Merge commit 'ed30f24e8d07d30aa3e69d1f508f4d7bd2e8ea14' of git://git.linaro.org/landi...
[firefly-linux-kernel-4.4.55.git] / drivers / cpufreq / cpufreq_ondemand.c
1 /*
2  *  drivers/cpufreq/cpufreq_ondemand.c
3  *
4  *  Copyright (C)  2001 Russell King
5  *            (C)  2003 Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>.
6  *                      Jun Nakajima <jun.nakajima@intel.com>
7  *
8  * This program is free software; you can redistribute it and/or modify
9  * it under the terms of the GNU General Public License version 2 as
10  * published by the Free Software Foundation.
11  */
12
13 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
14
15 #include <linux/cpufreq.h>
16 #include <linux/init.h>
17 #include <linux/kernel.h>
18 #include <linux/kernel_stat.h>
19 #include <linux/kobject.h>
20 #include <linux/module.h>
21 #include <linux/mutex.h>
22 #include <linux/percpu-defs.h>
23 #include <linux/slab.h>
24 #include <linux/sysfs.h>
25 #include <linux/tick.h>
26 #include <linux/types.h>
27 #include <linux/cpu.h>
28
29 #include "cpufreq_governor.h"
30
31 /* On-demand governor macros */
32 #define DEF_FREQUENCY_DOWN_DIFFERENTIAL         (10)
33 #define DEF_FREQUENCY_UP_THRESHOLD              (80)
34 #define DEF_SAMPLING_DOWN_FACTOR                (1)
35 #define MAX_SAMPLING_DOWN_FACTOR                (100000)
36 #define MICRO_FREQUENCY_DOWN_DIFFERENTIAL       (3)
37 #define MICRO_FREQUENCY_UP_THRESHOLD            (95)
38 #define MICRO_FREQUENCY_MIN_SAMPLE_RATE         (10000)
39 #define MIN_FREQUENCY_UP_THRESHOLD              (11)
40 #define MAX_FREQUENCY_UP_THRESHOLD              (100)
41
42 static DEFINE_PER_CPU(struct od_cpu_dbs_info_s, od_cpu_dbs_info);
43
44 static struct od_ops od_ops;
45
46 #ifndef CONFIG_CPU_FREQ_DEFAULT_GOV_ONDEMAND
47 static struct cpufreq_governor cpufreq_gov_ondemand;
48 #endif
49
50 static unsigned int default_powersave_bias;
51
52 static void ondemand_powersave_bias_init_cpu(int cpu)
53 {
54         struct od_cpu_dbs_info_s *dbs_info = &per_cpu(od_cpu_dbs_info, cpu);
55
56         dbs_info->freq_table = cpufreq_frequency_get_table(cpu);
57         dbs_info->freq_lo = 0;
58 }
59
60 /*
61  * Not all CPUs want IO time to be accounted as busy; this depends on how
62  * efficient idling at a higher frequency/voltage is.
63  * Pavel Machek says this is not so for various generations of AMD and old
64  * Intel systems.
65  * Mike Chan (android.com) claims this is also not true for ARM.
66  * Because of this, whitelist specific known (series) of CPUs by default, and
67  * leave all others up to the user.
68  */
69 static int should_io_be_busy(void)
70 {
71 #if defined(CONFIG_X86)
72         /*
73          * For Intel, Core 2 (model 15) and later have an efficient idle.
74          */
75         if (boot_cpu_data.x86_vendor == X86_VENDOR_INTEL &&
76                         boot_cpu_data.x86 == 6 &&
77                         boot_cpu_data.x86_model >= 15)
78                 return 1;
79 #endif
80         return 0;
81 }
82
83 /*
84  * Find right freq to be set now with powersave_bias on.
85  * Returns the freq_hi to be used right now and will set freq_hi_jiffies,
86  * freq_lo, and freq_lo_jiffies in percpu area for averaging freqs.
87  */
88 static unsigned int generic_powersave_bias_target(struct cpufreq_policy *policy,
89                 unsigned int freq_next, unsigned int relation)
90 {
91         unsigned int freq_req, freq_reduc, freq_avg;
92         unsigned int freq_hi, freq_lo;
93         unsigned int index = 0;
94         unsigned int jiffies_total, jiffies_hi, jiffies_lo;
95         struct od_cpu_dbs_info_s *dbs_info = &per_cpu(od_cpu_dbs_info,
96                                                    policy->cpu);
97         struct dbs_data *dbs_data = policy->governor_data;
98         struct od_dbs_tuners *od_tuners = dbs_data->tuners;
99
100         if (!dbs_info->freq_table) {
101                 dbs_info->freq_lo = 0;
102                 dbs_info->freq_lo_jiffies = 0;
103                 return freq_next;
104         }
105
106         cpufreq_frequency_table_target(policy, dbs_info->freq_table, freq_next,
107                         relation, &index);
108         freq_req = dbs_info->freq_table[index].frequency;
109         freq_reduc = freq_req * od_tuners->powersave_bias / 1000;
110         freq_avg = freq_req - freq_reduc;
111
112         /* Find freq bounds for freq_avg in freq_table */
113         index = 0;
114         cpufreq_frequency_table_target(policy, dbs_info->freq_table, freq_avg,
115                         CPUFREQ_RELATION_H, &index);
116         freq_lo = dbs_info->freq_table[index].frequency;
117         index = 0;
118         cpufreq_frequency_table_target(policy, dbs_info->freq_table, freq_avg,
119                         CPUFREQ_RELATION_L, &index);
120         freq_hi = dbs_info->freq_table[index].frequency;
121
122         /* Find out how long we have to be in hi and lo freqs */
123         if (freq_hi == freq_lo) {
124                 dbs_info->freq_lo = 0;
125                 dbs_info->freq_lo_jiffies = 0;
126                 return freq_lo;
127         }
128         jiffies_total = usecs_to_jiffies(od_tuners->sampling_rate);
129         jiffies_hi = (freq_avg - freq_lo) * jiffies_total;
130         jiffies_hi += ((freq_hi - freq_lo) / 2);
131         jiffies_hi /= (freq_hi - freq_lo);
132         jiffies_lo = jiffies_total - jiffies_hi;
133         dbs_info->freq_lo = freq_lo;
134         dbs_info->freq_lo_jiffies = jiffies_lo;
135         dbs_info->freq_hi_jiffies = jiffies_hi;
136         return freq_hi;
137 }
138
139 static void ondemand_powersave_bias_init(void)
140 {
141         int i;
142         for_each_online_cpu(i) {
143                 ondemand_powersave_bias_init_cpu(i);
144         }
145 }
146
147 static void dbs_freq_increase(struct cpufreq_policy *p, unsigned int freq)
148 {
149         struct dbs_data *dbs_data = p->governor_data;
150         struct od_dbs_tuners *od_tuners = dbs_data->tuners;
151
152         if (od_tuners->powersave_bias)
153                 freq = od_ops.powersave_bias_target(p, freq,
154                                 CPUFREQ_RELATION_H);
155         else if (p->cur == p->max)
156                 return;
157
158         __cpufreq_driver_target(p, freq, od_tuners->powersave_bias ?
159                         CPUFREQ_RELATION_L : CPUFREQ_RELATION_H);
160 }
161
162 /*
163  * Every sampling_rate, we check, if current idle time is less than 20%
164  * (default), then we try to increase frequency. Every sampling_rate, we look
165  * for the lowest frequency which can sustain the load while keeping idle time
166  * over 30%. If such a frequency exist, we try to decrease to this frequency.
167  *
168  * Any frequency increase takes it to the maximum frequency. Frequency reduction
169  * happens at minimum steps of 5% (default) of current frequency
170  */
171 static void od_check_cpu(int cpu, unsigned int load_freq)
172 {
173         struct od_cpu_dbs_info_s *dbs_info = &per_cpu(od_cpu_dbs_info, cpu);
174         struct cpufreq_policy *policy = dbs_info->cdbs.cur_policy;
175         struct dbs_data *dbs_data = policy->governor_data;
176         struct od_dbs_tuners *od_tuners = dbs_data->tuners;
177
178         dbs_info->freq_lo = 0;
179
180         /* Check for frequency increase */
181         if (load_freq > od_tuners->up_threshold * policy->cur) {
182                 /* If switching to max speed, apply sampling_down_factor */
183                 if (policy->cur < policy->max)
184                         dbs_info->rate_mult =
185                                 od_tuners->sampling_down_factor;
186                 dbs_freq_increase(policy, policy->max);
187                 return;
188         }
189
190         /* Check for frequency decrease */
191         /* if we cannot reduce the frequency anymore, break out early */
192         if (policy->cur == policy->min)
193                 return;
194
195         /*
196          * The optimal frequency is the frequency that is the lowest that can
197          * support the current CPU usage without triggering the up policy. To be
198          * safe, we focus 10 points under the threshold.
199          */
200         if (load_freq < od_tuners->adj_up_threshold
201                         * policy->cur) {
202                 unsigned int freq_next;
203                 freq_next = load_freq / od_tuners->adj_up_threshold;
204
205                 /* No longer fully busy, reset rate_mult */
206                 dbs_info->rate_mult = 1;
207
208                 if (freq_next < policy->min)
209                         freq_next = policy->min;
210
211                 if (!od_tuners->powersave_bias) {
212                         __cpufreq_driver_target(policy, freq_next,
213                                         CPUFREQ_RELATION_L);
214                         return;
215                 }
216
217                 freq_next = od_ops.powersave_bias_target(policy, freq_next,
218                                         CPUFREQ_RELATION_L);
219                 __cpufreq_driver_target(policy, freq_next, CPUFREQ_RELATION_L);
220         }
221 }
222
223 static void od_dbs_timer(struct work_struct *work)
224 {
225         struct od_cpu_dbs_info_s *dbs_info =
226                 container_of(work, struct od_cpu_dbs_info_s, cdbs.work.work);
227         unsigned int cpu = dbs_info->cdbs.cur_policy->cpu;
228         struct od_cpu_dbs_info_s *core_dbs_info = &per_cpu(od_cpu_dbs_info,
229                         cpu);
230         struct dbs_data *dbs_data = dbs_info->cdbs.cur_policy->governor_data;
231         struct od_dbs_tuners *od_tuners = dbs_data->tuners;
232         int delay = 0, sample_type = core_dbs_info->sample_type;
233         bool modify_all = true;
234
235         mutex_lock(&core_dbs_info->cdbs.timer_mutex);
236         if (!need_load_eval(&core_dbs_info->cdbs, od_tuners->sampling_rate)) {
237                 modify_all = false;
238                 goto max_delay;
239         }
240
241         /* Common NORMAL_SAMPLE setup */
242         core_dbs_info->sample_type = OD_NORMAL_SAMPLE;
243         if (sample_type == OD_SUB_SAMPLE) {
244                 delay = core_dbs_info->freq_lo_jiffies;
245                 __cpufreq_driver_target(core_dbs_info->cdbs.cur_policy,
246                                 core_dbs_info->freq_lo, CPUFREQ_RELATION_H);
247         } else {
248                 dbs_check_cpu(dbs_data, cpu);
249                 if (core_dbs_info->freq_lo) {
250                         /* Setup timer for SUB_SAMPLE */
251                         core_dbs_info->sample_type = OD_SUB_SAMPLE;
252                         delay = core_dbs_info->freq_hi_jiffies;
253                 }
254         }
255
256 max_delay:
257         if (!delay)
258                 delay = delay_for_sampling_rate(od_tuners->sampling_rate
259                                 * core_dbs_info->rate_mult);
260
261         gov_queue_work(dbs_data, dbs_info->cdbs.cur_policy, delay, modify_all);
262         mutex_unlock(&core_dbs_info->cdbs.timer_mutex);
263 }
264
265 /************************** sysfs interface ************************/
266 static struct common_dbs_data od_dbs_cdata;
267
268 /**
269  * update_sampling_rate - update sampling rate effective immediately if needed.
270  * @new_rate: new sampling rate
271  *
272  * If new rate is smaller than the old, simply updating
273  * dbs_tuners_int.sampling_rate might not be appropriate. For example, if the
274  * original sampling_rate was 1 second and the requested new sampling rate is 10
275  * ms because the user needs immediate reaction from ondemand governor, but not
276  * sure if higher frequency will be required or not, then, the governor may
277  * change the sampling rate too late; up to 1 second later. Thus, if we are
278  * reducing the sampling rate, we need to make the new value effective
279  * immediately.
280  */
281 static void update_sampling_rate(struct dbs_data *dbs_data,
282                 unsigned int new_rate)
283 {
284         struct od_dbs_tuners *od_tuners = dbs_data->tuners;
285         int cpu;
286
287         od_tuners->sampling_rate = new_rate = max(new_rate,
288                         dbs_data->min_sampling_rate);
289
290         for_each_online_cpu(cpu) {
291                 struct cpufreq_policy *policy;
292                 struct od_cpu_dbs_info_s *dbs_info;
293                 unsigned long next_sampling, appointed_at;
294
295                 policy = cpufreq_cpu_get(cpu);
296                 if (!policy)
297                         continue;
298                 if (policy->governor != &cpufreq_gov_ondemand) {
299                         cpufreq_cpu_put(policy);
300                         continue;
301                 }
302                 dbs_info = &per_cpu(od_cpu_dbs_info, cpu);
303                 cpufreq_cpu_put(policy);
304
305                 mutex_lock(&dbs_info->cdbs.timer_mutex);
306
307                 if (!delayed_work_pending(&dbs_info->cdbs.work)) {
308                         mutex_unlock(&dbs_info->cdbs.timer_mutex);
309                         continue;
310                 }
311
312                 next_sampling = jiffies + usecs_to_jiffies(new_rate);
313                 appointed_at = dbs_info->cdbs.work.timer.expires;
314
315                 if (time_before(next_sampling, appointed_at)) {
316
317                         mutex_unlock(&dbs_info->cdbs.timer_mutex);
318                         cancel_delayed_work_sync(&dbs_info->cdbs.work);
319                         mutex_lock(&dbs_info->cdbs.timer_mutex);
320
321                         gov_queue_work(dbs_data, dbs_info->cdbs.cur_policy,
322                                         usecs_to_jiffies(new_rate), true);
323
324                 }
325                 mutex_unlock(&dbs_info->cdbs.timer_mutex);
326         }
327 }
328
329 static ssize_t store_sampling_rate(struct dbs_data *dbs_data, const char *buf,
330                 size_t count)
331 {
332         unsigned int input;
333         int ret;
334         ret = sscanf(buf, "%u", &input);
335         if (ret != 1)
336                 return -EINVAL;
337
338         update_sampling_rate(dbs_data, input);
339         return count;
340 }
341
342 static ssize_t store_io_is_busy(struct dbs_data *dbs_data, const char *buf,
343                 size_t count)
344 {
345         struct od_dbs_tuners *od_tuners = dbs_data->tuners;
346         unsigned int input;
347         int ret;
348         unsigned int j;
349
350         ret = sscanf(buf, "%u", &input);
351         if (ret != 1)
352                 return -EINVAL;
353         od_tuners->io_is_busy = !!input;
354
355         /* we need to re-evaluate prev_cpu_idle */
356         for_each_online_cpu(j) {
357                 struct od_cpu_dbs_info_s *dbs_info = &per_cpu(od_cpu_dbs_info,
358                                                                         j);
359                 dbs_info->cdbs.prev_cpu_idle = get_cpu_idle_time(j,
360                         &dbs_info->cdbs.prev_cpu_wall, od_tuners->io_is_busy);
361         }
362         return count;
363 }
364
365 static ssize_t store_up_threshold(struct dbs_data *dbs_data, const char *buf,
366                 size_t count)
367 {
368         struct od_dbs_tuners *od_tuners = dbs_data->tuners;
369         unsigned int input;
370         int ret;
371         ret = sscanf(buf, "%u", &input);
372
373         if (ret != 1 || input > MAX_FREQUENCY_UP_THRESHOLD ||
374                         input < MIN_FREQUENCY_UP_THRESHOLD) {
375                 return -EINVAL;
376         }
377         /* Calculate the new adj_up_threshold */
378         od_tuners->adj_up_threshold += input;
379         od_tuners->adj_up_threshold -= od_tuners->up_threshold;
380
381         od_tuners->up_threshold = input;
382         return count;
383 }
384
385 static ssize_t store_sampling_down_factor(struct dbs_data *dbs_data,
386                 const char *buf, size_t count)
387 {
388         struct od_dbs_tuners *od_tuners = dbs_data->tuners;
389         unsigned int input, j;
390         int ret;
391         ret = sscanf(buf, "%u", &input);
392
393         if (ret != 1 || input > MAX_SAMPLING_DOWN_FACTOR || input < 1)
394                 return -EINVAL;
395         od_tuners->sampling_down_factor = input;
396
397         /* Reset down sampling multiplier in case it was active */
398         for_each_online_cpu(j) {
399                 struct od_cpu_dbs_info_s *dbs_info = &per_cpu(od_cpu_dbs_info,
400                                 j);
401                 dbs_info->rate_mult = 1;
402         }
403         return count;
404 }
405
406 static ssize_t store_ignore_nice(struct dbs_data *dbs_data, const char *buf,
407                 size_t count)
408 {
409         struct od_dbs_tuners *od_tuners = dbs_data->tuners;
410         unsigned int input;
411         int ret;
412
413         unsigned int j;
414
415         ret = sscanf(buf, "%u", &input);
416         if (ret != 1)
417                 return -EINVAL;
418
419         if (input > 1)
420                 input = 1;
421
422         if (input == od_tuners->ignore_nice) { /* nothing to do */
423                 return count;
424         }
425         od_tuners->ignore_nice = input;
426
427         /* we need to re-evaluate prev_cpu_idle */
428         for_each_online_cpu(j) {
429                 struct od_cpu_dbs_info_s *dbs_info;
430                 dbs_info = &per_cpu(od_cpu_dbs_info, j);
431                 dbs_info->cdbs.prev_cpu_idle = get_cpu_idle_time(j,
432                         &dbs_info->cdbs.prev_cpu_wall, od_tuners->io_is_busy);
433                 if (od_tuners->ignore_nice)
434                         dbs_info->cdbs.prev_cpu_nice =
435                                 kcpustat_cpu(j).cpustat[CPUTIME_NICE];
436
437         }
438         return count;
439 }
440
441 static ssize_t store_powersave_bias(struct dbs_data *dbs_data, const char *buf,
442                 size_t count)
443 {
444         struct od_dbs_tuners *od_tuners = dbs_data->tuners;
445         unsigned int input;
446         int ret;
447         ret = sscanf(buf, "%u", &input);
448
449         if (ret != 1)
450                 return -EINVAL;
451
452         if (input > 1000)
453                 input = 1000;
454
455         od_tuners->powersave_bias = input;
456         ondemand_powersave_bias_init();
457         return count;
458 }
459
460 show_store_one(od, sampling_rate);
461 show_store_one(od, io_is_busy);
462 show_store_one(od, up_threshold);
463 show_store_one(od, sampling_down_factor);
464 show_store_one(od, ignore_nice);
465 show_store_one(od, powersave_bias);
466 declare_show_sampling_rate_min(od);
467
468 gov_sys_pol_attr_rw(sampling_rate);
469 gov_sys_pol_attr_rw(io_is_busy);
470 gov_sys_pol_attr_rw(up_threshold);
471 gov_sys_pol_attr_rw(sampling_down_factor);
472 gov_sys_pol_attr_rw(ignore_nice);
473 gov_sys_pol_attr_rw(powersave_bias);
474 gov_sys_pol_attr_ro(sampling_rate_min);
475
476 static struct attribute *dbs_attributes_gov_sys[] = {
477         &sampling_rate_min_gov_sys.attr,
478         &sampling_rate_gov_sys.attr,
479         &up_threshold_gov_sys.attr,
480         &sampling_down_factor_gov_sys.attr,
481         &ignore_nice_gov_sys.attr,
482         &powersave_bias_gov_sys.attr,
483         &io_is_busy_gov_sys.attr,
484         NULL
485 };
486
487 static struct attribute_group od_attr_group_gov_sys = {
488         .attrs = dbs_attributes_gov_sys,
489         .name = "ondemand",
490 };
491
492 static struct attribute *dbs_attributes_gov_pol[] = {
493         &sampling_rate_min_gov_pol.attr,
494         &sampling_rate_gov_pol.attr,
495         &up_threshold_gov_pol.attr,
496         &sampling_down_factor_gov_pol.attr,
497         &ignore_nice_gov_pol.attr,
498         &powersave_bias_gov_pol.attr,
499         &io_is_busy_gov_pol.attr,
500         NULL
501 };
502
503 static struct attribute_group od_attr_group_gov_pol = {
504         .attrs = dbs_attributes_gov_pol,
505         .name = "ondemand",
506 };
507
508 /************************** sysfs end ************************/
509
510 static int od_init(struct dbs_data *dbs_data)
511 {
512         struct od_dbs_tuners *tuners;
513         u64 idle_time;
514         int cpu;
515
516         tuners = kzalloc(sizeof(struct od_dbs_tuners), GFP_KERNEL);
517         if (!tuners) {
518                 pr_err("%s: kzalloc failed\n", __func__);
519                 return -ENOMEM;
520         }
521
522         cpu = get_cpu();
523         idle_time = get_cpu_idle_time_us(cpu, NULL);
524         put_cpu();
525         if (idle_time != -1ULL) {
526                 /* Idle micro accounting is supported. Use finer thresholds */
527                 tuners->up_threshold = MICRO_FREQUENCY_UP_THRESHOLD;
528                 tuners->adj_up_threshold = MICRO_FREQUENCY_UP_THRESHOLD -
529                         MICRO_FREQUENCY_DOWN_DIFFERENTIAL;
530                 /*
531                  * In nohz/micro accounting case we set the minimum frequency
532                  * not depending on HZ, but fixed (very low). The deferred
533                  * timer might skip some samples if idle/sleeping as needed.
534                 */
535                 dbs_data->min_sampling_rate = MICRO_FREQUENCY_MIN_SAMPLE_RATE;
536         } else {
537                 tuners->up_threshold = DEF_FREQUENCY_UP_THRESHOLD;
538                 tuners->adj_up_threshold = DEF_FREQUENCY_UP_THRESHOLD -
539                         DEF_FREQUENCY_DOWN_DIFFERENTIAL;
540
541                 /* For correct statistics, we need 10 ticks for each measure */
542                 dbs_data->min_sampling_rate = MIN_SAMPLING_RATE_RATIO *
543                         jiffies_to_usecs(10);
544         }
545
546         tuners->sampling_down_factor = DEF_SAMPLING_DOWN_FACTOR;
547         tuners->ignore_nice = 0;
548         tuners->powersave_bias = default_powersave_bias;
549         tuners->io_is_busy = should_io_be_busy();
550
551         dbs_data->tuners = tuners;
552         mutex_init(&dbs_data->mutex);
553         return 0;
554 }
555
556 static void od_exit(struct dbs_data *dbs_data)
557 {
558         kfree(dbs_data->tuners);
559 }
560
561 define_get_cpu_dbs_routines(od_cpu_dbs_info);
562
563 static struct od_ops od_ops = {
564         .powersave_bias_init_cpu = ondemand_powersave_bias_init_cpu,
565         .powersave_bias_target = generic_powersave_bias_target,
566         .freq_increase = dbs_freq_increase,
567 };
568
569 static struct common_dbs_data od_dbs_cdata = {
570         .governor = GOV_ONDEMAND,
571         .attr_group_gov_sys = &od_attr_group_gov_sys,
572         .attr_group_gov_pol = &od_attr_group_gov_pol,
573         .get_cpu_cdbs = get_cpu_cdbs,
574         .get_cpu_dbs_info_s = get_cpu_dbs_info_s,
575         .gov_dbs_timer = od_dbs_timer,
576         .gov_check_cpu = od_check_cpu,
577         .gov_ops = &od_ops,
578         .init = od_init,
579         .exit = od_exit,
580 };
581
582 static void od_set_powersave_bias(unsigned int powersave_bias)
583 {
584         struct cpufreq_policy *policy;
585         struct dbs_data *dbs_data;
586         struct od_dbs_tuners *od_tuners;
587         unsigned int cpu;
588         cpumask_t done;
589
590         default_powersave_bias = powersave_bias;
591         cpumask_clear(&done);
592
593         get_online_cpus();
594         for_each_online_cpu(cpu) {
595                 if (cpumask_test_cpu(cpu, &done))
596                         continue;
597
598                 policy = per_cpu(od_cpu_dbs_info, cpu).cdbs.cur_policy;
599                 if (!policy)
600                         continue;
601
602                 cpumask_or(&done, &done, policy->cpus);
603
604                 if (policy->governor != &cpufreq_gov_ondemand)
605                         continue;
606
607                 dbs_data = policy->governor_data;
608                 od_tuners = dbs_data->tuners;
609                 od_tuners->powersave_bias = default_powersave_bias;
610         }
611         put_online_cpus();
612 }
613
614 void od_register_powersave_bias_handler(unsigned int (*f)
615                 (struct cpufreq_policy *, unsigned int, unsigned int),
616                 unsigned int powersave_bias)
617 {
618         od_ops.powersave_bias_target = f;
619         od_set_powersave_bias(powersave_bias);
620 }
621 EXPORT_SYMBOL_GPL(od_register_powersave_bias_handler);
622
623 void od_unregister_powersave_bias_handler(void)
624 {
625         od_ops.powersave_bias_target = generic_powersave_bias_target;
626         od_set_powersave_bias(0);
627 }
628 EXPORT_SYMBOL_GPL(od_unregister_powersave_bias_handler);
629
630 static int od_cpufreq_governor_dbs(struct cpufreq_policy *policy,
631                 unsigned int event)
632 {
633         return cpufreq_governor_dbs(policy, &od_dbs_cdata, event);
634 }
635
636 #ifndef CONFIG_CPU_FREQ_DEFAULT_GOV_ONDEMAND
637 static
638 #endif
639 struct cpufreq_governor cpufreq_gov_ondemand = {
640         .name                   = "ondemand",
641         .governor               = od_cpufreq_governor_dbs,
642         .max_transition_latency = TRANSITION_LATENCY_LIMIT,
643         .owner                  = THIS_MODULE,
644 };
645
646 static int __init cpufreq_gov_dbs_init(void)
647 {
648         return cpufreq_register_governor(&cpufreq_gov_ondemand);
649 }
650
651 static void __exit cpufreq_gov_dbs_exit(void)
652 {
653         cpufreq_unregister_governor(&cpufreq_gov_ondemand);
654 }
655
656 MODULE_AUTHOR("Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>");
657 MODULE_AUTHOR("Alexey Starikovskiy <alexey.y.starikovskiy@intel.com>");
658 MODULE_DESCRIPTION("'cpufreq_ondemand' - A dynamic cpufreq governor for "
659         "Low Latency Frequency Transition capable processors");
660 MODULE_LICENSE("GPL");
661
662 #ifdef CONFIG_CPU_FREQ_DEFAULT_GOV_ONDEMAND
663 fs_initcall(cpufreq_gov_dbs_init);
664 #else
665 module_init(cpufreq_gov_dbs_init);
666 #endif
667 module_exit(cpufreq_gov_dbs_exit);