cpufreq: cpufreq_interactive: avoid NULL point access
[firefly-linux-kernel-4.4.55.git] / drivers / firewire / core-iso.c
1 /*
2  * Isochronous I/O functionality:
3  *   - Isochronous DMA context management
4  *   - Isochronous bus resource management (channels, bandwidth), client side
5  *
6  * Copyright (C) 2006 Kristian Hoegsberg <krh@bitplanet.net>
7  *
8  * This program is free software; you can redistribute it and/or modify
9  * it under the terms of the GNU General Public License as published by
10  * the Free Software Foundation; either version 2 of the License, or
11  * (at your option) any later version.
12  *
13  * This program is distributed in the hope that it will be useful,
14  * but WITHOUT ANY WARRANTY; without even the implied warranty of
15  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16  * GNU General Public License for more details.
17  *
18  * You should have received a copy of the GNU General Public License
19  * along with this program; if not, write to the Free Software Foundation,
20  * Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
21  */
22
23 #include <linux/dma-mapping.h>
24 #include <linux/errno.h>
25 #include <linux/firewire.h>
26 #include <linux/firewire-constants.h>
27 #include <linux/kernel.h>
28 #include <linux/mm.h>
29 #include <linux/slab.h>
30 #include <linux/spinlock.h>
31 #include <linux/vmalloc.h>
32 #include <linux/export.h>
33
34 #include <asm/byteorder.h>
35
36 #include "core.h"
37
38 /*
39  * Isochronous DMA context management
40  */
41
42 int fw_iso_buffer_alloc(struct fw_iso_buffer *buffer, int page_count)
43 {
44         int i;
45
46         buffer->page_count = 0;
47         buffer->page_count_mapped = 0;
48         buffer->pages = kmalloc(page_count * sizeof(buffer->pages[0]),
49                                 GFP_KERNEL);
50         if (buffer->pages == NULL)
51                 return -ENOMEM;
52
53         for (i = 0; i < page_count; i++) {
54                 buffer->pages[i] = alloc_page(GFP_KERNEL | GFP_DMA32 | __GFP_ZERO);
55                 if (buffer->pages[i] == NULL)
56                         break;
57         }
58         buffer->page_count = i;
59         if (i < page_count) {
60                 fw_iso_buffer_destroy(buffer, NULL);
61                 return -ENOMEM;
62         }
63
64         return 0;
65 }
66
67 int fw_iso_buffer_map_dma(struct fw_iso_buffer *buffer, struct fw_card *card,
68                           enum dma_data_direction direction)
69 {
70         dma_addr_t address;
71         int i;
72
73         buffer->direction = direction;
74
75         for (i = 0; i < buffer->page_count; i++) {
76                 address = dma_map_page(card->device, buffer->pages[i],
77                                        0, PAGE_SIZE, direction);
78                 if (dma_mapping_error(card->device, address))
79                         break;
80
81                 set_page_private(buffer->pages[i], address);
82         }
83         buffer->page_count_mapped = i;
84         if (i < buffer->page_count)
85                 return -ENOMEM;
86
87         return 0;
88 }
89
90 int fw_iso_buffer_init(struct fw_iso_buffer *buffer, struct fw_card *card,
91                        int page_count, enum dma_data_direction direction)
92 {
93         int ret;
94
95         ret = fw_iso_buffer_alloc(buffer, page_count);
96         if (ret < 0)
97                 return ret;
98
99         ret = fw_iso_buffer_map_dma(buffer, card, direction);
100         if (ret < 0)
101                 fw_iso_buffer_destroy(buffer, card);
102
103         return ret;
104 }
105 EXPORT_SYMBOL(fw_iso_buffer_init);
106
107 int fw_iso_buffer_map_vma(struct fw_iso_buffer *buffer,
108                           struct vm_area_struct *vma)
109 {
110         unsigned long uaddr;
111         int i, err;
112
113         uaddr = vma->vm_start;
114         for (i = 0; i < buffer->page_count; i++) {
115                 err = vm_insert_page(vma, uaddr, buffer->pages[i]);
116                 if (err)
117                         return err;
118
119                 uaddr += PAGE_SIZE;
120         }
121
122         return 0;
123 }
124
125 void fw_iso_buffer_destroy(struct fw_iso_buffer *buffer,
126                            struct fw_card *card)
127 {
128         int i;
129         dma_addr_t address;
130
131         for (i = 0; i < buffer->page_count_mapped; i++) {
132                 address = page_private(buffer->pages[i]);
133                 dma_unmap_page(card->device, address,
134                                PAGE_SIZE, buffer->direction);
135         }
136         for (i = 0; i < buffer->page_count; i++)
137                 __free_page(buffer->pages[i]);
138
139         kfree(buffer->pages);
140         buffer->pages = NULL;
141         buffer->page_count = 0;
142         buffer->page_count_mapped = 0;
143 }
144 EXPORT_SYMBOL(fw_iso_buffer_destroy);
145
146 /* Convert DMA address to offset into virtually contiguous buffer. */
147 size_t fw_iso_buffer_lookup(struct fw_iso_buffer *buffer, dma_addr_t completed)
148 {
149         size_t i;
150         dma_addr_t address;
151         ssize_t offset;
152
153         for (i = 0; i < buffer->page_count; i++) {
154                 address = page_private(buffer->pages[i]);
155                 offset = (ssize_t)completed - (ssize_t)address;
156                 if (offset > 0 && offset <= PAGE_SIZE)
157                         return (i << PAGE_SHIFT) + offset;
158         }
159
160         return 0;
161 }
162
163 struct fw_iso_context *fw_iso_context_create(struct fw_card *card,
164                 int type, int channel, int speed, size_t header_size,
165                 fw_iso_callback_t callback, void *callback_data)
166 {
167         struct fw_iso_context *ctx;
168
169         ctx = card->driver->allocate_iso_context(card,
170                                                  type, channel, header_size);
171         if (IS_ERR(ctx))
172                 return ctx;
173
174         ctx->card = card;
175         ctx->type = type;
176         ctx->channel = channel;
177         ctx->speed = speed;
178         ctx->header_size = header_size;
179         ctx->callback.sc = callback;
180         ctx->callback_data = callback_data;
181
182         return ctx;
183 }
184 EXPORT_SYMBOL(fw_iso_context_create);
185
186 void fw_iso_context_destroy(struct fw_iso_context *ctx)
187 {
188         ctx->card->driver->free_iso_context(ctx);
189 }
190 EXPORT_SYMBOL(fw_iso_context_destroy);
191
192 int fw_iso_context_start(struct fw_iso_context *ctx,
193                          int cycle, int sync, int tags)
194 {
195         return ctx->card->driver->start_iso(ctx, cycle, sync, tags);
196 }
197 EXPORT_SYMBOL(fw_iso_context_start);
198
199 int fw_iso_context_set_channels(struct fw_iso_context *ctx, u64 *channels)
200 {
201         return ctx->card->driver->set_iso_channels(ctx, channels);
202 }
203
204 int fw_iso_context_queue(struct fw_iso_context *ctx,
205                          struct fw_iso_packet *packet,
206                          struct fw_iso_buffer *buffer,
207                          unsigned long payload)
208 {
209         return ctx->card->driver->queue_iso(ctx, packet, buffer, payload);
210 }
211 EXPORT_SYMBOL(fw_iso_context_queue);
212
213 void fw_iso_context_queue_flush(struct fw_iso_context *ctx)
214 {
215         ctx->card->driver->flush_queue_iso(ctx);
216 }
217 EXPORT_SYMBOL(fw_iso_context_queue_flush);
218
219 int fw_iso_context_flush_completions(struct fw_iso_context *ctx)
220 {
221         return ctx->card->driver->flush_iso_completions(ctx);
222 }
223 EXPORT_SYMBOL(fw_iso_context_flush_completions);
224
225 int fw_iso_context_stop(struct fw_iso_context *ctx)
226 {
227         return ctx->card->driver->stop_iso(ctx);
228 }
229 EXPORT_SYMBOL(fw_iso_context_stop);
230
231 /*
232  * Isochronous bus resource management (channels, bandwidth), client side
233  */
234
235 static int manage_bandwidth(struct fw_card *card, int irm_id, int generation,
236                             int bandwidth, bool allocate)
237 {
238         int try, new, old = allocate ? BANDWIDTH_AVAILABLE_INITIAL : 0;
239         __be32 data[2];
240
241         /*
242          * On a 1394a IRM with low contention, try < 1 is enough.
243          * On a 1394-1995 IRM, we need at least try < 2.
244          * Let's just do try < 5.
245          */
246         for (try = 0; try < 5; try++) {
247                 new = allocate ? old - bandwidth : old + bandwidth;
248                 if (new < 0 || new > BANDWIDTH_AVAILABLE_INITIAL)
249                         return -EBUSY;
250
251                 data[0] = cpu_to_be32(old);
252                 data[1] = cpu_to_be32(new);
253                 switch (fw_run_transaction(card, TCODE_LOCK_COMPARE_SWAP,
254                                 irm_id, generation, SCODE_100,
255                                 CSR_REGISTER_BASE + CSR_BANDWIDTH_AVAILABLE,
256                                 data, 8)) {
257                 case RCODE_GENERATION:
258                         /* A generation change frees all bandwidth. */
259                         return allocate ? -EAGAIN : bandwidth;
260
261                 case RCODE_COMPLETE:
262                         if (be32_to_cpup(data) == old)
263                                 return bandwidth;
264
265                         old = be32_to_cpup(data);
266                         /* Fall through. */
267                 }
268         }
269
270         return -EIO;
271 }
272
273 static int manage_channel(struct fw_card *card, int irm_id, int generation,
274                 u32 channels_mask, u64 offset, bool allocate)
275 {
276         __be32 bit, all, old;
277         __be32 data[2];
278         int channel, ret = -EIO, retry = 5;
279
280         old = all = allocate ? cpu_to_be32(~0) : 0;
281
282         for (channel = 0; channel < 32; channel++) {
283                 if (!(channels_mask & 1 << channel))
284                         continue;
285
286                 ret = -EBUSY;
287
288                 bit = cpu_to_be32(1 << (31 - channel));
289                 if ((old & bit) != (all & bit))
290                         continue;
291
292                 data[0] = old;
293                 data[1] = old ^ bit;
294                 switch (fw_run_transaction(card, TCODE_LOCK_COMPARE_SWAP,
295                                            irm_id, generation, SCODE_100,
296                                            offset, data, 8)) {
297                 case RCODE_GENERATION:
298                         /* A generation change frees all channels. */
299                         return allocate ? -EAGAIN : channel;
300
301                 case RCODE_COMPLETE:
302                         if (data[0] == old)
303                                 return channel;
304
305                         old = data[0];
306
307                         /* Is the IRM 1394a-2000 compliant? */
308                         if ((data[0] & bit) == (data[1] & bit))
309                                 continue;
310
311                         /* 1394-1995 IRM, fall through to retry. */
312                 default:
313                         if (retry) {
314                                 retry--;
315                                 channel--;
316                         } else {
317                                 ret = -EIO;
318                         }
319                 }
320         }
321
322         return ret;
323 }
324
325 static void deallocate_channel(struct fw_card *card, int irm_id,
326                                int generation, int channel)
327 {
328         u32 mask;
329         u64 offset;
330
331         mask = channel < 32 ? 1 << channel : 1 << (channel - 32);
332         offset = channel < 32 ? CSR_REGISTER_BASE + CSR_CHANNELS_AVAILABLE_HI :
333                                 CSR_REGISTER_BASE + CSR_CHANNELS_AVAILABLE_LO;
334
335         manage_channel(card, irm_id, generation, mask, offset, false);
336 }
337
338 /**
339  * fw_iso_resource_manage() - Allocate or deallocate a channel and/or bandwidth
340  *
341  * In parameters: card, generation, channels_mask, bandwidth, allocate
342  * Out parameters: channel, bandwidth
343  * This function blocks (sleeps) during communication with the IRM.
344  *
345  * Allocates or deallocates at most one channel out of channels_mask.
346  * channels_mask is a bitfield with MSB for channel 63 and LSB for channel 0.
347  * (Note, the IRM's CHANNELS_AVAILABLE is a big-endian bitfield with MSB for
348  * channel 0 and LSB for channel 63.)
349  * Allocates or deallocates as many bandwidth allocation units as specified.
350  *
351  * Returns channel < 0 if no channel was allocated or deallocated.
352  * Returns bandwidth = 0 if no bandwidth was allocated or deallocated.
353  *
354  * If generation is stale, deallocations succeed but allocations fail with
355  * channel = -EAGAIN.
356  *
357  * If channel allocation fails, no bandwidth will be allocated either.
358  * If bandwidth allocation fails, no channel will be allocated either.
359  * But deallocations of channel and bandwidth are tried independently
360  * of each other's success.
361  */
362 void fw_iso_resource_manage(struct fw_card *card, int generation,
363                             u64 channels_mask, int *channel, int *bandwidth,
364                             bool allocate)
365 {
366         u32 channels_hi = channels_mask;        /* channels 31...0 */
367         u32 channels_lo = channels_mask >> 32;  /* channels 63...32 */
368         int irm_id, ret, c = -EINVAL;
369
370         spin_lock_irq(&card->lock);
371         irm_id = card->irm_node->node_id;
372         spin_unlock_irq(&card->lock);
373
374         if (channels_hi)
375                 c = manage_channel(card, irm_id, generation, channels_hi,
376                                 CSR_REGISTER_BASE + CSR_CHANNELS_AVAILABLE_HI,
377                                 allocate);
378         if (channels_lo && c < 0) {
379                 c = manage_channel(card, irm_id, generation, channels_lo,
380                                 CSR_REGISTER_BASE + CSR_CHANNELS_AVAILABLE_LO,
381                                 allocate);
382                 if (c >= 0)
383                         c += 32;
384         }
385         *channel = c;
386
387         if (allocate && channels_mask != 0 && c < 0)
388                 *bandwidth = 0;
389
390         if (*bandwidth == 0)
391                 return;
392
393         ret = manage_bandwidth(card, irm_id, generation, *bandwidth, allocate);
394         if (ret < 0)
395                 *bandwidth = 0;
396
397         if (allocate && ret < 0) {
398                 if (c >= 0)
399                         deallocate_channel(card, irm_id, generation, c);
400                 *channel = ret;
401         }
402 }
403 EXPORT_SYMBOL(fw_iso_resource_manage);