Merge commit 'ed30f24e8d07d30aa3e69d1f508f4d7bd2e8ea14' of git://git.linaro.org/landi...
[firefly-linux-kernel-4.4.55.git] / drivers / block / rbd.c
1
2 /*
3    rbd.c -- Export ceph rados objects as a Linux block device
4
5
6    based on drivers/block/osdblk.c:
7
8    Copyright 2009 Red Hat, Inc.
9
10    This program is free software; you can redistribute it and/or modify
11    it under the terms of the GNU General Public License as published by
12    the Free Software Foundation.
13
14    This program is distributed in the hope that it will be useful,
15    but WITHOUT ANY WARRANTY; without even the implied warranty of
16    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
17    GNU General Public License for more details.
18
19    You should have received a copy of the GNU General Public License
20    along with this program; see the file COPYING.  If not, write to
21    the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
22
23
24
25    For usage instructions, please refer to:
26
27                  Documentation/ABI/testing/sysfs-bus-rbd
28
29  */
30
31 #include <linux/ceph/libceph.h>
32 #include <linux/ceph/osd_client.h>
33 #include <linux/ceph/mon_client.h>
34 #include <linux/ceph/decode.h>
35 #include <linux/parser.h>
36 #include <linux/bsearch.h>
37
38 #include <linux/kernel.h>
39 #include <linux/device.h>
40 #include <linux/module.h>
41 #include <linux/fs.h>
42 #include <linux/blkdev.h>
43 #include <linux/slab.h>
44
45 #include "rbd_types.h"
46
47 #define RBD_DEBUG       /* Activate rbd_assert() calls */
48
49 /*
50  * The basic unit of block I/O is a sector.  It is interpreted in a
51  * number of contexts in Linux (blk, bio, genhd), but the default is
52  * universally 512 bytes.  These symbols are just slightly more
53  * meaningful than the bare numbers they represent.
54  */
55 #define SECTOR_SHIFT    9
56 #define SECTOR_SIZE     (1ULL << SECTOR_SHIFT)
57
58 /*
59  * Increment the given counter and return its updated value.
60  * If the counter is already 0 it will not be incremented.
61  * If the counter is already at its maximum value returns
62  * -EINVAL without updating it.
63  */
64 static int atomic_inc_return_safe(atomic_t *v)
65 {
66         unsigned int counter;
67
68         counter = (unsigned int)__atomic_add_unless(v, 1, 0);
69         if (counter <= (unsigned int)INT_MAX)
70                 return (int)counter;
71
72         atomic_dec(v);
73
74         return -EINVAL;
75 }
76
77 /* Decrement the counter.  Return the resulting value, or -EINVAL */
78 static int atomic_dec_return_safe(atomic_t *v)
79 {
80         int counter;
81
82         counter = atomic_dec_return(v);
83         if (counter >= 0)
84                 return counter;
85
86         atomic_inc(v);
87
88         return -EINVAL;
89 }
90
91 #define RBD_DRV_NAME "rbd"
92 #define RBD_DRV_NAME_LONG "rbd (rados block device)"
93
94 #define RBD_MINORS_PER_MAJOR    256             /* max minors per blkdev */
95
96 #define RBD_SNAP_DEV_NAME_PREFIX        "snap_"
97 #define RBD_MAX_SNAP_NAME_LEN   \
98                         (NAME_MAX - (sizeof (RBD_SNAP_DEV_NAME_PREFIX) - 1))
99
100 #define RBD_MAX_SNAP_COUNT      510     /* allows max snapc to fit in 4KB */
101
102 #define RBD_SNAP_HEAD_NAME      "-"
103
104 #define BAD_SNAP_INDEX  U32_MAX         /* invalid index into snap array */
105
106 /* This allows a single page to hold an image name sent by OSD */
107 #define RBD_IMAGE_NAME_LEN_MAX  (PAGE_SIZE - sizeof (__le32) - 1)
108 #define RBD_IMAGE_ID_LEN_MAX    64
109
110 #define RBD_OBJ_PREFIX_LEN_MAX  64
111
112 /* Feature bits */
113
114 #define RBD_FEATURE_LAYERING    (1<<0)
115 #define RBD_FEATURE_STRIPINGV2  (1<<1)
116 #define RBD_FEATURES_ALL \
117             (RBD_FEATURE_LAYERING | RBD_FEATURE_STRIPINGV2)
118
119 /* Features supported by this (client software) implementation. */
120
121 #define RBD_FEATURES_SUPPORTED  (RBD_FEATURES_ALL)
122
123 /*
124  * An RBD device name will be "rbd#", where the "rbd" comes from
125  * RBD_DRV_NAME above, and # is a unique integer identifier.
126  * MAX_INT_FORMAT_WIDTH is used in ensuring DEV_NAME_LEN is big
127  * enough to hold all possible device names.
128  */
129 #define DEV_NAME_LEN            32
130 #define MAX_INT_FORMAT_WIDTH    ((5 * sizeof (int)) / 2 + 1)
131
132 /*
133  * block device image metadata (in-memory version)
134  */
135 struct rbd_image_header {
136         /* These six fields never change for a given rbd image */
137         char *object_prefix;
138         __u8 obj_order;
139         __u8 crypt_type;
140         __u8 comp_type;
141         u64 stripe_unit;
142         u64 stripe_count;
143         u64 features;           /* Might be changeable someday? */
144
145         /* The remaining fields need to be updated occasionally */
146         u64 image_size;
147         struct ceph_snap_context *snapc;
148         char *snap_names;       /* format 1 only */
149         u64 *snap_sizes;        /* format 1 only */
150 };
151
152 /*
153  * An rbd image specification.
154  *
155  * The tuple (pool_id, image_id, snap_id) is sufficient to uniquely
156  * identify an image.  Each rbd_dev structure includes a pointer to
157  * an rbd_spec structure that encapsulates this identity.
158  *
159  * Each of the id's in an rbd_spec has an associated name.  For a
160  * user-mapped image, the names are supplied and the id's associated
161  * with them are looked up.  For a layered image, a parent image is
162  * defined by the tuple, and the names are looked up.
163  *
164  * An rbd_dev structure contains a parent_spec pointer which is
165  * non-null if the image it represents is a child in a layered
166  * image.  This pointer will refer to the rbd_spec structure used
167  * by the parent rbd_dev for its own identity (i.e., the structure
168  * is shared between the parent and child).
169  *
170  * Since these structures are populated once, during the discovery
171  * phase of image construction, they are effectively immutable so
172  * we make no effort to synchronize access to them.
173  *
174  * Note that code herein does not assume the image name is known (it
175  * could be a null pointer).
176  */
177 struct rbd_spec {
178         u64             pool_id;
179         const char      *pool_name;
180
181         const char      *image_id;
182         const char      *image_name;
183
184         u64             snap_id;
185         const char      *snap_name;
186
187         struct kref     kref;
188 };
189
190 /*
191  * an instance of the client.  multiple devices may share an rbd client.
192  */
193 struct rbd_client {
194         struct ceph_client      *client;
195         struct kref             kref;
196         struct list_head        node;
197 };
198
199 struct rbd_img_request;
200 typedef void (*rbd_img_callback_t)(struct rbd_img_request *);
201
202 #define BAD_WHICH       U32_MAX         /* Good which or bad which, which? */
203
204 struct rbd_obj_request;
205 typedef void (*rbd_obj_callback_t)(struct rbd_obj_request *);
206
207 enum obj_request_type {
208         OBJ_REQUEST_NODATA, OBJ_REQUEST_BIO, OBJ_REQUEST_PAGES
209 };
210
211 enum obj_req_flags {
212         OBJ_REQ_DONE,           /* completion flag: not done = 0, done = 1 */
213         OBJ_REQ_IMG_DATA,       /* object usage: standalone = 0, image = 1 */
214         OBJ_REQ_KNOWN,          /* EXISTS flag valid: no = 0, yes = 1 */
215         OBJ_REQ_EXISTS,         /* target exists: no = 0, yes = 1 */
216 };
217
218 struct rbd_obj_request {
219         const char              *object_name;
220         u64                     offset;         /* object start byte */
221         u64                     length;         /* bytes from offset */
222         unsigned long           flags;
223
224         /*
225          * An object request associated with an image will have its
226          * img_data flag set; a standalone object request will not.
227          *
228          * A standalone object request will have which == BAD_WHICH
229          * and a null obj_request pointer.
230          *
231          * An object request initiated in support of a layered image
232          * object (to check for its existence before a write) will
233          * have which == BAD_WHICH and a non-null obj_request pointer.
234          *
235          * Finally, an object request for rbd image data will have
236          * which != BAD_WHICH, and will have a non-null img_request
237          * pointer.  The value of which will be in the range
238          * 0..(img_request->obj_request_count-1).
239          */
240         union {
241                 struct rbd_obj_request  *obj_request;   /* STAT op */
242                 struct {
243                         struct rbd_img_request  *img_request;
244                         u64                     img_offset;
245                         /* links for img_request->obj_requests list */
246                         struct list_head        links;
247                 };
248         };
249         u32                     which;          /* posn image request list */
250
251         enum obj_request_type   type;
252         union {
253                 struct bio      *bio_list;
254                 struct {
255                         struct page     **pages;
256                         u32             page_count;
257                 };
258         };
259         struct page             **copyup_pages;
260         u32                     copyup_page_count;
261
262         struct ceph_osd_request *osd_req;
263
264         u64                     xferred;        /* bytes transferred */
265         int                     result;
266
267         rbd_obj_callback_t      callback;
268         struct completion       completion;
269
270         struct kref             kref;
271 };
272
273 enum img_req_flags {
274         IMG_REQ_WRITE,          /* I/O direction: read = 0, write = 1 */
275         IMG_REQ_CHILD,          /* initiator: block = 0, child image = 1 */
276         IMG_REQ_LAYERED,        /* ENOENT handling: normal = 0, layered = 1 */
277 };
278
279 struct rbd_img_request {
280         struct rbd_device       *rbd_dev;
281         u64                     offset; /* starting image byte offset */
282         u64                     length; /* byte count from offset */
283         unsigned long           flags;
284         union {
285                 u64                     snap_id;        /* for reads */
286                 struct ceph_snap_context *snapc;        /* for writes */
287         };
288         union {
289                 struct request          *rq;            /* block request */
290                 struct rbd_obj_request  *obj_request;   /* obj req initiator */
291         };
292         struct page             **copyup_pages;
293         u32                     copyup_page_count;
294         spinlock_t              completion_lock;/* protects next_completion */
295         u32                     next_completion;
296         rbd_img_callback_t      callback;
297         u64                     xferred;/* aggregate bytes transferred */
298         int                     result; /* first nonzero obj_request result */
299
300         u32                     obj_request_count;
301         struct list_head        obj_requests;   /* rbd_obj_request structs */
302
303         struct kref             kref;
304 };
305
306 #define for_each_obj_request(ireq, oreq) \
307         list_for_each_entry(oreq, &(ireq)->obj_requests, links)
308 #define for_each_obj_request_from(ireq, oreq) \
309         list_for_each_entry_from(oreq, &(ireq)->obj_requests, links)
310 #define for_each_obj_request_safe(ireq, oreq, n) \
311         list_for_each_entry_safe_reverse(oreq, n, &(ireq)->obj_requests, links)
312
313 struct rbd_mapping {
314         u64                     size;
315         u64                     features;
316         bool                    read_only;
317 };
318
319 /*
320  * a single device
321  */
322 struct rbd_device {
323         int                     dev_id;         /* blkdev unique id */
324
325         int                     major;          /* blkdev assigned major */
326         struct gendisk          *disk;          /* blkdev's gendisk and rq */
327
328         u32                     image_format;   /* Either 1 or 2 */
329         struct rbd_client       *rbd_client;
330
331         char                    name[DEV_NAME_LEN]; /* blkdev name, e.g. rbd3 */
332
333         spinlock_t              lock;           /* queue, flags, open_count */
334
335         struct rbd_image_header header;
336         unsigned long           flags;          /* possibly lock protected */
337         struct rbd_spec         *spec;
338
339         char                    *header_name;
340
341         struct ceph_file_layout layout;
342
343         struct ceph_osd_event   *watch_event;
344         struct rbd_obj_request  *watch_request;
345
346         struct rbd_spec         *parent_spec;
347         u64                     parent_overlap;
348         atomic_t                parent_ref;
349         struct rbd_device       *parent;
350
351         /* protects updating the header */
352         struct rw_semaphore     header_rwsem;
353
354         struct rbd_mapping      mapping;
355
356         struct list_head        node;
357
358         /* sysfs related */
359         struct device           dev;
360         unsigned long           open_count;     /* protected by lock */
361 };
362
363 /*
364  * Flag bits for rbd_dev->flags.  If atomicity is required,
365  * rbd_dev->lock is used to protect access.
366  *
367  * Currently, only the "removing" flag (which is coupled with the
368  * "open_count" field) requires atomic access.
369  */
370 enum rbd_dev_flags {
371         RBD_DEV_FLAG_EXISTS,    /* mapped snapshot has not been deleted */
372         RBD_DEV_FLAG_REMOVING,  /* this mapping is being removed */
373 };
374
375 static DEFINE_MUTEX(ctl_mutex);   /* Serialize open/close/setup/teardown */
376
377 static LIST_HEAD(rbd_dev_list);    /* devices */
378 static DEFINE_SPINLOCK(rbd_dev_list_lock);
379
380 static LIST_HEAD(rbd_client_list);              /* clients */
381 static DEFINE_SPINLOCK(rbd_client_list_lock);
382
383 /* Slab caches for frequently-allocated structures */
384
385 static struct kmem_cache        *rbd_img_request_cache;
386 static struct kmem_cache        *rbd_obj_request_cache;
387 static struct kmem_cache        *rbd_segment_name_cache;
388
389 static int rbd_img_request_submit(struct rbd_img_request *img_request);
390
391 static void rbd_dev_device_release(struct device *dev);
392
393 static ssize_t rbd_add(struct bus_type *bus, const char *buf,
394                        size_t count);
395 static ssize_t rbd_remove(struct bus_type *bus, const char *buf,
396                           size_t count);
397 static int rbd_dev_image_probe(struct rbd_device *rbd_dev, bool mapping);
398 static void rbd_spec_put(struct rbd_spec *spec);
399
400 static struct bus_attribute rbd_bus_attrs[] = {
401         __ATTR(add, S_IWUSR, NULL, rbd_add),
402         __ATTR(remove, S_IWUSR, NULL, rbd_remove),
403         __ATTR_NULL
404 };
405
406 static struct bus_type rbd_bus_type = {
407         .name           = "rbd",
408         .bus_attrs      = rbd_bus_attrs,
409 };
410
411 static void rbd_root_dev_release(struct device *dev)
412 {
413 }
414
415 static struct device rbd_root_dev = {
416         .init_name =    "rbd",
417         .release =      rbd_root_dev_release,
418 };
419
420 static __printf(2, 3)
421 void rbd_warn(struct rbd_device *rbd_dev, const char *fmt, ...)
422 {
423         struct va_format vaf;
424         va_list args;
425
426         va_start(args, fmt);
427         vaf.fmt = fmt;
428         vaf.va = &args;
429
430         if (!rbd_dev)
431                 printk(KERN_WARNING "%s: %pV\n", RBD_DRV_NAME, &vaf);
432         else if (rbd_dev->disk)
433                 printk(KERN_WARNING "%s: %s: %pV\n",
434                         RBD_DRV_NAME, rbd_dev->disk->disk_name, &vaf);
435         else if (rbd_dev->spec && rbd_dev->spec->image_name)
436                 printk(KERN_WARNING "%s: image %s: %pV\n",
437                         RBD_DRV_NAME, rbd_dev->spec->image_name, &vaf);
438         else if (rbd_dev->spec && rbd_dev->spec->image_id)
439                 printk(KERN_WARNING "%s: id %s: %pV\n",
440                         RBD_DRV_NAME, rbd_dev->spec->image_id, &vaf);
441         else    /* punt */
442                 printk(KERN_WARNING "%s: rbd_dev %p: %pV\n",
443                         RBD_DRV_NAME, rbd_dev, &vaf);
444         va_end(args);
445 }
446
447 #ifdef RBD_DEBUG
448 #define rbd_assert(expr)                                                \
449                 if (unlikely(!(expr))) {                                \
450                         printk(KERN_ERR "\nAssertion failure in %s() "  \
451                                                 "at line %d:\n\n"       \
452                                         "\trbd_assert(%s);\n\n",        \
453                                         __func__, __LINE__, #expr);     \
454                         BUG();                                          \
455                 }
456 #else /* !RBD_DEBUG */
457 #  define rbd_assert(expr)      ((void) 0)
458 #endif /* !RBD_DEBUG */
459
460 static int rbd_img_obj_request_submit(struct rbd_obj_request *obj_request);
461 static void rbd_img_parent_read(struct rbd_obj_request *obj_request);
462 static void rbd_dev_remove_parent(struct rbd_device *rbd_dev);
463
464 static int rbd_dev_refresh(struct rbd_device *rbd_dev);
465 static int rbd_dev_v2_header_onetime(struct rbd_device *rbd_dev);
466 static int rbd_dev_v2_header_info(struct rbd_device *rbd_dev);
467 static const char *rbd_dev_v2_snap_name(struct rbd_device *rbd_dev,
468                                         u64 snap_id);
469 static int _rbd_dev_v2_snap_size(struct rbd_device *rbd_dev, u64 snap_id,
470                                 u8 *order, u64 *snap_size);
471 static int _rbd_dev_v2_snap_features(struct rbd_device *rbd_dev, u64 snap_id,
472                 u64 *snap_features);
473 static u64 rbd_snap_id_by_name(struct rbd_device *rbd_dev, const char *name);
474
475 static int rbd_open(struct block_device *bdev, fmode_t mode)
476 {
477         struct rbd_device *rbd_dev = bdev->bd_disk->private_data;
478         bool removing = false;
479
480         if ((mode & FMODE_WRITE) && rbd_dev->mapping.read_only)
481                 return -EROFS;
482
483         spin_lock_irq(&rbd_dev->lock);
484         if (test_bit(RBD_DEV_FLAG_REMOVING, &rbd_dev->flags))
485                 removing = true;
486         else
487                 rbd_dev->open_count++;
488         spin_unlock_irq(&rbd_dev->lock);
489         if (removing)
490                 return -ENOENT;
491
492         mutex_lock_nested(&ctl_mutex, SINGLE_DEPTH_NESTING);
493         (void) get_device(&rbd_dev->dev);
494         set_device_ro(bdev, rbd_dev->mapping.read_only);
495         mutex_unlock(&ctl_mutex);
496
497         return 0;
498 }
499
500 static void rbd_release(struct gendisk *disk, fmode_t mode)
501 {
502         struct rbd_device *rbd_dev = disk->private_data;
503         unsigned long open_count_before;
504
505         spin_lock_irq(&rbd_dev->lock);
506         open_count_before = rbd_dev->open_count--;
507         spin_unlock_irq(&rbd_dev->lock);
508         rbd_assert(open_count_before > 0);
509
510         mutex_lock_nested(&ctl_mutex, SINGLE_DEPTH_NESTING);
511         put_device(&rbd_dev->dev);
512         mutex_unlock(&ctl_mutex);
513 }
514
515 static const struct block_device_operations rbd_bd_ops = {
516         .owner                  = THIS_MODULE,
517         .open                   = rbd_open,
518         .release                = rbd_release,
519 };
520
521 /*
522  * Initialize an rbd client instance.  Success or not, this function
523  * consumes ceph_opts.
524  */
525 static struct rbd_client *rbd_client_create(struct ceph_options *ceph_opts)
526 {
527         struct rbd_client *rbdc;
528         int ret = -ENOMEM;
529
530         dout("%s:\n", __func__);
531         rbdc = kmalloc(sizeof(struct rbd_client), GFP_KERNEL);
532         if (!rbdc)
533                 goto out_opt;
534
535         kref_init(&rbdc->kref);
536         INIT_LIST_HEAD(&rbdc->node);
537
538         mutex_lock_nested(&ctl_mutex, SINGLE_DEPTH_NESTING);
539
540         rbdc->client = ceph_create_client(ceph_opts, rbdc, 0, 0);
541         if (IS_ERR(rbdc->client))
542                 goto out_mutex;
543         ceph_opts = NULL; /* Now rbdc->client is responsible for ceph_opts */
544
545         ret = ceph_open_session(rbdc->client);
546         if (ret < 0)
547                 goto out_err;
548
549         spin_lock(&rbd_client_list_lock);
550         list_add_tail(&rbdc->node, &rbd_client_list);
551         spin_unlock(&rbd_client_list_lock);
552
553         mutex_unlock(&ctl_mutex);
554         dout("%s: rbdc %p\n", __func__, rbdc);
555
556         return rbdc;
557
558 out_err:
559         ceph_destroy_client(rbdc->client);
560 out_mutex:
561         mutex_unlock(&ctl_mutex);
562         kfree(rbdc);
563 out_opt:
564         if (ceph_opts)
565                 ceph_destroy_options(ceph_opts);
566         dout("%s: error %d\n", __func__, ret);
567
568         return ERR_PTR(ret);
569 }
570
571 static struct rbd_client *__rbd_get_client(struct rbd_client *rbdc)
572 {
573         kref_get(&rbdc->kref);
574
575         return rbdc;
576 }
577
578 /*
579  * Find a ceph client with specific addr and configuration.  If
580  * found, bump its reference count.
581  */
582 static struct rbd_client *rbd_client_find(struct ceph_options *ceph_opts)
583 {
584         struct rbd_client *client_node;
585         bool found = false;
586
587         if (ceph_opts->flags & CEPH_OPT_NOSHARE)
588                 return NULL;
589
590         spin_lock(&rbd_client_list_lock);
591         list_for_each_entry(client_node, &rbd_client_list, node) {
592                 if (!ceph_compare_options(ceph_opts, client_node->client)) {
593                         __rbd_get_client(client_node);
594
595                         found = true;
596                         break;
597                 }
598         }
599         spin_unlock(&rbd_client_list_lock);
600
601         return found ? client_node : NULL;
602 }
603
604 /*
605  * mount options
606  */
607 enum {
608         Opt_last_int,
609         /* int args above */
610         Opt_last_string,
611         /* string args above */
612         Opt_read_only,
613         Opt_read_write,
614         /* Boolean args above */
615         Opt_last_bool,
616 };
617
618 static match_table_t rbd_opts_tokens = {
619         /* int args above */
620         /* string args above */
621         {Opt_read_only, "read_only"},
622         {Opt_read_only, "ro"},          /* Alternate spelling */
623         {Opt_read_write, "read_write"},
624         {Opt_read_write, "rw"},         /* Alternate spelling */
625         /* Boolean args above */
626         {-1, NULL}
627 };
628
629 struct rbd_options {
630         bool    read_only;
631 };
632
633 #define RBD_READ_ONLY_DEFAULT   false
634
635 static int parse_rbd_opts_token(char *c, void *private)
636 {
637         struct rbd_options *rbd_opts = private;
638         substring_t argstr[MAX_OPT_ARGS];
639         int token, intval, ret;
640
641         token = match_token(c, rbd_opts_tokens, argstr);
642         if (token < 0)
643                 return -EINVAL;
644
645         if (token < Opt_last_int) {
646                 ret = match_int(&argstr[0], &intval);
647                 if (ret < 0) {
648                         pr_err("bad mount option arg (not int) "
649                                "at '%s'\n", c);
650                         return ret;
651                 }
652                 dout("got int token %d val %d\n", token, intval);
653         } else if (token > Opt_last_int && token < Opt_last_string) {
654                 dout("got string token %d val %s\n", token,
655                      argstr[0].from);
656         } else if (token > Opt_last_string && token < Opt_last_bool) {
657                 dout("got Boolean token %d\n", token);
658         } else {
659                 dout("got token %d\n", token);
660         }
661
662         switch (token) {
663         case Opt_read_only:
664                 rbd_opts->read_only = true;
665                 break;
666         case Opt_read_write:
667                 rbd_opts->read_only = false;
668                 break;
669         default:
670                 rbd_assert(false);
671                 break;
672         }
673         return 0;
674 }
675
676 /*
677  * Get a ceph client with specific addr and configuration, if one does
678  * not exist create it.  Either way, ceph_opts is consumed by this
679  * function.
680  */
681 static struct rbd_client *rbd_get_client(struct ceph_options *ceph_opts)
682 {
683         struct rbd_client *rbdc;
684
685         rbdc = rbd_client_find(ceph_opts);
686         if (rbdc)       /* using an existing client */
687                 ceph_destroy_options(ceph_opts);
688         else
689                 rbdc = rbd_client_create(ceph_opts);
690
691         return rbdc;
692 }
693
694 /*
695  * Destroy ceph client
696  *
697  * Caller must hold rbd_client_list_lock.
698  */
699 static void rbd_client_release(struct kref *kref)
700 {
701         struct rbd_client *rbdc = container_of(kref, struct rbd_client, kref);
702
703         dout("%s: rbdc %p\n", __func__, rbdc);
704         spin_lock(&rbd_client_list_lock);
705         list_del(&rbdc->node);
706         spin_unlock(&rbd_client_list_lock);
707
708         ceph_destroy_client(rbdc->client);
709         kfree(rbdc);
710 }
711
712 /*
713  * Drop reference to ceph client node. If it's not referenced anymore, release
714  * it.
715  */
716 static void rbd_put_client(struct rbd_client *rbdc)
717 {
718         if (rbdc)
719                 kref_put(&rbdc->kref, rbd_client_release);
720 }
721
722 static bool rbd_image_format_valid(u32 image_format)
723 {
724         return image_format == 1 || image_format == 2;
725 }
726
727 static bool rbd_dev_ondisk_valid(struct rbd_image_header_ondisk *ondisk)
728 {
729         size_t size;
730         u32 snap_count;
731
732         /* The header has to start with the magic rbd header text */
733         if (memcmp(&ondisk->text, RBD_HEADER_TEXT, sizeof (RBD_HEADER_TEXT)))
734                 return false;
735
736         /* The bio layer requires at least sector-sized I/O */
737
738         if (ondisk->options.order < SECTOR_SHIFT)
739                 return false;
740
741         /* If we use u64 in a few spots we may be able to loosen this */
742
743         if (ondisk->options.order > 8 * sizeof (int) - 1)
744                 return false;
745
746         /*
747          * The size of a snapshot header has to fit in a size_t, and
748          * that limits the number of snapshots.
749          */
750         snap_count = le32_to_cpu(ondisk->snap_count);
751         size = SIZE_MAX - sizeof (struct ceph_snap_context);
752         if (snap_count > size / sizeof (__le64))
753                 return false;
754
755         /*
756          * Not only that, but the size of the entire the snapshot
757          * header must also be representable in a size_t.
758          */
759         size -= snap_count * sizeof (__le64);
760         if ((u64) size < le64_to_cpu(ondisk->snap_names_len))
761                 return false;
762
763         return true;
764 }
765
766 /*
767  * Fill an rbd image header with information from the given format 1
768  * on-disk header.
769  */
770 static int rbd_header_from_disk(struct rbd_device *rbd_dev,
771                                  struct rbd_image_header_ondisk *ondisk)
772 {
773         struct rbd_image_header *header = &rbd_dev->header;
774         bool first_time = header->object_prefix == NULL;
775         struct ceph_snap_context *snapc;
776         char *object_prefix = NULL;
777         char *snap_names = NULL;
778         u64 *snap_sizes = NULL;
779         u32 snap_count;
780         size_t size;
781         int ret = -ENOMEM;
782         u32 i;
783
784         /* Allocate this now to avoid having to handle failure below */
785
786         if (first_time) {
787                 size_t len;
788
789                 len = strnlen(ondisk->object_prefix,
790                                 sizeof (ondisk->object_prefix));
791                 object_prefix = kmalloc(len + 1, GFP_KERNEL);
792                 if (!object_prefix)
793                         return -ENOMEM;
794                 memcpy(object_prefix, ondisk->object_prefix, len);
795                 object_prefix[len] = '\0';
796         }
797
798         /* Allocate the snapshot context and fill it in */
799
800         snap_count = le32_to_cpu(ondisk->snap_count);
801         snapc = ceph_create_snap_context(snap_count, GFP_KERNEL);
802         if (!snapc)
803                 goto out_err;
804         snapc->seq = le64_to_cpu(ondisk->snap_seq);
805         if (snap_count) {
806                 struct rbd_image_snap_ondisk *snaps;
807                 u64 snap_names_len = le64_to_cpu(ondisk->snap_names_len);
808
809                 /* We'll keep a copy of the snapshot names... */
810
811                 if (snap_names_len > (u64)SIZE_MAX)
812                         goto out_2big;
813                 snap_names = kmalloc(snap_names_len, GFP_KERNEL);
814                 if (!snap_names)
815                         goto out_err;
816
817                 /* ...as well as the array of their sizes. */
818
819                 size = snap_count * sizeof (*header->snap_sizes);
820                 snap_sizes = kmalloc(size, GFP_KERNEL);
821                 if (!snap_sizes)
822                         goto out_err;
823
824                 /*
825                  * Copy the names, and fill in each snapshot's id
826                  * and size.
827                  *
828                  * Note that rbd_dev_v1_header_info() guarantees the
829                  * ondisk buffer we're working with has
830                  * snap_names_len bytes beyond the end of the
831                  * snapshot id array, this memcpy() is safe.
832                  */
833                 memcpy(snap_names, &ondisk->snaps[snap_count], snap_names_len);
834                 snaps = ondisk->snaps;
835                 for (i = 0; i < snap_count; i++) {
836                         snapc->snaps[i] = le64_to_cpu(snaps[i].id);
837                         snap_sizes[i] = le64_to_cpu(snaps[i].image_size);
838                 }
839         }
840
841         /* We won't fail any more, fill in the header */
842
843         down_write(&rbd_dev->header_rwsem);
844         if (first_time) {
845                 header->object_prefix = object_prefix;
846                 header->obj_order = ondisk->options.order;
847                 header->crypt_type = ondisk->options.crypt_type;
848                 header->comp_type = ondisk->options.comp_type;
849                 /* The rest aren't used for format 1 images */
850                 header->stripe_unit = 0;
851                 header->stripe_count = 0;
852                 header->features = 0;
853         } else {
854                 ceph_put_snap_context(header->snapc);
855                 kfree(header->snap_names);
856                 kfree(header->snap_sizes);
857         }
858
859         /* The remaining fields always get updated (when we refresh) */
860
861         header->image_size = le64_to_cpu(ondisk->image_size);
862         header->snapc = snapc;
863         header->snap_names = snap_names;
864         header->snap_sizes = snap_sizes;
865
866         /* Make sure mapping size is consistent with header info */
867
868         if (rbd_dev->spec->snap_id == CEPH_NOSNAP || first_time)
869                 if (rbd_dev->mapping.size != header->image_size)
870                         rbd_dev->mapping.size = header->image_size;
871
872         up_write(&rbd_dev->header_rwsem);
873
874         return 0;
875 out_2big:
876         ret = -EIO;
877 out_err:
878         kfree(snap_sizes);
879         kfree(snap_names);
880         ceph_put_snap_context(snapc);
881         kfree(object_prefix);
882
883         return ret;
884 }
885
886 static const char *_rbd_dev_v1_snap_name(struct rbd_device *rbd_dev, u32 which)
887 {
888         const char *snap_name;
889
890         rbd_assert(which < rbd_dev->header.snapc->num_snaps);
891
892         /* Skip over names until we find the one we are looking for */
893
894         snap_name = rbd_dev->header.snap_names;
895         while (which--)
896                 snap_name += strlen(snap_name) + 1;
897
898         return kstrdup(snap_name, GFP_KERNEL);
899 }
900
901 /*
902  * Snapshot id comparison function for use with qsort()/bsearch().
903  * Note that result is for snapshots in *descending* order.
904  */
905 static int snapid_compare_reverse(const void *s1, const void *s2)
906 {
907         u64 snap_id1 = *(u64 *)s1;
908         u64 snap_id2 = *(u64 *)s2;
909
910         if (snap_id1 < snap_id2)
911                 return 1;
912         return snap_id1 == snap_id2 ? 0 : -1;
913 }
914
915 /*
916  * Search a snapshot context to see if the given snapshot id is
917  * present.
918  *
919  * Returns the position of the snapshot id in the array if it's found,
920  * or BAD_SNAP_INDEX otherwise.
921  *
922  * Note: The snapshot array is in kept sorted (by the osd) in
923  * reverse order, highest snapshot id first.
924  */
925 static u32 rbd_dev_snap_index(struct rbd_device *rbd_dev, u64 snap_id)
926 {
927         struct ceph_snap_context *snapc = rbd_dev->header.snapc;
928         u64 *found;
929
930         found = bsearch(&snap_id, &snapc->snaps, snapc->num_snaps,
931                                 sizeof (snap_id), snapid_compare_reverse);
932
933         return found ? (u32)(found - &snapc->snaps[0]) : BAD_SNAP_INDEX;
934 }
935
936 static const char *rbd_dev_v1_snap_name(struct rbd_device *rbd_dev,
937                                         u64 snap_id)
938 {
939         u32 which;
940
941         which = rbd_dev_snap_index(rbd_dev, snap_id);
942         if (which == BAD_SNAP_INDEX)
943                 return NULL;
944
945         return _rbd_dev_v1_snap_name(rbd_dev, which);
946 }
947
948 static const char *rbd_snap_name(struct rbd_device *rbd_dev, u64 snap_id)
949 {
950         if (snap_id == CEPH_NOSNAP)
951                 return RBD_SNAP_HEAD_NAME;
952
953         rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
954         if (rbd_dev->image_format == 1)
955                 return rbd_dev_v1_snap_name(rbd_dev, snap_id);
956
957         return rbd_dev_v2_snap_name(rbd_dev, snap_id);
958 }
959
960 static int rbd_snap_size(struct rbd_device *rbd_dev, u64 snap_id,
961                                 u64 *snap_size)
962 {
963         rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
964         if (snap_id == CEPH_NOSNAP) {
965                 *snap_size = rbd_dev->header.image_size;
966         } else if (rbd_dev->image_format == 1) {
967                 u32 which;
968
969                 which = rbd_dev_snap_index(rbd_dev, snap_id);
970                 if (which == BAD_SNAP_INDEX)
971                         return -ENOENT;
972
973                 *snap_size = rbd_dev->header.snap_sizes[which];
974         } else {
975                 u64 size = 0;
976                 int ret;
977
978                 ret = _rbd_dev_v2_snap_size(rbd_dev, snap_id, NULL, &size);
979                 if (ret)
980                         return ret;
981
982                 *snap_size = size;
983         }
984         return 0;
985 }
986
987 static int rbd_snap_features(struct rbd_device *rbd_dev, u64 snap_id,
988                         u64 *snap_features)
989 {
990         rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
991         if (snap_id == CEPH_NOSNAP) {
992                 *snap_features = rbd_dev->header.features;
993         } else if (rbd_dev->image_format == 1) {
994                 *snap_features = 0;     /* No features for format 1 */
995         } else {
996                 u64 features = 0;
997                 int ret;
998
999                 ret = _rbd_dev_v2_snap_features(rbd_dev, snap_id, &features);
1000                 if (ret)
1001                         return ret;
1002
1003                 *snap_features = features;
1004         }
1005         return 0;
1006 }
1007
1008 static int rbd_dev_mapping_set(struct rbd_device *rbd_dev)
1009 {
1010         u64 snap_id = rbd_dev->spec->snap_id;
1011         u64 size = 0;
1012         u64 features = 0;
1013         int ret;
1014
1015         ret = rbd_snap_size(rbd_dev, snap_id, &size);
1016         if (ret)
1017                 return ret;
1018         ret = rbd_snap_features(rbd_dev, snap_id, &features);
1019         if (ret)
1020                 return ret;
1021
1022         rbd_dev->mapping.size = size;
1023         rbd_dev->mapping.features = features;
1024
1025         return 0;
1026 }
1027
1028 static void rbd_dev_mapping_clear(struct rbd_device *rbd_dev)
1029 {
1030         rbd_dev->mapping.size = 0;
1031         rbd_dev->mapping.features = 0;
1032 }
1033
1034 static const char *rbd_segment_name(struct rbd_device *rbd_dev, u64 offset)
1035 {
1036         char *name;
1037         u64 segment;
1038         int ret;
1039         char *name_format;
1040
1041         name = kmem_cache_alloc(rbd_segment_name_cache, GFP_NOIO);
1042         if (!name)
1043                 return NULL;
1044         segment = offset >> rbd_dev->header.obj_order;
1045         name_format = "%s.%012llx";
1046         if (rbd_dev->image_format == 2)
1047                 name_format = "%s.%016llx";
1048         ret = snprintf(name, MAX_OBJ_NAME_SIZE + 1, name_format,
1049                         rbd_dev->header.object_prefix, segment);
1050         if (ret < 0 || ret > MAX_OBJ_NAME_SIZE) {
1051                 pr_err("error formatting segment name for #%llu (%d)\n",
1052                         segment, ret);
1053                 kfree(name);
1054                 name = NULL;
1055         }
1056
1057         return name;
1058 }
1059
1060 static void rbd_segment_name_free(const char *name)
1061 {
1062         /* The explicit cast here is needed to drop the const qualifier */
1063
1064         kmem_cache_free(rbd_segment_name_cache, (void *)name);
1065 }
1066
1067 static u64 rbd_segment_offset(struct rbd_device *rbd_dev, u64 offset)
1068 {
1069         u64 segment_size = (u64) 1 << rbd_dev->header.obj_order;
1070
1071         return offset & (segment_size - 1);
1072 }
1073
1074 static u64 rbd_segment_length(struct rbd_device *rbd_dev,
1075                                 u64 offset, u64 length)
1076 {
1077         u64 segment_size = (u64) 1 << rbd_dev->header.obj_order;
1078
1079         offset &= segment_size - 1;
1080
1081         rbd_assert(length <= U64_MAX - offset);
1082         if (offset + length > segment_size)
1083                 length = segment_size - offset;
1084
1085         return length;
1086 }
1087
1088 /*
1089  * returns the size of an object in the image
1090  */
1091 static u64 rbd_obj_bytes(struct rbd_image_header *header)
1092 {
1093         return 1 << header->obj_order;
1094 }
1095
1096 /*
1097  * bio helpers
1098  */
1099
1100 static void bio_chain_put(struct bio *chain)
1101 {
1102         struct bio *tmp;
1103
1104         while (chain) {
1105                 tmp = chain;
1106                 chain = chain->bi_next;
1107                 bio_put(tmp);
1108         }
1109 }
1110
1111 /*
1112  * zeros a bio chain, starting at specific offset
1113  */
1114 static void zero_bio_chain(struct bio *chain, int start_ofs)
1115 {
1116         struct bio_vec *bv;
1117         unsigned long flags;
1118         void *buf;
1119         int i;
1120         int pos = 0;
1121
1122         while (chain) {
1123                 bio_for_each_segment(bv, chain, i) {
1124                         if (pos + bv->bv_len > start_ofs) {
1125                                 int remainder = max(start_ofs - pos, 0);
1126                                 buf = bvec_kmap_irq(bv, &flags);
1127                                 memset(buf + remainder, 0,
1128                                        bv->bv_len - remainder);
1129                                 bvec_kunmap_irq(buf, &flags);
1130                         }
1131                         pos += bv->bv_len;
1132                 }
1133
1134                 chain = chain->bi_next;
1135         }
1136 }
1137
1138 /*
1139  * similar to zero_bio_chain(), zeros data defined by a page array,
1140  * starting at the given byte offset from the start of the array and
1141  * continuing up to the given end offset.  The pages array is
1142  * assumed to be big enough to hold all bytes up to the end.
1143  */
1144 static void zero_pages(struct page **pages, u64 offset, u64 end)
1145 {
1146         struct page **page = &pages[offset >> PAGE_SHIFT];
1147
1148         rbd_assert(end > offset);
1149         rbd_assert(end - offset <= (u64)SIZE_MAX);
1150         while (offset < end) {
1151                 size_t page_offset;
1152                 size_t length;
1153                 unsigned long flags;
1154                 void *kaddr;
1155
1156                 page_offset = (size_t)(offset & ~PAGE_MASK);
1157                 length = min(PAGE_SIZE - page_offset, (size_t)(end - offset));
1158                 local_irq_save(flags);
1159                 kaddr = kmap_atomic(*page);
1160                 memset(kaddr + page_offset, 0, length);
1161                 kunmap_atomic(kaddr);
1162                 local_irq_restore(flags);
1163
1164                 offset += length;
1165                 page++;
1166         }
1167 }
1168
1169 /*
1170  * Clone a portion of a bio, starting at the given byte offset
1171  * and continuing for the number of bytes indicated.
1172  */
1173 static struct bio *bio_clone_range(struct bio *bio_src,
1174                                         unsigned int offset,
1175                                         unsigned int len,
1176                                         gfp_t gfpmask)
1177 {
1178         struct bio_vec *bv;
1179         unsigned int resid;
1180         unsigned short idx;
1181         unsigned int voff;
1182         unsigned short end_idx;
1183         unsigned short vcnt;
1184         struct bio *bio;
1185
1186         /* Handle the easy case for the caller */
1187
1188         if (!offset && len == bio_src->bi_size)
1189                 return bio_clone(bio_src, gfpmask);
1190
1191         if (WARN_ON_ONCE(!len))
1192                 return NULL;
1193         if (WARN_ON_ONCE(len > bio_src->bi_size))
1194                 return NULL;
1195         if (WARN_ON_ONCE(offset > bio_src->bi_size - len))
1196                 return NULL;
1197
1198         /* Find first affected segment... */
1199
1200         resid = offset;
1201         bio_for_each_segment(bv, bio_src, idx) {
1202                 if (resid < bv->bv_len)
1203                         break;
1204                 resid -= bv->bv_len;
1205         }
1206         voff = resid;
1207
1208         /* ...and the last affected segment */
1209
1210         resid += len;
1211         __bio_for_each_segment(bv, bio_src, end_idx, idx) {
1212                 if (resid <= bv->bv_len)
1213                         break;
1214                 resid -= bv->bv_len;
1215         }
1216         vcnt = end_idx - idx + 1;
1217
1218         /* Build the clone */
1219
1220         bio = bio_alloc(gfpmask, (unsigned int) vcnt);
1221         if (!bio)
1222                 return NULL;    /* ENOMEM */
1223
1224         bio->bi_bdev = bio_src->bi_bdev;
1225         bio->bi_sector = bio_src->bi_sector + (offset >> SECTOR_SHIFT);
1226         bio->bi_rw = bio_src->bi_rw;
1227         bio->bi_flags |= 1 << BIO_CLONED;
1228
1229         /*
1230          * Copy over our part of the bio_vec, then update the first
1231          * and last (or only) entries.
1232          */
1233         memcpy(&bio->bi_io_vec[0], &bio_src->bi_io_vec[idx],
1234                         vcnt * sizeof (struct bio_vec));
1235         bio->bi_io_vec[0].bv_offset += voff;
1236         if (vcnt > 1) {
1237                 bio->bi_io_vec[0].bv_len -= voff;
1238                 bio->bi_io_vec[vcnt - 1].bv_len = resid;
1239         } else {
1240                 bio->bi_io_vec[0].bv_len = len;
1241         }
1242
1243         bio->bi_vcnt = vcnt;
1244         bio->bi_size = len;
1245         bio->bi_idx = 0;
1246
1247         return bio;
1248 }
1249
1250 /*
1251  * Clone a portion of a bio chain, starting at the given byte offset
1252  * into the first bio in the source chain and continuing for the
1253  * number of bytes indicated.  The result is another bio chain of
1254  * exactly the given length, or a null pointer on error.
1255  *
1256  * The bio_src and offset parameters are both in-out.  On entry they
1257  * refer to the first source bio and the offset into that bio where
1258  * the start of data to be cloned is located.
1259  *
1260  * On return, bio_src is updated to refer to the bio in the source
1261  * chain that contains first un-cloned byte, and *offset will
1262  * contain the offset of that byte within that bio.
1263  */
1264 static struct bio *bio_chain_clone_range(struct bio **bio_src,
1265                                         unsigned int *offset,
1266                                         unsigned int len,
1267                                         gfp_t gfpmask)
1268 {
1269         struct bio *bi = *bio_src;
1270         unsigned int off = *offset;
1271         struct bio *chain = NULL;
1272         struct bio **end;
1273
1274         /* Build up a chain of clone bios up to the limit */
1275
1276         if (!bi || off >= bi->bi_size || !len)
1277                 return NULL;            /* Nothing to clone */
1278
1279         end = &chain;
1280         while (len) {
1281                 unsigned int bi_size;
1282                 struct bio *bio;
1283
1284                 if (!bi) {
1285                         rbd_warn(NULL, "bio_chain exhausted with %u left", len);
1286                         goto out_err;   /* EINVAL; ran out of bio's */
1287                 }
1288                 bi_size = min_t(unsigned int, bi->bi_size - off, len);
1289                 bio = bio_clone_range(bi, off, bi_size, gfpmask);
1290                 if (!bio)
1291                         goto out_err;   /* ENOMEM */
1292
1293                 *end = bio;
1294                 end = &bio->bi_next;
1295
1296                 off += bi_size;
1297                 if (off == bi->bi_size) {
1298                         bi = bi->bi_next;
1299                         off = 0;
1300                 }
1301                 len -= bi_size;
1302         }
1303         *bio_src = bi;
1304         *offset = off;
1305
1306         return chain;
1307 out_err:
1308         bio_chain_put(chain);
1309
1310         return NULL;
1311 }
1312
1313 /*
1314  * The default/initial value for all object request flags is 0.  For
1315  * each flag, once its value is set to 1 it is never reset to 0
1316  * again.
1317  */
1318 static void obj_request_img_data_set(struct rbd_obj_request *obj_request)
1319 {
1320         if (test_and_set_bit(OBJ_REQ_IMG_DATA, &obj_request->flags)) {
1321                 struct rbd_device *rbd_dev;
1322
1323                 rbd_dev = obj_request->img_request->rbd_dev;
1324                 rbd_warn(rbd_dev, "obj_request %p already marked img_data\n",
1325                         obj_request);
1326         }
1327 }
1328
1329 static bool obj_request_img_data_test(struct rbd_obj_request *obj_request)
1330 {
1331         smp_mb();
1332         return test_bit(OBJ_REQ_IMG_DATA, &obj_request->flags) != 0;
1333 }
1334
1335 static void obj_request_done_set(struct rbd_obj_request *obj_request)
1336 {
1337         if (test_and_set_bit(OBJ_REQ_DONE, &obj_request->flags)) {
1338                 struct rbd_device *rbd_dev = NULL;
1339
1340                 if (obj_request_img_data_test(obj_request))
1341                         rbd_dev = obj_request->img_request->rbd_dev;
1342                 rbd_warn(rbd_dev, "obj_request %p already marked done\n",
1343                         obj_request);
1344         }
1345 }
1346
1347 static bool obj_request_done_test(struct rbd_obj_request *obj_request)
1348 {
1349         smp_mb();
1350         return test_bit(OBJ_REQ_DONE, &obj_request->flags) != 0;
1351 }
1352
1353 /*
1354  * This sets the KNOWN flag after (possibly) setting the EXISTS
1355  * flag.  The latter is set based on the "exists" value provided.
1356  *
1357  * Note that for our purposes once an object exists it never goes
1358  * away again.  It's possible that the response from two existence
1359  * checks are separated by the creation of the target object, and
1360  * the first ("doesn't exist") response arrives *after* the second
1361  * ("does exist").  In that case we ignore the second one.
1362  */
1363 static void obj_request_existence_set(struct rbd_obj_request *obj_request,
1364                                 bool exists)
1365 {
1366         if (exists)
1367                 set_bit(OBJ_REQ_EXISTS, &obj_request->flags);
1368         set_bit(OBJ_REQ_KNOWN, &obj_request->flags);
1369         smp_mb();
1370 }
1371
1372 static bool obj_request_known_test(struct rbd_obj_request *obj_request)
1373 {
1374         smp_mb();
1375         return test_bit(OBJ_REQ_KNOWN, &obj_request->flags) != 0;
1376 }
1377
1378 static bool obj_request_exists_test(struct rbd_obj_request *obj_request)
1379 {
1380         smp_mb();
1381         return test_bit(OBJ_REQ_EXISTS, &obj_request->flags) != 0;
1382 }
1383
1384 static void rbd_obj_request_get(struct rbd_obj_request *obj_request)
1385 {
1386         dout("%s: obj %p (was %d)\n", __func__, obj_request,
1387                 atomic_read(&obj_request->kref.refcount));
1388         kref_get(&obj_request->kref);
1389 }
1390
1391 static void rbd_obj_request_destroy(struct kref *kref);
1392 static void rbd_obj_request_put(struct rbd_obj_request *obj_request)
1393 {
1394         rbd_assert(obj_request != NULL);
1395         dout("%s: obj %p (was %d)\n", __func__, obj_request,
1396                 atomic_read(&obj_request->kref.refcount));
1397         kref_put(&obj_request->kref, rbd_obj_request_destroy);
1398 }
1399
1400 static bool img_request_child_test(struct rbd_img_request *img_request);
1401 static void rbd_parent_request_destroy(struct kref *kref);
1402 static void rbd_img_request_destroy(struct kref *kref);
1403 static void rbd_img_request_put(struct rbd_img_request *img_request)
1404 {
1405         rbd_assert(img_request != NULL);
1406         dout("%s: img %p (was %d)\n", __func__, img_request,
1407                 atomic_read(&img_request->kref.refcount));
1408         if (img_request_child_test(img_request))
1409                 kref_put(&img_request->kref, rbd_parent_request_destroy);
1410         else
1411                 kref_put(&img_request->kref, rbd_img_request_destroy);
1412 }
1413
1414 static inline void rbd_img_obj_request_add(struct rbd_img_request *img_request,
1415                                         struct rbd_obj_request *obj_request)
1416 {
1417         rbd_assert(obj_request->img_request == NULL);
1418
1419         /* Image request now owns object's original reference */
1420         obj_request->img_request = img_request;
1421         obj_request->which = img_request->obj_request_count;
1422         rbd_assert(!obj_request_img_data_test(obj_request));
1423         obj_request_img_data_set(obj_request);
1424         rbd_assert(obj_request->which != BAD_WHICH);
1425         img_request->obj_request_count++;
1426         list_add_tail(&obj_request->links, &img_request->obj_requests);
1427         dout("%s: img %p obj %p w=%u\n", __func__, img_request, obj_request,
1428                 obj_request->which);
1429 }
1430
1431 static inline void rbd_img_obj_request_del(struct rbd_img_request *img_request,
1432                                         struct rbd_obj_request *obj_request)
1433 {
1434         rbd_assert(obj_request->which != BAD_WHICH);
1435
1436         dout("%s: img %p obj %p w=%u\n", __func__, img_request, obj_request,
1437                 obj_request->which);
1438         list_del(&obj_request->links);
1439         rbd_assert(img_request->obj_request_count > 0);
1440         img_request->obj_request_count--;
1441         rbd_assert(obj_request->which == img_request->obj_request_count);
1442         obj_request->which = BAD_WHICH;
1443         rbd_assert(obj_request_img_data_test(obj_request));
1444         rbd_assert(obj_request->img_request == img_request);
1445         obj_request->img_request = NULL;
1446         obj_request->callback = NULL;
1447         rbd_obj_request_put(obj_request);
1448 }
1449
1450 static bool obj_request_type_valid(enum obj_request_type type)
1451 {
1452         switch (type) {
1453         case OBJ_REQUEST_NODATA:
1454         case OBJ_REQUEST_BIO:
1455         case OBJ_REQUEST_PAGES:
1456                 return true;
1457         default:
1458                 return false;
1459         }
1460 }
1461
1462 static int rbd_obj_request_submit(struct ceph_osd_client *osdc,
1463                                 struct rbd_obj_request *obj_request)
1464 {
1465         dout("%s: osdc %p obj %p\n", __func__, osdc, obj_request);
1466
1467         return ceph_osdc_start_request(osdc, obj_request->osd_req, false);
1468 }
1469
1470 static void rbd_img_request_complete(struct rbd_img_request *img_request)
1471 {
1472
1473         dout("%s: img %p\n", __func__, img_request);
1474
1475         /*
1476          * If no error occurred, compute the aggregate transfer
1477          * count for the image request.  We could instead use
1478          * atomic64_cmpxchg() to update it as each object request
1479          * completes; not clear which way is better off hand.
1480          */
1481         if (!img_request->result) {
1482                 struct rbd_obj_request *obj_request;
1483                 u64 xferred = 0;
1484
1485                 for_each_obj_request(img_request, obj_request)
1486                         xferred += obj_request->xferred;
1487                 img_request->xferred = xferred;
1488         }
1489
1490         if (img_request->callback)
1491                 img_request->callback(img_request);
1492         else
1493                 rbd_img_request_put(img_request);
1494 }
1495
1496 /* Caller is responsible for rbd_obj_request_destroy(obj_request) */
1497
1498 static int rbd_obj_request_wait(struct rbd_obj_request *obj_request)
1499 {
1500         dout("%s: obj %p\n", __func__, obj_request);
1501
1502         return wait_for_completion_interruptible(&obj_request->completion);
1503 }
1504
1505 /*
1506  * The default/initial value for all image request flags is 0.  Each
1507  * is conditionally set to 1 at image request initialization time
1508  * and currently never change thereafter.
1509  */
1510 static void img_request_write_set(struct rbd_img_request *img_request)
1511 {
1512         set_bit(IMG_REQ_WRITE, &img_request->flags);
1513         smp_mb();
1514 }
1515
1516 static bool img_request_write_test(struct rbd_img_request *img_request)
1517 {
1518         smp_mb();
1519         return test_bit(IMG_REQ_WRITE, &img_request->flags) != 0;
1520 }
1521
1522 static void img_request_child_set(struct rbd_img_request *img_request)
1523 {
1524         set_bit(IMG_REQ_CHILD, &img_request->flags);
1525         smp_mb();
1526 }
1527
1528 static void img_request_child_clear(struct rbd_img_request *img_request)
1529 {
1530         clear_bit(IMG_REQ_CHILD, &img_request->flags);
1531         smp_mb();
1532 }
1533
1534 static bool img_request_child_test(struct rbd_img_request *img_request)
1535 {
1536         smp_mb();
1537         return test_bit(IMG_REQ_CHILD, &img_request->flags) != 0;
1538 }
1539
1540 static void img_request_layered_set(struct rbd_img_request *img_request)
1541 {
1542         set_bit(IMG_REQ_LAYERED, &img_request->flags);
1543         smp_mb();
1544 }
1545
1546 static void img_request_layered_clear(struct rbd_img_request *img_request)
1547 {
1548         clear_bit(IMG_REQ_LAYERED, &img_request->flags);
1549         smp_mb();
1550 }
1551
1552 static bool img_request_layered_test(struct rbd_img_request *img_request)
1553 {
1554         smp_mb();
1555         return test_bit(IMG_REQ_LAYERED, &img_request->flags) != 0;
1556 }
1557
1558 static void
1559 rbd_img_obj_request_read_callback(struct rbd_obj_request *obj_request)
1560 {
1561         u64 xferred = obj_request->xferred;
1562         u64 length = obj_request->length;
1563
1564         dout("%s: obj %p img %p result %d %llu/%llu\n", __func__,
1565                 obj_request, obj_request->img_request, obj_request->result,
1566                 xferred, length);
1567         /*
1568          * ENOENT means a hole in the image.  We zero-fill the
1569          * entire length of the request.  A short read also implies
1570          * zero-fill to the end of the request.  Either way we
1571          * update the xferred count to indicate the whole request
1572          * was satisfied.
1573          */
1574         rbd_assert(obj_request->type != OBJ_REQUEST_NODATA);
1575         if (obj_request->result == -ENOENT) {
1576                 if (obj_request->type == OBJ_REQUEST_BIO)
1577                         zero_bio_chain(obj_request->bio_list, 0);
1578                 else
1579                         zero_pages(obj_request->pages, 0, length);
1580                 obj_request->result = 0;
1581                 obj_request->xferred = length;
1582         } else if (xferred < length && !obj_request->result) {
1583                 if (obj_request->type == OBJ_REQUEST_BIO)
1584                         zero_bio_chain(obj_request->bio_list, xferred);
1585                 else
1586                         zero_pages(obj_request->pages, xferred, length);
1587                 obj_request->xferred = length;
1588         }
1589         obj_request_done_set(obj_request);
1590 }
1591
1592 static void rbd_obj_request_complete(struct rbd_obj_request *obj_request)
1593 {
1594         dout("%s: obj %p cb %p\n", __func__, obj_request,
1595                 obj_request->callback);
1596         if (obj_request->callback)
1597                 obj_request->callback(obj_request);
1598         else
1599                 complete_all(&obj_request->completion);
1600 }
1601
1602 static void rbd_osd_trivial_callback(struct rbd_obj_request *obj_request)
1603 {
1604         dout("%s: obj %p\n", __func__, obj_request);
1605         obj_request_done_set(obj_request);
1606 }
1607
1608 static void rbd_osd_read_callback(struct rbd_obj_request *obj_request)
1609 {
1610         struct rbd_img_request *img_request = NULL;
1611         struct rbd_device *rbd_dev = NULL;
1612         bool layered = false;
1613
1614         if (obj_request_img_data_test(obj_request)) {
1615                 img_request = obj_request->img_request;
1616                 layered = img_request && img_request_layered_test(img_request);
1617                 rbd_dev = img_request->rbd_dev;
1618         }
1619
1620         dout("%s: obj %p img %p result %d %llu/%llu\n", __func__,
1621                 obj_request, img_request, obj_request->result,
1622                 obj_request->xferred, obj_request->length);
1623         if (layered && obj_request->result == -ENOENT &&
1624                         obj_request->img_offset < rbd_dev->parent_overlap)
1625                 rbd_img_parent_read(obj_request);
1626         else if (img_request)
1627                 rbd_img_obj_request_read_callback(obj_request);
1628         else
1629                 obj_request_done_set(obj_request);
1630 }
1631
1632 static void rbd_osd_write_callback(struct rbd_obj_request *obj_request)
1633 {
1634         dout("%s: obj %p result %d %llu\n", __func__, obj_request,
1635                 obj_request->result, obj_request->length);
1636         /*
1637          * There is no such thing as a successful short write.  Set
1638          * it to our originally-requested length.
1639          */
1640         obj_request->xferred = obj_request->length;
1641         obj_request_done_set(obj_request);
1642 }
1643
1644 /*
1645  * For a simple stat call there's nothing to do.  We'll do more if
1646  * this is part of a write sequence for a layered image.
1647  */
1648 static void rbd_osd_stat_callback(struct rbd_obj_request *obj_request)
1649 {
1650         dout("%s: obj %p\n", __func__, obj_request);
1651         obj_request_done_set(obj_request);
1652 }
1653
1654 static void rbd_osd_req_callback(struct ceph_osd_request *osd_req,
1655                                 struct ceph_msg *msg)
1656 {
1657         struct rbd_obj_request *obj_request = osd_req->r_priv;
1658         u16 opcode;
1659
1660         dout("%s: osd_req %p msg %p\n", __func__, osd_req, msg);
1661         rbd_assert(osd_req == obj_request->osd_req);
1662         if (obj_request_img_data_test(obj_request)) {
1663                 rbd_assert(obj_request->img_request);
1664                 rbd_assert(obj_request->which != BAD_WHICH);
1665         } else {
1666                 rbd_assert(obj_request->which == BAD_WHICH);
1667         }
1668
1669         if (osd_req->r_result < 0)
1670                 obj_request->result = osd_req->r_result;
1671
1672         BUG_ON(osd_req->r_num_ops > 2);
1673
1674         /*
1675          * We support a 64-bit length, but ultimately it has to be
1676          * passed to blk_end_request(), which takes an unsigned int.
1677          */
1678         obj_request->xferred = osd_req->r_reply_op_len[0];
1679         rbd_assert(obj_request->xferred < (u64)UINT_MAX);
1680         opcode = osd_req->r_ops[0].op;
1681         switch (opcode) {
1682         case CEPH_OSD_OP_READ:
1683                 rbd_osd_read_callback(obj_request);
1684                 break;
1685         case CEPH_OSD_OP_WRITE:
1686                 rbd_osd_write_callback(obj_request);
1687                 break;
1688         case CEPH_OSD_OP_STAT:
1689                 rbd_osd_stat_callback(obj_request);
1690                 break;
1691         case CEPH_OSD_OP_CALL:
1692         case CEPH_OSD_OP_NOTIFY_ACK:
1693         case CEPH_OSD_OP_WATCH:
1694                 rbd_osd_trivial_callback(obj_request);
1695                 break;
1696         default:
1697                 rbd_warn(NULL, "%s: unsupported op %hu\n",
1698                         obj_request->object_name, (unsigned short) opcode);
1699                 break;
1700         }
1701
1702         if (obj_request_done_test(obj_request))
1703                 rbd_obj_request_complete(obj_request);
1704 }
1705
1706 static void rbd_osd_req_format_read(struct rbd_obj_request *obj_request)
1707 {
1708         struct rbd_img_request *img_request = obj_request->img_request;
1709         struct ceph_osd_request *osd_req = obj_request->osd_req;
1710         u64 snap_id;
1711
1712         rbd_assert(osd_req != NULL);
1713
1714         snap_id = img_request ? img_request->snap_id : CEPH_NOSNAP;
1715         ceph_osdc_build_request(osd_req, obj_request->offset,
1716                         NULL, snap_id, NULL);
1717 }
1718
1719 static void rbd_osd_req_format_write(struct rbd_obj_request *obj_request)
1720 {
1721         struct rbd_img_request *img_request = obj_request->img_request;
1722         struct ceph_osd_request *osd_req = obj_request->osd_req;
1723         struct ceph_snap_context *snapc;
1724         struct timespec mtime = CURRENT_TIME;
1725
1726         rbd_assert(osd_req != NULL);
1727
1728         snapc = img_request ? img_request->snapc : NULL;
1729         ceph_osdc_build_request(osd_req, obj_request->offset,
1730                         snapc, CEPH_NOSNAP, &mtime);
1731 }
1732
1733 static struct ceph_osd_request *rbd_osd_req_create(
1734                                         struct rbd_device *rbd_dev,
1735                                         bool write_request,
1736                                         struct rbd_obj_request *obj_request)
1737 {
1738         struct ceph_snap_context *snapc = NULL;
1739         struct ceph_osd_client *osdc;
1740         struct ceph_osd_request *osd_req;
1741
1742         if (obj_request_img_data_test(obj_request)) {
1743                 struct rbd_img_request *img_request = obj_request->img_request;
1744
1745                 rbd_assert(write_request ==
1746                                 img_request_write_test(img_request));
1747                 if (write_request)
1748                         snapc = img_request->snapc;
1749         }
1750
1751         /* Allocate and initialize the request, for the single op */
1752
1753         osdc = &rbd_dev->rbd_client->client->osdc;
1754         osd_req = ceph_osdc_alloc_request(osdc, snapc, 1, false, GFP_ATOMIC);
1755         if (!osd_req)
1756                 return NULL;    /* ENOMEM */
1757
1758         if (write_request)
1759                 osd_req->r_flags = CEPH_OSD_FLAG_WRITE | CEPH_OSD_FLAG_ONDISK;
1760         else
1761                 osd_req->r_flags = CEPH_OSD_FLAG_READ;
1762
1763         osd_req->r_callback = rbd_osd_req_callback;
1764         osd_req->r_priv = obj_request;
1765
1766         osd_req->r_oid_len = strlen(obj_request->object_name);
1767         rbd_assert(osd_req->r_oid_len < sizeof (osd_req->r_oid));
1768         memcpy(osd_req->r_oid, obj_request->object_name, osd_req->r_oid_len);
1769
1770         osd_req->r_file_layout = rbd_dev->layout;       /* struct */
1771
1772         return osd_req;
1773 }
1774
1775 /*
1776  * Create a copyup osd request based on the information in the
1777  * object request supplied.  A copyup request has two osd ops,
1778  * a copyup method call, and a "normal" write request.
1779  */
1780 static struct ceph_osd_request *
1781 rbd_osd_req_create_copyup(struct rbd_obj_request *obj_request)
1782 {
1783         struct rbd_img_request *img_request;
1784         struct ceph_snap_context *snapc;
1785         struct rbd_device *rbd_dev;
1786         struct ceph_osd_client *osdc;
1787         struct ceph_osd_request *osd_req;
1788
1789         rbd_assert(obj_request_img_data_test(obj_request));
1790         img_request = obj_request->img_request;
1791         rbd_assert(img_request);
1792         rbd_assert(img_request_write_test(img_request));
1793
1794         /* Allocate and initialize the request, for the two ops */
1795
1796         snapc = img_request->snapc;
1797         rbd_dev = img_request->rbd_dev;
1798         osdc = &rbd_dev->rbd_client->client->osdc;
1799         osd_req = ceph_osdc_alloc_request(osdc, snapc, 2, false, GFP_ATOMIC);
1800         if (!osd_req)
1801                 return NULL;    /* ENOMEM */
1802
1803         osd_req->r_flags = CEPH_OSD_FLAG_WRITE | CEPH_OSD_FLAG_ONDISK;
1804         osd_req->r_callback = rbd_osd_req_callback;
1805         osd_req->r_priv = obj_request;
1806
1807         osd_req->r_oid_len = strlen(obj_request->object_name);
1808         rbd_assert(osd_req->r_oid_len < sizeof (osd_req->r_oid));
1809         memcpy(osd_req->r_oid, obj_request->object_name, osd_req->r_oid_len);
1810
1811         osd_req->r_file_layout = rbd_dev->layout;       /* struct */
1812
1813         return osd_req;
1814 }
1815
1816
1817 static void rbd_osd_req_destroy(struct ceph_osd_request *osd_req)
1818 {
1819         ceph_osdc_put_request(osd_req);
1820 }
1821
1822 /* object_name is assumed to be a non-null pointer and NUL-terminated */
1823
1824 static struct rbd_obj_request *rbd_obj_request_create(const char *object_name,
1825                                                 u64 offset, u64 length,
1826                                                 enum obj_request_type type)
1827 {
1828         struct rbd_obj_request *obj_request;
1829         size_t size;
1830         char *name;
1831
1832         rbd_assert(obj_request_type_valid(type));
1833
1834         size = strlen(object_name) + 1;
1835         name = kmalloc(size, GFP_KERNEL);
1836         if (!name)
1837                 return NULL;
1838
1839         obj_request = kmem_cache_zalloc(rbd_obj_request_cache, GFP_KERNEL);
1840         if (!obj_request) {
1841                 kfree(name);
1842                 return NULL;
1843         }
1844
1845         obj_request->object_name = memcpy(name, object_name, size);
1846         obj_request->offset = offset;
1847         obj_request->length = length;
1848         obj_request->flags = 0;
1849         obj_request->which = BAD_WHICH;
1850         obj_request->type = type;
1851         INIT_LIST_HEAD(&obj_request->links);
1852         init_completion(&obj_request->completion);
1853         kref_init(&obj_request->kref);
1854
1855         dout("%s: \"%s\" %llu/%llu %d -> obj %p\n", __func__, object_name,
1856                 offset, length, (int)type, obj_request);
1857
1858         return obj_request;
1859 }
1860
1861 static void rbd_obj_request_destroy(struct kref *kref)
1862 {
1863         struct rbd_obj_request *obj_request;
1864
1865         obj_request = container_of(kref, struct rbd_obj_request, kref);
1866
1867         dout("%s: obj %p\n", __func__, obj_request);
1868
1869         rbd_assert(obj_request->img_request == NULL);
1870         rbd_assert(obj_request->which == BAD_WHICH);
1871
1872         if (obj_request->osd_req)
1873                 rbd_osd_req_destroy(obj_request->osd_req);
1874
1875         rbd_assert(obj_request_type_valid(obj_request->type));
1876         switch (obj_request->type) {
1877         case OBJ_REQUEST_NODATA:
1878                 break;          /* Nothing to do */
1879         case OBJ_REQUEST_BIO:
1880                 if (obj_request->bio_list)
1881                         bio_chain_put(obj_request->bio_list);
1882                 break;
1883         case OBJ_REQUEST_PAGES:
1884                 if (obj_request->pages)
1885                         ceph_release_page_vector(obj_request->pages,
1886                                                 obj_request->page_count);
1887                 break;
1888         }
1889
1890         kfree(obj_request->object_name);
1891         obj_request->object_name = NULL;
1892         kmem_cache_free(rbd_obj_request_cache, obj_request);
1893 }
1894
1895 /* It's OK to call this for a device with no parent */
1896
1897 static void rbd_spec_put(struct rbd_spec *spec);
1898 static void rbd_dev_unparent(struct rbd_device *rbd_dev)
1899 {
1900         rbd_dev_remove_parent(rbd_dev);
1901         rbd_spec_put(rbd_dev->parent_spec);
1902         rbd_dev->parent_spec = NULL;
1903         rbd_dev->parent_overlap = 0;
1904 }
1905
1906 /*
1907  * Parent image reference counting is used to determine when an
1908  * image's parent fields can be safely torn down--after there are no
1909  * more in-flight requests to the parent image.  When the last
1910  * reference is dropped, cleaning them up is safe.
1911  */
1912 static void rbd_dev_parent_put(struct rbd_device *rbd_dev)
1913 {
1914         int counter;
1915
1916         if (!rbd_dev->parent_spec)
1917                 return;
1918
1919         counter = atomic_dec_return_safe(&rbd_dev->parent_ref);
1920         if (counter > 0)
1921                 return;
1922
1923         /* Last reference; clean up parent data structures */
1924
1925         if (!counter)
1926                 rbd_dev_unparent(rbd_dev);
1927         else
1928                 rbd_warn(rbd_dev, "parent reference underflow\n");
1929 }
1930
1931 /*
1932  * If an image has a non-zero parent overlap, get a reference to its
1933  * parent.
1934  *
1935  * We must get the reference before checking for the overlap to
1936  * coordinate properly with zeroing the parent overlap in
1937  * rbd_dev_v2_parent_info() when an image gets flattened.  We
1938  * drop it again if there is no overlap.
1939  *
1940  * Returns true if the rbd device has a parent with a non-zero
1941  * overlap and a reference for it was successfully taken, or
1942  * false otherwise.
1943  */
1944 static bool rbd_dev_parent_get(struct rbd_device *rbd_dev)
1945 {
1946         int counter;
1947
1948         if (!rbd_dev->parent_spec)
1949                 return false;
1950
1951         counter = atomic_inc_return_safe(&rbd_dev->parent_ref);
1952         if (counter > 0 && rbd_dev->parent_overlap)
1953                 return true;
1954
1955         /* Image was flattened, but parent is not yet torn down */
1956
1957         if (counter < 0)
1958                 rbd_warn(rbd_dev, "parent reference overflow\n");
1959
1960         return false;
1961 }
1962
1963 /*
1964  * Caller is responsible for filling in the list of object requests
1965  * that comprises the image request, and the Linux request pointer
1966  * (if there is one).
1967  */
1968 static struct rbd_img_request *rbd_img_request_create(
1969                                         struct rbd_device *rbd_dev,
1970                                         u64 offset, u64 length,
1971                                         bool write_request)
1972 {
1973         struct rbd_img_request *img_request;
1974
1975         img_request = kmem_cache_alloc(rbd_img_request_cache, GFP_ATOMIC);
1976         if (!img_request)
1977                 return NULL;
1978
1979         if (write_request) {
1980                 down_read(&rbd_dev->header_rwsem);
1981                 ceph_get_snap_context(rbd_dev->header.snapc);
1982                 up_read(&rbd_dev->header_rwsem);
1983         }
1984
1985         img_request->rq = NULL;
1986         img_request->rbd_dev = rbd_dev;
1987         img_request->offset = offset;
1988         img_request->length = length;
1989         img_request->flags = 0;
1990         if (write_request) {
1991                 img_request_write_set(img_request);
1992                 img_request->snapc = rbd_dev->header.snapc;
1993         } else {
1994                 img_request->snap_id = rbd_dev->spec->snap_id;
1995         }
1996         if (rbd_dev_parent_get(rbd_dev))
1997                 img_request_layered_set(img_request);
1998         spin_lock_init(&img_request->completion_lock);
1999         img_request->next_completion = 0;
2000         img_request->callback = NULL;
2001         img_request->result = 0;
2002         img_request->obj_request_count = 0;
2003         INIT_LIST_HEAD(&img_request->obj_requests);
2004         kref_init(&img_request->kref);
2005
2006         dout("%s: rbd_dev %p %s %llu/%llu -> img %p\n", __func__, rbd_dev,
2007                 write_request ? "write" : "read", offset, length,
2008                 img_request);
2009
2010         return img_request;
2011 }
2012
2013 static void rbd_img_request_destroy(struct kref *kref)
2014 {
2015         struct rbd_img_request *img_request;
2016         struct rbd_obj_request *obj_request;
2017         struct rbd_obj_request *next_obj_request;
2018
2019         img_request = container_of(kref, struct rbd_img_request, kref);
2020
2021         dout("%s: img %p\n", __func__, img_request);
2022
2023         for_each_obj_request_safe(img_request, obj_request, next_obj_request)
2024                 rbd_img_obj_request_del(img_request, obj_request);
2025         rbd_assert(img_request->obj_request_count == 0);
2026
2027         if (img_request_layered_test(img_request)) {
2028                 img_request_layered_clear(img_request);
2029                 rbd_dev_parent_put(img_request->rbd_dev);
2030         }
2031
2032         if (img_request_write_test(img_request))
2033                 ceph_put_snap_context(img_request->snapc);
2034
2035         kmem_cache_free(rbd_img_request_cache, img_request);
2036 }
2037
2038 static struct rbd_img_request *rbd_parent_request_create(
2039                                         struct rbd_obj_request *obj_request,
2040                                         u64 img_offset, u64 length)
2041 {
2042         struct rbd_img_request *parent_request;
2043         struct rbd_device *rbd_dev;
2044
2045         rbd_assert(obj_request->img_request);
2046         rbd_dev = obj_request->img_request->rbd_dev;
2047
2048         parent_request = rbd_img_request_create(rbd_dev->parent,
2049                                                 img_offset, length, false);
2050         if (!parent_request)
2051                 return NULL;
2052
2053         img_request_child_set(parent_request);
2054         rbd_obj_request_get(obj_request);
2055         parent_request->obj_request = obj_request;
2056
2057         return parent_request;
2058 }
2059
2060 static void rbd_parent_request_destroy(struct kref *kref)
2061 {
2062         struct rbd_img_request *parent_request;
2063         struct rbd_obj_request *orig_request;
2064
2065         parent_request = container_of(kref, struct rbd_img_request, kref);
2066         orig_request = parent_request->obj_request;
2067
2068         parent_request->obj_request = NULL;
2069         rbd_obj_request_put(orig_request);
2070         img_request_child_clear(parent_request);
2071
2072         rbd_img_request_destroy(kref);
2073 }
2074
2075 static bool rbd_img_obj_end_request(struct rbd_obj_request *obj_request)
2076 {
2077         struct rbd_img_request *img_request;
2078         unsigned int xferred;
2079         int result;
2080         bool more;
2081
2082         rbd_assert(obj_request_img_data_test(obj_request));
2083         img_request = obj_request->img_request;
2084
2085         rbd_assert(obj_request->xferred <= (u64)UINT_MAX);
2086         xferred = (unsigned int)obj_request->xferred;
2087         result = obj_request->result;
2088         if (result) {
2089                 struct rbd_device *rbd_dev = img_request->rbd_dev;
2090
2091                 rbd_warn(rbd_dev, "%s %llx at %llx (%llx)\n",
2092                         img_request_write_test(img_request) ? "write" : "read",
2093                         obj_request->length, obj_request->img_offset,
2094                         obj_request->offset);
2095                 rbd_warn(rbd_dev, "  result %d xferred %x\n",
2096                         result, xferred);
2097                 if (!img_request->result)
2098                         img_request->result = result;
2099         }
2100
2101         /* Image object requests don't own their page array */
2102
2103         if (obj_request->type == OBJ_REQUEST_PAGES) {
2104                 obj_request->pages = NULL;
2105                 obj_request->page_count = 0;
2106         }
2107
2108         if (img_request_child_test(img_request)) {
2109                 rbd_assert(img_request->obj_request != NULL);
2110                 more = obj_request->which < img_request->obj_request_count - 1;
2111         } else {
2112                 rbd_assert(img_request->rq != NULL);
2113                 more = blk_end_request(img_request->rq, result, xferred);
2114         }
2115
2116         return more;
2117 }
2118
2119 static void rbd_img_obj_callback(struct rbd_obj_request *obj_request)
2120 {
2121         struct rbd_img_request *img_request;
2122         u32 which = obj_request->which;
2123         bool more = true;
2124
2125         rbd_assert(obj_request_img_data_test(obj_request));
2126         img_request = obj_request->img_request;
2127
2128         dout("%s: img %p obj %p\n", __func__, img_request, obj_request);
2129         rbd_assert(img_request != NULL);
2130         rbd_assert(img_request->obj_request_count > 0);
2131         rbd_assert(which != BAD_WHICH);
2132         rbd_assert(which < img_request->obj_request_count);
2133         rbd_assert(which >= img_request->next_completion);
2134
2135         spin_lock_irq(&img_request->completion_lock);
2136         if (which != img_request->next_completion)
2137                 goto out;
2138
2139         for_each_obj_request_from(img_request, obj_request) {
2140                 rbd_assert(more);
2141                 rbd_assert(which < img_request->obj_request_count);
2142
2143                 if (!obj_request_done_test(obj_request))
2144                         break;
2145                 more = rbd_img_obj_end_request(obj_request);
2146                 which++;
2147         }
2148
2149         rbd_assert(more ^ (which == img_request->obj_request_count));
2150         img_request->next_completion = which;
2151 out:
2152         spin_unlock_irq(&img_request->completion_lock);
2153
2154         if (!more)
2155                 rbd_img_request_complete(img_request);
2156 }
2157
2158 /*
2159  * Split up an image request into one or more object requests, each
2160  * to a different object.  The "type" parameter indicates whether
2161  * "data_desc" is the pointer to the head of a list of bio
2162  * structures, or the base of a page array.  In either case this
2163  * function assumes data_desc describes memory sufficient to hold
2164  * all data described by the image request.
2165  */
2166 static int rbd_img_request_fill(struct rbd_img_request *img_request,
2167                                         enum obj_request_type type,
2168                                         void *data_desc)
2169 {
2170         struct rbd_device *rbd_dev = img_request->rbd_dev;
2171         struct rbd_obj_request *obj_request = NULL;
2172         struct rbd_obj_request *next_obj_request;
2173         bool write_request = img_request_write_test(img_request);
2174         struct bio *bio_list;
2175         unsigned int bio_offset = 0;
2176         struct page **pages;
2177         u64 img_offset;
2178         u64 resid;
2179         u16 opcode;
2180
2181         dout("%s: img %p type %d data_desc %p\n", __func__, img_request,
2182                 (int)type, data_desc);
2183
2184         opcode = write_request ? CEPH_OSD_OP_WRITE : CEPH_OSD_OP_READ;
2185         img_offset = img_request->offset;
2186         resid = img_request->length;
2187         rbd_assert(resid > 0);
2188
2189         if (type == OBJ_REQUEST_BIO) {
2190                 bio_list = data_desc;
2191                 rbd_assert(img_offset == bio_list->bi_sector << SECTOR_SHIFT);
2192         } else {
2193                 rbd_assert(type == OBJ_REQUEST_PAGES);
2194                 pages = data_desc;
2195         }
2196
2197         while (resid) {
2198                 struct ceph_osd_request *osd_req;
2199                 const char *object_name;
2200                 u64 offset;
2201                 u64 length;
2202
2203                 object_name = rbd_segment_name(rbd_dev, img_offset);
2204                 if (!object_name)
2205                         goto out_unwind;
2206                 offset = rbd_segment_offset(rbd_dev, img_offset);
2207                 length = rbd_segment_length(rbd_dev, img_offset, resid);
2208                 obj_request = rbd_obj_request_create(object_name,
2209                                                 offset, length, type);
2210                 /* object request has its own copy of the object name */
2211                 rbd_segment_name_free(object_name);
2212                 if (!obj_request)
2213                         goto out_unwind;
2214
2215                 if (type == OBJ_REQUEST_BIO) {
2216                         unsigned int clone_size;
2217
2218                         rbd_assert(length <= (u64)UINT_MAX);
2219                         clone_size = (unsigned int)length;
2220                         obj_request->bio_list =
2221                                         bio_chain_clone_range(&bio_list,
2222                                                                 &bio_offset,
2223                                                                 clone_size,
2224                                                                 GFP_ATOMIC);
2225                         if (!obj_request->bio_list)
2226                                 goto out_partial;
2227                 } else {
2228                         unsigned int page_count;
2229
2230                         obj_request->pages = pages;
2231                         page_count = (u32)calc_pages_for(offset, length);
2232                         obj_request->page_count = page_count;
2233                         if ((offset + length) & ~PAGE_MASK)
2234                                 page_count--;   /* more on last page */
2235                         pages += page_count;
2236                 }
2237
2238                 osd_req = rbd_osd_req_create(rbd_dev, write_request,
2239                                                 obj_request);
2240                 if (!osd_req)
2241                         goto out_partial;
2242                 obj_request->osd_req = osd_req;
2243                 obj_request->callback = rbd_img_obj_callback;
2244
2245                 osd_req_op_extent_init(osd_req, 0, opcode, offset, length,
2246                                                 0, 0);
2247                 if (type == OBJ_REQUEST_BIO)
2248                         osd_req_op_extent_osd_data_bio(osd_req, 0,
2249                                         obj_request->bio_list, length);
2250                 else
2251                         osd_req_op_extent_osd_data_pages(osd_req, 0,
2252                                         obj_request->pages, length,
2253                                         offset & ~PAGE_MASK, false, false);
2254
2255                 /*
2256                  * set obj_request->img_request before formatting
2257                  * the osd_request so that it gets the right snapc
2258                  */
2259                 rbd_img_obj_request_add(img_request, obj_request);
2260                 if (write_request)
2261                         rbd_osd_req_format_write(obj_request);
2262                 else
2263                         rbd_osd_req_format_read(obj_request);
2264
2265                 obj_request->img_offset = img_offset;
2266
2267                 img_offset += length;
2268                 resid -= length;
2269         }
2270
2271         return 0;
2272
2273 out_partial:
2274         rbd_obj_request_put(obj_request);
2275 out_unwind:
2276         for_each_obj_request_safe(img_request, obj_request, next_obj_request)
2277                 rbd_obj_request_put(obj_request);
2278
2279         return -ENOMEM;
2280 }
2281
2282 static void
2283 rbd_img_obj_copyup_callback(struct rbd_obj_request *obj_request)
2284 {
2285         struct rbd_img_request *img_request;
2286         struct rbd_device *rbd_dev;
2287         struct page **pages;
2288         u32 page_count;
2289
2290         rbd_assert(obj_request->type == OBJ_REQUEST_BIO);
2291         rbd_assert(obj_request_img_data_test(obj_request));
2292         img_request = obj_request->img_request;
2293         rbd_assert(img_request);
2294
2295         rbd_dev = img_request->rbd_dev;
2296         rbd_assert(rbd_dev);
2297
2298         pages = obj_request->copyup_pages;
2299         rbd_assert(pages != NULL);
2300         obj_request->copyup_pages = NULL;
2301         page_count = obj_request->copyup_page_count;
2302         rbd_assert(page_count);
2303         obj_request->copyup_page_count = 0;
2304         ceph_release_page_vector(pages, page_count);
2305
2306         /*
2307          * We want the transfer count to reflect the size of the
2308          * original write request.  There is no such thing as a
2309          * successful short write, so if the request was successful
2310          * we can just set it to the originally-requested length.
2311          */
2312         if (!obj_request->result)
2313                 obj_request->xferred = obj_request->length;
2314
2315         /* Finish up with the normal image object callback */
2316
2317         rbd_img_obj_callback(obj_request);
2318 }
2319
2320 static void
2321 rbd_img_obj_parent_read_full_callback(struct rbd_img_request *img_request)
2322 {
2323         struct rbd_obj_request *orig_request;
2324         struct ceph_osd_request *osd_req;
2325         struct ceph_osd_client *osdc;
2326         struct rbd_device *rbd_dev;
2327         struct page **pages;
2328         u32 page_count;
2329         int img_result;
2330         u64 parent_length;
2331         u64 offset;
2332         u64 length;
2333
2334         rbd_assert(img_request_child_test(img_request));
2335
2336         /* First get what we need from the image request */
2337
2338         pages = img_request->copyup_pages;
2339         rbd_assert(pages != NULL);
2340         img_request->copyup_pages = NULL;
2341         page_count = img_request->copyup_page_count;
2342         rbd_assert(page_count);
2343         img_request->copyup_page_count = 0;
2344
2345         orig_request = img_request->obj_request;
2346         rbd_assert(orig_request != NULL);
2347         rbd_assert(obj_request_type_valid(orig_request->type));
2348         img_result = img_request->result;
2349         parent_length = img_request->length;
2350         rbd_assert(parent_length == img_request->xferred);
2351         rbd_img_request_put(img_request);
2352
2353         rbd_assert(orig_request->img_request);
2354         rbd_dev = orig_request->img_request->rbd_dev;
2355         rbd_assert(rbd_dev);
2356
2357         /*
2358          * If the overlap has become 0 (most likely because the
2359          * image has been flattened) we need to free the pages
2360          * and re-submit the original write request.
2361          */
2362         if (!rbd_dev->parent_overlap) {
2363                 struct ceph_osd_client *osdc;
2364
2365                 ceph_release_page_vector(pages, page_count);
2366                 osdc = &rbd_dev->rbd_client->client->osdc;
2367                 img_result = rbd_obj_request_submit(osdc, orig_request);
2368                 if (!img_result)
2369                         return;
2370         }
2371
2372         if (img_result)
2373                 goto out_err;
2374
2375         /*
2376          * The original osd request is of no use to use any more.
2377          * We need a new one that can hold the two ops in a copyup
2378          * request.  Allocate the new copyup osd request for the
2379          * original request, and release the old one.
2380          */
2381         img_result = -ENOMEM;
2382         osd_req = rbd_osd_req_create_copyup(orig_request);
2383         if (!osd_req)
2384                 goto out_err;
2385         rbd_osd_req_destroy(orig_request->osd_req);
2386         orig_request->osd_req = osd_req;
2387         orig_request->copyup_pages = pages;
2388         orig_request->copyup_page_count = page_count;
2389
2390         /* Initialize the copyup op */
2391
2392         osd_req_op_cls_init(osd_req, 0, CEPH_OSD_OP_CALL, "rbd", "copyup");
2393         osd_req_op_cls_request_data_pages(osd_req, 0, pages, parent_length, 0,
2394                                                 false, false);
2395
2396         /* Then the original write request op */
2397
2398         offset = orig_request->offset;
2399         length = orig_request->length;
2400         osd_req_op_extent_init(osd_req, 1, CEPH_OSD_OP_WRITE,
2401                                         offset, length, 0, 0);
2402         if (orig_request->type == OBJ_REQUEST_BIO)
2403                 osd_req_op_extent_osd_data_bio(osd_req, 1,
2404                                         orig_request->bio_list, length);
2405         else
2406                 osd_req_op_extent_osd_data_pages(osd_req, 1,
2407                                         orig_request->pages, length,
2408                                         offset & ~PAGE_MASK, false, false);
2409
2410         rbd_osd_req_format_write(orig_request);
2411
2412         /* All set, send it off. */
2413
2414         orig_request->callback = rbd_img_obj_copyup_callback;
2415         osdc = &rbd_dev->rbd_client->client->osdc;
2416         img_result = rbd_obj_request_submit(osdc, orig_request);
2417         if (!img_result)
2418                 return;
2419 out_err:
2420         /* Record the error code and complete the request */
2421
2422         orig_request->result = img_result;
2423         orig_request->xferred = 0;
2424         obj_request_done_set(orig_request);
2425         rbd_obj_request_complete(orig_request);
2426 }
2427
2428 /*
2429  * Read from the parent image the range of data that covers the
2430  * entire target of the given object request.  This is used for
2431  * satisfying a layered image write request when the target of an
2432  * object request from the image request does not exist.
2433  *
2434  * A page array big enough to hold the returned data is allocated
2435  * and supplied to rbd_img_request_fill() as the "data descriptor."
2436  * When the read completes, this page array will be transferred to
2437  * the original object request for the copyup operation.
2438  *
2439  * If an error occurs, record it as the result of the original
2440  * object request and mark it done so it gets completed.
2441  */
2442 static int rbd_img_obj_parent_read_full(struct rbd_obj_request *obj_request)
2443 {
2444         struct rbd_img_request *img_request = NULL;
2445         struct rbd_img_request *parent_request = NULL;
2446         struct rbd_device *rbd_dev;
2447         u64 img_offset;
2448         u64 length;
2449         struct page **pages = NULL;
2450         u32 page_count;
2451         int result;
2452
2453         rbd_assert(obj_request_img_data_test(obj_request));
2454         rbd_assert(obj_request_type_valid(obj_request->type));
2455
2456         img_request = obj_request->img_request;
2457         rbd_assert(img_request != NULL);
2458         rbd_dev = img_request->rbd_dev;
2459         rbd_assert(rbd_dev->parent != NULL);
2460
2461         /*
2462          * Determine the byte range covered by the object in the
2463          * child image to which the original request was to be sent.
2464          */
2465         img_offset = obj_request->img_offset - obj_request->offset;
2466         length = (u64)1 << rbd_dev->header.obj_order;
2467
2468         /*
2469          * There is no defined parent data beyond the parent
2470          * overlap, so limit what we read at that boundary if
2471          * necessary.
2472          */
2473         if (img_offset + length > rbd_dev->parent_overlap) {
2474                 rbd_assert(img_offset < rbd_dev->parent_overlap);
2475                 length = rbd_dev->parent_overlap - img_offset;
2476         }
2477
2478         /*
2479          * Allocate a page array big enough to receive the data read
2480          * from the parent.
2481          */
2482         page_count = (u32)calc_pages_for(0, length);
2483         pages = ceph_alloc_page_vector(page_count, GFP_KERNEL);
2484         if (IS_ERR(pages)) {
2485                 result = PTR_ERR(pages);
2486                 pages = NULL;
2487                 goto out_err;
2488         }
2489
2490         result = -ENOMEM;
2491         parent_request = rbd_parent_request_create(obj_request,
2492                                                 img_offset, length);
2493         if (!parent_request)
2494                 goto out_err;
2495
2496         result = rbd_img_request_fill(parent_request, OBJ_REQUEST_PAGES, pages);
2497         if (result)
2498                 goto out_err;
2499         parent_request->copyup_pages = pages;
2500         parent_request->copyup_page_count = page_count;
2501
2502         parent_request->callback = rbd_img_obj_parent_read_full_callback;
2503         result = rbd_img_request_submit(parent_request);
2504         if (!result)
2505                 return 0;
2506
2507         parent_request->copyup_pages = NULL;
2508         parent_request->copyup_page_count = 0;
2509         parent_request->obj_request = NULL;
2510         rbd_obj_request_put(obj_request);
2511 out_err:
2512         if (pages)
2513                 ceph_release_page_vector(pages, page_count);
2514         if (parent_request)
2515                 rbd_img_request_put(parent_request);
2516         obj_request->result = result;
2517         obj_request->xferred = 0;
2518         obj_request_done_set(obj_request);
2519
2520         return result;
2521 }
2522
2523 static void rbd_img_obj_exists_callback(struct rbd_obj_request *obj_request)
2524 {
2525         struct rbd_obj_request *orig_request;
2526         struct rbd_device *rbd_dev;
2527         int result;
2528
2529         rbd_assert(!obj_request_img_data_test(obj_request));
2530
2531         /*
2532          * All we need from the object request is the original
2533          * request and the result of the STAT op.  Grab those, then
2534          * we're done with the request.
2535          */
2536         orig_request = obj_request->obj_request;
2537         obj_request->obj_request = NULL;
2538         rbd_assert(orig_request);
2539         rbd_assert(orig_request->img_request);
2540
2541         result = obj_request->result;
2542         obj_request->result = 0;
2543
2544         dout("%s: obj %p for obj %p result %d %llu/%llu\n", __func__,
2545                 obj_request, orig_request, result,
2546                 obj_request->xferred, obj_request->length);
2547         rbd_obj_request_put(obj_request);
2548
2549         /*
2550          * If the overlap has become 0 (most likely because the
2551          * image has been flattened) we need to free the pages
2552          * and re-submit the original write request.
2553          */
2554         rbd_dev = orig_request->img_request->rbd_dev;
2555         if (!rbd_dev->parent_overlap) {
2556                 struct ceph_osd_client *osdc;
2557
2558                 rbd_obj_request_put(orig_request);
2559                 osdc = &rbd_dev->rbd_client->client->osdc;
2560                 result = rbd_obj_request_submit(osdc, orig_request);
2561                 if (!result)
2562                         return;
2563         }
2564
2565         /*
2566          * Our only purpose here is to determine whether the object
2567          * exists, and we don't want to treat the non-existence as
2568          * an error.  If something else comes back, transfer the
2569          * error to the original request and complete it now.
2570          */
2571         if (!result) {
2572                 obj_request_existence_set(orig_request, true);
2573         } else if (result == -ENOENT) {
2574                 obj_request_existence_set(orig_request, false);
2575         } else if (result) {
2576                 orig_request->result = result;
2577                 goto out;
2578         }
2579
2580         /*
2581          * Resubmit the original request now that we have recorded
2582          * whether the target object exists.
2583          */
2584         orig_request->result = rbd_img_obj_request_submit(orig_request);
2585 out:
2586         if (orig_request->result)
2587                 rbd_obj_request_complete(orig_request);
2588         rbd_obj_request_put(orig_request);
2589 }
2590
2591 static int rbd_img_obj_exists_submit(struct rbd_obj_request *obj_request)
2592 {
2593         struct rbd_obj_request *stat_request;
2594         struct rbd_device *rbd_dev;
2595         struct ceph_osd_client *osdc;
2596         struct page **pages = NULL;
2597         u32 page_count;
2598         size_t size;
2599         int ret;
2600
2601         /*
2602          * The response data for a STAT call consists of:
2603          *     le64 length;
2604          *     struct {
2605          *         le32 tv_sec;
2606          *         le32 tv_nsec;
2607          *     } mtime;
2608          */
2609         size = sizeof (__le64) + sizeof (__le32) + sizeof (__le32);
2610         page_count = (u32)calc_pages_for(0, size);
2611         pages = ceph_alloc_page_vector(page_count, GFP_KERNEL);
2612         if (IS_ERR(pages))
2613                 return PTR_ERR(pages);
2614
2615         ret = -ENOMEM;
2616         stat_request = rbd_obj_request_create(obj_request->object_name, 0, 0,
2617                                                         OBJ_REQUEST_PAGES);
2618         if (!stat_request)
2619                 goto out;
2620
2621         rbd_obj_request_get(obj_request);
2622         stat_request->obj_request = obj_request;
2623         stat_request->pages = pages;
2624         stat_request->page_count = page_count;
2625
2626         rbd_assert(obj_request->img_request);
2627         rbd_dev = obj_request->img_request->rbd_dev;
2628         stat_request->osd_req = rbd_osd_req_create(rbd_dev, false,
2629                                                 stat_request);
2630         if (!stat_request->osd_req)
2631                 goto out;
2632         stat_request->callback = rbd_img_obj_exists_callback;
2633
2634         osd_req_op_init(stat_request->osd_req, 0, CEPH_OSD_OP_STAT);
2635         osd_req_op_raw_data_in_pages(stat_request->osd_req, 0, pages, size, 0,
2636                                         false, false);
2637         rbd_osd_req_format_read(stat_request);
2638
2639         osdc = &rbd_dev->rbd_client->client->osdc;
2640         ret = rbd_obj_request_submit(osdc, stat_request);
2641 out:
2642         if (ret)
2643                 rbd_obj_request_put(obj_request);
2644
2645         return ret;
2646 }
2647
2648 static int rbd_img_obj_request_submit(struct rbd_obj_request *obj_request)
2649 {
2650         struct rbd_img_request *img_request;
2651         struct rbd_device *rbd_dev;
2652         bool known;
2653
2654         rbd_assert(obj_request_img_data_test(obj_request));
2655
2656         img_request = obj_request->img_request;
2657         rbd_assert(img_request);
2658         rbd_dev = img_request->rbd_dev;
2659
2660         /*
2661          * Only writes to layered images need special handling.
2662          * Reads and non-layered writes are simple object requests.
2663          * Layered writes that start beyond the end of the overlap
2664          * with the parent have no parent data, so they too are
2665          * simple object requests.  Finally, if the target object is
2666          * known to already exist, its parent data has already been
2667          * copied, so a write to the object can also be handled as a
2668          * simple object request.
2669          */
2670         if (!img_request_write_test(img_request) ||
2671                 !img_request_layered_test(img_request) ||
2672                 rbd_dev->parent_overlap <= obj_request->img_offset ||
2673                 ((known = obj_request_known_test(obj_request)) &&
2674                         obj_request_exists_test(obj_request))) {
2675
2676                 struct rbd_device *rbd_dev;
2677                 struct ceph_osd_client *osdc;
2678
2679                 rbd_dev = obj_request->img_request->rbd_dev;
2680                 osdc = &rbd_dev->rbd_client->client->osdc;
2681
2682                 return rbd_obj_request_submit(osdc, obj_request);
2683         }
2684
2685         /*
2686          * It's a layered write.  The target object might exist but
2687          * we may not know that yet.  If we know it doesn't exist,
2688          * start by reading the data for the full target object from
2689          * the parent so we can use it for a copyup to the target.
2690          */
2691         if (known)
2692                 return rbd_img_obj_parent_read_full(obj_request);
2693
2694         /* We don't know whether the target exists.  Go find out. */
2695
2696         return rbd_img_obj_exists_submit(obj_request);
2697 }
2698
2699 static int rbd_img_request_submit(struct rbd_img_request *img_request)
2700 {
2701         struct rbd_obj_request *obj_request;
2702         struct rbd_obj_request *next_obj_request;
2703
2704         dout("%s: img %p\n", __func__, img_request);
2705         for_each_obj_request_safe(img_request, obj_request, next_obj_request) {
2706                 int ret;
2707
2708                 ret = rbd_img_obj_request_submit(obj_request);
2709                 if (ret)
2710                         return ret;
2711         }
2712
2713         return 0;
2714 }
2715
2716 static void rbd_img_parent_read_callback(struct rbd_img_request *img_request)
2717 {
2718         struct rbd_obj_request *obj_request;
2719         struct rbd_device *rbd_dev;
2720         u64 obj_end;
2721         u64 img_xferred;
2722         int img_result;
2723
2724         rbd_assert(img_request_child_test(img_request));
2725
2726         /* First get what we need from the image request and release it */
2727
2728         obj_request = img_request->obj_request;
2729         img_xferred = img_request->xferred;
2730         img_result = img_request->result;
2731         rbd_img_request_put(img_request);
2732
2733         /*
2734          * If the overlap has become 0 (most likely because the
2735          * image has been flattened) we need to re-submit the
2736          * original request.
2737          */
2738         rbd_assert(obj_request);
2739         rbd_assert(obj_request->img_request);
2740         rbd_dev = obj_request->img_request->rbd_dev;
2741         if (!rbd_dev->parent_overlap) {
2742                 struct ceph_osd_client *osdc;
2743
2744                 osdc = &rbd_dev->rbd_client->client->osdc;
2745                 img_result = rbd_obj_request_submit(osdc, obj_request);
2746                 if (!img_result)
2747                         return;
2748         }
2749
2750         obj_request->result = img_result;
2751         if (obj_request->result)
2752                 goto out;
2753
2754         /*
2755          * We need to zero anything beyond the parent overlap
2756          * boundary.  Since rbd_img_obj_request_read_callback()
2757          * will zero anything beyond the end of a short read, an
2758          * easy way to do this is to pretend the data from the
2759          * parent came up short--ending at the overlap boundary.
2760          */
2761         rbd_assert(obj_request->img_offset < U64_MAX - obj_request->length);
2762         obj_end = obj_request->img_offset + obj_request->length;
2763         if (obj_end > rbd_dev->parent_overlap) {
2764                 u64 xferred = 0;
2765
2766                 if (obj_request->img_offset < rbd_dev->parent_overlap)
2767                         xferred = rbd_dev->parent_overlap -
2768                                         obj_request->img_offset;
2769
2770                 obj_request->xferred = min(img_xferred, xferred);
2771         } else {
2772                 obj_request->xferred = img_xferred;
2773         }
2774 out:
2775         rbd_img_obj_request_read_callback(obj_request);
2776         rbd_obj_request_complete(obj_request);
2777 }
2778
2779 static void rbd_img_parent_read(struct rbd_obj_request *obj_request)
2780 {
2781         struct rbd_img_request *img_request;
2782         int result;
2783
2784         rbd_assert(obj_request_img_data_test(obj_request));
2785         rbd_assert(obj_request->img_request != NULL);
2786         rbd_assert(obj_request->result == (s32) -ENOENT);
2787         rbd_assert(obj_request_type_valid(obj_request->type));
2788
2789         /* rbd_read_finish(obj_request, obj_request->length); */
2790         img_request = rbd_parent_request_create(obj_request,
2791                                                 obj_request->img_offset,
2792                                                 obj_request->length);
2793         result = -ENOMEM;
2794         if (!img_request)
2795                 goto out_err;
2796
2797         if (obj_request->type == OBJ_REQUEST_BIO)
2798                 result = rbd_img_request_fill(img_request, OBJ_REQUEST_BIO,
2799                                                 obj_request->bio_list);
2800         else
2801                 result = rbd_img_request_fill(img_request, OBJ_REQUEST_PAGES,
2802                                                 obj_request->pages);
2803         if (result)
2804                 goto out_err;
2805
2806         img_request->callback = rbd_img_parent_read_callback;
2807         result = rbd_img_request_submit(img_request);
2808         if (result)
2809                 goto out_err;
2810
2811         return;
2812 out_err:
2813         if (img_request)
2814                 rbd_img_request_put(img_request);
2815         obj_request->result = result;
2816         obj_request->xferred = 0;
2817         obj_request_done_set(obj_request);
2818 }
2819
2820 static int rbd_obj_notify_ack(struct rbd_device *rbd_dev, u64 notify_id)
2821 {
2822         struct rbd_obj_request *obj_request;
2823         struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
2824         int ret;
2825
2826         obj_request = rbd_obj_request_create(rbd_dev->header_name, 0, 0,
2827                                                         OBJ_REQUEST_NODATA);
2828         if (!obj_request)
2829                 return -ENOMEM;
2830
2831         ret = -ENOMEM;
2832         obj_request->osd_req = rbd_osd_req_create(rbd_dev, false, obj_request);
2833         if (!obj_request->osd_req)
2834                 goto out;
2835         obj_request->callback = rbd_obj_request_put;
2836
2837         osd_req_op_watch_init(obj_request->osd_req, 0, CEPH_OSD_OP_NOTIFY_ACK,
2838                                         notify_id, 0, 0);
2839         rbd_osd_req_format_read(obj_request);
2840
2841         ret = rbd_obj_request_submit(osdc, obj_request);
2842 out:
2843         if (ret)
2844                 rbd_obj_request_put(obj_request);
2845
2846         return ret;
2847 }
2848
2849 static void rbd_watch_cb(u64 ver, u64 notify_id, u8 opcode, void *data)
2850 {
2851         struct rbd_device *rbd_dev = (struct rbd_device *)data;
2852         int ret;
2853
2854         if (!rbd_dev)
2855                 return;
2856
2857         dout("%s: \"%s\" notify_id %llu opcode %u\n", __func__,
2858                 rbd_dev->header_name, (unsigned long long)notify_id,
2859                 (unsigned int)opcode);
2860         ret = rbd_dev_refresh(rbd_dev);
2861         if (ret)
2862                 rbd_warn(rbd_dev, ": header refresh error (%d)\n", ret);
2863
2864         rbd_obj_notify_ack(rbd_dev, notify_id);
2865 }
2866
2867 /*
2868  * Request sync osd watch/unwatch.  The value of "start" determines
2869  * whether a watch request is being initiated or torn down.
2870  */
2871 static int rbd_dev_header_watch_sync(struct rbd_device *rbd_dev, bool start)
2872 {
2873         struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
2874         struct rbd_obj_request *obj_request;
2875         int ret;
2876
2877         rbd_assert(start ^ !!rbd_dev->watch_event);
2878         rbd_assert(start ^ !!rbd_dev->watch_request);
2879
2880         if (start) {
2881                 ret = ceph_osdc_create_event(osdc, rbd_watch_cb, rbd_dev,
2882                                                 &rbd_dev->watch_event);
2883                 if (ret < 0)
2884                         return ret;
2885                 rbd_assert(rbd_dev->watch_event != NULL);
2886         }
2887
2888         ret = -ENOMEM;
2889         obj_request = rbd_obj_request_create(rbd_dev->header_name, 0, 0,
2890                                                         OBJ_REQUEST_NODATA);
2891         if (!obj_request)
2892                 goto out_cancel;
2893
2894         obj_request->osd_req = rbd_osd_req_create(rbd_dev, true, obj_request);
2895         if (!obj_request->osd_req)
2896                 goto out_cancel;
2897
2898         if (start)
2899                 ceph_osdc_set_request_linger(osdc, obj_request->osd_req);
2900         else
2901                 ceph_osdc_unregister_linger_request(osdc,
2902                                         rbd_dev->watch_request->osd_req);
2903
2904         osd_req_op_watch_init(obj_request->osd_req, 0, CEPH_OSD_OP_WATCH,
2905                                 rbd_dev->watch_event->cookie, 0, start ? 1 : 0);
2906         rbd_osd_req_format_write(obj_request);
2907
2908         ret = rbd_obj_request_submit(osdc, obj_request);
2909         if (ret)
2910                 goto out_cancel;
2911         ret = rbd_obj_request_wait(obj_request);
2912         if (ret)
2913                 goto out_cancel;
2914         ret = obj_request->result;
2915         if (ret)
2916                 goto out_cancel;
2917
2918         /*
2919          * A watch request is set to linger, so the underlying osd
2920          * request won't go away until we unregister it.  We retain
2921          * a pointer to the object request during that time (in
2922          * rbd_dev->watch_request), so we'll keep a reference to
2923          * it.  We'll drop that reference (below) after we've
2924          * unregistered it.
2925          */
2926         if (start) {
2927                 rbd_dev->watch_request = obj_request;
2928
2929                 return 0;
2930         }
2931
2932         /* We have successfully torn down the watch request */
2933
2934         rbd_obj_request_put(rbd_dev->watch_request);
2935         rbd_dev->watch_request = NULL;
2936 out_cancel:
2937         /* Cancel the event if we're tearing down, or on error */
2938         ceph_osdc_cancel_event(rbd_dev->watch_event);
2939         rbd_dev->watch_event = NULL;
2940         if (obj_request)
2941                 rbd_obj_request_put(obj_request);
2942
2943         return ret;
2944 }
2945
2946 /*
2947  * Synchronous osd object method call.  Returns the number of bytes
2948  * returned in the outbound buffer, or a negative error code.
2949  */
2950 static int rbd_obj_method_sync(struct rbd_device *rbd_dev,
2951                              const char *object_name,
2952                              const char *class_name,
2953                              const char *method_name,
2954                              const void *outbound,
2955                              size_t outbound_size,
2956                              void *inbound,
2957                              size_t inbound_size)
2958 {
2959         struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
2960         struct rbd_obj_request *obj_request;
2961         struct page **pages;
2962         u32 page_count;
2963         int ret;
2964
2965         /*
2966          * Method calls are ultimately read operations.  The result
2967          * should placed into the inbound buffer provided.  They
2968          * also supply outbound data--parameters for the object
2969          * method.  Currently if this is present it will be a
2970          * snapshot id.
2971          */
2972         page_count = (u32)calc_pages_for(0, inbound_size);
2973         pages = ceph_alloc_page_vector(page_count, GFP_KERNEL);
2974         if (IS_ERR(pages))
2975                 return PTR_ERR(pages);
2976
2977         ret = -ENOMEM;
2978         obj_request = rbd_obj_request_create(object_name, 0, inbound_size,
2979                                                         OBJ_REQUEST_PAGES);
2980         if (!obj_request)
2981                 goto out;
2982
2983         obj_request->pages = pages;
2984         obj_request->page_count = page_count;
2985
2986         obj_request->osd_req = rbd_osd_req_create(rbd_dev, false, obj_request);
2987         if (!obj_request->osd_req)
2988                 goto out;
2989
2990         osd_req_op_cls_init(obj_request->osd_req, 0, CEPH_OSD_OP_CALL,
2991                                         class_name, method_name);
2992         if (outbound_size) {
2993                 struct ceph_pagelist *pagelist;
2994
2995                 pagelist = kmalloc(sizeof (*pagelist), GFP_NOFS);
2996                 if (!pagelist)
2997                         goto out;
2998
2999                 ceph_pagelist_init(pagelist);
3000                 ceph_pagelist_append(pagelist, outbound, outbound_size);
3001                 osd_req_op_cls_request_data_pagelist(obj_request->osd_req, 0,
3002                                                 pagelist);
3003         }
3004         osd_req_op_cls_response_data_pages(obj_request->osd_req, 0,
3005                                         obj_request->pages, inbound_size,
3006                                         0, false, false);
3007         rbd_osd_req_format_read(obj_request);
3008
3009         ret = rbd_obj_request_submit(osdc, obj_request);
3010         if (ret)
3011                 goto out;
3012         ret = rbd_obj_request_wait(obj_request);
3013         if (ret)
3014                 goto out;
3015
3016         ret = obj_request->result;
3017         if (ret < 0)
3018                 goto out;
3019
3020         rbd_assert(obj_request->xferred < (u64)INT_MAX);
3021         ret = (int)obj_request->xferred;
3022         ceph_copy_from_page_vector(pages, inbound, 0, obj_request->xferred);
3023 out:
3024         if (obj_request)
3025                 rbd_obj_request_put(obj_request);
3026         else
3027                 ceph_release_page_vector(pages, page_count);
3028
3029         return ret;
3030 }
3031
3032 static void rbd_request_fn(struct request_queue *q)
3033                 __releases(q->queue_lock) __acquires(q->queue_lock)
3034 {
3035         struct rbd_device *rbd_dev = q->queuedata;
3036         bool read_only = rbd_dev->mapping.read_only;
3037         struct request *rq;
3038         int result;
3039
3040         while ((rq = blk_fetch_request(q))) {
3041                 bool write_request = rq_data_dir(rq) == WRITE;
3042                 struct rbd_img_request *img_request;
3043                 u64 offset;
3044                 u64 length;
3045
3046                 /* Ignore any non-FS requests that filter through. */
3047
3048                 if (rq->cmd_type != REQ_TYPE_FS) {
3049                         dout("%s: non-fs request type %d\n", __func__,
3050                                 (int) rq->cmd_type);
3051                         __blk_end_request_all(rq, 0);
3052                         continue;
3053                 }
3054
3055                 /* Ignore/skip any zero-length requests */
3056
3057                 offset = (u64) blk_rq_pos(rq) << SECTOR_SHIFT;
3058                 length = (u64) blk_rq_bytes(rq);
3059
3060                 if (!length) {
3061                         dout("%s: zero-length request\n", __func__);
3062                         __blk_end_request_all(rq, 0);
3063                         continue;
3064                 }
3065
3066                 spin_unlock_irq(q->queue_lock);
3067
3068                 /* Disallow writes to a read-only device */
3069
3070                 if (write_request) {
3071                         result = -EROFS;
3072                         if (read_only)
3073                                 goto end_request;
3074                         rbd_assert(rbd_dev->spec->snap_id == CEPH_NOSNAP);
3075                 }
3076
3077                 /*
3078                  * Quit early if the mapped snapshot no longer
3079                  * exists.  It's still possible the snapshot will
3080                  * have disappeared by the time our request arrives
3081                  * at the osd, but there's no sense in sending it if
3082                  * we already know.
3083                  */
3084                 if (!test_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags)) {
3085                         dout("request for non-existent snapshot");
3086                         rbd_assert(rbd_dev->spec->snap_id != CEPH_NOSNAP);
3087                         result = -ENXIO;
3088                         goto end_request;
3089                 }
3090
3091                 result = -EINVAL;
3092                 if (offset && length > U64_MAX - offset + 1) {
3093                         rbd_warn(rbd_dev, "bad request range (%llu~%llu)\n",
3094                                 offset, length);
3095                         goto end_request;       /* Shouldn't happen */
3096                 }
3097
3098                 result = -EIO;
3099                 if (offset + length > rbd_dev->mapping.size) {
3100                         rbd_warn(rbd_dev, "beyond EOD (%llu~%llu > %llu)\n",
3101                                 offset, length, rbd_dev->mapping.size);
3102                         goto end_request;
3103                 }
3104
3105                 result = -ENOMEM;
3106                 img_request = rbd_img_request_create(rbd_dev, offset, length,
3107                                                         write_request);
3108                 if (!img_request)
3109                         goto end_request;
3110
3111                 img_request->rq = rq;
3112
3113                 result = rbd_img_request_fill(img_request, OBJ_REQUEST_BIO,
3114                                                 rq->bio);
3115                 if (!result)
3116                         result = rbd_img_request_submit(img_request);
3117                 if (result)
3118                         rbd_img_request_put(img_request);
3119 end_request:
3120                 spin_lock_irq(q->queue_lock);
3121                 if (result < 0) {
3122                         rbd_warn(rbd_dev, "%s %llx at %llx result %d\n",
3123                                 write_request ? "write" : "read",
3124                                 length, offset, result);
3125
3126                         __blk_end_request_all(rq, result);
3127                 }
3128         }
3129 }
3130
3131 /*
3132  * a queue callback. Makes sure that we don't create a bio that spans across
3133  * multiple osd objects. One exception would be with a single page bios,
3134  * which we handle later at bio_chain_clone_range()
3135  */
3136 static int rbd_merge_bvec(struct request_queue *q, struct bvec_merge_data *bmd,
3137                           struct bio_vec *bvec)
3138 {
3139         struct rbd_device *rbd_dev = q->queuedata;
3140         sector_t sector_offset;
3141         sector_t sectors_per_obj;
3142         sector_t obj_sector_offset;
3143         int ret;
3144
3145         /*
3146          * Find how far into its rbd object the partition-relative
3147          * bio start sector is to offset relative to the enclosing
3148          * device.
3149          */
3150         sector_offset = get_start_sect(bmd->bi_bdev) + bmd->bi_sector;
3151         sectors_per_obj = 1 << (rbd_dev->header.obj_order - SECTOR_SHIFT);
3152         obj_sector_offset = sector_offset & (sectors_per_obj - 1);
3153
3154         /*
3155          * Compute the number of bytes from that offset to the end
3156          * of the object.  Account for what's already used by the bio.
3157          */
3158         ret = (int) (sectors_per_obj - obj_sector_offset) << SECTOR_SHIFT;
3159         if (ret > bmd->bi_size)
3160                 ret -= bmd->bi_size;
3161         else
3162                 ret = 0;
3163
3164         /*
3165          * Don't send back more than was asked for.  And if the bio
3166          * was empty, let the whole thing through because:  "Note
3167          * that a block device *must* allow a single page to be
3168          * added to an empty bio."
3169          */
3170         rbd_assert(bvec->bv_len <= PAGE_SIZE);
3171         if (ret > (int) bvec->bv_len || !bmd->bi_size)
3172                 ret = (int) bvec->bv_len;
3173
3174         return ret;
3175 }
3176
3177 static void rbd_free_disk(struct rbd_device *rbd_dev)
3178 {
3179         struct gendisk *disk = rbd_dev->disk;
3180
3181         if (!disk)
3182                 return;
3183
3184         rbd_dev->disk = NULL;
3185         if (disk->flags & GENHD_FL_UP) {
3186                 del_gendisk(disk);
3187                 if (disk->queue)
3188                         blk_cleanup_queue(disk->queue);
3189         }
3190         put_disk(disk);
3191 }
3192
3193 static int rbd_obj_read_sync(struct rbd_device *rbd_dev,
3194                                 const char *object_name,
3195                                 u64 offset, u64 length, void *buf)
3196
3197 {
3198         struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
3199         struct rbd_obj_request *obj_request;
3200         struct page **pages = NULL;
3201         u32 page_count;
3202         size_t size;
3203         int ret;
3204
3205         page_count = (u32) calc_pages_for(offset, length);
3206         pages = ceph_alloc_page_vector(page_count, GFP_KERNEL);
3207         if (IS_ERR(pages))
3208                 ret = PTR_ERR(pages);
3209
3210         ret = -ENOMEM;
3211         obj_request = rbd_obj_request_create(object_name, offset, length,
3212                                                         OBJ_REQUEST_PAGES);
3213         if (!obj_request)
3214                 goto out;
3215
3216         obj_request->pages = pages;
3217         obj_request->page_count = page_count;
3218
3219         obj_request->osd_req = rbd_osd_req_create(rbd_dev, false, obj_request);
3220         if (!obj_request->osd_req)
3221                 goto out;
3222
3223         osd_req_op_extent_init(obj_request->osd_req, 0, CEPH_OSD_OP_READ,
3224                                         offset, length, 0, 0);
3225         osd_req_op_extent_osd_data_pages(obj_request->osd_req, 0,
3226                                         obj_request->pages,
3227                                         obj_request->length,
3228                                         obj_request->offset & ~PAGE_MASK,
3229                                         false, false);
3230         rbd_osd_req_format_read(obj_request);
3231
3232         ret = rbd_obj_request_submit(osdc, obj_request);
3233         if (ret)
3234                 goto out;
3235         ret = rbd_obj_request_wait(obj_request);
3236         if (ret)
3237                 goto out;
3238
3239         ret = obj_request->result;
3240         if (ret < 0)
3241                 goto out;
3242
3243         rbd_assert(obj_request->xferred <= (u64) SIZE_MAX);
3244         size = (size_t) obj_request->xferred;
3245         ceph_copy_from_page_vector(pages, buf, 0, size);
3246         rbd_assert(size <= (size_t)INT_MAX);
3247         ret = (int)size;
3248 out:
3249         if (obj_request)
3250                 rbd_obj_request_put(obj_request);
3251         else
3252                 ceph_release_page_vector(pages, page_count);
3253
3254         return ret;
3255 }
3256
3257 /*
3258  * Read the complete header for the given rbd device.  On successful
3259  * return, the rbd_dev->header field will contain up-to-date
3260  * information about the image.
3261  */
3262 static int rbd_dev_v1_header_info(struct rbd_device *rbd_dev)
3263 {
3264         struct rbd_image_header_ondisk *ondisk = NULL;
3265         u32 snap_count = 0;
3266         u64 names_size = 0;
3267         u32 want_count;
3268         int ret;
3269
3270         /*
3271          * The complete header will include an array of its 64-bit
3272          * snapshot ids, followed by the names of those snapshots as
3273          * a contiguous block of NUL-terminated strings.  Note that
3274          * the number of snapshots could change by the time we read
3275          * it in, in which case we re-read it.
3276          */
3277         do {
3278                 size_t size;
3279
3280                 kfree(ondisk);
3281
3282                 size = sizeof (*ondisk);
3283                 size += snap_count * sizeof (struct rbd_image_snap_ondisk);
3284                 size += names_size;
3285                 ondisk = kmalloc(size, GFP_KERNEL);
3286                 if (!ondisk)
3287                         return -ENOMEM;
3288
3289                 ret = rbd_obj_read_sync(rbd_dev, rbd_dev->header_name,
3290                                        0, size, ondisk);
3291                 if (ret < 0)
3292                         goto out;
3293                 if ((size_t)ret < size) {
3294                         ret = -ENXIO;
3295                         rbd_warn(rbd_dev, "short header read (want %zd got %d)",
3296                                 size, ret);
3297                         goto out;
3298                 }
3299                 if (!rbd_dev_ondisk_valid(ondisk)) {
3300                         ret = -ENXIO;
3301                         rbd_warn(rbd_dev, "invalid header");
3302                         goto out;
3303                 }
3304
3305                 names_size = le64_to_cpu(ondisk->snap_names_len);
3306                 want_count = snap_count;
3307                 snap_count = le32_to_cpu(ondisk->snap_count);
3308         } while (snap_count != want_count);
3309
3310         ret = rbd_header_from_disk(rbd_dev, ondisk);
3311 out:
3312         kfree(ondisk);
3313
3314         return ret;
3315 }
3316
3317 /*
3318  * Clear the rbd device's EXISTS flag if the snapshot it's mapped to
3319  * has disappeared from the (just updated) snapshot context.
3320  */
3321 static void rbd_exists_validate(struct rbd_device *rbd_dev)
3322 {
3323         u64 snap_id;
3324
3325         if (!test_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags))
3326                 return;
3327
3328         snap_id = rbd_dev->spec->snap_id;
3329         if (snap_id == CEPH_NOSNAP)
3330                 return;
3331
3332         if (rbd_dev_snap_index(rbd_dev, snap_id) == BAD_SNAP_INDEX)
3333                 clear_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags);
3334 }
3335
3336 static int rbd_dev_refresh(struct rbd_device *rbd_dev)
3337 {
3338         u64 mapping_size;
3339         int ret;
3340
3341         rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
3342         mapping_size = rbd_dev->mapping.size;
3343         mutex_lock_nested(&ctl_mutex, SINGLE_DEPTH_NESTING);
3344         if (rbd_dev->image_format == 1)
3345                 ret = rbd_dev_v1_header_info(rbd_dev);
3346         else
3347                 ret = rbd_dev_v2_header_info(rbd_dev);
3348
3349         /* If it's a mapped snapshot, validate its EXISTS flag */
3350
3351         rbd_exists_validate(rbd_dev);
3352         mutex_unlock(&ctl_mutex);
3353         if (mapping_size != rbd_dev->mapping.size) {
3354                 sector_t size;
3355
3356                 size = (sector_t)rbd_dev->mapping.size / SECTOR_SIZE;
3357                 dout("setting size to %llu sectors", (unsigned long long)size);
3358                 set_capacity(rbd_dev->disk, size);
3359                 revalidate_disk(rbd_dev->disk);
3360         }
3361
3362         return ret;
3363 }
3364
3365 static int rbd_init_disk(struct rbd_device *rbd_dev)
3366 {
3367         struct gendisk *disk;
3368         struct request_queue *q;
3369         u64 segment_size;
3370
3371         /* create gendisk info */
3372         disk = alloc_disk(RBD_MINORS_PER_MAJOR);
3373         if (!disk)
3374                 return -ENOMEM;
3375
3376         snprintf(disk->disk_name, sizeof(disk->disk_name), RBD_DRV_NAME "%d",
3377                  rbd_dev->dev_id);
3378         disk->major = rbd_dev->major;
3379         disk->first_minor = 0;
3380         disk->fops = &rbd_bd_ops;
3381         disk->private_data = rbd_dev;
3382
3383         q = blk_init_queue(rbd_request_fn, &rbd_dev->lock);
3384         if (!q)
3385                 goto out_disk;
3386
3387         /* We use the default size, but let's be explicit about it. */
3388         blk_queue_physical_block_size(q, SECTOR_SIZE);
3389
3390         /* set io sizes to object size */
3391         segment_size = rbd_obj_bytes(&rbd_dev->header);
3392         blk_queue_max_hw_sectors(q, segment_size / SECTOR_SIZE);
3393         blk_queue_max_segment_size(q, segment_size);
3394         blk_queue_io_min(q, segment_size);
3395         blk_queue_io_opt(q, segment_size);
3396
3397         blk_queue_merge_bvec(q, rbd_merge_bvec);
3398         disk->queue = q;
3399
3400         q->queuedata = rbd_dev;
3401
3402         rbd_dev->disk = disk;
3403
3404         return 0;
3405 out_disk:
3406         put_disk(disk);
3407
3408         return -ENOMEM;
3409 }
3410
3411 /*
3412   sysfs
3413 */
3414
3415 static struct rbd_device *dev_to_rbd_dev(struct device *dev)
3416 {
3417         return container_of(dev, struct rbd_device, dev);
3418 }
3419
3420 static ssize_t rbd_size_show(struct device *dev,
3421                              struct device_attribute *attr, char *buf)
3422 {
3423         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3424
3425         return sprintf(buf, "%llu\n",
3426                 (unsigned long long)rbd_dev->mapping.size);
3427 }
3428
3429 /*
3430  * Note this shows the features for whatever's mapped, which is not
3431  * necessarily the base image.
3432  */
3433 static ssize_t rbd_features_show(struct device *dev,
3434                              struct device_attribute *attr, char *buf)
3435 {
3436         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3437
3438         return sprintf(buf, "0x%016llx\n",
3439                         (unsigned long long)rbd_dev->mapping.features);
3440 }
3441
3442 static ssize_t rbd_major_show(struct device *dev,
3443                               struct device_attribute *attr, char *buf)
3444 {
3445         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3446
3447         if (rbd_dev->major)
3448                 return sprintf(buf, "%d\n", rbd_dev->major);
3449
3450         return sprintf(buf, "(none)\n");
3451
3452 }
3453
3454 static ssize_t rbd_client_id_show(struct device *dev,
3455                                   struct device_attribute *attr, char *buf)
3456 {
3457         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3458
3459         return sprintf(buf, "client%lld\n",
3460                         ceph_client_id(rbd_dev->rbd_client->client));
3461 }
3462
3463 static ssize_t rbd_pool_show(struct device *dev,
3464                              struct device_attribute *attr, char *buf)
3465 {
3466         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3467
3468         return sprintf(buf, "%s\n", rbd_dev->spec->pool_name);
3469 }
3470
3471 static ssize_t rbd_pool_id_show(struct device *dev,
3472                              struct device_attribute *attr, char *buf)
3473 {
3474         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3475
3476         return sprintf(buf, "%llu\n",
3477                         (unsigned long long) rbd_dev->spec->pool_id);
3478 }
3479
3480 static ssize_t rbd_name_show(struct device *dev,
3481                              struct device_attribute *attr, char *buf)
3482 {
3483         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3484
3485         if (rbd_dev->spec->image_name)
3486                 return sprintf(buf, "%s\n", rbd_dev->spec->image_name);
3487
3488         return sprintf(buf, "(unknown)\n");
3489 }
3490
3491 static ssize_t rbd_image_id_show(struct device *dev,
3492                              struct device_attribute *attr, char *buf)
3493 {
3494         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3495
3496         return sprintf(buf, "%s\n", rbd_dev->spec->image_id);
3497 }
3498
3499 /*
3500  * Shows the name of the currently-mapped snapshot (or
3501  * RBD_SNAP_HEAD_NAME for the base image).
3502  */
3503 static ssize_t rbd_snap_show(struct device *dev,
3504                              struct device_attribute *attr,
3505                              char *buf)
3506 {
3507         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3508
3509         return sprintf(buf, "%s\n", rbd_dev->spec->snap_name);
3510 }
3511
3512 /*
3513  * For an rbd v2 image, shows the pool id, image id, and snapshot id
3514  * for the parent image.  If there is no parent, simply shows
3515  * "(no parent image)".
3516  */
3517 static ssize_t rbd_parent_show(struct device *dev,
3518                              struct device_attribute *attr,
3519                              char *buf)
3520 {
3521         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3522         struct rbd_spec *spec = rbd_dev->parent_spec;
3523         int count;
3524         char *bufp = buf;
3525
3526         if (!spec)
3527                 return sprintf(buf, "(no parent image)\n");
3528
3529         count = sprintf(bufp, "pool_id %llu\npool_name %s\n",
3530                         (unsigned long long) spec->pool_id, spec->pool_name);
3531         if (count < 0)
3532                 return count;
3533         bufp += count;
3534
3535         count = sprintf(bufp, "image_id %s\nimage_name %s\n", spec->image_id,
3536                         spec->image_name ? spec->image_name : "(unknown)");
3537         if (count < 0)
3538                 return count;
3539         bufp += count;
3540
3541         count = sprintf(bufp, "snap_id %llu\nsnap_name %s\n",
3542                         (unsigned long long) spec->snap_id, spec->snap_name);
3543         if (count < 0)
3544                 return count;
3545         bufp += count;
3546
3547         count = sprintf(bufp, "overlap %llu\n", rbd_dev->parent_overlap);
3548         if (count < 0)
3549                 return count;
3550         bufp += count;
3551
3552         return (ssize_t) (bufp - buf);
3553 }
3554
3555 static ssize_t rbd_image_refresh(struct device *dev,
3556                                  struct device_attribute *attr,
3557                                  const char *buf,
3558                                  size_t size)
3559 {
3560         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3561         int ret;
3562
3563         ret = rbd_dev_refresh(rbd_dev);
3564         if (ret)
3565                 rbd_warn(rbd_dev, ": manual header refresh error (%d)\n", ret);
3566
3567         return ret < 0 ? ret : size;
3568 }
3569
3570 static DEVICE_ATTR(size, S_IRUGO, rbd_size_show, NULL);
3571 static DEVICE_ATTR(features, S_IRUGO, rbd_features_show, NULL);
3572 static DEVICE_ATTR(major, S_IRUGO, rbd_major_show, NULL);
3573 static DEVICE_ATTR(client_id, S_IRUGO, rbd_client_id_show, NULL);
3574 static DEVICE_ATTR(pool, S_IRUGO, rbd_pool_show, NULL);
3575 static DEVICE_ATTR(pool_id, S_IRUGO, rbd_pool_id_show, NULL);
3576 static DEVICE_ATTR(name, S_IRUGO, rbd_name_show, NULL);
3577 static DEVICE_ATTR(image_id, S_IRUGO, rbd_image_id_show, NULL);
3578 static DEVICE_ATTR(refresh, S_IWUSR, NULL, rbd_image_refresh);
3579 static DEVICE_ATTR(current_snap, S_IRUGO, rbd_snap_show, NULL);
3580 static DEVICE_ATTR(parent, S_IRUGO, rbd_parent_show, NULL);
3581
3582 static struct attribute *rbd_attrs[] = {
3583         &dev_attr_size.attr,
3584         &dev_attr_features.attr,
3585         &dev_attr_major.attr,
3586         &dev_attr_client_id.attr,
3587         &dev_attr_pool.attr,
3588         &dev_attr_pool_id.attr,
3589         &dev_attr_name.attr,
3590         &dev_attr_image_id.attr,
3591         &dev_attr_current_snap.attr,
3592         &dev_attr_parent.attr,
3593         &dev_attr_refresh.attr,
3594         NULL
3595 };
3596
3597 static struct attribute_group rbd_attr_group = {
3598         .attrs = rbd_attrs,
3599 };
3600
3601 static const struct attribute_group *rbd_attr_groups[] = {
3602         &rbd_attr_group,
3603         NULL
3604 };
3605
3606 static void rbd_sysfs_dev_release(struct device *dev)
3607 {
3608 }
3609
3610 static struct device_type rbd_device_type = {
3611         .name           = "rbd",
3612         .groups         = rbd_attr_groups,
3613         .release        = rbd_sysfs_dev_release,
3614 };
3615
3616 static struct rbd_spec *rbd_spec_get(struct rbd_spec *spec)
3617 {
3618         kref_get(&spec->kref);
3619
3620         return spec;
3621 }
3622
3623 static void rbd_spec_free(struct kref *kref);
3624 static void rbd_spec_put(struct rbd_spec *spec)
3625 {
3626         if (spec)
3627                 kref_put(&spec->kref, rbd_spec_free);
3628 }
3629
3630 static struct rbd_spec *rbd_spec_alloc(void)
3631 {
3632         struct rbd_spec *spec;
3633
3634         spec = kzalloc(sizeof (*spec), GFP_KERNEL);
3635         if (!spec)
3636                 return NULL;
3637         kref_init(&spec->kref);
3638
3639         return spec;
3640 }
3641
3642 static void rbd_spec_free(struct kref *kref)
3643 {
3644         struct rbd_spec *spec = container_of(kref, struct rbd_spec, kref);
3645
3646         kfree(spec->pool_name);
3647         kfree(spec->image_id);
3648         kfree(spec->image_name);
3649         kfree(spec->snap_name);
3650         kfree(spec);
3651 }
3652
3653 static struct rbd_device *rbd_dev_create(struct rbd_client *rbdc,
3654                                 struct rbd_spec *spec)
3655 {
3656         struct rbd_device *rbd_dev;
3657
3658         rbd_dev = kzalloc(sizeof (*rbd_dev), GFP_KERNEL);
3659         if (!rbd_dev)
3660                 return NULL;
3661
3662         spin_lock_init(&rbd_dev->lock);
3663         rbd_dev->flags = 0;
3664         atomic_set(&rbd_dev->parent_ref, 0);
3665         INIT_LIST_HEAD(&rbd_dev->node);
3666         init_rwsem(&rbd_dev->header_rwsem);
3667
3668         rbd_dev->spec = spec;
3669         rbd_dev->rbd_client = rbdc;
3670
3671         /* Initialize the layout used for all rbd requests */
3672
3673         rbd_dev->layout.fl_stripe_unit = cpu_to_le32(1 << RBD_MAX_OBJ_ORDER);
3674         rbd_dev->layout.fl_stripe_count = cpu_to_le32(1);
3675         rbd_dev->layout.fl_object_size = cpu_to_le32(1 << RBD_MAX_OBJ_ORDER);
3676         rbd_dev->layout.fl_pg_pool = cpu_to_le32((u32) spec->pool_id);
3677
3678         return rbd_dev;
3679 }
3680
3681 static void rbd_dev_destroy(struct rbd_device *rbd_dev)
3682 {
3683         rbd_put_client(rbd_dev->rbd_client);
3684         rbd_spec_put(rbd_dev->spec);
3685         kfree(rbd_dev);
3686 }
3687
3688 /*
3689  * Get the size and object order for an image snapshot, or if
3690  * snap_id is CEPH_NOSNAP, gets this information for the base
3691  * image.
3692  */
3693 static int _rbd_dev_v2_snap_size(struct rbd_device *rbd_dev, u64 snap_id,
3694                                 u8 *order, u64 *snap_size)
3695 {
3696         __le64 snapid = cpu_to_le64(snap_id);
3697         int ret;
3698         struct {
3699                 u8 order;
3700                 __le64 size;
3701         } __attribute__ ((packed)) size_buf = { 0 };
3702
3703         ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name,
3704                                 "rbd", "get_size",
3705                                 &snapid, sizeof (snapid),
3706                                 &size_buf, sizeof (size_buf));
3707         dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
3708         if (ret < 0)
3709                 return ret;
3710         if (ret < sizeof (size_buf))
3711                 return -ERANGE;
3712
3713         if (order)
3714                 *order = size_buf.order;
3715         *snap_size = le64_to_cpu(size_buf.size);
3716
3717         dout("  snap_id 0x%016llx order = %u, snap_size = %llu\n",
3718                 (unsigned long long)snap_id, (unsigned int)*order,
3719                 (unsigned long long)*snap_size);
3720
3721         return 0;
3722 }
3723
3724 static int rbd_dev_v2_image_size(struct rbd_device *rbd_dev)
3725 {
3726         return _rbd_dev_v2_snap_size(rbd_dev, CEPH_NOSNAP,
3727                                         &rbd_dev->header.obj_order,
3728                                         &rbd_dev->header.image_size);
3729 }
3730
3731 static int rbd_dev_v2_object_prefix(struct rbd_device *rbd_dev)
3732 {
3733         void *reply_buf;
3734         int ret;
3735         void *p;
3736
3737         reply_buf = kzalloc(RBD_OBJ_PREFIX_LEN_MAX, GFP_KERNEL);
3738         if (!reply_buf)
3739                 return -ENOMEM;
3740
3741         ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name,
3742                                 "rbd", "get_object_prefix", NULL, 0,
3743                                 reply_buf, RBD_OBJ_PREFIX_LEN_MAX);
3744         dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
3745         if (ret < 0)
3746                 goto out;
3747
3748         p = reply_buf;
3749         rbd_dev->header.object_prefix = ceph_extract_encoded_string(&p,
3750                                                 p + ret, NULL, GFP_NOIO);
3751         ret = 0;
3752
3753         if (IS_ERR(rbd_dev->header.object_prefix)) {
3754                 ret = PTR_ERR(rbd_dev->header.object_prefix);
3755                 rbd_dev->header.object_prefix = NULL;
3756         } else {
3757                 dout("  object_prefix = %s\n", rbd_dev->header.object_prefix);
3758         }
3759 out:
3760         kfree(reply_buf);
3761
3762         return ret;
3763 }
3764
3765 static int _rbd_dev_v2_snap_features(struct rbd_device *rbd_dev, u64 snap_id,
3766                 u64 *snap_features)
3767 {
3768         __le64 snapid = cpu_to_le64(snap_id);
3769         struct {
3770                 __le64 features;
3771                 __le64 incompat;
3772         } __attribute__ ((packed)) features_buf = { 0 };
3773         u64 incompat;
3774         int ret;
3775
3776         ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name,
3777                                 "rbd", "get_features",
3778                                 &snapid, sizeof (snapid),
3779                                 &features_buf, sizeof (features_buf));
3780         dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
3781         if (ret < 0)
3782                 return ret;
3783         if (ret < sizeof (features_buf))
3784                 return -ERANGE;
3785
3786         incompat = le64_to_cpu(features_buf.incompat);
3787         if (incompat & ~RBD_FEATURES_SUPPORTED)
3788                 return -ENXIO;
3789
3790         *snap_features = le64_to_cpu(features_buf.features);
3791
3792         dout("  snap_id 0x%016llx features = 0x%016llx incompat = 0x%016llx\n",
3793                 (unsigned long long)snap_id,
3794                 (unsigned long long)*snap_features,
3795                 (unsigned long long)le64_to_cpu(features_buf.incompat));
3796
3797         return 0;
3798 }
3799
3800 static int rbd_dev_v2_features(struct rbd_device *rbd_dev)
3801 {
3802         return _rbd_dev_v2_snap_features(rbd_dev, CEPH_NOSNAP,
3803                                                 &rbd_dev->header.features);
3804 }
3805
3806 static int rbd_dev_v2_parent_info(struct rbd_device *rbd_dev)
3807 {
3808         struct rbd_spec *parent_spec;
3809         size_t size;
3810         void *reply_buf = NULL;
3811         __le64 snapid;
3812         void *p;
3813         void *end;
3814         u64 pool_id;
3815         char *image_id;
3816         u64 overlap;
3817         int ret;
3818
3819         parent_spec = rbd_spec_alloc();
3820         if (!parent_spec)
3821                 return -ENOMEM;
3822
3823         size = sizeof (__le64) +                                /* pool_id */
3824                 sizeof (__le32) + RBD_IMAGE_ID_LEN_MAX +        /* image_id */
3825                 sizeof (__le64) +                               /* snap_id */
3826                 sizeof (__le64);                                /* overlap */
3827         reply_buf = kmalloc(size, GFP_KERNEL);
3828         if (!reply_buf) {
3829                 ret = -ENOMEM;
3830                 goto out_err;
3831         }
3832
3833         snapid = cpu_to_le64(CEPH_NOSNAP);
3834         ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name,
3835                                 "rbd", "get_parent",
3836                                 &snapid, sizeof (snapid),
3837                                 reply_buf, size);
3838         dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
3839         if (ret < 0)
3840                 goto out_err;
3841
3842         p = reply_buf;
3843         end = reply_buf + ret;
3844         ret = -ERANGE;
3845         ceph_decode_64_safe(&p, end, pool_id, out_err);
3846         if (pool_id == CEPH_NOPOOL) {
3847                 /*
3848                  * Either the parent never existed, or we have
3849                  * record of it but the image got flattened so it no
3850                  * longer has a parent.  When the parent of a
3851                  * layered image disappears we immediately set the
3852                  * overlap to 0.  The effect of this is that all new
3853                  * requests will be treated as if the image had no
3854                  * parent.
3855                  */
3856                 if (rbd_dev->parent_overlap) {
3857                         rbd_dev->parent_overlap = 0;
3858                         smp_mb();
3859                         rbd_dev_parent_put(rbd_dev);
3860                         pr_info("%s: clone image has been flattened\n",
3861                                 rbd_dev->disk->disk_name);
3862                 }
3863
3864                 goto out;       /* No parent?  No problem. */
3865         }
3866
3867         /* The ceph file layout needs to fit pool id in 32 bits */
3868
3869         ret = -EIO;
3870         if (pool_id > (u64)U32_MAX) {
3871                 rbd_warn(NULL, "parent pool id too large (%llu > %u)\n",
3872                         (unsigned long long)pool_id, U32_MAX);
3873                 goto out_err;
3874         }
3875         parent_spec->pool_id = pool_id;
3876
3877         image_id = ceph_extract_encoded_string(&p, end, NULL, GFP_KERNEL);
3878         if (IS_ERR(image_id)) {
3879                 ret = PTR_ERR(image_id);
3880                 goto out_err;
3881         }
3882         parent_spec->image_id = image_id;
3883         ceph_decode_64_safe(&p, end, parent_spec->snap_id, out_err);
3884         ceph_decode_64_safe(&p, end, overlap, out_err);
3885
3886         if (overlap) {
3887                 rbd_spec_put(rbd_dev->parent_spec);
3888                 rbd_dev->parent_spec = parent_spec;
3889                 parent_spec = NULL;     /* rbd_dev now owns this */
3890                 rbd_dev->parent_overlap = overlap;
3891         } else {
3892                 rbd_warn(rbd_dev, "ignoring parent of clone with overlap 0\n");
3893         }
3894 out:
3895         ret = 0;
3896 out_err:
3897         kfree(reply_buf);
3898         rbd_spec_put(parent_spec);
3899
3900         return ret;
3901 }
3902
3903 static int rbd_dev_v2_striping_info(struct rbd_device *rbd_dev)
3904 {
3905         struct {
3906                 __le64 stripe_unit;
3907                 __le64 stripe_count;
3908         } __attribute__ ((packed)) striping_info_buf = { 0 };
3909         size_t size = sizeof (striping_info_buf);
3910         void *p;
3911         u64 obj_size;
3912         u64 stripe_unit;
3913         u64 stripe_count;
3914         int ret;
3915
3916         ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name,
3917                                 "rbd", "get_stripe_unit_count", NULL, 0,
3918                                 (char *)&striping_info_buf, size);
3919         dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
3920         if (ret < 0)
3921                 return ret;
3922         if (ret < size)
3923                 return -ERANGE;
3924
3925         /*
3926          * We don't actually support the "fancy striping" feature
3927          * (STRIPINGV2) yet, but if the striping sizes are the
3928          * defaults the behavior is the same as before.  So find
3929          * out, and only fail if the image has non-default values.
3930          */
3931         ret = -EINVAL;
3932         obj_size = (u64)1 << rbd_dev->header.obj_order;
3933         p = &striping_info_buf;
3934         stripe_unit = ceph_decode_64(&p);
3935         if (stripe_unit != obj_size) {
3936                 rbd_warn(rbd_dev, "unsupported stripe unit "
3937                                 "(got %llu want %llu)",
3938                                 stripe_unit, obj_size);
3939                 return -EINVAL;
3940         }
3941         stripe_count = ceph_decode_64(&p);
3942         if (stripe_count != 1) {
3943                 rbd_warn(rbd_dev, "unsupported stripe count "
3944                                 "(got %llu want 1)", stripe_count);
3945                 return -EINVAL;
3946         }
3947         rbd_dev->header.stripe_unit = stripe_unit;
3948         rbd_dev->header.stripe_count = stripe_count;
3949
3950         return 0;
3951 }
3952
3953 static char *rbd_dev_image_name(struct rbd_device *rbd_dev)
3954 {
3955         size_t image_id_size;
3956         char *image_id;
3957         void *p;
3958         void *end;
3959         size_t size;
3960         void *reply_buf = NULL;
3961         size_t len = 0;
3962         char *image_name = NULL;
3963         int ret;
3964
3965         rbd_assert(!rbd_dev->spec->image_name);
3966
3967         len = strlen(rbd_dev->spec->image_id);
3968         image_id_size = sizeof (__le32) + len;
3969         image_id = kmalloc(image_id_size, GFP_KERNEL);
3970         if (!image_id)
3971                 return NULL;
3972
3973         p = image_id;
3974         end = image_id + image_id_size;
3975         ceph_encode_string(&p, end, rbd_dev->spec->image_id, (u32)len);
3976
3977         size = sizeof (__le32) + RBD_IMAGE_NAME_LEN_MAX;
3978         reply_buf = kmalloc(size, GFP_KERNEL);
3979         if (!reply_buf)
3980                 goto out;
3981
3982         ret = rbd_obj_method_sync(rbd_dev, RBD_DIRECTORY,
3983                                 "rbd", "dir_get_name",
3984                                 image_id, image_id_size,
3985                                 reply_buf, size);
3986         if (ret < 0)
3987                 goto out;
3988         p = reply_buf;
3989         end = reply_buf + ret;
3990
3991         image_name = ceph_extract_encoded_string(&p, end, &len, GFP_KERNEL);
3992         if (IS_ERR(image_name))
3993                 image_name = NULL;
3994         else
3995                 dout("%s: name is %s len is %zd\n", __func__, image_name, len);
3996 out:
3997         kfree(reply_buf);
3998         kfree(image_id);
3999
4000         return image_name;
4001 }
4002
4003 static u64 rbd_v1_snap_id_by_name(struct rbd_device *rbd_dev, const char *name)
4004 {
4005         struct ceph_snap_context *snapc = rbd_dev->header.snapc;
4006         const char *snap_name;
4007         u32 which = 0;
4008
4009         /* Skip over names until we find the one we are looking for */
4010
4011         snap_name = rbd_dev->header.snap_names;
4012         while (which < snapc->num_snaps) {
4013                 if (!strcmp(name, snap_name))
4014                         return snapc->snaps[which];
4015                 snap_name += strlen(snap_name) + 1;
4016                 which++;
4017         }
4018         return CEPH_NOSNAP;
4019 }
4020
4021 static u64 rbd_v2_snap_id_by_name(struct rbd_device *rbd_dev, const char *name)
4022 {
4023         struct ceph_snap_context *snapc = rbd_dev->header.snapc;
4024         u32 which;
4025         bool found = false;
4026         u64 snap_id;
4027
4028         for (which = 0; !found && which < snapc->num_snaps; which++) {
4029                 const char *snap_name;
4030
4031                 snap_id = snapc->snaps[which];
4032                 snap_name = rbd_dev_v2_snap_name(rbd_dev, snap_id);
4033                 if (IS_ERR(snap_name))
4034                         break;
4035                 found = !strcmp(name, snap_name);
4036                 kfree(snap_name);
4037         }
4038         return found ? snap_id : CEPH_NOSNAP;
4039 }
4040
4041 /*
4042  * Assumes name is never RBD_SNAP_HEAD_NAME; returns CEPH_NOSNAP if
4043  * no snapshot by that name is found, or if an error occurs.
4044  */
4045 static u64 rbd_snap_id_by_name(struct rbd_device *rbd_dev, const char *name)
4046 {
4047         if (rbd_dev->image_format == 1)
4048                 return rbd_v1_snap_id_by_name(rbd_dev, name);
4049
4050         return rbd_v2_snap_id_by_name(rbd_dev, name);
4051 }
4052
4053 /*
4054  * When an rbd image has a parent image, it is identified by the
4055  * pool, image, and snapshot ids (not names).  This function fills
4056  * in the names for those ids.  (It's OK if we can't figure out the
4057  * name for an image id, but the pool and snapshot ids should always
4058  * exist and have names.)  All names in an rbd spec are dynamically
4059  * allocated.
4060  *
4061  * When an image being mapped (not a parent) is probed, we have the
4062  * pool name and pool id, image name and image id, and the snapshot
4063  * name.  The only thing we're missing is the snapshot id.
4064  */
4065 static int rbd_dev_spec_update(struct rbd_device *rbd_dev)
4066 {
4067         struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
4068         struct rbd_spec *spec = rbd_dev->spec;
4069         const char *pool_name;
4070         const char *image_name;
4071         const char *snap_name;
4072         int ret;
4073
4074         /*
4075          * An image being mapped will have the pool name (etc.), but
4076          * we need to look up the snapshot id.
4077          */
4078         if (spec->pool_name) {
4079                 if (strcmp(spec->snap_name, RBD_SNAP_HEAD_NAME)) {
4080                         u64 snap_id;
4081
4082                         snap_id = rbd_snap_id_by_name(rbd_dev, spec->snap_name);
4083                         if (snap_id == CEPH_NOSNAP)
4084                                 return -ENOENT;
4085                         spec->snap_id = snap_id;
4086                 } else {
4087                         spec->snap_id = CEPH_NOSNAP;
4088                 }
4089
4090                 return 0;
4091         }
4092
4093         /* Get the pool name; we have to make our own copy of this */
4094
4095         pool_name = ceph_pg_pool_name_by_id(osdc->osdmap, spec->pool_id);
4096         if (!pool_name) {
4097                 rbd_warn(rbd_dev, "no pool with id %llu", spec->pool_id);
4098                 return -EIO;
4099         }
4100         pool_name = kstrdup(pool_name, GFP_KERNEL);
4101         if (!pool_name)
4102                 return -ENOMEM;
4103
4104         /* Fetch the image name; tolerate failure here */
4105
4106         image_name = rbd_dev_image_name(rbd_dev);
4107         if (!image_name)
4108                 rbd_warn(rbd_dev, "unable to get image name");
4109
4110         /* Look up the snapshot name, and make a copy */
4111
4112         snap_name = rbd_snap_name(rbd_dev, spec->snap_id);
4113         if (!snap_name) {
4114                 ret = -ENOMEM;
4115                 goto out_err;
4116         }
4117
4118         spec->pool_name = pool_name;
4119         spec->image_name = image_name;
4120         spec->snap_name = snap_name;
4121
4122         return 0;
4123 out_err:
4124         kfree(image_name);
4125         kfree(pool_name);
4126
4127         return ret;
4128 }
4129
4130 static int rbd_dev_v2_snap_context(struct rbd_device *rbd_dev)
4131 {
4132         size_t size;
4133         int ret;
4134         void *reply_buf;
4135         void *p;
4136         void *end;
4137         u64 seq;
4138         u32 snap_count;
4139         struct ceph_snap_context *snapc;
4140         u32 i;
4141
4142         /*
4143          * We'll need room for the seq value (maximum snapshot id),
4144          * snapshot count, and array of that many snapshot ids.
4145          * For now we have a fixed upper limit on the number we're
4146          * prepared to receive.
4147          */
4148         size = sizeof (__le64) + sizeof (__le32) +
4149                         RBD_MAX_SNAP_COUNT * sizeof (__le64);
4150         reply_buf = kzalloc(size, GFP_KERNEL);
4151         if (!reply_buf)
4152                 return -ENOMEM;
4153
4154         ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name,
4155                                 "rbd", "get_snapcontext", NULL, 0,
4156                                 reply_buf, size);
4157         dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
4158         if (ret < 0)
4159                 goto out;
4160
4161         p = reply_buf;
4162         end = reply_buf + ret;
4163         ret = -ERANGE;
4164         ceph_decode_64_safe(&p, end, seq, out);
4165         ceph_decode_32_safe(&p, end, snap_count, out);
4166
4167         /*
4168          * Make sure the reported number of snapshot ids wouldn't go
4169          * beyond the end of our buffer.  But before checking that,
4170          * make sure the computed size of the snapshot context we
4171          * allocate is representable in a size_t.
4172          */
4173         if (snap_count > (SIZE_MAX - sizeof (struct ceph_snap_context))
4174                                  / sizeof (u64)) {
4175                 ret = -EINVAL;
4176                 goto out;
4177         }
4178         if (!ceph_has_room(&p, end, snap_count * sizeof (__le64)))
4179                 goto out;
4180         ret = 0;
4181
4182         snapc = ceph_create_snap_context(snap_count, GFP_KERNEL);
4183         if (!snapc) {
4184                 ret = -ENOMEM;
4185                 goto out;
4186         }
4187         snapc->seq = seq;
4188         for (i = 0; i < snap_count; i++)
4189                 snapc->snaps[i] = ceph_decode_64(&p);
4190
4191         ceph_put_snap_context(rbd_dev->header.snapc);
4192         rbd_dev->header.snapc = snapc;
4193
4194         dout("  snap context seq = %llu, snap_count = %u\n",
4195                 (unsigned long long)seq, (unsigned int)snap_count);
4196 out:
4197         kfree(reply_buf);
4198
4199         return ret;
4200 }
4201
4202 static const char *rbd_dev_v2_snap_name(struct rbd_device *rbd_dev,
4203                                         u64 snap_id)
4204 {
4205         size_t size;
4206         void *reply_buf;
4207         __le64 snapid;
4208         int ret;
4209         void *p;
4210         void *end;
4211         char *snap_name;
4212
4213         size = sizeof (__le32) + RBD_MAX_SNAP_NAME_LEN;
4214         reply_buf = kmalloc(size, GFP_KERNEL);
4215         if (!reply_buf)
4216                 return ERR_PTR(-ENOMEM);
4217
4218         snapid = cpu_to_le64(snap_id);
4219         ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name,
4220                                 "rbd", "get_snapshot_name",
4221                                 &snapid, sizeof (snapid),
4222                                 reply_buf, size);
4223         dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
4224         if (ret < 0) {
4225                 snap_name = ERR_PTR(ret);
4226                 goto out;
4227         }
4228
4229         p = reply_buf;
4230         end = reply_buf + ret;
4231         snap_name = ceph_extract_encoded_string(&p, end, NULL, GFP_KERNEL);
4232         if (IS_ERR(snap_name))
4233                 goto out;
4234
4235         dout("  snap_id 0x%016llx snap_name = %s\n",
4236                 (unsigned long long)snap_id, snap_name);
4237 out:
4238         kfree(reply_buf);
4239
4240         return snap_name;
4241 }
4242
4243 static int rbd_dev_v2_header_info(struct rbd_device *rbd_dev)
4244 {
4245         bool first_time = rbd_dev->header.object_prefix == NULL;
4246         int ret;
4247
4248         down_write(&rbd_dev->header_rwsem);
4249
4250         ret = rbd_dev_v2_image_size(rbd_dev);
4251         if (ret)
4252                 goto out;
4253
4254         if (first_time) {
4255                 ret = rbd_dev_v2_header_onetime(rbd_dev);
4256                 if (ret)
4257                         goto out;
4258         }
4259
4260         /*
4261          * If the image supports layering, get the parent info.  We
4262          * need to probe the first time regardless.  Thereafter we
4263          * only need to if there's a parent, to see if it has
4264          * disappeared due to the mapped image getting flattened.
4265          */
4266         if (rbd_dev->header.features & RBD_FEATURE_LAYERING &&
4267                         (first_time || rbd_dev->parent_spec)) {
4268                 bool warn;
4269
4270                 ret = rbd_dev_v2_parent_info(rbd_dev);
4271                 if (ret)
4272                         goto out;
4273
4274                 /*
4275                  * Print a warning if this is the initial probe and
4276                  * the image has a parent.  Don't print it if the
4277                  * image now being probed is itself a parent.  We
4278                  * can tell at this point because we won't know its
4279                  * pool name yet (just its pool id).
4280                  */
4281                 warn = rbd_dev->parent_spec && rbd_dev->spec->pool_name;
4282                 if (first_time && warn)
4283                         rbd_warn(rbd_dev, "WARNING: kernel layering "
4284                                         "is EXPERIMENTAL!");
4285         }
4286
4287         if (rbd_dev->spec->snap_id == CEPH_NOSNAP)
4288                 if (rbd_dev->mapping.size != rbd_dev->header.image_size)
4289                         rbd_dev->mapping.size = rbd_dev->header.image_size;
4290
4291         ret = rbd_dev_v2_snap_context(rbd_dev);
4292         dout("rbd_dev_v2_snap_context returned %d\n", ret);
4293 out:
4294         up_write(&rbd_dev->header_rwsem);
4295
4296         return ret;
4297 }
4298
4299 static int rbd_bus_add_dev(struct rbd_device *rbd_dev)
4300 {
4301         struct device *dev;
4302         int ret;
4303
4304         mutex_lock_nested(&ctl_mutex, SINGLE_DEPTH_NESTING);
4305
4306         dev = &rbd_dev->dev;
4307         dev->bus = &rbd_bus_type;
4308         dev->type = &rbd_device_type;
4309         dev->parent = &rbd_root_dev;
4310         dev->release = rbd_dev_device_release;
4311         dev_set_name(dev, "%d", rbd_dev->dev_id);
4312         ret = device_register(dev);
4313
4314         mutex_unlock(&ctl_mutex);
4315
4316         return ret;
4317 }
4318
4319 static void rbd_bus_del_dev(struct rbd_device *rbd_dev)
4320 {
4321         device_unregister(&rbd_dev->dev);
4322 }
4323
4324 static atomic64_t rbd_dev_id_max = ATOMIC64_INIT(0);
4325
4326 /*
4327  * Get a unique rbd identifier for the given new rbd_dev, and add
4328  * the rbd_dev to the global list.  The minimum rbd id is 1.
4329  */
4330 static void rbd_dev_id_get(struct rbd_device *rbd_dev)
4331 {
4332         rbd_dev->dev_id = atomic64_inc_return(&rbd_dev_id_max);
4333
4334         spin_lock(&rbd_dev_list_lock);
4335         list_add_tail(&rbd_dev->node, &rbd_dev_list);
4336         spin_unlock(&rbd_dev_list_lock);
4337         dout("rbd_dev %p given dev id %llu\n", rbd_dev,
4338                 (unsigned long long) rbd_dev->dev_id);
4339 }
4340
4341 /*
4342  * Remove an rbd_dev from the global list, and record that its
4343  * identifier is no longer in use.
4344  */
4345 static void rbd_dev_id_put(struct rbd_device *rbd_dev)
4346 {
4347         struct list_head *tmp;
4348         int rbd_id = rbd_dev->dev_id;
4349         int max_id;
4350
4351         rbd_assert(rbd_id > 0);
4352
4353         dout("rbd_dev %p released dev id %llu\n", rbd_dev,
4354                 (unsigned long long) rbd_dev->dev_id);
4355         spin_lock(&rbd_dev_list_lock);
4356         list_del_init(&rbd_dev->node);
4357
4358         /*
4359          * If the id being "put" is not the current maximum, there
4360          * is nothing special we need to do.
4361          */
4362         if (rbd_id != atomic64_read(&rbd_dev_id_max)) {
4363                 spin_unlock(&rbd_dev_list_lock);
4364                 return;
4365         }
4366
4367         /*
4368          * We need to update the current maximum id.  Search the
4369          * list to find out what it is.  We're more likely to find
4370          * the maximum at the end, so search the list backward.
4371          */
4372         max_id = 0;
4373         list_for_each_prev(tmp, &rbd_dev_list) {
4374                 struct rbd_device *rbd_dev;
4375
4376                 rbd_dev = list_entry(tmp, struct rbd_device, node);
4377                 if (rbd_dev->dev_id > max_id)
4378                         max_id = rbd_dev->dev_id;
4379         }
4380         spin_unlock(&rbd_dev_list_lock);
4381
4382         /*
4383          * The max id could have been updated by rbd_dev_id_get(), in
4384          * which case it now accurately reflects the new maximum.
4385          * Be careful not to overwrite the maximum value in that
4386          * case.
4387          */
4388         atomic64_cmpxchg(&rbd_dev_id_max, rbd_id, max_id);
4389         dout("  max dev id has been reset\n");
4390 }
4391
4392 /*
4393  * Skips over white space at *buf, and updates *buf to point to the
4394  * first found non-space character (if any). Returns the length of
4395  * the token (string of non-white space characters) found.  Note
4396  * that *buf must be terminated with '\0'.
4397  */
4398 static inline size_t next_token(const char **buf)
4399 {
4400         /*
4401         * These are the characters that produce nonzero for
4402         * isspace() in the "C" and "POSIX" locales.
4403         */
4404         const char *spaces = " \f\n\r\t\v";
4405
4406         *buf += strspn(*buf, spaces);   /* Find start of token */
4407
4408         return strcspn(*buf, spaces);   /* Return token length */
4409 }
4410
4411 /*
4412  * Finds the next token in *buf, and if the provided token buffer is
4413  * big enough, copies the found token into it.  The result, if
4414  * copied, is guaranteed to be terminated with '\0'.  Note that *buf
4415  * must be terminated with '\0' on entry.
4416  *
4417  * Returns the length of the token found (not including the '\0').
4418  * Return value will be 0 if no token is found, and it will be >=
4419  * token_size if the token would not fit.
4420  *
4421  * The *buf pointer will be updated to point beyond the end of the
4422  * found token.  Note that this occurs even if the token buffer is
4423  * too small to hold it.
4424  */
4425 static inline size_t copy_token(const char **buf,
4426                                 char *token,
4427                                 size_t token_size)
4428 {
4429         size_t len;
4430
4431         len = next_token(buf);
4432         if (len < token_size) {
4433                 memcpy(token, *buf, len);
4434                 *(token + len) = '\0';
4435         }
4436         *buf += len;
4437
4438         return len;
4439 }
4440
4441 /*
4442  * Finds the next token in *buf, dynamically allocates a buffer big
4443  * enough to hold a copy of it, and copies the token into the new
4444  * buffer.  The copy is guaranteed to be terminated with '\0'.  Note
4445  * that a duplicate buffer is created even for a zero-length token.
4446  *
4447  * Returns a pointer to the newly-allocated duplicate, or a null
4448  * pointer if memory for the duplicate was not available.  If
4449  * the lenp argument is a non-null pointer, the length of the token
4450  * (not including the '\0') is returned in *lenp.
4451  *
4452  * If successful, the *buf pointer will be updated to point beyond
4453  * the end of the found token.
4454  *
4455  * Note: uses GFP_KERNEL for allocation.
4456  */
4457 static inline char *dup_token(const char **buf, size_t *lenp)
4458 {
4459         char *dup;
4460         size_t len;
4461
4462         len = next_token(buf);
4463         dup = kmemdup(*buf, len + 1, GFP_KERNEL);
4464         if (!dup)
4465                 return NULL;
4466         *(dup + len) = '\0';
4467         *buf += len;
4468
4469         if (lenp)
4470                 *lenp = len;
4471
4472         return dup;
4473 }
4474
4475 /*
4476  * Parse the options provided for an "rbd add" (i.e., rbd image
4477  * mapping) request.  These arrive via a write to /sys/bus/rbd/add,
4478  * and the data written is passed here via a NUL-terminated buffer.
4479  * Returns 0 if successful or an error code otherwise.
4480  *
4481  * The information extracted from these options is recorded in
4482  * the other parameters which return dynamically-allocated
4483  * structures:
4484  *  ceph_opts
4485  *      The address of a pointer that will refer to a ceph options
4486  *      structure.  Caller must release the returned pointer using
4487  *      ceph_destroy_options() when it is no longer needed.
4488  *  rbd_opts
4489  *      Address of an rbd options pointer.  Fully initialized by
4490  *      this function; caller must release with kfree().
4491  *  spec
4492  *      Address of an rbd image specification pointer.  Fully
4493  *      initialized by this function based on parsed options.
4494  *      Caller must release with rbd_spec_put().
4495  *
4496  * The options passed take this form:
4497  *  <mon_addrs> <options> <pool_name> <image_name> [<snap_id>]
4498  * where:
4499  *  <mon_addrs>
4500  *      A comma-separated list of one or more monitor addresses.
4501  *      A monitor address is an ip address, optionally followed
4502  *      by a port number (separated by a colon).
4503  *        I.e.:  ip1[:port1][,ip2[:port2]...]
4504  *  <options>
4505  *      A comma-separated list of ceph and/or rbd options.
4506  *  <pool_name>
4507  *      The name of the rados pool containing the rbd image.
4508  *  <image_name>
4509  *      The name of the image in that pool to map.
4510  *  <snap_id>
4511  *      An optional snapshot id.  If provided, the mapping will
4512  *      present data from the image at the time that snapshot was
4513  *      created.  The image head is used if no snapshot id is
4514  *      provided.  Snapshot mappings are always read-only.
4515  */
4516 static int rbd_add_parse_args(const char *buf,
4517                                 struct ceph_options **ceph_opts,
4518                                 struct rbd_options **opts,
4519                                 struct rbd_spec **rbd_spec)
4520 {
4521         size_t len;
4522         char *options;
4523         const char *mon_addrs;
4524         char *snap_name;
4525         size_t mon_addrs_size;
4526         struct rbd_spec *spec = NULL;
4527         struct rbd_options *rbd_opts = NULL;
4528         struct ceph_options *copts;
4529         int ret;
4530
4531         /* The first four tokens are required */
4532
4533         len = next_token(&buf);
4534         if (!len) {
4535                 rbd_warn(NULL, "no monitor address(es) provided");
4536                 return -EINVAL;
4537         }
4538         mon_addrs = buf;
4539         mon_addrs_size = len + 1;
4540         buf += len;
4541
4542         ret = -EINVAL;
4543         options = dup_token(&buf, NULL);
4544         if (!options)
4545                 return -ENOMEM;
4546         if (!*options) {
4547                 rbd_warn(NULL, "no options provided");
4548                 goto out_err;
4549         }
4550
4551         spec = rbd_spec_alloc();
4552         if (!spec)
4553                 goto out_mem;
4554
4555         spec->pool_name = dup_token(&buf, NULL);
4556         if (!spec->pool_name)
4557                 goto out_mem;
4558         if (!*spec->pool_name) {
4559                 rbd_warn(NULL, "no pool name provided");
4560                 goto out_err;
4561         }
4562
4563         spec->image_name = dup_token(&buf, NULL);
4564         if (!spec->image_name)
4565                 goto out_mem;
4566         if (!*spec->image_name) {
4567                 rbd_warn(NULL, "no image name provided");
4568                 goto out_err;
4569         }
4570
4571         /*
4572          * Snapshot name is optional; default is to use "-"
4573          * (indicating the head/no snapshot).
4574          */
4575         len = next_token(&buf);
4576         if (!len) {
4577                 buf = RBD_SNAP_HEAD_NAME; /* No snapshot supplied */
4578                 len = sizeof (RBD_SNAP_HEAD_NAME) - 1;
4579         } else if (len > RBD_MAX_SNAP_NAME_LEN) {
4580                 ret = -ENAMETOOLONG;
4581                 goto out_err;
4582         }
4583         snap_name = kmemdup(buf, len + 1, GFP_KERNEL);
4584         if (!snap_name)
4585                 goto out_mem;
4586         *(snap_name + len) = '\0';
4587         spec->snap_name = snap_name;
4588
4589         /* Initialize all rbd options to the defaults */
4590
4591         rbd_opts = kzalloc(sizeof (*rbd_opts), GFP_KERNEL);
4592         if (!rbd_opts)
4593                 goto out_mem;
4594
4595         rbd_opts->read_only = RBD_READ_ONLY_DEFAULT;
4596
4597         copts = ceph_parse_options(options, mon_addrs,
4598                                         mon_addrs + mon_addrs_size - 1,
4599                                         parse_rbd_opts_token, rbd_opts);
4600         if (IS_ERR(copts)) {
4601                 ret = PTR_ERR(copts);
4602                 goto out_err;
4603         }
4604         kfree(options);
4605
4606         *ceph_opts = copts;
4607         *opts = rbd_opts;
4608         *rbd_spec = spec;
4609
4610         return 0;
4611 out_mem:
4612         ret = -ENOMEM;
4613 out_err:
4614         kfree(rbd_opts);
4615         rbd_spec_put(spec);
4616         kfree(options);
4617
4618         return ret;
4619 }
4620
4621 /*
4622  * An rbd format 2 image has a unique identifier, distinct from the
4623  * name given to it by the user.  Internally, that identifier is
4624  * what's used to specify the names of objects related to the image.
4625  *
4626  * A special "rbd id" object is used to map an rbd image name to its
4627  * id.  If that object doesn't exist, then there is no v2 rbd image
4628  * with the supplied name.
4629  *
4630  * This function will record the given rbd_dev's image_id field if
4631  * it can be determined, and in that case will return 0.  If any
4632  * errors occur a negative errno will be returned and the rbd_dev's
4633  * image_id field will be unchanged (and should be NULL).
4634  */
4635 static int rbd_dev_image_id(struct rbd_device *rbd_dev)
4636 {
4637         int ret;
4638         size_t size;
4639         char *object_name;
4640         void *response;
4641         char *image_id;
4642
4643         /*
4644          * When probing a parent image, the image id is already
4645          * known (and the image name likely is not).  There's no
4646          * need to fetch the image id again in this case.  We
4647          * do still need to set the image format though.
4648          */
4649         if (rbd_dev->spec->image_id) {
4650                 rbd_dev->image_format = *rbd_dev->spec->image_id ? 2 : 1;
4651
4652                 return 0;
4653         }
4654
4655         /*
4656          * First, see if the format 2 image id file exists, and if
4657          * so, get the image's persistent id from it.
4658          */
4659         size = sizeof (RBD_ID_PREFIX) + strlen(rbd_dev->spec->image_name);
4660         object_name = kmalloc(size, GFP_NOIO);
4661         if (!object_name)
4662                 return -ENOMEM;
4663         sprintf(object_name, "%s%s", RBD_ID_PREFIX, rbd_dev->spec->image_name);
4664         dout("rbd id object name is %s\n", object_name);
4665
4666         /* Response will be an encoded string, which includes a length */
4667
4668         size = sizeof (__le32) + RBD_IMAGE_ID_LEN_MAX;
4669         response = kzalloc(size, GFP_NOIO);
4670         if (!response) {
4671                 ret = -ENOMEM;
4672                 goto out;
4673         }
4674
4675         /* If it doesn't exist we'll assume it's a format 1 image */
4676
4677         ret = rbd_obj_method_sync(rbd_dev, object_name,
4678                                 "rbd", "get_id", NULL, 0,
4679                                 response, RBD_IMAGE_ID_LEN_MAX);
4680         dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
4681         if (ret == -ENOENT) {
4682                 image_id = kstrdup("", GFP_KERNEL);
4683                 ret = image_id ? 0 : -ENOMEM;
4684                 if (!ret)
4685                         rbd_dev->image_format = 1;
4686         } else if (ret > sizeof (__le32)) {
4687                 void *p = response;
4688
4689                 image_id = ceph_extract_encoded_string(&p, p + ret,
4690                                                 NULL, GFP_NOIO);
4691                 ret = IS_ERR(image_id) ? PTR_ERR(image_id) : 0;
4692                 if (!ret)
4693                         rbd_dev->image_format = 2;
4694         } else {
4695                 ret = -EINVAL;
4696         }
4697
4698         if (!ret) {
4699                 rbd_dev->spec->image_id = image_id;
4700                 dout("image_id is %s\n", image_id);
4701         }
4702 out:
4703         kfree(response);
4704         kfree(object_name);
4705
4706         return ret;
4707 }
4708
4709 /*
4710  * Undo whatever state changes are made by v1 or v2 header info
4711  * call.
4712  */
4713 static void rbd_dev_unprobe(struct rbd_device *rbd_dev)
4714 {
4715         struct rbd_image_header *header;
4716
4717         /* Drop parent reference unless it's already been done (or none) */
4718
4719         if (rbd_dev->parent_overlap)
4720                 rbd_dev_parent_put(rbd_dev);
4721
4722         /* Free dynamic fields from the header, then zero it out */
4723
4724         header = &rbd_dev->header;
4725         ceph_put_snap_context(header->snapc);
4726         kfree(header->snap_sizes);
4727         kfree(header->snap_names);
4728         kfree(header->object_prefix);
4729         memset(header, 0, sizeof (*header));
4730 }
4731
4732 static int rbd_dev_v2_header_onetime(struct rbd_device *rbd_dev)
4733 {
4734         int ret;
4735
4736         ret = rbd_dev_v2_object_prefix(rbd_dev);
4737         if (ret)
4738                 goto out_err;
4739
4740         /*
4741          * Get the and check features for the image.  Currently the
4742          * features are assumed to never change.
4743          */
4744         ret = rbd_dev_v2_features(rbd_dev);
4745         if (ret)
4746                 goto out_err;
4747
4748         /* If the image supports fancy striping, get its parameters */
4749
4750         if (rbd_dev->header.features & RBD_FEATURE_STRIPINGV2) {
4751                 ret = rbd_dev_v2_striping_info(rbd_dev);
4752                 if (ret < 0)
4753                         goto out_err;
4754         }
4755         /* No support for crypto and compression type format 2 images */
4756
4757         return 0;
4758 out_err:
4759         rbd_dev->header.features = 0;
4760         kfree(rbd_dev->header.object_prefix);
4761         rbd_dev->header.object_prefix = NULL;
4762
4763         return ret;
4764 }
4765
4766 static int rbd_dev_probe_parent(struct rbd_device *rbd_dev)
4767 {
4768         struct rbd_device *parent = NULL;
4769         struct rbd_spec *parent_spec;
4770         struct rbd_client *rbdc;
4771         int ret;
4772
4773         if (!rbd_dev->parent_spec)
4774                 return 0;
4775         /*
4776          * We need to pass a reference to the client and the parent
4777          * spec when creating the parent rbd_dev.  Images related by
4778          * parent/child relationships always share both.
4779          */
4780         parent_spec = rbd_spec_get(rbd_dev->parent_spec);
4781         rbdc = __rbd_get_client(rbd_dev->rbd_client);
4782
4783         ret = -ENOMEM;
4784         parent = rbd_dev_create(rbdc, parent_spec);
4785         if (!parent)
4786                 goto out_err;
4787
4788         ret = rbd_dev_image_probe(parent, false);
4789         if (ret < 0)
4790                 goto out_err;
4791         rbd_dev->parent = parent;
4792         atomic_set(&rbd_dev->parent_ref, 1);
4793
4794         return 0;
4795 out_err:
4796         if (parent) {
4797                 rbd_dev_unparent(rbd_dev);
4798                 kfree(rbd_dev->header_name);
4799                 rbd_dev_destroy(parent);
4800         } else {
4801                 rbd_put_client(rbdc);
4802                 rbd_spec_put(parent_spec);
4803         }
4804
4805         return ret;
4806 }
4807
4808 static int rbd_dev_device_setup(struct rbd_device *rbd_dev)
4809 {
4810         int ret;
4811
4812         /* generate unique id: find highest unique id, add one */
4813         rbd_dev_id_get(rbd_dev);
4814
4815         /* Fill in the device name, now that we have its id. */
4816         BUILD_BUG_ON(DEV_NAME_LEN
4817                         < sizeof (RBD_DRV_NAME) + MAX_INT_FORMAT_WIDTH);
4818         sprintf(rbd_dev->name, "%s%d", RBD_DRV_NAME, rbd_dev->dev_id);
4819
4820         /* Get our block major device number. */
4821
4822         ret = register_blkdev(0, rbd_dev->name);
4823         if (ret < 0)
4824                 goto err_out_id;
4825         rbd_dev->major = ret;
4826
4827         /* Set up the blkdev mapping. */
4828
4829         ret = rbd_init_disk(rbd_dev);
4830         if (ret)
4831                 goto err_out_blkdev;
4832
4833         ret = rbd_dev_mapping_set(rbd_dev);
4834         if (ret)
4835                 goto err_out_disk;
4836         set_capacity(rbd_dev->disk, rbd_dev->mapping.size / SECTOR_SIZE);
4837
4838         ret = rbd_bus_add_dev(rbd_dev);
4839         if (ret)
4840                 goto err_out_mapping;
4841
4842         /* Everything's ready.  Announce the disk to the world. */
4843
4844         set_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags);
4845         add_disk(rbd_dev->disk);
4846
4847         pr_info("%s: added with size 0x%llx\n", rbd_dev->disk->disk_name,
4848                 (unsigned long long) rbd_dev->mapping.size);
4849
4850         return ret;
4851
4852 err_out_mapping:
4853         rbd_dev_mapping_clear(rbd_dev);
4854 err_out_disk:
4855         rbd_free_disk(rbd_dev);
4856 err_out_blkdev:
4857         unregister_blkdev(rbd_dev->major, rbd_dev->name);
4858 err_out_id:
4859         rbd_dev_id_put(rbd_dev);
4860         rbd_dev_mapping_clear(rbd_dev);
4861
4862         return ret;
4863 }
4864
4865 static int rbd_dev_header_name(struct rbd_device *rbd_dev)
4866 {
4867         struct rbd_spec *spec = rbd_dev->spec;
4868         size_t size;
4869
4870         /* Record the header object name for this rbd image. */
4871
4872         rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
4873
4874         if (rbd_dev->image_format == 1)
4875                 size = strlen(spec->image_name) + sizeof (RBD_SUFFIX);
4876         else
4877                 size = sizeof (RBD_HEADER_PREFIX) + strlen(spec->image_id);
4878
4879         rbd_dev->header_name = kmalloc(size, GFP_KERNEL);
4880         if (!rbd_dev->header_name)
4881                 return -ENOMEM;
4882
4883         if (rbd_dev->image_format == 1)
4884                 sprintf(rbd_dev->header_name, "%s%s",
4885                         spec->image_name, RBD_SUFFIX);
4886         else
4887                 sprintf(rbd_dev->header_name, "%s%s",
4888                         RBD_HEADER_PREFIX, spec->image_id);
4889         return 0;
4890 }
4891
4892 static void rbd_dev_image_release(struct rbd_device *rbd_dev)
4893 {
4894         rbd_dev_unprobe(rbd_dev);
4895         kfree(rbd_dev->header_name);
4896         rbd_dev->header_name = NULL;
4897         rbd_dev->image_format = 0;
4898         kfree(rbd_dev->spec->image_id);
4899         rbd_dev->spec->image_id = NULL;
4900
4901         rbd_dev_destroy(rbd_dev);
4902 }
4903
4904 /*
4905  * Probe for the existence of the header object for the given rbd
4906  * device.  If this image is the one being mapped (i.e., not a
4907  * parent), initiate a watch on its header object before using that
4908  * object to get detailed information about the rbd image.
4909  */
4910 static int rbd_dev_image_probe(struct rbd_device *rbd_dev, bool mapping)
4911 {
4912         int ret;
4913         int tmp;
4914
4915         /*
4916          * Get the id from the image id object.  Unless there's an
4917          * error, rbd_dev->spec->image_id will be filled in with
4918          * a dynamically-allocated string, and rbd_dev->image_format
4919          * will be set to either 1 or 2.
4920          */
4921         ret = rbd_dev_image_id(rbd_dev);
4922         if (ret)
4923                 return ret;
4924         rbd_assert(rbd_dev->spec->image_id);
4925         rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
4926
4927         ret = rbd_dev_header_name(rbd_dev);
4928         if (ret)
4929                 goto err_out_format;
4930
4931         if (mapping) {
4932                 ret = rbd_dev_header_watch_sync(rbd_dev, true);
4933                 if (ret)
4934                         goto out_header_name;
4935         }
4936
4937         if (rbd_dev->image_format == 1)
4938                 ret = rbd_dev_v1_header_info(rbd_dev);
4939         else
4940                 ret = rbd_dev_v2_header_info(rbd_dev);
4941         if (ret)
4942                 goto err_out_watch;
4943
4944         ret = rbd_dev_spec_update(rbd_dev);
4945         if (ret)
4946                 goto err_out_probe;
4947
4948         ret = rbd_dev_probe_parent(rbd_dev);
4949         if (ret)
4950                 goto err_out_probe;
4951
4952         dout("discovered format %u image, header name is %s\n",
4953                 rbd_dev->image_format, rbd_dev->header_name);
4954
4955         return 0;
4956 err_out_probe:
4957         rbd_dev_unprobe(rbd_dev);
4958 err_out_watch:
4959         if (mapping) {
4960                 tmp = rbd_dev_header_watch_sync(rbd_dev, false);
4961                 if (tmp)
4962                         rbd_warn(rbd_dev, "unable to tear down "
4963                                         "watch request (%d)\n", tmp);
4964         }
4965 out_header_name:
4966         kfree(rbd_dev->header_name);
4967         rbd_dev->header_name = NULL;
4968 err_out_format:
4969         rbd_dev->image_format = 0;
4970         kfree(rbd_dev->spec->image_id);
4971         rbd_dev->spec->image_id = NULL;
4972
4973         dout("probe failed, returning %d\n", ret);
4974
4975         return ret;
4976 }
4977
4978 static ssize_t rbd_add(struct bus_type *bus,
4979                        const char *buf,
4980                        size_t count)
4981 {
4982         struct rbd_device *rbd_dev = NULL;
4983         struct ceph_options *ceph_opts = NULL;
4984         struct rbd_options *rbd_opts = NULL;
4985         struct rbd_spec *spec = NULL;
4986         struct rbd_client *rbdc;
4987         struct ceph_osd_client *osdc;
4988         bool read_only;
4989         int rc = -ENOMEM;
4990
4991         if (!try_module_get(THIS_MODULE))
4992                 return -ENODEV;
4993
4994         /* parse add command */
4995         rc = rbd_add_parse_args(buf, &ceph_opts, &rbd_opts, &spec);
4996         if (rc < 0)
4997                 goto err_out_module;
4998         read_only = rbd_opts->read_only;
4999         kfree(rbd_opts);
5000         rbd_opts = NULL;        /* done with this */
5001
5002         rbdc = rbd_get_client(ceph_opts);
5003         if (IS_ERR(rbdc)) {
5004                 rc = PTR_ERR(rbdc);
5005                 goto err_out_args;
5006         }
5007
5008         /* pick the pool */
5009         osdc = &rbdc->client->osdc;
5010         rc = ceph_pg_poolid_by_name(osdc->osdmap, spec->pool_name);
5011         if (rc < 0)
5012                 goto err_out_client;
5013         spec->pool_id = (u64)rc;
5014
5015         /* The ceph file layout needs to fit pool id in 32 bits */
5016
5017         if (spec->pool_id > (u64)U32_MAX) {
5018                 rbd_warn(NULL, "pool id too large (%llu > %u)\n",
5019                                 (unsigned long long)spec->pool_id, U32_MAX);
5020                 rc = -EIO;
5021                 goto err_out_client;
5022         }
5023
5024         rbd_dev = rbd_dev_create(rbdc, spec);
5025         if (!rbd_dev)
5026                 goto err_out_client;
5027         rbdc = NULL;            /* rbd_dev now owns this */
5028         spec = NULL;            /* rbd_dev now owns this */
5029
5030         rc = rbd_dev_image_probe(rbd_dev, true);
5031         if (rc < 0)
5032                 goto err_out_rbd_dev;
5033
5034         /* If we are mapping a snapshot it must be marked read-only */
5035
5036         if (rbd_dev->spec->snap_id != CEPH_NOSNAP)
5037                 read_only = true;
5038         rbd_dev->mapping.read_only = read_only;
5039
5040         rc = rbd_dev_device_setup(rbd_dev);
5041         if (rc) {
5042                 rbd_dev_image_release(rbd_dev);
5043                 goto err_out_module;
5044         }
5045
5046         return count;
5047
5048 err_out_rbd_dev:
5049         rbd_dev_destroy(rbd_dev);
5050 err_out_client:
5051         rbd_put_client(rbdc);
5052 err_out_args:
5053         rbd_spec_put(spec);
5054 err_out_module:
5055         module_put(THIS_MODULE);
5056
5057         dout("Error adding device %s\n", buf);
5058
5059         return (ssize_t)rc;
5060 }
5061
5062 static struct rbd_device *__rbd_get_dev(unsigned long dev_id)
5063 {
5064         struct list_head *tmp;
5065         struct rbd_device *rbd_dev;
5066
5067         spin_lock(&rbd_dev_list_lock);
5068         list_for_each(tmp, &rbd_dev_list) {
5069                 rbd_dev = list_entry(tmp, struct rbd_device, node);
5070                 if (rbd_dev->dev_id == dev_id) {
5071                         spin_unlock(&rbd_dev_list_lock);
5072                         return rbd_dev;
5073                 }
5074         }
5075         spin_unlock(&rbd_dev_list_lock);
5076         return NULL;
5077 }
5078
5079 static void rbd_dev_device_release(struct device *dev)
5080 {
5081         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
5082
5083         rbd_free_disk(rbd_dev);
5084         clear_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags);
5085         rbd_dev_mapping_clear(rbd_dev);
5086         unregister_blkdev(rbd_dev->major, rbd_dev->name);
5087         rbd_dev->major = 0;
5088         rbd_dev_id_put(rbd_dev);
5089         rbd_dev_mapping_clear(rbd_dev);
5090 }
5091
5092 static void rbd_dev_remove_parent(struct rbd_device *rbd_dev)
5093 {
5094         while (rbd_dev->parent) {
5095                 struct rbd_device *first = rbd_dev;
5096                 struct rbd_device *second = first->parent;
5097                 struct rbd_device *third;
5098
5099                 /*
5100                  * Follow to the parent with no grandparent and
5101                  * remove it.
5102                  */
5103                 while (second && (third = second->parent)) {
5104                         first = second;
5105                         second = third;
5106                 }
5107                 rbd_assert(second);
5108                 rbd_dev_image_release(second);
5109                 first->parent = NULL;
5110                 first->parent_overlap = 0;
5111
5112                 rbd_assert(first->parent_spec);
5113                 rbd_spec_put(first->parent_spec);
5114                 first->parent_spec = NULL;
5115         }
5116 }
5117
5118 static ssize_t rbd_remove(struct bus_type *bus,
5119                           const char *buf,
5120                           size_t count)
5121 {
5122         struct rbd_device *rbd_dev = NULL;
5123         int target_id;
5124         unsigned long ul;
5125         int ret;
5126
5127         ret = strict_strtoul(buf, 10, &ul);
5128         if (ret)
5129                 return ret;
5130
5131         /* convert to int; abort if we lost anything in the conversion */
5132         target_id = (int) ul;
5133         if (target_id != ul)
5134                 return -EINVAL;
5135
5136         mutex_lock_nested(&ctl_mutex, SINGLE_DEPTH_NESTING);
5137
5138         rbd_dev = __rbd_get_dev(target_id);
5139         if (!rbd_dev) {
5140                 ret = -ENOENT;
5141                 goto done;
5142         }
5143
5144         spin_lock_irq(&rbd_dev->lock);
5145         if (rbd_dev->open_count)
5146                 ret = -EBUSY;
5147         else
5148                 set_bit(RBD_DEV_FLAG_REMOVING, &rbd_dev->flags);
5149         spin_unlock_irq(&rbd_dev->lock);
5150         if (ret < 0)
5151                 goto done;
5152         rbd_bus_del_dev(rbd_dev);
5153         ret = rbd_dev_header_watch_sync(rbd_dev, false);
5154         if (ret)
5155                 rbd_warn(rbd_dev, "failed to cancel watch event (%d)\n", ret);
5156         rbd_dev_image_release(rbd_dev);
5157         module_put(THIS_MODULE);
5158         ret = count;
5159 done:
5160         mutex_unlock(&ctl_mutex);
5161
5162         return ret;
5163 }
5164
5165 /*
5166  * create control files in sysfs
5167  * /sys/bus/rbd/...
5168  */
5169 static int rbd_sysfs_init(void)
5170 {
5171         int ret;
5172
5173         ret = device_register(&rbd_root_dev);
5174         if (ret < 0)
5175                 return ret;
5176
5177         ret = bus_register(&rbd_bus_type);
5178         if (ret < 0)
5179                 device_unregister(&rbd_root_dev);
5180
5181         return ret;
5182 }
5183
5184 static void rbd_sysfs_cleanup(void)
5185 {
5186         bus_unregister(&rbd_bus_type);
5187         device_unregister(&rbd_root_dev);
5188 }
5189
5190 static int rbd_slab_init(void)
5191 {
5192         rbd_assert(!rbd_img_request_cache);
5193         rbd_img_request_cache = kmem_cache_create("rbd_img_request",
5194                                         sizeof (struct rbd_img_request),
5195                                         __alignof__(struct rbd_img_request),
5196                                         0, NULL);
5197         if (!rbd_img_request_cache)
5198                 return -ENOMEM;
5199
5200         rbd_assert(!rbd_obj_request_cache);
5201         rbd_obj_request_cache = kmem_cache_create("rbd_obj_request",
5202                                         sizeof (struct rbd_obj_request),
5203                                         __alignof__(struct rbd_obj_request),
5204                                         0, NULL);
5205         if (!rbd_obj_request_cache)
5206                 goto out_err;
5207
5208         rbd_assert(!rbd_segment_name_cache);
5209         rbd_segment_name_cache = kmem_cache_create("rbd_segment_name",
5210                                         MAX_OBJ_NAME_SIZE + 1, 1, 0, NULL);
5211         if (rbd_segment_name_cache)
5212                 return 0;
5213 out_err:
5214         if (rbd_obj_request_cache) {
5215                 kmem_cache_destroy(rbd_obj_request_cache);
5216                 rbd_obj_request_cache = NULL;
5217         }
5218
5219         kmem_cache_destroy(rbd_img_request_cache);
5220         rbd_img_request_cache = NULL;
5221
5222         return -ENOMEM;
5223 }
5224
5225 static void rbd_slab_exit(void)
5226 {
5227         rbd_assert(rbd_segment_name_cache);
5228         kmem_cache_destroy(rbd_segment_name_cache);
5229         rbd_segment_name_cache = NULL;
5230
5231         rbd_assert(rbd_obj_request_cache);
5232         kmem_cache_destroy(rbd_obj_request_cache);
5233         rbd_obj_request_cache = NULL;
5234
5235         rbd_assert(rbd_img_request_cache);
5236         kmem_cache_destroy(rbd_img_request_cache);
5237         rbd_img_request_cache = NULL;
5238 }
5239
5240 static int __init rbd_init(void)
5241 {
5242         int rc;
5243
5244         if (!libceph_compatible(NULL)) {
5245                 rbd_warn(NULL, "libceph incompatibility (quitting)");
5246
5247                 return -EINVAL;
5248         }
5249         rc = rbd_slab_init();
5250         if (rc)
5251                 return rc;
5252         rc = rbd_sysfs_init();
5253         if (rc)
5254                 rbd_slab_exit();
5255         else
5256                 pr_info("loaded " RBD_DRV_NAME_LONG "\n");
5257
5258         return rc;
5259 }
5260
5261 static void __exit rbd_exit(void)
5262 {
5263         rbd_sysfs_cleanup();
5264         rbd_slab_exit();
5265 }
5266
5267 module_init(rbd_init);
5268 module_exit(rbd_exit);
5269
5270 MODULE_AUTHOR("Sage Weil <sage@newdream.net>");
5271 MODULE_AUTHOR("Yehuda Sadeh <yehuda@hq.newdream.net>");
5272 MODULE_DESCRIPTION("rados block device");
5273
5274 /* following authorship retained from original osdblk.c */
5275 MODULE_AUTHOR("Jeff Garzik <jeff@garzik.org>");
5276
5277 MODULE_LICENSE("GPL");