thermal: rockchip: add temperature dump when panic
[firefly-linux-kernel-4.4.55.git] / drivers / dma-buf / fence.c
1 /*
2  * Fence mechanism for dma-buf and to allow for asynchronous dma access
3  *
4  * Copyright (C) 2012 Canonical Ltd
5  * Copyright (C) 2012 Texas Instruments
6  *
7  * Authors:
8  * Rob Clark <robdclark@gmail.com>
9  * Maarten Lankhorst <maarten.lankhorst@canonical.com>
10  *
11  * This program is free software; you can redistribute it and/or modify it
12  * under the terms of the GNU General Public License version 2 as published by
13  * the Free Software Foundation.
14  *
15  * This program is distributed in the hope that it will be useful, but WITHOUT
16  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
17  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
18  * more details.
19  */
20
21 #include <linux/slab.h>
22 #include <linux/export.h>
23 #include <linux/atomic.h>
24 #include <linux/fence.h>
25
26 #define CREATE_TRACE_POINTS
27 #include <trace/events/fence.h>
28
29 EXPORT_TRACEPOINT_SYMBOL(fence_annotate_wait_on);
30 EXPORT_TRACEPOINT_SYMBOL(fence_emit);
31
32 /*
33  * fence context counter: each execution context should have its own
34  * fence context, this allows checking if fences belong to the same
35  * context or not. One device can have multiple separate contexts,
36  * and they're used if some engine can run independently of another.
37  */
38 static atomic_t fence_context_counter = ATOMIC_INIT(0);
39
40 /**
41  * fence_context_alloc - allocate an array of fence contexts
42  * @num:        [in]    amount of contexts to allocate
43  *
44  * This function will return the first index of the number of fences allocated.
45  * The fence context is used for setting fence->context to a unique number.
46  */
47 unsigned fence_context_alloc(unsigned num)
48 {
49         BUG_ON(!num);
50         return atomic_add_return(num, &fence_context_counter) - num;
51 }
52 EXPORT_SYMBOL(fence_context_alloc);
53
54 /**
55  * fence_signal_locked - signal completion of a fence
56  * @fence: the fence to signal
57  *
58  * Signal completion for software callbacks on a fence, this will unblock
59  * fence_wait() calls and run all the callbacks added with
60  * fence_add_callback(). Can be called multiple times, but since a fence
61  * can only go from unsignaled to signaled state, it will only be effective
62  * the first time.
63  *
64  * Unlike fence_signal, this function must be called with fence->lock held.
65  */
66 int fence_signal_locked(struct fence *fence)
67 {
68         struct fence_cb *cur, *tmp;
69         int ret = 0;
70
71         if (WARN_ON(!fence))
72                 return -EINVAL;
73
74         if (!ktime_to_ns(fence->timestamp)) {
75                 fence->timestamp = ktime_get();
76                 smp_mb__before_atomic();
77         }
78
79         if (test_and_set_bit(FENCE_FLAG_SIGNALED_BIT, &fence->flags)) {
80                 ret = -EINVAL;
81
82                 /*
83                  * we might have raced with the unlocked fence_signal,
84                  * still run through all callbacks
85                  */
86         } else
87                 trace_fence_signaled(fence);
88
89         list_for_each_entry_safe(cur, tmp, &fence->cb_list, node) {
90                 list_del_init(&cur->node);
91                 cur->func(fence, cur);
92         }
93         return ret;
94 }
95 EXPORT_SYMBOL(fence_signal_locked);
96
97 /**
98  * fence_signal - signal completion of a fence
99  * @fence: the fence to signal
100  *
101  * Signal completion for software callbacks on a fence, this will unblock
102  * fence_wait() calls and run all the callbacks added with
103  * fence_add_callback(). Can be called multiple times, but since a fence
104  * can only go from unsignaled to signaled state, it will only be effective
105  * the first time.
106  */
107 int fence_signal(struct fence *fence)
108 {
109         unsigned long flags;
110
111         if (!fence)
112                 return -EINVAL;
113
114         if (!ktime_to_ns(fence->timestamp)) {
115                 fence->timestamp = ktime_get();
116                 smp_mb__before_atomic();
117         }
118
119         if (test_and_set_bit(FENCE_FLAG_SIGNALED_BIT, &fence->flags))
120                 return -EINVAL;
121
122         trace_fence_signaled(fence);
123
124         if (test_bit(FENCE_FLAG_ENABLE_SIGNAL_BIT, &fence->flags)) {
125                 struct fence_cb *cur, *tmp;
126
127                 spin_lock_irqsave(fence->lock, flags);
128                 list_for_each_entry_safe(cur, tmp, &fence->cb_list, node) {
129                         list_del_init(&cur->node);
130                         cur->func(fence, cur);
131                 }
132                 spin_unlock_irqrestore(fence->lock, flags);
133         }
134         return 0;
135 }
136 EXPORT_SYMBOL(fence_signal);
137
138 /**
139  * fence_wait_timeout - sleep until the fence gets signaled
140  * or until timeout elapses
141  * @fence:      [in]    the fence to wait on
142  * @intr:       [in]    if true, do an interruptible wait
143  * @timeout:    [in]    timeout value in jiffies, or MAX_SCHEDULE_TIMEOUT
144  *
145  * Returns -ERESTARTSYS if interrupted, 0 if the wait timed out, or the
146  * remaining timeout in jiffies on success. Other error values may be
147  * returned on custom implementations.
148  *
149  * Performs a synchronous wait on this fence. It is assumed the caller
150  * directly or indirectly (buf-mgr between reservation and committing)
151  * holds a reference to the fence, otherwise the fence might be
152  * freed before return, resulting in undefined behavior.
153  */
154 signed long
155 fence_wait_timeout(struct fence *fence, bool intr, signed long timeout)
156 {
157         signed long ret;
158
159         if (WARN_ON(timeout < 0))
160                 return -EINVAL;
161
162         if (timeout == 0)
163                 return fence_is_signaled(fence);
164
165         trace_fence_wait_start(fence);
166         ret = fence->ops->wait(fence, intr, timeout);
167         trace_fence_wait_end(fence);
168         return ret;
169 }
170 EXPORT_SYMBOL(fence_wait_timeout);
171
172 void fence_release(struct kref *kref)
173 {
174         struct fence *fence =
175                         container_of(kref, struct fence, refcount);
176
177         trace_fence_destroy(fence);
178
179         BUG_ON(!list_empty(&fence->cb_list));
180
181         if (fence->ops->release)
182                 fence->ops->release(fence);
183         else
184                 fence_free(fence);
185 }
186 EXPORT_SYMBOL(fence_release);
187
188 void fence_free(struct fence *fence)
189 {
190         kfree_rcu(fence, rcu);
191 }
192 EXPORT_SYMBOL(fence_free);
193
194 /**
195  * fence_enable_sw_signaling - enable signaling on fence
196  * @fence:      [in]    the fence to enable
197  *
198  * this will request for sw signaling to be enabled, to make the fence
199  * complete as soon as possible
200  */
201 void fence_enable_sw_signaling(struct fence *fence)
202 {
203         unsigned long flags;
204
205         if (!test_and_set_bit(FENCE_FLAG_ENABLE_SIGNAL_BIT, &fence->flags) &&
206             !test_bit(FENCE_FLAG_SIGNALED_BIT, &fence->flags)) {
207                 trace_fence_enable_signal(fence);
208
209                 spin_lock_irqsave(fence->lock, flags);
210
211                 if (!fence->ops->enable_signaling(fence))
212                         fence_signal_locked(fence);
213
214                 spin_unlock_irqrestore(fence->lock, flags);
215         }
216 }
217 EXPORT_SYMBOL(fence_enable_sw_signaling);
218
219 /**
220  * fence_add_callback - add a callback to be called when the fence
221  * is signaled
222  * @fence:      [in]    the fence to wait on
223  * @cb:         [in]    the callback to register
224  * @func:       [in]    the function to call
225  *
226  * cb will be initialized by fence_add_callback, no initialization
227  * by the caller is required. Any number of callbacks can be registered
228  * to a fence, but a callback can only be registered to one fence at a time.
229  *
230  * Note that the callback can be called from an atomic context.  If
231  * fence is already signaled, this function will return -ENOENT (and
232  * *not* call the callback)
233  *
234  * Add a software callback to the fence. Same restrictions apply to
235  * refcount as it does to fence_wait, however the caller doesn't need to
236  * keep a refcount to fence afterwards: when software access is enabled,
237  * the creator of the fence is required to keep the fence alive until
238  * after it signals with fence_signal. The callback itself can be called
239  * from irq context.
240  *
241  */
242 int fence_add_callback(struct fence *fence, struct fence_cb *cb,
243                        fence_func_t func)
244 {
245         unsigned long flags;
246         int ret = 0;
247         bool was_set;
248
249         if (WARN_ON(!fence || !func))
250                 return -EINVAL;
251
252         if (test_bit(FENCE_FLAG_SIGNALED_BIT, &fence->flags)) {
253                 INIT_LIST_HEAD(&cb->node);
254                 return -ENOENT;
255         }
256
257         spin_lock_irqsave(fence->lock, flags);
258
259         was_set = test_and_set_bit(FENCE_FLAG_ENABLE_SIGNAL_BIT, &fence->flags);
260
261         if (test_bit(FENCE_FLAG_SIGNALED_BIT, &fence->flags))
262                 ret = -ENOENT;
263         else if (!was_set) {
264                 trace_fence_enable_signal(fence);
265
266                 if (!fence->ops->enable_signaling(fence)) {
267                         fence_signal_locked(fence);
268                         ret = -ENOENT;
269                 }
270         }
271
272         if (!ret) {
273                 cb->func = func;
274                 list_add_tail(&cb->node, &fence->cb_list);
275         } else
276                 INIT_LIST_HEAD(&cb->node);
277         spin_unlock_irqrestore(fence->lock, flags);
278
279         return ret;
280 }
281 EXPORT_SYMBOL(fence_add_callback);
282
283 /**
284  * fence_remove_callback - remove a callback from the signaling list
285  * @fence:      [in]    the fence to wait on
286  * @cb:         [in]    the callback to remove
287  *
288  * Remove a previously queued callback from the fence. This function returns
289  * true if the callback is successfully removed, or false if the fence has
290  * already been signaled.
291  *
292  * *WARNING*:
293  * Cancelling a callback should only be done if you really know what you're
294  * doing, since deadlocks and race conditions could occur all too easily. For
295  * this reason, it should only ever be done on hardware lockup recovery,
296  * with a reference held to the fence.
297  */
298 bool
299 fence_remove_callback(struct fence *fence, struct fence_cb *cb)
300 {
301         unsigned long flags;
302         bool ret;
303
304         spin_lock_irqsave(fence->lock, flags);
305
306         ret = !list_empty(&cb->node);
307         if (ret) {
308                 list_del_init(&cb->node);
309                 if (list_empty(&fence->cb_list))
310                         if (fence->ops->disable_signaling)
311                                 fence->ops->disable_signaling(fence);
312         }
313
314         spin_unlock_irqrestore(fence->lock, flags);
315
316         return ret;
317 }
318 EXPORT_SYMBOL(fence_remove_callback);
319
320 struct default_wait_cb {
321         struct fence_cb base;
322         struct task_struct *task;
323 };
324
325 static void
326 fence_default_wait_cb(struct fence *fence, struct fence_cb *cb)
327 {
328         struct default_wait_cb *wait =
329                 container_of(cb, struct default_wait_cb, base);
330
331         wake_up_state(wait->task, TASK_NORMAL);
332 }
333
334 /**
335  * fence_default_wait - default sleep until the fence gets signaled
336  * or until timeout elapses
337  * @fence:      [in]    the fence to wait on
338  * @intr:       [in]    if true, do an interruptible wait
339  * @timeout:    [in]    timeout value in jiffies, or MAX_SCHEDULE_TIMEOUT
340  *
341  * Returns -ERESTARTSYS if interrupted, 0 if the wait timed out, or the
342  * remaining timeout in jiffies on success.
343  */
344 signed long
345 fence_default_wait(struct fence *fence, bool intr, signed long timeout)
346 {
347         struct default_wait_cb cb;
348         unsigned long flags;
349         signed long ret = timeout;
350         bool was_set;
351
352         if (test_bit(FENCE_FLAG_SIGNALED_BIT, &fence->flags))
353                 return timeout;
354
355         spin_lock_irqsave(fence->lock, flags);
356
357         if (intr && signal_pending(current)) {
358                 ret = -ERESTARTSYS;
359                 goto out;
360         }
361
362         was_set = test_and_set_bit(FENCE_FLAG_ENABLE_SIGNAL_BIT, &fence->flags);
363
364         if (test_bit(FENCE_FLAG_SIGNALED_BIT, &fence->flags))
365                 goto out;
366
367         if (!was_set) {
368                 trace_fence_enable_signal(fence);
369
370                 if (!fence->ops->enable_signaling(fence)) {
371                         fence_signal_locked(fence);
372                         goto out;
373                 }
374         }
375
376         cb.base.func = fence_default_wait_cb;
377         cb.task = current;
378         list_add(&cb.base.node, &fence->cb_list);
379
380         while (!test_bit(FENCE_FLAG_SIGNALED_BIT, &fence->flags) && ret > 0) {
381                 if (intr)
382                         __set_current_state(TASK_INTERRUPTIBLE);
383                 else
384                         __set_current_state(TASK_UNINTERRUPTIBLE);
385                 spin_unlock_irqrestore(fence->lock, flags);
386
387                 ret = schedule_timeout(ret);
388
389                 spin_lock_irqsave(fence->lock, flags);
390                 if (ret > 0 && intr && signal_pending(current))
391                         ret = -ERESTARTSYS;
392         }
393
394         if (!list_empty(&cb.base.node))
395                 list_del(&cb.base.node);
396         __set_current_state(TASK_RUNNING);
397
398 out:
399         spin_unlock_irqrestore(fence->lock, flags);
400         return ret;
401 }
402 EXPORT_SYMBOL(fence_default_wait);
403
404 static bool
405 fence_test_signaled_any(struct fence **fences, uint32_t count)
406 {
407         int i;
408
409         for (i = 0; i < count; ++i) {
410                 struct fence *fence = fences[i];
411                 if (test_bit(FENCE_FLAG_SIGNALED_BIT, &fence->flags))
412                         return true;
413         }
414         return false;
415 }
416
417 /**
418  * fence_wait_any_timeout - sleep until any fence gets signaled
419  * or until timeout elapses
420  * @fences:     [in]    array of fences to wait on
421  * @count:      [in]    number of fences to wait on
422  * @intr:       [in]    if true, do an interruptible wait
423  * @timeout:    [in]    timeout value in jiffies, or MAX_SCHEDULE_TIMEOUT
424  *
425  * Returns -EINVAL on custom fence wait implementation, -ERESTARTSYS if
426  * interrupted, 0 if the wait timed out, or the remaining timeout in jiffies
427  * on success.
428  *
429  * Synchronous waits for the first fence in the array to be signaled. The
430  * caller needs to hold a reference to all fences in the array, otherwise a
431  * fence might be freed before return, resulting in undefined behavior.
432  */
433 signed long
434 fence_wait_any_timeout(struct fence **fences, uint32_t count,
435                        bool intr, signed long timeout)
436 {
437         struct default_wait_cb *cb;
438         signed long ret = timeout;
439         unsigned i;
440
441         if (WARN_ON(!fences || !count || timeout < 0))
442                 return -EINVAL;
443
444         if (timeout == 0) {
445                 for (i = 0; i < count; ++i)
446                         if (fence_is_signaled(fences[i]))
447                                 return 1;
448
449                 return 0;
450         }
451
452         cb = kcalloc(count, sizeof(struct default_wait_cb), GFP_KERNEL);
453         if (cb == NULL) {
454                 ret = -ENOMEM;
455                 goto err_free_cb;
456         }
457
458         for (i = 0; i < count; ++i) {
459                 struct fence *fence = fences[i];
460
461                 if (fence->ops->wait != fence_default_wait) {
462                         ret = -EINVAL;
463                         goto fence_rm_cb;
464                 }
465
466                 cb[i].task = current;
467                 if (fence_add_callback(fence, &cb[i].base,
468                                        fence_default_wait_cb)) {
469                         /* This fence is already signaled */
470                         goto fence_rm_cb;
471                 }
472         }
473
474         while (ret > 0) {
475                 if (intr)
476                         set_current_state(TASK_INTERRUPTIBLE);
477                 else
478                         set_current_state(TASK_UNINTERRUPTIBLE);
479
480                 if (fence_test_signaled_any(fences, count))
481                         break;
482
483                 ret = schedule_timeout(ret);
484
485                 if (ret > 0 && intr && signal_pending(current))
486                         ret = -ERESTARTSYS;
487         }
488
489         __set_current_state(TASK_RUNNING);
490
491 fence_rm_cb:
492         while (i-- > 0)
493                 fence_remove_callback(fences[i], &cb[i].base);
494
495 err_free_cb:
496         kfree(cb);
497
498         return ret;
499 }
500 EXPORT_SYMBOL(fence_wait_any_timeout);
501
502 /**
503  * fence_init - Initialize a custom fence.
504  * @fence:      [in]    the fence to initialize
505  * @ops:        [in]    the fence_ops for operations on this fence
506  * @lock:       [in]    the irqsafe spinlock to use for locking this fence
507  * @context:    [in]    the execution context this fence is run on
508  * @seqno:      [in]    a linear increasing sequence number for this context
509  *
510  * Initializes an allocated fence, the caller doesn't have to keep its
511  * refcount after committing with this fence, but it will need to hold a
512  * refcount again if fence_ops.enable_signaling gets called. This can
513  * be used for other implementing other types of fence.
514  *
515  * context and seqno are used for easy comparison between fences, allowing
516  * to check which fence is later by simply using fence_later.
517  */
518 void
519 fence_init(struct fence *fence, const struct fence_ops *ops,
520              spinlock_t *lock, unsigned context, unsigned seqno)
521 {
522         BUG_ON(!lock);
523         BUG_ON(!ops || !ops->wait || !ops->enable_signaling ||
524                !ops->get_driver_name || !ops->get_timeline_name);
525
526         kref_init(&fence->refcount);
527         fence->ops = ops;
528         INIT_LIST_HEAD(&fence->cb_list);
529         fence->lock = lock;
530         fence->context = context;
531         fence->seqno = seqno;
532         fence->flags = 0UL;
533
534         trace_fence_init(fence);
535 }
536 EXPORT_SYMBOL(fence_init);