clk: rockchip: support setting ddr clock via SCPI APIs
[firefly-linux-kernel-4.4.55.git] / drivers / clocksource / tcb_clksrc.c
1 #include <linux/init.h>
2 #include <linux/clocksource.h>
3 #include <linux/clockchips.h>
4 #include <linux/interrupt.h>
5 #include <linux/irq.h>
6
7 #include <linux/clk.h>
8 #include <linux/err.h>
9 #include <linux/ioport.h>
10 #include <linux/io.h>
11 #include <linux/platform_device.h>
12 #include <linux/atmel_tc.h>
13
14
15 /*
16  * We're configured to use a specific TC block, one that's not hooked
17  * up to external hardware, to provide a time solution:
18  *
19  *   - Two channels combine to create a free-running 32 bit counter
20  *     with a base rate of 5+ MHz, packaged as a clocksource (with
21  *     resolution better than 200 nsec).
22  *   - Some chips support 32 bit counter. A single channel is used for
23  *     this 32 bit free-running counter. the second channel is not used.
24  *
25  *   - The third channel may be used to provide a 16-bit clockevent
26  *     source, used in either periodic or oneshot mode.  This runs
27  *     at 32 KiHZ, and can handle delays of up to two seconds.
28  *
29  * A boot clocksource and clockevent source are also currently needed,
30  * unless the relevant platforms (ARM/AT91, AVR32/AT32) are changed so
31  * this code can be used when init_timers() is called, well before most
32  * devices are set up.  (Some low end AT91 parts, which can run uClinux,
33  * have only the timers in one TC block... they currently don't support
34  * the tclib code, because of that initialization issue.)
35  *
36  * REVISIT behavior during system suspend states... we should disable
37  * all clocks and save the power.  Easily done for clockevent devices,
38  * but clocksources won't necessarily get the needed notifications.
39  * For deeper system sleep states, this will be mandatory...
40  */
41
42 static void __iomem *tcaddr;
43
44 static cycle_t tc_get_cycles(struct clocksource *cs)
45 {
46         unsigned long   flags;
47         u32             lower, upper;
48
49         raw_local_irq_save(flags);
50         do {
51                 upper = __raw_readl(tcaddr + ATMEL_TC_REG(1, CV));
52                 lower = __raw_readl(tcaddr + ATMEL_TC_REG(0, CV));
53         } while (upper != __raw_readl(tcaddr + ATMEL_TC_REG(1, CV)));
54
55         raw_local_irq_restore(flags);
56         return (upper << 16) | lower;
57 }
58
59 static cycle_t tc_get_cycles32(struct clocksource *cs)
60 {
61         return __raw_readl(tcaddr + ATMEL_TC_REG(0, CV));
62 }
63
64 static struct clocksource clksrc = {
65         .name           = "tcb_clksrc",
66         .rating         = 200,
67         .read           = tc_get_cycles,
68         .mask           = CLOCKSOURCE_MASK(32),
69         .flags          = CLOCK_SOURCE_IS_CONTINUOUS,
70 };
71
72 #ifdef CONFIG_GENERIC_CLOCKEVENTS
73
74 struct tc_clkevt_device {
75         struct clock_event_device       clkevt;
76         struct clk                      *clk;
77         void __iomem                    *regs;
78 };
79
80 static struct tc_clkevt_device *to_tc_clkevt(struct clock_event_device *clkevt)
81 {
82         return container_of(clkevt, struct tc_clkevt_device, clkevt);
83 }
84
85 /* For now, we always use the 32K clock ... this optimizes for NO_HZ,
86  * because using one of the divided clocks would usually mean the
87  * tick rate can never be less than several dozen Hz (vs 0.5 Hz).
88  *
89  * A divided clock could be good for high resolution timers, since
90  * 30.5 usec resolution can seem "low".
91  */
92 static u32 timer_clock;
93
94 static int tc_shutdown(struct clock_event_device *d)
95 {
96         struct tc_clkevt_device *tcd = to_tc_clkevt(d);
97         void __iomem            *regs = tcd->regs;
98
99         __raw_writel(0xff, regs + ATMEL_TC_REG(2, IDR));
100         __raw_writel(ATMEL_TC_CLKDIS, regs + ATMEL_TC_REG(2, CCR));
101         if (!clockevent_state_detached(d))
102                 clk_disable(tcd->clk);
103
104         return 0;
105 }
106
107 static int tc_set_oneshot(struct clock_event_device *d)
108 {
109         struct tc_clkevt_device *tcd = to_tc_clkevt(d);
110         void __iomem            *regs = tcd->regs;
111
112         if (clockevent_state_oneshot(d) || clockevent_state_periodic(d))
113                 tc_shutdown(d);
114
115         clk_enable(tcd->clk);
116
117         /* slow clock, count up to RC, then irq and stop */
118         __raw_writel(timer_clock | ATMEL_TC_CPCSTOP | ATMEL_TC_WAVE |
119                      ATMEL_TC_WAVESEL_UP_AUTO, regs + ATMEL_TC_REG(2, CMR));
120         __raw_writel(ATMEL_TC_CPCS, regs + ATMEL_TC_REG(2, IER));
121
122         /* set_next_event() configures and starts the timer */
123         return 0;
124 }
125
126 static int tc_set_periodic(struct clock_event_device *d)
127 {
128         struct tc_clkevt_device *tcd = to_tc_clkevt(d);
129         void __iomem            *regs = tcd->regs;
130
131         if (clockevent_state_oneshot(d) || clockevent_state_periodic(d))
132                 tc_shutdown(d);
133
134         /* By not making the gentime core emulate periodic mode on top
135          * of oneshot, we get lower overhead and improved accuracy.
136          */
137         clk_enable(tcd->clk);
138
139         /* slow clock, count up to RC, then irq and restart */
140         __raw_writel(timer_clock | ATMEL_TC_WAVE | ATMEL_TC_WAVESEL_UP_AUTO,
141                      regs + ATMEL_TC_REG(2, CMR));
142         __raw_writel((32768 + HZ / 2) / HZ, tcaddr + ATMEL_TC_REG(2, RC));
143
144         /* Enable clock and interrupts on RC compare */
145         __raw_writel(ATMEL_TC_CPCS, regs + ATMEL_TC_REG(2, IER));
146
147         /* go go gadget! */
148         __raw_writel(ATMEL_TC_CLKEN | ATMEL_TC_SWTRG, regs +
149                      ATMEL_TC_REG(2, CCR));
150         return 0;
151 }
152
153 static int tc_next_event(unsigned long delta, struct clock_event_device *d)
154 {
155         __raw_writel(delta, tcaddr + ATMEL_TC_REG(2, RC));
156
157         /* go go gadget! */
158         __raw_writel(ATMEL_TC_CLKEN | ATMEL_TC_SWTRG,
159                         tcaddr + ATMEL_TC_REG(2, CCR));
160         return 0;
161 }
162
163 static struct tc_clkevt_device clkevt = {
164         .clkevt = {
165                 .name                   = "tc_clkevt",
166                 .features               = CLOCK_EVT_FEAT_PERIODIC |
167                                           CLOCK_EVT_FEAT_ONESHOT,
168                 /* Should be lower than at91rm9200's system timer */
169                 .rating                 = 125,
170                 .set_next_event         = tc_next_event,
171                 .set_state_shutdown     = tc_shutdown,
172                 .set_state_periodic     = tc_set_periodic,
173                 .set_state_oneshot      = tc_set_oneshot,
174         },
175 };
176
177 static irqreturn_t ch2_irq(int irq, void *handle)
178 {
179         struct tc_clkevt_device *dev = handle;
180         unsigned int            sr;
181
182         sr = __raw_readl(dev->regs + ATMEL_TC_REG(2, SR));
183         if (sr & ATMEL_TC_CPCS) {
184                 dev->clkevt.event_handler(&dev->clkevt);
185                 return IRQ_HANDLED;
186         }
187
188         return IRQ_NONE;
189 }
190
191 static int __init setup_clkevents(struct atmel_tc *tc, int clk32k_divisor_idx)
192 {
193         int ret;
194         struct clk *t2_clk = tc->clk[2];
195         int irq = tc->irq[2];
196
197         ret = clk_prepare_enable(tc->slow_clk);
198         if (ret)
199                 return ret;
200
201         /* try to enable t2 clk to avoid future errors in mode change */
202         ret = clk_prepare_enable(t2_clk);
203         if (ret) {
204                 clk_disable_unprepare(tc->slow_clk);
205                 return ret;
206         }
207
208         clk_disable(t2_clk);
209
210         clkevt.regs = tc->regs;
211         clkevt.clk = t2_clk;
212
213         timer_clock = clk32k_divisor_idx;
214
215         clkevt.clkevt.cpumask = cpumask_of(0);
216
217         ret = request_irq(irq, ch2_irq, IRQF_TIMER, "tc_clkevt", &clkevt);
218         if (ret) {
219                 clk_unprepare(t2_clk);
220                 clk_disable_unprepare(tc->slow_clk);
221                 return ret;
222         }
223
224         clockevents_config_and_register(&clkevt.clkevt, 32768, 1, 0xffff);
225
226         return ret;
227 }
228
229 #else /* !CONFIG_GENERIC_CLOCKEVENTS */
230
231 static int __init setup_clkevents(struct atmel_tc *tc, int clk32k_divisor_idx)
232 {
233         /* NOTHING */
234         return 0;
235 }
236
237 #endif
238
239 static void __init tcb_setup_dual_chan(struct atmel_tc *tc, int mck_divisor_idx)
240 {
241         /* channel 0:  waveform mode, input mclk/8, clock TIOA0 on overflow */
242         __raw_writel(mck_divisor_idx                    /* likely divide-by-8 */
243                         | ATMEL_TC_WAVE
244                         | ATMEL_TC_WAVESEL_UP           /* free-run */
245                         | ATMEL_TC_ACPA_SET             /* TIOA0 rises at 0 */
246                         | ATMEL_TC_ACPC_CLEAR,          /* (duty cycle 50%) */
247                         tcaddr + ATMEL_TC_REG(0, CMR));
248         __raw_writel(0x0000, tcaddr + ATMEL_TC_REG(0, RA));
249         __raw_writel(0x8000, tcaddr + ATMEL_TC_REG(0, RC));
250         __raw_writel(0xff, tcaddr + ATMEL_TC_REG(0, IDR));      /* no irqs */
251         __raw_writel(ATMEL_TC_CLKEN, tcaddr + ATMEL_TC_REG(0, CCR));
252
253         /* channel 1:  waveform mode, input TIOA0 */
254         __raw_writel(ATMEL_TC_XC1                       /* input: TIOA0 */
255                         | ATMEL_TC_WAVE
256                         | ATMEL_TC_WAVESEL_UP,          /* free-run */
257                         tcaddr + ATMEL_TC_REG(1, CMR));
258         __raw_writel(0xff, tcaddr + ATMEL_TC_REG(1, IDR));      /* no irqs */
259         __raw_writel(ATMEL_TC_CLKEN, tcaddr + ATMEL_TC_REG(1, CCR));
260
261         /* chain channel 0 to channel 1*/
262         __raw_writel(ATMEL_TC_TC1XC1S_TIOA0, tcaddr + ATMEL_TC_BMR);
263         /* then reset all the timers */
264         __raw_writel(ATMEL_TC_SYNC, tcaddr + ATMEL_TC_BCR);
265 }
266
267 static void __init tcb_setup_single_chan(struct atmel_tc *tc, int mck_divisor_idx)
268 {
269         /* channel 0:  waveform mode, input mclk/8 */
270         __raw_writel(mck_divisor_idx                    /* likely divide-by-8 */
271                         | ATMEL_TC_WAVE
272                         | ATMEL_TC_WAVESEL_UP,          /* free-run */
273                         tcaddr + ATMEL_TC_REG(0, CMR));
274         __raw_writel(0xff, tcaddr + ATMEL_TC_REG(0, IDR));      /* no irqs */
275         __raw_writel(ATMEL_TC_CLKEN, tcaddr + ATMEL_TC_REG(0, CCR));
276
277         /* then reset all the timers */
278         __raw_writel(ATMEL_TC_SYNC, tcaddr + ATMEL_TC_BCR);
279 }
280
281 static int __init tcb_clksrc_init(void)
282 {
283         static char bootinfo[] __initdata
284                 = KERN_DEBUG "%s: tc%d at %d.%03d MHz\n";
285
286         struct platform_device *pdev;
287         struct atmel_tc *tc;
288         struct clk *t0_clk;
289         u32 rate, divided_rate = 0;
290         int best_divisor_idx = -1;
291         int clk32k_divisor_idx = -1;
292         int i;
293         int ret;
294
295         tc = atmel_tc_alloc(CONFIG_ATMEL_TCB_CLKSRC_BLOCK);
296         if (!tc) {
297                 pr_debug("can't alloc TC for clocksource\n");
298                 return -ENODEV;
299         }
300         tcaddr = tc->regs;
301         pdev = tc->pdev;
302
303         t0_clk = tc->clk[0];
304         ret = clk_prepare_enable(t0_clk);
305         if (ret) {
306                 pr_debug("can't enable T0 clk\n");
307                 goto err_free_tc;
308         }
309
310         /* How fast will we be counting?  Pick something over 5 MHz.  */
311         rate = (u32) clk_get_rate(t0_clk);
312         for (i = 0; i < 5; i++) {
313                 unsigned divisor = atmel_tc_divisors[i];
314                 unsigned tmp;
315
316                 /* remember 32 KiHz clock for later */
317                 if (!divisor) {
318                         clk32k_divisor_idx = i;
319                         continue;
320                 }
321
322                 tmp = rate / divisor;
323                 pr_debug("TC: %u / %-3u [%d] --> %u\n", rate, divisor, i, tmp);
324                 if (best_divisor_idx > 0) {
325                         if (tmp < 5 * 1000 * 1000)
326                                 continue;
327                 }
328                 divided_rate = tmp;
329                 best_divisor_idx = i;
330         }
331
332
333         printk(bootinfo, clksrc.name, CONFIG_ATMEL_TCB_CLKSRC_BLOCK,
334                         divided_rate / 1000000,
335                         ((divided_rate + 500000) % 1000000) / 1000);
336
337         if (tc->tcb_config && tc->tcb_config->counter_width == 32) {
338                 /* use apropriate function to read 32 bit counter */
339                 clksrc.read = tc_get_cycles32;
340                 /* setup ony channel 0 */
341                 tcb_setup_single_chan(tc, best_divisor_idx);
342         } else {
343                 /* tclib will give us three clocks no matter what the
344                  * underlying platform supports.
345                  */
346                 ret = clk_prepare_enable(tc->clk[1]);
347                 if (ret) {
348                         pr_debug("can't enable T1 clk\n");
349                         goto err_disable_t0;
350                 }
351                 /* setup both channel 0 & 1 */
352                 tcb_setup_dual_chan(tc, best_divisor_idx);
353         }
354
355         /* and away we go! */
356         ret = clocksource_register_hz(&clksrc, divided_rate);
357         if (ret)
358                 goto err_disable_t1;
359
360         /* channel 2:  periodic and oneshot timer support */
361         ret = setup_clkevents(tc, clk32k_divisor_idx);
362         if (ret)
363                 goto err_unregister_clksrc;
364
365         return 0;
366
367 err_unregister_clksrc:
368         clocksource_unregister(&clksrc);
369
370 err_disable_t1:
371         if (!tc->tcb_config || tc->tcb_config->counter_width != 32)
372                 clk_disable_unprepare(tc->clk[1]);
373
374 err_disable_t0:
375         clk_disable_unprepare(t0_clk);
376
377 err_free_tc:
378         atmel_tc_free(tc);
379         return ret;
380 }
381 arch_initcall(tcb_clksrc_init);