Merge branch 'linux-linaro-lsk-v4.4-android' of git://git.linaro.org/kernel/linux...
[firefly-linux-kernel-4.4.55.git] / drivers / cpufreq / cpufreq_governor.c
1 /*
2  * drivers/cpufreq/cpufreq_governor.c
3  *
4  * CPUFREQ governors common code
5  *
6  * Copyright    (C) 2001 Russell King
7  *              (C) 2003 Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>.
8  *              (C) 2003 Jun Nakajima <jun.nakajima@intel.com>
9  *              (C) 2009 Alexander Clouter <alex@digriz.org.uk>
10  *              (c) 2012 Viresh Kumar <viresh.kumar@linaro.org>
11  *
12  * This program is free software; you can redistribute it and/or modify
13  * it under the terms of the GNU General Public License version 2 as
14  * published by the Free Software Foundation.
15  */
16
17 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
18
19 #include <linux/export.h>
20 #include <linux/kernel_stat.h>
21 #include <linux/slab.h>
22
23 #include "cpufreq_governor.h"
24
25 static struct attribute_group *get_sysfs_attr(struct dbs_data *dbs_data)
26 {
27         if (have_governor_per_policy())
28                 return dbs_data->cdata->attr_group_gov_pol;
29         else
30                 return dbs_data->cdata->attr_group_gov_sys;
31 }
32
33 void dbs_check_cpu(struct dbs_data *dbs_data, int cpu)
34 {
35         struct cpu_dbs_info *cdbs = dbs_data->cdata->get_cpu_cdbs(cpu);
36         struct od_dbs_tuners *od_tuners = dbs_data->tuners;
37         struct cs_dbs_tuners *cs_tuners = dbs_data->tuners;
38         struct cpufreq_policy *policy = cdbs->shared->policy;
39         unsigned int sampling_rate;
40         unsigned int max_load = 0;
41         unsigned int ignore_nice;
42         unsigned int j;
43
44         if (dbs_data->cdata->governor == GOV_ONDEMAND) {
45                 struct od_cpu_dbs_info_s *od_dbs_info =
46                                 dbs_data->cdata->get_cpu_dbs_info_s(cpu);
47
48                 /*
49                  * Sometimes, the ondemand governor uses an additional
50                  * multiplier to give long delays. So apply this multiplier to
51                  * the 'sampling_rate', so as to keep the wake-up-from-idle
52                  * detection logic a bit conservative.
53                  */
54                 sampling_rate = od_tuners->sampling_rate;
55                 sampling_rate *= od_dbs_info->rate_mult;
56
57                 ignore_nice = od_tuners->ignore_nice_load;
58         } else {
59                 sampling_rate = cs_tuners->sampling_rate;
60                 ignore_nice = cs_tuners->ignore_nice_load;
61         }
62
63         /* Get Absolute Load */
64         for_each_cpu(j, policy->cpus) {
65                 struct cpu_dbs_info *j_cdbs;
66                 u64 cur_wall_time, cur_idle_time;
67                 unsigned int idle_time, wall_time;
68                 unsigned int load;
69                 int io_busy = 0;
70
71                 j_cdbs = dbs_data->cdata->get_cpu_cdbs(j);
72
73                 /*
74                  * For the purpose of ondemand, waiting for disk IO is
75                  * an indication that you're performance critical, and
76                  * not that the system is actually idle. So do not add
77                  * the iowait time to the cpu idle time.
78                  */
79                 if (dbs_data->cdata->governor == GOV_ONDEMAND)
80                         io_busy = od_tuners->io_is_busy;
81                 cur_idle_time = get_cpu_idle_time(j, &cur_wall_time, io_busy);
82
83                 wall_time = (unsigned int)
84                         (cur_wall_time - j_cdbs->prev_cpu_wall);
85                 j_cdbs->prev_cpu_wall = cur_wall_time;
86
87                 idle_time = (unsigned int)
88                         (cur_idle_time - j_cdbs->prev_cpu_idle);
89                 j_cdbs->prev_cpu_idle = cur_idle_time;
90
91                 if (ignore_nice) {
92                         u64 cur_nice;
93                         unsigned long cur_nice_jiffies;
94
95                         cur_nice = kcpustat_cpu(j).cpustat[CPUTIME_NICE] -
96                                          cdbs->prev_cpu_nice;
97                         /*
98                          * Assumption: nice time between sampling periods will
99                          * be less than 2^32 jiffies for 32 bit sys
100                          */
101                         cur_nice_jiffies = (unsigned long)
102                                         cputime64_to_jiffies64(cur_nice);
103
104                         cdbs->prev_cpu_nice =
105                                 kcpustat_cpu(j).cpustat[CPUTIME_NICE];
106                         idle_time += jiffies_to_usecs(cur_nice_jiffies);
107                 }
108
109                 if (unlikely(!wall_time || wall_time < idle_time))
110                         continue;
111
112                 /*
113                  * If the CPU had gone completely idle, and a task just woke up
114                  * on this CPU now, it would be unfair to calculate 'load' the
115                  * usual way for this elapsed time-window, because it will show
116                  * near-zero load, irrespective of how CPU intensive that task
117                  * actually is. This is undesirable for latency-sensitive bursty
118                  * workloads.
119                  *
120                  * To avoid this, we reuse the 'load' from the previous
121                  * time-window and give this task a chance to start with a
122                  * reasonably high CPU frequency. (However, we shouldn't over-do
123                  * this copy, lest we get stuck at a high load (high frequency)
124                  * for too long, even when the current system load has actually
125                  * dropped down. So we perform the copy only once, upon the
126                  * first wake-up from idle.)
127                  *
128                  * Detecting this situation is easy: the governor's deferrable
129                  * timer would not have fired during CPU-idle periods. Hence
130                  * an unusually large 'wall_time' (as compared to the sampling
131                  * rate) indicates this scenario.
132                  *
133                  * prev_load can be zero in two cases and we must recalculate it
134                  * for both cases:
135                  * - during long idle intervals
136                  * - explicitly set to zero
137                  */
138                 if (unlikely(wall_time > (2 * sampling_rate) &&
139                              j_cdbs->prev_load)) {
140                         load = j_cdbs->prev_load;
141
142                         /*
143                          * Perform a destructive copy, to ensure that we copy
144                          * the previous load only once, upon the first wake-up
145                          * from idle.
146                          */
147                         j_cdbs->prev_load = 0;
148                 } else {
149                         load = 100 * (wall_time - idle_time) / wall_time;
150                         j_cdbs->prev_load = load;
151                 }
152
153                 if (load > max_load)
154                         max_load = load;
155         }
156
157         dbs_data->cdata->gov_check_cpu(cpu, max_load);
158 }
159 EXPORT_SYMBOL_GPL(dbs_check_cpu);
160
161 static inline void __gov_queue_work(int cpu, struct dbs_data *dbs_data,
162                 unsigned int delay)
163 {
164         struct cpu_dbs_info *cdbs = dbs_data->cdata->get_cpu_cdbs(cpu);
165
166         mod_delayed_work_on(cpu, system_wq, &cdbs->dwork, delay);
167 }
168
169 void gov_queue_work(struct dbs_data *dbs_data, struct cpufreq_policy *policy,
170                 unsigned int delay, bool all_cpus)
171 {
172         int i;
173
174         if (!all_cpus) {
175                 /*
176                  * Use raw_smp_processor_id() to avoid preemptible warnings.
177                  * We know that this is only called with all_cpus == false from
178                  * works that have been queued with *_work_on() functions and
179                  * those works are canceled during CPU_DOWN_PREPARE so they
180                  * can't possibly run on any other CPU.
181                  */
182                 __gov_queue_work(raw_smp_processor_id(), dbs_data, delay);
183         } else {
184                 for_each_cpu(i, policy->cpus)
185                         __gov_queue_work(i, dbs_data, delay);
186         }
187 }
188 EXPORT_SYMBOL_GPL(gov_queue_work);
189
190 static inline void gov_cancel_work(struct dbs_data *dbs_data,
191                 struct cpufreq_policy *policy)
192 {
193         struct cpu_dbs_info *cdbs;
194         int i;
195
196         for_each_cpu(i, policy->cpus) {
197                 cdbs = dbs_data->cdata->get_cpu_cdbs(i);
198                 cancel_delayed_work_sync(&cdbs->dwork);
199         }
200 }
201
202 /* Will return if we need to evaluate cpu load again or not */
203 static bool need_load_eval(struct cpu_common_dbs_info *shared,
204                            unsigned int sampling_rate)
205 {
206         if (policy_is_shared(shared->policy)) {
207                 ktime_t time_now = ktime_get();
208                 s64 delta_us = ktime_us_delta(time_now, shared->time_stamp);
209
210                 /* Do nothing if we recently have sampled */
211                 if (delta_us < (s64)(sampling_rate / 2))
212                         return false;
213                 else
214                         shared->time_stamp = time_now;
215         }
216
217         return true;
218 }
219
220 static void dbs_timer(struct work_struct *work)
221 {
222         struct cpu_dbs_info *cdbs = container_of(work, struct cpu_dbs_info,
223                                                  dwork.work);
224         struct cpu_common_dbs_info *shared = cdbs->shared;
225         struct cpufreq_policy *policy;
226         struct dbs_data *dbs_data;
227         unsigned int sampling_rate, delay;
228         bool modify_all = true;
229
230         mutex_lock(&shared->timer_mutex);
231
232         policy = shared->policy;
233
234         /*
235          * Governor might already be disabled and there is no point continuing
236          * with the work-handler.
237          */
238         if (!policy)
239                 goto unlock;
240
241         dbs_data = policy->governor_data;
242
243         if (dbs_data->cdata->governor == GOV_CONSERVATIVE) {
244                 struct cs_dbs_tuners *cs_tuners = dbs_data->tuners;
245
246                 sampling_rate = cs_tuners->sampling_rate;
247         } else {
248                 struct od_dbs_tuners *od_tuners = dbs_data->tuners;
249
250                 sampling_rate = od_tuners->sampling_rate;
251         }
252
253         if (!need_load_eval(cdbs->shared, sampling_rate))
254                 modify_all = false;
255
256         delay = dbs_data->cdata->gov_dbs_timer(cdbs, dbs_data, modify_all);
257         gov_queue_work(dbs_data, policy, delay, modify_all);
258
259 unlock:
260         mutex_unlock(&shared->timer_mutex);
261 }
262
263 static void set_sampling_rate(struct dbs_data *dbs_data,
264                 unsigned int sampling_rate)
265 {
266         if (dbs_data->cdata->governor == GOV_CONSERVATIVE) {
267                 struct cs_dbs_tuners *cs_tuners = dbs_data->tuners;
268                 cs_tuners->sampling_rate = sampling_rate;
269         } else {
270                 struct od_dbs_tuners *od_tuners = dbs_data->tuners;
271                 od_tuners->sampling_rate = sampling_rate;
272         }
273 }
274
275 static int alloc_common_dbs_info(struct cpufreq_policy *policy,
276                                  struct common_dbs_data *cdata)
277 {
278         struct cpu_common_dbs_info *shared;
279         int j;
280
281         /* Allocate memory for the common information for policy->cpus */
282         shared = kzalloc(sizeof(*shared), GFP_KERNEL);
283         if (!shared)
284                 return -ENOMEM;
285
286         /* Set shared for all CPUs, online+offline */
287         for_each_cpu(j, policy->related_cpus)
288                 cdata->get_cpu_cdbs(j)->shared = shared;
289
290         return 0;
291 }
292
293 static void free_common_dbs_info(struct cpufreq_policy *policy,
294                                  struct common_dbs_data *cdata)
295 {
296         struct cpu_dbs_info *cdbs = cdata->get_cpu_cdbs(policy->cpu);
297         struct cpu_common_dbs_info *shared = cdbs->shared;
298         int j;
299
300         for_each_cpu(j, policy->cpus)
301                 cdata->get_cpu_cdbs(j)->shared = NULL;
302
303         kfree(shared);
304 }
305
306 static int cpufreq_governor_init(struct cpufreq_policy *policy,
307                                  struct dbs_data *dbs_data,
308                                  struct common_dbs_data *cdata)
309 {
310         unsigned int latency;
311         int ret;
312
313         /* State should be equivalent to EXIT */
314         if (policy->governor_data)
315                 return -EBUSY;
316
317         if (dbs_data) {
318                 if (WARN_ON(have_governor_per_policy()))
319                         return -EINVAL;
320
321                 ret = alloc_common_dbs_info(policy, cdata);
322                 if (ret)
323                         return ret;
324
325                 dbs_data->usage_count++;
326                 policy->governor_data = dbs_data;
327                 return 0;
328         }
329
330         dbs_data = kzalloc(sizeof(*dbs_data), GFP_KERNEL);
331         if (!dbs_data)
332                 return -ENOMEM;
333
334         ret = alloc_common_dbs_info(policy, cdata);
335         if (ret)
336                 goto free_dbs_data;
337
338         dbs_data->cdata = cdata;
339         dbs_data->usage_count = 1;
340
341         ret = cdata->init(dbs_data, !policy->governor->initialized);
342         if (ret)
343                 goto free_common_dbs_info;
344
345         /* policy latency is in ns. Convert it to us first */
346         latency = policy->cpuinfo.transition_latency / 1000;
347         if (latency == 0)
348                 latency = 1;
349
350         /* Bring kernel and HW constraints together */
351         dbs_data->min_sampling_rate = max(dbs_data->min_sampling_rate,
352                                           MIN_LATENCY_MULTIPLIER * latency);
353         set_sampling_rate(dbs_data, max(dbs_data->min_sampling_rate,
354                                         latency * LATENCY_MULTIPLIER));
355
356         if (!have_governor_per_policy())
357                 cdata->gdbs_data = dbs_data;
358
359         policy->governor_data = dbs_data;
360
361         ret = sysfs_create_group(get_governor_parent_kobj(policy),
362                                  get_sysfs_attr(dbs_data));
363         if (ret)
364                 goto reset_gdbs_data;
365
366         return 0;
367
368 reset_gdbs_data:
369         policy->governor_data = NULL;
370
371         if (!have_governor_per_policy())
372                 cdata->gdbs_data = NULL;
373         cdata->exit(dbs_data, !policy->governor->initialized);
374 free_common_dbs_info:
375         free_common_dbs_info(policy, cdata);
376 free_dbs_data:
377         kfree(dbs_data);
378         return ret;
379 }
380
381 static int cpufreq_governor_exit(struct cpufreq_policy *policy,
382                                  struct dbs_data *dbs_data)
383 {
384         struct common_dbs_data *cdata = dbs_data->cdata;
385         struct cpu_dbs_info *cdbs = cdata->get_cpu_cdbs(policy->cpu);
386
387         /* State should be equivalent to INIT */
388         if (!cdbs->shared || cdbs->shared->policy)
389                 return -EBUSY;
390
391         if (!--dbs_data->usage_count) {
392                 sysfs_remove_group(get_governor_parent_kobj(policy),
393                                    get_sysfs_attr(dbs_data));
394
395                 policy->governor_data = NULL;
396
397                 if (!have_governor_per_policy())
398                         cdata->gdbs_data = NULL;
399
400                 cdata->exit(dbs_data, policy->governor->initialized == 1);
401                 kfree(dbs_data);
402         } else {
403                 policy->governor_data = NULL;
404         }
405
406         free_common_dbs_info(policy, cdata);
407         return 0;
408 }
409
410 static int cpufreq_governor_start(struct cpufreq_policy *policy,
411                                   struct dbs_data *dbs_data)
412 {
413         struct common_dbs_data *cdata = dbs_data->cdata;
414         unsigned int sampling_rate, ignore_nice, j, cpu = policy->cpu;
415         struct cpu_dbs_info *cdbs = cdata->get_cpu_cdbs(cpu);
416         struct cpu_common_dbs_info *shared = cdbs->shared;
417         int io_busy = 0;
418
419         if (!policy->cur)
420                 return -EINVAL;
421
422         /* State should be equivalent to INIT */
423         if (!shared || shared->policy)
424                 return -EBUSY;
425
426         if (cdata->governor == GOV_CONSERVATIVE) {
427                 struct cs_dbs_tuners *cs_tuners = dbs_data->tuners;
428
429                 sampling_rate = cs_tuners->sampling_rate;
430                 ignore_nice = cs_tuners->ignore_nice_load;
431         } else {
432                 struct od_dbs_tuners *od_tuners = dbs_data->tuners;
433
434                 sampling_rate = od_tuners->sampling_rate;
435                 ignore_nice = od_tuners->ignore_nice_load;
436                 io_busy = od_tuners->io_is_busy;
437         }
438
439         shared->policy = policy;
440         shared->time_stamp = ktime_get();
441         mutex_init(&shared->timer_mutex);
442
443         for_each_cpu(j, policy->cpus) {
444                 struct cpu_dbs_info *j_cdbs = cdata->get_cpu_cdbs(j);
445                 unsigned int prev_load;
446
447                 j_cdbs->prev_cpu_idle =
448                         get_cpu_idle_time(j, &j_cdbs->prev_cpu_wall, io_busy);
449
450                 prev_load = (unsigned int)(j_cdbs->prev_cpu_wall -
451                                             j_cdbs->prev_cpu_idle);
452                 j_cdbs->prev_load = 100 * prev_load /
453                                     (unsigned int)j_cdbs->prev_cpu_wall;
454
455                 if (ignore_nice)
456                         j_cdbs->prev_cpu_nice = kcpustat_cpu(j).cpustat[CPUTIME_NICE];
457
458                 INIT_DEFERRABLE_WORK(&j_cdbs->dwork, dbs_timer);
459         }
460
461         if (cdata->governor == GOV_CONSERVATIVE) {
462                 struct cs_cpu_dbs_info_s *cs_dbs_info =
463                         cdata->get_cpu_dbs_info_s(cpu);
464
465                 cs_dbs_info->down_skip = 0;
466                 cs_dbs_info->requested_freq = policy->cur;
467         } else {
468                 struct od_ops *od_ops = cdata->gov_ops;
469                 struct od_cpu_dbs_info_s *od_dbs_info = cdata->get_cpu_dbs_info_s(cpu);
470
471                 od_dbs_info->rate_mult = 1;
472                 od_dbs_info->sample_type = OD_NORMAL_SAMPLE;
473                 od_ops->powersave_bias_init_cpu(cpu);
474         }
475
476         gov_queue_work(dbs_data, policy, delay_for_sampling_rate(sampling_rate),
477                        true);
478         return 0;
479 }
480
481 static int cpufreq_governor_stop(struct cpufreq_policy *policy,
482                                  struct dbs_data *dbs_data)
483 {
484         struct cpu_dbs_info *cdbs = dbs_data->cdata->get_cpu_cdbs(policy->cpu);
485         struct cpu_common_dbs_info *shared = cdbs->shared;
486
487         /* State should be equivalent to START */
488         if (!shared || !shared->policy)
489                 return -EBUSY;
490
491         /*
492          * Work-handler must see this updated, as it should not proceed any
493          * further after governor is disabled. And so timer_mutex is taken while
494          * updating this value.
495          */
496         mutex_lock(&shared->timer_mutex);
497         shared->policy = NULL;
498         mutex_unlock(&shared->timer_mutex);
499
500         gov_cancel_work(dbs_data, policy);
501
502         mutex_destroy(&shared->timer_mutex);
503         return 0;
504 }
505
506 static int cpufreq_governor_limits(struct cpufreq_policy *policy,
507                                    struct dbs_data *dbs_data)
508 {
509         struct common_dbs_data *cdata = dbs_data->cdata;
510         unsigned int cpu = policy->cpu;
511         struct cpu_dbs_info *cdbs = cdata->get_cpu_cdbs(cpu);
512
513         /* State should be equivalent to START */
514         if (!cdbs->shared || !cdbs->shared->policy)
515                 return -EBUSY;
516
517         mutex_lock(&cdbs->shared->timer_mutex);
518         if (policy->max < cdbs->shared->policy->cur)
519                 __cpufreq_driver_target(cdbs->shared->policy, policy->max,
520                                         CPUFREQ_RELATION_H);
521         else if (policy->min > cdbs->shared->policy->cur)
522                 __cpufreq_driver_target(cdbs->shared->policy, policy->min,
523                                         CPUFREQ_RELATION_L);
524         dbs_check_cpu(dbs_data, cpu);
525         mutex_unlock(&cdbs->shared->timer_mutex);
526
527         return 0;
528 }
529
530 int cpufreq_governor_dbs(struct cpufreq_policy *policy,
531                          struct common_dbs_data *cdata, unsigned int event)
532 {
533         struct dbs_data *dbs_data;
534         int ret;
535
536         /* Lock governor to block concurrent initialization of governor */
537         mutex_lock(&cdata->mutex);
538
539         if (have_governor_per_policy())
540                 dbs_data = policy->governor_data;
541         else
542                 dbs_data = cdata->gdbs_data;
543
544         if (!dbs_data && (event != CPUFREQ_GOV_POLICY_INIT)) {
545                 ret = -EINVAL;
546                 goto unlock;
547         }
548
549         switch (event) {
550         case CPUFREQ_GOV_POLICY_INIT:
551                 ret = cpufreq_governor_init(policy, dbs_data, cdata);
552                 break;
553         case CPUFREQ_GOV_POLICY_EXIT:
554                 ret = cpufreq_governor_exit(policy, dbs_data);
555                 break;
556         case CPUFREQ_GOV_START:
557                 ret = cpufreq_governor_start(policy, dbs_data);
558                 break;
559         case CPUFREQ_GOV_STOP:
560                 ret = cpufreq_governor_stop(policy, dbs_data);
561                 break;
562         case CPUFREQ_GOV_LIMITS:
563                 ret = cpufreq_governor_limits(policy, dbs_data);
564                 break;
565         default:
566                 ret = -EINVAL;
567         }
568
569 unlock:
570         mutex_unlock(&cdata->mutex);
571
572         return ret;
573 }
574 EXPORT_SYMBOL_GPL(cpufreq_governor_dbs);