drm/gma500: Add generic code for clock calculation
[firefly-linux-kernel-4.4.55.git] / drivers / gpu / drm / gma500 / psb_intel_display.c
1 /*
2  * Copyright Â© 2006-2011 Intel Corporation
3  *
4  * This program is free software; you can redistribute it and/or modify it
5  * under the terms and conditions of the GNU General Public License,
6  * version 2, as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope it will be useful, but WITHOUT
9  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
10  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
11  * more details.
12  *
13  * You should have received a copy of the GNU General Public License along with
14  * this program; if not, write to the Free Software Foundation, Inc.,
15  * 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
16  *
17  * Authors:
18  *      Eric Anholt <eric@anholt.net>
19  */
20
21 #include <linux/i2c.h>
22 #include <linux/pm_runtime.h>
23
24 #include <drm/drmP.h>
25 #include "framebuffer.h"
26 #include "psb_drv.h"
27 #include "psb_intel_drv.h"
28 #include "psb_intel_reg.h"
29 #include "psb_intel_display.h"
30 #include "power.h"
31
32 struct psb_intel_clock_t {
33         /* given values */
34         int n;
35         int m1, m2;
36         int p1, p2;
37         /* derived values */
38         int dot;
39         int vco;
40         int m;
41         int p;
42 };
43
44 struct psb_intel_range_t {
45         int min, max;
46 };
47
48 struct psb_intel_p2_t {
49         int dot_limit;
50         int p2_slow, p2_fast;
51 };
52
53 struct psb_intel_limit_t {
54         struct psb_intel_range_t dot, vco, n, m, m1, m2, p, p1;
55         struct psb_intel_p2_t p2;
56 };
57
58 #define INTEL_LIMIT_I9XX_SDVO_DAC   0
59 #define INTEL_LIMIT_I9XX_LVDS       1
60
61 static const struct psb_intel_limit_t psb_intel_limits[] = {
62         {                       /* INTEL_LIMIT_I9XX_SDVO_DAC */
63          .dot = {.min = 20000, .max = 400000},
64          .vco = {.min = 1400000, .max = 2800000},
65          .n = {.min = 1, .max = 6},
66          .m = {.min = 70, .max = 120},
67          .m1 = {.min = 8, .max = 18},
68          .m2 = {.min = 3, .max = 7},
69          .p = {.min = 5, .max = 80},
70          .p1 = {.min = 1, .max = 8},
71          .p2 = {.dot_limit = 200000,
72                 .p2_slow = 10, .p2_fast = 5},
73          },
74         {                       /* INTEL_LIMIT_I9XX_LVDS */
75          .dot = {.min = 20000, .max = 400000},
76          .vco = {.min = 1400000, .max = 2800000},
77          .n = {.min = 1, .max = 6},
78          .m = {.min = 70, .max = 120},
79          .m1 = {.min = 8, .max = 18},
80          .m2 = {.min = 3, .max = 7},
81          .p = {.min = 7, .max = 98},
82          .p1 = {.min = 1, .max = 8},
83          /* The single-channel range is 25-112Mhz, and dual-channel
84           * is 80-224Mhz.  Prefer single channel as much as possible.
85           */
86          .p2 = {.dot_limit = 112000,
87                 .p2_slow = 14, .p2_fast = 7},
88          },
89 };
90
91 static const struct psb_intel_limit_t *psb_intel_limit(struct drm_crtc *crtc)
92 {
93         const struct psb_intel_limit_t *limit;
94
95         if (psb_intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
96                 limit = &psb_intel_limits[INTEL_LIMIT_I9XX_LVDS];
97         else
98                 limit = &psb_intel_limits[INTEL_LIMIT_I9XX_SDVO_DAC];
99         return limit;
100 }
101
102 static void psb_intel_clock(int refclk, struct psb_intel_clock_t *clock)
103 {
104         clock->m = 5 * (clock->m1 + 2) + (clock->m2 + 2);
105         clock->p = clock->p1 * clock->p2;
106         clock->vco = refclk * clock->m / (clock->n + 2);
107         clock->dot = clock->vco / clock->p;
108 }
109
110 /**
111  * Returns whether any output on the specified pipe is of the specified type
112  */
113 bool psb_intel_pipe_has_type(struct drm_crtc *crtc, int type)
114 {
115         struct drm_device *dev = crtc->dev;
116         struct drm_mode_config *mode_config = &dev->mode_config;
117         struct drm_connector *l_entry;
118
119         list_for_each_entry(l_entry, &mode_config->connector_list, head) {
120                 if (l_entry->encoder && l_entry->encoder->crtc == crtc) {
121                         struct psb_intel_encoder *psb_intel_encoder =
122                                         psb_intel_attached_encoder(l_entry);
123                         if (psb_intel_encoder->type == type)
124                                 return true;
125                 }
126         }
127         return false;
128 }
129
130 #define INTELPllInvalid(s)   { /* ErrorF (s) */; return false; }
131 /**
132  * Returns whether the given set of divisors are valid for a given refclk with
133  * the given connectors.
134  */
135
136 static bool psb_intel_PLL_is_valid(struct drm_crtc *crtc,
137                                struct psb_intel_clock_t *clock)
138 {
139         const struct psb_intel_limit_t *limit = psb_intel_limit(crtc);
140
141         if (clock->p1 < limit->p1.min || limit->p1.max < clock->p1)
142                 INTELPllInvalid("p1 out of range\n");
143         if (clock->p < limit->p.min || limit->p.max < clock->p)
144                 INTELPllInvalid("p out of range\n");
145         if (clock->m2 < limit->m2.min || limit->m2.max < clock->m2)
146                 INTELPllInvalid("m2 out of range\n");
147         if (clock->m1 < limit->m1.min || limit->m1.max < clock->m1)
148                 INTELPllInvalid("m1 out of range\n");
149         if (clock->m1 <= clock->m2)
150                 INTELPllInvalid("m1 <= m2\n");
151         if (clock->m < limit->m.min || limit->m.max < clock->m)
152                 INTELPllInvalid("m out of range\n");
153         if (clock->n < limit->n.min || limit->n.max < clock->n)
154                 INTELPllInvalid("n out of range\n");
155         if (clock->vco < limit->vco.min || limit->vco.max < clock->vco)
156                 INTELPllInvalid("vco out of range\n");
157         /* XXX: We may need to be checking "Dot clock"
158          * depending on the multiplier, connector, etc.,
159          * rather than just a single range.
160          */
161         if (clock->dot < limit->dot.min || limit->dot.max < clock->dot)
162                 INTELPllInvalid("dot out of range\n");
163
164         return true;
165 }
166
167 /**
168  * Returns a set of divisors for the desired target clock with the given
169  * refclk, or FALSE.  The returned values represent the clock equation:
170  * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
171  */
172 static bool psb_intel_find_best_PLL(struct drm_crtc *crtc, int target,
173                                 int refclk,
174                                 struct psb_intel_clock_t *best_clock)
175 {
176         struct drm_device *dev = crtc->dev;
177         struct psb_intel_clock_t clock;
178         const struct psb_intel_limit_t *limit = psb_intel_limit(crtc);
179         int err = target;
180
181         if (psb_intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) &&
182             (REG_READ(LVDS) & LVDS_PORT_EN) != 0) {
183                 /*
184                  * For LVDS, if the panel is on, just rely on its current
185                  * settings for dual-channel.  We haven't figured out how to
186                  * reliably set up different single/dual channel state, if we
187                  * even can.
188                  */
189                 if ((REG_READ(LVDS) & LVDS_CLKB_POWER_MASK) ==
190                     LVDS_CLKB_POWER_UP)
191                         clock.p2 = limit->p2.p2_fast;
192                 else
193                         clock.p2 = limit->p2.p2_slow;
194         } else {
195                 if (target < limit->p2.dot_limit)
196                         clock.p2 = limit->p2.p2_slow;
197                 else
198                         clock.p2 = limit->p2.p2_fast;
199         }
200
201         memset(best_clock, 0, sizeof(*best_clock));
202
203         for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
204              clock.m1++) {
205                 for (clock.m2 = limit->m2.min;
206                      clock.m2 < clock.m1 && clock.m2 <= limit->m2.max;
207                      clock.m2++) {
208                         for (clock.n = limit->n.min;
209                              clock.n <= limit->n.max; clock.n++) {
210                                 for (clock.p1 = limit->p1.min;
211                                      clock.p1 <= limit->p1.max;
212                                      clock.p1++) {
213                                         int this_err;
214
215                                         psb_intel_clock(refclk, &clock);
216
217                                         if (!psb_intel_PLL_is_valid
218                                             (crtc, &clock))
219                                                 continue;
220
221                                         this_err = abs(clock.dot - target);
222                                         if (this_err < err) {
223                                                 *best_clock = clock;
224                                                 err = this_err;
225                                         }
226                                 }
227                         }
228                 }
229         }
230
231         return err != target;
232 }
233
234 void psb_intel_wait_for_vblank(struct drm_device *dev)
235 {
236         /* Wait for 20ms, i.e. one cycle at 50hz. */
237         mdelay(20);
238 }
239
240 static int psb_intel_pipe_set_base(struct drm_crtc *crtc,
241                             int x, int y, struct drm_framebuffer *old_fb)
242 {
243         struct drm_device *dev = crtc->dev;
244         struct drm_psb_private *dev_priv = dev->dev_private;
245         struct psb_intel_crtc *psb_intel_crtc = to_psb_intel_crtc(crtc);
246         struct psb_framebuffer *psbfb = to_psb_fb(crtc->fb);
247         int pipe = psb_intel_crtc->pipe;
248         const struct psb_offset *map = &dev_priv->regmap[pipe];
249         unsigned long start, offset;
250         u32 dspcntr;
251         int ret = 0;
252
253         if (!gma_power_begin(dev, true))
254                 return 0;
255
256         /* no fb bound */
257         if (!crtc->fb) {
258                 dev_dbg(dev->dev, "No FB bound\n");
259                 goto psb_intel_pipe_cleaner;
260         }
261
262         /* We are displaying this buffer, make sure it is actually loaded
263            into the GTT */
264         ret = psb_gtt_pin(psbfb->gtt);
265         if (ret < 0)
266                 goto psb_intel_pipe_set_base_exit;
267         start = psbfb->gtt->offset;
268
269         offset = y * crtc->fb->pitches[0] + x * (crtc->fb->bits_per_pixel / 8);
270
271         REG_WRITE(map->stride, crtc->fb->pitches[0]);
272
273         dspcntr = REG_READ(map->cntr);
274         dspcntr &= ~DISPPLANE_PIXFORMAT_MASK;
275
276         switch (crtc->fb->bits_per_pixel) {
277         case 8:
278                 dspcntr |= DISPPLANE_8BPP;
279                 break;
280         case 16:
281                 if (crtc->fb->depth == 15)
282                         dspcntr |= DISPPLANE_15_16BPP;
283                 else
284                         dspcntr |= DISPPLANE_16BPP;
285                 break;
286         case 24:
287         case 32:
288                 dspcntr |= DISPPLANE_32BPP_NO_ALPHA;
289                 break;
290         default:
291                 dev_err(dev->dev, "Unknown color depth\n");
292                 ret = -EINVAL;
293                 psb_gtt_unpin(psbfb->gtt);
294                 goto psb_intel_pipe_set_base_exit;
295         }
296         REG_WRITE(map->cntr, dspcntr);
297
298         REG_WRITE(map->base, start + offset);
299         REG_READ(map->base);
300
301 psb_intel_pipe_cleaner:
302         /* If there was a previous display we can now unpin it */
303         if (old_fb)
304                 psb_gtt_unpin(to_psb_fb(old_fb)->gtt);
305
306 psb_intel_pipe_set_base_exit:
307         gma_power_end(dev);
308         return ret;
309 }
310
311 /**
312  * Sets the power management mode of the pipe and plane.
313  *
314  * This code should probably grow support for turning the cursor off and back
315  * on appropriately at the same time as we're turning the pipe off/on.
316  */
317 static void psb_intel_crtc_dpms(struct drm_crtc *crtc, int mode)
318 {
319         struct drm_device *dev = crtc->dev;
320         struct drm_psb_private *dev_priv = dev->dev_private;
321         struct psb_intel_crtc *psb_intel_crtc = to_psb_intel_crtc(crtc);
322         int pipe = psb_intel_crtc->pipe;
323         const struct psb_offset *map = &dev_priv->regmap[pipe];
324         u32 temp;
325
326         /* XXX: When our outputs are all unaware of DPMS modes other than off
327          * and on, we should map those modes to DRM_MODE_DPMS_OFF in the CRTC.
328          */
329         switch (mode) {
330         case DRM_MODE_DPMS_ON:
331         case DRM_MODE_DPMS_STANDBY:
332         case DRM_MODE_DPMS_SUSPEND:
333                 /* Enable the DPLL */
334                 temp = REG_READ(map->dpll);
335                 if ((temp & DPLL_VCO_ENABLE) == 0) {
336                         REG_WRITE(map->dpll, temp);
337                         REG_READ(map->dpll);
338                         /* Wait for the clocks to stabilize. */
339                         udelay(150);
340                         REG_WRITE(map->dpll, temp | DPLL_VCO_ENABLE);
341                         REG_READ(map->dpll);
342                         /* Wait for the clocks to stabilize. */
343                         udelay(150);
344                         REG_WRITE(map->dpll, temp | DPLL_VCO_ENABLE);
345                         REG_READ(map->dpll);
346                         /* Wait for the clocks to stabilize. */
347                         udelay(150);
348                 }
349
350                 /* Enable the pipe */
351                 temp = REG_READ(map->conf);
352                 if ((temp & PIPEACONF_ENABLE) == 0)
353                         REG_WRITE(map->conf, temp | PIPEACONF_ENABLE);
354
355                 /* Enable the plane */
356                 temp = REG_READ(map->cntr);
357                 if ((temp & DISPLAY_PLANE_ENABLE) == 0) {
358                         REG_WRITE(map->cntr,
359                                   temp | DISPLAY_PLANE_ENABLE);
360                         /* Flush the plane changes */
361                         REG_WRITE(map->base, REG_READ(map->base));
362                 }
363
364                 psb_intel_crtc_load_lut(crtc);
365
366                 /* Give the overlay scaler a chance to enable
367                  * if it's on this pipe */
368                 /* psb_intel_crtc_dpms_video(crtc, true); TODO */
369                 break;
370         case DRM_MODE_DPMS_OFF:
371                 /* Give the overlay scaler a chance to disable
372                  * if it's on this pipe */
373                 /* psb_intel_crtc_dpms_video(crtc, FALSE); TODO */
374
375                 /* Disable the VGA plane that we never use */
376                 REG_WRITE(VGACNTRL, VGA_DISP_DISABLE);
377
378                 /* Disable display plane */
379                 temp = REG_READ(map->cntr);
380                 if ((temp & DISPLAY_PLANE_ENABLE) != 0) {
381                         REG_WRITE(map->cntr,
382                                   temp & ~DISPLAY_PLANE_ENABLE);
383                         /* Flush the plane changes */
384                         REG_WRITE(map->base, REG_READ(map->base));
385                         REG_READ(map->base);
386                 }
387
388                 /* Next, disable display pipes */
389                 temp = REG_READ(map->conf);
390                 if ((temp & PIPEACONF_ENABLE) != 0) {
391                         REG_WRITE(map->conf, temp & ~PIPEACONF_ENABLE);
392                         REG_READ(map->conf);
393                 }
394
395                 /* Wait for vblank for the disable to take effect. */
396                 psb_intel_wait_for_vblank(dev);
397
398                 temp = REG_READ(map->dpll);
399                 if ((temp & DPLL_VCO_ENABLE) != 0) {
400                         REG_WRITE(map->dpll, temp & ~DPLL_VCO_ENABLE);
401                         REG_READ(map->dpll);
402                 }
403
404                 /* Wait for the clocks to turn off. */
405                 udelay(150);
406                 break;
407         }
408
409         /*Set FIFO Watermarks*/
410         REG_WRITE(DSPARB, 0x3F3E);
411 }
412
413 static void psb_intel_crtc_prepare(struct drm_crtc *crtc)
414 {
415         struct drm_crtc_helper_funcs *crtc_funcs = crtc->helper_private;
416         crtc_funcs->dpms(crtc, DRM_MODE_DPMS_OFF);
417 }
418
419 static void psb_intel_crtc_commit(struct drm_crtc *crtc)
420 {
421         struct drm_crtc_helper_funcs *crtc_funcs = crtc->helper_private;
422         crtc_funcs->dpms(crtc, DRM_MODE_DPMS_ON);
423 }
424
425 void psb_intel_encoder_prepare(struct drm_encoder *encoder)
426 {
427         struct drm_encoder_helper_funcs *encoder_funcs =
428             encoder->helper_private;
429         /* lvds has its own version of prepare see psb_intel_lvds_prepare */
430         encoder_funcs->dpms(encoder, DRM_MODE_DPMS_OFF);
431 }
432
433 void psb_intel_encoder_commit(struct drm_encoder *encoder)
434 {
435         struct drm_encoder_helper_funcs *encoder_funcs =
436             encoder->helper_private;
437         /* lvds has its own version of commit see psb_intel_lvds_commit */
438         encoder_funcs->dpms(encoder, DRM_MODE_DPMS_ON);
439 }
440
441 void psb_intel_encoder_destroy(struct drm_encoder *encoder)
442 {
443         struct psb_intel_encoder *intel_encoder = to_psb_intel_encoder(encoder);
444
445         drm_encoder_cleanup(encoder);
446         kfree(intel_encoder);
447 }
448
449 static bool psb_intel_crtc_mode_fixup(struct drm_crtc *crtc,
450                                   const struct drm_display_mode *mode,
451                                   struct drm_display_mode *adjusted_mode)
452 {
453         return true;
454 }
455
456
457 /**
458  * Return the pipe currently connected to the panel fitter,
459  * or -1 if the panel fitter is not present or not in use
460  */
461 static int psb_intel_panel_fitter_pipe(struct drm_device *dev)
462 {
463         u32 pfit_control;
464
465         pfit_control = REG_READ(PFIT_CONTROL);
466
467         /* See if the panel fitter is in use */
468         if ((pfit_control & PFIT_ENABLE) == 0)
469                 return -1;
470         /* Must be on PIPE 1 for PSB */
471         return 1;
472 }
473
474 static int psb_intel_crtc_mode_set(struct drm_crtc *crtc,
475                                struct drm_display_mode *mode,
476                                struct drm_display_mode *adjusted_mode,
477                                int x, int y,
478                                struct drm_framebuffer *old_fb)
479 {
480         struct drm_device *dev = crtc->dev;
481         struct drm_psb_private *dev_priv = dev->dev_private;
482         struct psb_intel_crtc *psb_intel_crtc = to_psb_intel_crtc(crtc);
483         struct drm_crtc_helper_funcs *crtc_funcs = crtc->helper_private;
484         int pipe = psb_intel_crtc->pipe;
485         const struct psb_offset *map = &dev_priv->regmap[pipe];
486         int refclk;
487         struct psb_intel_clock_t clock;
488         u32 dpll = 0, fp = 0, dspcntr, pipeconf;
489         bool ok, is_sdvo = false;
490         bool is_lvds = false, is_tv = false;
491         struct drm_mode_config *mode_config = &dev->mode_config;
492         struct drm_connector *connector;
493
494         /* No scan out no play */
495         if (crtc->fb == NULL) {
496                 crtc_funcs->mode_set_base(crtc, x, y, old_fb);
497                 return 0;
498         }
499
500         list_for_each_entry(connector, &mode_config->connector_list, head) {
501                 struct psb_intel_encoder *psb_intel_encoder =
502                                         psb_intel_attached_encoder(connector);
503
504                 if (!connector->encoder
505                     || connector->encoder->crtc != crtc)
506                         continue;
507
508                 switch (psb_intel_encoder->type) {
509                 case INTEL_OUTPUT_LVDS:
510                         is_lvds = true;
511                         break;
512                 case INTEL_OUTPUT_SDVO:
513                         is_sdvo = true;
514                         break;
515                 case INTEL_OUTPUT_TVOUT:
516                         is_tv = true;
517                         break;
518                 }
519         }
520
521         refclk = 96000;
522
523         ok = psb_intel_find_best_PLL(crtc, adjusted_mode->clock, refclk,
524                                  &clock);
525         if (!ok) {
526                 dev_err(dev->dev, "Couldn't find PLL settings for mode!\n");
527                 return 0;
528         }
529
530         fp = clock.n << 16 | clock.m1 << 8 | clock.m2;
531
532         dpll = DPLL_VGA_MODE_DIS;
533         if (is_lvds) {
534                 dpll |= DPLLB_MODE_LVDS;
535                 dpll |= DPLL_DVO_HIGH_SPEED;
536         } else
537                 dpll |= DPLLB_MODE_DAC_SERIAL;
538         if (is_sdvo) {
539                 int sdvo_pixel_multiply =
540                             adjusted_mode->clock / mode->clock;
541                 dpll |= DPLL_DVO_HIGH_SPEED;
542                 dpll |=
543                     (sdvo_pixel_multiply - 1) << SDVO_MULTIPLIER_SHIFT_HIRES;
544         }
545
546         /* compute bitmask from p1 value */
547         dpll |= (1 << (clock.p1 - 1)) << 16;
548         switch (clock.p2) {
549         case 5:
550                 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
551                 break;
552         case 7:
553                 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
554                 break;
555         case 10:
556                 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
557                 break;
558         case 14:
559                 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
560                 break;
561         }
562
563         if (is_tv) {
564                 /* XXX: just matching BIOS for now */
565 /*      dpll |= PLL_REF_INPUT_TVCLKINBC; */
566                 dpll |= 3;
567         }
568         dpll |= PLL_REF_INPUT_DREFCLK;
569
570         /* setup pipeconf */
571         pipeconf = REG_READ(map->conf);
572
573         /* Set up the display plane register */
574         dspcntr = DISPPLANE_GAMMA_ENABLE;
575
576         if (pipe == 0)
577                 dspcntr |= DISPPLANE_SEL_PIPE_A;
578         else
579                 dspcntr |= DISPPLANE_SEL_PIPE_B;
580
581         dspcntr |= DISPLAY_PLANE_ENABLE;
582         pipeconf |= PIPEACONF_ENABLE;
583         dpll |= DPLL_VCO_ENABLE;
584
585
586         /* Disable the panel fitter if it was on our pipe */
587         if (psb_intel_panel_fitter_pipe(dev) == pipe)
588                 REG_WRITE(PFIT_CONTROL, 0);
589
590         drm_mode_debug_printmodeline(mode);
591
592         if (dpll & DPLL_VCO_ENABLE) {
593                 REG_WRITE(map->fp0, fp);
594                 REG_WRITE(map->dpll, dpll & ~DPLL_VCO_ENABLE);
595                 REG_READ(map->dpll);
596                 udelay(150);
597         }
598
599         /* The LVDS pin pair needs to be on before the DPLLs are enabled.
600          * This is an exception to the general rule that mode_set doesn't turn
601          * things on.
602          */
603         if (is_lvds) {
604                 u32 lvds = REG_READ(LVDS);
605
606                 lvds &= ~LVDS_PIPEB_SELECT;
607                 if (pipe == 1)
608                         lvds |= LVDS_PIPEB_SELECT;
609
610                 lvds |= LVDS_PORT_EN | LVDS_A0A2_CLKA_POWER_UP;
611                 /* Set the B0-B3 data pairs corresponding to
612                  * whether we're going to
613                  * set the DPLLs for dual-channel mode or not.
614                  */
615                 lvds &= ~(LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP);
616                 if (clock.p2 == 7)
617                         lvds |= LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP;
618
619                 /* It would be nice to set 24 vs 18-bit mode (LVDS_A3_POWER_UP)
620                  * appropriately here, but we need to look more
621                  * thoroughly into how panels behave in the two modes.
622                  */
623
624                 REG_WRITE(LVDS, lvds);
625                 REG_READ(LVDS);
626         }
627
628         REG_WRITE(map->fp0, fp);
629         REG_WRITE(map->dpll, dpll);
630         REG_READ(map->dpll);
631         /* Wait for the clocks to stabilize. */
632         udelay(150);
633
634         /* write it again -- the BIOS does, after all */
635         REG_WRITE(map->dpll, dpll);
636
637         REG_READ(map->dpll);
638         /* Wait for the clocks to stabilize. */
639         udelay(150);
640
641         REG_WRITE(map->htotal, (adjusted_mode->crtc_hdisplay - 1) |
642                   ((adjusted_mode->crtc_htotal - 1) << 16));
643         REG_WRITE(map->hblank, (adjusted_mode->crtc_hblank_start - 1) |
644                   ((adjusted_mode->crtc_hblank_end - 1) << 16));
645         REG_WRITE(map->hsync, (adjusted_mode->crtc_hsync_start - 1) |
646                   ((adjusted_mode->crtc_hsync_end - 1) << 16));
647         REG_WRITE(map->vtotal, (adjusted_mode->crtc_vdisplay - 1) |
648                   ((adjusted_mode->crtc_vtotal - 1) << 16));
649         REG_WRITE(map->vblank, (adjusted_mode->crtc_vblank_start - 1) |
650                   ((adjusted_mode->crtc_vblank_end - 1) << 16));
651         REG_WRITE(map->vsync, (adjusted_mode->crtc_vsync_start - 1) |
652                   ((adjusted_mode->crtc_vsync_end - 1) << 16));
653         /* pipesrc and dspsize control the size that is scaled from,
654          * which should always be the user's requested size.
655          */
656         REG_WRITE(map->size,
657                   ((mode->vdisplay - 1) << 16) | (mode->hdisplay - 1));
658         REG_WRITE(map->pos, 0);
659         REG_WRITE(map->src,
660                   ((mode->hdisplay - 1) << 16) | (mode->vdisplay - 1));
661         REG_WRITE(map->conf, pipeconf);
662         REG_READ(map->conf);
663
664         psb_intel_wait_for_vblank(dev);
665
666         REG_WRITE(map->cntr, dspcntr);
667
668         /* Flush the plane changes */
669         crtc_funcs->mode_set_base(crtc, x, y, old_fb);
670
671         psb_intel_wait_for_vblank(dev);
672
673         return 0;
674 }
675
676 /** Loads the palette/gamma unit for the CRTC with the prepared values */
677 void psb_intel_crtc_load_lut(struct drm_crtc *crtc)
678 {
679         struct drm_device *dev = crtc->dev;
680         struct drm_psb_private *dev_priv = dev->dev_private;
681         struct psb_intel_crtc *psb_intel_crtc = to_psb_intel_crtc(crtc);
682         const struct psb_offset *map = &dev_priv->regmap[psb_intel_crtc->pipe];
683         int palreg = map->palette;
684         int i;
685
686         /* The clocks have to be on to load the palette. */
687         if (!crtc->enabled)
688                 return;
689
690         switch (psb_intel_crtc->pipe) {
691         case 0:
692         case 1:
693                 break;
694         default:
695                 dev_err(dev->dev, "Illegal Pipe Number.\n");
696                 return;
697         }
698
699         if (gma_power_begin(dev, false)) {
700                 for (i = 0; i < 256; i++) {
701                         REG_WRITE(palreg + 4 * i,
702                                   ((psb_intel_crtc->lut_r[i] +
703                                   psb_intel_crtc->lut_adj[i]) << 16) |
704                                   ((psb_intel_crtc->lut_g[i] +
705                                   psb_intel_crtc->lut_adj[i]) << 8) |
706                                   (psb_intel_crtc->lut_b[i] +
707                                   psb_intel_crtc->lut_adj[i]));
708                 }
709                 gma_power_end(dev);
710         } else {
711                 for (i = 0; i < 256; i++) {
712                         dev_priv->regs.pipe[0].palette[i] =
713                                   ((psb_intel_crtc->lut_r[i] +
714                                   psb_intel_crtc->lut_adj[i]) << 16) |
715                                   ((psb_intel_crtc->lut_g[i] +
716                                   psb_intel_crtc->lut_adj[i]) << 8) |
717                                   (psb_intel_crtc->lut_b[i] +
718                                   psb_intel_crtc->lut_adj[i]);
719                 }
720
721         }
722 }
723
724 /**
725  * Save HW states of giving crtc
726  */
727 static void psb_intel_crtc_save(struct drm_crtc *crtc)
728 {
729         struct drm_device *dev = crtc->dev;
730         struct drm_psb_private *dev_priv = dev->dev_private;
731         struct psb_intel_crtc *psb_intel_crtc = to_psb_intel_crtc(crtc);
732         struct psb_intel_crtc_state *crtc_state = psb_intel_crtc->crtc_state;
733         const struct psb_offset *map = &dev_priv->regmap[psb_intel_crtc->pipe];
734         uint32_t paletteReg;
735         int i;
736
737         if (!crtc_state) {
738                 dev_err(dev->dev, "No CRTC state found\n");
739                 return;
740         }
741
742         crtc_state->saveDSPCNTR = REG_READ(map->cntr);
743         crtc_state->savePIPECONF = REG_READ(map->conf);
744         crtc_state->savePIPESRC = REG_READ(map->src);
745         crtc_state->saveFP0 = REG_READ(map->fp0);
746         crtc_state->saveFP1 = REG_READ(map->fp1);
747         crtc_state->saveDPLL = REG_READ(map->dpll);
748         crtc_state->saveHTOTAL = REG_READ(map->htotal);
749         crtc_state->saveHBLANK = REG_READ(map->hblank);
750         crtc_state->saveHSYNC = REG_READ(map->hsync);
751         crtc_state->saveVTOTAL = REG_READ(map->vtotal);
752         crtc_state->saveVBLANK = REG_READ(map->vblank);
753         crtc_state->saveVSYNC = REG_READ(map->vsync);
754         crtc_state->saveDSPSTRIDE = REG_READ(map->stride);
755
756         /*NOTE: DSPSIZE DSPPOS only for psb*/
757         crtc_state->saveDSPSIZE = REG_READ(map->size);
758         crtc_state->saveDSPPOS = REG_READ(map->pos);
759
760         crtc_state->saveDSPBASE = REG_READ(map->base);
761
762         paletteReg = map->palette;
763         for (i = 0; i < 256; ++i)
764                 crtc_state->savePalette[i] = REG_READ(paletteReg + (i << 2));
765 }
766
767 /**
768  * Restore HW states of giving crtc
769  */
770 static void psb_intel_crtc_restore(struct drm_crtc *crtc)
771 {
772         struct drm_device *dev = crtc->dev;
773         struct drm_psb_private *dev_priv = dev->dev_private;
774         struct psb_intel_crtc *psb_intel_crtc =  to_psb_intel_crtc(crtc);
775         struct psb_intel_crtc_state *crtc_state = psb_intel_crtc->crtc_state;
776         const struct psb_offset *map = &dev_priv->regmap[psb_intel_crtc->pipe];
777         uint32_t paletteReg;
778         int i;
779
780         if (!crtc_state) {
781                 dev_err(dev->dev, "No crtc state\n");
782                 return;
783         }
784
785         if (crtc_state->saveDPLL & DPLL_VCO_ENABLE) {
786                 REG_WRITE(map->dpll,
787                         crtc_state->saveDPLL & ~DPLL_VCO_ENABLE);
788                 REG_READ(map->dpll);
789                 udelay(150);
790         }
791
792         REG_WRITE(map->fp0, crtc_state->saveFP0);
793         REG_READ(map->fp0);
794
795         REG_WRITE(map->fp1, crtc_state->saveFP1);
796         REG_READ(map->fp1);
797
798         REG_WRITE(map->dpll, crtc_state->saveDPLL);
799         REG_READ(map->dpll);
800         udelay(150);
801
802         REG_WRITE(map->htotal, crtc_state->saveHTOTAL);
803         REG_WRITE(map->hblank, crtc_state->saveHBLANK);
804         REG_WRITE(map->hsync, crtc_state->saveHSYNC);
805         REG_WRITE(map->vtotal, crtc_state->saveVTOTAL);
806         REG_WRITE(map->vblank, crtc_state->saveVBLANK);
807         REG_WRITE(map->vsync, crtc_state->saveVSYNC);
808         REG_WRITE(map->stride, crtc_state->saveDSPSTRIDE);
809
810         REG_WRITE(map->size, crtc_state->saveDSPSIZE);
811         REG_WRITE(map->pos, crtc_state->saveDSPPOS);
812
813         REG_WRITE(map->src, crtc_state->savePIPESRC);
814         REG_WRITE(map->base, crtc_state->saveDSPBASE);
815         REG_WRITE(map->conf, crtc_state->savePIPECONF);
816
817         psb_intel_wait_for_vblank(dev);
818
819         REG_WRITE(map->cntr, crtc_state->saveDSPCNTR);
820         REG_WRITE(map->base, crtc_state->saveDSPBASE);
821
822         psb_intel_wait_for_vblank(dev);
823
824         paletteReg = map->palette;
825         for (i = 0; i < 256; ++i)
826                 REG_WRITE(paletteReg + (i << 2), crtc_state->savePalette[i]);
827 }
828
829 static int psb_intel_crtc_cursor_set(struct drm_crtc *crtc,
830                                  struct drm_file *file_priv,
831                                  uint32_t handle,
832                                  uint32_t width, uint32_t height)
833 {
834         struct drm_device *dev = crtc->dev;
835         struct drm_psb_private *dev_priv = dev->dev_private;
836         struct psb_intel_crtc *psb_intel_crtc = to_psb_intel_crtc(crtc);
837         int pipe = psb_intel_crtc->pipe;
838         uint32_t control = (pipe == 0) ? CURACNTR : CURBCNTR;
839         uint32_t base = (pipe == 0) ? CURABASE : CURBBASE;
840         uint32_t temp;
841         size_t addr = 0;
842         struct gtt_range *gt;
843         struct gtt_range *cursor_gt = psb_intel_crtc->cursor_gt;
844         struct drm_gem_object *obj;
845         void *tmp_dst, *tmp_src;
846         int ret = 0, i, cursor_pages;
847
848         /* if we want to turn of the cursor ignore width and height */
849         if (!handle) {
850                 /* turn off the cursor */
851                 temp = CURSOR_MODE_DISABLE;
852
853                 if (gma_power_begin(dev, false)) {
854                         REG_WRITE(control, temp);
855                         REG_WRITE(base, 0);
856                         gma_power_end(dev);
857                 }
858
859                 /* Unpin the old GEM object */
860                 if (psb_intel_crtc->cursor_obj) {
861                         gt = container_of(psb_intel_crtc->cursor_obj,
862                                                         struct gtt_range, gem);
863                         psb_gtt_unpin(gt);
864                         drm_gem_object_unreference(psb_intel_crtc->cursor_obj);
865                         psb_intel_crtc->cursor_obj = NULL;
866                 }
867
868                 return 0;
869         }
870
871         /* Currently we only support 64x64 cursors */
872         if (width != 64 || height != 64) {
873                 dev_dbg(dev->dev, "we currently only support 64x64 cursors\n");
874                 return -EINVAL;
875         }
876
877         obj = drm_gem_object_lookup(dev, file_priv, handle);
878         if (!obj)
879                 return -ENOENT;
880
881         if (obj->size < width * height * 4) {
882                 dev_dbg(dev->dev, "buffer is to small\n");
883                 ret = -ENOMEM;
884                 goto unref_cursor;
885         }
886
887         gt = container_of(obj, struct gtt_range, gem);
888
889         /* Pin the memory into the GTT */
890         ret = psb_gtt_pin(gt);
891         if (ret) {
892                 dev_err(dev->dev, "Can not pin down handle 0x%x\n", handle);
893                 goto unref_cursor;
894         }
895
896         if (dev_priv->ops->cursor_needs_phys) {
897                 if (cursor_gt == NULL) {
898                         dev_err(dev->dev, "No hardware cursor mem available");
899                         ret = -ENOMEM;
900                         goto unref_cursor;
901                 }
902
903                 /* Prevent overflow */
904                 if (gt->npage > 4)
905                         cursor_pages = 4;
906                 else
907                         cursor_pages = gt->npage;
908
909                 /* Copy the cursor to cursor mem */
910                 tmp_dst = dev_priv->vram_addr + cursor_gt->offset;
911                 for (i = 0; i < cursor_pages; i++) {
912                         tmp_src = kmap(gt->pages[i]);
913                         memcpy(tmp_dst, tmp_src, PAGE_SIZE);
914                         kunmap(gt->pages[i]);
915                         tmp_dst += PAGE_SIZE;
916                 }
917
918                 addr = psb_intel_crtc->cursor_addr;
919         } else {
920                 addr = gt->offset;      /* Or resource.start ??? */
921                 psb_intel_crtc->cursor_addr = addr;
922         }
923
924         temp = 0;
925         /* set the pipe for the cursor */
926         temp |= (pipe << 28);
927         temp |= CURSOR_MODE_64_ARGB_AX | MCURSOR_GAMMA_ENABLE;
928
929         if (gma_power_begin(dev, false)) {
930                 REG_WRITE(control, temp);
931                 REG_WRITE(base, addr);
932                 gma_power_end(dev);
933         }
934
935         /* unpin the old bo */
936         if (psb_intel_crtc->cursor_obj) {
937                 gt = container_of(psb_intel_crtc->cursor_obj,
938                                                         struct gtt_range, gem);
939                 psb_gtt_unpin(gt);
940                 drm_gem_object_unreference(psb_intel_crtc->cursor_obj);
941         }
942
943         psb_intel_crtc->cursor_obj = obj;
944         return ret;
945
946 unref_cursor:
947         drm_gem_object_unreference(obj);
948         return ret;
949 }
950
951 static int psb_intel_crtc_cursor_move(struct drm_crtc *crtc, int x, int y)
952 {
953         struct drm_device *dev = crtc->dev;
954         struct psb_intel_crtc *psb_intel_crtc = to_psb_intel_crtc(crtc);
955         int pipe = psb_intel_crtc->pipe;
956         uint32_t temp = 0;
957         uint32_t addr;
958
959
960         if (x < 0) {
961                 temp |= (CURSOR_POS_SIGN << CURSOR_X_SHIFT);
962                 x = -x;
963         }
964         if (y < 0) {
965                 temp |= (CURSOR_POS_SIGN << CURSOR_Y_SHIFT);
966                 y = -y;
967         }
968
969         temp |= ((x & CURSOR_POS_MASK) << CURSOR_X_SHIFT);
970         temp |= ((y & CURSOR_POS_MASK) << CURSOR_Y_SHIFT);
971
972         addr = psb_intel_crtc->cursor_addr;
973
974         if (gma_power_begin(dev, false)) {
975                 REG_WRITE((pipe == 0) ? CURAPOS : CURBPOS, temp);
976                 REG_WRITE((pipe == 0) ? CURABASE : CURBBASE, addr);
977                 gma_power_end(dev);
978         }
979         return 0;
980 }
981
982 static void psb_intel_crtc_gamma_set(struct drm_crtc *crtc, u16 *red,
983                          u16 *green, u16 *blue, uint32_t type, uint32_t size)
984 {
985         struct psb_intel_crtc *psb_intel_crtc = to_psb_intel_crtc(crtc);
986         int i;
987
988         if (size != 256)
989                 return;
990
991         for (i = 0; i < 256; i++) {
992                 psb_intel_crtc->lut_r[i] = red[i] >> 8;
993                 psb_intel_crtc->lut_g[i] = green[i] >> 8;
994                 psb_intel_crtc->lut_b[i] = blue[i] >> 8;
995         }
996
997         psb_intel_crtc_load_lut(crtc);
998 }
999
1000 static int psb_crtc_set_config(struct drm_mode_set *set)
1001 {
1002         int ret;
1003         struct drm_device *dev = set->crtc->dev;
1004         struct drm_psb_private *dev_priv = dev->dev_private;
1005
1006         if (!dev_priv->rpm_enabled)
1007                 return drm_crtc_helper_set_config(set);
1008
1009         pm_runtime_forbid(&dev->pdev->dev);
1010         ret = drm_crtc_helper_set_config(set);
1011         pm_runtime_allow(&dev->pdev->dev);
1012         return ret;
1013 }
1014
1015 /* Returns the clock of the currently programmed mode of the given pipe. */
1016 static int psb_intel_crtc_clock_get(struct drm_device *dev,
1017                                 struct drm_crtc *crtc)
1018 {
1019         struct psb_intel_crtc *psb_intel_crtc = to_psb_intel_crtc(crtc);
1020         struct drm_psb_private *dev_priv = dev->dev_private;
1021         int pipe = psb_intel_crtc->pipe;
1022         const struct psb_offset *map = &dev_priv->regmap[pipe];
1023         u32 dpll;
1024         u32 fp;
1025         struct psb_intel_clock_t clock;
1026         bool is_lvds;
1027         struct psb_pipe *p = &dev_priv->regs.pipe[pipe];
1028
1029         if (gma_power_begin(dev, false)) {
1030                 dpll = REG_READ(map->dpll);
1031                 if ((dpll & DISPLAY_RATE_SELECT_FPA1) == 0)
1032                         fp = REG_READ(map->fp0);
1033                 else
1034                         fp = REG_READ(map->fp1);
1035                 is_lvds = (pipe == 1) && (REG_READ(LVDS) & LVDS_PORT_EN);
1036                 gma_power_end(dev);
1037         } else {
1038                 dpll = p->dpll;
1039
1040                 if ((dpll & DISPLAY_RATE_SELECT_FPA1) == 0)
1041                         fp = p->fp0;
1042                 else
1043                         fp = p->fp1;
1044
1045                 is_lvds = (pipe == 1) && (dev_priv->regs.psb.saveLVDS &
1046                                                                 LVDS_PORT_EN);
1047         }
1048
1049         clock.m1 = (fp & FP_M1_DIV_MASK) >> FP_M1_DIV_SHIFT;
1050         clock.m2 = (fp & FP_M2_DIV_MASK) >> FP_M2_DIV_SHIFT;
1051         clock.n = (fp & FP_N_DIV_MASK) >> FP_N_DIV_SHIFT;
1052
1053         if (is_lvds) {
1054                 clock.p1 =
1055                     ffs((dpll &
1056                          DPLL_FPA01_P1_POST_DIV_MASK_I830_LVDS) >>
1057                         DPLL_FPA01_P1_POST_DIV_SHIFT);
1058                 clock.p2 = 14;
1059
1060                 if ((dpll & PLL_REF_INPUT_MASK) ==
1061                     PLLB_REF_INPUT_SPREADSPECTRUMIN) {
1062                         /* XXX: might not be 66MHz */
1063                         psb_intel_clock(66000, &clock);
1064                 } else
1065                         psb_intel_clock(48000, &clock);
1066         } else {
1067                 if (dpll & PLL_P1_DIVIDE_BY_TWO)
1068                         clock.p1 = 2;
1069                 else {
1070                         clock.p1 =
1071                             ((dpll &
1072                               DPLL_FPA01_P1_POST_DIV_MASK_I830) >>
1073                              DPLL_FPA01_P1_POST_DIV_SHIFT) + 2;
1074                 }
1075                 if (dpll & PLL_P2_DIVIDE_BY_4)
1076                         clock.p2 = 4;
1077                 else
1078                         clock.p2 = 2;
1079
1080                 psb_intel_clock(48000, &clock);
1081         }
1082
1083         /* XXX: It would be nice to validate the clocks, but we can't reuse
1084          * i830PllIsValid() because it relies on the xf86_config connector
1085          * configuration being accurate, which it isn't necessarily.
1086          */
1087
1088         return clock.dot;
1089 }
1090
1091 /** Returns the currently programmed mode of the given pipe. */
1092 struct drm_display_mode *psb_intel_crtc_mode_get(struct drm_device *dev,
1093                                              struct drm_crtc *crtc)
1094 {
1095         struct psb_intel_crtc *psb_intel_crtc = to_psb_intel_crtc(crtc);
1096         int pipe = psb_intel_crtc->pipe;
1097         struct drm_display_mode *mode;
1098         int htot;
1099         int hsync;
1100         int vtot;
1101         int vsync;
1102         struct drm_psb_private *dev_priv = dev->dev_private;
1103         struct psb_pipe *p = &dev_priv->regs.pipe[pipe];
1104         const struct psb_offset *map = &dev_priv->regmap[pipe];
1105
1106         if (gma_power_begin(dev, false)) {
1107                 htot = REG_READ(map->htotal);
1108                 hsync = REG_READ(map->hsync);
1109                 vtot = REG_READ(map->vtotal);
1110                 vsync = REG_READ(map->vsync);
1111                 gma_power_end(dev);
1112         } else {
1113                 htot = p->htotal;
1114                 hsync = p->hsync;
1115                 vtot = p->vtotal;
1116                 vsync = p->vsync;
1117         }
1118
1119         mode = kzalloc(sizeof(*mode), GFP_KERNEL);
1120         if (!mode)
1121                 return NULL;
1122
1123         mode->clock = psb_intel_crtc_clock_get(dev, crtc);
1124         mode->hdisplay = (htot & 0xffff) + 1;
1125         mode->htotal = ((htot & 0xffff0000) >> 16) + 1;
1126         mode->hsync_start = (hsync & 0xffff) + 1;
1127         mode->hsync_end = ((hsync & 0xffff0000) >> 16) + 1;
1128         mode->vdisplay = (vtot & 0xffff) + 1;
1129         mode->vtotal = ((vtot & 0xffff0000) >> 16) + 1;
1130         mode->vsync_start = (vsync & 0xffff) + 1;
1131         mode->vsync_end = ((vsync & 0xffff0000) >> 16) + 1;
1132
1133         drm_mode_set_name(mode);
1134         drm_mode_set_crtcinfo(mode, 0);
1135
1136         return mode;
1137 }
1138
1139 static void psb_intel_crtc_destroy(struct drm_crtc *crtc)
1140 {
1141         struct psb_intel_crtc *psb_intel_crtc = to_psb_intel_crtc(crtc);
1142         struct gtt_range *gt;
1143
1144         /* Unpin the old GEM object */
1145         if (psb_intel_crtc->cursor_obj) {
1146                 gt = container_of(psb_intel_crtc->cursor_obj,
1147                                                 struct gtt_range, gem);
1148                 psb_gtt_unpin(gt);
1149                 drm_gem_object_unreference(psb_intel_crtc->cursor_obj);
1150                 psb_intel_crtc->cursor_obj = NULL;
1151         }
1152
1153         if (psb_intel_crtc->cursor_gt != NULL)
1154                 psb_gtt_free_range(crtc->dev, psb_intel_crtc->cursor_gt);
1155         kfree(psb_intel_crtc->crtc_state);
1156         drm_crtc_cleanup(crtc);
1157         kfree(psb_intel_crtc);
1158 }
1159
1160 static void psb_intel_crtc_disable(struct drm_crtc *crtc)
1161 {
1162         struct gtt_range *gt;
1163         struct drm_crtc_helper_funcs *crtc_funcs = crtc->helper_private;
1164
1165         crtc_funcs->dpms(crtc, DRM_MODE_DPMS_OFF);
1166
1167         if (crtc->fb) {
1168                 gt = to_psb_fb(crtc->fb)->gtt;
1169                 psb_gtt_unpin(gt);
1170         }
1171 }
1172
1173 const struct drm_crtc_helper_funcs psb_intel_helper_funcs = {
1174         .dpms = psb_intel_crtc_dpms,
1175         .mode_fixup = psb_intel_crtc_mode_fixup,
1176         .mode_set = psb_intel_crtc_mode_set,
1177         .mode_set_base = psb_intel_pipe_set_base,
1178         .prepare = psb_intel_crtc_prepare,
1179         .commit = psb_intel_crtc_commit,
1180         .disable = psb_intel_crtc_disable,
1181 };
1182
1183 const struct drm_crtc_funcs psb_intel_crtc_funcs = {
1184         .save = psb_intel_crtc_save,
1185         .restore = psb_intel_crtc_restore,
1186         .cursor_set = psb_intel_crtc_cursor_set,
1187         .cursor_move = psb_intel_crtc_cursor_move,
1188         .gamma_set = psb_intel_crtc_gamma_set,
1189         .set_config = psb_crtc_set_config,
1190         .destroy = psb_intel_crtc_destroy,
1191 };
1192
1193 /*
1194  * Set the default value of cursor control and base register
1195  * to zero. This is a workaround for h/w defect on Oaktrail
1196  */
1197 static void psb_intel_cursor_init(struct drm_device *dev,
1198                                   struct psb_intel_crtc *psb_intel_crtc)
1199 {
1200         struct drm_psb_private *dev_priv = dev->dev_private;
1201         u32 control[3] = { CURACNTR, CURBCNTR, CURCCNTR };
1202         u32 base[3] = { CURABASE, CURBBASE, CURCBASE };
1203         struct gtt_range *cursor_gt;
1204
1205         if (dev_priv->ops->cursor_needs_phys) {
1206                 /* Allocate 4 pages of stolen mem for a hardware cursor. That
1207                  * is enough for the 64 x 64 ARGB cursors we support.
1208                  */
1209                 cursor_gt = psb_gtt_alloc_range(dev, 4 * PAGE_SIZE, "cursor", 1);
1210                 if (!cursor_gt) {
1211                         psb_intel_crtc->cursor_gt = NULL;
1212                         goto out;
1213                 }
1214                 psb_intel_crtc->cursor_gt = cursor_gt;
1215                 psb_intel_crtc->cursor_addr = dev_priv->stolen_base +
1216                                                         cursor_gt->offset;
1217         } else {
1218                 psb_intel_crtc->cursor_gt = NULL;
1219         }
1220
1221 out:
1222         REG_WRITE(control[psb_intel_crtc->pipe], 0);
1223         REG_WRITE(base[psb_intel_crtc->pipe], 0);
1224 }
1225
1226 void psb_intel_crtc_init(struct drm_device *dev, int pipe,
1227                      struct psb_intel_mode_device *mode_dev)
1228 {
1229         struct drm_psb_private *dev_priv = dev->dev_private;
1230         struct psb_intel_crtc *psb_intel_crtc;
1231         int i;
1232         uint16_t *r_base, *g_base, *b_base;
1233
1234         /* We allocate a extra array of drm_connector pointers
1235          * for fbdev after the crtc */
1236         psb_intel_crtc =
1237             kzalloc(sizeof(struct psb_intel_crtc) +
1238                     (INTELFB_CONN_LIMIT * sizeof(struct drm_connector *)),
1239                     GFP_KERNEL);
1240         if (psb_intel_crtc == NULL)
1241                 return;
1242
1243         psb_intel_crtc->crtc_state =
1244                 kzalloc(sizeof(struct psb_intel_crtc_state), GFP_KERNEL);
1245         if (!psb_intel_crtc->crtc_state) {
1246                 dev_err(dev->dev, "Crtc state error: No memory\n");
1247                 kfree(psb_intel_crtc);
1248                 return;
1249         }
1250
1251         /* Set the CRTC operations from the chip specific data */
1252         drm_crtc_init(dev, &psb_intel_crtc->base, dev_priv->ops->crtc_funcs);
1253
1254         /* Set the CRTC clock functions from chip specific data */
1255         psb_intel_crtc->clock_funcs = dev_priv->ops->clock_funcs;
1256
1257         drm_mode_crtc_set_gamma_size(&psb_intel_crtc->base, 256);
1258         psb_intel_crtc->pipe = pipe;
1259         psb_intel_crtc->plane = pipe;
1260
1261         r_base = psb_intel_crtc->base.gamma_store;
1262         g_base = r_base + 256;
1263         b_base = g_base + 256;
1264         for (i = 0; i < 256; i++) {
1265                 psb_intel_crtc->lut_r[i] = i;
1266                 psb_intel_crtc->lut_g[i] = i;
1267                 psb_intel_crtc->lut_b[i] = i;
1268                 r_base[i] = i << 8;
1269                 g_base[i] = i << 8;
1270                 b_base[i] = i << 8;
1271
1272                 psb_intel_crtc->lut_adj[i] = 0;
1273         }
1274
1275         psb_intel_crtc->mode_dev = mode_dev;
1276         psb_intel_crtc->cursor_addr = 0;
1277
1278         drm_crtc_helper_add(&psb_intel_crtc->base,
1279                                                 dev_priv->ops->crtc_helper);
1280
1281         /* Setup the array of drm_connector pointer array */
1282         psb_intel_crtc->mode_set.crtc = &psb_intel_crtc->base;
1283         BUG_ON(pipe >= ARRAY_SIZE(dev_priv->plane_to_crtc_mapping) ||
1284                dev_priv->plane_to_crtc_mapping[psb_intel_crtc->plane] != NULL);
1285         dev_priv->plane_to_crtc_mapping[psb_intel_crtc->plane] =
1286                                                         &psb_intel_crtc->base;
1287         dev_priv->pipe_to_crtc_mapping[psb_intel_crtc->pipe] =
1288                                                         &psb_intel_crtc->base;
1289         psb_intel_crtc->mode_set.connectors =
1290             (struct drm_connector **) (psb_intel_crtc + 1);
1291         psb_intel_crtc->mode_set.num_connectors = 0;
1292         psb_intel_cursor_init(dev, psb_intel_crtc);
1293
1294         /* Set to true so that the pipe is forced off on initial config. */
1295         psb_intel_crtc->active = true;
1296 }
1297
1298 int psb_intel_get_pipe_from_crtc_id(struct drm_device *dev, void *data,
1299                                 struct drm_file *file_priv)
1300 {
1301         struct drm_psb_private *dev_priv = dev->dev_private;
1302         struct drm_psb_get_pipe_from_crtc_id_arg *pipe_from_crtc_id = data;
1303         struct drm_mode_object *drmmode_obj;
1304         struct psb_intel_crtc *crtc;
1305
1306         if (!dev_priv) {
1307                 dev_err(dev->dev, "called with no initialization\n");
1308                 return -EINVAL;
1309         }
1310
1311         drmmode_obj = drm_mode_object_find(dev, pipe_from_crtc_id->crtc_id,
1312                         DRM_MODE_OBJECT_CRTC);
1313
1314         if (!drmmode_obj) {
1315                 dev_err(dev->dev, "no such CRTC id\n");
1316                 return -EINVAL;
1317         }
1318
1319         crtc = to_psb_intel_crtc(obj_to_crtc(drmmode_obj));
1320         pipe_from_crtc_id->pipe = crtc->pipe;
1321
1322         return 0;
1323 }
1324
1325 struct drm_crtc *psb_intel_get_crtc_from_pipe(struct drm_device *dev, int pipe)
1326 {
1327         struct drm_crtc *crtc = NULL;
1328
1329         list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
1330                 struct psb_intel_crtc *psb_intel_crtc = to_psb_intel_crtc(crtc);
1331                 if (psb_intel_crtc->pipe == pipe)
1332                         break;
1333         }
1334         return crtc;
1335 }
1336
1337 int psb_intel_connector_clones(struct drm_device *dev, int type_mask)
1338 {
1339         int index_mask = 0;
1340         struct drm_connector *connector;
1341         int entry = 0;
1342
1343         list_for_each_entry(connector, &dev->mode_config.connector_list,
1344                             head) {
1345                 struct psb_intel_encoder *psb_intel_encoder =
1346                                         psb_intel_attached_encoder(connector);
1347                 if (type_mask & (1 << psb_intel_encoder->type))
1348                         index_mask |= (1 << entry);
1349                 entry++;
1350         }
1351         return index_mask;
1352 }
1353
1354 /* current intel driver doesn't take advantage of encoders
1355    always give back the encoder for the connector
1356 */
1357 struct drm_encoder *psb_intel_best_encoder(struct drm_connector *connector)
1358 {
1359         struct psb_intel_encoder *psb_intel_encoder =
1360                                         psb_intel_attached_encoder(connector);
1361
1362         return &psb_intel_encoder->base;
1363 }
1364
1365 void psb_intel_connector_attach_encoder(struct psb_intel_connector *connector,
1366                                         struct psb_intel_encoder *encoder)
1367 {
1368         connector->encoder = encoder;
1369         drm_mode_connector_attach_encoder(&connector->base,
1370                                           &encoder->base);
1371 }