Merge branch 'x15-audio-fixes' into omap-for-v4.4/fixes
[firefly-linux-kernel-4.4.55.git] / drivers / cpufreq / cpufreq_governor.c
1 /*
2  * drivers/cpufreq/cpufreq_governor.c
3  *
4  * CPUFREQ governors common code
5  *
6  * Copyright    (C) 2001 Russell King
7  *              (C) 2003 Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>.
8  *              (C) 2003 Jun Nakajima <jun.nakajima@intel.com>
9  *              (C) 2009 Alexander Clouter <alex@digriz.org.uk>
10  *              (c) 2012 Viresh Kumar <viresh.kumar@linaro.org>
11  *
12  * This program is free software; you can redistribute it and/or modify
13  * it under the terms of the GNU General Public License version 2 as
14  * published by the Free Software Foundation.
15  */
16
17 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
18
19 #include <linux/export.h>
20 #include <linux/kernel_stat.h>
21 #include <linux/slab.h>
22
23 #include "cpufreq_governor.h"
24
25 static struct attribute_group *get_sysfs_attr(struct dbs_data *dbs_data)
26 {
27         if (have_governor_per_policy())
28                 return dbs_data->cdata->attr_group_gov_pol;
29         else
30                 return dbs_data->cdata->attr_group_gov_sys;
31 }
32
33 void dbs_check_cpu(struct dbs_data *dbs_data, int cpu)
34 {
35         struct cpu_dbs_info *cdbs = dbs_data->cdata->get_cpu_cdbs(cpu);
36         struct od_dbs_tuners *od_tuners = dbs_data->tuners;
37         struct cs_dbs_tuners *cs_tuners = dbs_data->tuners;
38         struct cpufreq_policy *policy = cdbs->shared->policy;
39         unsigned int sampling_rate;
40         unsigned int max_load = 0;
41         unsigned int ignore_nice;
42         unsigned int j;
43
44         if (dbs_data->cdata->governor == GOV_ONDEMAND) {
45                 struct od_cpu_dbs_info_s *od_dbs_info =
46                                 dbs_data->cdata->get_cpu_dbs_info_s(cpu);
47
48                 /*
49                  * Sometimes, the ondemand governor uses an additional
50                  * multiplier to give long delays. So apply this multiplier to
51                  * the 'sampling_rate', so as to keep the wake-up-from-idle
52                  * detection logic a bit conservative.
53                  */
54                 sampling_rate = od_tuners->sampling_rate;
55                 sampling_rate *= od_dbs_info->rate_mult;
56
57                 ignore_nice = od_tuners->ignore_nice_load;
58         } else {
59                 sampling_rate = cs_tuners->sampling_rate;
60                 ignore_nice = cs_tuners->ignore_nice_load;
61         }
62
63         /* Get Absolute Load */
64         for_each_cpu(j, policy->cpus) {
65                 struct cpu_dbs_info *j_cdbs;
66                 u64 cur_wall_time, cur_idle_time;
67                 unsigned int idle_time, wall_time;
68                 unsigned int load;
69                 int io_busy = 0;
70
71                 j_cdbs = dbs_data->cdata->get_cpu_cdbs(j);
72
73                 /*
74                  * For the purpose of ondemand, waiting for disk IO is
75                  * an indication that you're performance critical, and
76                  * not that the system is actually idle. So do not add
77                  * the iowait time to the cpu idle time.
78                  */
79                 if (dbs_data->cdata->governor == GOV_ONDEMAND)
80                         io_busy = od_tuners->io_is_busy;
81                 cur_idle_time = get_cpu_idle_time(j, &cur_wall_time, io_busy);
82
83                 wall_time = (unsigned int)
84                         (cur_wall_time - j_cdbs->prev_cpu_wall);
85                 j_cdbs->prev_cpu_wall = cur_wall_time;
86
87                 idle_time = (unsigned int)
88                         (cur_idle_time - j_cdbs->prev_cpu_idle);
89                 j_cdbs->prev_cpu_idle = cur_idle_time;
90
91                 if (ignore_nice) {
92                         u64 cur_nice;
93                         unsigned long cur_nice_jiffies;
94
95                         cur_nice = kcpustat_cpu(j).cpustat[CPUTIME_NICE] -
96                                          cdbs->prev_cpu_nice;
97                         /*
98                          * Assumption: nice time between sampling periods will
99                          * be less than 2^32 jiffies for 32 bit sys
100                          */
101                         cur_nice_jiffies = (unsigned long)
102                                         cputime64_to_jiffies64(cur_nice);
103
104                         cdbs->prev_cpu_nice =
105                                 kcpustat_cpu(j).cpustat[CPUTIME_NICE];
106                         idle_time += jiffies_to_usecs(cur_nice_jiffies);
107                 }
108
109                 if (unlikely(!wall_time || wall_time < idle_time))
110                         continue;
111
112                 /*
113                  * If the CPU had gone completely idle, and a task just woke up
114                  * on this CPU now, it would be unfair to calculate 'load' the
115                  * usual way for this elapsed time-window, because it will show
116                  * near-zero load, irrespective of how CPU intensive that task
117                  * actually is. This is undesirable for latency-sensitive bursty
118                  * workloads.
119                  *
120                  * To avoid this, we reuse the 'load' from the previous
121                  * time-window and give this task a chance to start with a
122                  * reasonably high CPU frequency. (However, we shouldn't over-do
123                  * this copy, lest we get stuck at a high load (high frequency)
124                  * for too long, even when the current system load has actually
125                  * dropped down. So we perform the copy only once, upon the
126                  * first wake-up from idle.)
127                  *
128                  * Detecting this situation is easy: the governor's deferrable
129                  * timer would not have fired during CPU-idle periods. Hence
130                  * an unusually large 'wall_time' (as compared to the sampling
131                  * rate) indicates this scenario.
132                  *
133                  * prev_load can be zero in two cases and we must recalculate it
134                  * for both cases:
135                  * - during long idle intervals
136                  * - explicitly set to zero
137                  */
138                 if (unlikely(wall_time > (2 * sampling_rate) &&
139                              j_cdbs->prev_load)) {
140                         load = j_cdbs->prev_load;
141
142                         /*
143                          * Perform a destructive copy, to ensure that we copy
144                          * the previous load only once, upon the first wake-up
145                          * from idle.
146                          */
147                         j_cdbs->prev_load = 0;
148                 } else {
149                         load = 100 * (wall_time - idle_time) / wall_time;
150                         j_cdbs->prev_load = load;
151                 }
152
153                 if (load > max_load)
154                         max_load = load;
155         }
156
157         dbs_data->cdata->gov_check_cpu(cpu, max_load);
158 }
159 EXPORT_SYMBOL_GPL(dbs_check_cpu);
160
161 static inline void __gov_queue_work(int cpu, struct dbs_data *dbs_data,
162                 unsigned int delay)
163 {
164         struct cpu_dbs_info *cdbs = dbs_data->cdata->get_cpu_cdbs(cpu);
165
166         mod_delayed_work_on(cpu, system_wq, &cdbs->dwork, delay);
167 }
168
169 void gov_queue_work(struct dbs_data *dbs_data, struct cpufreq_policy *policy,
170                 unsigned int delay, bool all_cpus)
171 {
172         int i;
173
174         mutex_lock(&cpufreq_governor_lock);
175         if (!policy->governor_enabled)
176                 goto out_unlock;
177
178         if (!all_cpus) {
179                 /*
180                  * Use raw_smp_processor_id() to avoid preemptible warnings.
181                  * We know that this is only called with all_cpus == false from
182                  * works that have been queued with *_work_on() functions and
183                  * those works are canceled during CPU_DOWN_PREPARE so they
184                  * can't possibly run on any other CPU.
185                  */
186                 __gov_queue_work(raw_smp_processor_id(), dbs_data, delay);
187         } else {
188                 for_each_cpu(i, policy->cpus)
189                         __gov_queue_work(i, dbs_data, delay);
190         }
191
192 out_unlock:
193         mutex_unlock(&cpufreq_governor_lock);
194 }
195 EXPORT_SYMBOL_GPL(gov_queue_work);
196
197 static inline void gov_cancel_work(struct dbs_data *dbs_data,
198                 struct cpufreq_policy *policy)
199 {
200         struct cpu_dbs_info *cdbs;
201         int i;
202
203         for_each_cpu(i, policy->cpus) {
204                 cdbs = dbs_data->cdata->get_cpu_cdbs(i);
205                 cancel_delayed_work_sync(&cdbs->dwork);
206         }
207 }
208
209 /* Will return if we need to evaluate cpu load again or not */
210 static bool need_load_eval(struct cpu_common_dbs_info *shared,
211                            unsigned int sampling_rate)
212 {
213         if (policy_is_shared(shared->policy)) {
214                 ktime_t time_now = ktime_get();
215                 s64 delta_us = ktime_us_delta(time_now, shared->time_stamp);
216
217                 /* Do nothing if we recently have sampled */
218                 if (delta_us < (s64)(sampling_rate / 2))
219                         return false;
220                 else
221                         shared->time_stamp = time_now;
222         }
223
224         return true;
225 }
226
227 static void dbs_timer(struct work_struct *work)
228 {
229         struct cpu_dbs_info *cdbs = container_of(work, struct cpu_dbs_info,
230                                                  dwork.work);
231         struct cpu_common_dbs_info *shared = cdbs->shared;
232         struct cpufreq_policy *policy = shared->policy;
233         struct dbs_data *dbs_data = policy->governor_data;
234         unsigned int sampling_rate, delay;
235         bool modify_all = true;
236
237         mutex_lock(&shared->timer_mutex);
238
239         if (dbs_data->cdata->governor == GOV_CONSERVATIVE) {
240                 struct cs_dbs_tuners *cs_tuners = dbs_data->tuners;
241
242                 sampling_rate = cs_tuners->sampling_rate;
243         } else {
244                 struct od_dbs_tuners *od_tuners = dbs_data->tuners;
245
246                 sampling_rate = od_tuners->sampling_rate;
247         }
248
249         if (!need_load_eval(cdbs->shared, sampling_rate))
250                 modify_all = false;
251
252         delay = dbs_data->cdata->gov_dbs_timer(cdbs, dbs_data, modify_all);
253         gov_queue_work(dbs_data, policy, delay, modify_all);
254
255         mutex_unlock(&shared->timer_mutex);
256 }
257
258 static void set_sampling_rate(struct dbs_data *dbs_data,
259                 unsigned int sampling_rate)
260 {
261         if (dbs_data->cdata->governor == GOV_CONSERVATIVE) {
262                 struct cs_dbs_tuners *cs_tuners = dbs_data->tuners;
263                 cs_tuners->sampling_rate = sampling_rate;
264         } else {
265                 struct od_dbs_tuners *od_tuners = dbs_data->tuners;
266                 od_tuners->sampling_rate = sampling_rate;
267         }
268 }
269
270 static int alloc_common_dbs_info(struct cpufreq_policy *policy,
271                                  struct common_dbs_data *cdata)
272 {
273         struct cpu_common_dbs_info *shared;
274         int j;
275
276         /* Allocate memory for the common information for policy->cpus */
277         shared = kzalloc(sizeof(*shared), GFP_KERNEL);
278         if (!shared)
279                 return -ENOMEM;
280
281         /* Set shared for all CPUs, online+offline */
282         for_each_cpu(j, policy->related_cpus)
283                 cdata->get_cpu_cdbs(j)->shared = shared;
284
285         return 0;
286 }
287
288 static void free_common_dbs_info(struct cpufreq_policy *policy,
289                                  struct common_dbs_data *cdata)
290 {
291         struct cpu_dbs_info *cdbs = cdata->get_cpu_cdbs(policy->cpu);
292         struct cpu_common_dbs_info *shared = cdbs->shared;
293         int j;
294
295         for_each_cpu(j, policy->cpus)
296                 cdata->get_cpu_cdbs(j)->shared = NULL;
297
298         kfree(shared);
299 }
300
301 static int cpufreq_governor_init(struct cpufreq_policy *policy,
302                                  struct dbs_data *dbs_data,
303                                  struct common_dbs_data *cdata)
304 {
305         unsigned int latency;
306         int ret;
307
308         /* State should be equivalent to EXIT */
309         if (policy->governor_data)
310                 return -EBUSY;
311
312         if (dbs_data) {
313                 if (WARN_ON(have_governor_per_policy()))
314                         return -EINVAL;
315
316                 ret = alloc_common_dbs_info(policy, cdata);
317                 if (ret)
318                         return ret;
319
320                 dbs_data->usage_count++;
321                 policy->governor_data = dbs_data;
322                 return 0;
323         }
324
325         dbs_data = kzalloc(sizeof(*dbs_data), GFP_KERNEL);
326         if (!dbs_data)
327                 return -ENOMEM;
328
329         ret = alloc_common_dbs_info(policy, cdata);
330         if (ret)
331                 goto free_dbs_data;
332
333         dbs_data->cdata = cdata;
334         dbs_data->usage_count = 1;
335
336         ret = cdata->init(dbs_data, !policy->governor->initialized);
337         if (ret)
338                 goto free_common_dbs_info;
339
340         /* policy latency is in ns. Convert it to us first */
341         latency = policy->cpuinfo.transition_latency / 1000;
342         if (latency == 0)
343                 latency = 1;
344
345         /* Bring kernel and HW constraints together */
346         dbs_data->min_sampling_rate = max(dbs_data->min_sampling_rate,
347                                           MIN_LATENCY_MULTIPLIER * latency);
348         set_sampling_rate(dbs_data, max(dbs_data->min_sampling_rate,
349                                         latency * LATENCY_MULTIPLIER));
350
351         if (!have_governor_per_policy())
352                 cdata->gdbs_data = dbs_data;
353
354         ret = sysfs_create_group(get_governor_parent_kobj(policy),
355                                  get_sysfs_attr(dbs_data));
356         if (ret)
357                 goto reset_gdbs_data;
358
359         policy->governor_data = dbs_data;
360
361         return 0;
362
363 reset_gdbs_data:
364         if (!have_governor_per_policy())
365                 cdata->gdbs_data = NULL;
366         cdata->exit(dbs_data, !policy->governor->initialized);
367 free_common_dbs_info:
368         free_common_dbs_info(policy, cdata);
369 free_dbs_data:
370         kfree(dbs_data);
371         return ret;
372 }
373
374 static int cpufreq_governor_exit(struct cpufreq_policy *policy,
375                                  struct dbs_data *dbs_data)
376 {
377         struct common_dbs_data *cdata = dbs_data->cdata;
378         struct cpu_dbs_info *cdbs = cdata->get_cpu_cdbs(policy->cpu);
379
380         /* State should be equivalent to INIT */
381         if (!cdbs->shared || cdbs->shared->policy)
382                 return -EBUSY;
383
384         policy->governor_data = NULL;
385         if (!--dbs_data->usage_count) {
386                 sysfs_remove_group(get_governor_parent_kobj(policy),
387                                    get_sysfs_attr(dbs_data));
388
389                 if (!have_governor_per_policy())
390                         cdata->gdbs_data = NULL;
391
392                 cdata->exit(dbs_data, policy->governor->initialized == 1);
393                 kfree(dbs_data);
394         }
395
396         free_common_dbs_info(policy, cdata);
397         return 0;
398 }
399
400 static int cpufreq_governor_start(struct cpufreq_policy *policy,
401                                   struct dbs_data *dbs_data)
402 {
403         struct common_dbs_data *cdata = dbs_data->cdata;
404         unsigned int sampling_rate, ignore_nice, j, cpu = policy->cpu;
405         struct cpu_dbs_info *cdbs = cdata->get_cpu_cdbs(cpu);
406         struct cpu_common_dbs_info *shared = cdbs->shared;
407         int io_busy = 0;
408
409         if (!policy->cur)
410                 return -EINVAL;
411
412         /* State should be equivalent to INIT */
413         if (!shared || shared->policy)
414                 return -EBUSY;
415
416         if (cdata->governor == GOV_CONSERVATIVE) {
417                 struct cs_dbs_tuners *cs_tuners = dbs_data->tuners;
418
419                 sampling_rate = cs_tuners->sampling_rate;
420                 ignore_nice = cs_tuners->ignore_nice_load;
421         } else {
422                 struct od_dbs_tuners *od_tuners = dbs_data->tuners;
423
424                 sampling_rate = od_tuners->sampling_rate;
425                 ignore_nice = od_tuners->ignore_nice_load;
426                 io_busy = od_tuners->io_is_busy;
427         }
428
429         shared->policy = policy;
430         shared->time_stamp = ktime_get();
431         mutex_init(&shared->timer_mutex);
432
433         for_each_cpu(j, policy->cpus) {
434                 struct cpu_dbs_info *j_cdbs = cdata->get_cpu_cdbs(j);
435                 unsigned int prev_load;
436
437                 j_cdbs->prev_cpu_idle =
438                         get_cpu_idle_time(j, &j_cdbs->prev_cpu_wall, io_busy);
439
440                 prev_load = (unsigned int)(j_cdbs->prev_cpu_wall -
441                                             j_cdbs->prev_cpu_idle);
442                 j_cdbs->prev_load = 100 * prev_load /
443                                     (unsigned int)j_cdbs->prev_cpu_wall;
444
445                 if (ignore_nice)
446                         j_cdbs->prev_cpu_nice = kcpustat_cpu(j).cpustat[CPUTIME_NICE];
447
448                 INIT_DEFERRABLE_WORK(&j_cdbs->dwork, dbs_timer);
449         }
450
451         if (cdata->governor == GOV_CONSERVATIVE) {
452                 struct cs_cpu_dbs_info_s *cs_dbs_info =
453                         cdata->get_cpu_dbs_info_s(cpu);
454
455                 cs_dbs_info->down_skip = 0;
456                 cs_dbs_info->requested_freq = policy->cur;
457         } else {
458                 struct od_ops *od_ops = cdata->gov_ops;
459                 struct od_cpu_dbs_info_s *od_dbs_info = cdata->get_cpu_dbs_info_s(cpu);
460
461                 od_dbs_info->rate_mult = 1;
462                 od_dbs_info->sample_type = OD_NORMAL_SAMPLE;
463                 od_ops->powersave_bias_init_cpu(cpu);
464         }
465
466         gov_queue_work(dbs_data, policy, delay_for_sampling_rate(sampling_rate),
467                        true);
468         return 0;
469 }
470
471 static int cpufreq_governor_stop(struct cpufreq_policy *policy,
472                                  struct dbs_data *dbs_data)
473 {
474         struct cpu_dbs_info *cdbs = dbs_data->cdata->get_cpu_cdbs(policy->cpu);
475         struct cpu_common_dbs_info *shared = cdbs->shared;
476
477         /* State should be equivalent to START */
478         if (!shared || !shared->policy)
479                 return -EBUSY;
480
481         gov_cancel_work(dbs_data, policy);
482
483         shared->policy = NULL;
484         mutex_destroy(&shared->timer_mutex);
485         return 0;
486 }
487
488 static int cpufreq_governor_limits(struct cpufreq_policy *policy,
489                                    struct dbs_data *dbs_data)
490 {
491         struct common_dbs_data *cdata = dbs_data->cdata;
492         unsigned int cpu = policy->cpu;
493         struct cpu_dbs_info *cdbs = cdata->get_cpu_cdbs(cpu);
494
495         /* State should be equivalent to START */
496         if (!cdbs->shared || !cdbs->shared->policy)
497                 return -EBUSY;
498
499         mutex_lock(&cdbs->shared->timer_mutex);
500         if (policy->max < cdbs->shared->policy->cur)
501                 __cpufreq_driver_target(cdbs->shared->policy, policy->max,
502                                         CPUFREQ_RELATION_H);
503         else if (policy->min > cdbs->shared->policy->cur)
504                 __cpufreq_driver_target(cdbs->shared->policy, policy->min,
505                                         CPUFREQ_RELATION_L);
506         dbs_check_cpu(dbs_data, cpu);
507         mutex_unlock(&cdbs->shared->timer_mutex);
508
509         return 0;
510 }
511
512 int cpufreq_governor_dbs(struct cpufreq_policy *policy,
513                          struct common_dbs_data *cdata, unsigned int event)
514 {
515         struct dbs_data *dbs_data;
516         int ret;
517
518         /* Lock governor to block concurrent initialization of governor */
519         mutex_lock(&cdata->mutex);
520
521         if (have_governor_per_policy())
522                 dbs_data = policy->governor_data;
523         else
524                 dbs_data = cdata->gdbs_data;
525
526         if (!dbs_data && (event != CPUFREQ_GOV_POLICY_INIT)) {
527                 ret = -EINVAL;
528                 goto unlock;
529         }
530
531         switch (event) {
532         case CPUFREQ_GOV_POLICY_INIT:
533                 ret = cpufreq_governor_init(policy, dbs_data, cdata);
534                 break;
535         case CPUFREQ_GOV_POLICY_EXIT:
536                 ret = cpufreq_governor_exit(policy, dbs_data);
537                 break;
538         case CPUFREQ_GOV_START:
539                 ret = cpufreq_governor_start(policy, dbs_data);
540                 break;
541         case CPUFREQ_GOV_STOP:
542                 ret = cpufreq_governor_stop(policy, dbs_data);
543                 break;
544         case CPUFREQ_GOV_LIMITS:
545                 ret = cpufreq_governor_limits(policy, dbs_data);
546                 break;
547         default:
548                 ret = -EINVAL;
549         }
550
551 unlock:
552         mutex_unlock(&cdata->mutex);
553
554         return ret;
555 }
556 EXPORT_SYMBOL_GPL(cpufreq_governor_dbs);