drm/rockchip: add rk3399 vop big csc support
[firefly-linux-kernel-4.4.55.git] / drivers / gpu / drm / i915 / i915_debugfs.c
1 /*
2  * Copyright © 2008 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *    Eric Anholt <eric@anholt.net>
25  *    Keith Packard <keithp@keithp.com>
26  *
27  */
28
29 #include <linux/seq_file.h>
30 #include <linux/circ_buf.h>
31 #include <linux/ctype.h>
32 #include <linux/debugfs.h>
33 #include <linux/slab.h>
34 #include <linux/export.h>
35 #include <linux/list_sort.h>
36 #include <asm/msr-index.h>
37 #include <drm/drmP.h>
38 #include "intel_drv.h"
39 #include "intel_ringbuffer.h"
40 #include <drm/i915_drm.h>
41 #include "i915_drv.h"
42
43 enum {
44         ACTIVE_LIST,
45         INACTIVE_LIST,
46         PINNED_LIST,
47 };
48
49 /* As the drm_debugfs_init() routines are called before dev->dev_private is
50  * allocated we need to hook into the minor for release. */
51 static int
52 drm_add_fake_info_node(struct drm_minor *minor,
53                        struct dentry *ent,
54                        const void *key)
55 {
56         struct drm_info_node *node;
57
58         node = kmalloc(sizeof(*node), GFP_KERNEL);
59         if (node == NULL) {
60                 debugfs_remove(ent);
61                 return -ENOMEM;
62         }
63
64         node->minor = minor;
65         node->dent = ent;
66         node->info_ent = (void *) key;
67
68         mutex_lock(&minor->debugfs_lock);
69         list_add(&node->list, &minor->debugfs_list);
70         mutex_unlock(&minor->debugfs_lock);
71
72         return 0;
73 }
74
75 static int i915_capabilities(struct seq_file *m, void *data)
76 {
77         struct drm_info_node *node = m->private;
78         struct drm_device *dev = node->minor->dev;
79         const struct intel_device_info *info = INTEL_INFO(dev);
80
81         seq_printf(m, "gen: %d\n", info->gen);
82         seq_printf(m, "pch: %d\n", INTEL_PCH_TYPE(dev));
83 #define PRINT_FLAG(x)  seq_printf(m, #x ": %s\n", yesno(info->x))
84 #define SEP_SEMICOLON ;
85         DEV_INFO_FOR_EACH_FLAG(PRINT_FLAG, SEP_SEMICOLON);
86 #undef PRINT_FLAG
87 #undef SEP_SEMICOLON
88
89         return 0;
90 }
91
92 static const char *get_pin_flag(struct drm_i915_gem_object *obj)
93 {
94         if (obj->pin_display)
95                 return "p";
96         else
97                 return " ";
98 }
99
100 static const char *get_tiling_flag(struct drm_i915_gem_object *obj)
101 {
102         switch (obj->tiling_mode) {
103         default:
104         case I915_TILING_NONE: return " ";
105         case I915_TILING_X: return "X";
106         case I915_TILING_Y: return "Y";
107         }
108 }
109
110 static inline const char *get_global_flag(struct drm_i915_gem_object *obj)
111 {
112         return i915_gem_obj_to_ggtt(obj) ? "g" : " ";
113 }
114
115 static u64 i915_gem_obj_total_ggtt_size(struct drm_i915_gem_object *obj)
116 {
117         u64 size = 0;
118         struct i915_vma *vma;
119
120         list_for_each_entry(vma, &obj->vma_list, vma_link) {
121                 if (i915_is_ggtt(vma->vm) &&
122                     drm_mm_node_allocated(&vma->node))
123                         size += vma->node.size;
124         }
125
126         return size;
127 }
128
129 static void
130 describe_obj(struct seq_file *m, struct drm_i915_gem_object *obj)
131 {
132         struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
133         struct intel_engine_cs *ring;
134         struct i915_vma *vma;
135         int pin_count = 0;
136         int i;
137
138         seq_printf(m, "%pK: %s%s%s%s %8zdKiB %02x %02x [ ",
139                    &obj->base,
140                    obj->active ? "*" : " ",
141                    get_pin_flag(obj),
142                    get_tiling_flag(obj),
143                    get_global_flag(obj),
144                    obj->base.size / 1024,
145                    obj->base.read_domains,
146                    obj->base.write_domain);
147         for_each_ring(ring, dev_priv, i)
148                 seq_printf(m, "%x ",
149                                 i915_gem_request_get_seqno(obj->last_read_req[i]));
150         seq_printf(m, "] %x %x%s%s%s",
151                    i915_gem_request_get_seqno(obj->last_write_req),
152                    i915_gem_request_get_seqno(obj->last_fenced_req),
153                    i915_cache_level_str(to_i915(obj->base.dev), obj->cache_level),
154                    obj->dirty ? " dirty" : "",
155                    obj->madv == I915_MADV_DONTNEED ? " purgeable" : "");
156         if (obj->base.name)
157                 seq_printf(m, " (name: %d)", obj->base.name);
158         list_for_each_entry(vma, &obj->vma_list, vma_link) {
159                 if (vma->pin_count > 0)
160                         pin_count++;
161         }
162         seq_printf(m, " (pinned x %d)", pin_count);
163         if (obj->pin_display)
164                 seq_printf(m, " (display)");
165         if (obj->fence_reg != I915_FENCE_REG_NONE)
166                 seq_printf(m, " (fence: %d)", obj->fence_reg);
167         list_for_each_entry(vma, &obj->vma_list, vma_link) {
168                 seq_printf(m, " (%sgtt offset: %08llx, size: %08llx",
169                            i915_is_ggtt(vma->vm) ? "g" : "pp",
170                            vma->node.start, vma->node.size);
171                 if (i915_is_ggtt(vma->vm))
172                         seq_printf(m, ", type: %u)", vma->ggtt_view.type);
173                 else
174                         seq_puts(m, ")");
175         }
176         if (obj->stolen)
177                 seq_printf(m, " (stolen: %08llx)", obj->stolen->start);
178         if (obj->pin_display || obj->fault_mappable) {
179                 char s[3], *t = s;
180                 if (obj->pin_display)
181                         *t++ = 'p';
182                 if (obj->fault_mappable)
183                         *t++ = 'f';
184                 *t = '\0';
185                 seq_printf(m, " (%s mappable)", s);
186         }
187         if (obj->last_write_req != NULL)
188                 seq_printf(m, " (%s)",
189                            i915_gem_request_get_ring(obj->last_write_req)->name);
190         if (obj->frontbuffer_bits)
191                 seq_printf(m, " (frontbuffer: 0x%03x)", obj->frontbuffer_bits);
192 }
193
194 static void describe_ctx(struct seq_file *m, struct intel_context *ctx)
195 {
196         seq_putc(m, ctx->legacy_hw_ctx.initialized ? 'I' : 'i');
197         seq_putc(m, ctx->remap_slice ? 'R' : 'r');
198         seq_putc(m, ' ');
199 }
200
201 static int i915_gem_object_list_info(struct seq_file *m, void *data)
202 {
203         struct drm_info_node *node = m->private;
204         uintptr_t list = (uintptr_t) node->info_ent->data;
205         struct list_head *head;
206         struct drm_device *dev = node->minor->dev;
207         struct drm_i915_private *dev_priv = dev->dev_private;
208         struct i915_address_space *vm = &dev_priv->gtt.base;
209         struct i915_vma *vma;
210         u64 total_obj_size, total_gtt_size;
211         int count, ret;
212
213         ret = mutex_lock_interruptible(&dev->struct_mutex);
214         if (ret)
215                 return ret;
216
217         /* FIXME: the user of this interface might want more than just GGTT */
218         switch (list) {
219         case ACTIVE_LIST:
220                 seq_puts(m, "Active:\n");
221                 head = &vm->active_list;
222                 break;
223         case INACTIVE_LIST:
224                 seq_puts(m, "Inactive:\n");
225                 head = &vm->inactive_list;
226                 break;
227         default:
228                 mutex_unlock(&dev->struct_mutex);
229                 return -EINVAL;
230         }
231
232         total_obj_size = total_gtt_size = count = 0;
233         list_for_each_entry(vma, head, mm_list) {
234                 seq_printf(m, "   ");
235                 describe_obj(m, vma->obj);
236                 seq_printf(m, "\n");
237                 total_obj_size += vma->obj->base.size;
238                 total_gtt_size += vma->node.size;
239                 count++;
240         }
241         mutex_unlock(&dev->struct_mutex);
242
243         seq_printf(m, "Total %d objects, %llu bytes, %llu GTT size\n",
244                    count, total_obj_size, total_gtt_size);
245         return 0;
246 }
247
248 static int obj_rank_by_stolen(void *priv,
249                               struct list_head *A, struct list_head *B)
250 {
251         struct drm_i915_gem_object *a =
252                 container_of(A, struct drm_i915_gem_object, obj_exec_link);
253         struct drm_i915_gem_object *b =
254                 container_of(B, struct drm_i915_gem_object, obj_exec_link);
255
256         if (a->stolen->start < b->stolen->start)
257                 return -1;
258         if (a->stolen->start > b->stolen->start)
259                 return 1;
260         return 0;
261 }
262
263 static int i915_gem_stolen_list_info(struct seq_file *m, void *data)
264 {
265         struct drm_info_node *node = m->private;
266         struct drm_device *dev = node->minor->dev;
267         struct drm_i915_private *dev_priv = dev->dev_private;
268         struct drm_i915_gem_object *obj;
269         u64 total_obj_size, total_gtt_size;
270         LIST_HEAD(stolen);
271         int count, ret;
272
273         ret = mutex_lock_interruptible(&dev->struct_mutex);
274         if (ret)
275                 return ret;
276
277         total_obj_size = total_gtt_size = count = 0;
278         list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list) {
279                 if (obj->stolen == NULL)
280                         continue;
281
282                 list_add(&obj->obj_exec_link, &stolen);
283
284                 total_obj_size += obj->base.size;
285                 total_gtt_size += i915_gem_obj_total_ggtt_size(obj);
286                 count++;
287         }
288         list_for_each_entry(obj, &dev_priv->mm.unbound_list, global_list) {
289                 if (obj->stolen == NULL)
290                         continue;
291
292                 list_add(&obj->obj_exec_link, &stolen);
293
294                 total_obj_size += obj->base.size;
295                 count++;
296         }
297         list_sort(NULL, &stolen, obj_rank_by_stolen);
298         seq_puts(m, "Stolen:\n");
299         while (!list_empty(&stolen)) {
300                 obj = list_first_entry(&stolen, typeof(*obj), obj_exec_link);
301                 seq_puts(m, "   ");
302                 describe_obj(m, obj);
303                 seq_putc(m, '\n');
304                 list_del_init(&obj->obj_exec_link);
305         }
306         mutex_unlock(&dev->struct_mutex);
307
308         seq_printf(m, "Total %d objects, %llu bytes, %llu GTT size\n",
309                    count, total_obj_size, total_gtt_size);
310         return 0;
311 }
312
313 #define count_objects(list, member) do { \
314         list_for_each_entry(obj, list, member) { \
315                 size += i915_gem_obj_total_ggtt_size(obj); \
316                 ++count; \
317                 if (obj->map_and_fenceable) { \
318                         mappable_size += i915_gem_obj_ggtt_size(obj); \
319                         ++mappable_count; \
320                 } \
321         } \
322 } while (0)
323
324 struct file_stats {
325         struct drm_i915_file_private *file_priv;
326         unsigned long count;
327         u64 total, unbound;
328         u64 global, shared;
329         u64 active, inactive;
330 };
331
332 static int per_file_stats(int id, void *ptr, void *data)
333 {
334         struct drm_i915_gem_object *obj = ptr;
335         struct file_stats *stats = data;
336         struct i915_vma *vma;
337
338         stats->count++;
339         stats->total += obj->base.size;
340
341         if (obj->base.name || obj->base.dma_buf)
342                 stats->shared += obj->base.size;
343
344         if (USES_FULL_PPGTT(obj->base.dev)) {
345                 list_for_each_entry(vma, &obj->vma_list, vma_link) {
346                         struct i915_hw_ppgtt *ppgtt;
347
348                         if (!drm_mm_node_allocated(&vma->node))
349                                 continue;
350
351                         if (i915_is_ggtt(vma->vm)) {
352                                 stats->global += obj->base.size;
353                                 continue;
354                         }
355
356                         ppgtt = container_of(vma->vm, struct i915_hw_ppgtt, base);
357                         if (ppgtt->file_priv != stats->file_priv)
358                                 continue;
359
360                         if (obj->active) /* XXX per-vma statistic */
361                                 stats->active += obj->base.size;
362                         else
363                                 stats->inactive += obj->base.size;
364
365                         return 0;
366                 }
367         } else {
368                 if (i915_gem_obj_ggtt_bound(obj)) {
369                         stats->global += obj->base.size;
370                         if (obj->active)
371                                 stats->active += obj->base.size;
372                         else
373                                 stats->inactive += obj->base.size;
374                         return 0;
375                 }
376         }
377
378         if (!list_empty(&obj->global_list))
379                 stats->unbound += obj->base.size;
380
381         return 0;
382 }
383
384 #define print_file_stats(m, name, stats) do { \
385         if (stats.count) \
386                 seq_printf(m, "%s: %lu objects, %llu bytes (%llu active, %llu inactive, %llu global, %llu shared, %llu unbound)\n", \
387                            name, \
388                            stats.count, \
389                            stats.total, \
390                            stats.active, \
391                            stats.inactive, \
392                            stats.global, \
393                            stats.shared, \
394                            stats.unbound); \
395 } while (0)
396
397 static void print_batch_pool_stats(struct seq_file *m,
398                                    struct drm_i915_private *dev_priv)
399 {
400         struct drm_i915_gem_object *obj;
401         struct file_stats stats;
402         struct intel_engine_cs *ring;
403         int i, j;
404
405         memset(&stats, 0, sizeof(stats));
406
407         for_each_ring(ring, dev_priv, i) {
408                 for (j = 0; j < ARRAY_SIZE(ring->batch_pool.cache_list); j++) {
409                         list_for_each_entry(obj,
410                                             &ring->batch_pool.cache_list[j],
411                                             batch_pool_link)
412                                 per_file_stats(0, obj, &stats);
413                 }
414         }
415
416         print_file_stats(m, "[k]batch pool", stats);
417 }
418
419 #define count_vmas(list, member) do { \
420         list_for_each_entry(vma, list, member) { \
421                 size += i915_gem_obj_total_ggtt_size(vma->obj); \
422                 ++count; \
423                 if (vma->obj->map_and_fenceable) { \
424                         mappable_size += i915_gem_obj_ggtt_size(vma->obj); \
425                         ++mappable_count; \
426                 } \
427         } \
428 } while (0)
429
430 static int i915_gem_object_info(struct seq_file *m, void* data)
431 {
432         struct drm_info_node *node = m->private;
433         struct drm_device *dev = node->minor->dev;
434         struct drm_i915_private *dev_priv = dev->dev_private;
435         u32 count, mappable_count, purgeable_count;
436         u64 size, mappable_size, purgeable_size;
437         struct drm_i915_gem_object *obj;
438         struct i915_address_space *vm = &dev_priv->gtt.base;
439         struct drm_file *file;
440         struct i915_vma *vma;
441         int ret;
442
443         ret = mutex_lock_interruptible(&dev->struct_mutex);
444         if (ret)
445                 return ret;
446
447         seq_printf(m, "%u objects, %zu bytes\n",
448                    dev_priv->mm.object_count,
449                    dev_priv->mm.object_memory);
450
451         size = count = mappable_size = mappable_count = 0;
452         count_objects(&dev_priv->mm.bound_list, global_list);
453         seq_printf(m, "%u [%u] objects, %llu [%llu] bytes in gtt\n",
454                    count, mappable_count, size, mappable_size);
455
456         size = count = mappable_size = mappable_count = 0;
457         count_vmas(&vm->active_list, mm_list);
458         seq_printf(m, "  %u [%u] active objects, %llu [%llu] bytes\n",
459                    count, mappable_count, size, mappable_size);
460
461         size = count = mappable_size = mappable_count = 0;
462         count_vmas(&vm->inactive_list, mm_list);
463         seq_printf(m, "  %u [%u] inactive objects, %llu [%llu] bytes\n",
464                    count, mappable_count, size, mappable_size);
465
466         size = count = purgeable_size = purgeable_count = 0;
467         list_for_each_entry(obj, &dev_priv->mm.unbound_list, global_list) {
468                 size += obj->base.size, ++count;
469                 if (obj->madv == I915_MADV_DONTNEED)
470                         purgeable_size += obj->base.size, ++purgeable_count;
471         }
472         seq_printf(m, "%u unbound objects, %llu bytes\n", count, size);
473
474         size = count = mappable_size = mappable_count = 0;
475         list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list) {
476                 if (obj->fault_mappable) {
477                         size += i915_gem_obj_ggtt_size(obj);
478                         ++count;
479                 }
480                 if (obj->pin_display) {
481                         mappable_size += i915_gem_obj_ggtt_size(obj);
482                         ++mappable_count;
483                 }
484                 if (obj->madv == I915_MADV_DONTNEED) {
485                         purgeable_size += obj->base.size;
486                         ++purgeable_count;
487                 }
488         }
489         seq_printf(m, "%u purgeable objects, %llu bytes\n",
490                    purgeable_count, purgeable_size);
491         seq_printf(m, "%u pinned mappable objects, %llu bytes\n",
492                    mappable_count, mappable_size);
493         seq_printf(m, "%u fault mappable objects, %llu bytes\n",
494                    count, size);
495
496         seq_printf(m, "%llu [%llu] gtt total\n",
497                    dev_priv->gtt.base.total,
498                    (u64)dev_priv->gtt.mappable_end - dev_priv->gtt.base.start);
499
500         seq_putc(m, '\n');
501         print_batch_pool_stats(m, dev_priv);
502         list_for_each_entry_reverse(file, &dev->filelist, lhead) {
503                 struct file_stats stats;
504                 struct task_struct *task;
505
506                 memset(&stats, 0, sizeof(stats));
507                 stats.file_priv = file->driver_priv;
508                 spin_lock(&file->table_lock);
509                 idr_for_each(&file->object_idr, per_file_stats, &stats);
510                 spin_unlock(&file->table_lock);
511                 /*
512                  * Although we have a valid reference on file->pid, that does
513                  * not guarantee that the task_struct who called get_pid() is
514                  * still alive (e.g. get_pid(current) => fork() => exit()).
515                  * Therefore, we need to protect this ->comm access using RCU.
516                  */
517                 rcu_read_lock();
518                 task = pid_task(file->pid, PIDTYPE_PID);
519                 print_file_stats(m, task ? task->comm : "<unknown>", stats);
520                 rcu_read_unlock();
521         }
522
523         mutex_unlock(&dev->struct_mutex);
524
525         return 0;
526 }
527
528 static int i915_gem_gtt_info(struct seq_file *m, void *data)
529 {
530         struct drm_info_node *node = m->private;
531         struct drm_device *dev = node->minor->dev;
532         uintptr_t list = (uintptr_t) node->info_ent->data;
533         struct drm_i915_private *dev_priv = dev->dev_private;
534         struct drm_i915_gem_object *obj;
535         u64 total_obj_size, total_gtt_size;
536         int count, ret;
537
538         ret = mutex_lock_interruptible(&dev->struct_mutex);
539         if (ret)
540                 return ret;
541
542         total_obj_size = total_gtt_size = count = 0;
543         list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list) {
544                 if (list == PINNED_LIST && !i915_gem_obj_is_pinned(obj))
545                         continue;
546
547                 seq_puts(m, "   ");
548                 describe_obj(m, obj);
549                 seq_putc(m, '\n');
550                 total_obj_size += obj->base.size;
551                 total_gtt_size += i915_gem_obj_total_ggtt_size(obj);
552                 count++;
553         }
554
555         mutex_unlock(&dev->struct_mutex);
556
557         seq_printf(m, "Total %d objects, %llu bytes, %llu GTT size\n",
558                    count, total_obj_size, total_gtt_size);
559
560         return 0;
561 }
562
563 static int i915_gem_pageflip_info(struct seq_file *m, void *data)
564 {
565         struct drm_info_node *node = m->private;
566         struct drm_device *dev = node->minor->dev;
567         struct drm_i915_private *dev_priv = dev->dev_private;
568         struct intel_crtc *crtc;
569         int ret;
570
571         ret = mutex_lock_interruptible(&dev->struct_mutex);
572         if (ret)
573                 return ret;
574
575         for_each_intel_crtc(dev, crtc) {
576                 const char pipe = pipe_name(crtc->pipe);
577                 const char plane = plane_name(crtc->plane);
578                 struct intel_unpin_work *work;
579
580                 spin_lock_irq(&dev->event_lock);
581                 work = crtc->unpin_work;
582                 if (work == NULL) {
583                         seq_printf(m, "No flip due on pipe %c (plane %c)\n",
584                                    pipe, plane);
585                 } else {
586                         u32 addr;
587
588                         if (atomic_read(&work->pending) < INTEL_FLIP_COMPLETE) {
589                                 seq_printf(m, "Flip queued on pipe %c (plane %c)\n",
590                                            pipe, plane);
591                         } else {
592                                 seq_printf(m, "Flip pending (waiting for vsync) on pipe %c (plane %c)\n",
593                                            pipe, plane);
594                         }
595                         if (work->flip_queued_req) {
596                                 struct intel_engine_cs *ring =
597                                         i915_gem_request_get_ring(work->flip_queued_req);
598
599                                 seq_printf(m, "Flip queued on %s at seqno %x, next seqno %x [current breadcrumb %x], completed? %d\n",
600                                            ring->name,
601                                            i915_gem_request_get_seqno(work->flip_queued_req),
602                                            dev_priv->next_seqno,
603                                            ring->get_seqno(ring, true),
604                                            i915_gem_request_completed(work->flip_queued_req, true));
605                         } else
606                                 seq_printf(m, "Flip not associated with any ring\n");
607                         seq_printf(m, "Flip queued on frame %d, (was ready on frame %d), now %d\n",
608                                    work->flip_queued_vblank,
609                                    work->flip_ready_vblank,
610                                    drm_crtc_vblank_count(&crtc->base));
611                         if (work->enable_stall_check)
612                                 seq_puts(m, "Stall check enabled, ");
613                         else
614                                 seq_puts(m, "Stall check waiting for page flip ioctl, ");
615                         seq_printf(m, "%d prepares\n", atomic_read(&work->pending));
616
617                         if (INTEL_INFO(dev)->gen >= 4)
618                                 addr = I915_HI_DISPBASE(I915_READ(DSPSURF(crtc->plane)));
619                         else
620                                 addr = I915_READ(DSPADDR(crtc->plane));
621                         seq_printf(m, "Current scanout address 0x%08x\n", addr);
622
623                         if (work->pending_flip_obj) {
624                                 seq_printf(m, "New framebuffer address 0x%08lx\n", (long)work->gtt_offset);
625                                 seq_printf(m, "MMIO update completed? %d\n",  addr == work->gtt_offset);
626                         }
627                 }
628                 spin_unlock_irq(&dev->event_lock);
629         }
630
631         mutex_unlock(&dev->struct_mutex);
632
633         return 0;
634 }
635
636 static int i915_gem_batch_pool_info(struct seq_file *m, void *data)
637 {
638         struct drm_info_node *node = m->private;
639         struct drm_device *dev = node->minor->dev;
640         struct drm_i915_private *dev_priv = dev->dev_private;
641         struct drm_i915_gem_object *obj;
642         struct intel_engine_cs *ring;
643         int total = 0;
644         int ret, i, j;
645
646         ret = mutex_lock_interruptible(&dev->struct_mutex);
647         if (ret)
648                 return ret;
649
650         for_each_ring(ring, dev_priv, i) {
651                 for (j = 0; j < ARRAY_SIZE(ring->batch_pool.cache_list); j++) {
652                         int count;
653
654                         count = 0;
655                         list_for_each_entry(obj,
656                                             &ring->batch_pool.cache_list[j],
657                                             batch_pool_link)
658                                 count++;
659                         seq_printf(m, "%s cache[%d]: %d objects\n",
660                                    ring->name, j, count);
661
662                         list_for_each_entry(obj,
663                                             &ring->batch_pool.cache_list[j],
664                                             batch_pool_link) {
665                                 seq_puts(m, "   ");
666                                 describe_obj(m, obj);
667                                 seq_putc(m, '\n');
668                         }
669
670                         total += count;
671                 }
672         }
673
674         seq_printf(m, "total: %d\n", total);
675
676         mutex_unlock(&dev->struct_mutex);
677
678         return 0;
679 }
680
681 static int i915_gem_request_info(struct seq_file *m, void *data)
682 {
683         struct drm_info_node *node = m->private;
684         struct drm_device *dev = node->minor->dev;
685         struct drm_i915_private *dev_priv = dev->dev_private;
686         struct intel_engine_cs *ring;
687         struct drm_i915_gem_request *req;
688         int ret, any, i;
689
690         ret = mutex_lock_interruptible(&dev->struct_mutex);
691         if (ret)
692                 return ret;
693
694         any = 0;
695         for_each_ring(ring, dev_priv, i) {
696                 int count;
697
698                 count = 0;
699                 list_for_each_entry(req, &ring->request_list, list)
700                         count++;
701                 if (count == 0)
702                         continue;
703
704                 seq_printf(m, "%s requests: %d\n", ring->name, count);
705                 list_for_each_entry(req, &ring->request_list, list) {
706                         struct task_struct *task;
707
708                         rcu_read_lock();
709                         task = NULL;
710                         if (req->pid)
711                                 task = pid_task(req->pid, PIDTYPE_PID);
712                         seq_printf(m, "    %x @ %d: %s [%d]\n",
713                                    req->seqno,
714                                    (int) (jiffies - req->emitted_jiffies),
715                                    task ? task->comm : "<unknown>",
716                                    task ? task->pid : -1);
717                         rcu_read_unlock();
718                 }
719
720                 any++;
721         }
722         mutex_unlock(&dev->struct_mutex);
723
724         if (any == 0)
725                 seq_puts(m, "No requests\n");
726
727         return 0;
728 }
729
730 static void i915_ring_seqno_info(struct seq_file *m,
731                                  struct intel_engine_cs *ring)
732 {
733         if (ring->get_seqno) {
734                 seq_printf(m, "Current sequence (%s): %x\n",
735                            ring->name, ring->get_seqno(ring, false));
736         }
737 }
738
739 static int i915_gem_seqno_info(struct seq_file *m, void *data)
740 {
741         struct drm_info_node *node = m->private;
742         struct drm_device *dev = node->minor->dev;
743         struct drm_i915_private *dev_priv = dev->dev_private;
744         struct intel_engine_cs *ring;
745         int ret, i;
746
747         ret = mutex_lock_interruptible(&dev->struct_mutex);
748         if (ret)
749                 return ret;
750         intel_runtime_pm_get(dev_priv);
751
752         for_each_ring(ring, dev_priv, i)
753                 i915_ring_seqno_info(m, ring);
754
755         intel_runtime_pm_put(dev_priv);
756         mutex_unlock(&dev->struct_mutex);
757
758         return 0;
759 }
760
761
762 static int i915_interrupt_info(struct seq_file *m, void *data)
763 {
764         struct drm_info_node *node = m->private;
765         struct drm_device *dev = node->minor->dev;
766         struct drm_i915_private *dev_priv = dev->dev_private;
767         struct intel_engine_cs *ring;
768         int ret, i, pipe;
769
770         ret = mutex_lock_interruptible(&dev->struct_mutex);
771         if (ret)
772                 return ret;
773         intel_runtime_pm_get(dev_priv);
774
775         if (IS_CHERRYVIEW(dev)) {
776                 seq_printf(m, "Master Interrupt Control:\t%08x\n",
777                            I915_READ(GEN8_MASTER_IRQ));
778
779                 seq_printf(m, "Display IER:\t%08x\n",
780                            I915_READ(VLV_IER));
781                 seq_printf(m, "Display IIR:\t%08x\n",
782                            I915_READ(VLV_IIR));
783                 seq_printf(m, "Display IIR_RW:\t%08x\n",
784                            I915_READ(VLV_IIR_RW));
785                 seq_printf(m, "Display IMR:\t%08x\n",
786                            I915_READ(VLV_IMR));
787                 for_each_pipe(dev_priv, pipe)
788                         seq_printf(m, "Pipe %c stat:\t%08x\n",
789                                    pipe_name(pipe),
790                                    I915_READ(PIPESTAT(pipe)));
791
792                 seq_printf(m, "Port hotplug:\t%08x\n",
793                            I915_READ(PORT_HOTPLUG_EN));
794                 seq_printf(m, "DPFLIPSTAT:\t%08x\n",
795                            I915_READ(VLV_DPFLIPSTAT));
796                 seq_printf(m, "DPINVGTT:\t%08x\n",
797                            I915_READ(DPINVGTT));
798
799                 for (i = 0; i < 4; i++) {
800                         seq_printf(m, "GT Interrupt IMR %d:\t%08x\n",
801                                    i, I915_READ(GEN8_GT_IMR(i)));
802                         seq_printf(m, "GT Interrupt IIR %d:\t%08x\n",
803                                    i, I915_READ(GEN8_GT_IIR(i)));
804                         seq_printf(m, "GT Interrupt IER %d:\t%08x\n",
805                                    i, I915_READ(GEN8_GT_IER(i)));
806                 }
807
808                 seq_printf(m, "PCU interrupt mask:\t%08x\n",
809                            I915_READ(GEN8_PCU_IMR));
810                 seq_printf(m, "PCU interrupt identity:\t%08x\n",
811                            I915_READ(GEN8_PCU_IIR));
812                 seq_printf(m, "PCU interrupt enable:\t%08x\n",
813                            I915_READ(GEN8_PCU_IER));
814         } else if (INTEL_INFO(dev)->gen >= 8) {
815                 seq_printf(m, "Master Interrupt Control:\t%08x\n",
816                            I915_READ(GEN8_MASTER_IRQ));
817
818                 for (i = 0; i < 4; i++) {
819                         seq_printf(m, "GT Interrupt IMR %d:\t%08x\n",
820                                    i, I915_READ(GEN8_GT_IMR(i)));
821                         seq_printf(m, "GT Interrupt IIR %d:\t%08x\n",
822                                    i, I915_READ(GEN8_GT_IIR(i)));
823                         seq_printf(m, "GT Interrupt IER %d:\t%08x\n",
824                                    i, I915_READ(GEN8_GT_IER(i)));
825                 }
826
827                 for_each_pipe(dev_priv, pipe) {
828                         if (!intel_display_power_is_enabled(dev_priv,
829                                                 POWER_DOMAIN_PIPE(pipe))) {
830                                 seq_printf(m, "Pipe %c power disabled\n",
831                                            pipe_name(pipe));
832                                 continue;
833                         }
834                         seq_printf(m, "Pipe %c IMR:\t%08x\n",
835                                    pipe_name(pipe),
836                                    I915_READ(GEN8_DE_PIPE_IMR(pipe)));
837                         seq_printf(m, "Pipe %c IIR:\t%08x\n",
838                                    pipe_name(pipe),
839                                    I915_READ(GEN8_DE_PIPE_IIR(pipe)));
840                         seq_printf(m, "Pipe %c IER:\t%08x\n",
841                                    pipe_name(pipe),
842                                    I915_READ(GEN8_DE_PIPE_IER(pipe)));
843                 }
844
845                 seq_printf(m, "Display Engine port interrupt mask:\t%08x\n",
846                            I915_READ(GEN8_DE_PORT_IMR));
847                 seq_printf(m, "Display Engine port interrupt identity:\t%08x\n",
848                            I915_READ(GEN8_DE_PORT_IIR));
849                 seq_printf(m, "Display Engine port interrupt enable:\t%08x\n",
850                            I915_READ(GEN8_DE_PORT_IER));
851
852                 seq_printf(m, "Display Engine misc interrupt mask:\t%08x\n",
853                            I915_READ(GEN8_DE_MISC_IMR));
854                 seq_printf(m, "Display Engine misc interrupt identity:\t%08x\n",
855                            I915_READ(GEN8_DE_MISC_IIR));
856                 seq_printf(m, "Display Engine misc interrupt enable:\t%08x\n",
857                            I915_READ(GEN8_DE_MISC_IER));
858
859                 seq_printf(m, "PCU interrupt mask:\t%08x\n",
860                            I915_READ(GEN8_PCU_IMR));
861                 seq_printf(m, "PCU interrupt identity:\t%08x\n",
862                            I915_READ(GEN8_PCU_IIR));
863                 seq_printf(m, "PCU interrupt enable:\t%08x\n",
864                            I915_READ(GEN8_PCU_IER));
865         } else if (IS_VALLEYVIEW(dev)) {
866                 seq_printf(m, "Display IER:\t%08x\n",
867                            I915_READ(VLV_IER));
868                 seq_printf(m, "Display IIR:\t%08x\n",
869                            I915_READ(VLV_IIR));
870                 seq_printf(m, "Display IIR_RW:\t%08x\n",
871                            I915_READ(VLV_IIR_RW));
872                 seq_printf(m, "Display IMR:\t%08x\n",
873                            I915_READ(VLV_IMR));
874                 for_each_pipe(dev_priv, pipe)
875                         seq_printf(m, "Pipe %c stat:\t%08x\n",
876                                    pipe_name(pipe),
877                                    I915_READ(PIPESTAT(pipe)));
878
879                 seq_printf(m, "Master IER:\t%08x\n",
880                            I915_READ(VLV_MASTER_IER));
881
882                 seq_printf(m, "Render IER:\t%08x\n",
883                            I915_READ(GTIER));
884                 seq_printf(m, "Render IIR:\t%08x\n",
885                            I915_READ(GTIIR));
886                 seq_printf(m, "Render IMR:\t%08x\n",
887                            I915_READ(GTIMR));
888
889                 seq_printf(m, "PM IER:\t\t%08x\n",
890                            I915_READ(GEN6_PMIER));
891                 seq_printf(m, "PM IIR:\t\t%08x\n",
892                            I915_READ(GEN6_PMIIR));
893                 seq_printf(m, "PM IMR:\t\t%08x\n",
894                            I915_READ(GEN6_PMIMR));
895
896                 seq_printf(m, "Port hotplug:\t%08x\n",
897                            I915_READ(PORT_HOTPLUG_EN));
898                 seq_printf(m, "DPFLIPSTAT:\t%08x\n",
899                            I915_READ(VLV_DPFLIPSTAT));
900                 seq_printf(m, "DPINVGTT:\t%08x\n",
901                            I915_READ(DPINVGTT));
902
903         } else if (!HAS_PCH_SPLIT(dev)) {
904                 seq_printf(m, "Interrupt enable:    %08x\n",
905                            I915_READ(IER));
906                 seq_printf(m, "Interrupt identity:  %08x\n",
907                            I915_READ(IIR));
908                 seq_printf(m, "Interrupt mask:      %08x\n",
909                            I915_READ(IMR));
910                 for_each_pipe(dev_priv, pipe)
911                         seq_printf(m, "Pipe %c stat:         %08x\n",
912                                    pipe_name(pipe),
913                                    I915_READ(PIPESTAT(pipe)));
914         } else {
915                 seq_printf(m, "North Display Interrupt enable:          %08x\n",
916                            I915_READ(DEIER));
917                 seq_printf(m, "North Display Interrupt identity:        %08x\n",
918                            I915_READ(DEIIR));
919                 seq_printf(m, "North Display Interrupt mask:            %08x\n",
920                            I915_READ(DEIMR));
921                 seq_printf(m, "South Display Interrupt enable:          %08x\n",
922                            I915_READ(SDEIER));
923                 seq_printf(m, "South Display Interrupt identity:        %08x\n",
924                            I915_READ(SDEIIR));
925                 seq_printf(m, "South Display Interrupt mask:            %08x\n",
926                            I915_READ(SDEIMR));
927                 seq_printf(m, "Graphics Interrupt enable:               %08x\n",
928                            I915_READ(GTIER));
929                 seq_printf(m, "Graphics Interrupt identity:             %08x\n",
930                            I915_READ(GTIIR));
931                 seq_printf(m, "Graphics Interrupt mask:         %08x\n",
932                            I915_READ(GTIMR));
933         }
934         for_each_ring(ring, dev_priv, i) {
935                 if (INTEL_INFO(dev)->gen >= 6) {
936                         seq_printf(m,
937                                    "Graphics Interrupt mask (%s):       %08x\n",
938                                    ring->name, I915_READ_IMR(ring));
939                 }
940                 i915_ring_seqno_info(m, ring);
941         }
942         intel_runtime_pm_put(dev_priv);
943         mutex_unlock(&dev->struct_mutex);
944
945         return 0;
946 }
947
948 static int i915_gem_fence_regs_info(struct seq_file *m, void *data)
949 {
950         struct drm_info_node *node = m->private;
951         struct drm_device *dev = node->minor->dev;
952         struct drm_i915_private *dev_priv = dev->dev_private;
953         int i, ret;
954
955         ret = mutex_lock_interruptible(&dev->struct_mutex);
956         if (ret)
957                 return ret;
958
959         seq_printf(m, "Total fences = %d\n", dev_priv->num_fence_regs);
960         for (i = 0; i < dev_priv->num_fence_regs; i++) {
961                 struct drm_i915_gem_object *obj = dev_priv->fence_regs[i].obj;
962
963                 seq_printf(m, "Fence %d, pin count = %d, object = ",
964                            i, dev_priv->fence_regs[i].pin_count);
965                 if (obj == NULL)
966                         seq_puts(m, "unused");
967                 else
968                         describe_obj(m, obj);
969                 seq_putc(m, '\n');
970         }
971
972         mutex_unlock(&dev->struct_mutex);
973         return 0;
974 }
975
976 static int i915_hws_info(struct seq_file *m, void *data)
977 {
978         struct drm_info_node *node = m->private;
979         struct drm_device *dev = node->minor->dev;
980         struct drm_i915_private *dev_priv = dev->dev_private;
981         struct intel_engine_cs *ring;
982         const u32 *hws;
983         int i;
984
985         ring = &dev_priv->ring[(uintptr_t)node->info_ent->data];
986         hws = ring->status_page.page_addr;
987         if (hws == NULL)
988                 return 0;
989
990         for (i = 0; i < 4096 / sizeof(u32) / 4; i += 4) {
991                 seq_printf(m, "0x%08x: 0x%08x 0x%08x 0x%08x 0x%08x\n",
992                            i * 4,
993                            hws[i], hws[i + 1], hws[i + 2], hws[i + 3]);
994         }
995         return 0;
996 }
997
998 static ssize_t
999 i915_error_state_write(struct file *filp,
1000                        const char __user *ubuf,
1001                        size_t cnt,
1002                        loff_t *ppos)
1003 {
1004         struct i915_error_state_file_priv *error_priv = filp->private_data;
1005         struct drm_device *dev = error_priv->dev;
1006         int ret;
1007
1008         DRM_DEBUG_DRIVER("Resetting error state\n");
1009
1010         ret = mutex_lock_interruptible(&dev->struct_mutex);
1011         if (ret)
1012                 return ret;
1013
1014         i915_destroy_error_state(dev);
1015         mutex_unlock(&dev->struct_mutex);
1016
1017         return cnt;
1018 }
1019
1020 static int i915_error_state_open(struct inode *inode, struct file *file)
1021 {
1022         struct drm_device *dev = inode->i_private;
1023         struct i915_error_state_file_priv *error_priv;
1024
1025         error_priv = kzalloc(sizeof(*error_priv), GFP_KERNEL);
1026         if (!error_priv)
1027                 return -ENOMEM;
1028
1029         error_priv->dev = dev;
1030
1031         i915_error_state_get(dev, error_priv);
1032
1033         file->private_data = error_priv;
1034
1035         return 0;
1036 }
1037
1038 static int i915_error_state_release(struct inode *inode, struct file *file)
1039 {
1040         struct i915_error_state_file_priv *error_priv = file->private_data;
1041
1042         i915_error_state_put(error_priv);
1043         kfree(error_priv);
1044
1045         return 0;
1046 }
1047
1048 static ssize_t i915_error_state_read(struct file *file, char __user *userbuf,
1049                                      size_t count, loff_t *pos)
1050 {
1051         struct i915_error_state_file_priv *error_priv = file->private_data;
1052         struct drm_i915_error_state_buf error_str;
1053         loff_t tmp_pos = 0;
1054         ssize_t ret_count = 0;
1055         int ret;
1056
1057         ret = i915_error_state_buf_init(&error_str, to_i915(error_priv->dev), count, *pos);
1058         if (ret)
1059                 return ret;
1060
1061         ret = i915_error_state_to_str(&error_str, error_priv);
1062         if (ret)
1063                 goto out;
1064
1065         ret_count = simple_read_from_buffer(userbuf, count, &tmp_pos,
1066                                             error_str.buf,
1067                                             error_str.bytes);
1068
1069         if (ret_count < 0)
1070                 ret = ret_count;
1071         else
1072                 *pos = error_str.start + ret_count;
1073 out:
1074         i915_error_state_buf_release(&error_str);
1075         return ret ?: ret_count;
1076 }
1077
1078 static const struct file_operations i915_error_state_fops = {
1079         .owner = THIS_MODULE,
1080         .open = i915_error_state_open,
1081         .read = i915_error_state_read,
1082         .write = i915_error_state_write,
1083         .llseek = default_llseek,
1084         .release = i915_error_state_release,
1085 };
1086
1087 static int
1088 i915_next_seqno_get(void *data, u64 *val)
1089 {
1090         struct drm_device *dev = data;
1091         struct drm_i915_private *dev_priv = dev->dev_private;
1092         int ret;
1093
1094         ret = mutex_lock_interruptible(&dev->struct_mutex);
1095         if (ret)
1096                 return ret;
1097
1098         *val = dev_priv->next_seqno;
1099         mutex_unlock(&dev->struct_mutex);
1100
1101         return 0;
1102 }
1103
1104 static int
1105 i915_next_seqno_set(void *data, u64 val)
1106 {
1107         struct drm_device *dev = data;
1108         int ret;
1109
1110         ret = mutex_lock_interruptible(&dev->struct_mutex);
1111         if (ret)
1112                 return ret;
1113
1114         ret = i915_gem_set_seqno(dev, val);
1115         mutex_unlock(&dev->struct_mutex);
1116
1117         return ret;
1118 }
1119
1120 DEFINE_SIMPLE_ATTRIBUTE(i915_next_seqno_fops,
1121                         i915_next_seqno_get, i915_next_seqno_set,
1122                         "0x%llx\n");
1123
1124 static int i915_frequency_info(struct seq_file *m, void *unused)
1125 {
1126         struct drm_info_node *node = m->private;
1127         struct drm_device *dev = node->minor->dev;
1128         struct drm_i915_private *dev_priv = dev->dev_private;
1129         int ret = 0;
1130
1131         intel_runtime_pm_get(dev_priv);
1132
1133         flush_delayed_work(&dev_priv->rps.delayed_resume_work);
1134
1135         if (IS_GEN5(dev)) {
1136                 u16 rgvswctl = I915_READ16(MEMSWCTL);
1137                 u16 rgvstat = I915_READ16(MEMSTAT_ILK);
1138
1139                 seq_printf(m, "Requested P-state: %d\n", (rgvswctl >> 8) & 0xf);
1140                 seq_printf(m, "Requested VID: %d\n", rgvswctl & 0x3f);
1141                 seq_printf(m, "Current VID: %d\n", (rgvstat & MEMSTAT_VID_MASK) >>
1142                            MEMSTAT_VID_SHIFT);
1143                 seq_printf(m, "Current P-state: %d\n",
1144                            (rgvstat & MEMSTAT_PSTATE_MASK) >> MEMSTAT_PSTATE_SHIFT);
1145         } else if (IS_GEN6(dev) || (IS_GEN7(dev) && !IS_VALLEYVIEW(dev)) ||
1146                    IS_BROADWELL(dev) || IS_GEN9(dev)) {
1147                 u32 rp_state_limits;
1148                 u32 gt_perf_status;
1149                 u32 rp_state_cap;
1150                 u32 rpmodectl, rpinclimit, rpdeclimit;
1151                 u32 rpstat, cagf, reqf;
1152                 u32 rpupei, rpcurup, rpprevup;
1153                 u32 rpdownei, rpcurdown, rpprevdown;
1154                 u32 pm_ier, pm_imr, pm_isr, pm_iir, pm_mask;
1155                 int max_freq;
1156
1157                 rp_state_limits = I915_READ(GEN6_RP_STATE_LIMITS);
1158                 if (IS_BROXTON(dev)) {
1159                         rp_state_cap = I915_READ(BXT_RP_STATE_CAP);
1160                         gt_perf_status = I915_READ(BXT_GT_PERF_STATUS);
1161                 } else {
1162                         rp_state_cap = I915_READ(GEN6_RP_STATE_CAP);
1163                         gt_perf_status = I915_READ(GEN6_GT_PERF_STATUS);
1164                 }
1165
1166                 /* RPSTAT1 is in the GT power well */
1167                 ret = mutex_lock_interruptible(&dev->struct_mutex);
1168                 if (ret)
1169                         goto out;
1170
1171                 intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
1172
1173                 reqf = I915_READ(GEN6_RPNSWREQ);
1174                 if (IS_GEN9(dev))
1175                         reqf >>= 23;
1176                 else {
1177                         reqf &= ~GEN6_TURBO_DISABLE;
1178                         if (IS_HASWELL(dev) || IS_BROADWELL(dev))
1179                                 reqf >>= 24;
1180                         else
1181                                 reqf >>= 25;
1182                 }
1183                 reqf = intel_gpu_freq(dev_priv, reqf);
1184
1185                 rpmodectl = I915_READ(GEN6_RP_CONTROL);
1186                 rpinclimit = I915_READ(GEN6_RP_UP_THRESHOLD);
1187                 rpdeclimit = I915_READ(GEN6_RP_DOWN_THRESHOLD);
1188
1189                 rpstat = I915_READ(GEN6_RPSTAT1);
1190                 rpupei = I915_READ(GEN6_RP_CUR_UP_EI);
1191                 rpcurup = I915_READ(GEN6_RP_CUR_UP);
1192                 rpprevup = I915_READ(GEN6_RP_PREV_UP);
1193                 rpdownei = I915_READ(GEN6_RP_CUR_DOWN_EI);
1194                 rpcurdown = I915_READ(GEN6_RP_CUR_DOWN);
1195                 rpprevdown = I915_READ(GEN6_RP_PREV_DOWN);
1196                 if (IS_GEN9(dev))
1197                         cagf = (rpstat & GEN9_CAGF_MASK) >> GEN9_CAGF_SHIFT;
1198                 else if (IS_HASWELL(dev) || IS_BROADWELL(dev))
1199                         cagf = (rpstat & HSW_CAGF_MASK) >> HSW_CAGF_SHIFT;
1200                 else
1201                         cagf = (rpstat & GEN6_CAGF_MASK) >> GEN6_CAGF_SHIFT;
1202                 cagf = intel_gpu_freq(dev_priv, cagf);
1203
1204                 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
1205                 mutex_unlock(&dev->struct_mutex);
1206
1207                 if (IS_GEN6(dev) || IS_GEN7(dev)) {
1208                         pm_ier = I915_READ(GEN6_PMIER);
1209                         pm_imr = I915_READ(GEN6_PMIMR);
1210                         pm_isr = I915_READ(GEN6_PMISR);
1211                         pm_iir = I915_READ(GEN6_PMIIR);
1212                         pm_mask = I915_READ(GEN6_PMINTRMSK);
1213                 } else {
1214                         pm_ier = I915_READ(GEN8_GT_IER(2));
1215                         pm_imr = I915_READ(GEN8_GT_IMR(2));
1216                         pm_isr = I915_READ(GEN8_GT_ISR(2));
1217                         pm_iir = I915_READ(GEN8_GT_IIR(2));
1218                         pm_mask = I915_READ(GEN6_PMINTRMSK);
1219                 }
1220                 seq_printf(m, "PM IER=0x%08x IMR=0x%08x ISR=0x%08x IIR=0x%08x, MASK=0x%08x\n",
1221                            pm_ier, pm_imr, pm_isr, pm_iir, pm_mask);
1222                 seq_printf(m, "GT_PERF_STATUS: 0x%08x\n", gt_perf_status);
1223                 seq_printf(m, "Render p-state ratio: %d\n",
1224                            (gt_perf_status & (IS_GEN9(dev) ? 0x1ff00 : 0xff00)) >> 8);
1225                 seq_printf(m, "Render p-state VID: %d\n",
1226                            gt_perf_status & 0xff);
1227                 seq_printf(m, "Render p-state limit: %d\n",
1228                            rp_state_limits & 0xff);
1229                 seq_printf(m, "RPSTAT1: 0x%08x\n", rpstat);
1230                 seq_printf(m, "RPMODECTL: 0x%08x\n", rpmodectl);
1231                 seq_printf(m, "RPINCLIMIT: 0x%08x\n", rpinclimit);
1232                 seq_printf(m, "RPDECLIMIT: 0x%08x\n", rpdeclimit);
1233                 seq_printf(m, "RPNSWREQ: %dMHz\n", reqf);
1234                 seq_printf(m, "CAGF: %dMHz\n", cagf);
1235                 seq_printf(m, "RP CUR UP EI: %dus\n", rpupei &
1236                            GEN6_CURICONT_MASK);
1237                 seq_printf(m, "RP CUR UP: %dus\n", rpcurup &
1238                            GEN6_CURBSYTAVG_MASK);
1239                 seq_printf(m, "RP PREV UP: %dus\n", rpprevup &
1240                            GEN6_CURBSYTAVG_MASK);
1241                 seq_printf(m, "Up threshold: %d%%\n",
1242                            dev_priv->rps.up_threshold);
1243
1244                 seq_printf(m, "RP CUR DOWN EI: %dus\n", rpdownei &
1245                            GEN6_CURIAVG_MASK);
1246                 seq_printf(m, "RP CUR DOWN: %dus\n", rpcurdown &
1247                            GEN6_CURBSYTAVG_MASK);
1248                 seq_printf(m, "RP PREV DOWN: %dus\n", rpprevdown &
1249                            GEN6_CURBSYTAVG_MASK);
1250                 seq_printf(m, "Down threshold: %d%%\n",
1251                            dev_priv->rps.down_threshold);
1252
1253                 max_freq = (IS_BROXTON(dev) ? rp_state_cap >> 0 :
1254                             rp_state_cap >> 16) & 0xff;
1255                 max_freq *= (IS_SKYLAKE(dev) ? GEN9_FREQ_SCALER : 1);
1256                 seq_printf(m, "Lowest (RPN) frequency: %dMHz\n",
1257                            intel_gpu_freq(dev_priv, max_freq));
1258
1259                 max_freq = (rp_state_cap & 0xff00) >> 8;
1260                 max_freq *= (IS_SKYLAKE(dev) ? GEN9_FREQ_SCALER : 1);
1261                 seq_printf(m, "Nominal (RP1) frequency: %dMHz\n",
1262                            intel_gpu_freq(dev_priv, max_freq));
1263
1264                 max_freq = (IS_BROXTON(dev) ? rp_state_cap >> 16 :
1265                             rp_state_cap >> 0) & 0xff;
1266                 max_freq *= (IS_SKYLAKE(dev) ? GEN9_FREQ_SCALER : 1);
1267                 seq_printf(m, "Max non-overclocked (RP0) frequency: %dMHz\n",
1268                            intel_gpu_freq(dev_priv, max_freq));
1269                 seq_printf(m, "Max overclocked frequency: %dMHz\n",
1270                            intel_gpu_freq(dev_priv, dev_priv->rps.max_freq));
1271
1272                 seq_printf(m, "Current freq: %d MHz\n",
1273                            intel_gpu_freq(dev_priv, dev_priv->rps.cur_freq));
1274                 seq_printf(m, "Actual freq: %d MHz\n", cagf);
1275                 seq_printf(m, "Idle freq: %d MHz\n",
1276                            intel_gpu_freq(dev_priv, dev_priv->rps.idle_freq));
1277                 seq_printf(m, "Min freq: %d MHz\n",
1278                            intel_gpu_freq(dev_priv, dev_priv->rps.min_freq));
1279                 seq_printf(m, "Max freq: %d MHz\n",
1280                            intel_gpu_freq(dev_priv, dev_priv->rps.max_freq));
1281                 seq_printf(m,
1282                            "efficient (RPe) frequency: %d MHz\n",
1283                            intel_gpu_freq(dev_priv, dev_priv->rps.efficient_freq));
1284         } else if (IS_VALLEYVIEW(dev)) {
1285                 u32 freq_sts;
1286
1287                 mutex_lock(&dev_priv->rps.hw_lock);
1288                 freq_sts = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
1289                 seq_printf(m, "PUNIT_REG_GPU_FREQ_STS: 0x%08x\n", freq_sts);
1290                 seq_printf(m, "DDR freq: %d MHz\n", dev_priv->mem_freq);
1291
1292                 seq_printf(m, "actual GPU freq: %d MHz\n",
1293                            intel_gpu_freq(dev_priv, (freq_sts >> 8) & 0xff));
1294
1295                 seq_printf(m, "current GPU freq: %d MHz\n",
1296                            intel_gpu_freq(dev_priv, dev_priv->rps.cur_freq));
1297
1298                 seq_printf(m, "max GPU freq: %d MHz\n",
1299                            intel_gpu_freq(dev_priv, dev_priv->rps.max_freq));
1300
1301                 seq_printf(m, "min GPU freq: %d MHz\n",
1302                            intel_gpu_freq(dev_priv, dev_priv->rps.min_freq));
1303
1304                 seq_printf(m, "idle GPU freq: %d MHz\n",
1305                            intel_gpu_freq(dev_priv, dev_priv->rps.idle_freq));
1306
1307                 seq_printf(m,
1308                            "efficient (RPe) frequency: %d MHz\n",
1309                            intel_gpu_freq(dev_priv, dev_priv->rps.efficient_freq));
1310                 mutex_unlock(&dev_priv->rps.hw_lock);
1311         } else {
1312                 seq_puts(m, "no P-state info available\n");
1313         }
1314
1315         seq_printf(m, "Current CD clock frequency: %d kHz\n", dev_priv->cdclk_freq);
1316         seq_printf(m, "Max CD clock frequency: %d kHz\n", dev_priv->max_cdclk_freq);
1317         seq_printf(m, "Max pixel clock frequency: %d kHz\n", dev_priv->max_dotclk_freq);
1318
1319 out:
1320         intel_runtime_pm_put(dev_priv);
1321         return ret;
1322 }
1323
1324 static int i915_hangcheck_info(struct seq_file *m, void *unused)
1325 {
1326         struct drm_info_node *node = m->private;
1327         struct drm_device *dev = node->minor->dev;
1328         struct drm_i915_private *dev_priv = dev->dev_private;
1329         struct intel_engine_cs *ring;
1330         u64 acthd[I915_NUM_RINGS];
1331         u32 seqno[I915_NUM_RINGS];
1332         int i;
1333
1334         if (!i915.enable_hangcheck) {
1335                 seq_printf(m, "Hangcheck disabled\n");
1336                 return 0;
1337         }
1338
1339         intel_runtime_pm_get(dev_priv);
1340
1341         for_each_ring(ring, dev_priv, i) {
1342                 seqno[i] = ring->get_seqno(ring, false);
1343                 acthd[i] = intel_ring_get_active_head(ring);
1344         }
1345
1346         intel_runtime_pm_put(dev_priv);
1347
1348         if (delayed_work_pending(&dev_priv->gpu_error.hangcheck_work)) {
1349                 seq_printf(m, "Hangcheck active, fires in %dms\n",
1350                            jiffies_to_msecs(dev_priv->gpu_error.hangcheck_work.timer.expires -
1351                                             jiffies));
1352         } else
1353                 seq_printf(m, "Hangcheck inactive\n");
1354
1355         for_each_ring(ring, dev_priv, i) {
1356                 seq_printf(m, "%s:\n", ring->name);
1357                 seq_printf(m, "\tseqno = %x [current %x]\n",
1358                            ring->hangcheck.seqno, seqno[i]);
1359                 seq_printf(m, "\tACTHD = 0x%08llx [current 0x%08llx]\n",
1360                            (long long)ring->hangcheck.acthd,
1361                            (long long)acthd[i]);
1362                 seq_printf(m, "\tmax ACTHD = 0x%08llx\n",
1363                            (long long)ring->hangcheck.max_acthd);
1364                 seq_printf(m, "\tscore = %d\n", ring->hangcheck.score);
1365                 seq_printf(m, "\taction = %d\n", ring->hangcheck.action);
1366         }
1367
1368         return 0;
1369 }
1370
1371 static int ironlake_drpc_info(struct seq_file *m)
1372 {
1373         struct drm_info_node *node = m->private;
1374         struct drm_device *dev = node->minor->dev;
1375         struct drm_i915_private *dev_priv = dev->dev_private;
1376         u32 rgvmodectl, rstdbyctl;
1377         u16 crstandvid;
1378         int ret;
1379
1380         ret = mutex_lock_interruptible(&dev->struct_mutex);
1381         if (ret)
1382                 return ret;
1383         intel_runtime_pm_get(dev_priv);
1384
1385         rgvmodectl = I915_READ(MEMMODECTL);
1386         rstdbyctl = I915_READ(RSTDBYCTL);
1387         crstandvid = I915_READ16(CRSTANDVID);
1388
1389         intel_runtime_pm_put(dev_priv);
1390         mutex_unlock(&dev->struct_mutex);
1391
1392         seq_printf(m, "HD boost: %s\n", yesno(rgvmodectl & MEMMODE_BOOST_EN));
1393         seq_printf(m, "Boost freq: %d\n",
1394                    (rgvmodectl & MEMMODE_BOOST_FREQ_MASK) >>
1395                    MEMMODE_BOOST_FREQ_SHIFT);
1396         seq_printf(m, "HW control enabled: %s\n",
1397                    yesno(rgvmodectl & MEMMODE_HWIDLE_EN));
1398         seq_printf(m, "SW control enabled: %s\n",
1399                    yesno(rgvmodectl & MEMMODE_SWMODE_EN));
1400         seq_printf(m, "Gated voltage change: %s\n",
1401                    yesno(rgvmodectl & MEMMODE_RCLK_GATE));
1402         seq_printf(m, "Starting frequency: P%d\n",
1403                    (rgvmodectl & MEMMODE_FSTART_MASK) >> MEMMODE_FSTART_SHIFT);
1404         seq_printf(m, "Max P-state: P%d\n",
1405                    (rgvmodectl & MEMMODE_FMAX_MASK) >> MEMMODE_FMAX_SHIFT);
1406         seq_printf(m, "Min P-state: P%d\n", (rgvmodectl & MEMMODE_FMIN_MASK));
1407         seq_printf(m, "RS1 VID: %d\n", (crstandvid & 0x3f));
1408         seq_printf(m, "RS2 VID: %d\n", ((crstandvid >> 8) & 0x3f));
1409         seq_printf(m, "Render standby enabled: %s\n",
1410                    yesno(!(rstdbyctl & RCX_SW_EXIT)));
1411         seq_puts(m, "Current RS state: ");
1412         switch (rstdbyctl & RSX_STATUS_MASK) {
1413         case RSX_STATUS_ON:
1414                 seq_puts(m, "on\n");
1415                 break;
1416         case RSX_STATUS_RC1:
1417                 seq_puts(m, "RC1\n");
1418                 break;
1419         case RSX_STATUS_RC1E:
1420                 seq_puts(m, "RC1E\n");
1421                 break;
1422         case RSX_STATUS_RS1:
1423                 seq_puts(m, "RS1\n");
1424                 break;
1425         case RSX_STATUS_RS2:
1426                 seq_puts(m, "RS2 (RC6)\n");
1427                 break;
1428         case RSX_STATUS_RS3:
1429                 seq_puts(m, "RC3 (RC6+)\n");
1430                 break;
1431         default:
1432                 seq_puts(m, "unknown\n");
1433                 break;
1434         }
1435
1436         return 0;
1437 }
1438
1439 static int i915_forcewake_domains(struct seq_file *m, void *data)
1440 {
1441         struct drm_info_node *node = m->private;
1442         struct drm_device *dev = node->minor->dev;
1443         struct drm_i915_private *dev_priv = dev->dev_private;
1444         struct intel_uncore_forcewake_domain *fw_domain;
1445         int i;
1446
1447         spin_lock_irq(&dev_priv->uncore.lock);
1448         for_each_fw_domain(fw_domain, dev_priv, i) {
1449                 seq_printf(m, "%s.wake_count = %u\n",
1450                            intel_uncore_forcewake_domain_to_str(i),
1451                            fw_domain->wake_count);
1452         }
1453         spin_unlock_irq(&dev_priv->uncore.lock);
1454
1455         return 0;
1456 }
1457
1458 static int vlv_drpc_info(struct seq_file *m)
1459 {
1460         struct drm_info_node *node = m->private;
1461         struct drm_device *dev = node->minor->dev;
1462         struct drm_i915_private *dev_priv = dev->dev_private;
1463         u32 rpmodectl1, rcctl1, pw_status;
1464
1465         intel_runtime_pm_get(dev_priv);
1466
1467         pw_status = I915_READ(VLV_GTLC_PW_STATUS);
1468         rpmodectl1 = I915_READ(GEN6_RP_CONTROL);
1469         rcctl1 = I915_READ(GEN6_RC_CONTROL);
1470
1471         intel_runtime_pm_put(dev_priv);
1472
1473         seq_printf(m, "Video Turbo Mode: %s\n",
1474                    yesno(rpmodectl1 & GEN6_RP_MEDIA_TURBO));
1475         seq_printf(m, "Turbo enabled: %s\n",
1476                    yesno(rpmodectl1 & GEN6_RP_ENABLE));
1477         seq_printf(m, "HW control enabled: %s\n",
1478                    yesno(rpmodectl1 & GEN6_RP_ENABLE));
1479         seq_printf(m, "SW control enabled: %s\n",
1480                    yesno((rpmodectl1 & GEN6_RP_MEDIA_MODE_MASK) ==
1481                           GEN6_RP_MEDIA_SW_MODE));
1482         seq_printf(m, "RC6 Enabled: %s\n",
1483                    yesno(rcctl1 & (GEN7_RC_CTL_TO_MODE |
1484                                         GEN6_RC_CTL_EI_MODE(1))));
1485         seq_printf(m, "Render Power Well: %s\n",
1486                    (pw_status & VLV_GTLC_PW_RENDER_STATUS_MASK) ? "Up" : "Down");
1487         seq_printf(m, "Media Power Well: %s\n",
1488                    (pw_status & VLV_GTLC_PW_MEDIA_STATUS_MASK) ? "Up" : "Down");
1489
1490         seq_printf(m, "Render RC6 residency since boot: %u\n",
1491                    I915_READ(VLV_GT_RENDER_RC6));
1492         seq_printf(m, "Media RC6 residency since boot: %u\n",
1493                    I915_READ(VLV_GT_MEDIA_RC6));
1494
1495         return i915_forcewake_domains(m, NULL);
1496 }
1497
1498 static int gen6_drpc_info(struct seq_file *m)
1499 {
1500         struct drm_info_node *node = m->private;
1501         struct drm_device *dev = node->minor->dev;
1502         struct drm_i915_private *dev_priv = dev->dev_private;
1503         u32 rpmodectl1, gt_core_status, rcctl1, rc6vids = 0;
1504         unsigned forcewake_count;
1505         int count = 0, ret;
1506
1507         ret = mutex_lock_interruptible(&dev->struct_mutex);
1508         if (ret)
1509                 return ret;
1510         intel_runtime_pm_get(dev_priv);
1511
1512         spin_lock_irq(&dev_priv->uncore.lock);
1513         forcewake_count = dev_priv->uncore.fw_domain[FW_DOMAIN_ID_RENDER].wake_count;
1514         spin_unlock_irq(&dev_priv->uncore.lock);
1515
1516         if (forcewake_count) {
1517                 seq_puts(m, "RC information inaccurate because somebody "
1518                             "holds a forcewake reference \n");
1519         } else {
1520                 /* NB: we cannot use forcewake, else we read the wrong values */
1521                 while (count++ < 50 && (I915_READ_NOTRACE(FORCEWAKE_ACK) & 1))
1522                         udelay(10);
1523                 seq_printf(m, "RC information accurate: %s\n", yesno(count < 51));
1524         }
1525
1526         gt_core_status = readl(dev_priv->regs + GEN6_GT_CORE_STATUS);
1527         trace_i915_reg_rw(false, GEN6_GT_CORE_STATUS, gt_core_status, 4, true);
1528
1529         rpmodectl1 = I915_READ(GEN6_RP_CONTROL);
1530         rcctl1 = I915_READ(GEN6_RC_CONTROL);
1531         mutex_unlock(&dev->struct_mutex);
1532         mutex_lock(&dev_priv->rps.hw_lock);
1533         sandybridge_pcode_read(dev_priv, GEN6_PCODE_READ_RC6VIDS, &rc6vids);
1534         mutex_unlock(&dev_priv->rps.hw_lock);
1535
1536         intel_runtime_pm_put(dev_priv);
1537
1538         seq_printf(m, "Video Turbo Mode: %s\n",
1539                    yesno(rpmodectl1 & GEN6_RP_MEDIA_TURBO));
1540         seq_printf(m, "HW control enabled: %s\n",
1541                    yesno(rpmodectl1 & GEN6_RP_ENABLE));
1542         seq_printf(m, "SW control enabled: %s\n",
1543                    yesno((rpmodectl1 & GEN6_RP_MEDIA_MODE_MASK) ==
1544                           GEN6_RP_MEDIA_SW_MODE));
1545         seq_printf(m, "RC1e Enabled: %s\n",
1546                    yesno(rcctl1 & GEN6_RC_CTL_RC1e_ENABLE));
1547         seq_printf(m, "RC6 Enabled: %s\n",
1548                    yesno(rcctl1 & GEN6_RC_CTL_RC6_ENABLE));
1549         seq_printf(m, "Deep RC6 Enabled: %s\n",
1550                    yesno(rcctl1 & GEN6_RC_CTL_RC6p_ENABLE));
1551         seq_printf(m, "Deepest RC6 Enabled: %s\n",
1552                    yesno(rcctl1 & GEN6_RC_CTL_RC6pp_ENABLE));
1553         seq_puts(m, "Current RC state: ");
1554         switch (gt_core_status & GEN6_RCn_MASK) {
1555         case GEN6_RC0:
1556                 if (gt_core_status & GEN6_CORE_CPD_STATE_MASK)
1557                         seq_puts(m, "Core Power Down\n");
1558                 else
1559                         seq_puts(m, "on\n");
1560                 break;
1561         case GEN6_RC3:
1562                 seq_puts(m, "RC3\n");
1563                 break;
1564         case GEN6_RC6:
1565                 seq_puts(m, "RC6\n");
1566                 break;
1567         case GEN6_RC7:
1568                 seq_puts(m, "RC7\n");
1569                 break;
1570         default:
1571                 seq_puts(m, "Unknown\n");
1572                 break;
1573         }
1574
1575         seq_printf(m, "Core Power Down: %s\n",
1576                    yesno(gt_core_status & GEN6_CORE_CPD_STATE_MASK));
1577
1578         /* Not exactly sure what this is */
1579         seq_printf(m, "RC6 \"Locked to RPn\" residency since boot: %u\n",
1580                    I915_READ(GEN6_GT_GFX_RC6_LOCKED));
1581         seq_printf(m, "RC6 residency since boot: %u\n",
1582                    I915_READ(GEN6_GT_GFX_RC6));
1583         seq_printf(m, "RC6+ residency since boot: %u\n",
1584                    I915_READ(GEN6_GT_GFX_RC6p));
1585         seq_printf(m, "RC6++ residency since boot: %u\n",
1586                    I915_READ(GEN6_GT_GFX_RC6pp));
1587
1588         seq_printf(m, "RC6   voltage: %dmV\n",
1589                    GEN6_DECODE_RC6_VID(((rc6vids >> 0) & 0xff)));
1590         seq_printf(m, "RC6+  voltage: %dmV\n",
1591                    GEN6_DECODE_RC6_VID(((rc6vids >> 8) & 0xff)));
1592         seq_printf(m, "RC6++ voltage: %dmV\n",
1593                    GEN6_DECODE_RC6_VID(((rc6vids >> 16) & 0xff)));
1594         return 0;
1595 }
1596
1597 static int i915_drpc_info(struct seq_file *m, void *unused)
1598 {
1599         struct drm_info_node *node = m->private;
1600         struct drm_device *dev = node->minor->dev;
1601
1602         if (IS_VALLEYVIEW(dev))
1603                 return vlv_drpc_info(m);
1604         else if (INTEL_INFO(dev)->gen >= 6)
1605                 return gen6_drpc_info(m);
1606         else
1607                 return ironlake_drpc_info(m);
1608 }
1609
1610 static int i915_frontbuffer_tracking(struct seq_file *m, void *unused)
1611 {
1612         struct drm_info_node *node = m->private;
1613         struct drm_device *dev = node->minor->dev;
1614         struct drm_i915_private *dev_priv = dev->dev_private;
1615
1616         seq_printf(m, "FB tracking busy bits: 0x%08x\n",
1617                    dev_priv->fb_tracking.busy_bits);
1618
1619         seq_printf(m, "FB tracking flip bits: 0x%08x\n",
1620                    dev_priv->fb_tracking.flip_bits);
1621
1622         return 0;
1623 }
1624
1625 static int i915_fbc_status(struct seq_file *m, void *unused)
1626 {
1627         struct drm_info_node *node = m->private;
1628         struct drm_device *dev = node->minor->dev;
1629         struct drm_i915_private *dev_priv = dev->dev_private;
1630
1631         if (!HAS_FBC(dev)) {
1632                 seq_puts(m, "FBC unsupported on this chipset\n");
1633                 return 0;
1634         }
1635
1636         intel_runtime_pm_get(dev_priv);
1637         mutex_lock(&dev_priv->fbc.lock);
1638
1639         if (intel_fbc_enabled(dev_priv))
1640                 seq_puts(m, "FBC enabled\n");
1641         else
1642                 seq_printf(m, "FBC disabled: %s\n",
1643                           intel_no_fbc_reason_str(dev_priv->fbc.no_fbc_reason));
1644
1645         if (INTEL_INFO(dev_priv)->gen >= 7)
1646                 seq_printf(m, "Compressing: %s\n",
1647                            yesno(I915_READ(FBC_STATUS2) &
1648                                  FBC_COMPRESSION_MASK));
1649
1650         mutex_unlock(&dev_priv->fbc.lock);
1651         intel_runtime_pm_put(dev_priv);
1652
1653         return 0;
1654 }
1655
1656 static int i915_fbc_fc_get(void *data, u64 *val)
1657 {
1658         struct drm_device *dev = data;
1659         struct drm_i915_private *dev_priv = dev->dev_private;
1660
1661         if (INTEL_INFO(dev)->gen < 7 || !HAS_FBC(dev))
1662                 return -ENODEV;
1663
1664         *val = dev_priv->fbc.false_color;
1665
1666         return 0;
1667 }
1668
1669 static int i915_fbc_fc_set(void *data, u64 val)
1670 {
1671         struct drm_device *dev = data;
1672         struct drm_i915_private *dev_priv = dev->dev_private;
1673         u32 reg;
1674
1675         if (INTEL_INFO(dev)->gen < 7 || !HAS_FBC(dev))
1676                 return -ENODEV;
1677
1678         mutex_lock(&dev_priv->fbc.lock);
1679
1680         reg = I915_READ(ILK_DPFC_CONTROL);
1681         dev_priv->fbc.false_color = val;
1682
1683         I915_WRITE(ILK_DPFC_CONTROL, val ?
1684                    (reg | FBC_CTL_FALSE_COLOR) :
1685                    (reg & ~FBC_CTL_FALSE_COLOR));
1686
1687         mutex_unlock(&dev_priv->fbc.lock);
1688         return 0;
1689 }
1690
1691 DEFINE_SIMPLE_ATTRIBUTE(i915_fbc_fc_fops,
1692                         i915_fbc_fc_get, i915_fbc_fc_set,
1693                         "%llu\n");
1694
1695 static int i915_ips_status(struct seq_file *m, void *unused)
1696 {
1697         struct drm_info_node *node = m->private;
1698         struct drm_device *dev = node->minor->dev;
1699         struct drm_i915_private *dev_priv = dev->dev_private;
1700
1701         if (!HAS_IPS(dev)) {
1702                 seq_puts(m, "not supported\n");
1703                 return 0;
1704         }
1705
1706         intel_runtime_pm_get(dev_priv);
1707
1708         seq_printf(m, "Enabled by kernel parameter: %s\n",
1709                    yesno(i915.enable_ips));
1710
1711         if (INTEL_INFO(dev)->gen >= 8) {
1712                 seq_puts(m, "Currently: unknown\n");
1713         } else {
1714                 if (I915_READ(IPS_CTL) & IPS_ENABLE)
1715                         seq_puts(m, "Currently: enabled\n");
1716                 else
1717                         seq_puts(m, "Currently: disabled\n");
1718         }
1719
1720         intel_runtime_pm_put(dev_priv);
1721
1722         return 0;
1723 }
1724
1725 static int i915_sr_status(struct seq_file *m, void *unused)
1726 {
1727         struct drm_info_node *node = m->private;
1728         struct drm_device *dev = node->minor->dev;
1729         struct drm_i915_private *dev_priv = dev->dev_private;
1730         bool sr_enabled = false;
1731
1732         intel_runtime_pm_get(dev_priv);
1733
1734         if (HAS_PCH_SPLIT(dev))
1735                 sr_enabled = I915_READ(WM1_LP_ILK) & WM1_LP_SR_EN;
1736         else if (IS_CRESTLINE(dev) || IS_G4X(dev) ||
1737                  IS_I945G(dev) || IS_I945GM(dev))
1738                 sr_enabled = I915_READ(FW_BLC_SELF) & FW_BLC_SELF_EN;
1739         else if (IS_I915GM(dev))
1740                 sr_enabled = I915_READ(INSTPM) & INSTPM_SELF_EN;
1741         else if (IS_PINEVIEW(dev))
1742                 sr_enabled = I915_READ(DSPFW3) & PINEVIEW_SELF_REFRESH_EN;
1743         else if (IS_VALLEYVIEW(dev))
1744                 sr_enabled = I915_READ(FW_BLC_SELF_VLV) & FW_CSPWRDWNEN;
1745
1746         intel_runtime_pm_put(dev_priv);
1747
1748         seq_printf(m, "self-refresh: %s\n",
1749                    sr_enabled ? "enabled" : "disabled");
1750
1751         return 0;
1752 }
1753
1754 static int i915_emon_status(struct seq_file *m, void *unused)
1755 {
1756         struct drm_info_node *node = m->private;
1757         struct drm_device *dev = node->minor->dev;
1758         struct drm_i915_private *dev_priv = dev->dev_private;
1759         unsigned long temp, chipset, gfx;
1760         int ret;
1761
1762         if (!IS_GEN5(dev))
1763                 return -ENODEV;
1764
1765         ret = mutex_lock_interruptible(&dev->struct_mutex);
1766         if (ret)
1767                 return ret;
1768
1769         temp = i915_mch_val(dev_priv);
1770         chipset = i915_chipset_val(dev_priv);
1771         gfx = i915_gfx_val(dev_priv);
1772         mutex_unlock(&dev->struct_mutex);
1773
1774         seq_printf(m, "GMCH temp: %ld\n", temp);
1775         seq_printf(m, "Chipset power: %ld\n", chipset);
1776         seq_printf(m, "GFX power: %ld\n", gfx);
1777         seq_printf(m, "Total power: %ld\n", chipset + gfx);
1778
1779         return 0;
1780 }
1781
1782 static int i915_ring_freq_table(struct seq_file *m, void *unused)
1783 {
1784         struct drm_info_node *node = m->private;
1785         struct drm_device *dev = node->minor->dev;
1786         struct drm_i915_private *dev_priv = dev->dev_private;
1787         int ret = 0;
1788         int gpu_freq, ia_freq;
1789         unsigned int max_gpu_freq, min_gpu_freq;
1790
1791         if (!HAS_CORE_RING_FREQ(dev)) {
1792                 seq_puts(m, "unsupported on this chipset\n");
1793                 return 0;
1794         }
1795
1796         intel_runtime_pm_get(dev_priv);
1797
1798         flush_delayed_work(&dev_priv->rps.delayed_resume_work);
1799
1800         ret = mutex_lock_interruptible(&dev_priv->rps.hw_lock);
1801         if (ret)
1802                 goto out;
1803
1804         if (IS_SKYLAKE(dev)) {
1805                 /* Convert GT frequency to 50 HZ units */
1806                 min_gpu_freq =
1807                         dev_priv->rps.min_freq_softlimit / GEN9_FREQ_SCALER;
1808                 max_gpu_freq =
1809                         dev_priv->rps.max_freq_softlimit / GEN9_FREQ_SCALER;
1810         } else {
1811                 min_gpu_freq = dev_priv->rps.min_freq_softlimit;
1812                 max_gpu_freq = dev_priv->rps.max_freq_softlimit;
1813         }
1814
1815         seq_puts(m, "GPU freq (MHz)\tEffective CPU freq (MHz)\tEffective Ring freq (MHz)\n");
1816
1817         for (gpu_freq = min_gpu_freq; gpu_freq <= max_gpu_freq; gpu_freq++) {
1818                 ia_freq = gpu_freq;
1819                 sandybridge_pcode_read(dev_priv,
1820                                        GEN6_PCODE_READ_MIN_FREQ_TABLE,
1821                                        &ia_freq);
1822                 seq_printf(m, "%d\t\t%d\t\t\t\t%d\n",
1823                            intel_gpu_freq(dev_priv, (gpu_freq *
1824                                 (IS_SKYLAKE(dev) ? GEN9_FREQ_SCALER : 1))),
1825                            ((ia_freq >> 0) & 0xff) * 100,
1826                            ((ia_freq >> 8) & 0xff) * 100);
1827         }
1828
1829         mutex_unlock(&dev_priv->rps.hw_lock);
1830
1831 out:
1832         intel_runtime_pm_put(dev_priv);
1833         return ret;
1834 }
1835
1836 static int i915_opregion(struct seq_file *m, void *unused)
1837 {
1838         struct drm_info_node *node = m->private;
1839         struct drm_device *dev = node->minor->dev;
1840         struct drm_i915_private *dev_priv = dev->dev_private;
1841         struct intel_opregion *opregion = &dev_priv->opregion;
1842         void *data = kmalloc(OPREGION_SIZE, GFP_KERNEL);
1843         int ret;
1844
1845         if (data == NULL)
1846                 return -ENOMEM;
1847
1848         ret = mutex_lock_interruptible(&dev->struct_mutex);
1849         if (ret)
1850                 goto out;
1851
1852         if (opregion->header) {
1853                 memcpy(data, opregion->header, OPREGION_SIZE);
1854                 seq_write(m, data, OPREGION_SIZE);
1855         }
1856
1857         mutex_unlock(&dev->struct_mutex);
1858
1859 out:
1860         kfree(data);
1861         return 0;
1862 }
1863
1864 static int i915_gem_framebuffer_info(struct seq_file *m, void *data)
1865 {
1866         struct drm_info_node *node = m->private;
1867         struct drm_device *dev = node->minor->dev;
1868         struct intel_fbdev *ifbdev = NULL;
1869         struct intel_framebuffer *fb;
1870         struct drm_framebuffer *drm_fb;
1871
1872 #ifdef CONFIG_DRM_FBDEV_EMULATION
1873         struct drm_i915_private *dev_priv = dev->dev_private;
1874
1875         ifbdev = dev_priv->fbdev;
1876         fb = to_intel_framebuffer(ifbdev->helper.fb);
1877
1878         seq_printf(m, "fbcon size: %d x %d, depth %d, %d bpp, modifier 0x%llx, refcount %d, obj ",
1879                    fb->base.width,
1880                    fb->base.height,
1881                    fb->base.depth,
1882                    fb->base.bits_per_pixel,
1883                    fb->base.modifier[0],
1884                    atomic_read(&fb->base.refcount.refcount));
1885         describe_obj(m, fb->obj);
1886         seq_putc(m, '\n');
1887 #endif
1888
1889         mutex_lock(&dev->mode_config.fb_lock);
1890         drm_for_each_fb(drm_fb, dev) {
1891                 fb = to_intel_framebuffer(drm_fb);
1892                 if (ifbdev && &fb->base == ifbdev->helper.fb)
1893                         continue;
1894
1895                 seq_printf(m, "user size: %d x %d, depth %d, %d bpp, modifier 0x%llx, refcount %d, obj ",
1896                            fb->base.width,
1897                            fb->base.height,
1898                            fb->base.depth,
1899                            fb->base.bits_per_pixel,
1900                            fb->base.modifier[0],
1901                            atomic_read(&fb->base.refcount.refcount));
1902                 describe_obj(m, fb->obj);
1903                 seq_putc(m, '\n');
1904         }
1905         mutex_unlock(&dev->mode_config.fb_lock);
1906
1907         return 0;
1908 }
1909
1910 static void describe_ctx_ringbuf(struct seq_file *m,
1911                                  struct intel_ringbuffer *ringbuf)
1912 {
1913         seq_printf(m, " (ringbuffer, space: %d, head: %u, tail: %u, last head: %d)",
1914                    ringbuf->space, ringbuf->head, ringbuf->tail,
1915                    ringbuf->last_retired_head);
1916 }
1917
1918 static int i915_context_status(struct seq_file *m, void *unused)
1919 {
1920         struct drm_info_node *node = m->private;
1921         struct drm_device *dev = node->minor->dev;
1922         struct drm_i915_private *dev_priv = dev->dev_private;
1923         struct intel_engine_cs *ring;
1924         struct intel_context *ctx;
1925         int ret, i;
1926
1927         ret = mutex_lock_interruptible(&dev->struct_mutex);
1928         if (ret)
1929                 return ret;
1930
1931         list_for_each_entry(ctx, &dev_priv->context_list, link) {
1932                 if (!i915.enable_execlists &&
1933                     ctx->legacy_hw_ctx.rcs_state == NULL)
1934                         continue;
1935
1936                 seq_puts(m, "HW context ");
1937                 describe_ctx(m, ctx);
1938                 for_each_ring(ring, dev_priv, i) {
1939                         if (ring->default_context == ctx)
1940                                 seq_printf(m, "(default context %s) ",
1941                                            ring->name);
1942                 }
1943
1944                 if (i915.enable_execlists) {
1945                         seq_putc(m, '\n');
1946                         for_each_ring(ring, dev_priv, i) {
1947                                 struct drm_i915_gem_object *ctx_obj =
1948                                         ctx->engine[i].state;
1949                                 struct intel_ringbuffer *ringbuf =
1950                                         ctx->engine[i].ringbuf;
1951
1952                                 seq_printf(m, "%s: ", ring->name);
1953                                 if (ctx_obj)
1954                                         describe_obj(m, ctx_obj);
1955                                 if (ringbuf)
1956                                         describe_ctx_ringbuf(m, ringbuf);
1957                                 seq_putc(m, '\n');
1958                         }
1959                 } else {
1960                         describe_obj(m, ctx->legacy_hw_ctx.rcs_state);
1961                 }
1962
1963                 seq_putc(m, '\n');
1964         }
1965
1966         mutex_unlock(&dev->struct_mutex);
1967
1968         return 0;
1969 }
1970
1971 static void i915_dump_lrc_obj(struct seq_file *m,
1972                               struct intel_engine_cs *ring,
1973                               struct drm_i915_gem_object *ctx_obj)
1974 {
1975         struct page *page;
1976         uint32_t *reg_state;
1977         int j;
1978         unsigned long ggtt_offset = 0;
1979
1980         if (ctx_obj == NULL) {
1981                 seq_printf(m, "Context on %s with no gem object\n",
1982                            ring->name);
1983                 return;
1984         }
1985
1986         seq_printf(m, "CONTEXT: %s %u\n", ring->name,
1987                    intel_execlists_ctx_id(ctx_obj));
1988
1989         if (!i915_gem_obj_ggtt_bound(ctx_obj))
1990                 seq_puts(m, "\tNot bound in GGTT\n");
1991         else
1992                 ggtt_offset = i915_gem_obj_ggtt_offset(ctx_obj);
1993
1994         if (i915_gem_object_get_pages(ctx_obj)) {
1995                 seq_puts(m, "\tFailed to get pages for context object\n");
1996                 return;
1997         }
1998
1999         page = i915_gem_object_get_page(ctx_obj, LRC_STATE_PN);
2000         if (!WARN_ON(page == NULL)) {
2001                 reg_state = kmap_atomic(page);
2002
2003                 for (j = 0; j < 0x600 / sizeof(u32) / 4; j += 4) {
2004                         seq_printf(m, "\t[0x%08lx] 0x%08x 0x%08x 0x%08x 0x%08x\n",
2005                                    ggtt_offset + 4096 + (j * 4),
2006                                    reg_state[j], reg_state[j + 1],
2007                                    reg_state[j + 2], reg_state[j + 3]);
2008                 }
2009                 kunmap_atomic(reg_state);
2010         }
2011
2012         seq_putc(m, '\n');
2013 }
2014
2015 static int i915_dump_lrc(struct seq_file *m, void *unused)
2016 {
2017         struct drm_info_node *node = (struct drm_info_node *) m->private;
2018         struct drm_device *dev = node->minor->dev;
2019         struct drm_i915_private *dev_priv = dev->dev_private;
2020         struct intel_engine_cs *ring;
2021         struct intel_context *ctx;
2022         int ret, i;
2023
2024         if (!i915.enable_execlists) {
2025                 seq_printf(m, "Logical Ring Contexts are disabled\n");
2026                 return 0;
2027         }
2028
2029         ret = mutex_lock_interruptible(&dev->struct_mutex);
2030         if (ret)
2031                 return ret;
2032
2033         list_for_each_entry(ctx, &dev_priv->context_list, link) {
2034                 for_each_ring(ring, dev_priv, i) {
2035                         if (ring->default_context != ctx)
2036                                 i915_dump_lrc_obj(m, ring,
2037                                                   ctx->engine[i].state);
2038                 }
2039         }
2040
2041         mutex_unlock(&dev->struct_mutex);
2042
2043         return 0;
2044 }
2045
2046 static int i915_execlists(struct seq_file *m, void *data)
2047 {
2048         struct drm_info_node *node = (struct drm_info_node *)m->private;
2049         struct drm_device *dev = node->minor->dev;
2050         struct drm_i915_private *dev_priv = dev->dev_private;
2051         struct intel_engine_cs *ring;
2052         u32 status_pointer;
2053         u8 read_pointer;
2054         u8 write_pointer;
2055         u32 status;
2056         u32 ctx_id;
2057         struct list_head *cursor;
2058         int ring_id, i;
2059         int ret;
2060
2061         if (!i915.enable_execlists) {
2062                 seq_puts(m, "Logical Ring Contexts are disabled\n");
2063                 return 0;
2064         }
2065
2066         ret = mutex_lock_interruptible(&dev->struct_mutex);
2067         if (ret)
2068                 return ret;
2069
2070         intel_runtime_pm_get(dev_priv);
2071
2072         for_each_ring(ring, dev_priv, ring_id) {
2073                 struct drm_i915_gem_request *head_req = NULL;
2074                 int count = 0;
2075                 unsigned long flags;
2076
2077                 seq_printf(m, "%s\n", ring->name);
2078
2079                 status = I915_READ(RING_EXECLIST_STATUS_LO(ring));
2080                 ctx_id = I915_READ(RING_EXECLIST_STATUS_HI(ring));
2081                 seq_printf(m, "\tExeclist status: 0x%08X, context: %u\n",
2082                            status, ctx_id);
2083
2084                 status_pointer = I915_READ(RING_CONTEXT_STATUS_PTR(ring));
2085                 seq_printf(m, "\tStatus pointer: 0x%08X\n", status_pointer);
2086
2087                 read_pointer = ring->next_context_status_buffer;
2088                 write_pointer = status_pointer & 0x07;
2089                 if (read_pointer > write_pointer)
2090                         write_pointer += 6;
2091                 seq_printf(m, "\tRead pointer: 0x%08X, write pointer 0x%08X\n",
2092                            read_pointer, write_pointer);
2093
2094                 for (i = 0; i < 6; i++) {
2095                         status = I915_READ(RING_CONTEXT_STATUS_BUF_LO(ring, i));
2096                         ctx_id = I915_READ(RING_CONTEXT_STATUS_BUF_HI(ring, i));
2097
2098                         seq_printf(m, "\tStatus buffer %d: 0x%08X, context: %u\n",
2099                                    i, status, ctx_id);
2100                 }
2101
2102                 spin_lock_irqsave(&ring->execlist_lock, flags);
2103                 list_for_each(cursor, &ring->execlist_queue)
2104                         count++;
2105                 head_req = list_first_entry_or_null(&ring->execlist_queue,
2106                                 struct drm_i915_gem_request, execlist_link);
2107                 spin_unlock_irqrestore(&ring->execlist_lock, flags);
2108
2109                 seq_printf(m, "\t%d requests in queue\n", count);
2110                 if (head_req) {
2111                         struct drm_i915_gem_object *ctx_obj;
2112
2113                         ctx_obj = head_req->ctx->engine[ring_id].state;
2114                         seq_printf(m, "\tHead request id: %u\n",
2115                                    intel_execlists_ctx_id(ctx_obj));
2116                         seq_printf(m, "\tHead request tail: %u\n",
2117                                    head_req->tail);
2118                 }
2119
2120                 seq_putc(m, '\n');
2121         }
2122
2123         intel_runtime_pm_put(dev_priv);
2124         mutex_unlock(&dev->struct_mutex);
2125
2126         return 0;
2127 }
2128
2129 static const char *swizzle_string(unsigned swizzle)
2130 {
2131         switch (swizzle) {
2132         case I915_BIT_6_SWIZZLE_NONE:
2133                 return "none";
2134         case I915_BIT_6_SWIZZLE_9:
2135                 return "bit9";
2136         case I915_BIT_6_SWIZZLE_9_10:
2137                 return "bit9/bit10";
2138         case I915_BIT_6_SWIZZLE_9_11:
2139                 return "bit9/bit11";
2140         case I915_BIT_6_SWIZZLE_9_10_11:
2141                 return "bit9/bit10/bit11";
2142         case I915_BIT_6_SWIZZLE_9_17:
2143                 return "bit9/bit17";
2144         case I915_BIT_6_SWIZZLE_9_10_17:
2145                 return "bit9/bit10/bit17";
2146         case I915_BIT_6_SWIZZLE_UNKNOWN:
2147                 return "unknown";
2148         }
2149
2150         return "bug";
2151 }
2152
2153 static int i915_swizzle_info(struct seq_file *m, void *data)
2154 {
2155         struct drm_info_node *node = m->private;
2156         struct drm_device *dev = node->minor->dev;
2157         struct drm_i915_private *dev_priv = dev->dev_private;
2158         int ret;
2159
2160         ret = mutex_lock_interruptible(&dev->struct_mutex);
2161         if (ret)
2162                 return ret;
2163         intel_runtime_pm_get(dev_priv);
2164
2165         seq_printf(m, "bit6 swizzle for X-tiling = %s\n",
2166                    swizzle_string(dev_priv->mm.bit_6_swizzle_x));
2167         seq_printf(m, "bit6 swizzle for Y-tiling = %s\n",
2168                    swizzle_string(dev_priv->mm.bit_6_swizzle_y));
2169
2170         if (IS_GEN3(dev) || IS_GEN4(dev)) {
2171                 seq_printf(m, "DDC = 0x%08x\n",
2172                            I915_READ(DCC));
2173                 seq_printf(m, "DDC2 = 0x%08x\n",
2174                            I915_READ(DCC2));
2175                 seq_printf(m, "C0DRB3 = 0x%04x\n",
2176                            I915_READ16(C0DRB3));
2177                 seq_printf(m, "C1DRB3 = 0x%04x\n",
2178                            I915_READ16(C1DRB3));
2179         } else if (INTEL_INFO(dev)->gen >= 6) {
2180                 seq_printf(m, "MAD_DIMM_C0 = 0x%08x\n",
2181                            I915_READ(MAD_DIMM_C0));
2182                 seq_printf(m, "MAD_DIMM_C1 = 0x%08x\n",
2183                            I915_READ(MAD_DIMM_C1));
2184                 seq_printf(m, "MAD_DIMM_C2 = 0x%08x\n",
2185                            I915_READ(MAD_DIMM_C2));
2186                 seq_printf(m, "TILECTL = 0x%08x\n",
2187                            I915_READ(TILECTL));
2188                 if (INTEL_INFO(dev)->gen >= 8)
2189                         seq_printf(m, "GAMTARBMODE = 0x%08x\n",
2190                                    I915_READ(GAMTARBMODE));
2191                 else
2192                         seq_printf(m, "ARB_MODE = 0x%08x\n",
2193                                    I915_READ(ARB_MODE));
2194                 seq_printf(m, "DISP_ARB_CTL = 0x%08x\n",
2195                            I915_READ(DISP_ARB_CTL));
2196         }
2197
2198         if (dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES)
2199                 seq_puts(m, "L-shaped memory detected\n");
2200
2201         intel_runtime_pm_put(dev_priv);
2202         mutex_unlock(&dev->struct_mutex);
2203
2204         return 0;
2205 }
2206
2207 static int per_file_ctx(int id, void *ptr, void *data)
2208 {
2209         struct intel_context *ctx = ptr;
2210         struct seq_file *m = data;
2211         struct i915_hw_ppgtt *ppgtt = ctx->ppgtt;
2212
2213         if (!ppgtt) {
2214                 seq_printf(m, "  no ppgtt for context %d\n",
2215                            ctx->user_handle);
2216                 return 0;
2217         }
2218
2219         if (i915_gem_context_is_default(ctx))
2220                 seq_puts(m, "  default context:\n");
2221         else
2222                 seq_printf(m, "  context %d:\n", ctx->user_handle);
2223         ppgtt->debug_dump(ppgtt, m);
2224
2225         return 0;
2226 }
2227
2228 static void gen8_ppgtt_info(struct seq_file *m, struct drm_device *dev)
2229 {
2230         struct drm_i915_private *dev_priv = dev->dev_private;
2231         struct intel_engine_cs *ring;
2232         struct i915_hw_ppgtt *ppgtt = dev_priv->mm.aliasing_ppgtt;
2233         int unused, i;
2234
2235         if (!ppgtt)
2236                 return;
2237
2238         for_each_ring(ring, dev_priv, unused) {
2239                 seq_printf(m, "%s\n", ring->name);
2240                 for (i = 0; i < 4; i++) {
2241                         u64 pdp = I915_READ(GEN8_RING_PDP_UDW(ring, i));
2242                         pdp <<= 32;
2243                         pdp |= I915_READ(GEN8_RING_PDP_LDW(ring, i));
2244                         seq_printf(m, "\tPDP%d 0x%016llx\n", i, pdp);
2245                 }
2246         }
2247 }
2248
2249 static void gen6_ppgtt_info(struct seq_file *m, struct drm_device *dev)
2250 {
2251         struct drm_i915_private *dev_priv = dev->dev_private;
2252         struct intel_engine_cs *ring;
2253         int i;
2254
2255         if (INTEL_INFO(dev)->gen == 6)
2256                 seq_printf(m, "GFX_MODE: 0x%08x\n", I915_READ(GFX_MODE));
2257
2258         for_each_ring(ring, dev_priv, i) {
2259                 seq_printf(m, "%s\n", ring->name);
2260                 if (INTEL_INFO(dev)->gen == 7)
2261                         seq_printf(m, "GFX_MODE: 0x%08x\n", I915_READ(RING_MODE_GEN7(ring)));
2262                 seq_printf(m, "PP_DIR_BASE: 0x%08x\n", I915_READ(RING_PP_DIR_BASE(ring)));
2263                 seq_printf(m, "PP_DIR_BASE_READ: 0x%08x\n", I915_READ(RING_PP_DIR_BASE_READ(ring)));
2264                 seq_printf(m, "PP_DIR_DCLV: 0x%08x\n", I915_READ(RING_PP_DIR_DCLV(ring)));
2265         }
2266         if (dev_priv->mm.aliasing_ppgtt) {
2267                 struct i915_hw_ppgtt *ppgtt = dev_priv->mm.aliasing_ppgtt;
2268
2269                 seq_puts(m, "aliasing PPGTT:\n");
2270                 seq_printf(m, "pd gtt offset: 0x%08x\n", ppgtt->pd.base.ggtt_offset);
2271
2272                 ppgtt->debug_dump(ppgtt, m);
2273         }
2274
2275         seq_printf(m, "ECOCHK: 0x%08x\n", I915_READ(GAM_ECOCHK));
2276 }
2277
2278 static int i915_ppgtt_info(struct seq_file *m, void *data)
2279 {
2280         struct drm_info_node *node = m->private;
2281         struct drm_device *dev = node->minor->dev;
2282         struct drm_i915_private *dev_priv = dev->dev_private;
2283         struct drm_file *file;
2284
2285         int ret = mutex_lock_interruptible(&dev->struct_mutex);
2286         if (ret)
2287                 return ret;
2288         intel_runtime_pm_get(dev_priv);
2289
2290         if (INTEL_INFO(dev)->gen >= 8)
2291                 gen8_ppgtt_info(m, dev);
2292         else if (INTEL_INFO(dev)->gen >= 6)
2293                 gen6_ppgtt_info(m, dev);
2294
2295         list_for_each_entry_reverse(file, &dev->filelist, lhead) {
2296                 struct drm_i915_file_private *file_priv = file->driver_priv;
2297                 struct task_struct *task;
2298
2299                 task = get_pid_task(file->pid, PIDTYPE_PID);
2300                 if (!task) {
2301                         ret = -ESRCH;
2302                         goto out_put;
2303                 }
2304                 seq_printf(m, "\nproc: %s\n", task->comm);
2305                 put_task_struct(task);
2306                 idr_for_each(&file_priv->context_idr, per_file_ctx,
2307                              (void *)(unsigned long)m);
2308         }
2309
2310 out_put:
2311         intel_runtime_pm_put(dev_priv);
2312         mutex_unlock(&dev->struct_mutex);
2313
2314         return ret;
2315 }
2316
2317 static int count_irq_waiters(struct drm_i915_private *i915)
2318 {
2319         struct intel_engine_cs *ring;
2320         int count = 0;
2321         int i;
2322
2323         for_each_ring(ring, i915, i)
2324                 count += ring->irq_refcount;
2325
2326         return count;
2327 }
2328
2329 static int i915_rps_boost_info(struct seq_file *m, void *data)
2330 {
2331         struct drm_info_node *node = m->private;
2332         struct drm_device *dev = node->minor->dev;
2333         struct drm_i915_private *dev_priv = dev->dev_private;
2334         struct drm_file *file;
2335
2336         seq_printf(m, "RPS enabled? %d\n", dev_priv->rps.enabled);
2337         seq_printf(m, "GPU busy? %d\n", dev_priv->mm.busy);
2338         seq_printf(m, "CPU waiting? %d\n", count_irq_waiters(dev_priv));
2339         seq_printf(m, "Frequency requested %d; min hard:%d, soft:%d; max soft:%d, hard:%d\n",
2340                    intel_gpu_freq(dev_priv, dev_priv->rps.cur_freq),
2341                    intel_gpu_freq(dev_priv, dev_priv->rps.min_freq),
2342                    intel_gpu_freq(dev_priv, dev_priv->rps.min_freq_softlimit),
2343                    intel_gpu_freq(dev_priv, dev_priv->rps.max_freq_softlimit),
2344                    intel_gpu_freq(dev_priv, dev_priv->rps.max_freq));
2345         spin_lock(&dev_priv->rps.client_lock);
2346         list_for_each_entry_reverse(file, &dev->filelist, lhead) {
2347                 struct drm_i915_file_private *file_priv = file->driver_priv;
2348                 struct task_struct *task;
2349
2350                 rcu_read_lock();
2351                 task = pid_task(file->pid, PIDTYPE_PID);
2352                 seq_printf(m, "%s [%d]: %d boosts%s\n",
2353                            task ? task->comm : "<unknown>",
2354                            task ? task->pid : -1,
2355                            file_priv->rps.boosts,
2356                            list_empty(&file_priv->rps.link) ? "" : ", active");
2357                 rcu_read_unlock();
2358         }
2359         seq_printf(m, "Semaphore boosts: %d%s\n",
2360                    dev_priv->rps.semaphores.boosts,
2361                    list_empty(&dev_priv->rps.semaphores.link) ? "" : ", active");
2362         seq_printf(m, "MMIO flip boosts: %d%s\n",
2363                    dev_priv->rps.mmioflips.boosts,
2364                    list_empty(&dev_priv->rps.mmioflips.link) ? "" : ", active");
2365         seq_printf(m, "Kernel boosts: %d\n", dev_priv->rps.boosts);
2366         spin_unlock(&dev_priv->rps.client_lock);
2367
2368         return 0;
2369 }
2370
2371 static int i915_llc(struct seq_file *m, void *data)
2372 {
2373         struct drm_info_node *node = m->private;
2374         struct drm_device *dev = node->minor->dev;
2375         struct drm_i915_private *dev_priv = dev->dev_private;
2376
2377         /* Size calculation for LLC is a bit of a pain. Ignore for now. */
2378         seq_printf(m, "LLC: %s\n", yesno(HAS_LLC(dev)));
2379         seq_printf(m, "eLLC: %zuMB\n", dev_priv->ellc_size);
2380
2381         return 0;
2382 }
2383
2384 static int i915_guc_load_status_info(struct seq_file *m, void *data)
2385 {
2386         struct drm_info_node *node = m->private;
2387         struct drm_i915_private *dev_priv = node->minor->dev->dev_private;
2388         struct intel_guc_fw *guc_fw = &dev_priv->guc.guc_fw;
2389         u32 tmp, i;
2390
2391         if (!HAS_GUC_UCODE(dev_priv->dev))
2392                 return 0;
2393
2394         seq_printf(m, "GuC firmware status:\n");
2395         seq_printf(m, "\tpath: %s\n",
2396                 guc_fw->guc_fw_path);
2397         seq_printf(m, "\tfetch: %s\n",
2398                 intel_guc_fw_status_repr(guc_fw->guc_fw_fetch_status));
2399         seq_printf(m, "\tload: %s\n",
2400                 intel_guc_fw_status_repr(guc_fw->guc_fw_load_status));
2401         seq_printf(m, "\tversion wanted: %d.%d\n",
2402                 guc_fw->guc_fw_major_wanted, guc_fw->guc_fw_minor_wanted);
2403         seq_printf(m, "\tversion found: %d.%d\n",
2404                 guc_fw->guc_fw_major_found, guc_fw->guc_fw_minor_found);
2405
2406         tmp = I915_READ(GUC_STATUS);
2407
2408         seq_printf(m, "\nGuC status 0x%08x:\n", tmp);
2409         seq_printf(m, "\tBootrom status = 0x%x\n",
2410                 (tmp & GS_BOOTROM_MASK) >> GS_BOOTROM_SHIFT);
2411         seq_printf(m, "\tuKernel status = 0x%x\n",
2412                 (tmp & GS_UKERNEL_MASK) >> GS_UKERNEL_SHIFT);
2413         seq_printf(m, "\tMIA Core status = 0x%x\n",
2414                 (tmp & GS_MIA_MASK) >> GS_MIA_SHIFT);
2415         seq_puts(m, "\nScratch registers:\n");
2416         for (i = 0; i < 16; i++)
2417                 seq_printf(m, "\t%2d: \t0x%x\n", i, I915_READ(SOFT_SCRATCH(i)));
2418
2419         return 0;
2420 }
2421
2422 static void i915_guc_client_info(struct seq_file *m,
2423                                  struct drm_i915_private *dev_priv,
2424                                  struct i915_guc_client *client)
2425 {
2426         struct intel_engine_cs *ring;
2427         uint64_t tot = 0;
2428         uint32_t i;
2429
2430         seq_printf(m, "\tPriority %d, GuC ctx index: %u, PD offset 0x%x\n",
2431                 client->priority, client->ctx_index, client->proc_desc_offset);
2432         seq_printf(m, "\tDoorbell id %d, offset: 0x%x, cookie 0x%x\n",
2433                 client->doorbell_id, client->doorbell_offset, client->cookie);
2434         seq_printf(m, "\tWQ size %d, offset: 0x%x, tail %d\n",
2435                 client->wq_size, client->wq_offset, client->wq_tail);
2436
2437         seq_printf(m, "\tFailed to queue: %u\n", client->q_fail);
2438         seq_printf(m, "\tFailed doorbell: %u\n", client->b_fail);
2439         seq_printf(m, "\tLast submission result: %d\n", client->retcode);
2440
2441         for_each_ring(ring, dev_priv, i) {
2442                 seq_printf(m, "\tSubmissions: %llu %s\n",
2443                                 client->submissions[i],
2444                                 ring->name);
2445                 tot += client->submissions[i];
2446         }
2447         seq_printf(m, "\tTotal: %llu\n", tot);
2448 }
2449
2450 static int i915_guc_info(struct seq_file *m, void *data)
2451 {
2452         struct drm_info_node *node = m->private;
2453         struct drm_device *dev = node->minor->dev;
2454         struct drm_i915_private *dev_priv = dev->dev_private;
2455         struct intel_guc guc;
2456         struct i915_guc_client client = {};
2457         struct intel_engine_cs *ring;
2458         enum intel_ring_id i;
2459         u64 total = 0;
2460
2461         if (!HAS_GUC_SCHED(dev_priv->dev))
2462                 return 0;
2463
2464         /* Take a local copy of the GuC data, so we can dump it at leisure */
2465         spin_lock(&dev_priv->guc.host2guc_lock);
2466         guc = dev_priv->guc;
2467         if (guc.execbuf_client) {
2468                 spin_lock(&guc.execbuf_client->wq_lock);
2469                 client = *guc.execbuf_client;
2470                 spin_unlock(&guc.execbuf_client->wq_lock);
2471         }
2472         spin_unlock(&dev_priv->guc.host2guc_lock);
2473
2474         seq_printf(m, "GuC total action count: %llu\n", guc.action_count);
2475         seq_printf(m, "GuC action failure count: %u\n", guc.action_fail);
2476         seq_printf(m, "GuC last action command: 0x%x\n", guc.action_cmd);
2477         seq_printf(m, "GuC last action status: 0x%x\n", guc.action_status);
2478         seq_printf(m, "GuC last action error code: %d\n", guc.action_err);
2479
2480         seq_printf(m, "\nGuC submissions:\n");
2481         for_each_ring(ring, dev_priv, i) {
2482                 seq_printf(m, "\t%-24s: %10llu, last seqno 0x%08x %9d\n",
2483                         ring->name, guc.submissions[i],
2484                         guc.last_seqno[i], guc.last_seqno[i]);
2485                 total += guc.submissions[i];
2486         }
2487         seq_printf(m, "\t%s: %llu\n", "Total", total);
2488
2489         seq_printf(m, "\nGuC execbuf client @ %p:\n", guc.execbuf_client);
2490         i915_guc_client_info(m, dev_priv, &client);
2491
2492         /* Add more as required ... */
2493
2494         return 0;
2495 }
2496
2497 static int i915_guc_log_dump(struct seq_file *m, void *data)
2498 {
2499         struct drm_info_node *node = m->private;
2500         struct drm_device *dev = node->minor->dev;
2501         struct drm_i915_private *dev_priv = dev->dev_private;
2502         struct drm_i915_gem_object *log_obj = dev_priv->guc.log_obj;
2503         u32 *log;
2504         int i = 0, pg;
2505
2506         if (!log_obj)
2507                 return 0;
2508
2509         for (pg = 0; pg < log_obj->base.size / PAGE_SIZE; pg++) {
2510                 log = kmap_atomic(i915_gem_object_get_page(log_obj, pg));
2511
2512                 for (i = 0; i < PAGE_SIZE / sizeof(u32); i += 4)
2513                         seq_printf(m, "0x%08x 0x%08x 0x%08x 0x%08x\n",
2514                                    *(log + i), *(log + i + 1),
2515                                    *(log + i + 2), *(log + i + 3));
2516
2517                 kunmap_atomic(log);
2518         }
2519
2520         seq_putc(m, '\n');
2521
2522         return 0;
2523 }
2524
2525 static int i915_edp_psr_status(struct seq_file *m, void *data)
2526 {
2527         struct drm_info_node *node = m->private;
2528         struct drm_device *dev = node->minor->dev;
2529         struct drm_i915_private *dev_priv = dev->dev_private;
2530         u32 psrperf = 0;
2531         u32 stat[3];
2532         enum pipe pipe;
2533         bool enabled = false;
2534
2535         if (!HAS_PSR(dev)) {
2536                 seq_puts(m, "PSR not supported\n");
2537                 return 0;
2538         }
2539
2540         intel_runtime_pm_get(dev_priv);
2541
2542         mutex_lock(&dev_priv->psr.lock);
2543         seq_printf(m, "Sink_Support: %s\n", yesno(dev_priv->psr.sink_support));
2544         seq_printf(m, "Source_OK: %s\n", yesno(dev_priv->psr.source_ok));
2545         seq_printf(m, "Enabled: %s\n", yesno((bool)dev_priv->psr.enabled));
2546         seq_printf(m, "Active: %s\n", yesno(dev_priv->psr.active));
2547         seq_printf(m, "Busy frontbuffer bits: 0x%03x\n",
2548                    dev_priv->psr.busy_frontbuffer_bits);
2549         seq_printf(m, "Re-enable work scheduled: %s\n",
2550                    yesno(work_busy(&dev_priv->psr.work.work)));
2551
2552         if (HAS_DDI(dev))
2553                 enabled = I915_READ(EDP_PSR_CTL(dev)) & EDP_PSR_ENABLE;
2554         else {
2555                 for_each_pipe(dev_priv, pipe) {
2556                         stat[pipe] = I915_READ(VLV_PSRSTAT(pipe)) &
2557                                 VLV_EDP_PSR_CURR_STATE_MASK;
2558                         if ((stat[pipe] == VLV_EDP_PSR_ACTIVE_NORFB_UP) ||
2559                             (stat[pipe] == VLV_EDP_PSR_ACTIVE_SF_UPDATE))
2560                                 enabled = true;
2561                 }
2562         }
2563         seq_printf(m, "HW Enabled & Active bit: %s", yesno(enabled));
2564
2565         if (!HAS_DDI(dev))
2566                 for_each_pipe(dev_priv, pipe) {
2567                         if ((stat[pipe] == VLV_EDP_PSR_ACTIVE_NORFB_UP) ||
2568                             (stat[pipe] == VLV_EDP_PSR_ACTIVE_SF_UPDATE))
2569                                 seq_printf(m, " pipe %c", pipe_name(pipe));
2570                 }
2571         seq_puts(m, "\n");
2572
2573         /* CHV PSR has no kind of performance counter */
2574         if (HAS_DDI(dev)) {
2575                 psrperf = I915_READ(EDP_PSR_PERF_CNT(dev)) &
2576                         EDP_PSR_PERF_CNT_MASK;
2577
2578                 seq_printf(m, "Performance_Counter: %u\n", psrperf);
2579         }
2580         mutex_unlock(&dev_priv->psr.lock);
2581
2582         intel_runtime_pm_put(dev_priv);
2583         return 0;
2584 }
2585
2586 static int i915_sink_crc(struct seq_file *m, void *data)
2587 {
2588         struct drm_info_node *node = m->private;
2589         struct drm_device *dev = node->minor->dev;
2590         struct intel_encoder *encoder;
2591         struct intel_connector *connector;
2592         struct intel_dp *intel_dp = NULL;
2593         int ret;
2594         u8 crc[6];
2595
2596         drm_modeset_lock_all(dev);
2597         for_each_intel_connector(dev, connector) {
2598
2599                 if (connector->base.dpms != DRM_MODE_DPMS_ON)
2600                         continue;
2601
2602                 if (!connector->base.encoder)
2603                         continue;
2604
2605                 encoder = to_intel_encoder(connector->base.encoder);
2606                 if (encoder->type != INTEL_OUTPUT_EDP)
2607                         continue;
2608
2609                 intel_dp = enc_to_intel_dp(&encoder->base);
2610
2611                 ret = intel_dp_sink_crc(intel_dp, crc);
2612                 if (ret)
2613                         goto out;
2614
2615                 seq_printf(m, "%02x%02x%02x%02x%02x%02x\n",
2616                            crc[0], crc[1], crc[2],
2617                            crc[3], crc[4], crc[5]);
2618                 goto out;
2619         }
2620         ret = -ENODEV;
2621 out:
2622         drm_modeset_unlock_all(dev);
2623         return ret;
2624 }
2625
2626 static int i915_energy_uJ(struct seq_file *m, void *data)
2627 {
2628         struct drm_info_node *node = m->private;
2629         struct drm_device *dev = node->minor->dev;
2630         struct drm_i915_private *dev_priv = dev->dev_private;
2631         u64 power;
2632         u32 units;
2633
2634         if (INTEL_INFO(dev)->gen < 6)
2635                 return -ENODEV;
2636
2637         intel_runtime_pm_get(dev_priv);
2638
2639         rdmsrl(MSR_RAPL_POWER_UNIT, power);
2640         power = (power & 0x1f00) >> 8;
2641         units = 1000000 / (1 << power); /* convert to uJ */
2642         power = I915_READ(MCH_SECP_NRG_STTS);
2643         power *= units;
2644
2645         intel_runtime_pm_put(dev_priv);
2646
2647         seq_printf(m, "%llu", (long long unsigned)power);
2648
2649         return 0;
2650 }
2651
2652 static int i915_runtime_pm_status(struct seq_file *m, void *unused)
2653 {
2654         struct drm_info_node *node = m->private;
2655         struct drm_device *dev = node->minor->dev;
2656         struct drm_i915_private *dev_priv = dev->dev_private;
2657
2658         if (!HAS_RUNTIME_PM(dev)) {
2659                 seq_puts(m, "not supported\n");
2660                 return 0;
2661         }
2662
2663         seq_printf(m, "GPU idle: %s\n", yesno(!dev_priv->mm.busy));
2664         seq_printf(m, "IRQs disabled: %s\n",
2665                    yesno(!intel_irqs_enabled(dev_priv)));
2666 #ifdef CONFIG_PM
2667         seq_printf(m, "Usage count: %d\n",
2668                    atomic_read(&dev->dev->power.usage_count));
2669 #else
2670         seq_printf(m, "Device Power Management (CONFIG_PM) disabled\n");
2671 #endif
2672
2673         return 0;
2674 }
2675
2676 static const char *power_domain_str(enum intel_display_power_domain domain)
2677 {
2678         switch (domain) {
2679         case POWER_DOMAIN_PIPE_A:
2680                 return "PIPE_A";
2681         case POWER_DOMAIN_PIPE_B:
2682                 return "PIPE_B";
2683         case POWER_DOMAIN_PIPE_C:
2684                 return "PIPE_C";
2685         case POWER_DOMAIN_PIPE_A_PANEL_FITTER:
2686                 return "PIPE_A_PANEL_FITTER";
2687         case POWER_DOMAIN_PIPE_B_PANEL_FITTER:
2688                 return "PIPE_B_PANEL_FITTER";
2689         case POWER_DOMAIN_PIPE_C_PANEL_FITTER:
2690                 return "PIPE_C_PANEL_FITTER";
2691         case POWER_DOMAIN_TRANSCODER_A:
2692                 return "TRANSCODER_A";
2693         case POWER_DOMAIN_TRANSCODER_B:
2694                 return "TRANSCODER_B";
2695         case POWER_DOMAIN_TRANSCODER_C:
2696                 return "TRANSCODER_C";
2697         case POWER_DOMAIN_TRANSCODER_EDP:
2698                 return "TRANSCODER_EDP";
2699         case POWER_DOMAIN_PORT_DDI_A_2_LANES:
2700                 return "PORT_DDI_A_2_LANES";
2701         case POWER_DOMAIN_PORT_DDI_A_4_LANES:
2702                 return "PORT_DDI_A_4_LANES";
2703         case POWER_DOMAIN_PORT_DDI_B_2_LANES:
2704                 return "PORT_DDI_B_2_LANES";
2705         case POWER_DOMAIN_PORT_DDI_B_4_LANES:
2706                 return "PORT_DDI_B_4_LANES";
2707         case POWER_DOMAIN_PORT_DDI_C_2_LANES:
2708                 return "PORT_DDI_C_2_LANES";
2709         case POWER_DOMAIN_PORT_DDI_C_4_LANES:
2710                 return "PORT_DDI_C_4_LANES";
2711         case POWER_DOMAIN_PORT_DDI_D_2_LANES:
2712                 return "PORT_DDI_D_2_LANES";
2713         case POWER_DOMAIN_PORT_DDI_D_4_LANES:
2714                 return "PORT_DDI_D_4_LANES";
2715         case POWER_DOMAIN_PORT_DDI_E_2_LANES:
2716                 return "PORT_DDI_E_2_LANES";
2717         case POWER_DOMAIN_PORT_DSI:
2718                 return "PORT_DSI";
2719         case POWER_DOMAIN_PORT_CRT:
2720                 return "PORT_CRT";
2721         case POWER_DOMAIN_PORT_OTHER:
2722                 return "PORT_OTHER";
2723         case POWER_DOMAIN_VGA:
2724                 return "VGA";
2725         case POWER_DOMAIN_AUDIO:
2726                 return "AUDIO";
2727         case POWER_DOMAIN_PLLS:
2728                 return "PLLS";
2729         case POWER_DOMAIN_AUX_A:
2730                 return "AUX_A";
2731         case POWER_DOMAIN_AUX_B:
2732                 return "AUX_B";
2733         case POWER_DOMAIN_AUX_C:
2734                 return "AUX_C";
2735         case POWER_DOMAIN_AUX_D:
2736                 return "AUX_D";
2737         case POWER_DOMAIN_GMBUS:
2738                 return "GMBUS";
2739         case POWER_DOMAIN_INIT:
2740                 return "INIT";
2741         default:
2742                 MISSING_CASE(domain);
2743                 return "?";
2744         }
2745 }
2746
2747 static int i915_power_domain_info(struct seq_file *m, void *unused)
2748 {
2749         struct drm_info_node *node = m->private;
2750         struct drm_device *dev = node->minor->dev;
2751         struct drm_i915_private *dev_priv = dev->dev_private;
2752         struct i915_power_domains *power_domains = &dev_priv->power_domains;
2753         int i;
2754
2755         mutex_lock(&power_domains->lock);
2756
2757         seq_printf(m, "%-25s %s\n", "Power well/domain", "Use count");
2758         for (i = 0; i < power_domains->power_well_count; i++) {
2759                 struct i915_power_well *power_well;
2760                 enum intel_display_power_domain power_domain;
2761
2762                 power_well = &power_domains->power_wells[i];
2763                 seq_printf(m, "%-25s %d\n", power_well->name,
2764                            power_well->count);
2765
2766                 for (power_domain = 0; power_domain < POWER_DOMAIN_NUM;
2767                      power_domain++) {
2768                         if (!(BIT(power_domain) & power_well->domains))
2769                                 continue;
2770
2771                         seq_printf(m, "  %-23s %d\n",
2772                                  power_domain_str(power_domain),
2773                                  power_domains->domain_use_count[power_domain]);
2774                 }
2775         }
2776
2777         mutex_unlock(&power_domains->lock);
2778
2779         return 0;
2780 }
2781
2782 static void intel_seq_print_mode(struct seq_file *m, int tabs,
2783                                  struct drm_display_mode *mode)
2784 {
2785         int i;
2786
2787         for (i = 0; i < tabs; i++)
2788                 seq_putc(m, '\t');
2789
2790         seq_printf(m, "id %d:\"%s\" freq %d clock %d hdisp %d hss %d hse %d htot %d vdisp %d vss %d vse %d vtot %d type 0x%x flags 0x%x\n",
2791                    mode->base.id, mode->name,
2792                    mode->vrefresh, mode->clock,
2793                    mode->hdisplay, mode->hsync_start,
2794                    mode->hsync_end, mode->htotal,
2795                    mode->vdisplay, mode->vsync_start,
2796                    mode->vsync_end, mode->vtotal,
2797                    mode->type, mode->flags);
2798 }
2799
2800 static void intel_encoder_info(struct seq_file *m,
2801                                struct intel_crtc *intel_crtc,
2802                                struct intel_encoder *intel_encoder)
2803 {
2804         struct drm_info_node *node = m->private;
2805         struct drm_device *dev = node->minor->dev;
2806         struct drm_crtc *crtc = &intel_crtc->base;
2807         struct intel_connector *intel_connector;
2808         struct drm_encoder *encoder;
2809
2810         encoder = &intel_encoder->base;
2811         seq_printf(m, "\tencoder %d: type: %s, connectors:\n",
2812                    encoder->base.id, encoder->name);
2813         for_each_connector_on_encoder(dev, encoder, intel_connector) {
2814                 struct drm_connector *connector = &intel_connector->base;
2815                 seq_printf(m, "\t\tconnector %d: type: %s, status: %s",
2816                            connector->base.id,
2817                            connector->name,
2818                            drm_get_connector_status_name(connector->status));
2819                 if (connector->status == connector_status_connected) {
2820                         struct drm_display_mode *mode = &crtc->mode;
2821                         seq_printf(m, ", mode:\n");
2822                         intel_seq_print_mode(m, 2, mode);
2823                 } else {
2824                         seq_putc(m, '\n');
2825                 }
2826         }
2827 }
2828
2829 static void intel_crtc_info(struct seq_file *m, struct intel_crtc *intel_crtc)
2830 {
2831         struct drm_info_node *node = m->private;
2832         struct drm_device *dev = node->minor->dev;
2833         struct drm_crtc *crtc = &intel_crtc->base;
2834         struct intel_encoder *intel_encoder;
2835         struct drm_plane_state *plane_state = crtc->primary->state;
2836         struct drm_framebuffer *fb = plane_state->fb;
2837
2838         if (fb)
2839                 seq_printf(m, "\tfb: %d, pos: %dx%d, size: %dx%d\n",
2840                            fb->base.id, plane_state->src_x >> 16,
2841                            plane_state->src_y >> 16, fb->width, fb->height);
2842         else
2843                 seq_puts(m, "\tprimary plane disabled\n");
2844         for_each_encoder_on_crtc(dev, crtc, intel_encoder)
2845                 intel_encoder_info(m, intel_crtc, intel_encoder);
2846 }
2847
2848 static void intel_panel_info(struct seq_file *m, struct intel_panel *panel)
2849 {
2850         struct drm_display_mode *mode = panel->fixed_mode;
2851
2852         seq_printf(m, "\tfixed mode:\n");
2853         intel_seq_print_mode(m, 2, mode);
2854 }
2855
2856 static void intel_dp_info(struct seq_file *m,
2857                           struct intel_connector *intel_connector)
2858 {
2859         struct intel_encoder *intel_encoder = intel_connector->encoder;
2860         struct intel_dp *intel_dp = enc_to_intel_dp(&intel_encoder->base);
2861
2862         seq_printf(m, "\tDPCD rev: %x\n", intel_dp->dpcd[DP_DPCD_REV]);
2863         seq_printf(m, "\taudio support: %s\n", yesno(intel_dp->has_audio));
2864         if (intel_encoder->type == INTEL_OUTPUT_EDP)
2865                 intel_panel_info(m, &intel_connector->panel);
2866 }
2867
2868 static void intel_hdmi_info(struct seq_file *m,
2869                             struct intel_connector *intel_connector)
2870 {
2871         struct intel_encoder *intel_encoder = intel_connector->encoder;
2872         struct intel_hdmi *intel_hdmi = enc_to_intel_hdmi(&intel_encoder->base);
2873
2874         seq_printf(m, "\taudio support: %s\n", yesno(intel_hdmi->has_audio));
2875 }
2876
2877 static void intel_lvds_info(struct seq_file *m,
2878                             struct intel_connector *intel_connector)
2879 {
2880         intel_panel_info(m, &intel_connector->panel);
2881 }
2882
2883 static void intel_connector_info(struct seq_file *m,
2884                                  struct drm_connector *connector)
2885 {
2886         struct intel_connector *intel_connector = to_intel_connector(connector);
2887         struct intel_encoder *intel_encoder = intel_connector->encoder;
2888         struct drm_display_mode *mode;
2889
2890         seq_printf(m, "connector %d: type %s, status: %s\n",
2891                    connector->base.id, connector->name,
2892                    drm_get_connector_status_name(connector->status));
2893         if (connector->status == connector_status_connected) {
2894                 seq_printf(m, "\tname: %s\n", connector->display_info.name);
2895                 seq_printf(m, "\tphysical dimensions: %dx%dmm\n",
2896                            connector->display_info.width_mm,
2897                            connector->display_info.height_mm);
2898                 seq_printf(m, "\tsubpixel order: %s\n",
2899                            drm_get_subpixel_order_name(connector->display_info.subpixel_order));
2900                 seq_printf(m, "\tCEA rev: %d\n",
2901                            connector->display_info.cea_rev);
2902         }
2903         if (intel_encoder) {
2904                 if (intel_encoder->type == INTEL_OUTPUT_DISPLAYPORT ||
2905                     intel_encoder->type == INTEL_OUTPUT_EDP)
2906                         intel_dp_info(m, intel_connector);
2907                 else if (intel_encoder->type == INTEL_OUTPUT_HDMI)
2908                         intel_hdmi_info(m, intel_connector);
2909                 else if (intel_encoder->type == INTEL_OUTPUT_LVDS)
2910                         intel_lvds_info(m, intel_connector);
2911         }
2912
2913         seq_printf(m, "\tmodes:\n");
2914         list_for_each_entry(mode, &connector->modes, head)
2915                 intel_seq_print_mode(m, 2, mode);
2916 }
2917
2918 static bool cursor_active(struct drm_device *dev, int pipe)
2919 {
2920         struct drm_i915_private *dev_priv = dev->dev_private;
2921         u32 state;
2922
2923         if (IS_845G(dev) || IS_I865G(dev))
2924                 state = I915_READ(CURCNTR(PIPE_A)) & CURSOR_ENABLE;
2925         else
2926                 state = I915_READ(CURCNTR(pipe)) & CURSOR_MODE;
2927
2928         return state;
2929 }
2930
2931 static bool cursor_position(struct drm_device *dev, int pipe, int *x, int *y)
2932 {
2933         struct drm_i915_private *dev_priv = dev->dev_private;
2934         u32 pos;
2935
2936         pos = I915_READ(CURPOS(pipe));
2937
2938         *x = (pos >> CURSOR_X_SHIFT) & CURSOR_POS_MASK;
2939         if (pos & (CURSOR_POS_SIGN << CURSOR_X_SHIFT))
2940                 *x = -*x;
2941
2942         *y = (pos >> CURSOR_Y_SHIFT) & CURSOR_POS_MASK;
2943         if (pos & (CURSOR_POS_SIGN << CURSOR_Y_SHIFT))
2944                 *y = -*y;
2945
2946         return cursor_active(dev, pipe);
2947 }
2948
2949 static int i915_display_info(struct seq_file *m, void *unused)
2950 {
2951         struct drm_info_node *node = m->private;
2952         struct drm_device *dev = node->minor->dev;
2953         struct drm_i915_private *dev_priv = dev->dev_private;
2954         struct intel_crtc *crtc;
2955         struct drm_connector *connector;
2956
2957         intel_runtime_pm_get(dev_priv);
2958         drm_modeset_lock_all(dev);
2959         seq_printf(m, "CRTC info\n");
2960         seq_printf(m, "---------\n");
2961         for_each_intel_crtc(dev, crtc) {
2962                 bool active;
2963                 struct intel_crtc_state *pipe_config;
2964                 int x, y;
2965
2966                 pipe_config = to_intel_crtc_state(crtc->base.state);
2967
2968                 seq_printf(m, "CRTC %d: pipe: %c, active=%s (size=%dx%d)\n",
2969                            crtc->base.base.id, pipe_name(crtc->pipe),
2970                            yesno(pipe_config->base.active),
2971                            pipe_config->pipe_src_w, pipe_config->pipe_src_h);
2972                 if (pipe_config->base.active) {
2973                         intel_crtc_info(m, crtc);
2974
2975                         active = cursor_position(dev, crtc->pipe, &x, &y);
2976                         seq_printf(m, "\tcursor visible? %s, position (%d, %d), size %dx%d, addr 0x%08x, active? %s\n",
2977                                    yesno(crtc->cursor_base),
2978                                    x, y, crtc->base.cursor->state->crtc_w,
2979                                    crtc->base.cursor->state->crtc_h,
2980                                    crtc->cursor_addr, yesno(active));
2981                 }
2982
2983                 seq_printf(m, "\tunderrun reporting: cpu=%s pch=%s \n",
2984                            yesno(!crtc->cpu_fifo_underrun_disabled),
2985                            yesno(!crtc->pch_fifo_underrun_disabled));
2986         }
2987
2988         seq_printf(m, "\n");
2989         seq_printf(m, "Connector info\n");
2990         seq_printf(m, "--------------\n");
2991         list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
2992                 intel_connector_info(m, connector);
2993         }
2994         drm_modeset_unlock_all(dev);
2995         intel_runtime_pm_put(dev_priv);
2996
2997         return 0;
2998 }
2999
3000 static int i915_semaphore_status(struct seq_file *m, void *unused)
3001 {
3002         struct drm_info_node *node = (struct drm_info_node *) m->private;
3003         struct drm_device *dev = node->minor->dev;
3004         struct drm_i915_private *dev_priv = dev->dev_private;
3005         struct intel_engine_cs *ring;
3006         int num_rings = hweight32(INTEL_INFO(dev)->ring_mask);
3007         int i, j, ret;
3008
3009         if (!i915_semaphore_is_enabled(dev)) {
3010                 seq_puts(m, "Semaphores are disabled\n");
3011                 return 0;
3012         }
3013
3014         ret = mutex_lock_interruptible(&dev->struct_mutex);
3015         if (ret)
3016                 return ret;
3017         intel_runtime_pm_get(dev_priv);
3018
3019         if (IS_BROADWELL(dev)) {
3020                 struct page *page;
3021                 uint64_t *seqno;
3022
3023                 page = i915_gem_object_get_page(dev_priv->semaphore_obj, 0);
3024
3025                 seqno = (uint64_t *)kmap_atomic(page);
3026                 for_each_ring(ring, dev_priv, i) {
3027                         uint64_t offset;
3028
3029                         seq_printf(m, "%s\n", ring->name);
3030
3031                         seq_puts(m, "  Last signal:");
3032                         for (j = 0; j < num_rings; j++) {
3033                                 offset = i * I915_NUM_RINGS + j;
3034                                 seq_printf(m, "0x%08llx (0x%02llx) ",
3035                                            seqno[offset], offset * 8);
3036                         }
3037                         seq_putc(m, '\n');
3038
3039                         seq_puts(m, "  Last wait:  ");
3040                         for (j = 0; j < num_rings; j++) {
3041                                 offset = i + (j * I915_NUM_RINGS);
3042                                 seq_printf(m, "0x%08llx (0x%02llx) ",
3043                                            seqno[offset], offset * 8);
3044                         }
3045                         seq_putc(m, '\n');
3046
3047                 }
3048                 kunmap_atomic(seqno);
3049         } else {
3050                 seq_puts(m, "  Last signal:");
3051                 for_each_ring(ring, dev_priv, i)
3052                         for (j = 0; j < num_rings; j++)
3053                                 seq_printf(m, "0x%08x\n",
3054                                            I915_READ(ring->semaphore.mbox.signal[j]));
3055                 seq_putc(m, '\n');
3056         }
3057
3058         seq_puts(m, "\nSync seqno:\n");
3059         for_each_ring(ring, dev_priv, i) {
3060                 for (j = 0; j < num_rings; j++) {
3061                         seq_printf(m, "  0x%08x ", ring->semaphore.sync_seqno[j]);
3062                 }
3063                 seq_putc(m, '\n');
3064         }
3065         seq_putc(m, '\n');
3066
3067         intel_runtime_pm_put(dev_priv);
3068         mutex_unlock(&dev->struct_mutex);
3069         return 0;
3070 }
3071
3072 static int i915_shared_dplls_info(struct seq_file *m, void *unused)
3073 {
3074         struct drm_info_node *node = (struct drm_info_node *) m->private;
3075         struct drm_device *dev = node->minor->dev;
3076         struct drm_i915_private *dev_priv = dev->dev_private;
3077         int i;
3078
3079         drm_modeset_lock_all(dev);
3080         for (i = 0; i < dev_priv->num_shared_dpll; i++) {
3081                 struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
3082
3083                 seq_printf(m, "DPLL%i: %s, id: %i\n", i, pll->name, pll->id);
3084                 seq_printf(m, " crtc_mask: 0x%08x, active: %d, on: %s\n",
3085                            pll->config.crtc_mask, pll->active, yesno(pll->on));
3086                 seq_printf(m, " tracked hardware state:\n");
3087                 seq_printf(m, " dpll:    0x%08x\n", pll->config.hw_state.dpll);
3088                 seq_printf(m, " dpll_md: 0x%08x\n",
3089                            pll->config.hw_state.dpll_md);
3090                 seq_printf(m, " fp0:     0x%08x\n", pll->config.hw_state.fp0);
3091                 seq_printf(m, " fp1:     0x%08x\n", pll->config.hw_state.fp1);
3092                 seq_printf(m, " wrpll:   0x%08x\n", pll->config.hw_state.wrpll);
3093         }
3094         drm_modeset_unlock_all(dev);
3095
3096         return 0;
3097 }
3098
3099 static int i915_wa_registers(struct seq_file *m, void *unused)
3100 {
3101         int i;
3102         int ret;
3103         struct drm_info_node *node = (struct drm_info_node *) m->private;
3104         struct drm_device *dev = node->minor->dev;
3105         struct drm_i915_private *dev_priv = dev->dev_private;
3106
3107         ret = mutex_lock_interruptible(&dev->struct_mutex);
3108         if (ret)
3109                 return ret;
3110
3111         intel_runtime_pm_get(dev_priv);
3112
3113         seq_printf(m, "Workarounds applied: %d\n", dev_priv->workarounds.count);
3114         for (i = 0; i < dev_priv->workarounds.count; ++i) {
3115                 u32 addr, mask, value, read;
3116                 bool ok;
3117
3118                 addr = dev_priv->workarounds.reg[i].addr;
3119                 mask = dev_priv->workarounds.reg[i].mask;
3120                 value = dev_priv->workarounds.reg[i].value;
3121                 read = I915_READ(addr);
3122                 ok = (value & mask) == (read & mask);
3123                 seq_printf(m, "0x%X: 0x%08X, mask: 0x%08X, read: 0x%08x, status: %s\n",
3124                            addr, value, mask, read, ok ? "OK" : "FAIL");
3125         }
3126
3127         intel_runtime_pm_put(dev_priv);
3128         mutex_unlock(&dev->struct_mutex);
3129
3130         return 0;
3131 }
3132
3133 static int i915_ddb_info(struct seq_file *m, void *unused)
3134 {
3135         struct drm_info_node *node = m->private;
3136         struct drm_device *dev = node->minor->dev;
3137         struct drm_i915_private *dev_priv = dev->dev_private;
3138         struct skl_ddb_allocation *ddb;
3139         struct skl_ddb_entry *entry;
3140         enum pipe pipe;
3141         int plane;
3142
3143         if (INTEL_INFO(dev)->gen < 9)
3144                 return 0;
3145
3146         drm_modeset_lock_all(dev);
3147
3148         ddb = &dev_priv->wm.skl_hw.ddb;
3149
3150         seq_printf(m, "%-15s%8s%8s%8s\n", "", "Start", "End", "Size");
3151
3152         for_each_pipe(dev_priv, pipe) {
3153                 seq_printf(m, "Pipe %c\n", pipe_name(pipe));
3154
3155                 for_each_plane(dev_priv, pipe, plane) {
3156                         entry = &ddb->plane[pipe][plane];
3157                         seq_printf(m, "  Plane%-8d%8u%8u%8u\n", plane + 1,
3158                                    entry->start, entry->end,
3159                                    skl_ddb_entry_size(entry));
3160                 }
3161
3162                 entry = &ddb->plane[pipe][PLANE_CURSOR];
3163                 seq_printf(m, "  %-13s%8u%8u%8u\n", "Cursor", entry->start,
3164                            entry->end, skl_ddb_entry_size(entry));
3165         }
3166
3167         drm_modeset_unlock_all(dev);
3168
3169         return 0;
3170 }
3171
3172 static void drrs_status_per_crtc(struct seq_file *m,
3173                 struct drm_device *dev, struct intel_crtc *intel_crtc)
3174 {
3175         struct intel_encoder *intel_encoder;
3176         struct drm_i915_private *dev_priv = dev->dev_private;
3177         struct i915_drrs *drrs = &dev_priv->drrs;
3178         int vrefresh = 0;
3179
3180         for_each_encoder_on_crtc(dev, &intel_crtc->base, intel_encoder) {
3181                 /* Encoder connected on this CRTC */
3182                 switch (intel_encoder->type) {
3183                 case INTEL_OUTPUT_EDP:
3184                         seq_puts(m, "eDP:\n");
3185                         break;
3186                 case INTEL_OUTPUT_DSI:
3187                         seq_puts(m, "DSI:\n");
3188                         break;
3189                 case INTEL_OUTPUT_HDMI:
3190                         seq_puts(m, "HDMI:\n");
3191                         break;
3192                 case INTEL_OUTPUT_DISPLAYPORT:
3193                         seq_puts(m, "DP:\n");
3194                         break;
3195                 default:
3196                         seq_printf(m, "Other encoder (id=%d).\n",
3197                                                 intel_encoder->type);
3198                         return;
3199                 }
3200         }
3201
3202         if (dev_priv->vbt.drrs_type == STATIC_DRRS_SUPPORT)
3203                 seq_puts(m, "\tVBT: DRRS_type: Static");
3204         else if (dev_priv->vbt.drrs_type == SEAMLESS_DRRS_SUPPORT)
3205                 seq_puts(m, "\tVBT: DRRS_type: Seamless");
3206         else if (dev_priv->vbt.drrs_type == DRRS_NOT_SUPPORTED)
3207                 seq_puts(m, "\tVBT: DRRS_type: None");
3208         else
3209                 seq_puts(m, "\tVBT: DRRS_type: FIXME: Unrecognized Value");
3210
3211         seq_puts(m, "\n\n");
3212
3213         if (to_intel_crtc_state(intel_crtc->base.state)->has_drrs) {
3214                 struct intel_panel *panel;
3215
3216                 mutex_lock(&drrs->mutex);
3217                 /* DRRS Supported */
3218                 seq_puts(m, "\tDRRS Supported: Yes\n");
3219
3220                 /* disable_drrs() will make drrs->dp NULL */
3221                 if (!drrs->dp) {
3222                         seq_puts(m, "Idleness DRRS: Disabled");
3223                         mutex_unlock(&drrs->mutex);
3224                         return;
3225                 }
3226
3227                 panel = &drrs->dp->attached_connector->panel;
3228                 seq_printf(m, "\t\tBusy_frontbuffer_bits: 0x%X",
3229                                         drrs->busy_frontbuffer_bits);
3230
3231                 seq_puts(m, "\n\t\t");
3232                 if (drrs->refresh_rate_type == DRRS_HIGH_RR) {
3233                         seq_puts(m, "DRRS_State: DRRS_HIGH_RR\n");
3234                         vrefresh = panel->fixed_mode->vrefresh;
3235                 } else if (drrs->refresh_rate_type == DRRS_LOW_RR) {
3236                         seq_puts(m, "DRRS_State: DRRS_LOW_RR\n");
3237                         vrefresh = panel->downclock_mode->vrefresh;
3238                 } else {
3239                         seq_printf(m, "DRRS_State: Unknown(%d)\n",
3240                                                 drrs->refresh_rate_type);
3241                         mutex_unlock(&drrs->mutex);
3242                         return;
3243                 }
3244                 seq_printf(m, "\t\tVrefresh: %d", vrefresh);
3245
3246                 seq_puts(m, "\n\t\t");
3247                 mutex_unlock(&drrs->mutex);
3248         } else {
3249                 /* DRRS not supported. Print the VBT parameter*/
3250                 seq_puts(m, "\tDRRS Supported : No");
3251         }
3252         seq_puts(m, "\n");
3253 }
3254
3255 static int i915_drrs_status(struct seq_file *m, void *unused)
3256 {
3257         struct drm_info_node *node = m->private;
3258         struct drm_device *dev = node->minor->dev;
3259         struct intel_crtc *intel_crtc;
3260         int active_crtc_cnt = 0;
3261
3262         for_each_intel_crtc(dev, intel_crtc) {
3263                 drm_modeset_lock(&intel_crtc->base.mutex, NULL);
3264
3265                 if (intel_crtc->base.state->active) {
3266                         active_crtc_cnt++;
3267                         seq_printf(m, "\nCRTC %d:  ", active_crtc_cnt);
3268
3269                         drrs_status_per_crtc(m, dev, intel_crtc);
3270                 }
3271
3272                 drm_modeset_unlock(&intel_crtc->base.mutex);
3273         }
3274
3275         if (!active_crtc_cnt)
3276                 seq_puts(m, "No active crtc found\n");
3277
3278         return 0;
3279 }
3280
3281 struct pipe_crc_info {
3282         const char *name;
3283         struct drm_device *dev;
3284         enum pipe pipe;
3285 };
3286
3287 static int i915_dp_mst_info(struct seq_file *m, void *unused)
3288 {
3289         struct drm_info_node *node = (struct drm_info_node *) m->private;
3290         struct drm_device *dev = node->minor->dev;
3291         struct drm_encoder *encoder;
3292         struct intel_encoder *intel_encoder;
3293         struct intel_digital_port *intel_dig_port;
3294         drm_modeset_lock_all(dev);
3295         list_for_each_entry(encoder, &dev->mode_config.encoder_list, head) {
3296                 intel_encoder = to_intel_encoder(encoder);
3297                 if (intel_encoder->type != INTEL_OUTPUT_DISPLAYPORT)
3298                         continue;
3299                 intel_dig_port = enc_to_dig_port(encoder);
3300                 if (!intel_dig_port->dp.can_mst)
3301                         continue;
3302
3303                 drm_dp_mst_dump_topology(m, &intel_dig_port->dp.mst_mgr);
3304         }
3305         drm_modeset_unlock_all(dev);
3306         return 0;
3307 }
3308
3309 static int i915_pipe_crc_open(struct inode *inode, struct file *filep)
3310 {
3311         struct pipe_crc_info *info = inode->i_private;
3312         struct drm_i915_private *dev_priv = info->dev->dev_private;
3313         struct intel_pipe_crc *pipe_crc = &dev_priv->pipe_crc[info->pipe];
3314
3315         if (info->pipe >= INTEL_INFO(info->dev)->num_pipes)
3316                 return -ENODEV;
3317
3318         spin_lock_irq(&pipe_crc->lock);
3319
3320         if (pipe_crc->opened) {
3321                 spin_unlock_irq(&pipe_crc->lock);
3322                 return -EBUSY; /* already open */
3323         }
3324
3325         pipe_crc->opened = true;
3326         filep->private_data = inode->i_private;
3327
3328         spin_unlock_irq(&pipe_crc->lock);
3329
3330         return 0;
3331 }
3332
3333 static int i915_pipe_crc_release(struct inode *inode, struct file *filep)
3334 {
3335         struct pipe_crc_info *info = inode->i_private;
3336         struct drm_i915_private *dev_priv = info->dev->dev_private;
3337         struct intel_pipe_crc *pipe_crc = &dev_priv->pipe_crc[info->pipe];
3338
3339         spin_lock_irq(&pipe_crc->lock);
3340         pipe_crc->opened = false;
3341         spin_unlock_irq(&pipe_crc->lock);
3342
3343         return 0;
3344 }
3345
3346 /* (6 fields, 8 chars each, space separated (5) + '\n') */
3347 #define PIPE_CRC_LINE_LEN       (6 * 8 + 5 + 1)
3348 /* account for \'0' */
3349 #define PIPE_CRC_BUFFER_LEN     (PIPE_CRC_LINE_LEN + 1)
3350
3351 static int pipe_crc_data_count(struct intel_pipe_crc *pipe_crc)
3352 {
3353         assert_spin_locked(&pipe_crc->lock);
3354         return CIRC_CNT(pipe_crc->head, pipe_crc->tail,
3355                         INTEL_PIPE_CRC_ENTRIES_NR);
3356 }
3357
3358 static ssize_t
3359 i915_pipe_crc_read(struct file *filep, char __user *user_buf, size_t count,
3360                    loff_t *pos)
3361 {
3362         struct pipe_crc_info *info = filep->private_data;
3363         struct drm_device *dev = info->dev;
3364         struct drm_i915_private *dev_priv = dev->dev_private;
3365         struct intel_pipe_crc *pipe_crc = &dev_priv->pipe_crc[info->pipe];
3366         char buf[PIPE_CRC_BUFFER_LEN];
3367         int n_entries;
3368         ssize_t bytes_read;
3369
3370         /*
3371          * Don't allow user space to provide buffers not big enough to hold
3372          * a line of data.
3373          */
3374         if (count < PIPE_CRC_LINE_LEN)
3375                 return -EINVAL;
3376
3377         if (pipe_crc->source == INTEL_PIPE_CRC_SOURCE_NONE)
3378                 return 0;
3379
3380         /* nothing to read */
3381         spin_lock_irq(&pipe_crc->lock);
3382         while (pipe_crc_data_count(pipe_crc) == 0) {
3383                 int ret;
3384
3385                 if (filep->f_flags & O_NONBLOCK) {
3386                         spin_unlock_irq(&pipe_crc->lock);
3387                         return -EAGAIN;
3388                 }
3389
3390                 ret = wait_event_interruptible_lock_irq(pipe_crc->wq,
3391                                 pipe_crc_data_count(pipe_crc), pipe_crc->lock);
3392                 if (ret) {
3393                         spin_unlock_irq(&pipe_crc->lock);
3394                         return ret;
3395                 }
3396         }
3397
3398         /* We now have one or more entries to read */
3399         n_entries = count / PIPE_CRC_LINE_LEN;
3400
3401         bytes_read = 0;
3402         while (n_entries > 0) {
3403                 struct intel_pipe_crc_entry *entry =
3404                         &pipe_crc->entries[pipe_crc->tail];
3405                 int ret;
3406
3407                 if (CIRC_CNT(pipe_crc->head, pipe_crc->tail,
3408                              INTEL_PIPE_CRC_ENTRIES_NR) < 1)
3409                         break;
3410
3411                 BUILD_BUG_ON_NOT_POWER_OF_2(INTEL_PIPE_CRC_ENTRIES_NR);
3412                 pipe_crc->tail = (pipe_crc->tail + 1) & (INTEL_PIPE_CRC_ENTRIES_NR - 1);
3413
3414                 bytes_read += snprintf(buf, PIPE_CRC_BUFFER_LEN,
3415                                        "%8u %8x %8x %8x %8x %8x\n",
3416                                        entry->frame, entry->crc[0],
3417                                        entry->crc[1], entry->crc[2],
3418                                        entry->crc[3], entry->crc[4]);
3419
3420                 spin_unlock_irq(&pipe_crc->lock);
3421
3422                 ret = copy_to_user(user_buf, buf, PIPE_CRC_LINE_LEN);
3423                 if (ret == PIPE_CRC_LINE_LEN)
3424                         return -EFAULT;
3425
3426                 user_buf += PIPE_CRC_LINE_LEN;
3427                 n_entries--;
3428
3429                 spin_lock_irq(&pipe_crc->lock);
3430         }
3431
3432         spin_unlock_irq(&pipe_crc->lock);
3433
3434         return bytes_read;
3435 }
3436
3437 static const struct file_operations i915_pipe_crc_fops = {
3438         .owner = THIS_MODULE,
3439         .open = i915_pipe_crc_open,
3440         .read = i915_pipe_crc_read,
3441         .release = i915_pipe_crc_release,
3442 };
3443
3444 static struct pipe_crc_info i915_pipe_crc_data[I915_MAX_PIPES] = {
3445         {
3446                 .name = "i915_pipe_A_crc",
3447                 .pipe = PIPE_A,
3448         },
3449         {
3450                 .name = "i915_pipe_B_crc",
3451                 .pipe = PIPE_B,
3452         },
3453         {
3454                 .name = "i915_pipe_C_crc",
3455                 .pipe = PIPE_C,
3456         },
3457 };
3458
3459 static int i915_pipe_crc_create(struct dentry *root, struct drm_minor *minor,
3460                                 enum pipe pipe)
3461 {
3462         struct drm_device *dev = minor->dev;
3463         struct dentry *ent;
3464         struct pipe_crc_info *info = &i915_pipe_crc_data[pipe];
3465
3466         info->dev = dev;
3467         ent = debugfs_create_file(info->name, S_IRUGO, root, info,
3468                                   &i915_pipe_crc_fops);
3469         if (!ent)
3470                 return -ENOMEM;
3471
3472         return drm_add_fake_info_node(minor, ent, info);
3473 }
3474
3475 static const char * const pipe_crc_sources[] = {
3476         "none",
3477         "plane1",
3478         "plane2",
3479         "pf",
3480         "pipe",
3481         "TV",
3482         "DP-B",
3483         "DP-C",
3484         "DP-D",
3485         "auto",
3486 };
3487
3488 static const char *pipe_crc_source_name(enum intel_pipe_crc_source source)
3489 {
3490         BUILD_BUG_ON(ARRAY_SIZE(pipe_crc_sources) != INTEL_PIPE_CRC_SOURCE_MAX);
3491         return pipe_crc_sources[source];
3492 }
3493
3494 static int display_crc_ctl_show(struct seq_file *m, void *data)
3495 {
3496         struct drm_device *dev = m->private;
3497         struct drm_i915_private *dev_priv = dev->dev_private;
3498         int i;
3499
3500         for (i = 0; i < I915_MAX_PIPES; i++)
3501                 seq_printf(m, "%c %s\n", pipe_name(i),
3502                            pipe_crc_source_name(dev_priv->pipe_crc[i].source));
3503
3504         return 0;
3505 }
3506
3507 static int display_crc_ctl_open(struct inode *inode, struct file *file)
3508 {
3509         struct drm_device *dev = inode->i_private;
3510
3511         return single_open(file, display_crc_ctl_show, dev);
3512 }
3513
3514 static int i8xx_pipe_crc_ctl_reg(enum intel_pipe_crc_source *source,
3515                                  uint32_t *val)
3516 {
3517         if (*source == INTEL_PIPE_CRC_SOURCE_AUTO)
3518                 *source = INTEL_PIPE_CRC_SOURCE_PIPE;
3519
3520         switch (*source) {
3521         case INTEL_PIPE_CRC_SOURCE_PIPE:
3522                 *val = PIPE_CRC_ENABLE | PIPE_CRC_INCLUDE_BORDER_I8XX;
3523                 break;
3524         case INTEL_PIPE_CRC_SOURCE_NONE:
3525                 *val = 0;
3526                 break;
3527         default:
3528                 return -EINVAL;
3529         }
3530
3531         return 0;
3532 }
3533
3534 static int i9xx_pipe_crc_auto_source(struct drm_device *dev, enum pipe pipe,
3535                                      enum intel_pipe_crc_source *source)
3536 {
3537         struct intel_encoder *encoder;
3538         struct intel_crtc *crtc;
3539         struct intel_digital_port *dig_port;
3540         int ret = 0;
3541
3542         *source = INTEL_PIPE_CRC_SOURCE_PIPE;
3543
3544         drm_modeset_lock_all(dev);
3545         for_each_intel_encoder(dev, encoder) {
3546                 if (!encoder->base.crtc)
3547                         continue;
3548
3549                 crtc = to_intel_crtc(encoder->base.crtc);
3550
3551                 if (crtc->pipe != pipe)
3552                         continue;
3553
3554                 switch (encoder->type) {
3555                 case INTEL_OUTPUT_TVOUT:
3556                         *source = INTEL_PIPE_CRC_SOURCE_TV;
3557                         break;
3558                 case INTEL_OUTPUT_DISPLAYPORT:
3559                 case INTEL_OUTPUT_EDP:
3560                         dig_port = enc_to_dig_port(&encoder->base);
3561                         switch (dig_port->port) {
3562                         case PORT_B:
3563                                 *source = INTEL_PIPE_CRC_SOURCE_DP_B;
3564                                 break;
3565                         case PORT_C:
3566                                 *source = INTEL_PIPE_CRC_SOURCE_DP_C;
3567                                 break;
3568                         case PORT_D:
3569                                 *source = INTEL_PIPE_CRC_SOURCE_DP_D;
3570                                 break;
3571                         default:
3572                                 WARN(1, "nonexisting DP port %c\n",
3573                                      port_name(dig_port->port));
3574                                 break;
3575                         }
3576                         break;
3577                 default:
3578                         break;
3579                 }
3580         }
3581         drm_modeset_unlock_all(dev);
3582
3583         return ret;
3584 }
3585
3586 static int vlv_pipe_crc_ctl_reg(struct drm_device *dev,
3587                                 enum pipe pipe,
3588                                 enum intel_pipe_crc_source *source,
3589                                 uint32_t *val)
3590 {
3591         struct drm_i915_private *dev_priv = dev->dev_private;
3592         bool need_stable_symbols = false;
3593
3594         if (*source == INTEL_PIPE_CRC_SOURCE_AUTO) {
3595                 int ret = i9xx_pipe_crc_auto_source(dev, pipe, source);
3596                 if (ret)
3597                         return ret;
3598         }
3599
3600         switch (*source) {
3601         case INTEL_PIPE_CRC_SOURCE_PIPE:
3602                 *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_PIPE_VLV;
3603                 break;
3604         case INTEL_PIPE_CRC_SOURCE_DP_B:
3605                 *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_DP_B_VLV;
3606                 need_stable_symbols = true;
3607                 break;
3608         case INTEL_PIPE_CRC_SOURCE_DP_C:
3609                 *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_DP_C_VLV;
3610                 need_stable_symbols = true;
3611                 break;
3612         case INTEL_PIPE_CRC_SOURCE_DP_D:
3613                 if (!IS_CHERRYVIEW(dev))
3614                         return -EINVAL;
3615                 *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_DP_D_VLV;
3616                 need_stable_symbols = true;
3617                 break;
3618         case INTEL_PIPE_CRC_SOURCE_NONE:
3619                 *val = 0;
3620                 break;
3621         default:
3622                 return -EINVAL;
3623         }
3624
3625         /*
3626          * When the pipe CRC tap point is after the transcoders we need
3627          * to tweak symbol-level features to produce a deterministic series of
3628          * symbols for a given frame. We need to reset those features only once
3629          * a frame (instead of every nth symbol):
3630          *   - DC-balance: used to ensure a better clock recovery from the data
3631          *     link (SDVO)
3632          *   - DisplayPort scrambling: used for EMI reduction
3633          */
3634         if (need_stable_symbols) {
3635                 uint32_t tmp = I915_READ(PORT_DFT2_G4X);
3636
3637                 tmp |= DC_BALANCE_RESET_VLV;
3638                 switch (pipe) {
3639                 case PIPE_A:
3640                         tmp |= PIPE_A_SCRAMBLE_RESET;
3641                         break;
3642                 case PIPE_B:
3643                         tmp |= PIPE_B_SCRAMBLE_RESET;
3644                         break;
3645                 case PIPE_C:
3646                         tmp |= PIPE_C_SCRAMBLE_RESET;
3647                         break;
3648                 default:
3649                         return -EINVAL;
3650                 }
3651                 I915_WRITE(PORT_DFT2_G4X, tmp);
3652         }
3653
3654         return 0;
3655 }
3656
3657 static int i9xx_pipe_crc_ctl_reg(struct drm_device *dev,
3658                                  enum pipe pipe,
3659                                  enum intel_pipe_crc_source *source,
3660                                  uint32_t *val)
3661 {
3662         struct drm_i915_private *dev_priv = dev->dev_private;
3663         bool need_stable_symbols = false;
3664
3665         if (*source == INTEL_PIPE_CRC_SOURCE_AUTO) {
3666                 int ret = i9xx_pipe_crc_auto_source(dev, pipe, source);
3667                 if (ret)
3668                         return ret;
3669         }
3670
3671         switch (*source) {
3672         case INTEL_PIPE_CRC_SOURCE_PIPE:
3673                 *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_PIPE_I9XX;
3674                 break;
3675         case INTEL_PIPE_CRC_SOURCE_TV:
3676                 if (!SUPPORTS_TV(dev))
3677                         return -EINVAL;
3678                 *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_TV_PRE;
3679                 break;
3680         case INTEL_PIPE_CRC_SOURCE_DP_B:
3681                 if (!IS_G4X(dev))
3682                         return -EINVAL;
3683                 *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_DP_B_G4X;
3684                 need_stable_symbols = true;
3685                 break;
3686         case INTEL_PIPE_CRC_SOURCE_DP_C:
3687                 if (!IS_G4X(dev))
3688                         return -EINVAL;
3689                 *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_DP_C_G4X;
3690                 need_stable_symbols = true;
3691                 break;
3692         case INTEL_PIPE_CRC_SOURCE_DP_D:
3693                 if (!IS_G4X(dev))
3694                         return -EINVAL;
3695                 *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_DP_D_G4X;
3696                 need_stable_symbols = true;
3697                 break;
3698         case INTEL_PIPE_CRC_SOURCE_NONE:
3699                 *val = 0;
3700                 break;
3701         default:
3702                 return -EINVAL;
3703         }
3704
3705         /*
3706          * When the pipe CRC tap point is after the transcoders we need
3707          * to tweak symbol-level features to produce a deterministic series of
3708          * symbols for a given frame. We need to reset those features only once
3709          * a frame (instead of every nth symbol):
3710          *   - DC-balance: used to ensure a better clock recovery from the data
3711          *     link (SDVO)
3712          *   - DisplayPort scrambling: used for EMI reduction
3713          */
3714         if (need_stable_symbols) {
3715                 uint32_t tmp = I915_READ(PORT_DFT2_G4X);
3716
3717                 WARN_ON(!IS_G4X(dev));
3718
3719                 I915_WRITE(PORT_DFT_I9XX,
3720                            I915_READ(PORT_DFT_I9XX) | DC_BALANCE_RESET);
3721
3722                 if (pipe == PIPE_A)
3723                         tmp |= PIPE_A_SCRAMBLE_RESET;
3724                 else
3725                         tmp |= PIPE_B_SCRAMBLE_RESET;
3726
3727                 I915_WRITE(PORT_DFT2_G4X, tmp);
3728         }
3729
3730         return 0;
3731 }
3732
3733 static void vlv_undo_pipe_scramble_reset(struct drm_device *dev,
3734                                          enum pipe pipe)
3735 {
3736         struct drm_i915_private *dev_priv = dev->dev_private;
3737         uint32_t tmp = I915_READ(PORT_DFT2_G4X);
3738
3739         switch (pipe) {
3740         case PIPE_A:
3741                 tmp &= ~PIPE_A_SCRAMBLE_RESET;
3742                 break;
3743         case PIPE_B:
3744                 tmp &= ~PIPE_B_SCRAMBLE_RESET;
3745                 break;
3746         case PIPE_C:
3747                 tmp &= ~PIPE_C_SCRAMBLE_RESET;
3748                 break;
3749         default:
3750                 return;
3751         }
3752         if (!(tmp & PIPE_SCRAMBLE_RESET_MASK))
3753                 tmp &= ~DC_BALANCE_RESET_VLV;
3754         I915_WRITE(PORT_DFT2_G4X, tmp);
3755
3756 }
3757
3758 static void g4x_undo_pipe_scramble_reset(struct drm_device *dev,
3759                                          enum pipe pipe)
3760 {
3761         struct drm_i915_private *dev_priv = dev->dev_private;
3762         uint32_t tmp = I915_READ(PORT_DFT2_G4X);
3763
3764         if (pipe == PIPE_A)
3765                 tmp &= ~PIPE_A_SCRAMBLE_RESET;
3766         else
3767                 tmp &= ~PIPE_B_SCRAMBLE_RESET;
3768         I915_WRITE(PORT_DFT2_G4X, tmp);
3769
3770         if (!(tmp & PIPE_SCRAMBLE_RESET_MASK)) {
3771                 I915_WRITE(PORT_DFT_I9XX,
3772                            I915_READ(PORT_DFT_I9XX) & ~DC_BALANCE_RESET);
3773         }
3774 }
3775
3776 static int ilk_pipe_crc_ctl_reg(enum intel_pipe_crc_source *source,
3777                                 uint32_t *val)
3778 {
3779         if (*source == INTEL_PIPE_CRC_SOURCE_AUTO)
3780                 *source = INTEL_PIPE_CRC_SOURCE_PIPE;
3781
3782         switch (*source) {
3783         case INTEL_PIPE_CRC_SOURCE_PLANE1:
3784                 *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_PRIMARY_ILK;
3785                 break;
3786         case INTEL_PIPE_CRC_SOURCE_PLANE2:
3787                 *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_SPRITE_ILK;
3788                 break;
3789         case INTEL_PIPE_CRC_SOURCE_PIPE:
3790                 *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_PIPE_ILK;
3791                 break;
3792         case INTEL_PIPE_CRC_SOURCE_NONE:
3793                 *val = 0;
3794                 break;
3795         default:
3796                 return -EINVAL;
3797         }
3798
3799         return 0;
3800 }
3801
3802 static void hsw_trans_edp_pipe_A_crc_wa(struct drm_device *dev, bool enable)
3803 {
3804         struct drm_i915_private *dev_priv = dev->dev_private;
3805         struct intel_crtc *crtc =
3806                 to_intel_crtc(dev_priv->pipe_to_crtc_mapping[PIPE_A]);
3807         struct intel_crtc_state *pipe_config;
3808         struct drm_atomic_state *state;
3809         int ret = 0;
3810
3811         drm_modeset_lock_all(dev);
3812         state = drm_atomic_state_alloc(dev);
3813         if (!state) {
3814                 ret = -ENOMEM;
3815                 goto out;
3816         }
3817
3818         state->acquire_ctx = drm_modeset_legacy_acquire_ctx(&crtc->base);
3819         pipe_config = intel_atomic_get_crtc_state(state, crtc);
3820         if (IS_ERR(pipe_config)) {
3821                 ret = PTR_ERR(pipe_config);
3822                 goto out;
3823         }
3824
3825         pipe_config->pch_pfit.force_thru = enable;
3826         if (pipe_config->cpu_transcoder == TRANSCODER_EDP &&
3827             pipe_config->pch_pfit.enabled != enable)
3828                 pipe_config->base.connectors_changed = true;
3829
3830         ret = drm_atomic_commit(state);
3831 out:
3832         drm_modeset_unlock_all(dev);
3833         WARN(ret, "Toggling workaround to %i returns %i\n", enable, ret);
3834         if (ret)
3835                 drm_atomic_state_free(state);
3836 }
3837
3838 static int ivb_pipe_crc_ctl_reg(struct drm_device *dev,
3839                                 enum pipe pipe,
3840                                 enum intel_pipe_crc_source *source,
3841                                 uint32_t *val)
3842 {
3843         if (*source == INTEL_PIPE_CRC_SOURCE_AUTO)
3844                 *source = INTEL_PIPE_CRC_SOURCE_PF;
3845
3846         switch (*source) {
3847         case INTEL_PIPE_CRC_SOURCE_PLANE1:
3848                 *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_PRIMARY_IVB;
3849                 break;
3850         case INTEL_PIPE_CRC_SOURCE_PLANE2:
3851                 *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_SPRITE_IVB;
3852                 break;
3853         case INTEL_PIPE_CRC_SOURCE_PF:
3854                 if (IS_HASWELL(dev) && pipe == PIPE_A)
3855                         hsw_trans_edp_pipe_A_crc_wa(dev, true);
3856
3857                 *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_PF_IVB;
3858                 break;
3859         case INTEL_PIPE_CRC_SOURCE_NONE:
3860                 *val = 0;
3861                 break;
3862         default:
3863                 return -EINVAL;
3864         }
3865
3866         return 0;
3867 }
3868
3869 static int pipe_crc_set_source(struct drm_device *dev, enum pipe pipe,
3870                                enum intel_pipe_crc_source source)
3871 {
3872         struct drm_i915_private *dev_priv = dev->dev_private;
3873         struct intel_pipe_crc *pipe_crc = &dev_priv->pipe_crc[pipe];
3874         struct intel_crtc *crtc = to_intel_crtc(intel_get_crtc_for_pipe(dev,
3875                                                                         pipe));
3876         u32 val = 0; /* shut up gcc */
3877         int ret;
3878
3879         if (pipe_crc->source == source)
3880                 return 0;
3881
3882         /* forbid changing the source without going back to 'none' */
3883         if (pipe_crc->source && source)
3884                 return -EINVAL;
3885
3886         if (!intel_display_power_is_enabled(dev_priv, POWER_DOMAIN_PIPE(pipe))) {
3887                 DRM_DEBUG_KMS("Trying to capture CRC while pipe is off\n");
3888                 return -EIO;
3889         }
3890
3891         if (IS_GEN2(dev))
3892                 ret = i8xx_pipe_crc_ctl_reg(&source, &val);
3893         else if (INTEL_INFO(dev)->gen < 5)
3894                 ret = i9xx_pipe_crc_ctl_reg(dev, pipe, &source, &val);
3895         else if (IS_VALLEYVIEW(dev))
3896                 ret = vlv_pipe_crc_ctl_reg(dev, pipe, &source, &val);
3897         else if (IS_GEN5(dev) || IS_GEN6(dev))
3898                 ret = ilk_pipe_crc_ctl_reg(&source, &val);
3899         else
3900                 ret = ivb_pipe_crc_ctl_reg(dev, pipe, &source, &val);
3901
3902         if (ret != 0)
3903                 return ret;
3904
3905         /* none -> real source transition */
3906         if (source) {
3907                 struct intel_pipe_crc_entry *entries;
3908
3909                 DRM_DEBUG_DRIVER("collecting CRCs for pipe %c, %s\n",
3910                                  pipe_name(pipe), pipe_crc_source_name(source));
3911
3912                 entries = kcalloc(INTEL_PIPE_CRC_ENTRIES_NR,
3913                                   sizeof(pipe_crc->entries[0]),
3914                                   GFP_KERNEL);
3915                 if (!entries)
3916                         return -ENOMEM;
3917
3918                 /*
3919                  * When IPS gets enabled, the pipe CRC changes. Since IPS gets
3920                  * enabled and disabled dynamically based on package C states,
3921                  * user space can't make reliable use of the CRCs, so let's just
3922                  * completely disable it.
3923                  */
3924                 hsw_disable_ips(crtc);
3925
3926                 spin_lock_irq(&pipe_crc->lock);
3927                 kfree(pipe_crc->entries);
3928                 pipe_crc->entries = entries;
3929                 pipe_crc->head = 0;
3930                 pipe_crc->tail = 0;
3931                 spin_unlock_irq(&pipe_crc->lock);
3932         }
3933
3934         pipe_crc->source = source;
3935
3936         I915_WRITE(PIPE_CRC_CTL(pipe), val);
3937         POSTING_READ(PIPE_CRC_CTL(pipe));
3938
3939         /* real source -> none transition */
3940         if (source == INTEL_PIPE_CRC_SOURCE_NONE) {
3941                 struct intel_pipe_crc_entry *entries;
3942                 struct intel_crtc *crtc =
3943                         to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
3944
3945                 DRM_DEBUG_DRIVER("stopping CRCs for pipe %c\n",
3946                                  pipe_name(pipe));
3947
3948                 drm_modeset_lock(&crtc->base.mutex, NULL);
3949                 if (crtc->base.state->active)
3950                         intel_wait_for_vblank(dev, pipe);
3951                 drm_modeset_unlock(&crtc->base.mutex);
3952
3953                 spin_lock_irq(&pipe_crc->lock);
3954                 entries = pipe_crc->entries;
3955                 pipe_crc->entries = NULL;
3956                 pipe_crc->head = 0;
3957                 pipe_crc->tail = 0;
3958                 spin_unlock_irq(&pipe_crc->lock);
3959
3960                 kfree(entries);
3961
3962                 if (IS_G4X(dev))
3963                         g4x_undo_pipe_scramble_reset(dev, pipe);
3964                 else if (IS_VALLEYVIEW(dev))
3965                         vlv_undo_pipe_scramble_reset(dev, pipe);
3966                 else if (IS_HASWELL(dev) && pipe == PIPE_A)
3967                         hsw_trans_edp_pipe_A_crc_wa(dev, false);
3968
3969                 hsw_enable_ips(crtc);
3970         }
3971
3972         return 0;
3973 }
3974
3975 /*
3976  * Parse pipe CRC command strings:
3977  *   command: wsp* object wsp+ name wsp+ source wsp*
3978  *   object: 'pipe'
3979  *   name: (A | B | C)
3980  *   source: (none | plane1 | plane2 | pf)
3981  *   wsp: (#0x20 | #0x9 | #0xA)+
3982  *
3983  * eg.:
3984  *  "pipe A plane1"  ->  Start CRC computations on plane1 of pipe A
3985  *  "pipe A none"    ->  Stop CRC
3986  */
3987 static int display_crc_ctl_tokenize(char *buf, char *words[], int max_words)
3988 {
3989         int n_words = 0;
3990
3991         while (*buf) {
3992                 char *end;
3993
3994                 /* skip leading white space */
3995                 buf = skip_spaces(buf);
3996                 if (!*buf)
3997                         break;  /* end of buffer */
3998
3999                 /* find end of word */
4000                 for (end = buf; *end && !isspace(*end); end++)
4001                         ;
4002
4003                 if (n_words == max_words) {
4004                         DRM_DEBUG_DRIVER("too many words, allowed <= %d\n",
4005                                          max_words);
4006                         return -EINVAL; /* ran out of words[] before bytes */
4007                 }
4008
4009                 if (*end)
4010                         *end++ = '\0';
4011                 words[n_words++] = buf;
4012                 buf = end;
4013         }
4014
4015         return n_words;
4016 }
4017
4018 enum intel_pipe_crc_object {
4019         PIPE_CRC_OBJECT_PIPE,
4020 };
4021
4022 static const char * const pipe_crc_objects[] = {
4023         "pipe",
4024 };
4025
4026 static int
4027 display_crc_ctl_parse_object(const char *buf, enum intel_pipe_crc_object *o)
4028 {
4029         int i;
4030
4031         for (i = 0; i < ARRAY_SIZE(pipe_crc_objects); i++)
4032                 if (!strcmp(buf, pipe_crc_objects[i])) {
4033                         *o = i;
4034                         return 0;
4035                     }
4036
4037         return -EINVAL;
4038 }
4039
4040 static int display_crc_ctl_parse_pipe(const char *buf, enum pipe *pipe)
4041 {
4042         const char name = buf[0];
4043
4044         if (name < 'A' || name >= pipe_name(I915_MAX_PIPES))
4045                 return -EINVAL;
4046
4047         *pipe = name - 'A';
4048
4049         return 0;
4050 }
4051
4052 static int
4053 display_crc_ctl_parse_source(const char *buf, enum intel_pipe_crc_source *s)
4054 {
4055         int i;
4056
4057         for (i = 0; i < ARRAY_SIZE(pipe_crc_sources); i++)
4058                 if (!strcmp(buf, pipe_crc_sources[i])) {
4059                         *s = i;
4060                         return 0;
4061                     }
4062
4063         return -EINVAL;
4064 }
4065
4066 static int display_crc_ctl_parse(struct drm_device *dev, char *buf, size_t len)
4067 {
4068 #define N_WORDS 3
4069         int n_words;
4070         char *words[N_WORDS];
4071         enum pipe pipe;
4072         enum intel_pipe_crc_object object;
4073         enum intel_pipe_crc_source source;
4074
4075         n_words = display_crc_ctl_tokenize(buf, words, N_WORDS);
4076         if (n_words != N_WORDS) {
4077                 DRM_DEBUG_DRIVER("tokenize failed, a command is %d words\n",
4078                                  N_WORDS);
4079                 return -EINVAL;
4080         }
4081
4082         if (display_crc_ctl_parse_object(words[0], &object) < 0) {
4083                 DRM_DEBUG_DRIVER("unknown object %s\n", words[0]);
4084                 return -EINVAL;
4085         }
4086
4087         if (display_crc_ctl_parse_pipe(words[1], &pipe) < 0) {
4088                 DRM_DEBUG_DRIVER("unknown pipe %s\n", words[1]);
4089                 return -EINVAL;
4090         }
4091
4092         if (display_crc_ctl_parse_source(words[2], &source) < 0) {
4093                 DRM_DEBUG_DRIVER("unknown source %s\n", words[2]);
4094                 return -EINVAL;
4095         }
4096
4097         return pipe_crc_set_source(dev, pipe, source);
4098 }
4099
4100 static ssize_t display_crc_ctl_write(struct file *file, const char __user *ubuf,
4101                                      size_t len, loff_t *offp)
4102 {
4103         struct seq_file *m = file->private_data;
4104         struct drm_device *dev = m->private;
4105         char *tmpbuf;
4106         int ret;
4107
4108         if (len == 0)
4109                 return 0;
4110
4111         if (len > PAGE_SIZE - 1) {
4112                 DRM_DEBUG_DRIVER("expected <%lu bytes into pipe crc control\n",
4113                                  PAGE_SIZE);
4114                 return -E2BIG;
4115         }
4116
4117         tmpbuf = kmalloc(len + 1, GFP_KERNEL);
4118         if (!tmpbuf)
4119                 return -ENOMEM;
4120
4121         if (copy_from_user(tmpbuf, ubuf, len)) {
4122                 ret = -EFAULT;
4123                 goto out;
4124         }
4125         tmpbuf[len] = '\0';
4126
4127         ret = display_crc_ctl_parse(dev, tmpbuf, len);
4128
4129 out:
4130         kfree(tmpbuf);
4131         if (ret < 0)
4132                 return ret;
4133
4134         *offp += len;
4135         return len;
4136 }
4137
4138 static const struct file_operations i915_display_crc_ctl_fops = {
4139         .owner = THIS_MODULE,
4140         .open = display_crc_ctl_open,
4141         .read = seq_read,
4142         .llseek = seq_lseek,
4143         .release = single_release,
4144         .write = display_crc_ctl_write
4145 };
4146
4147 static ssize_t i915_displayport_test_active_write(struct file *file,
4148                                             const char __user *ubuf,
4149                                             size_t len, loff_t *offp)
4150 {
4151         char *input_buffer;
4152         int status = 0;
4153         struct drm_device *dev;
4154         struct drm_connector *connector;
4155         struct list_head *connector_list;
4156         struct intel_dp *intel_dp;
4157         int val = 0;
4158
4159         dev = ((struct seq_file *)file->private_data)->private;
4160
4161         connector_list = &dev->mode_config.connector_list;
4162
4163         if (len == 0)
4164                 return 0;
4165
4166         input_buffer = kmalloc(len + 1, GFP_KERNEL);
4167         if (!input_buffer)
4168                 return -ENOMEM;
4169
4170         if (copy_from_user(input_buffer, ubuf, len)) {
4171                 status = -EFAULT;
4172                 goto out;
4173         }
4174
4175         input_buffer[len] = '\0';
4176         DRM_DEBUG_DRIVER("Copied %d bytes from user\n", (unsigned int)len);
4177
4178         list_for_each_entry(connector, connector_list, head) {
4179
4180                 if (connector->connector_type !=
4181                     DRM_MODE_CONNECTOR_DisplayPort)
4182                         continue;
4183
4184                 if (connector->status == connector_status_connected &&
4185                     connector->encoder != NULL) {
4186                         intel_dp = enc_to_intel_dp(connector->encoder);
4187                         status = kstrtoint(input_buffer, 10, &val);
4188                         if (status < 0)
4189                                 goto out;
4190                         DRM_DEBUG_DRIVER("Got %d for test active\n", val);
4191                         /* To prevent erroneous activation of the compliance
4192                          * testing code, only accept an actual value of 1 here
4193                          */
4194                         if (val == 1)
4195                                 intel_dp->compliance_test_active = 1;
4196                         else
4197                                 intel_dp->compliance_test_active = 0;
4198                 }
4199         }
4200 out:
4201         kfree(input_buffer);
4202         if (status < 0)
4203                 return status;
4204
4205         *offp += len;
4206         return len;
4207 }
4208
4209 static int i915_displayport_test_active_show(struct seq_file *m, void *data)
4210 {
4211         struct drm_device *dev = m->private;
4212         struct drm_connector *connector;
4213         struct list_head *connector_list = &dev->mode_config.connector_list;
4214         struct intel_dp *intel_dp;
4215
4216         list_for_each_entry(connector, connector_list, head) {
4217
4218                 if (connector->connector_type !=
4219                     DRM_MODE_CONNECTOR_DisplayPort)
4220                         continue;
4221
4222                 if (connector->status == connector_status_connected &&
4223                     connector->encoder != NULL) {
4224                         intel_dp = enc_to_intel_dp(connector->encoder);
4225                         if (intel_dp->compliance_test_active)
4226                                 seq_puts(m, "1");
4227                         else
4228                                 seq_puts(m, "0");
4229                 } else
4230                         seq_puts(m, "0");
4231         }
4232
4233         return 0;
4234 }
4235
4236 static int i915_displayport_test_active_open(struct inode *inode,
4237                                        struct file *file)
4238 {
4239         struct drm_device *dev = inode->i_private;
4240
4241         return single_open(file, i915_displayport_test_active_show, dev);
4242 }
4243
4244 static const struct file_operations i915_displayport_test_active_fops = {
4245         .owner = THIS_MODULE,
4246         .open = i915_displayport_test_active_open,
4247         .read = seq_read,
4248         .llseek = seq_lseek,
4249         .release = single_release,
4250         .write = i915_displayport_test_active_write
4251 };
4252
4253 static int i915_displayport_test_data_show(struct seq_file *m, void *data)
4254 {
4255         struct drm_device *dev = m->private;
4256         struct drm_connector *connector;
4257         struct list_head *connector_list = &dev->mode_config.connector_list;
4258         struct intel_dp *intel_dp;
4259
4260         list_for_each_entry(connector, connector_list, head) {
4261
4262                 if (connector->connector_type !=
4263                     DRM_MODE_CONNECTOR_DisplayPort)
4264                         continue;
4265
4266                 if (connector->status == connector_status_connected &&
4267                     connector->encoder != NULL) {
4268                         intel_dp = enc_to_intel_dp(connector->encoder);
4269                         seq_printf(m, "%lx", intel_dp->compliance_test_data);
4270                 } else
4271                         seq_puts(m, "0");
4272         }
4273
4274         return 0;
4275 }
4276 static int i915_displayport_test_data_open(struct inode *inode,
4277                                        struct file *file)
4278 {
4279         struct drm_device *dev = inode->i_private;
4280
4281         return single_open(file, i915_displayport_test_data_show, dev);
4282 }
4283
4284 static const struct file_operations i915_displayport_test_data_fops = {
4285         .owner = THIS_MODULE,
4286         .open = i915_displayport_test_data_open,
4287         .read = seq_read,
4288         .llseek = seq_lseek,
4289         .release = single_release
4290 };
4291
4292 static int i915_displayport_test_type_show(struct seq_file *m, void *data)
4293 {
4294         struct drm_device *dev = m->private;
4295         struct drm_connector *connector;
4296         struct list_head *connector_list = &dev->mode_config.connector_list;
4297         struct intel_dp *intel_dp;
4298
4299         list_for_each_entry(connector, connector_list, head) {
4300
4301                 if (connector->connector_type !=
4302                     DRM_MODE_CONNECTOR_DisplayPort)
4303                         continue;
4304
4305                 if (connector->status == connector_status_connected &&
4306                     connector->encoder != NULL) {
4307                         intel_dp = enc_to_intel_dp(connector->encoder);
4308                         seq_printf(m, "%02lx", intel_dp->compliance_test_type);
4309                 } else
4310                         seq_puts(m, "0");
4311         }
4312
4313         return 0;
4314 }
4315
4316 static int i915_displayport_test_type_open(struct inode *inode,
4317                                        struct file *file)
4318 {
4319         struct drm_device *dev = inode->i_private;
4320
4321         return single_open(file, i915_displayport_test_type_show, dev);
4322 }
4323
4324 static const struct file_operations i915_displayport_test_type_fops = {
4325         .owner = THIS_MODULE,
4326         .open = i915_displayport_test_type_open,
4327         .read = seq_read,
4328         .llseek = seq_lseek,
4329         .release = single_release
4330 };
4331
4332 static void wm_latency_show(struct seq_file *m, const uint16_t wm[8])
4333 {
4334         struct drm_device *dev = m->private;
4335         int level;
4336         int num_levels;
4337
4338         if (IS_CHERRYVIEW(dev))
4339                 num_levels = 3;
4340         else if (IS_VALLEYVIEW(dev))
4341                 num_levels = 1;
4342         else
4343                 num_levels = ilk_wm_max_level(dev) + 1;
4344
4345         drm_modeset_lock_all(dev);
4346
4347         for (level = 0; level < num_levels; level++) {
4348                 unsigned int latency = wm[level];
4349
4350                 /*
4351                  * - WM1+ latency values in 0.5us units
4352                  * - latencies are in us on gen9/vlv/chv
4353                  */
4354                 if (INTEL_INFO(dev)->gen >= 9 || IS_VALLEYVIEW(dev))
4355                         latency *= 10;
4356                 else if (level > 0)
4357                         latency *= 5;
4358
4359                 seq_printf(m, "WM%d %u (%u.%u usec)\n",
4360                            level, wm[level], latency / 10, latency % 10);
4361         }
4362
4363         drm_modeset_unlock_all(dev);
4364 }
4365
4366 static int pri_wm_latency_show(struct seq_file *m, void *data)
4367 {
4368         struct drm_device *dev = m->private;
4369         struct drm_i915_private *dev_priv = dev->dev_private;
4370         const uint16_t *latencies;
4371
4372         if (INTEL_INFO(dev)->gen >= 9)
4373                 latencies = dev_priv->wm.skl_latency;
4374         else
4375                 latencies = to_i915(dev)->wm.pri_latency;
4376
4377         wm_latency_show(m, latencies);
4378
4379         return 0;
4380 }
4381
4382 static int spr_wm_latency_show(struct seq_file *m, void *data)
4383 {
4384         struct drm_device *dev = m->private;
4385         struct drm_i915_private *dev_priv = dev->dev_private;
4386         const uint16_t *latencies;
4387
4388         if (INTEL_INFO(dev)->gen >= 9)
4389                 latencies = dev_priv->wm.skl_latency;
4390         else
4391                 latencies = to_i915(dev)->wm.spr_latency;
4392
4393         wm_latency_show(m, latencies);
4394
4395         return 0;
4396 }
4397
4398 static int cur_wm_latency_show(struct seq_file *m, void *data)
4399 {
4400         struct drm_device *dev = m->private;
4401         struct drm_i915_private *dev_priv = dev->dev_private;
4402         const uint16_t *latencies;
4403
4404         if (INTEL_INFO(dev)->gen >= 9)
4405                 latencies = dev_priv->wm.skl_latency;
4406         else
4407                 latencies = to_i915(dev)->wm.cur_latency;
4408
4409         wm_latency_show(m, latencies);
4410
4411         return 0;
4412 }
4413
4414 static int pri_wm_latency_open(struct inode *inode, struct file *file)
4415 {
4416         struct drm_device *dev = inode->i_private;
4417
4418         if (INTEL_INFO(dev)->gen < 5)
4419                 return -ENODEV;
4420
4421         return single_open(file, pri_wm_latency_show, dev);
4422 }
4423
4424 static int spr_wm_latency_open(struct inode *inode, struct file *file)
4425 {
4426         struct drm_device *dev = inode->i_private;
4427
4428         if (HAS_GMCH_DISPLAY(dev))
4429                 return -ENODEV;
4430
4431         return single_open(file, spr_wm_latency_show, dev);
4432 }
4433
4434 static int cur_wm_latency_open(struct inode *inode, struct file *file)
4435 {
4436         struct drm_device *dev = inode->i_private;
4437
4438         if (HAS_GMCH_DISPLAY(dev))
4439                 return -ENODEV;
4440
4441         return single_open(file, cur_wm_latency_show, dev);
4442 }
4443
4444 static ssize_t wm_latency_write(struct file *file, const char __user *ubuf,
4445                                 size_t len, loff_t *offp, uint16_t wm[8])
4446 {
4447         struct seq_file *m = file->private_data;
4448         struct drm_device *dev = m->private;
4449         uint16_t new[8] = { 0 };
4450         int num_levels;
4451         int level;
4452         int ret;
4453         char tmp[32];
4454
4455         if (IS_CHERRYVIEW(dev))
4456                 num_levels = 3;
4457         else if (IS_VALLEYVIEW(dev))
4458                 num_levels = 1;
4459         else
4460                 num_levels = ilk_wm_max_level(dev) + 1;
4461
4462         if (len >= sizeof(tmp))
4463                 return -EINVAL;
4464
4465         if (copy_from_user(tmp, ubuf, len))
4466                 return -EFAULT;
4467
4468         tmp[len] = '\0';
4469
4470         ret = sscanf(tmp, "%hu %hu %hu %hu %hu %hu %hu %hu",
4471                      &new[0], &new[1], &new[2], &new[3],
4472                      &new[4], &new[5], &new[6], &new[7]);
4473         if (ret != num_levels)
4474                 return -EINVAL;
4475
4476         drm_modeset_lock_all(dev);
4477
4478         for (level = 0; level < num_levels; level++)
4479                 wm[level] = new[level];
4480
4481         drm_modeset_unlock_all(dev);
4482
4483         return len;
4484 }
4485
4486
4487 static ssize_t pri_wm_latency_write(struct file *file, const char __user *ubuf,
4488                                     size_t len, loff_t *offp)
4489 {
4490         struct seq_file *m = file->private_data;
4491         struct drm_device *dev = m->private;
4492         struct drm_i915_private *dev_priv = dev->dev_private;
4493         uint16_t *latencies;
4494
4495         if (INTEL_INFO(dev)->gen >= 9)
4496                 latencies = dev_priv->wm.skl_latency;
4497         else
4498                 latencies = to_i915(dev)->wm.pri_latency;
4499
4500         return wm_latency_write(file, ubuf, len, offp, latencies);
4501 }
4502
4503 static ssize_t spr_wm_latency_write(struct file *file, const char __user *ubuf,
4504                                     size_t len, loff_t *offp)
4505 {
4506         struct seq_file *m = file->private_data;
4507         struct drm_device *dev = m->private;
4508         struct drm_i915_private *dev_priv = dev->dev_private;
4509         uint16_t *latencies;
4510
4511         if (INTEL_INFO(dev)->gen >= 9)
4512                 latencies = dev_priv->wm.skl_latency;
4513         else
4514                 latencies = to_i915(dev)->wm.spr_latency;
4515
4516         return wm_latency_write(file, ubuf, len, offp, latencies);
4517 }
4518
4519 static ssize_t cur_wm_latency_write(struct file *file, const char __user *ubuf,
4520                                     size_t len, loff_t *offp)
4521 {
4522         struct seq_file *m = file->private_data;
4523         struct drm_device *dev = m->private;
4524         struct drm_i915_private *dev_priv = dev->dev_private;
4525         uint16_t *latencies;
4526
4527         if (INTEL_INFO(dev)->gen >= 9)
4528                 latencies = dev_priv->wm.skl_latency;
4529         else
4530                 latencies = to_i915(dev)->wm.cur_latency;
4531
4532         return wm_latency_write(file, ubuf, len, offp, latencies);
4533 }
4534
4535 static const struct file_operations i915_pri_wm_latency_fops = {
4536         .owner = THIS_MODULE,
4537         .open = pri_wm_latency_open,
4538         .read = seq_read,
4539         .llseek = seq_lseek,
4540         .release = single_release,
4541         .write = pri_wm_latency_write
4542 };
4543
4544 static const struct file_operations i915_spr_wm_latency_fops = {
4545         .owner = THIS_MODULE,
4546         .open = spr_wm_latency_open,
4547         .read = seq_read,
4548         .llseek = seq_lseek,
4549         .release = single_release,
4550         .write = spr_wm_latency_write
4551 };
4552
4553 static const struct file_operations i915_cur_wm_latency_fops = {
4554         .owner = THIS_MODULE,
4555         .open = cur_wm_latency_open,
4556         .read = seq_read,
4557         .llseek = seq_lseek,
4558         .release = single_release,
4559         .write = cur_wm_latency_write
4560 };
4561
4562 static int
4563 i915_wedged_get(void *data, u64 *val)
4564 {
4565         struct drm_device *dev = data;
4566         struct drm_i915_private *dev_priv = dev->dev_private;
4567
4568         *val = atomic_read(&dev_priv->gpu_error.reset_counter);
4569
4570         return 0;
4571 }
4572
4573 static int
4574 i915_wedged_set(void *data, u64 val)
4575 {
4576         struct drm_device *dev = data;
4577         struct drm_i915_private *dev_priv = dev->dev_private;
4578
4579         /*
4580          * There is no safeguard against this debugfs entry colliding
4581          * with the hangcheck calling same i915_handle_error() in
4582          * parallel, causing an explosion. For now we assume that the
4583          * test harness is responsible enough not to inject gpu hangs
4584          * while it is writing to 'i915_wedged'
4585          */
4586
4587         if (i915_reset_in_progress(&dev_priv->gpu_error))
4588                 return -EAGAIN;
4589
4590         intel_runtime_pm_get(dev_priv);
4591
4592         i915_handle_error(dev, val,
4593                           "Manually setting wedged to %llu", val);
4594
4595         intel_runtime_pm_put(dev_priv);
4596
4597         return 0;
4598 }
4599
4600 DEFINE_SIMPLE_ATTRIBUTE(i915_wedged_fops,
4601                         i915_wedged_get, i915_wedged_set,
4602                         "%llu\n");
4603
4604 static int
4605 i915_ring_stop_get(void *data, u64 *val)
4606 {
4607         struct drm_device *dev = data;
4608         struct drm_i915_private *dev_priv = dev->dev_private;
4609
4610         *val = dev_priv->gpu_error.stop_rings;
4611
4612         return 0;
4613 }
4614
4615 static int
4616 i915_ring_stop_set(void *data, u64 val)
4617 {
4618         struct drm_device *dev = data;
4619         struct drm_i915_private *dev_priv = dev->dev_private;
4620         int ret;
4621
4622         DRM_DEBUG_DRIVER("Stopping rings 0x%08llx\n", val);
4623
4624         ret = mutex_lock_interruptible(&dev->struct_mutex);
4625         if (ret)
4626                 return ret;
4627
4628         dev_priv->gpu_error.stop_rings = val;
4629         mutex_unlock(&dev->struct_mutex);
4630
4631         return 0;
4632 }
4633
4634 DEFINE_SIMPLE_ATTRIBUTE(i915_ring_stop_fops,
4635                         i915_ring_stop_get, i915_ring_stop_set,
4636                         "0x%08llx\n");
4637
4638 static int
4639 i915_ring_missed_irq_get(void *data, u64 *val)
4640 {
4641         struct drm_device *dev = data;
4642         struct drm_i915_private *dev_priv = dev->dev_private;
4643
4644         *val = dev_priv->gpu_error.missed_irq_rings;
4645         return 0;
4646 }
4647
4648 static int
4649 i915_ring_missed_irq_set(void *data, u64 val)
4650 {
4651         struct drm_device *dev = data;
4652         struct drm_i915_private *dev_priv = dev->dev_private;
4653         int ret;
4654
4655         /* Lock against concurrent debugfs callers */
4656         ret = mutex_lock_interruptible(&dev->struct_mutex);
4657         if (ret)
4658                 return ret;
4659         dev_priv->gpu_error.missed_irq_rings = val;
4660         mutex_unlock(&dev->struct_mutex);
4661
4662         return 0;
4663 }
4664
4665 DEFINE_SIMPLE_ATTRIBUTE(i915_ring_missed_irq_fops,
4666                         i915_ring_missed_irq_get, i915_ring_missed_irq_set,
4667                         "0x%08llx\n");
4668
4669 static int
4670 i915_ring_test_irq_get(void *data, u64 *val)
4671 {
4672         struct drm_device *dev = data;
4673         struct drm_i915_private *dev_priv = dev->dev_private;
4674
4675         *val = dev_priv->gpu_error.test_irq_rings;
4676
4677         return 0;
4678 }
4679
4680 static int
4681 i915_ring_test_irq_set(void *data, u64 val)
4682 {
4683         struct drm_device *dev = data;
4684         struct drm_i915_private *dev_priv = dev->dev_private;
4685         int ret;
4686
4687         DRM_DEBUG_DRIVER("Masking interrupts on rings 0x%08llx\n", val);
4688
4689         /* Lock against concurrent debugfs callers */
4690         ret = mutex_lock_interruptible(&dev->struct_mutex);
4691         if (ret)
4692                 return ret;
4693
4694         dev_priv->gpu_error.test_irq_rings = val;
4695         mutex_unlock(&dev->struct_mutex);
4696
4697         return 0;
4698 }
4699
4700 DEFINE_SIMPLE_ATTRIBUTE(i915_ring_test_irq_fops,
4701                         i915_ring_test_irq_get, i915_ring_test_irq_set,
4702                         "0x%08llx\n");
4703
4704 #define DROP_UNBOUND 0x1
4705 #define DROP_BOUND 0x2
4706 #define DROP_RETIRE 0x4
4707 #define DROP_ACTIVE 0x8
4708 #define DROP_ALL (DROP_UNBOUND | \
4709                   DROP_BOUND | \
4710                   DROP_RETIRE | \
4711                   DROP_ACTIVE)
4712 static int
4713 i915_drop_caches_get(void *data, u64 *val)
4714 {
4715         *val = DROP_ALL;
4716
4717         return 0;
4718 }
4719
4720 static int
4721 i915_drop_caches_set(void *data, u64 val)
4722 {
4723         struct drm_device *dev = data;
4724         struct drm_i915_private *dev_priv = dev->dev_private;
4725         int ret;
4726
4727         DRM_DEBUG("Dropping caches: 0x%08llx\n", val);
4728
4729         /* No need to check and wait for gpu resets, only libdrm auto-restarts
4730          * on ioctls on -EAGAIN. */
4731         ret = mutex_lock_interruptible(&dev->struct_mutex);
4732         if (ret)
4733                 return ret;
4734
4735         if (val & DROP_ACTIVE) {
4736                 ret = i915_gpu_idle(dev);
4737                 if (ret)
4738                         goto unlock;
4739         }
4740
4741         if (val & (DROP_RETIRE | DROP_ACTIVE))
4742                 i915_gem_retire_requests(dev);
4743
4744         if (val & DROP_BOUND)
4745                 i915_gem_shrink(dev_priv, LONG_MAX, I915_SHRINK_BOUND);
4746
4747         if (val & DROP_UNBOUND)
4748                 i915_gem_shrink(dev_priv, LONG_MAX, I915_SHRINK_UNBOUND);
4749
4750 unlock:
4751         mutex_unlock(&dev->struct_mutex);
4752
4753         return ret;
4754 }
4755
4756 DEFINE_SIMPLE_ATTRIBUTE(i915_drop_caches_fops,
4757                         i915_drop_caches_get, i915_drop_caches_set,
4758                         "0x%08llx\n");
4759
4760 static int
4761 i915_max_freq_get(void *data, u64 *val)
4762 {
4763         struct drm_device *dev = data;
4764         struct drm_i915_private *dev_priv = dev->dev_private;
4765         int ret;
4766
4767         if (INTEL_INFO(dev)->gen < 6)
4768                 return -ENODEV;
4769
4770         flush_delayed_work(&dev_priv->rps.delayed_resume_work);
4771
4772         ret = mutex_lock_interruptible(&dev_priv->rps.hw_lock);
4773         if (ret)
4774                 return ret;
4775
4776         *val = intel_gpu_freq(dev_priv, dev_priv->rps.max_freq_softlimit);
4777         mutex_unlock(&dev_priv->rps.hw_lock);
4778
4779         return 0;
4780 }
4781
4782 static int
4783 i915_max_freq_set(void *data, u64 val)
4784 {
4785         struct drm_device *dev = data;
4786         struct drm_i915_private *dev_priv = dev->dev_private;
4787         u32 hw_max, hw_min;
4788         int ret;
4789
4790         if (INTEL_INFO(dev)->gen < 6)
4791                 return -ENODEV;
4792
4793         flush_delayed_work(&dev_priv->rps.delayed_resume_work);
4794
4795         DRM_DEBUG_DRIVER("Manually setting max freq to %llu\n", val);
4796
4797         ret = mutex_lock_interruptible(&dev_priv->rps.hw_lock);
4798         if (ret)
4799                 return ret;
4800
4801         /*
4802          * Turbo will still be enabled, but won't go above the set value.
4803          */
4804         val = intel_freq_opcode(dev_priv, val);
4805
4806         hw_max = dev_priv->rps.max_freq;
4807         hw_min = dev_priv->rps.min_freq;
4808
4809         if (val < hw_min || val > hw_max || val < dev_priv->rps.min_freq_softlimit) {
4810                 mutex_unlock(&dev_priv->rps.hw_lock);
4811                 return -EINVAL;
4812         }
4813
4814         dev_priv->rps.max_freq_softlimit = val;
4815
4816         intel_set_rps(dev, val);
4817
4818         mutex_unlock(&dev_priv->rps.hw_lock);
4819
4820         return 0;
4821 }
4822
4823 DEFINE_SIMPLE_ATTRIBUTE(i915_max_freq_fops,
4824                         i915_max_freq_get, i915_max_freq_set,
4825                         "%llu\n");
4826
4827 static int
4828 i915_min_freq_get(void *data, u64 *val)
4829 {
4830         struct drm_device *dev = data;
4831         struct drm_i915_private *dev_priv = dev->dev_private;
4832         int ret;
4833
4834         if (INTEL_INFO(dev)->gen < 6)
4835                 return -ENODEV;
4836
4837         flush_delayed_work(&dev_priv->rps.delayed_resume_work);
4838
4839         ret = mutex_lock_interruptible(&dev_priv->rps.hw_lock);
4840         if (ret)
4841                 return ret;
4842
4843         *val = intel_gpu_freq(dev_priv, dev_priv->rps.min_freq_softlimit);
4844         mutex_unlock(&dev_priv->rps.hw_lock);
4845
4846         return 0;
4847 }
4848
4849 static int
4850 i915_min_freq_set(void *data, u64 val)
4851 {
4852         struct drm_device *dev = data;
4853         struct drm_i915_private *dev_priv = dev->dev_private;
4854         u32 hw_max, hw_min;
4855         int ret;
4856
4857         if (INTEL_INFO(dev)->gen < 6)
4858                 return -ENODEV;
4859
4860         flush_delayed_work(&dev_priv->rps.delayed_resume_work);
4861
4862         DRM_DEBUG_DRIVER("Manually setting min freq to %llu\n", val);
4863
4864         ret = mutex_lock_interruptible(&dev_priv->rps.hw_lock);
4865         if (ret)
4866                 return ret;
4867
4868         /*
4869          * Turbo will still be enabled, but won't go below the set value.
4870          */
4871         val = intel_freq_opcode(dev_priv, val);
4872
4873         hw_max = dev_priv->rps.max_freq;
4874         hw_min = dev_priv->rps.min_freq;
4875
4876         if (val < hw_min || val > hw_max || val > dev_priv->rps.max_freq_softlimit) {
4877                 mutex_unlock(&dev_priv->rps.hw_lock);
4878                 return -EINVAL;
4879         }
4880
4881         dev_priv->rps.min_freq_softlimit = val;
4882
4883         intel_set_rps(dev, val);
4884
4885         mutex_unlock(&dev_priv->rps.hw_lock);
4886
4887         return 0;
4888 }
4889
4890 DEFINE_SIMPLE_ATTRIBUTE(i915_min_freq_fops,
4891                         i915_min_freq_get, i915_min_freq_set,
4892                         "%llu\n");
4893
4894 static int
4895 i915_cache_sharing_get(void *data, u64 *val)
4896 {
4897         struct drm_device *dev = data;
4898         struct drm_i915_private *dev_priv = dev->dev_private;
4899         u32 snpcr;
4900         int ret;
4901
4902         if (!(IS_GEN6(dev) || IS_GEN7(dev)))
4903                 return -ENODEV;
4904
4905         ret = mutex_lock_interruptible(&dev->struct_mutex);
4906         if (ret)
4907                 return ret;
4908         intel_runtime_pm_get(dev_priv);
4909
4910         snpcr = I915_READ(GEN6_MBCUNIT_SNPCR);
4911
4912         intel_runtime_pm_put(dev_priv);
4913         mutex_unlock(&dev_priv->dev->struct_mutex);
4914
4915         *val = (snpcr & GEN6_MBC_SNPCR_MASK) >> GEN6_MBC_SNPCR_SHIFT;
4916
4917         return 0;
4918 }
4919
4920 static int
4921 i915_cache_sharing_set(void *data, u64 val)
4922 {
4923         struct drm_device *dev = data;
4924         struct drm_i915_private *dev_priv = dev->dev_private;
4925         u32 snpcr;
4926
4927         if (!(IS_GEN6(dev) || IS_GEN7(dev)))
4928                 return -ENODEV;
4929
4930         if (val > 3)
4931                 return -EINVAL;
4932
4933         intel_runtime_pm_get(dev_priv);
4934         DRM_DEBUG_DRIVER("Manually setting uncore sharing to %llu\n", val);
4935
4936         /* Update the cache sharing policy here as well */
4937         snpcr = I915_READ(GEN6_MBCUNIT_SNPCR);
4938         snpcr &= ~GEN6_MBC_SNPCR_MASK;
4939         snpcr |= (val << GEN6_MBC_SNPCR_SHIFT);
4940         I915_WRITE(GEN6_MBCUNIT_SNPCR, snpcr);
4941
4942         intel_runtime_pm_put(dev_priv);
4943         return 0;
4944 }
4945
4946 DEFINE_SIMPLE_ATTRIBUTE(i915_cache_sharing_fops,
4947                         i915_cache_sharing_get, i915_cache_sharing_set,
4948                         "%llu\n");
4949
4950 struct sseu_dev_status {
4951         unsigned int slice_total;
4952         unsigned int subslice_total;
4953         unsigned int subslice_per_slice;
4954         unsigned int eu_total;
4955         unsigned int eu_per_subslice;
4956 };
4957
4958 static void cherryview_sseu_device_status(struct drm_device *dev,
4959                                           struct sseu_dev_status *stat)
4960 {
4961         struct drm_i915_private *dev_priv = dev->dev_private;
4962         int ss_max = 2;
4963         int ss;
4964         u32 sig1[ss_max], sig2[ss_max];
4965
4966         sig1[0] = I915_READ(CHV_POWER_SS0_SIG1);
4967         sig1[1] = I915_READ(CHV_POWER_SS1_SIG1);
4968         sig2[0] = I915_READ(CHV_POWER_SS0_SIG2);
4969         sig2[1] = I915_READ(CHV_POWER_SS1_SIG2);
4970
4971         for (ss = 0; ss < ss_max; ss++) {
4972                 unsigned int eu_cnt;
4973
4974                 if (sig1[ss] & CHV_SS_PG_ENABLE)
4975                         /* skip disabled subslice */
4976                         continue;
4977
4978                 stat->slice_total = 1;
4979                 stat->subslice_per_slice++;
4980                 eu_cnt = ((sig1[ss] & CHV_EU08_PG_ENABLE) ? 0 : 2) +
4981                          ((sig1[ss] & CHV_EU19_PG_ENABLE) ? 0 : 2) +
4982                          ((sig1[ss] & CHV_EU210_PG_ENABLE) ? 0 : 2) +
4983                          ((sig2[ss] & CHV_EU311_PG_ENABLE) ? 0 : 2);
4984                 stat->eu_total += eu_cnt;
4985                 stat->eu_per_subslice = max(stat->eu_per_subslice, eu_cnt);
4986         }
4987         stat->subslice_total = stat->subslice_per_slice;
4988 }
4989
4990 static void gen9_sseu_device_status(struct drm_device *dev,
4991                                     struct sseu_dev_status *stat)
4992 {
4993         struct drm_i915_private *dev_priv = dev->dev_private;
4994         int s_max = 3, ss_max = 4;
4995         int s, ss;
4996         u32 s_reg[s_max], eu_reg[2*s_max], eu_mask[2];
4997
4998         /* BXT has a single slice and at most 3 subslices. */
4999         if (IS_BROXTON(dev)) {
5000                 s_max = 1;
5001                 ss_max = 3;
5002         }
5003
5004         for (s = 0; s < s_max; s++) {
5005                 s_reg[s] = I915_READ(GEN9_SLICE_PGCTL_ACK(s));
5006                 eu_reg[2*s] = I915_READ(GEN9_SS01_EU_PGCTL_ACK(s));
5007                 eu_reg[2*s + 1] = I915_READ(GEN9_SS23_EU_PGCTL_ACK(s));
5008         }
5009
5010         eu_mask[0] = GEN9_PGCTL_SSA_EU08_ACK |
5011                      GEN9_PGCTL_SSA_EU19_ACK |
5012                      GEN9_PGCTL_SSA_EU210_ACK |
5013                      GEN9_PGCTL_SSA_EU311_ACK;
5014         eu_mask[1] = GEN9_PGCTL_SSB_EU08_ACK |
5015                      GEN9_PGCTL_SSB_EU19_ACK |
5016                      GEN9_PGCTL_SSB_EU210_ACK |
5017                      GEN9_PGCTL_SSB_EU311_ACK;
5018
5019         for (s = 0; s < s_max; s++) {
5020                 unsigned int ss_cnt = 0;
5021
5022                 if ((s_reg[s] & GEN9_PGCTL_SLICE_ACK) == 0)
5023                         /* skip disabled slice */
5024                         continue;
5025
5026                 stat->slice_total++;
5027
5028                 if (IS_SKYLAKE(dev))
5029                         ss_cnt = INTEL_INFO(dev)->subslice_per_slice;
5030
5031                 for (ss = 0; ss < ss_max; ss++) {
5032                         unsigned int eu_cnt;
5033
5034                         if (IS_BROXTON(dev) &&
5035                             !(s_reg[s] & (GEN9_PGCTL_SS_ACK(ss))))
5036                                 /* skip disabled subslice */
5037                                 continue;
5038
5039                         if (IS_BROXTON(dev))
5040                                 ss_cnt++;
5041
5042                         eu_cnt = 2 * hweight32(eu_reg[2*s + ss/2] &
5043                                                eu_mask[ss%2]);
5044                         stat->eu_total += eu_cnt;
5045                         stat->eu_per_subslice = max(stat->eu_per_subslice,
5046                                                     eu_cnt);
5047                 }
5048
5049                 stat->subslice_total += ss_cnt;
5050                 stat->subslice_per_slice = max(stat->subslice_per_slice,
5051                                                ss_cnt);
5052         }
5053 }
5054
5055 static void broadwell_sseu_device_status(struct drm_device *dev,
5056                                          struct sseu_dev_status *stat)
5057 {
5058         struct drm_i915_private *dev_priv = dev->dev_private;
5059         int s;
5060         u32 slice_info = I915_READ(GEN8_GT_SLICE_INFO);
5061
5062         stat->slice_total = hweight32(slice_info & GEN8_LSLICESTAT_MASK);
5063
5064         if (stat->slice_total) {
5065                 stat->subslice_per_slice = INTEL_INFO(dev)->subslice_per_slice;
5066                 stat->subslice_total = stat->slice_total *
5067                                        stat->subslice_per_slice;
5068                 stat->eu_per_subslice = INTEL_INFO(dev)->eu_per_subslice;
5069                 stat->eu_total = stat->eu_per_subslice * stat->subslice_total;
5070
5071                 /* subtract fused off EU(s) from enabled slice(s) */
5072                 for (s = 0; s < stat->slice_total; s++) {
5073                         u8 subslice_7eu = INTEL_INFO(dev)->subslice_7eu[s];
5074
5075                         stat->eu_total -= hweight8(subslice_7eu);
5076                 }
5077         }
5078 }
5079
5080 static int i915_sseu_status(struct seq_file *m, void *unused)
5081 {
5082         struct drm_info_node *node = (struct drm_info_node *) m->private;
5083         struct drm_device *dev = node->minor->dev;
5084         struct sseu_dev_status stat;
5085
5086         if (INTEL_INFO(dev)->gen < 8)
5087                 return -ENODEV;
5088
5089         seq_puts(m, "SSEU Device Info\n");
5090         seq_printf(m, "  Available Slice Total: %u\n",
5091                    INTEL_INFO(dev)->slice_total);
5092         seq_printf(m, "  Available Subslice Total: %u\n",
5093                    INTEL_INFO(dev)->subslice_total);
5094         seq_printf(m, "  Available Subslice Per Slice: %u\n",
5095                    INTEL_INFO(dev)->subslice_per_slice);
5096         seq_printf(m, "  Available EU Total: %u\n",
5097                    INTEL_INFO(dev)->eu_total);
5098         seq_printf(m, "  Available EU Per Subslice: %u\n",
5099                    INTEL_INFO(dev)->eu_per_subslice);
5100         seq_printf(m, "  Has Slice Power Gating: %s\n",
5101                    yesno(INTEL_INFO(dev)->has_slice_pg));
5102         seq_printf(m, "  Has Subslice Power Gating: %s\n",
5103                    yesno(INTEL_INFO(dev)->has_subslice_pg));
5104         seq_printf(m, "  Has EU Power Gating: %s\n",
5105                    yesno(INTEL_INFO(dev)->has_eu_pg));
5106
5107         seq_puts(m, "SSEU Device Status\n");
5108         memset(&stat, 0, sizeof(stat));
5109         if (IS_CHERRYVIEW(dev)) {
5110                 cherryview_sseu_device_status(dev, &stat);
5111         } else if (IS_BROADWELL(dev)) {
5112                 broadwell_sseu_device_status(dev, &stat);
5113         } else if (INTEL_INFO(dev)->gen >= 9) {
5114                 gen9_sseu_device_status(dev, &stat);
5115         }
5116         seq_printf(m, "  Enabled Slice Total: %u\n",
5117                    stat.slice_total);
5118         seq_printf(m, "  Enabled Subslice Total: %u\n",
5119                    stat.subslice_total);
5120         seq_printf(m, "  Enabled Subslice Per Slice: %u\n",
5121                    stat.subslice_per_slice);
5122         seq_printf(m, "  Enabled EU Total: %u\n",
5123                    stat.eu_total);
5124         seq_printf(m, "  Enabled EU Per Subslice: %u\n",
5125                    stat.eu_per_subslice);
5126
5127         return 0;
5128 }
5129
5130 static int i915_forcewake_open(struct inode *inode, struct file *file)
5131 {
5132         struct drm_device *dev = inode->i_private;
5133         struct drm_i915_private *dev_priv = dev->dev_private;
5134
5135         if (INTEL_INFO(dev)->gen < 6)
5136                 return 0;
5137
5138         intel_runtime_pm_get(dev_priv);
5139         intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
5140
5141         return 0;
5142 }
5143
5144 static int i915_forcewake_release(struct inode *inode, struct file *file)
5145 {
5146         struct drm_device *dev = inode->i_private;
5147         struct drm_i915_private *dev_priv = dev->dev_private;
5148
5149         if (INTEL_INFO(dev)->gen < 6)
5150                 return 0;
5151
5152         intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
5153         intel_runtime_pm_put(dev_priv);
5154
5155         return 0;
5156 }
5157
5158 static const struct file_operations i915_forcewake_fops = {
5159         .owner = THIS_MODULE,
5160         .open = i915_forcewake_open,
5161         .release = i915_forcewake_release,
5162 };
5163
5164 static int i915_forcewake_create(struct dentry *root, struct drm_minor *minor)
5165 {
5166         struct drm_device *dev = minor->dev;
5167         struct dentry *ent;
5168
5169         ent = debugfs_create_file("i915_forcewake_user",
5170                                   S_IRUSR,
5171                                   root, dev,
5172                                   &i915_forcewake_fops);
5173         if (!ent)
5174                 return -ENOMEM;
5175
5176         return drm_add_fake_info_node(minor, ent, &i915_forcewake_fops);
5177 }
5178
5179 static int i915_debugfs_create(struct dentry *root,
5180                                struct drm_minor *minor,
5181                                const char *name,
5182                                const struct file_operations *fops)
5183 {
5184         struct drm_device *dev = minor->dev;
5185         struct dentry *ent;
5186
5187         ent = debugfs_create_file(name,
5188                                   S_IRUGO | S_IWUSR,
5189                                   root, dev,
5190                                   fops);
5191         if (!ent)
5192                 return -ENOMEM;
5193
5194         return drm_add_fake_info_node(minor, ent, fops);
5195 }
5196
5197 static const struct drm_info_list i915_debugfs_list[] = {
5198         {"i915_capabilities", i915_capabilities, 0},
5199         {"i915_gem_objects", i915_gem_object_info, 0},
5200         {"i915_gem_gtt", i915_gem_gtt_info, 0},
5201         {"i915_gem_pinned", i915_gem_gtt_info, 0, (void *) PINNED_LIST},
5202         {"i915_gem_active", i915_gem_object_list_info, 0, (void *) ACTIVE_LIST},
5203         {"i915_gem_inactive", i915_gem_object_list_info, 0, (void *) INACTIVE_LIST},
5204         {"i915_gem_stolen", i915_gem_stolen_list_info },
5205         {"i915_gem_pageflip", i915_gem_pageflip_info, 0},
5206         {"i915_gem_request", i915_gem_request_info, 0},
5207         {"i915_gem_seqno", i915_gem_seqno_info, 0},
5208         {"i915_gem_fence_regs", i915_gem_fence_regs_info, 0},
5209         {"i915_gem_interrupt", i915_interrupt_info, 0},
5210         {"i915_gem_hws", i915_hws_info, 0, (void *)RCS},
5211         {"i915_gem_hws_blt", i915_hws_info, 0, (void *)BCS},
5212         {"i915_gem_hws_bsd", i915_hws_info, 0, (void *)VCS},
5213         {"i915_gem_hws_vebox", i915_hws_info, 0, (void *)VECS},
5214         {"i915_gem_batch_pool", i915_gem_batch_pool_info, 0},
5215         {"i915_guc_info", i915_guc_info, 0},
5216         {"i915_guc_load_status", i915_guc_load_status_info, 0},
5217         {"i915_guc_log_dump", i915_guc_log_dump, 0},
5218         {"i915_frequency_info", i915_frequency_info, 0},
5219         {"i915_hangcheck_info", i915_hangcheck_info, 0},
5220         {"i915_drpc_info", i915_drpc_info, 0},
5221         {"i915_emon_status", i915_emon_status, 0},
5222         {"i915_ring_freq_table", i915_ring_freq_table, 0},
5223         {"i915_frontbuffer_tracking", i915_frontbuffer_tracking, 0},
5224         {"i915_fbc_status", i915_fbc_status, 0},
5225         {"i915_ips_status", i915_ips_status, 0},
5226         {"i915_sr_status", i915_sr_status, 0},
5227         {"i915_opregion", i915_opregion, 0},
5228         {"i915_gem_framebuffer", i915_gem_framebuffer_info, 0},
5229         {"i915_context_status", i915_context_status, 0},
5230         {"i915_dump_lrc", i915_dump_lrc, 0},
5231         {"i915_execlists", i915_execlists, 0},
5232         {"i915_forcewake_domains", i915_forcewake_domains, 0},
5233         {"i915_swizzle_info", i915_swizzle_info, 0},
5234         {"i915_ppgtt_info", i915_ppgtt_info, 0},
5235         {"i915_llc", i915_llc, 0},
5236         {"i915_edp_psr_status", i915_edp_psr_status, 0},
5237         {"i915_sink_crc_eDP1", i915_sink_crc, 0},
5238         {"i915_energy_uJ", i915_energy_uJ, 0},
5239         {"i915_runtime_pm_status", i915_runtime_pm_status, 0},
5240         {"i915_power_domain_info", i915_power_domain_info, 0},
5241         {"i915_display_info", i915_display_info, 0},
5242         {"i915_semaphore_status", i915_semaphore_status, 0},
5243         {"i915_shared_dplls_info", i915_shared_dplls_info, 0},
5244         {"i915_dp_mst_info", i915_dp_mst_info, 0},
5245         {"i915_wa_registers", i915_wa_registers, 0},
5246         {"i915_ddb_info", i915_ddb_info, 0},
5247         {"i915_sseu_status", i915_sseu_status, 0},
5248         {"i915_drrs_status", i915_drrs_status, 0},
5249         {"i915_rps_boost_info", i915_rps_boost_info, 0},
5250 };
5251 #define I915_DEBUGFS_ENTRIES ARRAY_SIZE(i915_debugfs_list)
5252
5253 static const struct i915_debugfs_files {
5254         const char *name;
5255         const struct file_operations *fops;
5256 } i915_debugfs_files[] = {
5257         {"i915_wedged", &i915_wedged_fops},
5258         {"i915_max_freq", &i915_max_freq_fops},
5259         {"i915_min_freq", &i915_min_freq_fops},
5260         {"i915_cache_sharing", &i915_cache_sharing_fops},
5261         {"i915_ring_stop", &i915_ring_stop_fops},
5262         {"i915_ring_missed_irq", &i915_ring_missed_irq_fops},
5263         {"i915_ring_test_irq", &i915_ring_test_irq_fops},
5264         {"i915_gem_drop_caches", &i915_drop_caches_fops},
5265         {"i915_error_state", &i915_error_state_fops},
5266         {"i915_next_seqno", &i915_next_seqno_fops},
5267         {"i915_display_crc_ctl", &i915_display_crc_ctl_fops},
5268         {"i915_pri_wm_latency", &i915_pri_wm_latency_fops},
5269         {"i915_spr_wm_latency", &i915_spr_wm_latency_fops},
5270         {"i915_cur_wm_latency", &i915_cur_wm_latency_fops},
5271         {"i915_fbc_false_color", &i915_fbc_fc_fops},
5272         {"i915_dp_test_data", &i915_displayport_test_data_fops},
5273         {"i915_dp_test_type", &i915_displayport_test_type_fops},
5274         {"i915_dp_test_active", &i915_displayport_test_active_fops}
5275 };
5276
5277 void intel_display_crc_init(struct drm_device *dev)
5278 {
5279         struct drm_i915_private *dev_priv = dev->dev_private;
5280         enum pipe pipe;
5281
5282         for_each_pipe(dev_priv, pipe) {
5283                 struct intel_pipe_crc *pipe_crc = &dev_priv->pipe_crc[pipe];
5284
5285                 pipe_crc->opened = false;
5286                 spin_lock_init(&pipe_crc->lock);
5287                 init_waitqueue_head(&pipe_crc->wq);
5288         }
5289 }
5290
5291 int i915_debugfs_init(struct drm_minor *minor)
5292 {
5293         int ret, i;
5294
5295         ret = i915_forcewake_create(minor->debugfs_root, minor);
5296         if (ret)
5297                 return ret;
5298
5299         for (i = 0; i < ARRAY_SIZE(i915_pipe_crc_data); i++) {
5300                 ret = i915_pipe_crc_create(minor->debugfs_root, minor, i);
5301                 if (ret)
5302                         return ret;
5303         }
5304
5305         for (i = 0; i < ARRAY_SIZE(i915_debugfs_files); i++) {
5306                 ret = i915_debugfs_create(minor->debugfs_root, minor,
5307                                           i915_debugfs_files[i].name,
5308                                           i915_debugfs_files[i].fops);
5309                 if (ret)
5310                         return ret;
5311         }
5312
5313         return drm_debugfs_create_files(i915_debugfs_list,
5314                                         I915_DEBUGFS_ENTRIES,
5315                                         minor->debugfs_root, minor);
5316 }
5317
5318 void i915_debugfs_cleanup(struct drm_minor *minor)
5319 {
5320         int i;
5321
5322         drm_debugfs_remove_files(i915_debugfs_list,
5323                                  I915_DEBUGFS_ENTRIES, minor);
5324
5325         drm_debugfs_remove_files((struct drm_info_list *) &i915_forcewake_fops,
5326                                  1, minor);
5327
5328         for (i = 0; i < ARRAY_SIZE(i915_pipe_crc_data); i++) {
5329                 struct drm_info_list *info_list =
5330                         (struct drm_info_list *)&i915_pipe_crc_data[i];
5331
5332                 drm_debugfs_remove_files(info_list, 1, minor);
5333         }
5334
5335         for (i = 0; i < ARRAY_SIZE(i915_debugfs_files); i++) {
5336                 struct drm_info_list *info_list =
5337                         (struct drm_info_list *) i915_debugfs_files[i].fops;
5338
5339                 drm_debugfs_remove_files(info_list, 1, minor);
5340         }
5341 }
5342
5343 struct dpcd_block {
5344         /* DPCD dump start address. */
5345         unsigned int offset;
5346         /* DPCD dump end address, inclusive. If unset, .size will be used. */
5347         unsigned int end;
5348         /* DPCD dump size. Used if .end is unset. If unset, defaults to 1. */
5349         size_t size;
5350         /* Only valid for eDP. */
5351         bool edp;
5352 };
5353
5354 static const struct dpcd_block i915_dpcd_debug[] = {
5355         { .offset = DP_DPCD_REV, .size = DP_RECEIVER_CAP_SIZE },
5356         { .offset = DP_PSR_SUPPORT, .end = DP_PSR_CAPS },
5357         { .offset = DP_DOWNSTREAM_PORT_0, .size = 16 },
5358         { .offset = DP_LINK_BW_SET, .end = DP_EDP_CONFIGURATION_SET },
5359         { .offset = DP_SINK_COUNT, .end = DP_ADJUST_REQUEST_LANE2_3 },
5360         { .offset = DP_SET_POWER },
5361         { .offset = DP_EDP_DPCD_REV },
5362         { .offset = DP_EDP_GENERAL_CAP_1, .end = DP_EDP_GENERAL_CAP_3 },
5363         { .offset = DP_EDP_DISPLAY_CONTROL_REGISTER, .end = DP_EDP_BACKLIGHT_FREQ_CAP_MAX_LSB },
5364         { .offset = DP_EDP_DBC_MINIMUM_BRIGHTNESS_SET, .end = DP_EDP_DBC_MAXIMUM_BRIGHTNESS_SET },
5365 };
5366
5367 static int i915_dpcd_show(struct seq_file *m, void *data)
5368 {
5369         struct drm_connector *connector = m->private;
5370         struct intel_dp *intel_dp =
5371                 enc_to_intel_dp(&intel_attached_encoder(connector)->base);
5372         uint8_t buf[16];
5373         ssize_t err;
5374         int i;
5375
5376         if (connector->status != connector_status_connected)
5377                 return -ENODEV;
5378
5379         for (i = 0; i < ARRAY_SIZE(i915_dpcd_debug); i++) {
5380                 const struct dpcd_block *b = &i915_dpcd_debug[i];
5381                 size_t size = b->end ? b->end - b->offset + 1 : (b->size ?: 1);
5382
5383                 if (b->edp &&
5384                     connector->connector_type != DRM_MODE_CONNECTOR_eDP)
5385                         continue;
5386
5387                 /* low tech for now */
5388                 if (WARN_ON(size > sizeof(buf)))
5389                         continue;
5390
5391                 err = drm_dp_dpcd_read(&intel_dp->aux, b->offset, buf, size);
5392                 if (err <= 0) {
5393                         DRM_ERROR("dpcd read (%zu bytes at %u) failed (%zd)\n",
5394                                   size, b->offset, err);
5395                         continue;
5396                 }
5397
5398                 seq_printf(m, "%04x: %*ph\n", b->offset, (int) size, buf);
5399         }
5400
5401         return 0;
5402 }
5403
5404 static int i915_dpcd_open(struct inode *inode, struct file *file)
5405 {
5406         return single_open(file, i915_dpcd_show, inode->i_private);
5407 }
5408
5409 static const struct file_operations i915_dpcd_fops = {
5410         .owner = THIS_MODULE,
5411         .open = i915_dpcd_open,
5412         .read = seq_read,
5413         .llseek = seq_lseek,
5414         .release = single_release,
5415 };
5416
5417 /**
5418  * i915_debugfs_connector_add - add i915 specific connector debugfs files
5419  * @connector: pointer to a registered drm_connector
5420  *
5421  * Cleanup will be done by drm_connector_unregister() through a call to
5422  * drm_debugfs_connector_remove().
5423  *
5424  * Returns 0 on success, negative error codes on error.
5425  */
5426 int i915_debugfs_connector_add(struct drm_connector *connector)
5427 {
5428         struct dentry *root = connector->debugfs_entry;
5429
5430         /* The connector must have been registered beforehands. */
5431         if (!root)
5432                 return -ENODEV;
5433
5434         if (connector->connector_type == DRM_MODE_CONNECTOR_DisplayPort ||
5435             connector->connector_type == DRM_MODE_CONNECTOR_eDP)
5436                 debugfs_create_file("i915_dpcd", S_IRUGO, root, connector,
5437                                     &i915_dpcd_fops);
5438
5439         return 0;
5440 }