cpufreq: cpufreq_interactive: avoid NULL point access
[firefly-linux-kernel-4.4.55.git] / drivers / firewire / core-device.c
1 /*
2  * Device probing and sysfs code.
3  *
4  * Copyright (C) 2005-2006  Kristian Hoegsberg <krh@bitplanet.net>
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License as published by
8  * the Free Software Foundation; either version 2 of the License, or
9  * (at your option) any later version.
10  *
11  * This program is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14  * GNU General Public License for more details.
15  *
16  * You should have received a copy of the GNU General Public License
17  * along with this program; if not, write to the Free Software Foundation,
18  * Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
19  */
20
21 #include <linux/bug.h>
22 #include <linux/ctype.h>
23 #include <linux/delay.h>
24 #include <linux/device.h>
25 #include <linux/errno.h>
26 #include <linux/firewire.h>
27 #include <linux/firewire-constants.h>
28 #include <linux/idr.h>
29 #include <linux/jiffies.h>
30 #include <linux/kobject.h>
31 #include <linux/list.h>
32 #include <linux/mod_devicetable.h>
33 #include <linux/module.h>
34 #include <linux/mutex.h>
35 #include <linux/random.h>
36 #include <linux/rwsem.h>
37 #include <linux/slab.h>
38 #include <linux/spinlock.h>
39 #include <linux/string.h>
40 #include <linux/workqueue.h>
41
42 #include <linux/atomic.h>
43 #include <asm/byteorder.h>
44
45 #include "core.h"
46
47 void fw_csr_iterator_init(struct fw_csr_iterator *ci, const u32 *p)
48 {
49         ci->p = p + 1;
50         ci->end = ci->p + (p[0] >> 16);
51 }
52 EXPORT_SYMBOL(fw_csr_iterator_init);
53
54 int fw_csr_iterator_next(struct fw_csr_iterator *ci, int *key, int *value)
55 {
56         *key = *ci->p >> 24;
57         *value = *ci->p & 0xffffff;
58
59         return ci->p++ < ci->end;
60 }
61 EXPORT_SYMBOL(fw_csr_iterator_next);
62
63 static const u32 *search_leaf(const u32 *directory, int search_key)
64 {
65         struct fw_csr_iterator ci;
66         int last_key = 0, key, value;
67
68         fw_csr_iterator_init(&ci, directory);
69         while (fw_csr_iterator_next(&ci, &key, &value)) {
70                 if (last_key == search_key &&
71                     key == (CSR_DESCRIPTOR | CSR_LEAF))
72                         return ci.p - 1 + value;
73
74                 last_key = key;
75         }
76
77         return NULL;
78 }
79
80 static int textual_leaf_to_string(const u32 *block, char *buf, size_t size)
81 {
82         unsigned int quadlets, i;
83         char c;
84
85         if (!size || !buf)
86                 return -EINVAL;
87
88         quadlets = min(block[0] >> 16, 256U);
89         if (quadlets < 2)
90                 return -ENODATA;
91
92         if (block[1] != 0 || block[2] != 0)
93                 /* unknown language/character set */
94                 return -ENODATA;
95
96         block += 3;
97         quadlets -= 2;
98         for (i = 0; i < quadlets * 4 && i < size - 1; i++) {
99                 c = block[i / 4] >> (24 - 8 * (i % 4));
100                 if (c == '\0')
101                         break;
102                 buf[i] = c;
103         }
104         buf[i] = '\0';
105
106         return i;
107 }
108
109 /**
110  * fw_csr_string() - reads a string from the configuration ROM
111  * @directory:  e.g. root directory or unit directory
112  * @key:        the key of the preceding directory entry
113  * @buf:        where to put the string
114  * @size:       size of @buf, in bytes
115  *
116  * The string is taken from a minimal ASCII text descriptor leaf after
117  * the immediate entry with @key.  The string is zero-terminated.
118  * An overlong string is silently truncated such that it and the
119  * zero byte fit into @size.
120  *
121  * Returns strlen(buf) or a negative error code.
122  */
123 int fw_csr_string(const u32 *directory, int key, char *buf, size_t size)
124 {
125         const u32 *leaf = search_leaf(directory, key);
126         if (!leaf)
127                 return -ENOENT;
128
129         return textual_leaf_to_string(leaf, buf, size);
130 }
131 EXPORT_SYMBOL(fw_csr_string);
132
133 static void get_ids(const u32 *directory, int *id)
134 {
135         struct fw_csr_iterator ci;
136         int key, value;
137
138         fw_csr_iterator_init(&ci, directory);
139         while (fw_csr_iterator_next(&ci, &key, &value)) {
140                 switch (key) {
141                 case CSR_VENDOR:        id[0] = value; break;
142                 case CSR_MODEL:         id[1] = value; break;
143                 case CSR_SPECIFIER_ID:  id[2] = value; break;
144                 case CSR_VERSION:       id[3] = value; break;
145                 }
146         }
147 }
148
149 static void get_modalias_ids(struct fw_unit *unit, int *id)
150 {
151         get_ids(&fw_parent_device(unit)->config_rom[5], id);
152         get_ids(unit->directory, id);
153 }
154
155 static bool match_ids(const struct ieee1394_device_id *id_table, int *id)
156 {
157         int match = 0;
158
159         if (id[0] == id_table->vendor_id)
160                 match |= IEEE1394_MATCH_VENDOR_ID;
161         if (id[1] == id_table->model_id)
162                 match |= IEEE1394_MATCH_MODEL_ID;
163         if (id[2] == id_table->specifier_id)
164                 match |= IEEE1394_MATCH_SPECIFIER_ID;
165         if (id[3] == id_table->version)
166                 match |= IEEE1394_MATCH_VERSION;
167
168         return (match & id_table->match_flags) == id_table->match_flags;
169 }
170
171 static const struct ieee1394_device_id *unit_match(struct device *dev,
172                                                    struct device_driver *drv)
173 {
174         const struct ieee1394_device_id *id_table =
175                         container_of(drv, struct fw_driver, driver)->id_table;
176         int id[] = {0, 0, 0, 0};
177
178         get_modalias_ids(fw_unit(dev), id);
179
180         for (; id_table->match_flags != 0; id_table++)
181                 if (match_ids(id_table, id))
182                         return id_table;
183
184         return NULL;
185 }
186
187 static bool is_fw_unit(struct device *dev);
188
189 static int fw_unit_match(struct device *dev, struct device_driver *drv)
190 {
191         /* We only allow binding to fw_units. */
192         return is_fw_unit(dev) && unit_match(dev, drv) != NULL;
193 }
194
195 static int fw_unit_probe(struct device *dev)
196 {
197         struct fw_driver *driver =
198                         container_of(dev->driver, struct fw_driver, driver);
199
200         return driver->probe(fw_unit(dev), unit_match(dev, dev->driver));
201 }
202
203 static int fw_unit_remove(struct device *dev)
204 {
205         struct fw_driver *driver =
206                         container_of(dev->driver, struct fw_driver, driver);
207
208         return driver->remove(fw_unit(dev)), 0;
209 }
210
211 static int get_modalias(struct fw_unit *unit, char *buffer, size_t buffer_size)
212 {
213         int id[] = {0, 0, 0, 0};
214
215         get_modalias_ids(unit, id);
216
217         return snprintf(buffer, buffer_size,
218                         "ieee1394:ven%08Xmo%08Xsp%08Xver%08X",
219                         id[0], id[1], id[2], id[3]);
220 }
221
222 static int fw_unit_uevent(struct device *dev, struct kobj_uevent_env *env)
223 {
224         struct fw_unit *unit = fw_unit(dev);
225         char modalias[64];
226
227         get_modalias(unit, modalias, sizeof(modalias));
228
229         if (add_uevent_var(env, "MODALIAS=%s", modalias))
230                 return -ENOMEM;
231
232         return 0;
233 }
234
235 struct bus_type fw_bus_type = {
236         .name = "firewire",
237         .match = fw_unit_match,
238         .probe = fw_unit_probe,
239         .remove = fw_unit_remove,
240 };
241 EXPORT_SYMBOL(fw_bus_type);
242
243 int fw_device_enable_phys_dma(struct fw_device *device)
244 {
245         int generation = device->generation;
246
247         /* device->node_id, accessed below, must not be older than generation */
248         smp_rmb();
249
250         return device->card->driver->enable_phys_dma(device->card,
251                                                      device->node_id,
252                                                      generation);
253 }
254 EXPORT_SYMBOL(fw_device_enable_phys_dma);
255
256 struct config_rom_attribute {
257         struct device_attribute attr;
258         u32 key;
259 };
260
261 static ssize_t show_immediate(struct device *dev,
262                               struct device_attribute *dattr, char *buf)
263 {
264         struct config_rom_attribute *attr =
265                 container_of(dattr, struct config_rom_attribute, attr);
266         struct fw_csr_iterator ci;
267         const u32 *dir;
268         int key, value, ret = -ENOENT;
269
270         down_read(&fw_device_rwsem);
271
272         if (is_fw_unit(dev))
273                 dir = fw_unit(dev)->directory;
274         else
275                 dir = fw_device(dev)->config_rom + 5;
276
277         fw_csr_iterator_init(&ci, dir);
278         while (fw_csr_iterator_next(&ci, &key, &value))
279                 if (attr->key == key) {
280                         ret = snprintf(buf, buf ? PAGE_SIZE : 0,
281                                        "0x%06x\n", value);
282                         break;
283                 }
284
285         up_read(&fw_device_rwsem);
286
287         return ret;
288 }
289
290 #define IMMEDIATE_ATTR(name, key)                               \
291         { __ATTR(name, S_IRUGO, show_immediate, NULL), key }
292
293 static ssize_t show_text_leaf(struct device *dev,
294                               struct device_attribute *dattr, char *buf)
295 {
296         struct config_rom_attribute *attr =
297                 container_of(dattr, struct config_rom_attribute, attr);
298         const u32 *dir;
299         size_t bufsize;
300         char dummy_buf[2];
301         int ret;
302
303         down_read(&fw_device_rwsem);
304
305         if (is_fw_unit(dev))
306                 dir = fw_unit(dev)->directory;
307         else
308                 dir = fw_device(dev)->config_rom + 5;
309
310         if (buf) {
311                 bufsize = PAGE_SIZE - 1;
312         } else {
313                 buf = dummy_buf;
314                 bufsize = 1;
315         }
316
317         ret = fw_csr_string(dir, attr->key, buf, bufsize);
318
319         if (ret >= 0) {
320                 /* Strip trailing whitespace and add newline. */
321                 while (ret > 0 && isspace(buf[ret - 1]))
322                         ret--;
323                 strcpy(buf + ret, "\n");
324                 ret++;
325         }
326
327         up_read(&fw_device_rwsem);
328
329         return ret;
330 }
331
332 #define TEXT_LEAF_ATTR(name, key)                               \
333         { __ATTR(name, S_IRUGO, show_text_leaf, NULL), key }
334
335 static struct config_rom_attribute config_rom_attributes[] = {
336         IMMEDIATE_ATTR(vendor, CSR_VENDOR),
337         IMMEDIATE_ATTR(hardware_version, CSR_HARDWARE_VERSION),
338         IMMEDIATE_ATTR(specifier_id, CSR_SPECIFIER_ID),
339         IMMEDIATE_ATTR(version, CSR_VERSION),
340         IMMEDIATE_ATTR(model, CSR_MODEL),
341         TEXT_LEAF_ATTR(vendor_name, CSR_VENDOR),
342         TEXT_LEAF_ATTR(model_name, CSR_MODEL),
343         TEXT_LEAF_ATTR(hardware_version_name, CSR_HARDWARE_VERSION),
344 };
345
346 static void init_fw_attribute_group(struct device *dev,
347                                     struct device_attribute *attrs,
348                                     struct fw_attribute_group *group)
349 {
350         struct device_attribute *attr;
351         int i, j;
352
353         for (j = 0; attrs[j].attr.name != NULL; j++)
354                 group->attrs[j] = &attrs[j].attr;
355
356         for (i = 0; i < ARRAY_SIZE(config_rom_attributes); i++) {
357                 attr = &config_rom_attributes[i].attr;
358                 if (attr->show(dev, attr, NULL) < 0)
359                         continue;
360                 group->attrs[j++] = &attr->attr;
361         }
362
363         group->attrs[j] = NULL;
364         group->groups[0] = &group->group;
365         group->groups[1] = NULL;
366         group->group.attrs = group->attrs;
367         dev->groups = (const struct attribute_group **) group->groups;
368 }
369
370 static ssize_t modalias_show(struct device *dev,
371                              struct device_attribute *attr, char *buf)
372 {
373         struct fw_unit *unit = fw_unit(dev);
374         int length;
375
376         length = get_modalias(unit, buf, PAGE_SIZE);
377         strcpy(buf + length, "\n");
378
379         return length + 1;
380 }
381
382 static ssize_t rom_index_show(struct device *dev,
383                               struct device_attribute *attr, char *buf)
384 {
385         struct fw_device *device = fw_device(dev->parent);
386         struct fw_unit *unit = fw_unit(dev);
387
388         return snprintf(buf, PAGE_SIZE, "%d\n",
389                         (int)(unit->directory - device->config_rom));
390 }
391
392 static struct device_attribute fw_unit_attributes[] = {
393         __ATTR_RO(modalias),
394         __ATTR_RO(rom_index),
395         __ATTR_NULL,
396 };
397
398 static ssize_t config_rom_show(struct device *dev,
399                                struct device_attribute *attr, char *buf)
400 {
401         struct fw_device *device = fw_device(dev);
402         size_t length;
403
404         down_read(&fw_device_rwsem);
405         length = device->config_rom_length * 4;
406         memcpy(buf, device->config_rom, length);
407         up_read(&fw_device_rwsem);
408
409         return length;
410 }
411
412 static ssize_t guid_show(struct device *dev,
413                          struct device_attribute *attr, char *buf)
414 {
415         struct fw_device *device = fw_device(dev);
416         int ret;
417
418         down_read(&fw_device_rwsem);
419         ret = snprintf(buf, PAGE_SIZE, "0x%08x%08x\n",
420                        device->config_rom[3], device->config_rom[4]);
421         up_read(&fw_device_rwsem);
422
423         return ret;
424 }
425
426 static ssize_t is_local_show(struct device *dev,
427                              struct device_attribute *attr, char *buf)
428 {
429         struct fw_device *device = fw_device(dev);
430
431         return sprintf(buf, "%u\n", device->is_local);
432 }
433
434 static int units_sprintf(char *buf, const u32 *directory)
435 {
436         struct fw_csr_iterator ci;
437         int key, value;
438         int specifier_id = 0;
439         int version = 0;
440
441         fw_csr_iterator_init(&ci, directory);
442         while (fw_csr_iterator_next(&ci, &key, &value)) {
443                 switch (key) {
444                 case CSR_SPECIFIER_ID:
445                         specifier_id = value;
446                         break;
447                 case CSR_VERSION:
448                         version = value;
449                         break;
450                 }
451         }
452
453         return sprintf(buf, "0x%06x:0x%06x ", specifier_id, version);
454 }
455
456 static ssize_t units_show(struct device *dev,
457                           struct device_attribute *attr, char *buf)
458 {
459         struct fw_device *device = fw_device(dev);
460         struct fw_csr_iterator ci;
461         int key, value, i = 0;
462
463         down_read(&fw_device_rwsem);
464         fw_csr_iterator_init(&ci, &device->config_rom[5]);
465         while (fw_csr_iterator_next(&ci, &key, &value)) {
466                 if (key != (CSR_UNIT | CSR_DIRECTORY))
467                         continue;
468                 i += units_sprintf(&buf[i], ci.p + value - 1);
469                 if (i >= PAGE_SIZE - (8 + 1 + 8 + 1))
470                         break;
471         }
472         up_read(&fw_device_rwsem);
473
474         if (i)
475                 buf[i - 1] = '\n';
476
477         return i;
478 }
479
480 static struct device_attribute fw_device_attributes[] = {
481         __ATTR_RO(config_rom),
482         __ATTR_RO(guid),
483         __ATTR_RO(is_local),
484         __ATTR_RO(units),
485         __ATTR_NULL,
486 };
487
488 static int read_rom(struct fw_device *device,
489                     int generation, int index, u32 *data)
490 {
491         u64 offset = (CSR_REGISTER_BASE | CSR_CONFIG_ROM) + index * 4;
492         int i, rcode;
493
494         /* device->node_id, accessed below, must not be older than generation */
495         smp_rmb();
496
497         for (i = 10; i < 100; i += 10) {
498                 rcode = fw_run_transaction(device->card,
499                                 TCODE_READ_QUADLET_REQUEST, device->node_id,
500                                 generation, device->max_speed, offset, data, 4);
501                 if (rcode != RCODE_BUSY)
502                         break;
503                 msleep(i);
504         }
505         be32_to_cpus(data);
506
507         return rcode;
508 }
509
510 #define MAX_CONFIG_ROM_SIZE 256
511
512 /*
513  * Read the bus info block, perform a speed probe, and read all of the rest of
514  * the config ROM.  We do all this with a cached bus generation.  If the bus
515  * generation changes under us, read_config_rom will fail and get retried.
516  * It's better to start all over in this case because the node from which we
517  * are reading the ROM may have changed the ROM during the reset.
518  * Returns either a result code or a negative error code.
519  */
520 static int read_config_rom(struct fw_device *device, int generation)
521 {
522         struct fw_card *card = device->card;
523         const u32 *old_rom, *new_rom;
524         u32 *rom, *stack;
525         u32 sp, key;
526         int i, end, length, ret;
527
528         rom = kmalloc(sizeof(*rom) * MAX_CONFIG_ROM_SIZE +
529                       sizeof(*stack) * MAX_CONFIG_ROM_SIZE, GFP_KERNEL);
530         if (rom == NULL)
531                 return -ENOMEM;
532
533         stack = &rom[MAX_CONFIG_ROM_SIZE];
534         memset(rom, 0, sizeof(*rom) * MAX_CONFIG_ROM_SIZE);
535
536         device->max_speed = SCODE_100;
537
538         /* First read the bus info block. */
539         for (i = 0; i < 5; i++) {
540                 ret = read_rom(device, generation, i, &rom[i]);
541                 if (ret != RCODE_COMPLETE)
542                         goto out;
543                 /*
544                  * As per IEEE1212 7.2, during initialization, devices can
545                  * reply with a 0 for the first quadlet of the config
546                  * rom to indicate that they are booting (for example,
547                  * if the firmware is on the disk of a external
548                  * harddisk).  In that case we just fail, and the
549                  * retry mechanism will try again later.
550                  */
551                 if (i == 0 && rom[i] == 0) {
552                         ret = RCODE_BUSY;
553                         goto out;
554                 }
555         }
556
557         device->max_speed = device->node->max_speed;
558
559         /*
560          * Determine the speed of
561          *   - devices with link speed less than PHY speed,
562          *   - devices with 1394b PHY (unless only connected to 1394a PHYs),
563          *   - all devices if there are 1394b repeaters.
564          * Note, we cannot use the bus info block's link_spd as starting point
565          * because some buggy firmwares set it lower than necessary and because
566          * 1394-1995 nodes do not have the field.
567          */
568         if ((rom[2] & 0x7) < device->max_speed ||
569             device->max_speed == SCODE_BETA ||
570             card->beta_repeaters_present) {
571                 u32 dummy;
572
573                 /* for S1600 and S3200 */
574                 if (device->max_speed == SCODE_BETA)
575                         device->max_speed = card->link_speed;
576
577                 while (device->max_speed > SCODE_100) {
578                         if (read_rom(device, generation, 0, &dummy) ==
579                             RCODE_COMPLETE)
580                                 break;
581                         device->max_speed--;
582                 }
583         }
584
585         /*
586          * Now parse the config rom.  The config rom is a recursive
587          * directory structure so we parse it using a stack of
588          * references to the blocks that make up the structure.  We
589          * push a reference to the root directory on the stack to
590          * start things off.
591          */
592         length = i;
593         sp = 0;
594         stack[sp++] = 0xc0000005;
595         while (sp > 0) {
596                 /*
597                  * Pop the next block reference of the stack.  The
598                  * lower 24 bits is the offset into the config rom,
599                  * the upper 8 bits are the type of the reference the
600                  * block.
601                  */
602                 key = stack[--sp];
603                 i = key & 0xffffff;
604                 if (WARN_ON(i >= MAX_CONFIG_ROM_SIZE)) {
605                         ret = -ENXIO;
606                         goto out;
607                 }
608
609                 /* Read header quadlet for the block to get the length. */
610                 ret = read_rom(device, generation, i, &rom[i]);
611                 if (ret != RCODE_COMPLETE)
612                         goto out;
613                 end = i + (rom[i] >> 16) + 1;
614                 if (end > MAX_CONFIG_ROM_SIZE) {
615                         /*
616                          * This block extends outside the config ROM which is
617                          * a firmware bug.  Ignore this whole block, i.e.
618                          * simply set a fake block length of 0.
619                          */
620                         fw_err(card, "skipped invalid ROM block %x at %llx\n",
621                                rom[i],
622                                i * 4 | CSR_REGISTER_BASE | CSR_CONFIG_ROM);
623                         rom[i] = 0;
624                         end = i;
625                 }
626                 i++;
627
628                 /*
629                  * Now read in the block.  If this is a directory
630                  * block, check the entries as we read them to see if
631                  * it references another block, and push it in that case.
632                  */
633                 for (; i < end; i++) {
634                         ret = read_rom(device, generation, i, &rom[i]);
635                         if (ret != RCODE_COMPLETE)
636                                 goto out;
637
638                         if ((key >> 30) != 3 || (rom[i] >> 30) < 2)
639                                 continue;
640                         /*
641                          * Offset points outside the ROM.  May be a firmware
642                          * bug or an Extended ROM entry (IEEE 1212-2001 clause
643                          * 7.7.18).  Simply overwrite this pointer here by a
644                          * fake immediate entry so that later iterators over
645                          * the ROM don't have to check offsets all the time.
646                          */
647                         if (i + (rom[i] & 0xffffff) >= MAX_CONFIG_ROM_SIZE) {
648                                 fw_err(card,
649                                        "skipped unsupported ROM entry %x at %llx\n",
650                                        rom[i],
651                                        i * 4 | CSR_REGISTER_BASE | CSR_CONFIG_ROM);
652                                 rom[i] = 0;
653                                 continue;
654                         }
655                         stack[sp++] = i + rom[i];
656                 }
657                 if (length < i)
658                         length = i;
659         }
660
661         old_rom = device->config_rom;
662         new_rom = kmemdup(rom, length * 4, GFP_KERNEL);
663         if (new_rom == NULL) {
664                 ret = -ENOMEM;
665                 goto out;
666         }
667
668         down_write(&fw_device_rwsem);
669         device->config_rom = new_rom;
670         device->config_rom_length = length;
671         up_write(&fw_device_rwsem);
672
673         kfree(old_rom);
674         ret = RCODE_COMPLETE;
675         device->max_rec = rom[2] >> 12 & 0xf;
676         device->cmc     = rom[2] >> 30 & 1;
677         device->irmc    = rom[2] >> 31 & 1;
678  out:
679         kfree(rom);
680
681         return ret;
682 }
683
684 static void fw_unit_release(struct device *dev)
685 {
686         struct fw_unit *unit = fw_unit(dev);
687
688         fw_device_put(fw_parent_device(unit));
689         kfree(unit);
690 }
691
692 static struct device_type fw_unit_type = {
693         .uevent         = fw_unit_uevent,
694         .release        = fw_unit_release,
695 };
696
697 static bool is_fw_unit(struct device *dev)
698 {
699         return dev->type == &fw_unit_type;
700 }
701
702 static void create_units(struct fw_device *device)
703 {
704         struct fw_csr_iterator ci;
705         struct fw_unit *unit;
706         int key, value, i;
707
708         i = 0;
709         fw_csr_iterator_init(&ci, &device->config_rom[5]);
710         while (fw_csr_iterator_next(&ci, &key, &value)) {
711                 if (key != (CSR_UNIT | CSR_DIRECTORY))
712                         continue;
713
714                 /*
715                  * Get the address of the unit directory and try to
716                  * match the drivers id_tables against it.
717                  */
718                 unit = kzalloc(sizeof(*unit), GFP_KERNEL);
719                 if (unit == NULL)
720                         continue;
721
722                 unit->directory = ci.p + value - 1;
723                 unit->device.bus = &fw_bus_type;
724                 unit->device.type = &fw_unit_type;
725                 unit->device.parent = &device->device;
726                 dev_set_name(&unit->device, "%s.%d", dev_name(&device->device), i++);
727
728                 BUILD_BUG_ON(ARRAY_SIZE(unit->attribute_group.attrs) <
729                                 ARRAY_SIZE(fw_unit_attributes) +
730                                 ARRAY_SIZE(config_rom_attributes));
731                 init_fw_attribute_group(&unit->device,
732                                         fw_unit_attributes,
733                                         &unit->attribute_group);
734
735                 if (device_register(&unit->device) < 0)
736                         goto skip_unit;
737
738                 fw_device_get(device);
739                 continue;
740
741         skip_unit:
742                 kfree(unit);
743         }
744 }
745
746 static int shutdown_unit(struct device *device, void *data)
747 {
748         device_unregister(device);
749
750         return 0;
751 }
752
753 /*
754  * fw_device_rwsem acts as dual purpose mutex:
755  *   - serializes accesses to fw_device_idr,
756  *   - serializes accesses to fw_device.config_rom/.config_rom_length and
757  *     fw_unit.directory, unless those accesses happen at safe occasions
758  */
759 DECLARE_RWSEM(fw_device_rwsem);
760
761 DEFINE_IDR(fw_device_idr);
762 int fw_cdev_major;
763
764 struct fw_device *fw_device_get_by_devt(dev_t devt)
765 {
766         struct fw_device *device;
767
768         down_read(&fw_device_rwsem);
769         device = idr_find(&fw_device_idr, MINOR(devt));
770         if (device)
771                 fw_device_get(device);
772         up_read(&fw_device_rwsem);
773
774         return device;
775 }
776
777 struct workqueue_struct *fw_workqueue;
778 EXPORT_SYMBOL(fw_workqueue);
779
780 static void fw_schedule_device_work(struct fw_device *device,
781                                     unsigned long delay)
782 {
783         queue_delayed_work(fw_workqueue, &device->work, delay);
784 }
785
786 /*
787  * These defines control the retry behavior for reading the config
788  * rom.  It shouldn't be necessary to tweak these; if the device
789  * doesn't respond to a config rom read within 10 seconds, it's not
790  * going to respond at all.  As for the initial delay, a lot of
791  * devices will be able to respond within half a second after bus
792  * reset.  On the other hand, it's not really worth being more
793  * aggressive than that, since it scales pretty well; if 10 devices
794  * are plugged in, they're all getting read within one second.
795  */
796
797 #define MAX_RETRIES     10
798 #define RETRY_DELAY     (3 * HZ)
799 #define INITIAL_DELAY   (HZ / 2)
800 #define SHUTDOWN_DELAY  (2 * HZ)
801
802 static void fw_device_shutdown(struct work_struct *work)
803 {
804         struct fw_device *device =
805                 container_of(work, struct fw_device, work.work);
806         int minor = MINOR(device->device.devt);
807
808         if (time_before64(get_jiffies_64(),
809                           device->card->reset_jiffies + SHUTDOWN_DELAY)
810             && !list_empty(&device->card->link)) {
811                 fw_schedule_device_work(device, SHUTDOWN_DELAY);
812                 return;
813         }
814
815         if (atomic_cmpxchg(&device->state,
816                            FW_DEVICE_GONE,
817                            FW_DEVICE_SHUTDOWN) != FW_DEVICE_GONE)
818                 return;
819
820         fw_device_cdev_remove(device);
821         device_for_each_child(&device->device, NULL, shutdown_unit);
822         device_unregister(&device->device);
823
824         down_write(&fw_device_rwsem);
825         idr_remove(&fw_device_idr, minor);
826         up_write(&fw_device_rwsem);
827
828         fw_device_put(device);
829 }
830
831 static void fw_device_release(struct device *dev)
832 {
833         struct fw_device *device = fw_device(dev);
834         struct fw_card *card = device->card;
835         unsigned long flags;
836
837         /*
838          * Take the card lock so we don't set this to NULL while a
839          * FW_NODE_UPDATED callback is being handled or while the
840          * bus manager work looks at this node.
841          */
842         spin_lock_irqsave(&card->lock, flags);
843         device->node->data = NULL;
844         spin_unlock_irqrestore(&card->lock, flags);
845
846         fw_node_put(device->node);
847         kfree(device->config_rom);
848         kfree(device);
849         fw_card_put(card);
850 }
851
852 static struct device_type fw_device_type = {
853         .release = fw_device_release,
854 };
855
856 static bool is_fw_device(struct device *dev)
857 {
858         return dev->type == &fw_device_type;
859 }
860
861 static int update_unit(struct device *dev, void *data)
862 {
863         struct fw_unit *unit = fw_unit(dev);
864         struct fw_driver *driver = (struct fw_driver *)dev->driver;
865
866         if (is_fw_unit(dev) && driver != NULL && driver->update != NULL) {
867                 device_lock(dev);
868                 driver->update(unit);
869                 device_unlock(dev);
870         }
871
872         return 0;
873 }
874
875 static void fw_device_update(struct work_struct *work)
876 {
877         struct fw_device *device =
878                 container_of(work, struct fw_device, work.work);
879
880         fw_device_cdev_update(device);
881         device_for_each_child(&device->device, NULL, update_unit);
882 }
883
884 /*
885  * If a device was pending for deletion because its node went away but its
886  * bus info block and root directory header matches that of a newly discovered
887  * device, revive the existing fw_device.
888  * The newly allocated fw_device becomes obsolete instead.
889  */
890 static int lookup_existing_device(struct device *dev, void *data)
891 {
892         struct fw_device *old = fw_device(dev);
893         struct fw_device *new = data;
894         struct fw_card *card = new->card;
895         int match = 0;
896
897         if (!is_fw_device(dev))
898                 return 0;
899
900         down_read(&fw_device_rwsem); /* serialize config_rom access */
901         spin_lock_irq(&card->lock);  /* serialize node access */
902
903         if (memcmp(old->config_rom, new->config_rom, 6 * 4) == 0 &&
904             atomic_cmpxchg(&old->state,
905                            FW_DEVICE_GONE,
906                            FW_DEVICE_RUNNING) == FW_DEVICE_GONE) {
907                 struct fw_node *current_node = new->node;
908                 struct fw_node *obsolete_node = old->node;
909
910                 new->node = obsolete_node;
911                 new->node->data = new;
912                 old->node = current_node;
913                 old->node->data = old;
914
915                 old->max_speed = new->max_speed;
916                 old->node_id = current_node->node_id;
917                 smp_wmb();  /* update node_id before generation */
918                 old->generation = card->generation;
919                 old->config_rom_retries = 0;
920                 fw_notice(card, "rediscovered device %s\n", dev_name(dev));
921
922                 old->workfn = fw_device_update;
923                 fw_schedule_device_work(old, 0);
924
925                 if (current_node == card->root_node)
926                         fw_schedule_bm_work(card, 0);
927
928                 match = 1;
929         }
930
931         spin_unlock_irq(&card->lock);
932         up_read(&fw_device_rwsem);
933
934         return match;
935 }
936
937 enum { BC_UNKNOWN = 0, BC_UNIMPLEMENTED, BC_IMPLEMENTED, };
938
939 static void set_broadcast_channel(struct fw_device *device, int generation)
940 {
941         struct fw_card *card = device->card;
942         __be32 data;
943         int rcode;
944
945         if (!card->broadcast_channel_allocated)
946                 return;
947
948         /*
949          * The Broadcast_Channel Valid bit is required by nodes which want to
950          * transmit on this channel.  Such transmissions are practically
951          * exclusive to IP over 1394 (RFC 2734).  IP capable nodes are required
952          * to be IRM capable and have a max_rec of 8 or more.  We use this fact
953          * to narrow down to which nodes we send Broadcast_Channel updates.
954          */
955         if (!device->irmc || device->max_rec < 8)
956                 return;
957
958         /*
959          * Some 1394-1995 nodes crash if this 1394a-2000 register is written.
960          * Perform a read test first.
961          */
962         if (device->bc_implemented == BC_UNKNOWN) {
963                 rcode = fw_run_transaction(card, TCODE_READ_QUADLET_REQUEST,
964                                 device->node_id, generation, device->max_speed,
965                                 CSR_REGISTER_BASE + CSR_BROADCAST_CHANNEL,
966                                 &data, 4);
967                 switch (rcode) {
968                 case RCODE_COMPLETE:
969                         if (data & cpu_to_be32(1 << 31)) {
970                                 device->bc_implemented = BC_IMPLEMENTED;
971                                 break;
972                         }
973                         /* else fall through to case address error */
974                 case RCODE_ADDRESS_ERROR:
975                         device->bc_implemented = BC_UNIMPLEMENTED;
976                 }
977         }
978
979         if (device->bc_implemented == BC_IMPLEMENTED) {
980                 data = cpu_to_be32(BROADCAST_CHANNEL_INITIAL |
981                                    BROADCAST_CHANNEL_VALID);
982                 fw_run_transaction(card, TCODE_WRITE_QUADLET_REQUEST,
983                                 device->node_id, generation, device->max_speed,
984                                 CSR_REGISTER_BASE + CSR_BROADCAST_CHANNEL,
985                                 &data, 4);
986         }
987 }
988
989 int fw_device_set_broadcast_channel(struct device *dev, void *gen)
990 {
991         if (is_fw_device(dev))
992                 set_broadcast_channel(fw_device(dev), (long)gen);
993
994         return 0;
995 }
996
997 static void fw_device_init(struct work_struct *work)
998 {
999         struct fw_device *device =
1000                 container_of(work, struct fw_device, work.work);
1001         struct fw_card *card = device->card;
1002         struct device *revived_dev;
1003         int minor, ret;
1004
1005         /*
1006          * All failure paths here set node->data to NULL, so that we
1007          * don't try to do device_for_each_child() on a kfree()'d
1008          * device.
1009          */
1010
1011         ret = read_config_rom(device, device->generation);
1012         if (ret != RCODE_COMPLETE) {
1013                 if (device->config_rom_retries < MAX_RETRIES &&
1014                     atomic_read(&device->state) == FW_DEVICE_INITIALIZING) {
1015                         device->config_rom_retries++;
1016                         fw_schedule_device_work(device, RETRY_DELAY);
1017                 } else {
1018                         if (device->node->link_on)
1019                                 fw_notice(card, "giving up on node %x: reading config rom failed: %s\n",
1020                                           device->node_id,
1021                                           fw_rcode_string(ret));
1022                         if (device->node == card->root_node)
1023                                 fw_schedule_bm_work(card, 0);
1024                         fw_device_release(&device->device);
1025                 }
1026                 return;
1027         }
1028
1029         revived_dev = device_find_child(card->device,
1030                                         device, lookup_existing_device);
1031         if (revived_dev) {
1032                 put_device(revived_dev);
1033                 fw_device_release(&device->device);
1034
1035                 return;
1036         }
1037
1038         device_initialize(&device->device);
1039
1040         fw_device_get(device);
1041         down_write(&fw_device_rwsem);
1042         minor = idr_alloc(&fw_device_idr, device, 0, 1 << MINORBITS,
1043                         GFP_KERNEL);
1044         up_write(&fw_device_rwsem);
1045
1046         if (minor < 0)
1047                 goto error;
1048
1049         device->device.bus = &fw_bus_type;
1050         device->device.type = &fw_device_type;
1051         device->device.parent = card->device;
1052         device->device.devt = MKDEV(fw_cdev_major, minor);
1053         dev_set_name(&device->device, "fw%d", minor);
1054
1055         BUILD_BUG_ON(ARRAY_SIZE(device->attribute_group.attrs) <
1056                         ARRAY_SIZE(fw_device_attributes) +
1057                         ARRAY_SIZE(config_rom_attributes));
1058         init_fw_attribute_group(&device->device,
1059                                 fw_device_attributes,
1060                                 &device->attribute_group);
1061
1062         if (device_add(&device->device)) {
1063                 fw_err(card, "failed to add device\n");
1064                 goto error_with_cdev;
1065         }
1066
1067         create_units(device);
1068
1069         /*
1070          * Transition the device to running state.  If it got pulled
1071          * out from under us while we did the intialization work, we
1072          * have to shut down the device again here.  Normally, though,
1073          * fw_node_event will be responsible for shutting it down when
1074          * necessary.  We have to use the atomic cmpxchg here to avoid
1075          * racing with the FW_NODE_DESTROYED case in
1076          * fw_node_event().
1077          */
1078         if (atomic_cmpxchg(&device->state,
1079                            FW_DEVICE_INITIALIZING,
1080                            FW_DEVICE_RUNNING) == FW_DEVICE_GONE) {
1081                 device->workfn = fw_device_shutdown;
1082                 fw_schedule_device_work(device, SHUTDOWN_DELAY);
1083         } else {
1084                 fw_notice(card, "created device %s: GUID %08x%08x, S%d00\n",
1085                           dev_name(&device->device),
1086                           device->config_rom[3], device->config_rom[4],
1087                           1 << device->max_speed);
1088                 device->config_rom_retries = 0;
1089
1090                 set_broadcast_channel(device, device->generation);
1091
1092                 add_device_randomness(&device->config_rom[3], 8);
1093         }
1094
1095         /*
1096          * Reschedule the IRM work if we just finished reading the
1097          * root node config rom.  If this races with a bus reset we
1098          * just end up running the IRM work a couple of extra times -
1099          * pretty harmless.
1100          */
1101         if (device->node == card->root_node)
1102                 fw_schedule_bm_work(card, 0);
1103
1104         return;
1105
1106  error_with_cdev:
1107         down_write(&fw_device_rwsem);
1108         idr_remove(&fw_device_idr, minor);
1109         up_write(&fw_device_rwsem);
1110  error:
1111         fw_device_put(device);          /* fw_device_idr's reference */
1112
1113         put_device(&device->device);    /* our reference */
1114 }
1115
1116 /* Reread and compare bus info block and header of root directory */
1117 static int reread_config_rom(struct fw_device *device, int generation,
1118                              bool *changed)
1119 {
1120         u32 q;
1121         int i, rcode;
1122
1123         for (i = 0; i < 6; i++) {
1124                 rcode = read_rom(device, generation, i, &q);
1125                 if (rcode != RCODE_COMPLETE)
1126                         return rcode;
1127
1128                 if (i == 0 && q == 0)
1129                         /* inaccessible (see read_config_rom); retry later */
1130                         return RCODE_BUSY;
1131
1132                 if (q != device->config_rom[i]) {
1133                         *changed = true;
1134                         return RCODE_COMPLETE;
1135                 }
1136         }
1137
1138         *changed = false;
1139         return RCODE_COMPLETE;
1140 }
1141
1142 static void fw_device_refresh(struct work_struct *work)
1143 {
1144         struct fw_device *device =
1145                 container_of(work, struct fw_device, work.work);
1146         struct fw_card *card = device->card;
1147         int ret, node_id = device->node_id;
1148         bool changed;
1149
1150         ret = reread_config_rom(device, device->generation, &changed);
1151         if (ret != RCODE_COMPLETE)
1152                 goto failed_config_rom;
1153
1154         if (!changed) {
1155                 if (atomic_cmpxchg(&device->state,
1156                                    FW_DEVICE_INITIALIZING,
1157                                    FW_DEVICE_RUNNING) == FW_DEVICE_GONE)
1158                         goto gone;
1159
1160                 fw_device_update(work);
1161                 device->config_rom_retries = 0;
1162                 goto out;
1163         }
1164
1165         /*
1166          * Something changed.  We keep things simple and don't investigate
1167          * further.  We just destroy all previous units and create new ones.
1168          */
1169         device_for_each_child(&device->device, NULL, shutdown_unit);
1170
1171         ret = read_config_rom(device, device->generation);
1172         if (ret != RCODE_COMPLETE)
1173                 goto failed_config_rom;
1174
1175         fw_device_cdev_update(device);
1176         create_units(device);
1177
1178         /* Userspace may want to re-read attributes. */
1179         kobject_uevent(&device->device.kobj, KOBJ_CHANGE);
1180
1181         if (atomic_cmpxchg(&device->state,
1182                            FW_DEVICE_INITIALIZING,
1183                            FW_DEVICE_RUNNING) == FW_DEVICE_GONE)
1184                 goto gone;
1185
1186         fw_notice(card, "refreshed device %s\n", dev_name(&device->device));
1187         device->config_rom_retries = 0;
1188         goto out;
1189
1190  failed_config_rom:
1191         if (device->config_rom_retries < MAX_RETRIES &&
1192             atomic_read(&device->state) == FW_DEVICE_INITIALIZING) {
1193                 device->config_rom_retries++;
1194                 fw_schedule_device_work(device, RETRY_DELAY);
1195                 return;
1196         }
1197
1198         fw_notice(card, "giving up on refresh of device %s: %s\n",
1199                   dev_name(&device->device), fw_rcode_string(ret));
1200  gone:
1201         atomic_set(&device->state, FW_DEVICE_GONE);
1202         device->workfn = fw_device_shutdown;
1203         fw_schedule_device_work(device, SHUTDOWN_DELAY);
1204  out:
1205         if (node_id == card->root_node->node_id)
1206                 fw_schedule_bm_work(card, 0);
1207 }
1208
1209 static void fw_device_workfn(struct work_struct *work)
1210 {
1211         struct fw_device *device = container_of(to_delayed_work(work),
1212                                                 struct fw_device, work);
1213         device->workfn(work);
1214 }
1215
1216 void fw_node_event(struct fw_card *card, struct fw_node *node, int event)
1217 {
1218         struct fw_device *device;
1219
1220         switch (event) {
1221         case FW_NODE_CREATED:
1222                 /*
1223                  * Attempt to scan the node, regardless whether its self ID has
1224                  * the L (link active) flag set or not.  Some broken devices
1225                  * send L=0 but have an up-and-running link; others send L=1
1226                  * without actually having a link.
1227                  */
1228  create:
1229                 device = kzalloc(sizeof(*device), GFP_ATOMIC);
1230                 if (device == NULL)
1231                         break;
1232
1233                 /*
1234                  * Do minimal intialization of the device here, the
1235                  * rest will happen in fw_device_init().
1236                  *
1237                  * Attention:  A lot of things, even fw_device_get(),
1238                  * cannot be done before fw_device_init() finished!
1239                  * You can basically just check device->state and
1240                  * schedule work until then, but only while holding
1241                  * card->lock.
1242                  */
1243                 atomic_set(&device->state, FW_DEVICE_INITIALIZING);
1244                 device->card = fw_card_get(card);
1245                 device->node = fw_node_get(node);
1246                 device->node_id = node->node_id;
1247                 device->generation = card->generation;
1248                 device->is_local = node == card->local_node;
1249                 mutex_init(&device->client_list_mutex);
1250                 INIT_LIST_HEAD(&device->client_list);
1251
1252                 /*
1253                  * Set the node data to point back to this device so
1254                  * FW_NODE_UPDATED callbacks can update the node_id
1255                  * and generation for the device.
1256                  */
1257                 node->data = device;
1258
1259                 /*
1260                  * Many devices are slow to respond after bus resets,
1261                  * especially if they are bus powered and go through
1262                  * power-up after getting plugged in.  We schedule the
1263                  * first config rom scan half a second after bus reset.
1264                  */
1265                 device->workfn = fw_device_init;
1266                 INIT_DELAYED_WORK(&device->work, fw_device_workfn);
1267                 fw_schedule_device_work(device, INITIAL_DELAY);
1268                 break;
1269
1270         case FW_NODE_INITIATED_RESET:
1271         case FW_NODE_LINK_ON:
1272                 device = node->data;
1273                 if (device == NULL)
1274                         goto create;
1275
1276                 device->node_id = node->node_id;
1277                 smp_wmb();  /* update node_id before generation */
1278                 device->generation = card->generation;
1279                 if (atomic_cmpxchg(&device->state,
1280                             FW_DEVICE_RUNNING,
1281                             FW_DEVICE_INITIALIZING) == FW_DEVICE_RUNNING) {
1282                         device->workfn = fw_device_refresh;
1283                         fw_schedule_device_work(device,
1284                                 device->is_local ? 0 : INITIAL_DELAY);
1285                 }
1286                 break;
1287
1288         case FW_NODE_UPDATED:
1289                 device = node->data;
1290                 if (device == NULL)
1291                         break;
1292
1293                 device->node_id = node->node_id;
1294                 smp_wmb();  /* update node_id before generation */
1295                 device->generation = card->generation;
1296                 if (atomic_read(&device->state) == FW_DEVICE_RUNNING) {
1297                         device->workfn = fw_device_update;
1298                         fw_schedule_device_work(device, 0);
1299                 }
1300                 break;
1301
1302         case FW_NODE_DESTROYED:
1303         case FW_NODE_LINK_OFF:
1304                 if (!node->data)
1305                         break;
1306
1307                 /*
1308                  * Destroy the device associated with the node.  There
1309                  * are two cases here: either the device is fully
1310                  * initialized (FW_DEVICE_RUNNING) or we're in the
1311                  * process of reading its config rom
1312                  * (FW_DEVICE_INITIALIZING).  If it is fully
1313                  * initialized we can reuse device->work to schedule a
1314                  * full fw_device_shutdown().  If not, there's work
1315                  * scheduled to read it's config rom, and we just put
1316                  * the device in shutdown state to have that code fail
1317                  * to create the device.
1318                  */
1319                 device = node->data;
1320                 if (atomic_xchg(&device->state,
1321                                 FW_DEVICE_GONE) == FW_DEVICE_RUNNING) {
1322                         device->workfn = fw_device_shutdown;
1323                         fw_schedule_device_work(device,
1324                                 list_empty(&card->link) ? 0 : SHUTDOWN_DELAY);
1325                 }
1326                 break;
1327         }
1328 }