cpufreq: dt: Reuse dev_pm_opp_get_max_transition_latency()
[firefly-linux-kernel-4.4.55.git] / drivers / cpufreq / cpufreq-dt.c
1 /*
2  * Copyright (C) 2012 Freescale Semiconductor, Inc.
3  *
4  * Copyright (C) 2014 Linaro.
5  * Viresh Kumar <viresh.kumar@linaro.org>
6  *
7  * The OPP code in function set_target() is reused from
8  * drivers/cpufreq/omap-cpufreq.c
9  *
10  * This program is free software; you can redistribute it and/or modify
11  * it under the terms of the GNU General Public License version 2 as
12  * published by the Free Software Foundation.
13  */
14
15 #define pr_fmt(fmt)     KBUILD_MODNAME ": " fmt
16
17 #include <linux/clk.h>
18 #include <linux/cpu.h>
19 #include <linux/cpu_cooling.h>
20 #include <linux/cpufreq.h>
21 #include <linux/cpufreq-dt.h>
22 #include <linux/cpumask.h>
23 #include <linux/err.h>
24 #include <linux/module.h>
25 #include <linux/of.h>
26 #include <linux/pm_opp.h>
27 #include <linux/platform_device.h>
28 #include <linux/regulator/consumer.h>
29 #include <linux/slab.h>
30 #include <linux/thermal.h>
31
32 struct private_data {
33         struct device *cpu_dev;
34         struct regulator *cpu_reg;
35         struct thermal_cooling_device *cdev;
36         unsigned int voltage_tolerance; /* in percentage */
37         const char *reg_name;
38 };
39
40 static struct freq_attr *cpufreq_dt_attr[] = {
41         &cpufreq_freq_attr_scaling_available_freqs,
42         NULL,   /* Extra space for boost-attr if required */
43         NULL,
44 };
45
46 static int set_target(struct cpufreq_policy *policy, unsigned int index)
47 {
48         struct dev_pm_opp *opp;
49         struct cpufreq_frequency_table *freq_table = policy->freq_table;
50         struct clk *cpu_clk = policy->clk;
51         struct private_data *priv = policy->driver_data;
52         struct device *cpu_dev = priv->cpu_dev;
53         struct regulator *cpu_reg = priv->cpu_reg;
54         unsigned long volt = 0, tol = 0;
55         int volt_old = 0;
56         unsigned int old_freq, new_freq;
57         long freq_Hz, freq_exact;
58         int ret;
59
60         freq_Hz = clk_round_rate(cpu_clk, freq_table[index].frequency * 1000);
61         if (freq_Hz <= 0)
62                 freq_Hz = freq_table[index].frequency * 1000;
63
64         freq_exact = freq_Hz;
65         new_freq = freq_Hz / 1000;
66         old_freq = clk_get_rate(cpu_clk) / 1000;
67
68         if (!IS_ERR(cpu_reg)) {
69                 unsigned long opp_freq;
70
71                 rcu_read_lock();
72                 opp = dev_pm_opp_find_freq_ceil(cpu_dev, &freq_Hz);
73                 if (IS_ERR(opp)) {
74                         rcu_read_unlock();
75                         dev_err(cpu_dev, "failed to find OPP for %ld\n",
76                                 freq_Hz);
77                         return PTR_ERR(opp);
78                 }
79                 volt = dev_pm_opp_get_voltage(opp);
80                 opp_freq = dev_pm_opp_get_freq(opp);
81                 rcu_read_unlock();
82                 tol = volt * priv->voltage_tolerance / 100;
83                 volt_old = regulator_get_voltage(cpu_reg);
84                 dev_dbg(cpu_dev, "Found OPP: %ld kHz, %ld uV\n",
85                         opp_freq / 1000, volt);
86         }
87
88         dev_dbg(cpu_dev, "%u MHz, %d mV --> %u MHz, %ld mV\n",
89                 old_freq / 1000, (volt_old > 0) ? volt_old / 1000 : -1,
90                 new_freq / 1000, volt ? volt / 1000 : -1);
91
92         /* scaling up?  scale voltage before frequency */
93         if (!IS_ERR(cpu_reg) && new_freq > old_freq) {
94                 ret = regulator_set_voltage_tol(cpu_reg, volt, tol);
95                 if (ret) {
96                         dev_err(cpu_dev, "failed to scale voltage up: %d\n",
97                                 ret);
98                         return ret;
99                 }
100         }
101
102         ret = clk_set_rate(cpu_clk, freq_exact);
103         if (ret) {
104                 dev_err(cpu_dev, "failed to set clock rate: %d\n", ret);
105                 if (!IS_ERR(cpu_reg) && volt_old > 0)
106                         regulator_set_voltage_tol(cpu_reg, volt_old, tol);
107                 return ret;
108         }
109
110         /* scaling down?  scale voltage after frequency */
111         if (!IS_ERR(cpu_reg) && new_freq < old_freq) {
112                 ret = regulator_set_voltage_tol(cpu_reg, volt, tol);
113                 if (ret) {
114                         dev_err(cpu_dev, "failed to scale voltage down: %d\n",
115                                 ret);
116                         clk_set_rate(cpu_clk, old_freq * 1000);
117                 }
118         }
119
120         return ret;
121 }
122
123 /*
124  * An earlier version of opp-v1 bindings used to name the regulator
125  * "cpu0-supply", we still need to handle that for backwards compatibility.
126  */
127 static const char *find_supply_name(struct device *dev, struct device_node *np)
128 {
129         struct property *pp;
130         int cpu = dev->id;
131
132         /* Try "cpu0" for older DTs */
133         if (!cpu) {
134                 pp = of_find_property(np, "cpu0-supply", NULL);
135                 if (pp)
136                         return "cpu0";
137         }
138
139         pp = of_find_property(np, "cpu-supply", NULL);
140         if (pp)
141                 return "cpu";
142
143         dev_dbg(dev, "no regulator for cpu%d\n", cpu);
144         return NULL;
145 }
146
147 static int allocate_resources(int cpu, struct device **cdev,
148                               struct regulator **creg, struct clk **cclk)
149 {
150         struct device *cpu_dev;
151         struct regulator *cpu_reg;
152         struct clk *cpu_clk;
153         int ret = 0;
154         char *reg_cpu0 = "cpu0", *reg_cpu = "cpu", *reg;
155
156         cpu_dev = get_cpu_device(cpu);
157         if (!cpu_dev) {
158                 pr_err("failed to get cpu%d device\n", cpu);
159                 return -ENODEV;
160         }
161
162         /* Try "cpu0" for older DTs */
163         if (!cpu)
164                 reg = reg_cpu0;
165         else
166                 reg = reg_cpu;
167
168 try_again:
169         cpu_reg = regulator_get_optional(cpu_dev, reg);
170         ret = PTR_ERR_OR_ZERO(cpu_reg);
171         if (ret) {
172                 /*
173                  * If cpu's regulator supply node is present, but regulator is
174                  * not yet registered, we should try defering probe.
175                  */
176                 if (ret == -EPROBE_DEFER) {
177                         dev_dbg(cpu_dev, "cpu%d regulator not ready, retry\n",
178                                 cpu);
179                         return ret;
180                 }
181
182                 /* Try with "cpu-supply" */
183                 if (reg == reg_cpu0) {
184                         reg = reg_cpu;
185                         goto try_again;
186                 }
187
188                 dev_dbg(cpu_dev, "no regulator for cpu%d: %d\n", cpu, ret);
189         }
190
191         cpu_clk = clk_get(cpu_dev, NULL);
192         ret = PTR_ERR_OR_ZERO(cpu_clk);
193         if (ret) {
194                 /* put regulator */
195                 if (!IS_ERR(cpu_reg))
196                         regulator_put(cpu_reg);
197
198                 /*
199                  * If cpu's clk node is present, but clock is not yet
200                  * registered, we should try defering probe.
201                  */
202                 if (ret == -EPROBE_DEFER)
203                         dev_dbg(cpu_dev, "cpu%d clock not ready, retry\n", cpu);
204                 else
205                         dev_err(cpu_dev, "failed to get cpu%d clock: %d\n", cpu,
206                                 ret);
207         } else {
208                 *cdev = cpu_dev;
209                 *creg = cpu_reg;
210                 *cclk = cpu_clk;
211         }
212
213         return ret;
214 }
215
216 static int cpufreq_init(struct cpufreq_policy *policy)
217 {
218         struct cpufreq_frequency_table *freq_table;
219         struct device_node *np;
220         struct private_data *priv;
221         struct device *cpu_dev;
222         struct regulator *cpu_reg;
223         struct clk *cpu_clk;
224         struct dev_pm_opp *suspend_opp;
225         unsigned int transition_latency;
226         bool opp_v1 = false;
227         const char *name;
228         int ret;
229
230         ret = allocate_resources(policy->cpu, &cpu_dev, &cpu_reg, &cpu_clk);
231         if (ret) {
232                 pr_err("%s: Failed to allocate resources: %d\n", __func__, ret);
233                 return ret;
234         }
235
236         np = of_node_get(cpu_dev->of_node);
237         if (!np) {
238                 dev_err(cpu_dev, "failed to find cpu%d node\n", policy->cpu);
239                 ret = -ENOENT;
240                 goto out_put_reg_clk;
241         }
242
243         /* Get OPP-sharing information from "operating-points-v2" bindings */
244         ret = dev_pm_opp_of_get_sharing_cpus(cpu_dev, policy->cpus);
245         if (ret) {
246                 /*
247                  * operating-points-v2 not supported, fallback to old method of
248                  * finding shared-OPPs for backward compatibility.
249                  */
250                 if (ret == -ENOENT)
251                         opp_v1 = true;
252                 else
253                         goto out_node_put;
254         }
255
256         /*
257          * OPP layer will be taking care of regulators now, but it needs to know
258          * the name of the regulator first.
259          */
260         name = find_supply_name(cpu_dev, np);
261         if (name) {
262                 ret = dev_pm_opp_set_regulator(cpu_dev, name);
263                 if (ret) {
264                         dev_err(cpu_dev, "Failed to set regulator for cpu%d: %d\n",
265                                 policy->cpu, ret);
266                         goto out_node_put;
267                 }
268         }
269
270         /*
271          * Initialize OPP tables for all policy->cpus. They will be shared by
272          * all CPUs which have marked their CPUs shared with OPP bindings.
273          *
274          * For platforms not using operating-points-v2 bindings, we do this
275          * before updating policy->cpus. Otherwise, we will end up creating
276          * duplicate OPPs for policy->cpus.
277          *
278          * OPPs might be populated at runtime, don't check for error here
279          */
280         dev_pm_opp_of_cpumask_add_table(policy->cpus);
281
282         /*
283          * But we need OPP table to function so if it is not there let's
284          * give platform code chance to provide it for us.
285          */
286         ret = dev_pm_opp_get_opp_count(cpu_dev);
287         if (ret <= 0) {
288                 dev_dbg(cpu_dev, "OPP table is not ready, deferring probe\n");
289                 ret = -EPROBE_DEFER;
290                 goto out_free_opp;
291         }
292
293         if (opp_v1) {
294                 struct cpufreq_dt_platform_data *pd = cpufreq_get_driver_data();
295
296                 if (!pd || !pd->independent_clocks)
297                         cpumask_setall(policy->cpus);
298
299                 /*
300                  * OPP tables are initialized only for policy->cpu, do it for
301                  * others as well.
302                  */
303                 ret = dev_pm_opp_set_sharing_cpus(cpu_dev, policy->cpus);
304                 if (ret)
305                         dev_err(cpu_dev, "%s: failed to mark OPPs as shared: %d\n",
306                                 __func__, ret);
307         }
308
309         priv = kzalloc(sizeof(*priv), GFP_KERNEL);
310         if (!priv) {
311                 ret = -ENOMEM;
312                 goto out_free_opp;
313         }
314
315         priv->reg_name = name;
316         of_property_read_u32(np, "voltage-tolerance", &priv->voltage_tolerance);
317
318         ret = dev_pm_opp_init_cpufreq_table(cpu_dev, &freq_table);
319         if (ret) {
320                 dev_err(cpu_dev, "failed to init cpufreq table: %d\n", ret);
321                 goto out_free_priv;
322         }
323
324         priv->cpu_dev = cpu_dev;
325         priv->cpu_reg = cpu_reg;
326         policy->driver_data = priv;
327
328         policy->clk = cpu_clk;
329
330         rcu_read_lock();
331         suspend_opp = dev_pm_opp_get_suspend_opp(cpu_dev);
332         if (suspend_opp)
333                 policy->suspend_freq = dev_pm_opp_get_freq(suspend_opp) / 1000;
334         rcu_read_unlock();
335
336         ret = cpufreq_table_validate_and_show(policy, freq_table);
337         if (ret) {
338                 dev_err(cpu_dev, "%s: invalid frequency table: %d\n", __func__,
339                         ret);
340                 goto out_free_cpufreq_table;
341         }
342
343         /* Support turbo/boost mode */
344         if (policy_has_boost_freq(policy)) {
345                 /* This gets disabled by core on driver unregister */
346                 ret = cpufreq_enable_boost_support();
347                 if (ret)
348                         goto out_free_cpufreq_table;
349                 cpufreq_dt_attr[1] = &cpufreq_freq_attr_scaling_boost_freqs;
350         }
351
352         transition_latency = dev_pm_opp_get_max_transition_latency(cpu_dev);
353         if (!transition_latency)
354                 transition_latency = CPUFREQ_ETERNAL;
355
356         policy->cpuinfo.transition_latency = transition_latency;
357
358         of_node_put(np);
359
360         return 0;
361
362 out_free_cpufreq_table:
363         dev_pm_opp_free_cpufreq_table(cpu_dev, &freq_table);
364 out_free_priv:
365         kfree(priv);
366 out_free_opp:
367         dev_pm_opp_of_cpumask_remove_table(policy->cpus);
368         if (name)
369                 dev_pm_opp_put_regulator(cpu_dev);
370 out_node_put:
371         of_node_put(np);
372 out_put_reg_clk:
373         clk_put(cpu_clk);
374         if (!IS_ERR(cpu_reg))
375                 regulator_put(cpu_reg);
376
377         return ret;
378 }
379
380 static int cpufreq_exit(struct cpufreq_policy *policy)
381 {
382         struct private_data *priv = policy->driver_data;
383
384         cpufreq_cooling_unregister(priv->cdev);
385         dev_pm_opp_free_cpufreq_table(priv->cpu_dev, &policy->freq_table);
386         dev_pm_opp_of_cpumask_remove_table(policy->related_cpus);
387         if (priv->reg_name)
388                 dev_pm_opp_put_regulator(priv->cpu_dev);
389
390         clk_put(policy->clk);
391         if (!IS_ERR(priv->cpu_reg))
392                 regulator_put(priv->cpu_reg);
393         kfree(priv);
394
395         return 0;
396 }
397
398 static void cpufreq_ready(struct cpufreq_policy *policy)
399 {
400         struct private_data *priv = policy->driver_data;
401         struct device_node *np = of_node_get(priv->cpu_dev->of_node);
402
403         if (WARN_ON(!np))
404                 return;
405
406         /*
407          * For now, just loading the cooling device;
408          * thermal DT code takes care of matching them.
409          */
410         if (of_find_property(np, "#cooling-cells", NULL)) {
411                 u32 power_coefficient = 0;
412
413                 of_property_read_u32(np, "dynamic-power-coefficient",
414                                      &power_coefficient);
415
416                 priv->cdev = of_cpufreq_power_cooling_register(np,
417                                 policy->related_cpus, power_coefficient, NULL);
418                 if (IS_ERR(priv->cdev)) {
419                         dev_err(priv->cpu_dev,
420                                 "running cpufreq without cooling device: %ld\n",
421                                 PTR_ERR(priv->cdev));
422
423                         priv->cdev = NULL;
424                 }
425         }
426
427         of_node_put(np);
428 }
429
430 static struct cpufreq_driver dt_cpufreq_driver = {
431         .flags = CPUFREQ_STICKY | CPUFREQ_NEED_INITIAL_FREQ_CHECK,
432         .verify = cpufreq_generic_frequency_table_verify,
433         .target_index = set_target,
434         .get = cpufreq_generic_get,
435         .init = cpufreq_init,
436         .exit = cpufreq_exit,
437         .ready = cpufreq_ready,
438         .name = "cpufreq-dt",
439         .attr = cpufreq_dt_attr,
440         .suspend = cpufreq_generic_suspend,
441 };
442
443 static int dt_cpufreq_probe(struct platform_device *pdev)
444 {
445         struct device *cpu_dev;
446         struct regulator *cpu_reg;
447         struct clk *cpu_clk;
448         int ret;
449
450         /*
451          * All per-cluster (CPUs sharing clock/voltages) initialization is done
452          * from ->init(). In probe(), we just need to make sure that clk and
453          * regulators are available. Else defer probe and retry.
454          *
455          * FIXME: Is checking this only for CPU0 sufficient ?
456          */
457         ret = allocate_resources(0, &cpu_dev, &cpu_reg, &cpu_clk);
458         if (ret)
459                 return ret;
460
461         clk_put(cpu_clk);
462         if (!IS_ERR(cpu_reg))
463                 regulator_put(cpu_reg);
464
465         dt_cpufreq_driver.driver_data = dev_get_platdata(&pdev->dev);
466
467         ret = cpufreq_register_driver(&dt_cpufreq_driver);
468         if (ret)
469                 dev_err(cpu_dev, "failed register driver: %d\n", ret);
470
471         return ret;
472 }
473
474 static int dt_cpufreq_remove(struct platform_device *pdev)
475 {
476         cpufreq_unregister_driver(&dt_cpufreq_driver);
477         return 0;
478 }
479
480 static struct platform_driver dt_cpufreq_platdrv = {
481         .driver = {
482                 .name   = "cpufreq-dt",
483         },
484         .probe          = dt_cpufreq_probe,
485         .remove         = dt_cpufreq_remove,
486 };
487 module_platform_driver(dt_cpufreq_platdrv);
488
489 MODULE_ALIAS("platform:cpufreq-dt");
490 MODULE_AUTHOR("Viresh Kumar <viresh.kumar@linaro.org>");
491 MODULE_AUTHOR("Shawn Guo <shawn.guo@linaro.org>");
492 MODULE_DESCRIPTION("Generic cpufreq driver");
493 MODULE_LICENSE("GPL");