ARM: KVM: vgic: take distributor lock on sync_hwstate path
[firefly-linux-kernel-4.4.55.git] / drivers / char / ipmi / ipmi_si_intf.c
1 /*
2  * ipmi_si.c
3  *
4  * The interface to the IPMI driver for the system interfaces (KCS, SMIC,
5  * BT).
6  *
7  * Author: MontaVista Software, Inc.
8  *         Corey Minyard <minyard@mvista.com>
9  *         source@mvista.com
10  *
11  * Copyright 2002 MontaVista Software Inc.
12  * Copyright 2006 IBM Corp., Christian Krafft <krafft@de.ibm.com>
13  *
14  *  This program is free software; you can redistribute it and/or modify it
15  *  under the terms of the GNU General Public License as published by the
16  *  Free Software Foundation; either version 2 of the License, or (at your
17  *  option) any later version.
18  *
19  *
20  *  THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED
21  *  WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
22  *  MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
23  *  IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
24  *  INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
25  *  BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
26  *  OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
27  *  ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR
28  *  TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
29  *  USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30  *
31  *  You should have received a copy of the GNU General Public License along
32  *  with this program; if not, write to the Free Software Foundation, Inc.,
33  *  675 Mass Ave, Cambridge, MA 02139, USA.
34  */
35
36 /*
37  * This file holds the "policy" for the interface to the SMI state
38  * machine.  It does the configuration, handles timers and interrupts,
39  * and drives the real SMI state machine.
40  */
41
42 #include <linux/module.h>
43 #include <linux/moduleparam.h>
44 #include <linux/sched.h>
45 #include <linux/seq_file.h>
46 #include <linux/timer.h>
47 #include <linux/errno.h>
48 #include <linux/spinlock.h>
49 #include <linux/slab.h>
50 #include <linux/delay.h>
51 #include <linux/list.h>
52 #include <linux/pci.h>
53 #include <linux/ioport.h>
54 #include <linux/notifier.h>
55 #include <linux/mutex.h>
56 #include <linux/kthread.h>
57 #include <asm/irq.h>
58 #include <linux/interrupt.h>
59 #include <linux/rcupdate.h>
60 #include <linux/ipmi.h>
61 #include <linux/ipmi_smi.h>
62 #include <asm/io.h>
63 #include "ipmi_si_sm.h"
64 #include <linux/init.h>
65 #include <linux/dmi.h>
66 #include <linux/string.h>
67 #include <linux/ctype.h>
68 #include <linux/pnp.h>
69 #include <linux/of_device.h>
70 #include <linux/of_platform.h>
71 #include <linux/of_address.h>
72 #include <linux/of_irq.h>
73
74 #define PFX "ipmi_si: "
75
76 /* Measure times between events in the driver. */
77 #undef DEBUG_TIMING
78
79 /* Call every 10 ms. */
80 #define SI_TIMEOUT_TIME_USEC    10000
81 #define SI_USEC_PER_JIFFY       (1000000/HZ)
82 #define SI_TIMEOUT_JIFFIES      (SI_TIMEOUT_TIME_USEC/SI_USEC_PER_JIFFY)
83 #define SI_SHORT_TIMEOUT_USEC  250 /* .25ms when the SM request a
84                                       short timeout */
85
86 enum si_intf_state {
87         SI_NORMAL,
88         SI_GETTING_FLAGS,
89         SI_GETTING_EVENTS,
90         SI_CLEARING_FLAGS,
91         SI_CLEARING_FLAGS_THEN_SET_IRQ,
92         SI_GETTING_MESSAGES,
93         SI_ENABLE_INTERRUPTS1,
94         SI_ENABLE_INTERRUPTS2,
95         SI_DISABLE_INTERRUPTS1,
96         SI_DISABLE_INTERRUPTS2
97         /* FIXME - add watchdog stuff. */
98 };
99
100 /* Some BT-specific defines we need here. */
101 #define IPMI_BT_INTMASK_REG             2
102 #define IPMI_BT_INTMASK_CLEAR_IRQ_BIT   2
103 #define IPMI_BT_INTMASK_ENABLE_IRQ_BIT  1
104
105 enum si_type {
106     SI_KCS, SI_SMIC, SI_BT
107 };
108 static char *si_to_str[] = { "kcs", "smic", "bt" };
109
110 static char *ipmi_addr_src_to_str[] = { NULL, "hotmod", "hardcoded", "SPMI",
111                                         "ACPI", "SMBIOS", "PCI",
112                                         "device-tree", "default" };
113
114 #define DEVICE_NAME "ipmi_si"
115
116 static struct platform_driver ipmi_driver;
117
118 /*
119  * Indexes into stats[] in smi_info below.
120  */
121 enum si_stat_indexes {
122         /*
123          * Number of times the driver requested a timer while an operation
124          * was in progress.
125          */
126         SI_STAT_short_timeouts = 0,
127
128         /*
129          * Number of times the driver requested a timer while nothing was in
130          * progress.
131          */
132         SI_STAT_long_timeouts,
133
134         /* Number of times the interface was idle while being polled. */
135         SI_STAT_idles,
136
137         /* Number of interrupts the driver handled. */
138         SI_STAT_interrupts,
139
140         /* Number of time the driver got an ATTN from the hardware. */
141         SI_STAT_attentions,
142
143         /* Number of times the driver requested flags from the hardware. */
144         SI_STAT_flag_fetches,
145
146         /* Number of times the hardware didn't follow the state machine. */
147         SI_STAT_hosed_count,
148
149         /* Number of completed messages. */
150         SI_STAT_complete_transactions,
151
152         /* Number of IPMI events received from the hardware. */
153         SI_STAT_events,
154
155         /* Number of watchdog pretimeouts. */
156         SI_STAT_watchdog_pretimeouts,
157
158         /* Number of asynchronous messages received. */
159         SI_STAT_incoming_messages,
160
161
162         /* This *must* remain last, add new values above this. */
163         SI_NUM_STATS
164 };
165
166 struct smi_info {
167         int                    intf_num;
168         ipmi_smi_t             intf;
169         struct si_sm_data      *si_sm;
170         struct si_sm_handlers  *handlers;
171         enum si_type           si_type;
172         spinlock_t             si_lock;
173         struct list_head       xmit_msgs;
174         struct list_head       hp_xmit_msgs;
175         struct ipmi_smi_msg    *curr_msg;
176         enum si_intf_state     si_state;
177
178         /*
179          * Used to handle the various types of I/O that can occur with
180          * IPMI
181          */
182         struct si_sm_io io;
183         int (*io_setup)(struct smi_info *info);
184         void (*io_cleanup)(struct smi_info *info);
185         int (*irq_setup)(struct smi_info *info);
186         void (*irq_cleanup)(struct smi_info *info);
187         unsigned int io_size;
188         enum ipmi_addr_src addr_source; /* ACPI, PCI, SMBIOS, hardcode, etc. */
189         void (*addr_source_cleanup)(struct smi_info *info);
190         void *addr_source_data;
191
192         /*
193          * Per-OEM handler, called from handle_flags().  Returns 1
194          * when handle_flags() needs to be re-run or 0 indicating it
195          * set si_state itself.
196          */
197         int (*oem_data_avail_handler)(struct smi_info *smi_info);
198
199         /*
200          * Flags from the last GET_MSG_FLAGS command, used when an ATTN
201          * is set to hold the flags until we are done handling everything
202          * from the flags.
203          */
204 #define RECEIVE_MSG_AVAIL       0x01
205 #define EVENT_MSG_BUFFER_FULL   0x02
206 #define WDT_PRE_TIMEOUT_INT     0x08
207 #define OEM0_DATA_AVAIL     0x20
208 #define OEM1_DATA_AVAIL     0x40
209 #define OEM2_DATA_AVAIL     0x80
210 #define OEM_DATA_AVAIL      (OEM0_DATA_AVAIL | \
211                              OEM1_DATA_AVAIL | \
212                              OEM2_DATA_AVAIL)
213         unsigned char       msg_flags;
214
215         /* Does the BMC have an event buffer? */
216         char                has_event_buffer;
217
218         /*
219          * If set to true, this will request events the next time the
220          * state machine is idle.
221          */
222         atomic_t            req_events;
223
224         /*
225          * If true, run the state machine to completion on every send
226          * call.  Generally used after a panic to make sure stuff goes
227          * out.
228          */
229         int                 run_to_completion;
230
231         /* The I/O port of an SI interface. */
232         int                 port;
233
234         /*
235          * The space between start addresses of the two ports.  For
236          * instance, if the first port is 0xca2 and the spacing is 4, then
237          * the second port is 0xca6.
238          */
239         unsigned int        spacing;
240
241         /* zero if no irq; */
242         int                 irq;
243
244         /* The timer for this si. */
245         struct timer_list   si_timer;
246
247         /* The time (in jiffies) the last timeout occurred at. */
248         unsigned long       last_timeout_jiffies;
249
250         /* Used to gracefully stop the timer without race conditions. */
251         atomic_t            stop_operation;
252
253         /*
254          * The driver will disable interrupts when it gets into a
255          * situation where it cannot handle messages due to lack of
256          * memory.  Once that situation clears up, it will re-enable
257          * interrupts.
258          */
259         int interrupt_disabled;
260
261         /* From the get device id response... */
262         struct ipmi_device_id device_id;
263
264         /* Driver model stuff. */
265         struct device *dev;
266         struct platform_device *pdev;
267
268         /*
269          * True if we allocated the device, false if it came from
270          * someplace else (like PCI).
271          */
272         int dev_registered;
273
274         /* Slave address, could be reported from DMI. */
275         unsigned char slave_addr;
276
277         /* Counters and things for the proc filesystem. */
278         atomic_t stats[SI_NUM_STATS];
279
280         struct task_struct *thread;
281
282         struct list_head link;
283         union ipmi_smi_info_union addr_info;
284 };
285
286 #define smi_inc_stat(smi, stat) \
287         atomic_inc(&(smi)->stats[SI_STAT_ ## stat])
288 #define smi_get_stat(smi, stat) \
289         ((unsigned int) atomic_read(&(smi)->stats[SI_STAT_ ## stat]))
290
291 #define SI_MAX_PARMS 4
292
293 static int force_kipmid[SI_MAX_PARMS];
294 static int num_force_kipmid;
295 #ifdef CONFIG_PCI
296 static int pci_registered;
297 #endif
298 #ifdef CONFIG_ACPI
299 static int pnp_registered;
300 #endif
301
302 static unsigned int kipmid_max_busy_us[SI_MAX_PARMS];
303 static int num_max_busy_us;
304
305 static int unload_when_empty = 1;
306
307 static int add_smi(struct smi_info *smi);
308 static int try_smi_init(struct smi_info *smi);
309 static void cleanup_one_si(struct smi_info *to_clean);
310 static void cleanup_ipmi_si(void);
311
312 static ATOMIC_NOTIFIER_HEAD(xaction_notifier_list);
313 static int register_xaction_notifier(struct notifier_block *nb)
314 {
315         return atomic_notifier_chain_register(&xaction_notifier_list, nb);
316 }
317
318 static void deliver_recv_msg(struct smi_info *smi_info,
319                              struct ipmi_smi_msg *msg)
320 {
321         /* Deliver the message to the upper layer. */
322         ipmi_smi_msg_received(smi_info->intf, msg);
323 }
324
325 static void return_hosed_msg(struct smi_info *smi_info, int cCode)
326 {
327         struct ipmi_smi_msg *msg = smi_info->curr_msg;
328
329         if (cCode < 0 || cCode > IPMI_ERR_UNSPECIFIED)
330                 cCode = IPMI_ERR_UNSPECIFIED;
331         /* else use it as is */
332
333         /* Make it a response */
334         msg->rsp[0] = msg->data[0] | 4;
335         msg->rsp[1] = msg->data[1];
336         msg->rsp[2] = cCode;
337         msg->rsp_size = 3;
338
339         smi_info->curr_msg = NULL;
340         deliver_recv_msg(smi_info, msg);
341 }
342
343 static enum si_sm_result start_next_msg(struct smi_info *smi_info)
344 {
345         int              rv;
346         struct list_head *entry = NULL;
347 #ifdef DEBUG_TIMING
348         struct timeval t;
349 #endif
350
351         /* Pick the high priority queue first. */
352         if (!list_empty(&(smi_info->hp_xmit_msgs))) {
353                 entry = smi_info->hp_xmit_msgs.next;
354         } else if (!list_empty(&(smi_info->xmit_msgs))) {
355                 entry = smi_info->xmit_msgs.next;
356         }
357
358         if (!entry) {
359                 smi_info->curr_msg = NULL;
360                 rv = SI_SM_IDLE;
361         } else {
362                 int err;
363
364                 list_del(entry);
365                 smi_info->curr_msg = list_entry(entry,
366                                                 struct ipmi_smi_msg,
367                                                 link);
368 #ifdef DEBUG_TIMING
369                 do_gettimeofday(&t);
370                 printk(KERN_DEBUG "**Start2: %d.%9.9d\n", t.tv_sec, t.tv_usec);
371 #endif
372                 err = atomic_notifier_call_chain(&xaction_notifier_list,
373                                 0, smi_info);
374                 if (err & NOTIFY_STOP_MASK) {
375                         rv = SI_SM_CALL_WITHOUT_DELAY;
376                         goto out;
377                 }
378                 err = smi_info->handlers->start_transaction(
379                         smi_info->si_sm,
380                         smi_info->curr_msg->data,
381                         smi_info->curr_msg->data_size);
382                 if (err)
383                         return_hosed_msg(smi_info, err);
384
385                 rv = SI_SM_CALL_WITHOUT_DELAY;
386         }
387  out:
388         return rv;
389 }
390
391 static void start_enable_irq(struct smi_info *smi_info)
392 {
393         unsigned char msg[2];
394
395         /*
396          * If we are enabling interrupts, we have to tell the
397          * BMC to use them.
398          */
399         msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
400         msg[1] = IPMI_GET_BMC_GLOBAL_ENABLES_CMD;
401
402         smi_info->handlers->start_transaction(smi_info->si_sm, msg, 2);
403         smi_info->si_state = SI_ENABLE_INTERRUPTS1;
404 }
405
406 static void start_disable_irq(struct smi_info *smi_info)
407 {
408         unsigned char msg[2];
409
410         msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
411         msg[1] = IPMI_GET_BMC_GLOBAL_ENABLES_CMD;
412
413         smi_info->handlers->start_transaction(smi_info->si_sm, msg, 2);
414         smi_info->si_state = SI_DISABLE_INTERRUPTS1;
415 }
416
417 static void start_clear_flags(struct smi_info *smi_info)
418 {
419         unsigned char msg[3];
420
421         /* Make sure the watchdog pre-timeout flag is not set at startup. */
422         msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
423         msg[1] = IPMI_CLEAR_MSG_FLAGS_CMD;
424         msg[2] = WDT_PRE_TIMEOUT_INT;
425
426         smi_info->handlers->start_transaction(smi_info->si_sm, msg, 3);
427         smi_info->si_state = SI_CLEARING_FLAGS;
428 }
429
430 /*
431  * When we have a situtaion where we run out of memory and cannot
432  * allocate messages, we just leave them in the BMC and run the system
433  * polled until we can allocate some memory.  Once we have some
434  * memory, we will re-enable the interrupt.
435  */
436 static inline void disable_si_irq(struct smi_info *smi_info)
437 {
438         if ((smi_info->irq) && (!smi_info->interrupt_disabled)) {
439                 start_disable_irq(smi_info);
440                 smi_info->interrupt_disabled = 1;
441                 if (!atomic_read(&smi_info->stop_operation))
442                         mod_timer(&smi_info->si_timer,
443                                   jiffies + SI_TIMEOUT_JIFFIES);
444         }
445 }
446
447 static inline void enable_si_irq(struct smi_info *smi_info)
448 {
449         if ((smi_info->irq) && (smi_info->interrupt_disabled)) {
450                 start_enable_irq(smi_info);
451                 smi_info->interrupt_disabled = 0;
452         }
453 }
454
455 static void handle_flags(struct smi_info *smi_info)
456 {
457  retry:
458         if (smi_info->msg_flags & WDT_PRE_TIMEOUT_INT) {
459                 /* Watchdog pre-timeout */
460                 smi_inc_stat(smi_info, watchdog_pretimeouts);
461
462                 start_clear_flags(smi_info);
463                 smi_info->msg_flags &= ~WDT_PRE_TIMEOUT_INT;
464                 ipmi_smi_watchdog_pretimeout(smi_info->intf);
465         } else if (smi_info->msg_flags & RECEIVE_MSG_AVAIL) {
466                 /* Messages available. */
467                 smi_info->curr_msg = ipmi_alloc_smi_msg();
468                 if (!smi_info->curr_msg) {
469                         disable_si_irq(smi_info);
470                         smi_info->si_state = SI_NORMAL;
471                         return;
472                 }
473                 enable_si_irq(smi_info);
474
475                 smi_info->curr_msg->data[0] = (IPMI_NETFN_APP_REQUEST << 2);
476                 smi_info->curr_msg->data[1] = IPMI_GET_MSG_CMD;
477                 smi_info->curr_msg->data_size = 2;
478
479                 smi_info->handlers->start_transaction(
480                         smi_info->si_sm,
481                         smi_info->curr_msg->data,
482                         smi_info->curr_msg->data_size);
483                 smi_info->si_state = SI_GETTING_MESSAGES;
484         } else if (smi_info->msg_flags & EVENT_MSG_BUFFER_FULL) {
485                 /* Events available. */
486                 smi_info->curr_msg = ipmi_alloc_smi_msg();
487                 if (!smi_info->curr_msg) {
488                         disable_si_irq(smi_info);
489                         smi_info->si_state = SI_NORMAL;
490                         return;
491                 }
492                 enable_si_irq(smi_info);
493
494                 smi_info->curr_msg->data[0] = (IPMI_NETFN_APP_REQUEST << 2);
495                 smi_info->curr_msg->data[1] = IPMI_READ_EVENT_MSG_BUFFER_CMD;
496                 smi_info->curr_msg->data_size = 2;
497
498                 smi_info->handlers->start_transaction(
499                         smi_info->si_sm,
500                         smi_info->curr_msg->data,
501                         smi_info->curr_msg->data_size);
502                 smi_info->si_state = SI_GETTING_EVENTS;
503         } else if (smi_info->msg_flags & OEM_DATA_AVAIL &&
504                    smi_info->oem_data_avail_handler) {
505                 if (smi_info->oem_data_avail_handler(smi_info))
506                         goto retry;
507         } else
508                 smi_info->si_state = SI_NORMAL;
509 }
510
511 static void handle_transaction_done(struct smi_info *smi_info)
512 {
513         struct ipmi_smi_msg *msg;
514 #ifdef DEBUG_TIMING
515         struct timeval t;
516
517         do_gettimeofday(&t);
518         printk(KERN_DEBUG "**Done: %d.%9.9d\n", t.tv_sec, t.tv_usec);
519 #endif
520         switch (smi_info->si_state) {
521         case SI_NORMAL:
522                 if (!smi_info->curr_msg)
523                         break;
524
525                 smi_info->curr_msg->rsp_size
526                         = smi_info->handlers->get_result(
527                                 smi_info->si_sm,
528                                 smi_info->curr_msg->rsp,
529                                 IPMI_MAX_MSG_LENGTH);
530
531                 /*
532                  * Do this here becase deliver_recv_msg() releases the
533                  * lock, and a new message can be put in during the
534                  * time the lock is released.
535                  */
536                 msg = smi_info->curr_msg;
537                 smi_info->curr_msg = NULL;
538                 deliver_recv_msg(smi_info, msg);
539                 break;
540
541         case SI_GETTING_FLAGS:
542         {
543                 unsigned char msg[4];
544                 unsigned int  len;
545
546                 /* We got the flags from the SMI, now handle them. */
547                 len = smi_info->handlers->get_result(smi_info->si_sm, msg, 4);
548                 if (msg[2] != 0) {
549                         /* Error fetching flags, just give up for now. */
550                         smi_info->si_state = SI_NORMAL;
551                 } else if (len < 4) {
552                         /*
553                          * Hmm, no flags.  That's technically illegal, but
554                          * don't use uninitialized data.
555                          */
556                         smi_info->si_state = SI_NORMAL;
557                 } else {
558                         smi_info->msg_flags = msg[3];
559                         handle_flags(smi_info);
560                 }
561                 break;
562         }
563
564         case SI_CLEARING_FLAGS:
565         case SI_CLEARING_FLAGS_THEN_SET_IRQ:
566         {
567                 unsigned char msg[3];
568
569                 /* We cleared the flags. */
570                 smi_info->handlers->get_result(smi_info->si_sm, msg, 3);
571                 if (msg[2] != 0) {
572                         /* Error clearing flags */
573                         dev_warn(smi_info->dev,
574                                  "Error clearing flags: %2.2x\n", msg[2]);
575                 }
576                 if (smi_info->si_state == SI_CLEARING_FLAGS_THEN_SET_IRQ)
577                         start_enable_irq(smi_info);
578                 else
579                         smi_info->si_state = SI_NORMAL;
580                 break;
581         }
582
583         case SI_GETTING_EVENTS:
584         {
585                 smi_info->curr_msg->rsp_size
586                         = smi_info->handlers->get_result(
587                                 smi_info->si_sm,
588                                 smi_info->curr_msg->rsp,
589                                 IPMI_MAX_MSG_LENGTH);
590
591                 /*
592                  * Do this here becase deliver_recv_msg() releases the
593                  * lock, and a new message can be put in during the
594                  * time the lock is released.
595                  */
596                 msg = smi_info->curr_msg;
597                 smi_info->curr_msg = NULL;
598                 if (msg->rsp[2] != 0) {
599                         /* Error getting event, probably done. */
600                         msg->done(msg);
601
602                         /* Take off the event flag. */
603                         smi_info->msg_flags &= ~EVENT_MSG_BUFFER_FULL;
604                         handle_flags(smi_info);
605                 } else {
606                         smi_inc_stat(smi_info, events);
607
608                         /*
609                          * Do this before we deliver the message
610                          * because delivering the message releases the
611                          * lock and something else can mess with the
612                          * state.
613                          */
614                         handle_flags(smi_info);
615
616                         deliver_recv_msg(smi_info, msg);
617                 }
618                 break;
619         }
620
621         case SI_GETTING_MESSAGES:
622         {
623                 smi_info->curr_msg->rsp_size
624                         = smi_info->handlers->get_result(
625                                 smi_info->si_sm,
626                                 smi_info->curr_msg->rsp,
627                                 IPMI_MAX_MSG_LENGTH);
628
629                 /*
630                  * Do this here becase deliver_recv_msg() releases the
631                  * lock, and a new message can be put in during the
632                  * time the lock is released.
633                  */
634                 msg = smi_info->curr_msg;
635                 smi_info->curr_msg = NULL;
636                 if (msg->rsp[2] != 0) {
637                         /* Error getting event, probably done. */
638                         msg->done(msg);
639
640                         /* Take off the msg flag. */
641                         smi_info->msg_flags &= ~RECEIVE_MSG_AVAIL;
642                         handle_flags(smi_info);
643                 } else {
644                         smi_inc_stat(smi_info, incoming_messages);
645
646                         /*
647                          * Do this before we deliver the message
648                          * because delivering the message releases the
649                          * lock and something else can mess with the
650                          * state.
651                          */
652                         handle_flags(smi_info);
653
654                         deliver_recv_msg(smi_info, msg);
655                 }
656                 break;
657         }
658
659         case SI_ENABLE_INTERRUPTS1:
660         {
661                 unsigned char msg[4];
662
663                 /* We got the flags from the SMI, now handle them. */
664                 smi_info->handlers->get_result(smi_info->si_sm, msg, 4);
665                 if (msg[2] != 0) {
666                         dev_warn(smi_info->dev, "Could not enable interrupts"
667                                  ", failed get, using polled mode.\n");
668                         smi_info->si_state = SI_NORMAL;
669                 } else {
670                         msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
671                         msg[1] = IPMI_SET_BMC_GLOBAL_ENABLES_CMD;
672                         msg[2] = (msg[3] |
673                                   IPMI_BMC_RCV_MSG_INTR |
674                                   IPMI_BMC_EVT_MSG_INTR);
675                         smi_info->handlers->start_transaction(
676                                 smi_info->si_sm, msg, 3);
677                         smi_info->si_state = SI_ENABLE_INTERRUPTS2;
678                 }
679                 break;
680         }
681
682         case SI_ENABLE_INTERRUPTS2:
683         {
684                 unsigned char msg[4];
685
686                 /* We got the flags from the SMI, now handle them. */
687                 smi_info->handlers->get_result(smi_info->si_sm, msg, 4);
688                 if (msg[2] != 0)
689                         dev_warn(smi_info->dev, "Could not enable interrupts"
690                                  ", failed set, using polled mode.\n");
691                 else
692                         smi_info->interrupt_disabled = 0;
693                 smi_info->si_state = SI_NORMAL;
694                 break;
695         }
696
697         case SI_DISABLE_INTERRUPTS1:
698         {
699                 unsigned char msg[4];
700
701                 /* We got the flags from the SMI, now handle them. */
702                 smi_info->handlers->get_result(smi_info->si_sm, msg, 4);
703                 if (msg[2] != 0) {
704                         dev_warn(smi_info->dev, "Could not disable interrupts"
705                                  ", failed get.\n");
706                         smi_info->si_state = SI_NORMAL;
707                 } else {
708                         msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
709                         msg[1] = IPMI_SET_BMC_GLOBAL_ENABLES_CMD;
710                         msg[2] = (msg[3] &
711                                   ~(IPMI_BMC_RCV_MSG_INTR |
712                                     IPMI_BMC_EVT_MSG_INTR));
713                         smi_info->handlers->start_transaction(
714                                 smi_info->si_sm, msg, 3);
715                         smi_info->si_state = SI_DISABLE_INTERRUPTS2;
716                 }
717                 break;
718         }
719
720         case SI_DISABLE_INTERRUPTS2:
721         {
722                 unsigned char msg[4];
723
724                 /* We got the flags from the SMI, now handle them. */
725                 smi_info->handlers->get_result(smi_info->si_sm, msg, 4);
726                 if (msg[2] != 0) {
727                         dev_warn(smi_info->dev, "Could not disable interrupts"
728                                  ", failed set.\n");
729                 }
730                 smi_info->si_state = SI_NORMAL;
731                 break;
732         }
733         }
734 }
735
736 /*
737  * Called on timeouts and events.  Timeouts should pass the elapsed
738  * time, interrupts should pass in zero.  Must be called with
739  * si_lock held and interrupts disabled.
740  */
741 static enum si_sm_result smi_event_handler(struct smi_info *smi_info,
742                                            int time)
743 {
744         enum si_sm_result si_sm_result;
745
746  restart:
747         /*
748          * There used to be a loop here that waited a little while
749          * (around 25us) before giving up.  That turned out to be
750          * pointless, the minimum delays I was seeing were in the 300us
751          * range, which is far too long to wait in an interrupt.  So
752          * we just run until the state machine tells us something
753          * happened or it needs a delay.
754          */
755         si_sm_result = smi_info->handlers->event(smi_info->si_sm, time);
756         time = 0;
757         while (si_sm_result == SI_SM_CALL_WITHOUT_DELAY)
758                 si_sm_result = smi_info->handlers->event(smi_info->si_sm, 0);
759
760         if (si_sm_result == SI_SM_TRANSACTION_COMPLETE) {
761                 smi_inc_stat(smi_info, complete_transactions);
762
763                 handle_transaction_done(smi_info);
764                 si_sm_result = smi_info->handlers->event(smi_info->si_sm, 0);
765         } else if (si_sm_result == SI_SM_HOSED) {
766                 smi_inc_stat(smi_info, hosed_count);
767
768                 /*
769                  * Do the before return_hosed_msg, because that
770                  * releases the lock.
771                  */
772                 smi_info->si_state = SI_NORMAL;
773                 if (smi_info->curr_msg != NULL) {
774                         /*
775                          * If we were handling a user message, format
776                          * a response to send to the upper layer to
777                          * tell it about the error.
778                          */
779                         return_hosed_msg(smi_info, IPMI_ERR_UNSPECIFIED);
780                 }
781                 si_sm_result = smi_info->handlers->event(smi_info->si_sm, 0);
782         }
783
784         /*
785          * We prefer handling attn over new messages.  But don't do
786          * this if there is not yet an upper layer to handle anything.
787          */
788         if (likely(smi_info->intf) && si_sm_result == SI_SM_ATTN) {
789                 unsigned char msg[2];
790
791                 smi_inc_stat(smi_info, attentions);
792
793                 /*
794                  * Got a attn, send down a get message flags to see
795                  * what's causing it.  It would be better to handle
796                  * this in the upper layer, but due to the way
797                  * interrupts work with the SMI, that's not really
798                  * possible.
799                  */
800                 msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
801                 msg[1] = IPMI_GET_MSG_FLAGS_CMD;
802
803                 smi_info->handlers->start_transaction(
804                         smi_info->si_sm, msg, 2);
805                 smi_info->si_state = SI_GETTING_FLAGS;
806                 goto restart;
807         }
808
809         /* If we are currently idle, try to start the next message. */
810         if (si_sm_result == SI_SM_IDLE) {
811                 smi_inc_stat(smi_info, idles);
812
813                 si_sm_result = start_next_msg(smi_info);
814                 if (si_sm_result != SI_SM_IDLE)
815                         goto restart;
816         }
817
818         if ((si_sm_result == SI_SM_IDLE)
819             && (atomic_read(&smi_info->req_events))) {
820                 /*
821                  * We are idle and the upper layer requested that I fetch
822                  * events, so do so.
823                  */
824                 atomic_set(&smi_info->req_events, 0);
825
826                 smi_info->curr_msg = ipmi_alloc_smi_msg();
827                 if (!smi_info->curr_msg)
828                         goto out;
829
830                 smi_info->curr_msg->data[0] = (IPMI_NETFN_APP_REQUEST << 2);
831                 smi_info->curr_msg->data[1] = IPMI_READ_EVENT_MSG_BUFFER_CMD;
832                 smi_info->curr_msg->data_size = 2;
833
834                 smi_info->handlers->start_transaction(
835                         smi_info->si_sm,
836                         smi_info->curr_msg->data,
837                         smi_info->curr_msg->data_size);
838                 smi_info->si_state = SI_GETTING_EVENTS;
839                 goto restart;
840         }
841  out:
842         return si_sm_result;
843 }
844
845 static void sender(void                *send_info,
846                    struct ipmi_smi_msg *msg,
847                    int                 priority)
848 {
849         struct smi_info   *smi_info = send_info;
850         enum si_sm_result result;
851         unsigned long     flags;
852 #ifdef DEBUG_TIMING
853         struct timeval    t;
854 #endif
855
856         if (atomic_read(&smi_info->stop_operation)) {
857                 msg->rsp[0] = msg->data[0] | 4;
858                 msg->rsp[1] = msg->data[1];
859                 msg->rsp[2] = IPMI_ERR_UNSPECIFIED;
860                 msg->rsp_size = 3;
861                 deliver_recv_msg(smi_info, msg);
862                 return;
863         }
864
865 #ifdef DEBUG_TIMING
866         do_gettimeofday(&t);
867         printk("**Enqueue: %d.%9.9d\n", t.tv_sec, t.tv_usec);
868 #endif
869
870         if (smi_info->run_to_completion) {
871                 /*
872                  * If we are running to completion, then throw it in
873                  * the list and run transactions until everything is
874                  * clear.  Priority doesn't matter here.
875                  */
876
877                 /*
878                  * Run to completion means we are single-threaded, no
879                  * need for locks.
880                  */
881                 list_add_tail(&(msg->link), &(smi_info->xmit_msgs));
882
883                 result = smi_event_handler(smi_info, 0);
884                 while (result != SI_SM_IDLE) {
885                         udelay(SI_SHORT_TIMEOUT_USEC);
886                         result = smi_event_handler(smi_info,
887                                                    SI_SHORT_TIMEOUT_USEC);
888                 }
889                 return;
890         }
891
892         spin_lock_irqsave(&smi_info->si_lock, flags);
893         if (priority > 0)
894                 list_add_tail(&msg->link, &smi_info->hp_xmit_msgs);
895         else
896                 list_add_tail(&msg->link, &smi_info->xmit_msgs);
897
898         if (smi_info->si_state == SI_NORMAL && smi_info->curr_msg == NULL) {
899                 /*
900                  * last_timeout_jiffies is updated here to avoid
901                  * smi_timeout() handler passing very large time_diff
902                  * value to smi_event_handler() that causes
903                  * the send command to abort.
904                  */
905                 smi_info->last_timeout_jiffies = jiffies;
906
907                 mod_timer(&smi_info->si_timer, jiffies + SI_TIMEOUT_JIFFIES);
908
909                 if (smi_info->thread)
910                         wake_up_process(smi_info->thread);
911
912                 start_next_msg(smi_info);
913                 smi_event_handler(smi_info, 0);
914         }
915         spin_unlock_irqrestore(&smi_info->si_lock, flags);
916 }
917
918 static void set_run_to_completion(void *send_info, int i_run_to_completion)
919 {
920         struct smi_info   *smi_info = send_info;
921         enum si_sm_result result;
922
923         smi_info->run_to_completion = i_run_to_completion;
924         if (i_run_to_completion) {
925                 result = smi_event_handler(smi_info, 0);
926                 while (result != SI_SM_IDLE) {
927                         udelay(SI_SHORT_TIMEOUT_USEC);
928                         result = smi_event_handler(smi_info,
929                                                    SI_SHORT_TIMEOUT_USEC);
930                 }
931         }
932 }
933
934 /*
935  * Use -1 in the nsec value of the busy waiting timespec to tell that
936  * we are spinning in kipmid looking for something and not delaying
937  * between checks
938  */
939 static inline void ipmi_si_set_not_busy(struct timespec *ts)
940 {
941         ts->tv_nsec = -1;
942 }
943 static inline int ipmi_si_is_busy(struct timespec *ts)
944 {
945         return ts->tv_nsec != -1;
946 }
947
948 static int ipmi_thread_busy_wait(enum si_sm_result smi_result,
949                                  const struct smi_info *smi_info,
950                                  struct timespec *busy_until)
951 {
952         unsigned int max_busy_us = 0;
953
954         if (smi_info->intf_num < num_max_busy_us)
955                 max_busy_us = kipmid_max_busy_us[smi_info->intf_num];
956         if (max_busy_us == 0 || smi_result != SI_SM_CALL_WITH_DELAY)
957                 ipmi_si_set_not_busy(busy_until);
958         else if (!ipmi_si_is_busy(busy_until)) {
959                 getnstimeofday(busy_until);
960                 timespec_add_ns(busy_until, max_busy_us*NSEC_PER_USEC);
961         } else {
962                 struct timespec now;
963                 getnstimeofday(&now);
964                 if (unlikely(timespec_compare(&now, busy_until) > 0)) {
965                         ipmi_si_set_not_busy(busy_until);
966                         return 0;
967                 }
968         }
969         return 1;
970 }
971
972
973 /*
974  * A busy-waiting loop for speeding up IPMI operation.
975  *
976  * Lousy hardware makes this hard.  This is only enabled for systems
977  * that are not BT and do not have interrupts.  It starts spinning
978  * when an operation is complete or until max_busy tells it to stop
979  * (if that is enabled).  See the paragraph on kimid_max_busy_us in
980  * Documentation/IPMI.txt for details.
981  */
982 static int ipmi_thread(void *data)
983 {
984         struct smi_info *smi_info = data;
985         unsigned long flags;
986         enum si_sm_result smi_result;
987         struct timespec busy_until;
988
989         ipmi_si_set_not_busy(&busy_until);
990         set_user_nice(current, 19);
991         while (!kthread_should_stop()) {
992                 int busy_wait;
993
994                 spin_lock_irqsave(&(smi_info->si_lock), flags);
995                 smi_result = smi_event_handler(smi_info, 0);
996                 spin_unlock_irqrestore(&(smi_info->si_lock), flags);
997                 busy_wait = ipmi_thread_busy_wait(smi_result, smi_info,
998                                                   &busy_until);
999                 if (smi_result == SI_SM_CALL_WITHOUT_DELAY)
1000                         ; /* do nothing */
1001                 else if (smi_result == SI_SM_CALL_WITH_DELAY && busy_wait)
1002                         schedule();
1003                 else if (smi_result == SI_SM_IDLE)
1004                         schedule_timeout_interruptible(100);
1005                 else
1006                         schedule_timeout_interruptible(1);
1007         }
1008         return 0;
1009 }
1010
1011
1012 static void poll(void *send_info)
1013 {
1014         struct smi_info *smi_info = send_info;
1015         unsigned long flags = 0;
1016         int run_to_completion = smi_info->run_to_completion;
1017
1018         /*
1019          * Make sure there is some delay in the poll loop so we can
1020          * drive time forward and timeout things.
1021          */
1022         udelay(10);
1023         if (!run_to_completion)
1024                 spin_lock_irqsave(&smi_info->si_lock, flags);
1025         smi_event_handler(smi_info, 10);
1026         if (!run_to_completion)
1027                 spin_unlock_irqrestore(&smi_info->si_lock, flags);
1028 }
1029
1030 static void request_events(void *send_info)
1031 {
1032         struct smi_info *smi_info = send_info;
1033
1034         if (atomic_read(&smi_info->stop_operation) ||
1035                                 !smi_info->has_event_buffer)
1036                 return;
1037
1038         atomic_set(&smi_info->req_events, 1);
1039 }
1040
1041 static int initialized;
1042
1043 static void smi_timeout(unsigned long data)
1044 {
1045         struct smi_info   *smi_info = (struct smi_info *) data;
1046         enum si_sm_result smi_result;
1047         unsigned long     flags;
1048         unsigned long     jiffies_now;
1049         long              time_diff;
1050         long              timeout;
1051 #ifdef DEBUG_TIMING
1052         struct timeval    t;
1053 #endif
1054
1055         spin_lock_irqsave(&(smi_info->si_lock), flags);
1056 #ifdef DEBUG_TIMING
1057         do_gettimeofday(&t);
1058         printk(KERN_DEBUG "**Timer: %d.%9.9d\n", t.tv_sec, t.tv_usec);
1059 #endif
1060         jiffies_now = jiffies;
1061         time_diff = (((long)jiffies_now - (long)smi_info->last_timeout_jiffies)
1062                      * SI_USEC_PER_JIFFY);
1063         smi_result = smi_event_handler(smi_info, time_diff);
1064
1065         spin_unlock_irqrestore(&(smi_info->si_lock), flags);
1066
1067         smi_info->last_timeout_jiffies = jiffies_now;
1068
1069         if ((smi_info->irq) && (!smi_info->interrupt_disabled)) {
1070                 /* Running with interrupts, only do long timeouts. */
1071                 timeout = jiffies + SI_TIMEOUT_JIFFIES;
1072                 smi_inc_stat(smi_info, long_timeouts);
1073                 goto do_mod_timer;
1074         }
1075
1076         /*
1077          * If the state machine asks for a short delay, then shorten
1078          * the timer timeout.
1079          */
1080         if (smi_result == SI_SM_CALL_WITH_DELAY) {
1081                 smi_inc_stat(smi_info, short_timeouts);
1082                 timeout = jiffies + 1;
1083         } else {
1084                 smi_inc_stat(smi_info, long_timeouts);
1085                 timeout = jiffies + SI_TIMEOUT_JIFFIES;
1086         }
1087
1088  do_mod_timer:
1089         if (smi_result != SI_SM_IDLE)
1090                 mod_timer(&(smi_info->si_timer), timeout);
1091 }
1092
1093 static irqreturn_t si_irq_handler(int irq, void *data)
1094 {
1095         struct smi_info *smi_info = data;
1096         unsigned long   flags;
1097 #ifdef DEBUG_TIMING
1098         struct timeval  t;
1099 #endif
1100
1101         spin_lock_irqsave(&(smi_info->si_lock), flags);
1102
1103         smi_inc_stat(smi_info, interrupts);
1104
1105 #ifdef DEBUG_TIMING
1106         do_gettimeofday(&t);
1107         printk(KERN_DEBUG "**Interrupt: %d.%9.9d\n", t.tv_sec, t.tv_usec);
1108 #endif
1109         smi_event_handler(smi_info, 0);
1110         spin_unlock_irqrestore(&(smi_info->si_lock), flags);
1111         return IRQ_HANDLED;
1112 }
1113
1114 static irqreturn_t si_bt_irq_handler(int irq, void *data)
1115 {
1116         struct smi_info *smi_info = data;
1117         /* We need to clear the IRQ flag for the BT interface. */
1118         smi_info->io.outputb(&smi_info->io, IPMI_BT_INTMASK_REG,
1119                              IPMI_BT_INTMASK_CLEAR_IRQ_BIT
1120                              | IPMI_BT_INTMASK_ENABLE_IRQ_BIT);
1121         return si_irq_handler(irq, data);
1122 }
1123
1124 static int smi_start_processing(void       *send_info,
1125                                 ipmi_smi_t intf)
1126 {
1127         struct smi_info *new_smi = send_info;
1128         int             enable = 0;
1129
1130         new_smi->intf = intf;
1131
1132         /* Try to claim any interrupts. */
1133         if (new_smi->irq_setup)
1134                 new_smi->irq_setup(new_smi);
1135
1136         /* Set up the timer that drives the interface. */
1137         setup_timer(&new_smi->si_timer, smi_timeout, (long)new_smi);
1138         new_smi->last_timeout_jiffies = jiffies;
1139         mod_timer(&new_smi->si_timer, jiffies + SI_TIMEOUT_JIFFIES);
1140
1141         /*
1142          * Check if the user forcefully enabled the daemon.
1143          */
1144         if (new_smi->intf_num < num_force_kipmid)
1145                 enable = force_kipmid[new_smi->intf_num];
1146         /*
1147          * The BT interface is efficient enough to not need a thread,
1148          * and there is no need for a thread if we have interrupts.
1149          */
1150         else if ((new_smi->si_type != SI_BT) && (!new_smi->irq))
1151                 enable = 1;
1152
1153         if (enable) {
1154                 new_smi->thread = kthread_run(ipmi_thread, new_smi,
1155                                               "kipmi%d", new_smi->intf_num);
1156                 if (IS_ERR(new_smi->thread)) {
1157                         dev_notice(new_smi->dev, "Could not start"
1158                                    " kernel thread due to error %ld, only using"
1159                                    " timers to drive the interface\n",
1160                                    PTR_ERR(new_smi->thread));
1161                         new_smi->thread = NULL;
1162                 }
1163         }
1164
1165         return 0;
1166 }
1167
1168 static int get_smi_info(void *send_info, struct ipmi_smi_info *data)
1169 {
1170         struct smi_info *smi = send_info;
1171
1172         data->addr_src = smi->addr_source;
1173         data->dev = smi->dev;
1174         data->addr_info = smi->addr_info;
1175         get_device(smi->dev);
1176
1177         return 0;
1178 }
1179
1180 static void set_maintenance_mode(void *send_info, int enable)
1181 {
1182         struct smi_info   *smi_info = send_info;
1183
1184         if (!enable)
1185                 atomic_set(&smi_info->req_events, 0);
1186 }
1187
1188 static struct ipmi_smi_handlers handlers = {
1189         .owner                  = THIS_MODULE,
1190         .start_processing       = smi_start_processing,
1191         .get_smi_info           = get_smi_info,
1192         .sender                 = sender,
1193         .request_events         = request_events,
1194         .set_maintenance_mode   = set_maintenance_mode,
1195         .set_run_to_completion  = set_run_to_completion,
1196         .poll                   = poll,
1197 };
1198
1199 /*
1200  * There can be 4 IO ports passed in (with or without IRQs), 4 addresses,
1201  * a default IO port, and 1 ACPI/SPMI address.  That sets SI_MAX_DRIVERS.
1202  */
1203
1204 static LIST_HEAD(smi_infos);
1205 static DEFINE_MUTEX(smi_infos_lock);
1206 static int smi_num; /* Used to sequence the SMIs */
1207
1208 #define DEFAULT_REGSPACING      1
1209 #define DEFAULT_REGSIZE         1
1210
1211 static bool          si_trydefaults = 1;
1212 static char          *si_type[SI_MAX_PARMS];
1213 #define MAX_SI_TYPE_STR 30
1214 static char          si_type_str[MAX_SI_TYPE_STR];
1215 static unsigned long addrs[SI_MAX_PARMS];
1216 static unsigned int num_addrs;
1217 static unsigned int  ports[SI_MAX_PARMS];
1218 static unsigned int num_ports;
1219 static int           irqs[SI_MAX_PARMS];
1220 static unsigned int num_irqs;
1221 static int           regspacings[SI_MAX_PARMS];
1222 static unsigned int num_regspacings;
1223 static int           regsizes[SI_MAX_PARMS];
1224 static unsigned int num_regsizes;
1225 static int           regshifts[SI_MAX_PARMS];
1226 static unsigned int num_regshifts;
1227 static int slave_addrs[SI_MAX_PARMS]; /* Leaving 0 chooses the default value */
1228 static unsigned int num_slave_addrs;
1229
1230 #define IPMI_IO_ADDR_SPACE  0
1231 #define IPMI_MEM_ADDR_SPACE 1
1232 static char *addr_space_to_str[] = { "i/o", "mem" };
1233
1234 static int hotmod_handler(const char *val, struct kernel_param *kp);
1235
1236 module_param_call(hotmod, hotmod_handler, NULL, NULL, 0200);
1237 MODULE_PARM_DESC(hotmod, "Add and remove interfaces.  See"
1238                  " Documentation/IPMI.txt in the kernel sources for the"
1239                  " gory details.");
1240
1241 module_param_named(trydefaults, si_trydefaults, bool, 0);
1242 MODULE_PARM_DESC(trydefaults, "Setting this to 'false' will disable the"
1243                  " default scan of the KCS and SMIC interface at the standard"
1244                  " address");
1245 module_param_string(type, si_type_str, MAX_SI_TYPE_STR, 0);
1246 MODULE_PARM_DESC(type, "Defines the type of each interface, each"
1247                  " interface separated by commas.  The types are 'kcs',"
1248                  " 'smic', and 'bt'.  For example si_type=kcs,bt will set"
1249                  " the first interface to kcs and the second to bt");
1250 module_param_array(addrs, ulong, &num_addrs, 0);
1251 MODULE_PARM_DESC(addrs, "Sets the memory address of each interface, the"
1252                  " addresses separated by commas.  Only use if an interface"
1253                  " is in memory.  Otherwise, set it to zero or leave"
1254                  " it blank.");
1255 module_param_array(ports, uint, &num_ports, 0);
1256 MODULE_PARM_DESC(ports, "Sets the port address of each interface, the"
1257                  " addresses separated by commas.  Only use if an interface"
1258                  " is a port.  Otherwise, set it to zero or leave"
1259                  " it blank.");
1260 module_param_array(irqs, int, &num_irqs, 0);
1261 MODULE_PARM_DESC(irqs, "Sets the interrupt of each interface, the"
1262                  " addresses separated by commas.  Only use if an interface"
1263                  " has an interrupt.  Otherwise, set it to zero or leave"
1264                  " it blank.");
1265 module_param_array(regspacings, int, &num_regspacings, 0);
1266 MODULE_PARM_DESC(regspacings, "The number of bytes between the start address"
1267                  " and each successive register used by the interface.  For"
1268                  " instance, if the start address is 0xca2 and the spacing"
1269                  " is 2, then the second address is at 0xca4.  Defaults"
1270                  " to 1.");
1271 module_param_array(regsizes, int, &num_regsizes, 0);
1272 MODULE_PARM_DESC(regsizes, "The size of the specific IPMI register in bytes."
1273                  " This should generally be 1, 2, 4, or 8 for an 8-bit,"
1274                  " 16-bit, 32-bit, or 64-bit register.  Use this if you"
1275                  " the 8-bit IPMI register has to be read from a larger"
1276                  " register.");
1277 module_param_array(regshifts, int, &num_regshifts, 0);
1278 MODULE_PARM_DESC(regshifts, "The amount to shift the data read from the."
1279                  " IPMI register, in bits.  For instance, if the data"
1280                  " is read from a 32-bit word and the IPMI data is in"
1281                  " bit 8-15, then the shift would be 8");
1282 module_param_array(slave_addrs, int, &num_slave_addrs, 0);
1283 MODULE_PARM_DESC(slave_addrs, "Set the default IPMB slave address for"
1284                  " the controller.  Normally this is 0x20, but can be"
1285                  " overridden by this parm.  This is an array indexed"
1286                  " by interface number.");
1287 module_param_array(force_kipmid, int, &num_force_kipmid, 0);
1288 MODULE_PARM_DESC(force_kipmid, "Force the kipmi daemon to be enabled (1) or"
1289                  " disabled(0).  Normally the IPMI driver auto-detects"
1290                  " this, but the value may be overridden by this parm.");
1291 module_param(unload_when_empty, int, 0);
1292 MODULE_PARM_DESC(unload_when_empty, "Unload the module if no interfaces are"
1293                  " specified or found, default is 1.  Setting to 0"
1294                  " is useful for hot add of devices using hotmod.");
1295 module_param_array(kipmid_max_busy_us, uint, &num_max_busy_us, 0644);
1296 MODULE_PARM_DESC(kipmid_max_busy_us,
1297                  "Max time (in microseconds) to busy-wait for IPMI data before"
1298                  " sleeping. 0 (default) means to wait forever. Set to 100-500"
1299                  " if kipmid is using up a lot of CPU time.");
1300
1301
1302 static void std_irq_cleanup(struct smi_info *info)
1303 {
1304         if (info->si_type == SI_BT)
1305                 /* Disable the interrupt in the BT interface. */
1306                 info->io.outputb(&info->io, IPMI_BT_INTMASK_REG, 0);
1307         free_irq(info->irq, info);
1308 }
1309
1310 static int std_irq_setup(struct smi_info *info)
1311 {
1312         int rv;
1313
1314         if (!info->irq)
1315                 return 0;
1316
1317         if (info->si_type == SI_BT) {
1318                 rv = request_irq(info->irq,
1319                                  si_bt_irq_handler,
1320                                  IRQF_SHARED | IRQF_DISABLED,
1321                                  DEVICE_NAME,
1322                                  info);
1323                 if (!rv)
1324                         /* Enable the interrupt in the BT interface. */
1325                         info->io.outputb(&info->io, IPMI_BT_INTMASK_REG,
1326                                          IPMI_BT_INTMASK_ENABLE_IRQ_BIT);
1327         } else
1328                 rv = request_irq(info->irq,
1329                                  si_irq_handler,
1330                                  IRQF_SHARED | IRQF_DISABLED,
1331                                  DEVICE_NAME,
1332                                  info);
1333         if (rv) {
1334                 dev_warn(info->dev, "%s unable to claim interrupt %d,"
1335                          " running polled\n",
1336                          DEVICE_NAME, info->irq);
1337                 info->irq = 0;
1338         } else {
1339                 info->irq_cleanup = std_irq_cleanup;
1340                 dev_info(info->dev, "Using irq %d\n", info->irq);
1341         }
1342
1343         return rv;
1344 }
1345
1346 static unsigned char port_inb(struct si_sm_io *io, unsigned int offset)
1347 {
1348         unsigned int addr = io->addr_data;
1349
1350         return inb(addr + (offset * io->regspacing));
1351 }
1352
1353 static void port_outb(struct si_sm_io *io, unsigned int offset,
1354                       unsigned char b)
1355 {
1356         unsigned int addr = io->addr_data;
1357
1358         outb(b, addr + (offset * io->regspacing));
1359 }
1360
1361 static unsigned char port_inw(struct si_sm_io *io, unsigned int offset)
1362 {
1363         unsigned int addr = io->addr_data;
1364
1365         return (inw(addr + (offset * io->regspacing)) >> io->regshift) & 0xff;
1366 }
1367
1368 static void port_outw(struct si_sm_io *io, unsigned int offset,
1369                       unsigned char b)
1370 {
1371         unsigned int addr = io->addr_data;
1372
1373         outw(b << io->regshift, addr + (offset * io->regspacing));
1374 }
1375
1376 static unsigned char port_inl(struct si_sm_io *io, unsigned int offset)
1377 {
1378         unsigned int addr = io->addr_data;
1379
1380         return (inl(addr + (offset * io->regspacing)) >> io->regshift) & 0xff;
1381 }
1382
1383 static void port_outl(struct si_sm_io *io, unsigned int offset,
1384                       unsigned char b)
1385 {
1386         unsigned int addr = io->addr_data;
1387
1388         outl(b << io->regshift, addr+(offset * io->regspacing));
1389 }
1390
1391 static void port_cleanup(struct smi_info *info)
1392 {
1393         unsigned int addr = info->io.addr_data;
1394         int          idx;
1395
1396         if (addr) {
1397                 for (idx = 0; idx < info->io_size; idx++)
1398                         release_region(addr + idx * info->io.regspacing,
1399                                        info->io.regsize);
1400         }
1401 }
1402
1403 static int port_setup(struct smi_info *info)
1404 {
1405         unsigned int addr = info->io.addr_data;
1406         int          idx;
1407
1408         if (!addr)
1409                 return -ENODEV;
1410
1411         info->io_cleanup = port_cleanup;
1412
1413         /*
1414          * Figure out the actual inb/inw/inl/etc routine to use based
1415          * upon the register size.
1416          */
1417         switch (info->io.regsize) {
1418         case 1:
1419                 info->io.inputb = port_inb;
1420                 info->io.outputb = port_outb;
1421                 break;
1422         case 2:
1423                 info->io.inputb = port_inw;
1424                 info->io.outputb = port_outw;
1425                 break;
1426         case 4:
1427                 info->io.inputb = port_inl;
1428                 info->io.outputb = port_outl;
1429                 break;
1430         default:
1431                 dev_warn(info->dev, "Invalid register size: %d\n",
1432                          info->io.regsize);
1433                 return -EINVAL;
1434         }
1435
1436         /*
1437          * Some BIOSes reserve disjoint I/O regions in their ACPI
1438          * tables.  This causes problems when trying to register the
1439          * entire I/O region.  Therefore we must register each I/O
1440          * port separately.
1441          */
1442         for (idx = 0; idx < info->io_size; idx++) {
1443                 if (request_region(addr + idx * info->io.regspacing,
1444                                    info->io.regsize, DEVICE_NAME) == NULL) {
1445                         /* Undo allocations */
1446                         while (idx--) {
1447                                 release_region(addr + idx * info->io.regspacing,
1448                                                info->io.regsize);
1449                         }
1450                         return -EIO;
1451                 }
1452         }
1453         return 0;
1454 }
1455
1456 static unsigned char intf_mem_inb(struct si_sm_io *io, unsigned int offset)
1457 {
1458         return readb((io->addr)+(offset * io->regspacing));
1459 }
1460
1461 static void intf_mem_outb(struct si_sm_io *io, unsigned int offset,
1462                      unsigned char b)
1463 {
1464         writeb(b, (io->addr)+(offset * io->regspacing));
1465 }
1466
1467 static unsigned char intf_mem_inw(struct si_sm_io *io, unsigned int offset)
1468 {
1469         return (readw((io->addr)+(offset * io->regspacing)) >> io->regshift)
1470                 & 0xff;
1471 }
1472
1473 static void intf_mem_outw(struct si_sm_io *io, unsigned int offset,
1474                      unsigned char b)
1475 {
1476         writeb(b << io->regshift, (io->addr)+(offset * io->regspacing));
1477 }
1478
1479 static unsigned char intf_mem_inl(struct si_sm_io *io, unsigned int offset)
1480 {
1481         return (readl((io->addr)+(offset * io->regspacing)) >> io->regshift)
1482                 & 0xff;
1483 }
1484
1485 static void intf_mem_outl(struct si_sm_io *io, unsigned int offset,
1486                      unsigned char b)
1487 {
1488         writel(b << io->regshift, (io->addr)+(offset * io->regspacing));
1489 }
1490
1491 #ifdef readq
1492 static unsigned char mem_inq(struct si_sm_io *io, unsigned int offset)
1493 {
1494         return (readq((io->addr)+(offset * io->regspacing)) >> io->regshift)
1495                 & 0xff;
1496 }
1497
1498 static void mem_outq(struct si_sm_io *io, unsigned int offset,
1499                      unsigned char b)
1500 {
1501         writeq(b << io->regshift, (io->addr)+(offset * io->regspacing));
1502 }
1503 #endif
1504
1505 static void mem_cleanup(struct smi_info *info)
1506 {
1507         unsigned long addr = info->io.addr_data;
1508         int           mapsize;
1509
1510         if (info->io.addr) {
1511                 iounmap(info->io.addr);
1512
1513                 mapsize = ((info->io_size * info->io.regspacing)
1514                            - (info->io.regspacing - info->io.regsize));
1515
1516                 release_mem_region(addr, mapsize);
1517         }
1518 }
1519
1520 static int mem_setup(struct smi_info *info)
1521 {
1522         unsigned long addr = info->io.addr_data;
1523         int           mapsize;
1524
1525         if (!addr)
1526                 return -ENODEV;
1527
1528         info->io_cleanup = mem_cleanup;
1529
1530         /*
1531          * Figure out the actual readb/readw/readl/etc routine to use based
1532          * upon the register size.
1533          */
1534         switch (info->io.regsize) {
1535         case 1:
1536                 info->io.inputb = intf_mem_inb;
1537                 info->io.outputb = intf_mem_outb;
1538                 break;
1539         case 2:
1540                 info->io.inputb = intf_mem_inw;
1541                 info->io.outputb = intf_mem_outw;
1542                 break;
1543         case 4:
1544                 info->io.inputb = intf_mem_inl;
1545                 info->io.outputb = intf_mem_outl;
1546                 break;
1547 #ifdef readq
1548         case 8:
1549                 info->io.inputb = mem_inq;
1550                 info->io.outputb = mem_outq;
1551                 break;
1552 #endif
1553         default:
1554                 dev_warn(info->dev, "Invalid register size: %d\n",
1555                          info->io.regsize);
1556                 return -EINVAL;
1557         }
1558
1559         /*
1560          * Calculate the total amount of memory to claim.  This is an
1561          * unusual looking calculation, but it avoids claiming any
1562          * more memory than it has to.  It will claim everything
1563          * between the first address to the end of the last full
1564          * register.
1565          */
1566         mapsize = ((info->io_size * info->io.regspacing)
1567                    - (info->io.regspacing - info->io.regsize));
1568
1569         if (request_mem_region(addr, mapsize, DEVICE_NAME) == NULL)
1570                 return -EIO;
1571
1572         info->io.addr = ioremap(addr, mapsize);
1573         if (info->io.addr == NULL) {
1574                 release_mem_region(addr, mapsize);
1575                 return -EIO;
1576         }
1577         return 0;
1578 }
1579
1580 /*
1581  * Parms come in as <op1>[:op2[:op3...]].  ops are:
1582  *   add|remove,kcs|bt|smic,mem|i/o,<address>[,<opt1>[,<opt2>[,...]]]
1583  * Options are:
1584  *   rsp=<regspacing>
1585  *   rsi=<regsize>
1586  *   rsh=<regshift>
1587  *   irq=<irq>
1588  *   ipmb=<ipmb addr>
1589  */
1590 enum hotmod_op { HM_ADD, HM_REMOVE };
1591 struct hotmod_vals {
1592         char *name;
1593         int  val;
1594 };
1595 static struct hotmod_vals hotmod_ops[] = {
1596         { "add",        HM_ADD },
1597         { "remove",     HM_REMOVE },
1598         { NULL }
1599 };
1600 static struct hotmod_vals hotmod_si[] = {
1601         { "kcs",        SI_KCS },
1602         { "smic",       SI_SMIC },
1603         { "bt",         SI_BT },
1604         { NULL }
1605 };
1606 static struct hotmod_vals hotmod_as[] = {
1607         { "mem",        IPMI_MEM_ADDR_SPACE },
1608         { "i/o",        IPMI_IO_ADDR_SPACE },
1609         { NULL }
1610 };
1611
1612 static int parse_str(struct hotmod_vals *v, int *val, char *name, char **curr)
1613 {
1614         char *s;
1615         int  i;
1616
1617         s = strchr(*curr, ',');
1618         if (!s) {
1619                 printk(KERN_WARNING PFX "No hotmod %s given.\n", name);
1620                 return -EINVAL;
1621         }
1622         *s = '\0';
1623         s++;
1624         for (i = 0; hotmod_ops[i].name; i++) {
1625                 if (strcmp(*curr, v[i].name) == 0) {
1626                         *val = v[i].val;
1627                         *curr = s;
1628                         return 0;
1629                 }
1630         }
1631
1632         printk(KERN_WARNING PFX "Invalid hotmod %s '%s'\n", name, *curr);
1633         return -EINVAL;
1634 }
1635
1636 static int check_hotmod_int_op(const char *curr, const char *option,
1637                                const char *name, int *val)
1638 {
1639         char *n;
1640
1641         if (strcmp(curr, name) == 0) {
1642                 if (!option) {
1643                         printk(KERN_WARNING PFX
1644                                "No option given for '%s'\n",
1645                                curr);
1646                         return -EINVAL;
1647                 }
1648                 *val = simple_strtoul(option, &n, 0);
1649                 if ((*n != '\0') || (*option == '\0')) {
1650                         printk(KERN_WARNING PFX
1651                                "Bad option given for '%s'\n",
1652                                curr);
1653                         return -EINVAL;
1654                 }
1655                 return 1;
1656         }
1657         return 0;
1658 }
1659
1660 static struct smi_info *smi_info_alloc(void)
1661 {
1662         struct smi_info *info = kzalloc(sizeof(*info), GFP_KERNEL);
1663
1664         if (info)
1665                 spin_lock_init(&info->si_lock);
1666         return info;
1667 }
1668
1669 static int hotmod_handler(const char *val, struct kernel_param *kp)
1670 {
1671         char *str = kstrdup(val, GFP_KERNEL);
1672         int  rv;
1673         char *next, *curr, *s, *n, *o;
1674         enum hotmod_op op;
1675         enum si_type si_type;
1676         int  addr_space;
1677         unsigned long addr;
1678         int regspacing;
1679         int regsize;
1680         int regshift;
1681         int irq;
1682         int ipmb;
1683         int ival;
1684         int len;
1685         struct smi_info *info;
1686
1687         if (!str)
1688                 return -ENOMEM;
1689
1690         /* Kill any trailing spaces, as we can get a "\n" from echo. */
1691         len = strlen(str);
1692         ival = len - 1;
1693         while ((ival >= 0) && isspace(str[ival])) {
1694                 str[ival] = '\0';
1695                 ival--;
1696         }
1697
1698         for (curr = str; curr; curr = next) {
1699                 regspacing = 1;
1700                 regsize = 1;
1701                 regshift = 0;
1702                 irq = 0;
1703                 ipmb = 0; /* Choose the default if not specified */
1704
1705                 next = strchr(curr, ':');
1706                 if (next) {
1707                         *next = '\0';
1708                         next++;
1709                 }
1710
1711                 rv = parse_str(hotmod_ops, &ival, "operation", &curr);
1712                 if (rv)
1713                         break;
1714                 op = ival;
1715
1716                 rv = parse_str(hotmod_si, &ival, "interface type", &curr);
1717                 if (rv)
1718                         break;
1719                 si_type = ival;
1720
1721                 rv = parse_str(hotmod_as, &addr_space, "address space", &curr);
1722                 if (rv)
1723                         break;
1724
1725                 s = strchr(curr, ',');
1726                 if (s) {
1727                         *s = '\0';
1728                         s++;
1729                 }
1730                 addr = simple_strtoul(curr, &n, 0);
1731                 if ((*n != '\0') || (*curr == '\0')) {
1732                         printk(KERN_WARNING PFX "Invalid hotmod address"
1733                                " '%s'\n", curr);
1734                         break;
1735                 }
1736
1737                 while (s) {
1738                         curr = s;
1739                         s = strchr(curr, ',');
1740                         if (s) {
1741                                 *s = '\0';
1742                                 s++;
1743                         }
1744                         o = strchr(curr, '=');
1745                         if (o) {
1746                                 *o = '\0';
1747                                 o++;
1748                         }
1749                         rv = check_hotmod_int_op(curr, o, "rsp", &regspacing);
1750                         if (rv < 0)
1751                                 goto out;
1752                         else if (rv)
1753                                 continue;
1754                         rv = check_hotmod_int_op(curr, o, "rsi", &regsize);
1755                         if (rv < 0)
1756                                 goto out;
1757                         else if (rv)
1758                                 continue;
1759                         rv = check_hotmod_int_op(curr, o, "rsh", &regshift);
1760                         if (rv < 0)
1761                                 goto out;
1762                         else if (rv)
1763                                 continue;
1764                         rv = check_hotmod_int_op(curr, o, "irq", &irq);
1765                         if (rv < 0)
1766                                 goto out;
1767                         else if (rv)
1768                                 continue;
1769                         rv = check_hotmod_int_op(curr, o, "ipmb", &ipmb);
1770                         if (rv < 0)
1771                                 goto out;
1772                         else if (rv)
1773                                 continue;
1774
1775                         rv = -EINVAL;
1776                         printk(KERN_WARNING PFX
1777                                "Invalid hotmod option '%s'\n",
1778                                curr);
1779                         goto out;
1780                 }
1781
1782                 if (op == HM_ADD) {
1783                         info = smi_info_alloc();
1784                         if (!info) {
1785                                 rv = -ENOMEM;
1786                                 goto out;
1787                         }
1788
1789                         info->addr_source = SI_HOTMOD;
1790                         info->si_type = si_type;
1791                         info->io.addr_data = addr;
1792                         info->io.addr_type = addr_space;
1793                         if (addr_space == IPMI_MEM_ADDR_SPACE)
1794                                 info->io_setup = mem_setup;
1795                         else
1796                                 info->io_setup = port_setup;
1797
1798                         info->io.addr = NULL;
1799                         info->io.regspacing = regspacing;
1800                         if (!info->io.regspacing)
1801                                 info->io.regspacing = DEFAULT_REGSPACING;
1802                         info->io.regsize = regsize;
1803                         if (!info->io.regsize)
1804                                 info->io.regsize = DEFAULT_REGSPACING;
1805                         info->io.regshift = regshift;
1806                         info->irq = irq;
1807                         if (info->irq)
1808                                 info->irq_setup = std_irq_setup;
1809                         info->slave_addr = ipmb;
1810
1811                         if (!add_smi(info)) {
1812                                 if (try_smi_init(info))
1813                                         cleanup_one_si(info);
1814                         } else {
1815                                 kfree(info);
1816                         }
1817                 } else {
1818                         /* remove */
1819                         struct smi_info *e, *tmp_e;
1820
1821                         mutex_lock(&smi_infos_lock);
1822                         list_for_each_entry_safe(e, tmp_e, &smi_infos, link) {
1823                                 if (e->io.addr_type != addr_space)
1824                                         continue;
1825                                 if (e->si_type != si_type)
1826                                         continue;
1827                                 if (e->io.addr_data == addr)
1828                                         cleanup_one_si(e);
1829                         }
1830                         mutex_unlock(&smi_infos_lock);
1831                 }
1832         }
1833         rv = len;
1834  out:
1835         kfree(str);
1836         return rv;
1837 }
1838
1839 static int hardcode_find_bmc(void)
1840 {
1841         int ret = -ENODEV;
1842         int             i;
1843         struct smi_info *info;
1844
1845         for (i = 0; i < SI_MAX_PARMS; i++) {
1846                 if (!ports[i] && !addrs[i])
1847                         continue;
1848
1849                 info = smi_info_alloc();
1850                 if (!info)
1851                         return -ENOMEM;
1852
1853                 info->addr_source = SI_HARDCODED;
1854                 printk(KERN_INFO PFX "probing via hardcoded address\n");
1855
1856                 if (!si_type[i] || strcmp(si_type[i], "kcs") == 0) {
1857                         info->si_type = SI_KCS;
1858                 } else if (strcmp(si_type[i], "smic") == 0) {
1859                         info->si_type = SI_SMIC;
1860                 } else if (strcmp(si_type[i], "bt") == 0) {
1861                         info->si_type = SI_BT;
1862                 } else {
1863                         printk(KERN_WARNING PFX "Interface type specified "
1864                                "for interface %d, was invalid: %s\n",
1865                                i, si_type[i]);
1866                         kfree(info);
1867                         continue;
1868                 }
1869
1870                 if (ports[i]) {
1871                         /* An I/O port */
1872                         info->io_setup = port_setup;
1873                         info->io.addr_data = ports[i];
1874                         info->io.addr_type = IPMI_IO_ADDR_SPACE;
1875                 } else if (addrs[i]) {
1876                         /* A memory port */
1877                         info->io_setup = mem_setup;
1878                         info->io.addr_data = addrs[i];
1879                         info->io.addr_type = IPMI_MEM_ADDR_SPACE;
1880                 } else {
1881                         printk(KERN_WARNING PFX "Interface type specified "
1882                                "for interface %d, but port and address were "
1883                                "not set or set to zero.\n", i);
1884                         kfree(info);
1885                         continue;
1886                 }
1887
1888                 info->io.addr = NULL;
1889                 info->io.regspacing = regspacings[i];
1890                 if (!info->io.regspacing)
1891                         info->io.regspacing = DEFAULT_REGSPACING;
1892                 info->io.regsize = regsizes[i];
1893                 if (!info->io.regsize)
1894                         info->io.regsize = DEFAULT_REGSPACING;
1895                 info->io.regshift = regshifts[i];
1896                 info->irq = irqs[i];
1897                 if (info->irq)
1898                         info->irq_setup = std_irq_setup;
1899                 info->slave_addr = slave_addrs[i];
1900
1901                 if (!add_smi(info)) {
1902                         if (try_smi_init(info))
1903                                 cleanup_one_si(info);
1904                         ret = 0;
1905                 } else {
1906                         kfree(info);
1907                 }
1908         }
1909         return ret;
1910 }
1911
1912 #ifdef CONFIG_ACPI
1913
1914 #include <linux/acpi.h>
1915
1916 /*
1917  * Once we get an ACPI failure, we don't try any more, because we go
1918  * through the tables sequentially.  Once we don't find a table, there
1919  * are no more.
1920  */
1921 static int acpi_failure;
1922
1923 /* For GPE-type interrupts. */
1924 static u32 ipmi_acpi_gpe(acpi_handle gpe_device,
1925         u32 gpe_number, void *context)
1926 {
1927         struct smi_info *smi_info = context;
1928         unsigned long   flags;
1929 #ifdef DEBUG_TIMING
1930         struct timeval t;
1931 #endif
1932
1933         spin_lock_irqsave(&(smi_info->si_lock), flags);
1934
1935         smi_inc_stat(smi_info, interrupts);
1936
1937 #ifdef DEBUG_TIMING
1938         do_gettimeofday(&t);
1939         printk("**ACPI_GPE: %d.%9.9d\n", t.tv_sec, t.tv_usec);
1940 #endif
1941         smi_event_handler(smi_info, 0);
1942         spin_unlock_irqrestore(&(smi_info->si_lock), flags);
1943
1944         return ACPI_INTERRUPT_HANDLED;
1945 }
1946
1947 static void acpi_gpe_irq_cleanup(struct smi_info *info)
1948 {
1949         if (!info->irq)
1950                 return;
1951
1952         acpi_remove_gpe_handler(NULL, info->irq, &ipmi_acpi_gpe);
1953 }
1954
1955 static int acpi_gpe_irq_setup(struct smi_info *info)
1956 {
1957         acpi_status status;
1958
1959         if (!info->irq)
1960                 return 0;
1961
1962         /* FIXME - is level triggered right? */
1963         status = acpi_install_gpe_handler(NULL,
1964                                           info->irq,
1965                                           ACPI_GPE_LEVEL_TRIGGERED,
1966                                           &ipmi_acpi_gpe,
1967                                           info);
1968         if (status != AE_OK) {
1969                 dev_warn(info->dev, "%s unable to claim ACPI GPE %d,"
1970                          " running polled\n", DEVICE_NAME, info->irq);
1971                 info->irq = 0;
1972                 return -EINVAL;
1973         } else {
1974                 info->irq_cleanup = acpi_gpe_irq_cleanup;
1975                 dev_info(info->dev, "Using ACPI GPE %d\n", info->irq);
1976                 return 0;
1977         }
1978 }
1979
1980 /*
1981  * Defined at
1982  * http://h21007.www2.hp.com/portal/download/files/unprot/hpspmi.pdf
1983  */
1984 struct SPMITable {
1985         s8      Signature[4];
1986         u32     Length;
1987         u8      Revision;
1988         u8      Checksum;
1989         s8      OEMID[6];
1990         s8      OEMTableID[8];
1991         s8      OEMRevision[4];
1992         s8      CreatorID[4];
1993         s8      CreatorRevision[4];
1994         u8      InterfaceType;
1995         u8      IPMIlegacy;
1996         s16     SpecificationRevision;
1997
1998         /*
1999          * Bit 0 - SCI interrupt supported
2000          * Bit 1 - I/O APIC/SAPIC
2001          */
2002         u8      InterruptType;
2003
2004         /*
2005          * If bit 0 of InterruptType is set, then this is the SCI
2006          * interrupt in the GPEx_STS register.
2007          */
2008         u8      GPE;
2009
2010         s16     Reserved;
2011
2012         /*
2013          * If bit 1 of InterruptType is set, then this is the I/O
2014          * APIC/SAPIC interrupt.
2015          */
2016         u32     GlobalSystemInterrupt;
2017
2018         /* The actual register address. */
2019         struct acpi_generic_address addr;
2020
2021         u8      UID[4];
2022
2023         s8      spmi_id[1]; /* A '\0' terminated array starts here. */
2024 };
2025
2026 static int try_init_spmi(struct SPMITable *spmi)
2027 {
2028         struct smi_info  *info;
2029
2030         if (spmi->IPMIlegacy != 1) {
2031                 printk(KERN_INFO PFX "Bad SPMI legacy %d\n", spmi->IPMIlegacy);
2032                 return -ENODEV;
2033         }
2034
2035         info = smi_info_alloc();
2036         if (!info) {
2037                 printk(KERN_ERR PFX "Could not allocate SI data (3)\n");
2038                 return -ENOMEM;
2039         }
2040
2041         info->addr_source = SI_SPMI;
2042         printk(KERN_INFO PFX "probing via SPMI\n");
2043
2044         /* Figure out the interface type. */
2045         switch (spmi->InterfaceType) {
2046         case 1: /* KCS */
2047                 info->si_type = SI_KCS;
2048                 break;
2049         case 2: /* SMIC */
2050                 info->si_type = SI_SMIC;
2051                 break;
2052         case 3: /* BT */
2053                 info->si_type = SI_BT;
2054                 break;
2055         default:
2056                 printk(KERN_INFO PFX "Unknown ACPI/SPMI SI type %d\n",
2057                        spmi->InterfaceType);
2058                 kfree(info);
2059                 return -EIO;
2060         }
2061
2062         if (spmi->InterruptType & 1) {
2063                 /* We've got a GPE interrupt. */
2064                 info->irq = spmi->GPE;
2065                 info->irq_setup = acpi_gpe_irq_setup;
2066         } else if (spmi->InterruptType & 2) {
2067                 /* We've got an APIC/SAPIC interrupt. */
2068                 info->irq = spmi->GlobalSystemInterrupt;
2069                 info->irq_setup = std_irq_setup;
2070         } else {
2071                 /* Use the default interrupt setting. */
2072                 info->irq = 0;
2073                 info->irq_setup = NULL;
2074         }
2075
2076         if (spmi->addr.bit_width) {
2077                 /* A (hopefully) properly formed register bit width. */
2078                 info->io.regspacing = spmi->addr.bit_width / 8;
2079         } else {
2080                 info->io.regspacing = DEFAULT_REGSPACING;
2081         }
2082         info->io.regsize = info->io.regspacing;
2083         info->io.regshift = spmi->addr.bit_offset;
2084
2085         if (spmi->addr.space_id == ACPI_ADR_SPACE_SYSTEM_MEMORY) {
2086                 info->io_setup = mem_setup;
2087                 info->io.addr_type = IPMI_MEM_ADDR_SPACE;
2088         } else if (spmi->addr.space_id == ACPI_ADR_SPACE_SYSTEM_IO) {
2089                 info->io_setup = port_setup;
2090                 info->io.addr_type = IPMI_IO_ADDR_SPACE;
2091         } else {
2092                 kfree(info);
2093                 printk(KERN_WARNING PFX "Unknown ACPI I/O Address type\n");
2094                 return -EIO;
2095         }
2096         info->io.addr_data = spmi->addr.address;
2097
2098         pr_info("ipmi_si: SPMI: %s %#lx regsize %d spacing %d irq %d\n",
2099                  (info->io.addr_type == IPMI_IO_ADDR_SPACE) ? "io" : "mem",
2100                  info->io.addr_data, info->io.regsize, info->io.regspacing,
2101                  info->irq);
2102
2103         if (add_smi(info))
2104                 kfree(info);
2105
2106         return 0;
2107 }
2108
2109 static void spmi_find_bmc(void)
2110 {
2111         acpi_status      status;
2112         struct SPMITable *spmi;
2113         int              i;
2114
2115         if (acpi_disabled)
2116                 return;
2117
2118         if (acpi_failure)
2119                 return;
2120
2121         for (i = 0; ; i++) {
2122                 status = acpi_get_table(ACPI_SIG_SPMI, i+1,
2123                                         (struct acpi_table_header **)&spmi);
2124                 if (status != AE_OK)
2125                         return;
2126
2127                 try_init_spmi(spmi);
2128         }
2129 }
2130
2131 static int ipmi_pnp_probe(struct pnp_dev *dev,
2132                                     const struct pnp_device_id *dev_id)
2133 {
2134         struct acpi_device *acpi_dev;
2135         struct smi_info *info;
2136         struct resource *res, *res_second;
2137         acpi_handle handle;
2138         acpi_status status;
2139         unsigned long long tmp;
2140
2141         acpi_dev = pnp_acpi_device(dev);
2142         if (!acpi_dev)
2143                 return -ENODEV;
2144
2145         info = smi_info_alloc();
2146         if (!info)
2147                 return -ENOMEM;
2148
2149         info->addr_source = SI_ACPI;
2150         printk(KERN_INFO PFX "probing via ACPI\n");
2151
2152         handle = acpi_dev->handle;
2153         info->addr_info.acpi_info.acpi_handle = handle;
2154
2155         /* _IFT tells us the interface type: KCS, BT, etc */
2156         status = acpi_evaluate_integer(handle, "_IFT", NULL, &tmp);
2157         if (ACPI_FAILURE(status))
2158                 goto err_free;
2159
2160         switch (tmp) {
2161         case 1:
2162                 info->si_type = SI_KCS;
2163                 break;
2164         case 2:
2165                 info->si_type = SI_SMIC;
2166                 break;
2167         case 3:
2168                 info->si_type = SI_BT;
2169                 break;
2170         default:
2171                 dev_info(&dev->dev, "unknown IPMI type %lld\n", tmp);
2172                 goto err_free;
2173         }
2174
2175         res = pnp_get_resource(dev, IORESOURCE_IO, 0);
2176         if (res) {
2177                 info->io_setup = port_setup;
2178                 info->io.addr_type = IPMI_IO_ADDR_SPACE;
2179         } else {
2180                 res = pnp_get_resource(dev, IORESOURCE_MEM, 0);
2181                 if (res) {
2182                         info->io_setup = mem_setup;
2183                         info->io.addr_type = IPMI_MEM_ADDR_SPACE;
2184                 }
2185         }
2186         if (!res) {
2187                 dev_err(&dev->dev, "no I/O or memory address\n");
2188                 goto err_free;
2189         }
2190         info->io.addr_data = res->start;
2191
2192         info->io.regspacing = DEFAULT_REGSPACING;
2193         res_second = pnp_get_resource(dev,
2194                                (info->io.addr_type == IPMI_IO_ADDR_SPACE) ?
2195                                         IORESOURCE_IO : IORESOURCE_MEM,
2196                                1);
2197         if (res_second) {
2198                 if (res_second->start > info->io.addr_data)
2199                         info->io.regspacing = res_second->start - info->io.addr_data;
2200         }
2201         info->io.regsize = DEFAULT_REGSPACING;
2202         info->io.regshift = 0;
2203
2204         /* If _GPE exists, use it; otherwise use standard interrupts */
2205         status = acpi_evaluate_integer(handle, "_GPE", NULL, &tmp);
2206         if (ACPI_SUCCESS(status)) {
2207                 info->irq = tmp;
2208                 info->irq_setup = acpi_gpe_irq_setup;
2209         } else if (pnp_irq_valid(dev, 0)) {
2210                 info->irq = pnp_irq(dev, 0);
2211                 info->irq_setup = std_irq_setup;
2212         }
2213
2214         info->dev = &dev->dev;
2215         pnp_set_drvdata(dev, info);
2216
2217         dev_info(info->dev, "%pR regsize %d spacing %d irq %d\n",
2218                  res, info->io.regsize, info->io.regspacing,
2219                  info->irq);
2220
2221         if (add_smi(info))
2222                 goto err_free;
2223
2224         return 0;
2225
2226 err_free:
2227         kfree(info);
2228         return -EINVAL;
2229 }
2230
2231 static void ipmi_pnp_remove(struct pnp_dev *dev)
2232 {
2233         struct smi_info *info = pnp_get_drvdata(dev);
2234
2235         cleanup_one_si(info);
2236 }
2237
2238 static const struct pnp_device_id pnp_dev_table[] = {
2239         {"IPI0001", 0},
2240         {"", 0},
2241 };
2242
2243 static struct pnp_driver ipmi_pnp_driver = {
2244         .name           = DEVICE_NAME,
2245         .probe          = ipmi_pnp_probe,
2246         .remove         = ipmi_pnp_remove,
2247         .id_table       = pnp_dev_table,
2248 };
2249 #endif
2250
2251 #ifdef CONFIG_DMI
2252 struct dmi_ipmi_data {
2253         u8              type;
2254         u8              addr_space;
2255         unsigned long   base_addr;
2256         u8              irq;
2257         u8              offset;
2258         u8              slave_addr;
2259 };
2260
2261 static int decode_dmi(const struct dmi_header *dm,
2262                                 struct dmi_ipmi_data *dmi)
2263 {
2264         const u8        *data = (const u8 *)dm;
2265         unsigned long   base_addr;
2266         u8              reg_spacing;
2267         u8              len = dm->length;
2268
2269         dmi->type = data[4];
2270
2271         memcpy(&base_addr, data+8, sizeof(unsigned long));
2272         if (len >= 0x11) {
2273                 if (base_addr & 1) {
2274                         /* I/O */
2275                         base_addr &= 0xFFFE;
2276                         dmi->addr_space = IPMI_IO_ADDR_SPACE;
2277                 } else
2278                         /* Memory */
2279                         dmi->addr_space = IPMI_MEM_ADDR_SPACE;
2280
2281                 /* If bit 4 of byte 0x10 is set, then the lsb for the address
2282                    is odd. */
2283                 dmi->base_addr = base_addr | ((data[0x10] & 0x10) >> 4);
2284
2285                 dmi->irq = data[0x11];
2286
2287                 /* The top two bits of byte 0x10 hold the register spacing. */
2288                 reg_spacing = (data[0x10] & 0xC0) >> 6;
2289                 switch (reg_spacing) {
2290                 case 0x00: /* Byte boundaries */
2291                     dmi->offset = 1;
2292                     break;
2293                 case 0x01: /* 32-bit boundaries */
2294                     dmi->offset = 4;
2295                     break;
2296                 case 0x02: /* 16-byte boundaries */
2297                     dmi->offset = 16;
2298                     break;
2299                 default:
2300                     /* Some other interface, just ignore it. */
2301                     return -EIO;
2302                 }
2303         } else {
2304                 /* Old DMI spec. */
2305                 /*
2306                  * Note that technically, the lower bit of the base
2307                  * address should be 1 if the address is I/O and 0 if
2308                  * the address is in memory.  So many systems get that
2309                  * wrong (and all that I have seen are I/O) so we just
2310                  * ignore that bit and assume I/O.  Systems that use
2311                  * memory should use the newer spec, anyway.
2312                  */
2313                 dmi->base_addr = base_addr & 0xfffe;
2314                 dmi->addr_space = IPMI_IO_ADDR_SPACE;
2315                 dmi->offset = 1;
2316         }
2317
2318         dmi->slave_addr = data[6];
2319
2320         return 0;
2321 }
2322
2323 static void try_init_dmi(struct dmi_ipmi_data *ipmi_data)
2324 {
2325         struct smi_info *info;
2326
2327         info = smi_info_alloc();
2328         if (!info) {
2329                 printk(KERN_ERR PFX "Could not allocate SI data\n");
2330                 return;
2331         }
2332
2333         info->addr_source = SI_SMBIOS;
2334         printk(KERN_INFO PFX "probing via SMBIOS\n");
2335
2336         switch (ipmi_data->type) {
2337         case 0x01: /* KCS */
2338                 info->si_type = SI_KCS;
2339                 break;
2340         case 0x02: /* SMIC */
2341                 info->si_type = SI_SMIC;
2342                 break;
2343         case 0x03: /* BT */
2344                 info->si_type = SI_BT;
2345                 break;
2346         default:
2347                 kfree(info);
2348                 return;
2349         }
2350
2351         switch (ipmi_data->addr_space) {
2352         case IPMI_MEM_ADDR_SPACE:
2353                 info->io_setup = mem_setup;
2354                 info->io.addr_type = IPMI_MEM_ADDR_SPACE;
2355                 break;
2356
2357         case IPMI_IO_ADDR_SPACE:
2358                 info->io_setup = port_setup;
2359                 info->io.addr_type = IPMI_IO_ADDR_SPACE;
2360                 break;
2361
2362         default:
2363                 kfree(info);
2364                 printk(KERN_WARNING PFX "Unknown SMBIOS I/O Address type: %d\n",
2365                        ipmi_data->addr_space);
2366                 return;
2367         }
2368         info->io.addr_data = ipmi_data->base_addr;
2369
2370         info->io.regspacing = ipmi_data->offset;
2371         if (!info->io.regspacing)
2372                 info->io.regspacing = DEFAULT_REGSPACING;
2373         info->io.regsize = DEFAULT_REGSPACING;
2374         info->io.regshift = 0;
2375
2376         info->slave_addr = ipmi_data->slave_addr;
2377
2378         info->irq = ipmi_data->irq;
2379         if (info->irq)
2380                 info->irq_setup = std_irq_setup;
2381
2382         pr_info("ipmi_si: SMBIOS: %s %#lx regsize %d spacing %d irq %d\n",
2383                  (info->io.addr_type == IPMI_IO_ADDR_SPACE) ? "io" : "mem",
2384                  info->io.addr_data, info->io.regsize, info->io.regspacing,
2385                  info->irq);
2386
2387         if (add_smi(info))
2388                 kfree(info);
2389 }
2390
2391 static void dmi_find_bmc(void)
2392 {
2393         const struct dmi_device *dev = NULL;
2394         struct dmi_ipmi_data data;
2395         int                  rv;
2396
2397         while ((dev = dmi_find_device(DMI_DEV_TYPE_IPMI, NULL, dev))) {
2398                 memset(&data, 0, sizeof(data));
2399                 rv = decode_dmi((const struct dmi_header *) dev->device_data,
2400                                 &data);
2401                 if (!rv)
2402                         try_init_dmi(&data);
2403         }
2404 }
2405 #endif /* CONFIG_DMI */
2406
2407 #ifdef CONFIG_PCI
2408
2409 #define PCI_ERMC_CLASSCODE              0x0C0700
2410 #define PCI_ERMC_CLASSCODE_MASK         0xffffff00
2411 #define PCI_ERMC_CLASSCODE_TYPE_MASK    0xff
2412 #define PCI_ERMC_CLASSCODE_TYPE_SMIC    0x00
2413 #define PCI_ERMC_CLASSCODE_TYPE_KCS     0x01
2414 #define PCI_ERMC_CLASSCODE_TYPE_BT      0x02
2415
2416 #define PCI_HP_VENDOR_ID    0x103C
2417 #define PCI_MMC_DEVICE_ID   0x121A
2418 #define PCI_MMC_ADDR_CW     0x10
2419
2420 static void ipmi_pci_cleanup(struct smi_info *info)
2421 {
2422         struct pci_dev *pdev = info->addr_source_data;
2423
2424         pci_disable_device(pdev);
2425 }
2426
2427 static int ipmi_pci_probe_regspacing(struct smi_info *info)
2428 {
2429         if (info->si_type == SI_KCS) {
2430                 unsigned char   status;
2431                 int             regspacing;
2432
2433                 info->io.regsize = DEFAULT_REGSIZE;
2434                 info->io.regshift = 0;
2435                 info->io_size = 2;
2436                 info->handlers = &kcs_smi_handlers;
2437
2438                 /* detect 1, 4, 16byte spacing */
2439                 for (regspacing = DEFAULT_REGSPACING; regspacing <= 16;) {
2440                         info->io.regspacing = regspacing;
2441                         if (info->io_setup(info)) {
2442                                 dev_err(info->dev,
2443                                         "Could not setup I/O space\n");
2444                                 return DEFAULT_REGSPACING;
2445                         }
2446                         /* write invalid cmd */
2447                         info->io.outputb(&info->io, 1, 0x10);
2448                         /* read status back */
2449                         status = info->io.inputb(&info->io, 1);
2450                         info->io_cleanup(info);
2451                         if (status)
2452                                 return regspacing;
2453                         regspacing *= 4;
2454                 }
2455         }
2456         return DEFAULT_REGSPACING;
2457 }
2458
2459 static int ipmi_pci_probe(struct pci_dev *pdev,
2460                                     const struct pci_device_id *ent)
2461 {
2462         int rv;
2463         int class_type = pdev->class & PCI_ERMC_CLASSCODE_TYPE_MASK;
2464         struct smi_info *info;
2465
2466         info = smi_info_alloc();
2467         if (!info)
2468                 return -ENOMEM;
2469
2470         info->addr_source = SI_PCI;
2471         dev_info(&pdev->dev, "probing via PCI");
2472
2473         switch (class_type) {
2474         case PCI_ERMC_CLASSCODE_TYPE_SMIC:
2475                 info->si_type = SI_SMIC;
2476                 break;
2477
2478         case PCI_ERMC_CLASSCODE_TYPE_KCS:
2479                 info->si_type = SI_KCS;
2480                 break;
2481
2482         case PCI_ERMC_CLASSCODE_TYPE_BT:
2483                 info->si_type = SI_BT;
2484                 break;
2485
2486         default:
2487                 kfree(info);
2488                 dev_info(&pdev->dev, "Unknown IPMI type: %d\n", class_type);
2489                 return -ENOMEM;
2490         }
2491
2492         rv = pci_enable_device(pdev);
2493         if (rv) {
2494                 dev_err(&pdev->dev, "couldn't enable PCI device\n");
2495                 kfree(info);
2496                 return rv;
2497         }
2498
2499         info->addr_source_cleanup = ipmi_pci_cleanup;
2500         info->addr_source_data = pdev;
2501
2502         if (pci_resource_flags(pdev, 0) & IORESOURCE_IO) {
2503                 info->io_setup = port_setup;
2504                 info->io.addr_type = IPMI_IO_ADDR_SPACE;
2505         } else {
2506                 info->io_setup = mem_setup;
2507                 info->io.addr_type = IPMI_MEM_ADDR_SPACE;
2508         }
2509         info->io.addr_data = pci_resource_start(pdev, 0);
2510
2511         info->io.regspacing = ipmi_pci_probe_regspacing(info);
2512         info->io.regsize = DEFAULT_REGSIZE;
2513         info->io.regshift = 0;
2514
2515         info->irq = pdev->irq;
2516         if (info->irq)
2517                 info->irq_setup = std_irq_setup;
2518
2519         info->dev = &pdev->dev;
2520         pci_set_drvdata(pdev, info);
2521
2522         dev_info(&pdev->dev, "%pR regsize %d spacing %d irq %d\n",
2523                 &pdev->resource[0], info->io.regsize, info->io.regspacing,
2524                 info->irq);
2525
2526         if (add_smi(info))
2527                 kfree(info);
2528
2529         return 0;
2530 }
2531
2532 static void ipmi_pci_remove(struct pci_dev *pdev)
2533 {
2534         struct smi_info *info = pci_get_drvdata(pdev);
2535         cleanup_one_si(info);
2536 }
2537
2538 static struct pci_device_id ipmi_pci_devices[] = {
2539         { PCI_DEVICE(PCI_HP_VENDOR_ID, PCI_MMC_DEVICE_ID) },
2540         { PCI_DEVICE_CLASS(PCI_ERMC_CLASSCODE, PCI_ERMC_CLASSCODE_MASK) },
2541         { 0, }
2542 };
2543 MODULE_DEVICE_TABLE(pci, ipmi_pci_devices);
2544
2545 static struct pci_driver ipmi_pci_driver = {
2546         .name =         DEVICE_NAME,
2547         .id_table =     ipmi_pci_devices,
2548         .probe =        ipmi_pci_probe,
2549         .remove =       ipmi_pci_remove,
2550 };
2551 #endif /* CONFIG_PCI */
2552
2553 static struct of_device_id ipmi_match[];
2554 static int ipmi_probe(struct platform_device *dev)
2555 {
2556 #ifdef CONFIG_OF
2557         const struct of_device_id *match;
2558         struct smi_info *info;
2559         struct resource resource;
2560         const __be32 *regsize, *regspacing, *regshift;
2561         struct device_node *np = dev->dev.of_node;
2562         int ret;
2563         int proplen;
2564
2565         dev_info(&dev->dev, "probing via device tree\n");
2566
2567         match = of_match_device(ipmi_match, &dev->dev);
2568         if (!match)
2569                 return -EINVAL;
2570
2571         ret = of_address_to_resource(np, 0, &resource);
2572         if (ret) {
2573                 dev_warn(&dev->dev, PFX "invalid address from OF\n");
2574                 return ret;
2575         }
2576
2577         regsize = of_get_property(np, "reg-size", &proplen);
2578         if (regsize && proplen != 4) {
2579                 dev_warn(&dev->dev, PFX "invalid regsize from OF\n");
2580                 return -EINVAL;
2581         }
2582
2583         regspacing = of_get_property(np, "reg-spacing", &proplen);
2584         if (regspacing && proplen != 4) {
2585                 dev_warn(&dev->dev, PFX "invalid regspacing from OF\n");
2586                 return -EINVAL;
2587         }
2588
2589         regshift = of_get_property(np, "reg-shift", &proplen);
2590         if (regshift && proplen != 4) {
2591                 dev_warn(&dev->dev, PFX "invalid regshift from OF\n");
2592                 return -EINVAL;
2593         }
2594
2595         info = smi_info_alloc();
2596
2597         if (!info) {
2598                 dev_err(&dev->dev,
2599                         "could not allocate memory for OF probe\n");
2600                 return -ENOMEM;
2601         }
2602
2603         info->si_type           = (enum si_type) match->data;
2604         info->addr_source       = SI_DEVICETREE;
2605         info->irq_setup         = std_irq_setup;
2606
2607         if (resource.flags & IORESOURCE_IO) {
2608                 info->io_setup          = port_setup;
2609                 info->io.addr_type      = IPMI_IO_ADDR_SPACE;
2610         } else {
2611                 info->io_setup          = mem_setup;
2612                 info->io.addr_type      = IPMI_MEM_ADDR_SPACE;
2613         }
2614
2615         info->io.addr_data      = resource.start;
2616
2617         info->io.regsize        = regsize ? be32_to_cpup(regsize) : DEFAULT_REGSIZE;
2618         info->io.regspacing     = regspacing ? be32_to_cpup(regspacing) : DEFAULT_REGSPACING;
2619         info->io.regshift       = regshift ? be32_to_cpup(regshift) : 0;
2620
2621         info->irq               = irq_of_parse_and_map(dev->dev.of_node, 0);
2622         info->dev               = &dev->dev;
2623
2624         dev_dbg(&dev->dev, "addr 0x%lx regsize %d spacing %d irq %d\n",
2625                 info->io.addr_data, info->io.regsize, info->io.regspacing,
2626                 info->irq);
2627
2628         dev_set_drvdata(&dev->dev, info);
2629
2630         if (add_smi(info)) {
2631                 kfree(info);
2632                 return -EBUSY;
2633         }
2634 #endif
2635         return 0;
2636 }
2637
2638 static int ipmi_remove(struct platform_device *dev)
2639 {
2640 #ifdef CONFIG_OF
2641         cleanup_one_si(dev_get_drvdata(&dev->dev));
2642 #endif
2643         return 0;
2644 }
2645
2646 static struct of_device_id ipmi_match[] =
2647 {
2648         { .type = "ipmi", .compatible = "ipmi-kcs",
2649           .data = (void *)(unsigned long) SI_KCS },
2650         { .type = "ipmi", .compatible = "ipmi-smic",
2651           .data = (void *)(unsigned long) SI_SMIC },
2652         { .type = "ipmi", .compatible = "ipmi-bt",
2653           .data = (void *)(unsigned long) SI_BT },
2654         {},
2655 };
2656
2657 static struct platform_driver ipmi_driver = {
2658         .driver = {
2659                 .name = DEVICE_NAME,
2660                 .owner = THIS_MODULE,
2661                 .of_match_table = ipmi_match,
2662         },
2663         .probe          = ipmi_probe,
2664         .remove         = ipmi_remove,
2665 };
2666
2667 static int wait_for_msg_done(struct smi_info *smi_info)
2668 {
2669         enum si_sm_result     smi_result;
2670
2671         smi_result = smi_info->handlers->event(smi_info->si_sm, 0);
2672         for (;;) {
2673                 if (smi_result == SI_SM_CALL_WITH_DELAY ||
2674                     smi_result == SI_SM_CALL_WITH_TICK_DELAY) {
2675                         schedule_timeout_uninterruptible(1);
2676                         smi_result = smi_info->handlers->event(
2677                                 smi_info->si_sm, 100);
2678                 } else if (smi_result == SI_SM_CALL_WITHOUT_DELAY) {
2679                         smi_result = smi_info->handlers->event(
2680                                 smi_info->si_sm, 0);
2681                 } else
2682                         break;
2683         }
2684         if (smi_result == SI_SM_HOSED)
2685                 /*
2686                  * We couldn't get the state machine to run, so whatever's at
2687                  * the port is probably not an IPMI SMI interface.
2688                  */
2689                 return -ENODEV;
2690
2691         return 0;
2692 }
2693
2694 static int try_get_dev_id(struct smi_info *smi_info)
2695 {
2696         unsigned char         msg[2];
2697         unsigned char         *resp;
2698         unsigned long         resp_len;
2699         int                   rv = 0;
2700
2701         resp = kmalloc(IPMI_MAX_MSG_LENGTH, GFP_KERNEL);
2702         if (!resp)
2703                 return -ENOMEM;
2704
2705         /*
2706          * Do a Get Device ID command, since it comes back with some
2707          * useful info.
2708          */
2709         msg[0] = IPMI_NETFN_APP_REQUEST << 2;
2710         msg[1] = IPMI_GET_DEVICE_ID_CMD;
2711         smi_info->handlers->start_transaction(smi_info->si_sm, msg, 2);
2712
2713         rv = wait_for_msg_done(smi_info);
2714         if (rv)
2715                 goto out;
2716
2717         resp_len = smi_info->handlers->get_result(smi_info->si_sm,
2718                                                   resp, IPMI_MAX_MSG_LENGTH);
2719
2720         /* Check and record info from the get device id, in case we need it. */
2721         rv = ipmi_demangle_device_id(resp, resp_len, &smi_info->device_id);
2722
2723  out:
2724         kfree(resp);
2725         return rv;
2726 }
2727
2728 static int try_enable_event_buffer(struct smi_info *smi_info)
2729 {
2730         unsigned char         msg[3];
2731         unsigned char         *resp;
2732         unsigned long         resp_len;
2733         int                   rv = 0;
2734
2735         resp = kmalloc(IPMI_MAX_MSG_LENGTH, GFP_KERNEL);
2736         if (!resp)
2737                 return -ENOMEM;
2738
2739         msg[0] = IPMI_NETFN_APP_REQUEST << 2;
2740         msg[1] = IPMI_GET_BMC_GLOBAL_ENABLES_CMD;
2741         smi_info->handlers->start_transaction(smi_info->si_sm, msg, 2);
2742
2743         rv = wait_for_msg_done(smi_info);
2744         if (rv) {
2745                 printk(KERN_WARNING PFX "Error getting response from get"
2746                        " global enables command, the event buffer is not"
2747                        " enabled.\n");
2748                 goto out;
2749         }
2750
2751         resp_len = smi_info->handlers->get_result(smi_info->si_sm,
2752                                                   resp, IPMI_MAX_MSG_LENGTH);
2753
2754         if (resp_len < 4 ||
2755                         resp[0] != (IPMI_NETFN_APP_REQUEST | 1) << 2 ||
2756                         resp[1] != IPMI_GET_BMC_GLOBAL_ENABLES_CMD   ||
2757                         resp[2] != 0) {
2758                 printk(KERN_WARNING PFX "Invalid return from get global"
2759                        " enables command, cannot enable the event buffer.\n");
2760                 rv = -EINVAL;
2761                 goto out;
2762         }
2763
2764         if (resp[3] & IPMI_BMC_EVT_MSG_BUFF)
2765                 /* buffer is already enabled, nothing to do. */
2766                 goto out;
2767
2768         msg[0] = IPMI_NETFN_APP_REQUEST << 2;
2769         msg[1] = IPMI_SET_BMC_GLOBAL_ENABLES_CMD;
2770         msg[2] = resp[3] | IPMI_BMC_EVT_MSG_BUFF;
2771         smi_info->handlers->start_transaction(smi_info->si_sm, msg, 3);
2772
2773         rv = wait_for_msg_done(smi_info);
2774         if (rv) {
2775                 printk(KERN_WARNING PFX "Error getting response from set"
2776                        " global, enables command, the event buffer is not"
2777                        " enabled.\n");
2778                 goto out;
2779         }
2780
2781         resp_len = smi_info->handlers->get_result(smi_info->si_sm,
2782                                                   resp, IPMI_MAX_MSG_LENGTH);
2783
2784         if (resp_len < 3 ||
2785                         resp[0] != (IPMI_NETFN_APP_REQUEST | 1) << 2 ||
2786                         resp[1] != IPMI_SET_BMC_GLOBAL_ENABLES_CMD) {
2787                 printk(KERN_WARNING PFX "Invalid return from get global,"
2788                        "enables command, not enable the event buffer.\n");
2789                 rv = -EINVAL;
2790                 goto out;
2791         }
2792
2793         if (resp[2] != 0)
2794                 /*
2795                  * An error when setting the event buffer bit means
2796                  * that the event buffer is not supported.
2797                  */
2798                 rv = -ENOENT;
2799  out:
2800         kfree(resp);
2801         return rv;
2802 }
2803
2804 static int smi_type_proc_show(struct seq_file *m, void *v)
2805 {
2806         struct smi_info *smi = m->private;
2807
2808         return seq_printf(m, "%s\n", si_to_str[smi->si_type]);
2809 }
2810
2811 static int smi_type_proc_open(struct inode *inode, struct file *file)
2812 {
2813         return single_open(file, smi_type_proc_show, PDE(inode)->data);
2814 }
2815
2816 static const struct file_operations smi_type_proc_ops = {
2817         .open           = smi_type_proc_open,
2818         .read           = seq_read,
2819         .llseek         = seq_lseek,
2820         .release        = single_release,
2821 };
2822
2823 static int smi_si_stats_proc_show(struct seq_file *m, void *v)
2824 {
2825         struct smi_info *smi = m->private;
2826
2827         seq_printf(m, "interrupts_enabled:    %d\n",
2828                        smi->irq && !smi->interrupt_disabled);
2829         seq_printf(m, "short_timeouts:        %u\n",
2830                        smi_get_stat(smi, short_timeouts));
2831         seq_printf(m, "long_timeouts:         %u\n",
2832                        smi_get_stat(smi, long_timeouts));
2833         seq_printf(m, "idles:                 %u\n",
2834                        smi_get_stat(smi, idles));
2835         seq_printf(m, "interrupts:            %u\n",
2836                        smi_get_stat(smi, interrupts));
2837         seq_printf(m, "attentions:            %u\n",
2838                        smi_get_stat(smi, attentions));
2839         seq_printf(m, "flag_fetches:          %u\n",
2840                        smi_get_stat(smi, flag_fetches));
2841         seq_printf(m, "hosed_count:           %u\n",
2842                        smi_get_stat(smi, hosed_count));
2843         seq_printf(m, "complete_transactions: %u\n",
2844                        smi_get_stat(smi, complete_transactions));
2845         seq_printf(m, "events:                %u\n",
2846                        smi_get_stat(smi, events));
2847         seq_printf(m, "watchdog_pretimeouts:  %u\n",
2848                        smi_get_stat(smi, watchdog_pretimeouts));
2849         seq_printf(m, "incoming_messages:     %u\n",
2850                        smi_get_stat(smi, incoming_messages));
2851         return 0;
2852 }
2853
2854 static int smi_si_stats_proc_open(struct inode *inode, struct file *file)
2855 {
2856         return single_open(file, smi_si_stats_proc_show, PDE(inode)->data);
2857 }
2858
2859 static const struct file_operations smi_si_stats_proc_ops = {
2860         .open           = smi_si_stats_proc_open,
2861         .read           = seq_read,
2862         .llseek         = seq_lseek,
2863         .release        = single_release,
2864 };
2865
2866 static int smi_params_proc_show(struct seq_file *m, void *v)
2867 {
2868         struct smi_info *smi = m->private;
2869
2870         return seq_printf(m,
2871                        "%s,%s,0x%lx,rsp=%d,rsi=%d,rsh=%d,irq=%d,ipmb=%d\n",
2872                        si_to_str[smi->si_type],
2873                        addr_space_to_str[smi->io.addr_type],
2874                        smi->io.addr_data,
2875                        smi->io.regspacing,
2876                        smi->io.regsize,
2877                        smi->io.regshift,
2878                        smi->irq,
2879                        smi->slave_addr);
2880 }
2881
2882 static int smi_params_proc_open(struct inode *inode, struct file *file)
2883 {
2884         return single_open(file, smi_params_proc_show, PDE(inode)->data);
2885 }
2886
2887 static const struct file_operations smi_params_proc_ops = {
2888         .open           = smi_params_proc_open,
2889         .read           = seq_read,
2890         .llseek         = seq_lseek,
2891         .release        = single_release,
2892 };
2893
2894 /*
2895  * oem_data_avail_to_receive_msg_avail
2896  * @info - smi_info structure with msg_flags set
2897  *
2898  * Converts flags from OEM_DATA_AVAIL to RECEIVE_MSG_AVAIL
2899  * Returns 1 indicating need to re-run handle_flags().
2900  */
2901 static int oem_data_avail_to_receive_msg_avail(struct smi_info *smi_info)
2902 {
2903         smi_info->msg_flags = ((smi_info->msg_flags & ~OEM_DATA_AVAIL) |
2904                                RECEIVE_MSG_AVAIL);
2905         return 1;
2906 }
2907
2908 /*
2909  * setup_dell_poweredge_oem_data_handler
2910  * @info - smi_info.device_id must be populated
2911  *
2912  * Systems that match, but have firmware version < 1.40 may assert
2913  * OEM0_DATA_AVAIL on their own, without being told via Set Flags that
2914  * it's safe to do so.  Such systems will de-assert OEM1_DATA_AVAIL
2915  * upon receipt of IPMI_GET_MSG_CMD, so we should treat these flags
2916  * as RECEIVE_MSG_AVAIL instead.
2917  *
2918  * As Dell has no plans to release IPMI 1.5 firmware that *ever*
2919  * assert the OEM[012] bits, and if it did, the driver would have to
2920  * change to handle that properly, we don't actually check for the
2921  * firmware version.
2922  * Device ID = 0x20                BMC on PowerEdge 8G servers
2923  * Device Revision = 0x80
2924  * Firmware Revision1 = 0x01       BMC version 1.40
2925  * Firmware Revision2 = 0x40       BCD encoded
2926  * IPMI Version = 0x51             IPMI 1.5
2927  * Manufacturer ID = A2 02 00      Dell IANA
2928  *
2929  * Additionally, PowerEdge systems with IPMI < 1.5 may also assert
2930  * OEM0_DATA_AVAIL and needs to be treated as RECEIVE_MSG_AVAIL.
2931  *
2932  */
2933 #define DELL_POWEREDGE_8G_BMC_DEVICE_ID  0x20
2934 #define DELL_POWEREDGE_8G_BMC_DEVICE_REV 0x80
2935 #define DELL_POWEREDGE_8G_BMC_IPMI_VERSION 0x51
2936 #define DELL_IANA_MFR_ID 0x0002a2
2937 static void setup_dell_poweredge_oem_data_handler(struct smi_info *smi_info)
2938 {
2939         struct ipmi_device_id *id = &smi_info->device_id;
2940         if (id->manufacturer_id == DELL_IANA_MFR_ID) {
2941                 if (id->device_id       == DELL_POWEREDGE_8G_BMC_DEVICE_ID  &&
2942                     id->device_revision == DELL_POWEREDGE_8G_BMC_DEVICE_REV &&
2943                     id->ipmi_version   == DELL_POWEREDGE_8G_BMC_IPMI_VERSION) {
2944                         smi_info->oem_data_avail_handler =
2945                                 oem_data_avail_to_receive_msg_avail;
2946                 } else if (ipmi_version_major(id) < 1 ||
2947                            (ipmi_version_major(id) == 1 &&
2948                             ipmi_version_minor(id) < 5)) {
2949                         smi_info->oem_data_avail_handler =
2950                                 oem_data_avail_to_receive_msg_avail;
2951                 }
2952         }
2953 }
2954
2955 #define CANNOT_RETURN_REQUESTED_LENGTH 0xCA
2956 static void return_hosed_msg_badsize(struct smi_info *smi_info)
2957 {
2958         struct ipmi_smi_msg *msg = smi_info->curr_msg;
2959
2960         /* Make it a response */
2961         msg->rsp[0] = msg->data[0] | 4;
2962         msg->rsp[1] = msg->data[1];
2963         msg->rsp[2] = CANNOT_RETURN_REQUESTED_LENGTH;
2964         msg->rsp_size = 3;
2965         smi_info->curr_msg = NULL;
2966         deliver_recv_msg(smi_info, msg);
2967 }
2968
2969 /*
2970  * dell_poweredge_bt_xaction_handler
2971  * @info - smi_info.device_id must be populated
2972  *
2973  * Dell PowerEdge servers with the BT interface (x6xx and 1750) will
2974  * not respond to a Get SDR command if the length of the data
2975  * requested is exactly 0x3A, which leads to command timeouts and no
2976  * data returned.  This intercepts such commands, and causes userspace
2977  * callers to try again with a different-sized buffer, which succeeds.
2978  */
2979
2980 #define STORAGE_NETFN 0x0A
2981 #define STORAGE_CMD_GET_SDR 0x23
2982 static int dell_poweredge_bt_xaction_handler(struct notifier_block *self,
2983                                              unsigned long unused,
2984                                              void *in)
2985 {
2986         struct smi_info *smi_info = in;
2987         unsigned char *data = smi_info->curr_msg->data;
2988         unsigned int size   = smi_info->curr_msg->data_size;
2989         if (size >= 8 &&
2990             (data[0]>>2) == STORAGE_NETFN &&
2991             data[1] == STORAGE_CMD_GET_SDR &&
2992             data[7] == 0x3A) {
2993                 return_hosed_msg_badsize(smi_info);
2994                 return NOTIFY_STOP;
2995         }
2996         return NOTIFY_DONE;
2997 }
2998
2999 static struct notifier_block dell_poweredge_bt_xaction_notifier = {
3000         .notifier_call  = dell_poweredge_bt_xaction_handler,
3001 };
3002
3003 /*
3004  * setup_dell_poweredge_bt_xaction_handler
3005  * @info - smi_info.device_id must be filled in already
3006  *
3007  * Fills in smi_info.device_id.start_transaction_pre_hook
3008  * when we know what function to use there.
3009  */
3010 static void
3011 setup_dell_poweredge_bt_xaction_handler(struct smi_info *smi_info)
3012 {
3013         struct ipmi_device_id *id = &smi_info->device_id;
3014         if (id->manufacturer_id == DELL_IANA_MFR_ID &&
3015             smi_info->si_type == SI_BT)
3016                 register_xaction_notifier(&dell_poweredge_bt_xaction_notifier);
3017 }
3018
3019 /*
3020  * setup_oem_data_handler
3021  * @info - smi_info.device_id must be filled in already
3022  *
3023  * Fills in smi_info.device_id.oem_data_available_handler
3024  * when we know what function to use there.
3025  */
3026
3027 static void setup_oem_data_handler(struct smi_info *smi_info)
3028 {
3029         setup_dell_poweredge_oem_data_handler(smi_info);
3030 }
3031
3032 static void setup_xaction_handlers(struct smi_info *smi_info)
3033 {
3034         setup_dell_poweredge_bt_xaction_handler(smi_info);
3035 }
3036
3037 static inline void wait_for_timer_and_thread(struct smi_info *smi_info)
3038 {
3039         if (smi_info->intf) {
3040                 /*
3041                  * The timer and thread are only running if the
3042                  * interface has been started up and registered.
3043                  */
3044                 if (smi_info->thread != NULL)
3045                         kthread_stop(smi_info->thread);
3046                 del_timer_sync(&smi_info->si_timer);
3047         }
3048 }
3049
3050 static struct ipmi_default_vals
3051 {
3052         int type;
3053         int port;
3054 } ipmi_defaults[] =
3055 {
3056         { .type = SI_KCS, .port = 0xca2 },
3057         { .type = SI_SMIC, .port = 0xca9 },
3058         { .type = SI_BT, .port = 0xe4 },
3059         { .port = 0 }
3060 };
3061
3062 static void default_find_bmc(void)
3063 {
3064         struct smi_info *info;
3065         int             i;
3066
3067         for (i = 0; ; i++) {
3068                 if (!ipmi_defaults[i].port)
3069                         break;
3070 #ifdef CONFIG_PPC
3071                 if (check_legacy_ioport(ipmi_defaults[i].port))
3072                         continue;
3073 #endif
3074                 info = smi_info_alloc();
3075                 if (!info)
3076                         return;
3077
3078                 info->addr_source = SI_DEFAULT;
3079
3080                 info->si_type = ipmi_defaults[i].type;
3081                 info->io_setup = port_setup;
3082                 info->io.addr_data = ipmi_defaults[i].port;
3083                 info->io.addr_type = IPMI_IO_ADDR_SPACE;
3084
3085                 info->io.addr = NULL;
3086                 info->io.regspacing = DEFAULT_REGSPACING;
3087                 info->io.regsize = DEFAULT_REGSPACING;
3088                 info->io.regshift = 0;
3089
3090                 if (add_smi(info) == 0) {
3091                         if ((try_smi_init(info)) == 0) {
3092                                 /* Found one... */
3093                                 printk(KERN_INFO PFX "Found default %s"
3094                                 " state machine at %s address 0x%lx\n",
3095                                 si_to_str[info->si_type],
3096                                 addr_space_to_str[info->io.addr_type],
3097                                 info->io.addr_data);
3098                         } else
3099                                 cleanup_one_si(info);
3100                 } else {
3101                         kfree(info);
3102                 }
3103         }
3104 }
3105
3106 static int is_new_interface(struct smi_info *info)
3107 {
3108         struct smi_info *e;
3109
3110         list_for_each_entry(e, &smi_infos, link) {
3111                 if (e->io.addr_type != info->io.addr_type)
3112                         continue;
3113                 if (e->io.addr_data == info->io.addr_data)
3114                         return 0;
3115         }
3116
3117         return 1;
3118 }
3119
3120 static int add_smi(struct smi_info *new_smi)
3121 {
3122         int rv = 0;
3123
3124         printk(KERN_INFO PFX "Adding %s-specified %s state machine",
3125                         ipmi_addr_src_to_str[new_smi->addr_source],
3126                         si_to_str[new_smi->si_type]);
3127         mutex_lock(&smi_infos_lock);
3128         if (!is_new_interface(new_smi)) {
3129                 printk(KERN_CONT " duplicate interface\n");
3130                 rv = -EBUSY;
3131                 goto out_err;
3132         }
3133
3134         printk(KERN_CONT "\n");
3135
3136         /* So we know not to free it unless we have allocated one. */
3137         new_smi->intf = NULL;
3138         new_smi->si_sm = NULL;
3139         new_smi->handlers = NULL;
3140
3141         list_add_tail(&new_smi->link, &smi_infos);
3142
3143 out_err:
3144         mutex_unlock(&smi_infos_lock);
3145         return rv;
3146 }
3147
3148 static int try_smi_init(struct smi_info *new_smi)
3149 {
3150         int rv = 0;
3151         int i;
3152
3153         printk(KERN_INFO PFX "Trying %s-specified %s state"
3154                " machine at %s address 0x%lx, slave address 0x%x,"
3155                " irq %d\n",
3156                ipmi_addr_src_to_str[new_smi->addr_source],
3157                si_to_str[new_smi->si_type],
3158                addr_space_to_str[new_smi->io.addr_type],
3159                new_smi->io.addr_data,
3160                new_smi->slave_addr, new_smi->irq);
3161
3162         switch (new_smi->si_type) {
3163         case SI_KCS:
3164                 new_smi->handlers = &kcs_smi_handlers;
3165                 break;
3166
3167         case SI_SMIC:
3168                 new_smi->handlers = &smic_smi_handlers;
3169                 break;
3170
3171         case SI_BT:
3172                 new_smi->handlers = &bt_smi_handlers;
3173                 break;
3174
3175         default:
3176                 /* No support for anything else yet. */
3177                 rv = -EIO;
3178                 goto out_err;
3179         }
3180
3181         /* Allocate the state machine's data and initialize it. */
3182         new_smi->si_sm = kmalloc(new_smi->handlers->size(), GFP_KERNEL);
3183         if (!new_smi->si_sm) {
3184                 printk(KERN_ERR PFX
3185                        "Could not allocate state machine memory\n");
3186                 rv = -ENOMEM;
3187                 goto out_err;
3188         }
3189         new_smi->io_size = new_smi->handlers->init_data(new_smi->si_sm,
3190                                                         &new_smi->io);
3191
3192         /* Now that we know the I/O size, we can set up the I/O. */
3193         rv = new_smi->io_setup(new_smi);
3194         if (rv) {
3195                 printk(KERN_ERR PFX "Could not set up I/O space\n");
3196                 goto out_err;
3197         }
3198
3199         /* Do low-level detection first. */
3200         if (new_smi->handlers->detect(new_smi->si_sm)) {
3201                 if (new_smi->addr_source)
3202                         printk(KERN_INFO PFX "Interface detection failed\n");
3203                 rv = -ENODEV;
3204                 goto out_err;
3205         }
3206
3207         /*
3208          * Attempt a get device id command.  If it fails, we probably
3209          * don't have a BMC here.
3210          */
3211         rv = try_get_dev_id(new_smi);
3212         if (rv) {
3213                 if (new_smi->addr_source)
3214                         printk(KERN_INFO PFX "There appears to be no BMC"
3215                                " at this location\n");
3216                 goto out_err;
3217         }
3218
3219         setup_oem_data_handler(new_smi);
3220         setup_xaction_handlers(new_smi);
3221
3222         INIT_LIST_HEAD(&(new_smi->xmit_msgs));
3223         INIT_LIST_HEAD(&(new_smi->hp_xmit_msgs));
3224         new_smi->curr_msg = NULL;
3225         atomic_set(&new_smi->req_events, 0);
3226         new_smi->run_to_completion = 0;
3227         for (i = 0; i < SI_NUM_STATS; i++)
3228                 atomic_set(&new_smi->stats[i], 0);
3229
3230         new_smi->interrupt_disabled = 1;
3231         atomic_set(&new_smi->stop_operation, 0);
3232         new_smi->intf_num = smi_num;
3233         smi_num++;
3234
3235         rv = try_enable_event_buffer(new_smi);
3236         if (rv == 0)
3237                 new_smi->has_event_buffer = 1;
3238
3239         /*
3240          * Start clearing the flags before we enable interrupts or the
3241          * timer to avoid racing with the timer.
3242          */
3243         start_clear_flags(new_smi);
3244         /* IRQ is defined to be set when non-zero. */
3245         if (new_smi->irq)
3246                 new_smi->si_state = SI_CLEARING_FLAGS_THEN_SET_IRQ;
3247
3248         if (!new_smi->dev) {
3249                 /*
3250                  * If we don't already have a device from something
3251                  * else (like PCI), then register a new one.
3252                  */
3253                 new_smi->pdev = platform_device_alloc("ipmi_si",
3254                                                       new_smi->intf_num);
3255                 if (!new_smi->pdev) {
3256                         printk(KERN_ERR PFX
3257                                "Unable to allocate platform device\n");
3258                         goto out_err;
3259                 }
3260                 new_smi->dev = &new_smi->pdev->dev;
3261                 new_smi->dev->driver = &ipmi_driver.driver;
3262
3263                 rv = platform_device_add(new_smi->pdev);
3264                 if (rv) {
3265                         printk(KERN_ERR PFX
3266                                "Unable to register system interface device:"
3267                                " %d\n",
3268                                rv);
3269                         goto out_err;
3270                 }
3271                 new_smi->dev_registered = 1;
3272         }
3273
3274         rv = ipmi_register_smi(&handlers,
3275                                new_smi,
3276                                &new_smi->device_id,
3277                                new_smi->dev,
3278                                "bmc",
3279                                new_smi->slave_addr);
3280         if (rv) {
3281                 dev_err(new_smi->dev, "Unable to register device: error %d\n",
3282                         rv);
3283                 goto out_err_stop_timer;
3284         }
3285
3286         rv = ipmi_smi_add_proc_entry(new_smi->intf, "type",
3287                                      &smi_type_proc_ops,
3288                                      new_smi);
3289         if (rv) {
3290                 dev_err(new_smi->dev, "Unable to create proc entry: %d\n", rv);
3291                 goto out_err_stop_timer;
3292         }
3293
3294         rv = ipmi_smi_add_proc_entry(new_smi->intf, "si_stats",
3295                                      &smi_si_stats_proc_ops,
3296                                      new_smi);
3297         if (rv) {
3298                 dev_err(new_smi->dev, "Unable to create proc entry: %d\n", rv);
3299                 goto out_err_stop_timer;
3300         }
3301
3302         rv = ipmi_smi_add_proc_entry(new_smi->intf, "params",
3303                                      &smi_params_proc_ops,
3304                                      new_smi);
3305         if (rv) {
3306                 dev_err(new_smi->dev, "Unable to create proc entry: %d\n", rv);
3307                 goto out_err_stop_timer;
3308         }
3309
3310         dev_info(new_smi->dev, "IPMI %s interface initialized\n",
3311                  si_to_str[new_smi->si_type]);
3312
3313         return 0;
3314
3315  out_err_stop_timer:
3316         atomic_inc(&new_smi->stop_operation);
3317         wait_for_timer_and_thread(new_smi);
3318
3319  out_err:
3320         new_smi->interrupt_disabled = 1;
3321
3322         if (new_smi->intf) {
3323                 ipmi_unregister_smi(new_smi->intf);
3324                 new_smi->intf = NULL;
3325         }
3326
3327         if (new_smi->irq_cleanup) {
3328                 new_smi->irq_cleanup(new_smi);
3329                 new_smi->irq_cleanup = NULL;
3330         }
3331
3332         /*
3333          * Wait until we know that we are out of any interrupt
3334          * handlers might have been running before we freed the
3335          * interrupt.
3336          */
3337         synchronize_sched();
3338
3339         if (new_smi->si_sm) {
3340                 if (new_smi->handlers)
3341                         new_smi->handlers->cleanup(new_smi->si_sm);
3342                 kfree(new_smi->si_sm);
3343                 new_smi->si_sm = NULL;
3344         }
3345         if (new_smi->addr_source_cleanup) {
3346                 new_smi->addr_source_cleanup(new_smi);
3347                 new_smi->addr_source_cleanup = NULL;
3348         }
3349         if (new_smi->io_cleanup) {
3350                 new_smi->io_cleanup(new_smi);
3351                 new_smi->io_cleanup = NULL;
3352         }
3353
3354         if (new_smi->dev_registered) {
3355                 platform_device_unregister(new_smi->pdev);
3356                 new_smi->dev_registered = 0;
3357         }
3358
3359         return rv;
3360 }
3361
3362 static int init_ipmi_si(void)
3363 {
3364         int  i;
3365         char *str;
3366         int  rv;
3367         struct smi_info *e;
3368         enum ipmi_addr_src type = SI_INVALID;
3369
3370         if (initialized)
3371                 return 0;
3372         initialized = 1;
3373
3374         rv = platform_driver_register(&ipmi_driver);
3375         if (rv) {
3376                 printk(KERN_ERR PFX "Unable to register driver: %d\n", rv);
3377                 return rv;
3378         }
3379
3380
3381         /* Parse out the si_type string into its components. */
3382         str = si_type_str;
3383         if (*str != '\0') {
3384                 for (i = 0; (i < SI_MAX_PARMS) && (*str != '\0'); i++) {
3385                         si_type[i] = str;
3386                         str = strchr(str, ',');
3387                         if (str) {
3388                                 *str = '\0';
3389                                 str++;
3390                         } else {
3391                                 break;
3392                         }
3393                 }
3394         }
3395
3396         printk(KERN_INFO "IPMI System Interface driver.\n");
3397
3398         /* If the user gave us a device, they presumably want us to use it */
3399         if (!hardcode_find_bmc())
3400                 return 0;
3401
3402 #ifdef CONFIG_PCI
3403         rv = pci_register_driver(&ipmi_pci_driver);
3404         if (rv)
3405                 printk(KERN_ERR PFX "Unable to register PCI driver: %d\n", rv);
3406         else
3407                 pci_registered = 1;
3408 #endif
3409
3410 #ifdef CONFIG_ACPI
3411         pnp_register_driver(&ipmi_pnp_driver);
3412         pnp_registered = 1;
3413 #endif
3414
3415 #ifdef CONFIG_DMI
3416         dmi_find_bmc();
3417 #endif
3418
3419 #ifdef CONFIG_ACPI
3420         spmi_find_bmc();
3421 #endif
3422
3423         /* We prefer devices with interrupts, but in the case of a machine
3424            with multiple BMCs we assume that there will be several instances
3425            of a given type so if we succeed in registering a type then also
3426            try to register everything else of the same type */
3427
3428         mutex_lock(&smi_infos_lock);
3429         list_for_each_entry(e, &smi_infos, link) {
3430                 /* Try to register a device if it has an IRQ and we either
3431                    haven't successfully registered a device yet or this
3432                    device has the same type as one we successfully registered */
3433                 if (e->irq && (!type || e->addr_source == type)) {
3434                         if (!try_smi_init(e)) {
3435                                 type = e->addr_source;
3436                         }
3437                 }
3438         }
3439
3440         /* type will only have been set if we successfully registered an si */
3441         if (type) {
3442                 mutex_unlock(&smi_infos_lock);
3443                 return 0;
3444         }
3445
3446         /* Fall back to the preferred device */
3447
3448         list_for_each_entry(e, &smi_infos, link) {
3449                 if (!e->irq && (!type || e->addr_source == type)) {
3450                         if (!try_smi_init(e)) {
3451                                 type = e->addr_source;
3452                         }
3453                 }
3454         }
3455         mutex_unlock(&smi_infos_lock);
3456
3457         if (type)
3458                 return 0;
3459
3460         if (si_trydefaults) {
3461                 mutex_lock(&smi_infos_lock);
3462                 if (list_empty(&smi_infos)) {
3463                         /* No BMC was found, try defaults. */
3464                         mutex_unlock(&smi_infos_lock);
3465                         default_find_bmc();
3466                 } else
3467                         mutex_unlock(&smi_infos_lock);
3468         }
3469
3470         mutex_lock(&smi_infos_lock);
3471         if (unload_when_empty && list_empty(&smi_infos)) {
3472                 mutex_unlock(&smi_infos_lock);
3473                 cleanup_ipmi_si();
3474                 printk(KERN_WARNING PFX
3475                        "Unable to find any System Interface(s)\n");
3476                 return -ENODEV;
3477         } else {
3478                 mutex_unlock(&smi_infos_lock);
3479                 return 0;
3480         }
3481 }
3482 module_init(init_ipmi_si);
3483
3484 static void cleanup_one_si(struct smi_info *to_clean)
3485 {
3486         int           rv = 0;
3487         unsigned long flags;
3488
3489         if (!to_clean)
3490                 return;
3491
3492         list_del(&to_clean->link);
3493
3494         /* Tell the driver that we are shutting down. */
3495         atomic_inc(&to_clean->stop_operation);
3496
3497         /*
3498          * Make sure the timer and thread are stopped and will not run
3499          * again.
3500          */
3501         wait_for_timer_and_thread(to_clean);
3502
3503         /*
3504          * Timeouts are stopped, now make sure the interrupts are off
3505          * for the device.  A little tricky with locks to make sure
3506          * there are no races.
3507          */
3508         spin_lock_irqsave(&to_clean->si_lock, flags);
3509         while (to_clean->curr_msg || (to_clean->si_state != SI_NORMAL)) {
3510                 spin_unlock_irqrestore(&to_clean->si_lock, flags);
3511                 poll(to_clean);
3512                 schedule_timeout_uninterruptible(1);
3513                 spin_lock_irqsave(&to_clean->si_lock, flags);
3514         }
3515         disable_si_irq(to_clean);
3516         spin_unlock_irqrestore(&to_clean->si_lock, flags);
3517         while (to_clean->curr_msg || (to_clean->si_state != SI_NORMAL)) {
3518                 poll(to_clean);
3519                 schedule_timeout_uninterruptible(1);
3520         }
3521
3522         /* Clean up interrupts and make sure that everything is done. */
3523         if (to_clean->irq_cleanup)
3524                 to_clean->irq_cleanup(to_clean);
3525         while (to_clean->curr_msg || (to_clean->si_state != SI_NORMAL)) {
3526                 poll(to_clean);
3527                 schedule_timeout_uninterruptible(1);
3528         }
3529
3530         if (to_clean->intf)
3531                 rv = ipmi_unregister_smi(to_clean->intf);
3532
3533         if (rv) {
3534                 printk(KERN_ERR PFX "Unable to unregister device: errno=%d\n",
3535                        rv);
3536         }
3537
3538         if (to_clean->handlers)
3539                 to_clean->handlers->cleanup(to_clean->si_sm);
3540
3541         kfree(to_clean->si_sm);
3542
3543         if (to_clean->addr_source_cleanup)
3544                 to_clean->addr_source_cleanup(to_clean);
3545         if (to_clean->io_cleanup)
3546                 to_clean->io_cleanup(to_clean);
3547
3548         if (to_clean->dev_registered)
3549                 platform_device_unregister(to_clean->pdev);
3550
3551         kfree(to_clean);
3552 }
3553
3554 static void cleanup_ipmi_si(void)
3555 {
3556         struct smi_info *e, *tmp_e;
3557
3558         if (!initialized)
3559                 return;
3560
3561 #ifdef CONFIG_PCI
3562         if (pci_registered)
3563                 pci_unregister_driver(&ipmi_pci_driver);
3564 #endif
3565 #ifdef CONFIG_ACPI
3566         if (pnp_registered)
3567                 pnp_unregister_driver(&ipmi_pnp_driver);
3568 #endif
3569
3570         platform_driver_unregister(&ipmi_driver);
3571
3572         mutex_lock(&smi_infos_lock);
3573         list_for_each_entry_safe(e, tmp_e, &smi_infos, link)
3574                 cleanup_one_si(e);
3575         mutex_unlock(&smi_infos_lock);
3576 }
3577 module_exit(cleanup_ipmi_si);
3578
3579 MODULE_LICENSE("GPL");
3580 MODULE_AUTHOR("Corey Minyard <minyard@mvista.com>");
3581 MODULE_DESCRIPTION("Interface to the IPMI driver for the KCS, SMIC, and BT"
3582                    " system interfaces.");