Merge commit 'ed30f24e8d07d30aa3e69d1f508f4d7bd2e8ea14' of git://git.linaro.org/landi...
[firefly-linux-kernel-4.4.55.git] / drivers / clocksource / arm_arch_timer.c
1 /*
2  *  linux/drivers/clocksource/arm_arch_timer.c
3  *
4  *  Copyright (C) 2011 ARM Ltd.
5  *  All Rights Reserved
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License version 2 as
9  * published by the Free Software Foundation.
10  */
11 #include <linux/init.h>
12 #include <linux/kernel.h>
13 #include <linux/device.h>
14 #include <linux/smp.h>
15 #include <linux/cpu.h>
16 #include <linux/clockchips.h>
17 #include <linux/interrupt.h>
18 #include <linux/of_irq.h>
19 #include <linux/io.h>
20
21 #include <asm/arch_timer.h>
22 #include <asm/virt.h>
23
24 #include <clocksource/arm_arch_timer.h>
25
26 static u32 arch_timer_rate;
27
28 enum ppi_nr {
29         PHYS_SECURE_PPI,
30         PHYS_NONSECURE_PPI,
31         VIRT_PPI,
32         HYP_PPI,
33         MAX_TIMER_PPI
34 };
35
36 static int arch_timer_ppi[MAX_TIMER_PPI];
37
38 static struct clock_event_device __percpu *arch_timer_evt;
39
40 static bool arch_timer_use_virtual = true;
41
42 /*
43  * Architected system timer support.
44  */
45
46 static inline irqreturn_t timer_handler(const int access,
47                                         struct clock_event_device *evt)
48 {
49         unsigned long ctrl;
50         ctrl = arch_timer_reg_read(access, ARCH_TIMER_REG_CTRL);
51         if (ctrl & ARCH_TIMER_CTRL_IT_STAT) {
52                 ctrl |= ARCH_TIMER_CTRL_IT_MASK;
53                 arch_timer_reg_write(access, ARCH_TIMER_REG_CTRL, ctrl);
54                 evt->event_handler(evt);
55                 return IRQ_HANDLED;
56         }
57
58         return IRQ_NONE;
59 }
60
61 static irqreturn_t arch_timer_handler_virt(int irq, void *dev_id)
62 {
63         struct clock_event_device *evt = dev_id;
64
65         return timer_handler(ARCH_TIMER_VIRT_ACCESS, evt);
66 }
67
68 static irqreturn_t arch_timer_handler_phys(int irq, void *dev_id)
69 {
70         struct clock_event_device *evt = dev_id;
71
72         return timer_handler(ARCH_TIMER_PHYS_ACCESS, evt);
73 }
74
75 static inline void timer_set_mode(const int access, int mode)
76 {
77         unsigned long ctrl;
78         switch (mode) {
79         case CLOCK_EVT_MODE_UNUSED:
80         case CLOCK_EVT_MODE_SHUTDOWN:
81                 ctrl = arch_timer_reg_read(access, ARCH_TIMER_REG_CTRL);
82                 ctrl &= ~ARCH_TIMER_CTRL_ENABLE;
83                 arch_timer_reg_write(access, ARCH_TIMER_REG_CTRL, ctrl);
84                 break;
85         default:
86                 break;
87         }
88 }
89
90 static void arch_timer_set_mode_virt(enum clock_event_mode mode,
91                                      struct clock_event_device *clk)
92 {
93         timer_set_mode(ARCH_TIMER_VIRT_ACCESS, mode);
94 }
95
96 static void arch_timer_set_mode_phys(enum clock_event_mode mode,
97                                      struct clock_event_device *clk)
98 {
99         timer_set_mode(ARCH_TIMER_PHYS_ACCESS, mode);
100 }
101
102 static inline void set_next_event(const int access, unsigned long evt)
103 {
104         unsigned long ctrl;
105         ctrl = arch_timer_reg_read(access, ARCH_TIMER_REG_CTRL);
106         ctrl |= ARCH_TIMER_CTRL_ENABLE;
107         ctrl &= ~ARCH_TIMER_CTRL_IT_MASK;
108         arch_timer_reg_write(access, ARCH_TIMER_REG_TVAL, evt);
109         arch_timer_reg_write(access, ARCH_TIMER_REG_CTRL, ctrl);
110 }
111
112 static int arch_timer_set_next_event_virt(unsigned long evt,
113                                           struct clock_event_device *unused)
114 {
115         set_next_event(ARCH_TIMER_VIRT_ACCESS, evt);
116         return 0;
117 }
118
119 static int arch_timer_set_next_event_phys(unsigned long evt,
120                                           struct clock_event_device *unused)
121 {
122         set_next_event(ARCH_TIMER_PHYS_ACCESS, evt);
123         return 0;
124 }
125
126 static int __cpuinit arch_timer_setup(struct clock_event_device *clk)
127 {
128         clk->features = CLOCK_EVT_FEAT_ONESHOT | CLOCK_EVT_FEAT_C3STOP;
129         clk->name = "arch_sys_timer";
130         clk->rating = 450;
131         if (arch_timer_use_virtual) {
132                 clk->irq = arch_timer_ppi[VIRT_PPI];
133                 clk->set_mode = arch_timer_set_mode_virt;
134                 clk->set_next_event = arch_timer_set_next_event_virt;
135         } else {
136                 clk->irq = arch_timer_ppi[PHYS_SECURE_PPI];
137                 clk->set_mode = arch_timer_set_mode_phys;
138                 clk->set_next_event = arch_timer_set_next_event_phys;
139         }
140
141         clk->cpumask = cpumask_of(smp_processor_id());
142
143         clk->set_mode(CLOCK_EVT_MODE_SHUTDOWN, NULL);
144
145         clockevents_config_and_register(clk, arch_timer_rate,
146                                         0xf, 0x7fffffff);
147
148         if (arch_timer_use_virtual)
149                 enable_percpu_irq(arch_timer_ppi[VIRT_PPI], 0);
150         else {
151                 enable_percpu_irq(arch_timer_ppi[PHYS_SECURE_PPI], 0);
152                 if (arch_timer_ppi[PHYS_NONSECURE_PPI])
153                         enable_percpu_irq(arch_timer_ppi[PHYS_NONSECURE_PPI], 0);
154         }
155
156         arch_counter_set_user_access();
157
158         return 0;
159 }
160
161 static int arch_timer_available(void)
162 {
163         u32 freq;
164
165         if (arch_timer_rate == 0) {
166                 freq = arch_timer_get_cntfrq();
167
168                 /* Check the timer frequency. */
169                 if (freq == 0) {
170                         pr_warn("Architected timer frequency not available\n");
171                         return -EINVAL;
172                 }
173
174                 arch_timer_rate = freq;
175         }
176
177         pr_info_once("Architected local timer running at %lu.%02luMHz (%s).\n",
178                      (unsigned long)arch_timer_rate / 1000000,
179                      (unsigned long)(arch_timer_rate / 10000) % 100,
180                      arch_timer_use_virtual ? "virt" : "phys");
181         return 0;
182 }
183
184 u32 arch_timer_get_rate(void)
185 {
186         return arch_timer_rate;
187 }
188
189 /*
190  * Some external users of arch_timer_read_counter (e.g. sched_clock) may try to
191  * call it before it has been initialised. Rather than incur a performance
192  * penalty checking for initialisation, provide a default implementation that
193  * won't lead to time appearing to jump backwards.
194  */
195 static u64 arch_timer_read_zero(void)
196 {
197         return 0;
198 }
199
200 u64 (*arch_timer_read_counter)(void) = arch_timer_read_zero;
201
202 static cycle_t arch_counter_read(struct clocksource *cs)
203 {
204         return arch_timer_read_counter();
205 }
206
207 static cycle_t arch_counter_read_cc(const struct cyclecounter *cc)
208 {
209         return arch_timer_read_counter();
210 }
211
212 static struct clocksource clocksource_counter = {
213         .name   = "arch_sys_counter",
214         .rating = 400,
215         .read   = arch_counter_read,
216         .mask   = CLOCKSOURCE_MASK(56),
217         .flags  = CLOCK_SOURCE_IS_CONTINUOUS,
218 };
219
220 static struct cyclecounter cyclecounter = {
221         .read   = arch_counter_read_cc,
222         .mask   = CLOCKSOURCE_MASK(56),
223 };
224
225 static struct timecounter timecounter;
226
227 struct timecounter *arch_timer_get_timecounter(void)
228 {
229         return &timecounter;
230 }
231
232 static void __cpuinit arch_timer_stop(struct clock_event_device *clk)
233 {
234         pr_debug("arch_timer_teardown disable IRQ%d cpu #%d\n",
235                  clk->irq, smp_processor_id());
236
237         if (arch_timer_use_virtual)
238                 disable_percpu_irq(arch_timer_ppi[VIRT_PPI]);
239         else {
240                 disable_percpu_irq(arch_timer_ppi[PHYS_SECURE_PPI]);
241                 if (arch_timer_ppi[PHYS_NONSECURE_PPI])
242                         disable_percpu_irq(arch_timer_ppi[PHYS_NONSECURE_PPI]);
243         }
244
245         clk->set_mode(CLOCK_EVT_MODE_UNUSED, clk);
246 }
247
248 static int __cpuinit arch_timer_cpu_notify(struct notifier_block *self,
249                                            unsigned long action, void *hcpu)
250 {
251         /*
252          * Grab cpu pointer in each case to avoid spurious
253          * preemptible warnings
254          */
255         switch (action & ~CPU_TASKS_FROZEN) {
256         case CPU_STARTING:
257                 arch_timer_setup(this_cpu_ptr(arch_timer_evt));
258                 break;
259         case CPU_DYING:
260                 arch_timer_stop(this_cpu_ptr(arch_timer_evt));
261                 break;
262         }
263
264         return NOTIFY_OK;
265 }
266
267 static struct notifier_block arch_timer_cpu_nb __cpuinitdata = {
268         .notifier_call = arch_timer_cpu_notify,
269 };
270
271 static int __init arch_timer_register(void)
272 {
273         int err;
274         int ppi;
275
276         err = arch_timer_available();
277         if (err)
278                 goto out;
279
280         arch_timer_evt = alloc_percpu(struct clock_event_device);
281         if (!arch_timer_evt) {
282                 err = -ENOMEM;
283                 goto out;
284         }
285
286         clocksource_register_hz(&clocksource_counter, arch_timer_rate);
287         cyclecounter.mult = clocksource_counter.mult;
288         cyclecounter.shift = clocksource_counter.shift;
289         timecounter_init(&timecounter, &cyclecounter,
290                          arch_counter_get_cntpct());
291
292         if (arch_timer_use_virtual) {
293                 ppi = arch_timer_ppi[VIRT_PPI];
294                 err = request_percpu_irq(ppi, arch_timer_handler_virt,
295                                          "arch_timer", arch_timer_evt);
296         } else {
297                 ppi = arch_timer_ppi[PHYS_SECURE_PPI];
298                 err = request_percpu_irq(ppi, arch_timer_handler_phys,
299                                          "arch_timer", arch_timer_evt);
300                 if (!err && arch_timer_ppi[PHYS_NONSECURE_PPI]) {
301                         ppi = arch_timer_ppi[PHYS_NONSECURE_PPI];
302                         err = request_percpu_irq(ppi, arch_timer_handler_phys,
303                                                  "arch_timer", arch_timer_evt);
304                         if (err)
305                                 free_percpu_irq(arch_timer_ppi[PHYS_SECURE_PPI],
306                                                 arch_timer_evt);
307                 }
308         }
309
310         if (err) {
311                 pr_err("arch_timer: can't register interrupt %d (%d)\n",
312                        ppi, err);
313                 goto out_free;
314         }
315
316         err = register_cpu_notifier(&arch_timer_cpu_nb);
317         if (err)
318                 goto out_free_irq;
319
320         /* Immediately configure the timer on the boot CPU */
321         arch_timer_setup(this_cpu_ptr(arch_timer_evt));
322
323         return 0;
324
325 out_free_irq:
326         if (arch_timer_use_virtual)
327                 free_percpu_irq(arch_timer_ppi[VIRT_PPI], arch_timer_evt);
328         else {
329                 free_percpu_irq(arch_timer_ppi[PHYS_SECURE_PPI],
330                                 arch_timer_evt);
331                 if (arch_timer_ppi[PHYS_NONSECURE_PPI])
332                         free_percpu_irq(arch_timer_ppi[PHYS_NONSECURE_PPI],
333                                         arch_timer_evt);
334         }
335
336 out_free:
337         free_percpu(arch_timer_evt);
338 out:
339         return err;
340 }
341
342 static void __init arch_timer_init(struct device_node *np)
343 {
344         u32 freq;
345         int i;
346
347         if (arch_timer_get_rate()) {
348                 pr_warn("arch_timer: multiple nodes in dt, skipping\n");
349                 return;
350         }
351
352         /* Try to determine the frequency from the device tree or CNTFRQ */
353         if (!of_property_read_u32(np, "clock-frequency", &freq))
354                 arch_timer_rate = freq;
355
356         for (i = PHYS_SECURE_PPI; i < MAX_TIMER_PPI; i++)
357                 arch_timer_ppi[i] = irq_of_parse_and_map(np, i);
358
359         of_node_put(np);
360
361         /*
362          * If HYP mode is available, we know that the physical timer
363          * has been configured to be accessible from PL1. Use it, so
364          * that a guest can use the virtual timer instead.
365          *
366          * If no interrupt provided for virtual timer, we'll have to
367          * stick to the physical timer. It'd better be accessible...
368          */
369         if (is_hyp_mode_available() || !arch_timer_ppi[VIRT_PPI]) {
370                 arch_timer_use_virtual = false;
371
372                 if (!arch_timer_ppi[PHYS_SECURE_PPI] ||
373                     !arch_timer_ppi[PHYS_NONSECURE_PPI]) {
374                         pr_warn("arch_timer: No interrupt available, giving up\n");
375                         return;
376                 }
377         }
378
379         if (arch_timer_use_virtual)
380                 arch_timer_read_counter = arch_counter_get_cntvct;
381         else
382                 arch_timer_read_counter = arch_counter_get_cntpct;
383
384         arch_timer_register();
385         arch_timer_arch_init();
386 }
387 CLOCKSOURCE_OF_DECLARE(armv7_arch_timer, "arm,armv7-timer", arch_timer_init);
388 CLOCKSOURCE_OF_DECLARE(armv8_arch_timer, "arm,armv8-timer", arch_timer_init);