mm.phys_objs[id - 1];
4375         obj->phys_obj->cur_obj = obj;
4376
4377         page_count = obj->base.size / PAGE_SIZE;
4378
4379         for (i = 0; i < page_count; i++) {
4380                 struct page *page;
4381                 char *dst, *src;
4382
4383                 page = shmem_read_mapping_page(mapping, i);
4384                 if (IS_ERR(page))
4385                         return PTR_ERR(page);
4386
4387                 src = kmap_atomic(page);
4388                 dst = obj->phys_obj->handle->vaddr + (i * PAGE_SIZE);
4389                 memcpy(dst, src, PAGE_SIZE);
4390                 kunmap_atomic(src);
4391
4392                 mark_page_accessed(page);
4393                 page_cache_release(page);
4394         }
4395
4396         return 0;
4397 }
4398
4399 static int
4400 i915_gem_phys_pwrite(struct drm_device *dev,
4401                      struct drm_i915_gem_object *obj,
4402                      struct drm_i915_gem_pwrite *args,
4403                      struct drm_file *file_priv)
4404 {
4405         void *vaddr = obj->phys_obj->handle->vaddr + args->offset;
4406         char __user *user_data = to_user_ptr(args->data_ptr);
4407
4408         if (__copy_from_user_inatomic_nocache(vaddr, user_data, args->size)) {
4409                 unsigned long unwritten;
4410
4411                 /* The physical object once assigned is fixed for the lifetime
4412                  * of the obj, so we can safely drop the lock and continue
4413                  * to access vaddr.
4414                  */
4415                 mutex_unlock(&dev->struct_mutex);
4416                 unwritten = copy_from_user(vaddr, user_data, args->size);
4417                 mutex_lock(&dev->struct_mutex);
4418                 if (unwritten)
4419                         return -EFAULT;
4420         }
4421
4422         i915_gem_chipset_flush(dev);
4423         return 0;
4424 }
4425
4426 void i915_gem_release(struct drm_device *dev, struct drm_file *file)
4427 {
4428         struct drm_i915_file_private *file_priv = file->driver_priv;
4429
4430         /* Clean up our request list when the client is going away, so that
4431          * later retire_requests won't dereference our soon-to-be-gone
4432          * file_priv.
4433          */
4434         spin_lock(&file_priv->mm.lock);
4435         while (!list_empty(&file_priv->mm.request_list)) {
4436                 struct drm_i915_gem_request *request;
4437
4438                 request = list_first_entry(&file_priv->mm.request_list,
4439                                            struct drm_i915_gem_request,
4440                                            client_list);
4441                 list_del(&request->client_list);
4442                 request->file_priv = NULL;
4443         }
4444         spin_unlock(&file_priv->mm.lock);
4445 }
4446
4447 static bool mutex_is_locked_by(struct mutex *mutex, struct task_struct *task)
4448 {
4449         if (!mutex_is_locked(mutex))
4450                 return false;
4451
4452 #if defined(CONFIG_SMP) || defined(CONFIG_DEBUG_MUTEXES)
4453         return mutex->owner == task;
4454 #else
4455         /* Since UP may be pre-empted, we cannot assume that we own the lock */
4456         return false;
4457 #endif
4458 }
4459
4460 static int
4461 i915_gem_inactive_shrink(struct shrinker *shrinker, struct shrink_control *sc)
4462 {
4463         struct drm_i915_private *dev_priv =
4464                 container_of(shrinker,
4465                              struct drm_i915_private,
4466                              mm.inactive_shrinker);
4467         struct drm_device *dev = dev_priv->dev;
4468         struct drm_i915_gem_object *obj;
4469         int nr_to_scan = sc->nr_to_scan;
4470         bool unlock = true;
4471         int cnt;
4472
4473         if (!mutex_trylock(&dev->struct_mutex)) {
4474                 if (!mutex_is_locked_by(&dev->struct_mutex, current))
4475                         return 0;
4476
4477                 if (dev_priv->mm.shrinker_no_lock_stealing)
4478                         return 0;
4479
4480                 unlock = false;
4481         }
4482
4483         if (nr_to_scan) {
4484                 nr_to_scan -= i915_gem_purge(dev_priv, nr_to_scan);
4485                 if (nr_to_scan > 0)
4486                         nr_to_scan -= __i915_gem_shrink(dev_priv, nr_to_scan,
4487                                                         false);
4488                 if (nr_to_scan > 0)
4489                         i915_gem_shrink_all(dev_priv);
4490         }
4491
4492         cnt = 0;
4493         list_for_each_entry(obj, &dev_priv->mm.unbound_list, gtt_list)
4494                 if (obj->pages_pin_count == 0)
4495                         cnt += obj->base.size >> PAGE_SHIFT;
4496         list_for_each_entry(obj, &dev_priv->mm.inactive_list, mm_list)
4497                 if (obj->pin_count == 0 && obj->pages_pin_count == 0)
4498                         cnt += obj->base.size >> PAGE_SHIFT;
4499
4500         if (unlock)
4501                 mutex_unlock(&dev->struct_mutex);
4502         return cnt;
4503 }