Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/sage/ceph...
[firefly-linux-kernel-4.4.55.git] / drivers / block / rbd.c
1
2 /*
3    rbd.c -- Export ceph rados objects as a Linux block device
4
5
6    based on drivers/block/osdblk.c:
7
8    Copyright 2009 Red Hat, Inc.
9
10    This program is free software; you can redistribute it and/or modify
11    it under the terms of the GNU General Public License as published by
12    the Free Software Foundation.
13
14    This program is distributed in the hope that it will be useful,
15    but WITHOUT ANY WARRANTY; without even the implied warranty of
16    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
17    GNU General Public License for more details.
18
19    You should have received a copy of the GNU General Public License
20    along with this program; see the file COPYING.  If not, write to
21    the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
22
23
24
25    For usage instructions, please refer to:
26
27                  Documentation/ABI/testing/sysfs-bus-rbd
28
29  */
30
31 #include <linux/ceph/libceph.h>
32 #include <linux/ceph/osd_client.h>
33 #include <linux/ceph/mon_client.h>
34 #include <linux/ceph/decode.h>
35 #include <linux/parser.h>
36 #include <linux/bsearch.h>
37
38 #include <linux/kernel.h>
39 #include <linux/device.h>
40 #include <linux/module.h>
41 #include <linux/fs.h>
42 #include <linux/blkdev.h>
43 #include <linux/slab.h>
44
45 #include "rbd_types.h"
46
47 #define RBD_DEBUG       /* Activate rbd_assert() calls */
48
49 /*
50  * The basic unit of block I/O is a sector.  It is interpreted in a
51  * number of contexts in Linux (blk, bio, genhd), but the default is
52  * universally 512 bytes.  These symbols are just slightly more
53  * meaningful than the bare numbers they represent.
54  */
55 #define SECTOR_SHIFT    9
56 #define SECTOR_SIZE     (1ULL << SECTOR_SHIFT)
57
58 /*
59  * Increment the given counter and return its updated value.
60  * If the counter is already 0 it will not be incremented.
61  * If the counter is already at its maximum value returns
62  * -EINVAL without updating it.
63  */
64 static int atomic_inc_return_safe(atomic_t *v)
65 {
66         unsigned int counter;
67
68         counter = (unsigned int)__atomic_add_unless(v, 1, 0);
69         if (counter <= (unsigned int)INT_MAX)
70                 return (int)counter;
71
72         atomic_dec(v);
73
74         return -EINVAL;
75 }
76
77 /* Decrement the counter.  Return the resulting value, or -EINVAL */
78 static int atomic_dec_return_safe(atomic_t *v)
79 {
80         int counter;
81
82         counter = atomic_dec_return(v);
83         if (counter >= 0)
84                 return counter;
85
86         atomic_inc(v);
87
88         return -EINVAL;
89 }
90
91 #define RBD_DRV_NAME "rbd"
92 #define RBD_DRV_NAME_LONG "rbd (rados block device)"
93
94 #define RBD_MINORS_PER_MAJOR    256             /* max minors per blkdev */
95
96 #define RBD_SNAP_DEV_NAME_PREFIX        "snap_"
97 #define RBD_MAX_SNAP_NAME_LEN   \
98                         (NAME_MAX - (sizeof (RBD_SNAP_DEV_NAME_PREFIX) - 1))
99
100 #define RBD_MAX_SNAP_COUNT      510     /* allows max snapc to fit in 4KB */
101
102 #define RBD_SNAP_HEAD_NAME      "-"
103
104 #define BAD_SNAP_INDEX  U32_MAX         /* invalid index into snap array */
105
106 /* This allows a single page to hold an image name sent by OSD */
107 #define RBD_IMAGE_NAME_LEN_MAX  (PAGE_SIZE - sizeof (__le32) - 1)
108 #define RBD_IMAGE_ID_LEN_MAX    64
109
110 #define RBD_OBJ_PREFIX_LEN_MAX  64
111
112 /* Feature bits */
113
114 #define RBD_FEATURE_LAYERING    (1<<0)
115 #define RBD_FEATURE_STRIPINGV2  (1<<1)
116 #define RBD_FEATURES_ALL \
117             (RBD_FEATURE_LAYERING | RBD_FEATURE_STRIPINGV2)
118
119 /* Features supported by this (client software) implementation. */
120
121 #define RBD_FEATURES_SUPPORTED  (RBD_FEATURES_ALL)
122
123 /*
124  * An RBD device name will be "rbd#", where the "rbd" comes from
125  * RBD_DRV_NAME above, and # is a unique integer identifier.
126  * MAX_INT_FORMAT_WIDTH is used in ensuring DEV_NAME_LEN is big
127  * enough to hold all possible device names.
128  */
129 #define DEV_NAME_LEN            32
130 #define MAX_INT_FORMAT_WIDTH    ((5 * sizeof (int)) / 2 + 1)
131
132 /*
133  * block device image metadata (in-memory version)
134  */
135 struct rbd_image_header {
136         /* These six fields never change for a given rbd image */
137         char *object_prefix;
138         __u8 obj_order;
139         __u8 crypt_type;
140         __u8 comp_type;
141         u64 stripe_unit;
142         u64 stripe_count;
143         u64 features;           /* Might be changeable someday? */
144
145         /* The remaining fields need to be updated occasionally */
146         u64 image_size;
147         struct ceph_snap_context *snapc;
148         char *snap_names;       /* format 1 only */
149         u64 *snap_sizes;        /* format 1 only */
150 };
151
152 /*
153  * An rbd image specification.
154  *
155  * The tuple (pool_id, image_id, snap_id) is sufficient to uniquely
156  * identify an image.  Each rbd_dev structure includes a pointer to
157  * an rbd_spec structure that encapsulates this identity.
158  *
159  * Each of the id's in an rbd_spec has an associated name.  For a
160  * user-mapped image, the names are supplied and the id's associated
161  * with them are looked up.  For a layered image, a parent image is
162  * defined by the tuple, and the names are looked up.
163  *
164  * An rbd_dev structure contains a parent_spec pointer which is
165  * non-null if the image it represents is a child in a layered
166  * image.  This pointer will refer to the rbd_spec structure used
167  * by the parent rbd_dev for its own identity (i.e., the structure
168  * is shared between the parent and child).
169  *
170  * Since these structures are populated once, during the discovery
171  * phase of image construction, they are effectively immutable so
172  * we make no effort to synchronize access to them.
173  *
174  * Note that code herein does not assume the image name is known (it
175  * could be a null pointer).
176  */
177 struct rbd_spec {
178         u64             pool_id;
179         const char      *pool_name;
180
181         const char      *image_id;
182         const char      *image_name;
183
184         u64             snap_id;
185         const char      *snap_name;
186
187         struct kref     kref;
188 };
189
190 /*
191  * an instance of the client.  multiple devices may share an rbd client.
192  */
193 struct rbd_client {
194         struct ceph_client      *client;
195         struct kref             kref;
196         struct list_head        node;
197 };
198
199 struct rbd_img_request;
200 typedef void (*rbd_img_callback_t)(struct rbd_img_request *);
201
202 #define BAD_WHICH       U32_MAX         /* Good which or bad which, which? */
203
204 struct rbd_obj_request;
205 typedef void (*rbd_obj_callback_t)(struct rbd_obj_request *);
206
207 enum obj_request_type {
208         OBJ_REQUEST_NODATA, OBJ_REQUEST_BIO, OBJ_REQUEST_PAGES
209 };
210
211 enum obj_req_flags {
212         OBJ_REQ_DONE,           /* completion flag: not done = 0, done = 1 */
213         OBJ_REQ_IMG_DATA,       /* object usage: standalone = 0, image = 1 */
214         OBJ_REQ_KNOWN,          /* EXISTS flag valid: no = 0, yes = 1 */
215         OBJ_REQ_EXISTS,         /* target exists: no = 0, yes = 1 */
216 };
217
218 struct rbd_obj_request {
219         const char              *object_name;
220         u64                     offset;         /* object start byte */
221         u64                     length;         /* bytes from offset */
222         unsigned long           flags;
223
224         /*
225          * An object request associated with an image will have its
226          * img_data flag set; a standalone object request will not.
227          *
228          * A standalone object request will have which == BAD_WHICH
229          * and a null obj_request pointer.
230          *
231          * An object request initiated in support of a layered image
232          * object (to check for its existence before a write) will
233          * have which == BAD_WHICH and a non-null obj_request pointer.
234          *
235          * Finally, an object request for rbd image data will have
236          * which != BAD_WHICH, and will have a non-null img_request
237          * pointer.  The value of which will be in the range
238          * 0..(img_request->obj_request_count-1).
239          */
240         union {
241                 struct rbd_obj_request  *obj_request;   /* STAT op */
242                 struct {
243                         struct rbd_img_request  *img_request;
244                         u64                     img_offset;
245                         /* links for img_request->obj_requests list */
246                         struct list_head        links;
247                 };
248         };
249         u32                     which;          /* posn image request list */
250
251         enum obj_request_type   type;
252         union {
253                 struct bio      *bio_list;
254                 struct {
255                         struct page     **pages;
256                         u32             page_count;
257                 };
258         };
259         struct page             **copyup_pages;
260         u32                     copyup_page_count;
261
262         struct ceph_osd_request *osd_req;
263
264         u64                     xferred;        /* bytes transferred */
265         int                     result;
266
267         rbd_obj_callback_t      callback;
268         struct completion       completion;
269
270         struct kref             kref;
271 };
272
273 enum img_req_flags {
274         IMG_REQ_WRITE,          /* I/O direction: read = 0, write = 1 */
275         IMG_REQ_CHILD,          /* initiator: block = 0, child image = 1 */
276         IMG_REQ_LAYERED,        /* ENOENT handling: normal = 0, layered = 1 */
277 };
278
279 struct rbd_img_request {
280         struct rbd_device       *rbd_dev;
281         u64                     offset; /* starting image byte offset */
282         u64                     length; /* byte count from offset */
283         unsigned long           flags;
284         union {
285                 u64                     snap_id;        /* for reads */
286                 struct ceph_snap_context *snapc;        /* for writes */
287         };
288         union {
289                 struct request          *rq;            /* block request */
290                 struct rbd_obj_request  *obj_request;   /* obj req initiator */
291         };
292         struct page             **copyup_pages;
293         u32                     copyup_page_count;
294         spinlock_t              completion_lock;/* protects next_completion */
295         u32                     next_completion;
296         rbd_img_callback_t      callback;
297         u64                     xferred;/* aggregate bytes transferred */
298         int                     result; /* first nonzero obj_request result */
299
300         u32                     obj_request_count;
301         struct list_head        obj_requests;   /* rbd_obj_request structs */
302
303         struct kref             kref;
304 };
305
306 #define for_each_obj_request(ireq, oreq) \
307         list_for_each_entry(oreq, &(ireq)->obj_requests, links)
308 #define for_each_obj_request_from(ireq, oreq) \
309         list_for_each_entry_from(oreq, &(ireq)->obj_requests, links)
310 #define for_each_obj_request_safe(ireq, oreq, n) \
311         list_for_each_entry_safe_reverse(oreq, n, &(ireq)->obj_requests, links)
312
313 struct rbd_mapping {
314         u64                     size;
315         u64                     features;
316         bool                    read_only;
317 };
318
319 /*
320  * a single device
321  */
322 struct rbd_device {
323         int                     dev_id;         /* blkdev unique id */
324
325         int                     major;          /* blkdev assigned major */
326         struct gendisk          *disk;          /* blkdev's gendisk and rq */
327
328         u32                     image_format;   /* Either 1 or 2 */
329         struct rbd_client       *rbd_client;
330
331         char                    name[DEV_NAME_LEN]; /* blkdev name, e.g. rbd3 */
332
333         spinlock_t              lock;           /* queue, flags, open_count */
334
335         struct rbd_image_header header;
336         unsigned long           flags;          /* possibly lock protected */
337         struct rbd_spec         *spec;
338
339         char                    *header_name;
340
341         struct ceph_file_layout layout;
342
343         struct ceph_osd_event   *watch_event;
344         struct rbd_obj_request  *watch_request;
345
346         struct rbd_spec         *parent_spec;
347         u64                     parent_overlap;
348         atomic_t                parent_ref;
349         struct rbd_device       *parent;
350
351         /* protects updating the header */
352         struct rw_semaphore     header_rwsem;
353
354         struct rbd_mapping      mapping;
355
356         struct list_head        node;
357
358         /* sysfs related */
359         struct device           dev;
360         unsigned long           open_count;     /* protected by lock */
361 };
362
363 /*
364  * Flag bits for rbd_dev->flags.  If atomicity is required,
365  * rbd_dev->lock is used to protect access.
366  *
367  * Currently, only the "removing" flag (which is coupled with the
368  * "open_count" field) requires atomic access.
369  */
370 enum rbd_dev_flags {
371         RBD_DEV_FLAG_EXISTS,    /* mapped snapshot has not been deleted */
372         RBD_DEV_FLAG_REMOVING,  /* this mapping is being removed */
373 };
374
375 static DEFINE_MUTEX(ctl_mutex);   /* Serialize open/close/setup/teardown */
376
377 static LIST_HEAD(rbd_dev_list);    /* devices */
378 static DEFINE_SPINLOCK(rbd_dev_list_lock);
379
380 static LIST_HEAD(rbd_client_list);              /* clients */
381 static DEFINE_SPINLOCK(rbd_client_list_lock);
382
383 /* Slab caches for frequently-allocated structures */
384
385 static struct kmem_cache        *rbd_img_request_cache;
386 static struct kmem_cache        *rbd_obj_request_cache;
387 static struct kmem_cache        *rbd_segment_name_cache;
388
389 static int rbd_img_request_submit(struct rbd_img_request *img_request);
390
391 static void rbd_dev_device_release(struct device *dev);
392
393 static ssize_t rbd_add(struct bus_type *bus, const char *buf,
394                        size_t count);
395 static ssize_t rbd_remove(struct bus_type *bus, const char *buf,
396                           size_t count);
397 static int rbd_dev_image_probe(struct rbd_device *rbd_dev, bool mapping);
398 static void rbd_spec_put(struct rbd_spec *spec);
399
400 static struct bus_attribute rbd_bus_attrs[] = {
401         __ATTR(add, S_IWUSR, NULL, rbd_add),
402         __ATTR(remove, S_IWUSR, NULL, rbd_remove),
403         __ATTR_NULL
404 };
405
406 static struct bus_type rbd_bus_type = {
407         .name           = "rbd",
408         .bus_attrs      = rbd_bus_attrs,
409 };
410
411 static void rbd_root_dev_release(struct device *dev)
412 {
413 }
414
415 static struct device rbd_root_dev = {
416         .init_name =    "rbd",
417         .release =      rbd_root_dev_release,
418 };
419
420 static __printf(2, 3)
421 void rbd_warn(struct rbd_device *rbd_dev, const char *fmt, ...)
422 {
423         struct va_format vaf;
424         va_list args;
425
426         va_start(args, fmt);
427         vaf.fmt = fmt;
428         vaf.va = &args;
429
430         if (!rbd_dev)
431                 printk(KERN_WARNING "%s: %pV\n", RBD_DRV_NAME, &vaf);
432         else if (rbd_dev->disk)
433                 printk(KERN_WARNING "%s: %s: %pV\n",
434                         RBD_DRV_NAME, rbd_dev->disk->disk_name, &vaf);
435         else if (rbd_dev->spec && rbd_dev->spec->image_name)
436                 printk(KERN_WARNING "%s: image %s: %pV\n",
437                         RBD_DRV_NAME, rbd_dev->spec->image_name, &vaf);
438         else if (rbd_dev->spec && rbd_dev->spec->image_id)
439                 printk(KERN_WARNING "%s: id %s: %pV\n",
440                         RBD_DRV_NAME, rbd_dev->spec->image_id, &vaf);
441         else    /* punt */
442                 printk(KERN_WARNING "%s: rbd_dev %p: %pV\n",
443                         RBD_DRV_NAME, rbd_dev, &vaf);
444         va_end(args);
445 }
446
447 #ifdef RBD_DEBUG
448 #define rbd_assert(expr)                                                \
449                 if (unlikely(!(expr))) {                                \
450                         printk(KERN_ERR "\nAssertion failure in %s() "  \
451                                                 "at line %d:\n\n"       \
452                                         "\trbd_assert(%s);\n\n",        \
453                                         __func__, __LINE__, #expr);     \
454                         BUG();                                          \
455                 }
456 #else /* !RBD_DEBUG */
457 #  define rbd_assert(expr)      ((void) 0)
458 #endif /* !RBD_DEBUG */
459
460 static int rbd_img_obj_request_submit(struct rbd_obj_request *obj_request);
461 static void rbd_img_parent_read(struct rbd_obj_request *obj_request);
462 static void rbd_dev_remove_parent(struct rbd_device *rbd_dev);
463
464 static int rbd_dev_refresh(struct rbd_device *rbd_dev);
465 static int rbd_dev_v2_header_onetime(struct rbd_device *rbd_dev);
466 static int rbd_dev_v2_header_info(struct rbd_device *rbd_dev);
467 static const char *rbd_dev_v2_snap_name(struct rbd_device *rbd_dev,
468                                         u64 snap_id);
469 static int _rbd_dev_v2_snap_size(struct rbd_device *rbd_dev, u64 snap_id,
470                                 u8 *order, u64 *snap_size);
471 static int _rbd_dev_v2_snap_features(struct rbd_device *rbd_dev, u64 snap_id,
472                 u64 *snap_features);
473 static u64 rbd_snap_id_by_name(struct rbd_device *rbd_dev, const char *name);
474
475 static int rbd_open(struct block_device *bdev, fmode_t mode)
476 {
477         struct rbd_device *rbd_dev = bdev->bd_disk->private_data;
478         bool removing = false;
479
480         if ((mode & FMODE_WRITE) && rbd_dev->mapping.read_only)
481                 return -EROFS;
482
483         spin_lock_irq(&rbd_dev->lock);
484         if (test_bit(RBD_DEV_FLAG_REMOVING, &rbd_dev->flags))
485                 removing = true;
486         else
487                 rbd_dev->open_count++;
488         spin_unlock_irq(&rbd_dev->lock);
489         if (removing)
490                 return -ENOENT;
491
492         mutex_lock_nested(&ctl_mutex, SINGLE_DEPTH_NESTING);
493         (void) get_device(&rbd_dev->dev);
494         set_device_ro(bdev, rbd_dev->mapping.read_only);
495         mutex_unlock(&ctl_mutex);
496
497         return 0;
498 }
499
500 static void rbd_release(struct gendisk *disk, fmode_t mode)
501 {
502         struct rbd_device *rbd_dev = disk->private_data;
503         unsigned long open_count_before;
504
505         spin_lock_irq(&rbd_dev->lock);
506         open_count_before = rbd_dev->open_count--;
507         spin_unlock_irq(&rbd_dev->lock);
508         rbd_assert(open_count_before > 0);
509
510         mutex_lock_nested(&ctl_mutex, SINGLE_DEPTH_NESTING);
511         put_device(&rbd_dev->dev);
512         mutex_unlock(&ctl_mutex);
513 }
514
515 static const struct block_device_operations rbd_bd_ops = {
516         .owner                  = THIS_MODULE,
517         .open                   = rbd_open,
518         .release                = rbd_release,
519 };
520
521 /*
522  * Initialize an rbd client instance.  Success or not, this function
523  * consumes ceph_opts.
524  */
525 static struct rbd_client *rbd_client_create(struct ceph_options *ceph_opts)
526 {
527         struct rbd_client *rbdc;
528         int ret = -ENOMEM;
529
530         dout("%s:\n", __func__);
531         rbdc = kmalloc(sizeof(struct rbd_client), GFP_KERNEL);
532         if (!rbdc)
533                 goto out_opt;
534
535         kref_init(&rbdc->kref);
536         INIT_LIST_HEAD(&rbdc->node);
537
538         mutex_lock_nested(&ctl_mutex, SINGLE_DEPTH_NESTING);
539
540         rbdc->client = ceph_create_client(ceph_opts, rbdc, 0, 0);
541         if (IS_ERR(rbdc->client))
542                 goto out_mutex;
543         ceph_opts = NULL; /* Now rbdc->client is responsible for ceph_opts */
544
545         ret = ceph_open_session(rbdc->client);
546         if (ret < 0)
547                 goto out_err;
548
549         spin_lock(&rbd_client_list_lock);
550         list_add_tail(&rbdc->node, &rbd_client_list);
551         spin_unlock(&rbd_client_list_lock);
552
553         mutex_unlock(&ctl_mutex);
554         dout("%s: rbdc %p\n", __func__, rbdc);
555
556         return rbdc;
557
558 out_err:
559         ceph_destroy_client(rbdc->client);
560 out_mutex:
561         mutex_unlock(&ctl_mutex);
562         kfree(rbdc);
563 out_opt:
564         if (ceph_opts)
565                 ceph_destroy_options(ceph_opts);
566         dout("%s: error %d\n", __func__, ret);
567
568         return ERR_PTR(ret);
569 }
570
571 static struct rbd_client *__rbd_get_client(struct rbd_client *rbdc)
572 {
573         kref_get(&rbdc->kref);
574
575         return rbdc;
576 }
577
578 /*
579  * Find a ceph client with specific addr and configuration.  If
580  * found, bump its reference count.
581  */
582 static struct rbd_client *rbd_client_find(struct ceph_options *ceph_opts)
583 {
584         struct rbd_client *client_node;
585         bool found = false;
586
587         if (ceph_opts->flags & CEPH_OPT_NOSHARE)
588                 return NULL;
589
590         spin_lock(&rbd_client_list_lock);
591         list_for_each_entry(client_node, &rbd_client_list, node) {
592                 if (!ceph_compare_options(ceph_opts, client_node->client)) {
593                         __rbd_get_client(client_node);
594
595                         found = true;
596                         break;
597                 }
598         }
599         spin_unlock(&rbd_client_list_lock);
600
601         return found ? client_node : NULL;
602 }
603
604 /*
605  * mount options
606  */
607 enum {
608         Opt_last_int,
609         /* int args above */
610         Opt_last_string,
611         /* string args above */
612         Opt_read_only,
613         Opt_read_write,
614         /* Boolean args above */
615         Opt_last_bool,
616 };
617
618 static match_table_t rbd_opts_tokens = {
619         /* int args above */
620         /* string args above */
621         {Opt_read_only, "read_only"},
622         {Opt_read_only, "ro"},          /* Alternate spelling */
623         {Opt_read_write, "read_write"},
624         {Opt_read_write, "rw"},         /* Alternate spelling */
625         /* Boolean args above */
626         {-1, NULL}
627 };
628
629 struct rbd_options {
630         bool    read_only;
631 };
632
633 #define RBD_READ_ONLY_DEFAULT   false
634
635 static int parse_rbd_opts_token(char *c, void *private)
636 {
637         struct rbd_options *rbd_opts = private;
638         substring_t argstr[MAX_OPT_ARGS];
639         int token, intval, ret;
640
641         token = match_token(c, rbd_opts_tokens, argstr);
642         if (token < 0)
643                 return -EINVAL;
644
645         if (token < Opt_last_int) {
646                 ret = match_int(&argstr[0], &intval);
647                 if (ret < 0) {
648                         pr_err("bad mount option arg (not int) "
649                                "at '%s'\n", c);
650                         return ret;
651                 }
652                 dout("got int token %d val %d\n", token, intval);
653         } else if (token > Opt_last_int && token < Opt_last_string) {
654                 dout("got string token %d val %s\n", token,
655                      argstr[0].from);
656         } else if (token > Opt_last_string && token < Opt_last_bool) {
657                 dout("got Boolean token %d\n", token);
658         } else {
659                 dout("got token %d\n", token);
660         }
661
662         switch (token) {
663         case Opt_read_only:
664                 rbd_opts->read_only = true;
665                 break;
666         case Opt_read_write:
667                 rbd_opts->read_only = false;
668                 break;
669         default:
670                 rbd_assert(false);
671                 break;
672         }
673         return 0;
674 }
675
676 /*
677  * Get a ceph client with specific addr and configuration, if one does
678  * not exist create it.  Either way, ceph_opts is consumed by this
679  * function.
680  */
681 static struct rbd_client *rbd_get_client(struct ceph_options *ceph_opts)
682 {
683         struct rbd_client *rbdc;
684
685         rbdc = rbd_client_find(ceph_opts);
686         if (rbdc)       /* using an existing client */
687                 ceph_destroy_options(ceph_opts);
688         else
689                 rbdc = rbd_client_create(ceph_opts);
690
691         return rbdc;
692 }
693
694 /*
695  * Destroy ceph client
696  *
697  * Caller must hold rbd_client_list_lock.
698  */
699 static void rbd_client_release(struct kref *kref)
700 {
701         struct rbd_client *rbdc = container_of(kref, struct rbd_client, kref);
702
703         dout("%s: rbdc %p\n", __func__, rbdc);
704         spin_lock(&rbd_client_list_lock);
705         list_del(&rbdc->node);
706         spin_unlock(&rbd_client_list_lock);
707
708         ceph_destroy_client(rbdc->client);
709         kfree(rbdc);
710 }
711
712 /*
713  * Drop reference to ceph client node. If it's not referenced anymore, release
714  * it.
715  */
716 static void rbd_put_client(struct rbd_client *rbdc)
717 {
718         if (rbdc)
719                 kref_put(&rbdc->kref, rbd_client_release);
720 }
721
722 static bool rbd_image_format_valid(u32 image_format)
723 {
724         return image_format == 1 || image_format == 2;
725 }
726
727 static bool rbd_dev_ondisk_valid(struct rbd_image_header_ondisk *ondisk)
728 {
729         size_t size;
730         u32 snap_count;
731
732         /* The header has to start with the magic rbd header text */
733         if (memcmp(&ondisk->text, RBD_HEADER_TEXT, sizeof (RBD_HEADER_TEXT)))
734                 return false;
735
736         /* The bio layer requires at least sector-sized I/O */
737
738         if (ondisk->options.order < SECTOR_SHIFT)
739                 return false;
740
741         /* If we use u64 in a few spots we may be able to loosen this */
742
743         if (ondisk->options.order > 8 * sizeof (int) - 1)
744                 return false;
745
746         /*
747          * The size of a snapshot header has to fit in a size_t, and
748          * that limits the number of snapshots.
749          */
750         snap_count = le32_to_cpu(ondisk->snap_count);
751         size = SIZE_MAX - sizeof (struct ceph_snap_context);
752         if (snap_count > size / sizeof (__le64))
753                 return false;
754
755         /*
756          * Not only that, but the size of the entire the snapshot
757          * header must also be representable in a size_t.
758          */
759         size -= snap_count * sizeof (__le64);
760         if ((u64) size < le64_to_cpu(ondisk->snap_names_len))
761                 return false;
762
763         return true;
764 }
765
766 /*
767  * Fill an rbd image header with information from the given format 1
768  * on-disk header.
769  */
770 static int rbd_header_from_disk(struct rbd_device *rbd_dev,
771                                  struct rbd_image_header_ondisk *ondisk)
772 {
773         struct rbd_image_header *header = &rbd_dev->header;
774         bool first_time = header->object_prefix == NULL;
775         struct ceph_snap_context *snapc;
776         char *object_prefix = NULL;
777         char *snap_names = NULL;
778         u64 *snap_sizes = NULL;
779         u32 snap_count;
780         size_t size;
781         int ret = -ENOMEM;
782         u32 i;
783
784         /* Allocate this now to avoid having to handle failure below */
785
786         if (first_time) {
787                 size_t len;
788
789                 len = strnlen(ondisk->object_prefix,
790                                 sizeof (ondisk->object_prefix));
791                 object_prefix = kmalloc(len + 1, GFP_KERNEL);
792                 if (!object_prefix)
793                         return -ENOMEM;
794                 memcpy(object_prefix, ondisk->object_prefix, len);
795                 object_prefix[len] = '\0';
796         }
797
798         /* Allocate the snapshot context and fill it in */
799
800         snap_count = le32_to_cpu(ondisk->snap_count);
801         snapc = ceph_create_snap_context(snap_count, GFP_KERNEL);
802         if (!snapc)
803                 goto out_err;
804         snapc->seq = le64_to_cpu(ondisk->snap_seq);
805         if (snap_count) {
806                 struct rbd_image_snap_ondisk *snaps;
807                 u64 snap_names_len = le64_to_cpu(ondisk->snap_names_len);
808
809                 /* We'll keep a copy of the snapshot names... */
810
811                 if (snap_names_len > (u64)SIZE_MAX)
812                         goto out_2big;
813                 snap_names = kmalloc(snap_names_len, GFP_KERNEL);
814                 if (!snap_names)
815                         goto out_err;
816
817                 /* ...as well as the array of their sizes. */
818
819                 size = snap_count * sizeof (*header->snap_sizes);
820                 snap_sizes = kmalloc(size, GFP_KERNEL);
821                 if (!snap_sizes)
822                         goto out_err;
823
824                 /*
825                  * Copy the names, and fill in each snapshot's id
826                  * and size.
827                  *
828                  * Note that rbd_dev_v1_header_info() guarantees the
829                  * ondisk buffer we're working with has
830                  * snap_names_len bytes beyond the end of the
831                  * snapshot id array, this memcpy() is safe.
832                  */
833                 memcpy(snap_names, &ondisk->snaps[snap_count], snap_names_len);
834                 snaps = ondisk->snaps;
835                 for (i = 0; i < snap_count; i++) {
836                         snapc->snaps[i] = le64_to_cpu(snaps[i].id);
837                         snap_sizes[i] = le64_to_cpu(snaps[i].image_size);
838                 }
839         }
840
841         /* We won't fail any more, fill in the header */
842
843         down_write(&rbd_dev->header_rwsem);
844         if (first_time) {
845                 header->object_prefix = object_prefix;
846                 header->obj_order = ondisk->options.order;
847                 header->crypt_type = ondisk->options.crypt_type;
848                 header->comp_type = ondisk->options.comp_type;
849                 /* The rest aren't used for format 1 images */
850                 header->stripe_unit = 0;
851                 header->stripe_count = 0;
852                 header->features = 0;
853         } else {
854                 ceph_put_snap_context(header->snapc);
855                 kfree(header->snap_names);
856                 kfree(header->snap_sizes);
857         }
858
859         /* The remaining fields always get updated (when we refresh) */
860
861         header->image_size = le64_to_cpu(ondisk->image_size);
862         header->snapc = snapc;
863         header->snap_names = snap_names;
864         header->snap_sizes = snap_sizes;
865
866         /* Make sure mapping size is consistent with header info */
867
868         if (rbd_dev->spec->snap_id == CEPH_NOSNAP || first_time)
869                 if (rbd_dev->mapping.size != header->image_size)
870                         rbd_dev->mapping.size = header->image_size;
871
872         up_write(&rbd_dev->header_rwsem);
873
874         return 0;
875 out_2big:
876         ret = -EIO;
877 out_err:
878         kfree(snap_sizes);
879         kfree(snap_names);
880         ceph_put_snap_context(snapc);
881         kfree(object_prefix);
882
883         return ret;
884 }
885
886 static const char *_rbd_dev_v1_snap_name(struct rbd_device *rbd_dev, u32 which)
887 {
888         const char *snap_name;
889
890         rbd_assert(which < rbd_dev->header.snapc->num_snaps);
891
892         /* Skip over names until we find the one we are looking for */
893
894         snap_name = rbd_dev->header.snap_names;
895         while (which--)
896                 snap_name += strlen(snap_name) + 1;
897
898         return kstrdup(snap_name, GFP_KERNEL);
899 }
900
901 /*
902  * Snapshot id comparison function for use with qsort()/bsearch().
903  * Note that result is for snapshots in *descending* order.
904  */
905 static int snapid_compare_reverse(const void *s1, const void *s2)
906 {
907         u64 snap_id1 = *(u64 *)s1;
908         u64 snap_id2 = *(u64 *)s2;
909
910         if (snap_id1 < snap_id2)
911                 return 1;
912         return snap_id1 == snap_id2 ? 0 : -1;
913 }
914
915 /*
916  * Search a snapshot context to see if the given snapshot id is
917  * present.
918  *
919  * Returns the position of the snapshot id in the array if it's found,
920  * or BAD_SNAP_INDEX otherwise.
921  *
922  * Note: The snapshot array is in kept sorted (by the osd) in
923  * reverse order, highest snapshot id first.
924  */
925 static u32 rbd_dev_snap_index(struct rbd_device *rbd_dev, u64 snap_id)
926 {
927         struct ceph_snap_context *snapc = rbd_dev->header.snapc;
928         u64 *found;
929
930         found = bsearch(&snap_id, &snapc->snaps, snapc->num_snaps,
931                                 sizeof (snap_id), snapid_compare_reverse);
932
933         return found ? (u32)(found - &snapc->snaps[0]) : BAD_SNAP_INDEX;
934 }
935
936 static const char *rbd_dev_v1_snap_name(struct rbd_device *rbd_dev,
937                                         u64 snap_id)
938 {
939         u32 which;
940
941         which = rbd_dev_snap_index(rbd_dev, snap_id);
942         if (which == BAD_SNAP_INDEX)
943                 return NULL;
944
945         return _rbd_dev_v1_snap_name(rbd_dev, which);
946 }
947
948 static const char *rbd_snap_name(struct rbd_device *rbd_dev, u64 snap_id)
949 {
950         if (snap_id == CEPH_NOSNAP)
951                 return RBD_SNAP_HEAD_NAME;
952
953         rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
954         if (rbd_dev->image_format == 1)
955                 return rbd_dev_v1_snap_name(rbd_dev, snap_id);
956
957         return rbd_dev_v2_snap_name(rbd_dev, snap_id);
958 }
959
960 static int rbd_snap_size(struct rbd_device *rbd_dev, u64 snap_id,
961                                 u64 *snap_size)
962 {
963         rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
964         if (snap_id == CEPH_NOSNAP) {
965                 *snap_size = rbd_dev->header.image_size;
966         } else if (rbd_dev->image_format == 1) {
967                 u32 which;
968
969                 which = rbd_dev_snap_index(rbd_dev, snap_id);
970                 if (which == BAD_SNAP_INDEX)
971                         return -ENOENT;
972
973                 *snap_size = rbd_dev->header.snap_sizes[which];
974         } else {
975                 u64 size = 0;
976                 int ret;
977
978                 ret = _rbd_dev_v2_snap_size(rbd_dev, snap_id, NULL, &size);
979                 if (ret)
980                         return ret;
981
982                 *snap_size = size;
983         }
984         return 0;
985 }
986
987 static int rbd_snap_features(struct rbd_device *rbd_dev, u64 snap_id,
988                         u64 *snap_features)
989 {
990         rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
991         if (snap_id == CEPH_NOSNAP) {
992                 *snap_features = rbd_dev->header.features;
993         } else if (rbd_dev->image_format == 1) {
994                 *snap_features = 0;     /* No features for format 1 */
995         } else {
996                 u64 features = 0;
997                 int ret;
998
999                 ret = _rbd_dev_v2_snap_features(rbd_dev, snap_id, &features);
1000                 if (ret)
1001                         return ret;
1002
1003                 *snap_features = features;
1004         }
1005         return 0;
1006 }
1007
1008 static int rbd_dev_mapping_set(struct rbd_device *rbd_dev)
1009 {
1010         u64 snap_id = rbd_dev->spec->snap_id;
1011         u64 size = 0;
1012         u64 features = 0;
1013         int ret;
1014
1015         ret = rbd_snap_size(rbd_dev, snap_id, &size);
1016         if (ret)
1017                 return ret;
1018         ret = rbd_snap_features(rbd_dev, snap_id, &features);
1019         if (ret)
1020                 return ret;
1021
1022         rbd_dev->mapping.size = size;
1023         rbd_dev->mapping.features = features;
1024
1025         return 0;
1026 }
1027
1028 static void rbd_dev_mapping_clear(struct rbd_device *rbd_dev)
1029 {
1030         rbd_dev->mapping.size = 0;
1031         rbd_dev->mapping.features = 0;
1032 }
1033
1034 static const char *rbd_segment_name(struct rbd_device *rbd_dev, u64 offset)
1035 {
1036         char *name;
1037         u64 segment;
1038         int ret;
1039         char *name_format;
1040
1041         name = kmem_cache_alloc(rbd_segment_name_cache, GFP_NOIO);
1042         if (!name)
1043                 return NULL;
1044         segment = offset >> rbd_dev->header.obj_order;
1045         name_format = "%s.%012llx";
1046         if (rbd_dev->image_format == 2)
1047                 name_format = "%s.%016llx";
1048         ret = snprintf(name, MAX_OBJ_NAME_SIZE + 1, name_format,
1049                         rbd_dev->header.object_prefix, segment);
1050         if (ret < 0 || ret > MAX_OBJ_NAME_SIZE) {
1051                 pr_err("error formatting segment name for #%llu (%d)\n",
1052                         segment, ret);
1053                 kfree(name);
1054                 name = NULL;
1055         }
1056
1057         return name;
1058 }
1059
1060 static void rbd_segment_name_free(const char *name)
1061 {
1062         /* The explicit cast here is needed to drop the const qualifier */
1063
1064         kmem_cache_free(rbd_segment_name_cache, (void *)name);
1065 }
1066
1067 static u64 rbd_segment_offset(struct rbd_device *rbd_dev, u64 offset)
1068 {
1069         u64 segment_size = (u64) 1 << rbd_dev->header.obj_order;
1070
1071         return offset & (segment_size - 1);
1072 }
1073
1074 static u64 rbd_segment_length(struct rbd_device *rbd_dev,
1075                                 u64 offset, u64 length)
1076 {
1077         u64 segment_size = (u64) 1 << rbd_dev->header.obj_order;
1078
1079         offset &= segment_size - 1;
1080
1081         rbd_assert(length <= U64_MAX - offset);
1082         if (offset + length > segment_size)
1083                 length = segment_size - offset;
1084
1085         return length;
1086 }
1087
1088 /*
1089  * returns the size of an object in the image
1090  */
1091 static u64 rbd_obj_bytes(struct rbd_image_header *header)
1092 {
1093         return 1 << header->obj_order;
1094 }
1095
1096 /*
1097  * bio helpers
1098  */
1099
1100 static void bio_chain_put(struct bio *chain)
1101 {
1102         struct bio *tmp;
1103
1104         while (chain) {
1105                 tmp = chain;
1106                 chain = chain->bi_next;
1107                 bio_put(tmp);
1108         }
1109 }
1110
1111 /*
1112  * zeros a bio chain, starting at specific offset
1113  */
1114 static void zero_bio_chain(struct bio *chain, int start_ofs)
1115 {
1116         struct bio_vec *bv;
1117         unsigned long flags;
1118         void *buf;
1119         int i;
1120         int pos = 0;
1121
1122         while (chain) {
1123                 bio_for_each_segment(bv, chain, i) {
1124                         if (pos + bv->bv_len > start_ofs) {
1125                                 int remainder = max(start_ofs - pos, 0);
1126                                 buf = bvec_kmap_irq(bv, &flags);
1127                                 memset(buf + remainder, 0,
1128                                        bv->bv_len - remainder);
1129                                 bvec_kunmap_irq(buf, &flags);
1130                         }
1131                         pos += bv->bv_len;
1132                 }
1133
1134                 chain = chain->bi_next;
1135         }
1136 }
1137
1138 /*
1139  * similar to zero_bio_chain(), zeros data defined by a page array,
1140  * starting at the given byte offset from the start of the array and
1141  * continuing up to the given end offset.  The pages array is
1142  * assumed to be big enough to hold all bytes up to the end.
1143  */
1144 static void zero_pages(struct page **pages, u64 offset, u64 end)
1145 {
1146         struct page **page = &pages[offset >> PAGE_SHIFT];
1147
1148         rbd_assert(end > offset);
1149         rbd_assert(end - offset <= (u64)SIZE_MAX);
1150         while (offset < end) {
1151                 size_t page_offset;
1152                 size_t length;
1153                 unsigned long flags;
1154                 void *kaddr;
1155
1156                 page_offset = (size_t)(offset & ~PAGE_MASK);
1157                 length = min(PAGE_SIZE - page_offset, (size_t)(end - offset));
1158                 local_irq_save(flags);
1159                 kaddr = kmap_atomic(*page);
1160                 memset(kaddr + page_offset, 0, length);
1161                 kunmap_atomic(kaddr);
1162                 local_irq_restore(flags);
1163
1164                 offset += length;
1165                 page++;
1166         }
1167 }
1168
1169 /*
1170  * Clone a portion of a bio, starting at the given byte offset
1171  * and continuing for the number of bytes indicated.
1172  */
1173 static struct bio *bio_clone_range(struct bio *bio_src,
1174                                         unsigned int offset,
1175                                         unsigned int len,
1176                                         gfp_t gfpmask)
1177 {
1178         struct bio_vec *bv;
1179         unsigned int resid;
1180         unsigned short idx;
1181         unsigned int voff;
1182         unsigned short end_idx;
1183         unsigned short vcnt;
1184         struct bio *bio;
1185
1186         /* Handle the easy case for the caller */
1187
1188         if (!offset && len == bio_src->bi_size)
1189                 return bio_clone(bio_src, gfpmask);
1190
1191         if (WARN_ON_ONCE(!len))
1192                 return NULL;
1193         if (WARN_ON_ONCE(len > bio_src->bi_size))
1194                 return NULL;
1195         if (WARN_ON_ONCE(offset > bio_src->bi_size - len))
1196                 return NULL;
1197
1198         /* Find first affected segment... */
1199
1200         resid = offset;
1201         bio_for_each_segment(bv, bio_src, idx) {
1202                 if (resid < bv->bv_len)
1203                         break;
1204                 resid -= bv->bv_len;
1205         }
1206         voff = resid;
1207
1208         /* ...and the last affected segment */
1209
1210         resid += len;
1211         __bio_for_each_segment(bv, bio_src, end_idx, idx) {
1212                 if (resid <= bv->bv_len)
1213                         break;
1214                 resid -= bv->bv_len;
1215         }
1216         vcnt = end_idx - idx + 1;
1217
1218         /* Build the clone */
1219
1220         bio = bio_alloc(gfpmask, (unsigned int) vcnt);
1221         if (!bio)
1222                 return NULL;    /* ENOMEM */
1223
1224         bio->bi_bdev = bio_src->bi_bdev;
1225         bio->bi_sector = bio_src->bi_sector + (offset >> SECTOR_SHIFT);
1226         bio->bi_rw = bio_src->bi_rw;
1227         bio->bi_flags |= 1 << BIO_CLONED;
1228
1229         /*
1230          * Copy over our part of the bio_vec, then update the first
1231          * and last (or only) entries.
1232          */
1233         memcpy(&bio->bi_io_vec[0], &bio_src->bi_io_vec[idx],
1234                         vcnt * sizeof (struct bio_vec));
1235         bio->bi_io_vec[0].bv_offset += voff;
1236         if (vcnt > 1) {
1237                 bio->bi_io_vec[0].bv_len -= voff;
1238                 bio->bi_io_vec[vcnt - 1].bv_len = resid;
1239         } else {
1240                 bio->bi_io_vec[0].bv_len = len;
1241         }
1242
1243         bio->bi_vcnt = vcnt;
1244         bio->bi_size = len;
1245         bio->bi_idx = 0;
1246
1247         return bio;
1248 }
1249
1250 /*
1251  * Clone a portion of a bio chain, starting at the given byte offset
1252  * into the first bio in the source chain and continuing for the
1253  * number of bytes indicated.  The result is another bio chain of
1254  * exactly the given length, or a null pointer on error.
1255  *
1256  * The bio_src and offset parameters are both in-out.  On entry they
1257  * refer to the first source bio and the offset into that bio where
1258  * the start of data to be cloned is located.
1259  *
1260  * On return, bio_src is updated to refer to the bio in the source
1261  * chain that contains first un-cloned byte, and *offset will
1262  * contain the offset of that byte within that bio.
1263  */
1264 static struct bio *bio_chain_clone_range(struct bio **bio_src,
1265                                         unsigned int *offset,
1266                                         unsigned int len,
1267                                         gfp_t gfpmask)
1268 {
1269         struct bio *bi = *bio_src;
1270         unsigned int off = *offset;
1271         struct bio *chain = NULL;
1272         struct bio **end;
1273
1274         /* Build up a chain of clone bios up to the limit */
1275
1276         if (!bi || off >= bi->bi_size || !len)
1277                 return NULL;            /* Nothing to clone */
1278
1279         end = &chain;
1280         while (len) {
1281                 unsigned int bi_size;
1282                 struct bio *bio;
1283
1284                 if (!bi) {
1285                         rbd_warn(NULL, "bio_chain exhausted with %u left", len);
1286                         goto out_err;   /* EINVAL; ran out of bio's */
1287                 }
1288                 bi_size = min_t(unsigned int, bi->bi_size - off, len);
1289                 bio = bio_clone_range(bi, off, bi_size, gfpmask);
1290                 if (!bio)
1291                         goto out_err;   /* ENOMEM */
1292
1293                 *end = bio;
1294                 end = &bio->bi_next;
1295
1296                 off += bi_size;
1297                 if (off == bi->bi_size) {
1298                         bi = bi->bi_next;
1299                         off = 0;
1300                 }
1301                 len -= bi_size;
1302         }
1303         *bio_src = bi;
1304         *offset = off;
1305
1306         return chain;
1307 out_err:
1308         bio_chain_put(chain);
1309
1310         return NULL;
1311 }
1312
1313 /*
1314  * The default/initial value for all object request flags is 0.  For
1315  * each flag, once its value is set to 1 it is never reset to 0
1316  * again.
1317  */
1318 static void obj_request_img_data_set(struct rbd_obj_request *obj_request)
1319 {
1320         if (test_and_set_bit(OBJ_REQ_IMG_DATA, &obj_request->flags)) {
1321                 struct rbd_device *rbd_dev;
1322
1323                 rbd_dev = obj_request->img_request->rbd_dev;
1324                 rbd_warn(rbd_dev, "obj_request %p already marked img_data\n",
1325                         obj_request);
1326         }
1327 }
1328
1329 static bool obj_request_img_data_test(struct rbd_obj_request *obj_request)
1330 {
1331         smp_mb();
1332         return test_bit(OBJ_REQ_IMG_DATA, &obj_request->flags) != 0;
1333 }
1334
1335 static void obj_request_done_set(struct rbd_obj_request *obj_request)
1336 {
1337         if (test_and_set_bit(OBJ_REQ_DONE, &obj_request->flags)) {
1338                 struct rbd_device *rbd_dev = NULL;
1339
1340                 if (obj_request_img_data_test(obj_request))
1341                         rbd_dev = obj_request->img_request->rbd_dev;
1342                 rbd_warn(rbd_dev, "obj_request %p already marked done\n",
1343                         obj_request);
1344         }
1345 }
1346
1347 static bool obj_request_done_test(struct rbd_obj_request *obj_request)
1348 {
1349         smp_mb();
1350         return test_bit(OBJ_REQ_DONE, &obj_request->flags) != 0;
1351 }
1352
1353 /*
1354  * This sets the KNOWN flag after (possibly) setting the EXISTS
1355  * flag.  The latter is set based on the "exists" value provided.
1356  *
1357  * Note that for our purposes once an object exists it never goes
1358  * away again.  It's possible that the response from two existence
1359  * checks are separated by the creation of the target object, and
1360  * the first ("doesn't exist") response arrives *after* the second
1361  * ("does exist").  In that case we ignore the second one.
1362  */
1363 static void obj_request_existence_set(struct rbd_obj_request *obj_request,
1364                                 bool exists)
1365 {
1366         if (exists)
1367                 set_bit(OBJ_REQ_EXISTS, &obj_request->flags);
1368         set_bit(OBJ_REQ_KNOWN, &obj_request->flags);
1369         smp_mb();
1370 }
1371
1372 static bool obj_request_known_test(struct rbd_obj_request *obj_request)
1373 {
1374         smp_mb();
1375         return test_bit(OBJ_REQ_KNOWN, &obj_request->flags) != 0;
1376 }
1377
1378 static bool obj_request_exists_test(struct rbd_obj_request *obj_request)
1379 {
1380         smp_mb();
1381         return test_bit(OBJ_REQ_EXISTS, &obj_request->flags) != 0;
1382 }
1383
1384 static void rbd_obj_request_get(struct rbd_obj_request *obj_request)
1385 {
1386         dout("%s: obj %p (was %d)\n", __func__, obj_request,
1387                 atomic_read(&obj_request->kref.refcount));
1388         kref_get(&obj_request->kref);
1389 }
1390
1391 static void rbd_obj_request_destroy(struct kref *kref);
1392 static void rbd_obj_request_put(struct rbd_obj_request *obj_request)
1393 {
1394         rbd_assert(obj_request != NULL);
1395         dout("%s: obj %p (was %d)\n", __func__, obj_request,
1396                 atomic_read(&obj_request->kref.refcount));
1397         kref_put(&obj_request->kref, rbd_obj_request_destroy);
1398 }
1399
1400 static bool img_request_child_test(struct rbd_img_request *img_request);
1401 static void rbd_parent_request_destroy(struct kref *kref);
1402 static void rbd_img_request_destroy(struct kref *kref);
1403 static void rbd_img_request_put(struct rbd_img_request *img_request)
1404 {
1405         rbd_assert(img_request != NULL);
1406         dout("%s: img %p (was %d)\n", __func__, img_request,
1407                 atomic_read(&img_request->kref.refcount));
1408         if (img_request_child_test(img_request))
1409                 kref_put(&img_request->kref, rbd_parent_request_destroy);
1410         else
1411                 kref_put(&img_request->kref, rbd_img_request_destroy);
1412 }
1413
1414 static inline void rbd_img_obj_request_add(struct rbd_img_request *img_request,
1415                                         struct rbd_obj_request *obj_request)
1416 {
1417         rbd_assert(obj_request->img_request == NULL);
1418
1419         /* Image request now owns object's original reference */
1420         obj_request->img_request = img_request;
1421         obj_request->which = img_request->obj_request_count;
1422         rbd_assert(!obj_request_img_data_test(obj_request));
1423         obj_request_img_data_set(obj_request);
1424         rbd_assert(obj_request->which != BAD_WHICH);
1425         img_request->obj_request_count++;
1426         list_add_tail(&obj_request->links, &img_request->obj_requests);
1427         dout("%s: img %p obj %p w=%u\n", __func__, img_request, obj_request,
1428                 obj_request->which);
1429 }
1430
1431 static inline void rbd_img_obj_request_del(struct rbd_img_request *img_request,
1432                                         struct rbd_obj_request *obj_request)
1433 {
1434         rbd_assert(obj_request->which != BAD_WHICH);
1435
1436         dout("%s: img %p obj %p w=%u\n", __func__, img_request, obj_request,
1437                 obj_request->which);
1438         list_del(&obj_request->links);
1439         rbd_assert(img_request->obj_request_count > 0);
1440         img_request->obj_request_count--;
1441         rbd_assert(obj_request->which == img_request->obj_request_count);
1442         obj_request->which = BAD_WHICH;
1443         rbd_assert(obj_request_img_data_test(obj_request));
1444         rbd_assert(obj_request->img_request == img_request);
1445         obj_request->img_request = NULL;
1446         obj_request->callback = NULL;
1447         rbd_obj_request_put(obj_request);
1448 }
1449
1450 static bool obj_request_type_valid(enum obj_request_type type)
1451 {
1452         switch (type) {
1453         case OBJ_REQUEST_NODATA:
1454         case OBJ_REQUEST_BIO:
1455         case OBJ_REQUEST_PAGES:
1456                 return true;
1457         default:
1458                 return false;
1459         }
1460 }
1461
1462 static int rbd_obj_request_submit(struct ceph_osd_client *osdc,
1463                                 struct rbd_obj_request *obj_request)
1464 {
1465         dout("%s: osdc %p obj %p\n", __func__, osdc, obj_request);
1466
1467         return ceph_osdc_start_request(osdc, obj_request->osd_req, false);
1468 }
1469
1470 static void rbd_img_request_complete(struct rbd_img_request *img_request)
1471 {
1472
1473         dout("%s: img %p\n", __func__, img_request);
1474
1475         /*
1476          * If no error occurred, compute the aggregate transfer
1477          * count for the image request.  We could instead use
1478          * atomic64_cmpxchg() to update it as each object request
1479          * completes; not clear which way is better off hand.
1480          */
1481         if (!img_request->result) {
1482                 struct rbd_obj_request *obj_request;
1483                 u64 xferred = 0;
1484
1485                 for_each_obj_request(img_request, obj_request)
1486                         xferred += obj_request->xferred;
1487                 img_request->xferred = xferred;
1488         }
1489
1490         if (img_request->callback)
1491                 img_request->callback(img_request);
1492         else
1493                 rbd_img_request_put(img_request);
1494 }
1495
1496 /* Caller is responsible for rbd_obj_request_destroy(obj_request) */
1497
1498 static int rbd_obj_request_wait(struct rbd_obj_request *obj_request)
1499 {
1500         dout("%s: obj %p\n", __func__, obj_request);
1501
1502         return wait_for_completion_interruptible(&obj_request->completion);
1503 }
1504
1505 /*
1506  * The default/initial value for all image request flags is 0.  Each
1507  * is conditionally set to 1 at image request initialization time
1508  * and currently never change thereafter.
1509  */
1510 static void img_request_write_set(struct rbd_img_request *img_request)
1511 {
1512         set_bit(IMG_REQ_WRITE, &img_request->flags);
1513         smp_mb();
1514 }
1515
1516 static bool img_request_write_test(struct rbd_img_request *img_request)
1517 {
1518         smp_mb();
1519         return test_bit(IMG_REQ_WRITE, &img_request->flags) != 0;
1520 }
1521
1522 static void img_request_child_set(struct rbd_img_request *img_request)
1523 {
1524         set_bit(IMG_REQ_CHILD, &img_request->flags);
1525         smp_mb();
1526 }
1527
1528 static void img_request_child_clear(struct rbd_img_request *img_request)
1529 {
1530         clear_bit(IMG_REQ_CHILD, &img_request->flags);
1531         smp_mb();
1532 }
1533
1534 static bool img_request_child_test(struct rbd_img_request *img_request)
1535 {
1536         smp_mb();
1537         return test_bit(IMG_REQ_CHILD, &img_request->flags) != 0;
1538 }
1539
1540 static void img_request_layered_set(struct rbd_img_request *img_request)
1541 {
1542         set_bit(IMG_REQ_LAYERED, &img_request->flags);
1543         smp_mb();
1544 }
1545
1546 static void img_request_layered_clear(struct rbd_img_request *img_request)
1547 {
1548         clear_bit(IMG_REQ_LAYERED, &img_request->flags);
1549         smp_mb();
1550 }
1551
1552 static bool img_request_layered_test(struct rbd_img_request *img_request)
1553 {
1554         smp_mb();
1555         return test_bit(IMG_REQ_LAYERED, &img_request->flags) != 0;
1556 }
1557
1558 static void
1559 rbd_img_obj_request_read_callback(struct rbd_obj_request *obj_request)
1560 {
1561         u64 xferred = obj_request->xferred;
1562         u64 length = obj_request->length;
1563
1564         dout("%s: obj %p img %p result %d %llu/%llu\n", __func__,
1565                 obj_request, obj_request->img_request, obj_request->result,
1566                 xferred, length);
1567         /*
1568          * ENOENT means a hole in the image.  We zero-fill the
1569          * entire length of the request.  A short read also implies
1570          * zero-fill to the end of the request.  Either way we
1571          * update the xferred count to indicate the whole request
1572          * was satisfied.
1573          */
1574         rbd_assert(obj_request->type != OBJ_REQUEST_NODATA);
1575         if (obj_request->result == -ENOENT) {
1576                 if (obj_request->type == OBJ_REQUEST_BIO)
1577                         zero_bio_chain(obj_request->bio_list, 0);
1578                 else
1579                         zero_pages(obj_request->pages, 0, length);
1580                 obj_request->result = 0;
1581                 obj_request->xferred = length;
1582         } else if (xferred < length && !obj_request->result) {
1583                 if (obj_request->type == OBJ_REQUEST_BIO)
1584                         zero_bio_chain(obj_request->bio_list, xferred);
1585                 else
1586                         zero_pages(obj_request->pages, xferred, length);
1587                 obj_request->xferred = length;
1588         }
1589         obj_request_done_set(obj_request);
1590 }
1591
1592 static void rbd_obj_request_complete(struct rbd_obj_request *obj_request)
1593 {
1594         dout("%s: obj %p cb %p\n", __func__, obj_request,
1595                 obj_request->callback);
1596         if (obj_request->callback)
1597                 obj_request->callback(obj_request);
1598         else
1599                 complete_all(&obj_request->completion);
1600 }
1601
1602 static void rbd_osd_trivial_callback(struct rbd_obj_request *obj_request)
1603 {
1604         dout("%s: obj %p\n", __func__, obj_request);
1605         obj_request_done_set(obj_request);
1606 }
1607
1608 static void rbd_osd_read_callback(struct rbd_obj_request *obj_request)
1609 {
1610         struct rbd_img_request *img_request = NULL;
1611         struct rbd_device *rbd_dev = NULL;
1612         bool layered = false;
1613
1614         if (obj_request_img_data_test(obj_request)) {
1615                 img_request = obj_request->img_request;
1616                 layered = img_request && img_request_layered_test(img_request);
1617                 rbd_dev = img_request->rbd_dev;
1618         }
1619
1620         dout("%s: obj %p img %p result %d %llu/%llu\n", __func__,
1621                 obj_request, img_request, obj_request->result,
1622                 obj_request->xferred, obj_request->length);
1623         if (layered && obj_request->result == -ENOENT &&
1624                         obj_request->img_offset < rbd_dev->parent_overlap)
1625                 rbd_img_parent_read(obj_request);
1626         else if (img_request)
1627                 rbd_img_obj_request_read_callback(obj_request);
1628         else
1629                 obj_request_done_set(obj_request);
1630 }
1631
1632 static void rbd_osd_write_callback(struct rbd_obj_request *obj_request)
1633 {
1634         dout("%s: obj %p result %d %llu\n", __func__, obj_request,
1635                 obj_request->result, obj_request->length);
1636         /*
1637          * There is no such thing as a successful short write.  Set
1638          * it to our originally-requested length.
1639          */
1640         obj_request->xferred = obj_request->length;
1641         obj_request_done_set(obj_request);
1642 }
1643
1644 /*
1645  * For a simple stat call there's nothing to do.  We'll do more if
1646  * this is part of a write sequence for a layered image.
1647  */
1648 static void rbd_osd_stat_callback(struct rbd_obj_request *obj_request)
1649 {
1650         dout("%s: obj %p\n", __func__, obj_request);
1651         obj_request_done_set(obj_request);
1652 }
1653
1654 static void rbd_osd_req_callback(struct ceph_osd_request *osd_req,
1655                                 struct ceph_msg *msg)
1656 {
1657         struct rbd_obj_request *obj_request = osd_req->r_priv;
1658         u16 opcode;
1659
1660         dout("%s: osd_req %p msg %p\n", __func__, osd_req, msg);
1661         rbd_assert(osd_req == obj_request->osd_req);
1662         if (obj_request_img_data_test(obj_request)) {
1663                 rbd_assert(obj_request->img_request);
1664                 rbd_assert(obj_request->which != BAD_WHICH);
1665         } else {
1666                 rbd_assert(obj_request->which == BAD_WHICH);
1667         }
1668
1669         if (osd_req->r_result < 0)
1670                 obj_request->result = osd_req->r_result;
1671
1672         BUG_ON(osd_req->r_num_ops > 2);
1673
1674         /*
1675          * We support a 64-bit length, but ultimately it has to be
1676          * passed to blk_end_request(), which takes an unsigned int.
1677          */
1678         obj_request->xferred = osd_req->r_reply_op_len[0];
1679         rbd_assert(obj_request->xferred < (u64)UINT_MAX);
1680         opcode = osd_req->r_ops[0].op;
1681         switch (opcode) {
1682         case CEPH_OSD_OP_READ:
1683                 rbd_osd_read_callback(obj_request);
1684                 break;
1685         case CEPH_OSD_OP_WRITE:
1686                 rbd_osd_write_callback(obj_request);
1687                 break;
1688         case CEPH_OSD_OP_STAT:
1689                 rbd_osd_stat_callback(obj_request);
1690                 break;
1691         case CEPH_OSD_OP_CALL:
1692         case CEPH_OSD_OP_NOTIFY_ACK:
1693         case CEPH_OSD_OP_WATCH:
1694                 rbd_osd_trivial_callback(obj_request);
1695                 break;
1696         default:
1697                 rbd_warn(NULL, "%s: unsupported op %hu\n",
1698                         obj_request->object_name, (unsigned short) opcode);
1699                 break;
1700         }
1701
1702         if (obj_request_done_test(obj_request))
1703                 rbd_obj_request_complete(obj_request);
1704 }
1705
1706 static void rbd_osd_req_format_read(struct rbd_obj_request *obj_request)
1707 {
1708         struct rbd_img_request *img_request = obj_request->img_request;
1709         struct ceph_osd_request *osd_req = obj_request->osd_req;
1710         u64 snap_id;
1711
1712         rbd_assert(osd_req != NULL);
1713
1714         snap_id = img_request ? img_request->snap_id : CEPH_NOSNAP;
1715         ceph_osdc_build_request(osd_req, obj_request->offset,
1716                         NULL, snap_id, NULL);
1717 }
1718
1719 static void rbd_osd_req_format_write(struct rbd_obj_request *obj_request)
1720 {
1721         struct rbd_img_request *img_request = obj_request->img_request;
1722         struct ceph_osd_request *osd_req = obj_request->osd_req;
1723         struct ceph_snap_context *snapc;
1724         struct timespec mtime = CURRENT_TIME;
1725
1726         rbd_assert(osd_req != NULL);
1727
1728         snapc = img_request ? img_request->snapc : NULL;
1729         ceph_osdc_build_request(osd_req, obj_request->offset,
1730                         snapc, CEPH_NOSNAP, &mtime);
1731 }
1732
1733 static struct ceph_osd_request *rbd_osd_req_create(
1734                                         struct rbd_device *rbd_dev,
1735                                         bool write_request,
1736                                         struct rbd_obj_request *obj_request)
1737 {
1738         struct ceph_snap_context *snapc = NULL;
1739         struct ceph_osd_client *osdc;
1740         struct ceph_osd_request *osd_req;
1741
1742         if (obj_request_img_data_test(obj_request)) {
1743                 struct rbd_img_request *img_request = obj_request->img_request;
1744
1745                 rbd_assert(write_request ==
1746                                 img_request_write_test(img_request));
1747                 if (write_request)
1748                         snapc = img_request->snapc;
1749         }
1750
1751         /* Allocate and initialize the request, for the single op */
1752
1753         osdc = &rbd_dev->rbd_client->client->osdc;
1754         osd_req = ceph_osdc_alloc_request(osdc, snapc, 1, false, GFP_ATOMIC);
1755         if (!osd_req)
1756                 return NULL;    /* ENOMEM */
1757
1758         if (write_request)
1759                 osd_req->r_flags = CEPH_OSD_FLAG_WRITE | CEPH_OSD_FLAG_ONDISK;
1760         else
1761                 osd_req->r_flags = CEPH_OSD_FLAG_READ;
1762
1763         osd_req->r_callback = rbd_osd_req_callback;
1764         osd_req->r_priv = obj_request;
1765
1766         osd_req->r_oid_len = strlen(obj_request->object_name);
1767         rbd_assert(osd_req->r_oid_len < sizeof (osd_req->r_oid));
1768         memcpy(osd_req->r_oid, obj_request->object_name, osd_req->r_oid_len);
1769
1770         osd_req->r_file_layout = rbd_dev->layout;       /* struct */
1771
1772         return osd_req;
1773 }
1774
1775 /*
1776  * Create a copyup osd request based on the information in the
1777  * object request supplied.  A copyup request has two osd ops,
1778  * a copyup method call, and a "normal" write request.
1779  */
1780 static struct ceph_osd_request *
1781 rbd_osd_req_create_copyup(struct rbd_obj_request *obj_request)
1782 {
1783         struct rbd_img_request *img_request;
1784         struct ceph_snap_context *snapc;
1785         struct rbd_device *rbd_dev;
1786         struct ceph_osd_client *osdc;
1787         struct ceph_osd_request *osd_req;
1788
1789         rbd_assert(obj_request_img_data_test(obj_request));
1790         img_request = obj_request->img_request;
1791         rbd_assert(img_request);
1792         rbd_assert(img_request_write_test(img_request));
1793
1794         /* Allocate and initialize the request, for the two ops */
1795
1796         snapc = img_request->snapc;
1797         rbd_dev = img_request->rbd_dev;
1798         osdc = &rbd_dev->rbd_client->client->osdc;
1799         osd_req = ceph_osdc_alloc_request(osdc, snapc, 2, false, GFP_ATOMIC);
1800         if (!osd_req)
1801                 return NULL;    /* ENOMEM */
1802
1803         osd_req->r_flags = CEPH_OSD_FLAG_WRITE | CEPH_OSD_FLAG_ONDISK;
1804         osd_req->r_callback = rbd_osd_req_callback;
1805         osd_req->r_priv = obj_request;
1806
1807         osd_req->r_oid_len = strlen(obj_request->object_name);
1808         rbd_assert(osd_req->r_oid_len < sizeof (osd_req->r_oid));
1809         memcpy(osd_req->r_oid, obj_request->object_name, osd_req->r_oid_len);
1810
1811         osd_req->r_file_layout = rbd_dev->layout;       /* struct */
1812
1813         return osd_req;
1814 }
1815
1816
1817 static void rbd_osd_req_destroy(struct ceph_osd_request *osd_req)
1818 {
1819         ceph_osdc_put_request(osd_req);
1820 }
1821
1822 /* object_name is assumed to be a non-null pointer and NUL-terminated */
1823
1824 static struct rbd_obj_request *rbd_obj_request_create(const char *object_name,
1825                                                 u64 offset, u64 length,
1826                                                 enum obj_request_type type)
1827 {
1828         struct rbd_obj_request *obj_request;
1829         size_t size;
1830         char *name;
1831
1832         rbd_assert(obj_request_type_valid(type));
1833
1834         size = strlen(object_name) + 1;
1835         name = kmalloc(size, GFP_KERNEL);
1836         if (!name)
1837                 return NULL;
1838
1839         obj_request = kmem_cache_zalloc(rbd_obj_request_cache, GFP_KERNEL);
1840         if (!obj_request) {
1841                 kfree(name);
1842                 return NULL;
1843         }
1844
1845         obj_request->object_name = memcpy(name, object_name, size);
1846         obj_request->offset = offset;
1847         obj_request->length = length;
1848         obj_request->flags = 0;
1849         obj_request->which = BAD_WHICH;
1850         obj_request->type = type;
1851         INIT_LIST_HEAD(&obj_request->links);
1852         init_completion(&obj_request->completion);
1853         kref_init(&obj_request->kref);
1854
1855         dout("%s: \"%s\" %llu/%llu %d -> obj %p\n", __func__, object_name,
1856                 offset, length, (int)type, obj_request);
1857
1858         return obj_request;
1859 }
1860
1861 static void rbd_obj_request_destroy(struct kref *kref)
1862 {
1863         struct rbd_obj_request *obj_request;
1864
1865         obj_request = container_of(kref, struct rbd_obj_request, kref);
1866
1867         dout("%s: obj %p\n", __func__, obj_request);
1868
1869         rbd_assert(obj_request->img_request == NULL);
1870         rbd_assert(obj_request->which == BAD_WHICH);
1871
1872         if (obj_request->osd_req)
1873                 rbd_osd_req_destroy(obj_request->osd_req);
1874
1875         rbd_assert(obj_request_type_valid(obj_request->type));
1876         switch (obj_request->type) {
1877         case OBJ_REQUEST_NODATA:
1878                 break;          /* Nothing to do */
1879         case OBJ_REQUEST_BIO:
1880                 if (obj_request->bio_list)
1881                         bio_chain_put(obj_request->bio_list);
1882                 break;
1883         case OBJ_REQUEST_PAGES:
1884                 if (obj_request->pages)
1885                         ceph_release_page_vector(obj_request->pages,
1886                                                 obj_request->page_count);
1887                 break;
1888         }
1889
1890         kfree(obj_request->object_name);
1891         obj_request->object_name = NULL;
1892         kmem_cache_free(rbd_obj_request_cache, obj_request);
1893 }
1894
1895 /* It's OK to call this for a device with no parent */
1896
1897 static void rbd_spec_put(struct rbd_spec *spec);
1898 static void rbd_dev_unparent(struct rbd_device *rbd_dev)
1899 {
1900         rbd_dev_remove_parent(rbd_dev);
1901         rbd_spec_put(rbd_dev->parent_spec);
1902         rbd_dev->parent_spec = NULL;
1903         rbd_dev->parent_overlap = 0;
1904 }
1905
1906 /*
1907  * Parent image reference counting is used to determine when an
1908  * image's parent fields can be safely torn down--after there are no
1909  * more in-flight requests to the parent image.  When the last
1910  * reference is dropped, cleaning them up is safe.
1911  */
1912 static void rbd_dev_parent_put(struct rbd_device *rbd_dev)
1913 {
1914         int counter;
1915
1916         if (!rbd_dev->parent_spec)
1917                 return;
1918
1919         counter = atomic_dec_return_safe(&rbd_dev->parent_ref);
1920         if (counter > 0)
1921                 return;
1922
1923         /* Last reference; clean up parent data structures */
1924
1925         if (!counter)
1926                 rbd_dev_unparent(rbd_dev);
1927         else
1928                 rbd_warn(rbd_dev, "parent reference underflow\n");
1929 }
1930
1931 /*
1932  * If an image has a non-zero parent overlap, get a reference to its
1933  * parent.
1934  *
1935  * We must get the reference before checking for the overlap to
1936  * coordinate properly with zeroing the parent overlap in
1937  * rbd_dev_v2_parent_info() when an image gets flattened.  We
1938  * drop it again if there is no overlap.
1939  *
1940  * Returns true if the rbd device has a parent with a non-zero
1941  * overlap and a reference for it was successfully taken, or
1942  * false otherwise.
1943  */
1944 static bool rbd_dev_parent_get(struct rbd_device *rbd_dev)
1945 {
1946         int counter;
1947
1948         if (!rbd_dev->parent_spec)
1949                 return false;
1950
1951         counter = atomic_inc_return_safe(&rbd_dev->parent_ref);
1952         if (counter > 0 && rbd_dev->parent_overlap)
1953                 return true;
1954
1955         /* Image was flattened, but parent is not yet torn down */
1956
1957         if (counter < 0)
1958                 rbd_warn(rbd_dev, "parent reference overflow\n");
1959
1960         return false;
1961 }
1962
1963 /*
1964  * Caller is responsible for filling in the list of object requests
1965  * that comprises the image request, and the Linux request pointer
1966  * (if there is one).
1967  */
1968 static struct rbd_img_request *rbd_img_request_create(
1969                                         struct rbd_device *rbd_dev,
1970                                         u64 offset, u64 length,
1971                                         bool write_request)
1972 {
1973         struct rbd_img_request *img_request;
1974
1975         img_request = kmem_cache_alloc(rbd_img_request_cache, GFP_ATOMIC);
1976         if (!img_request)
1977                 return NULL;
1978
1979         if (write_request) {
1980                 down_read(&rbd_dev->header_rwsem);
1981                 ceph_get_snap_context(rbd_dev->header.snapc);
1982                 up_read(&rbd_dev->header_rwsem);
1983         }
1984
1985         img_request->rq = NULL;
1986         img_request->rbd_dev = rbd_dev;
1987         img_request->offset = offset;
1988         img_request->length = length;
1989         img_request->flags = 0;
1990         if (write_request) {
1991                 img_request_write_set(img_request);
1992                 img_request->snapc = rbd_dev->header.snapc;
1993         } else {
1994                 img_request->snap_id = rbd_dev->spec->snap_id;
1995         }
1996         if (rbd_dev_parent_get(rbd_dev))
1997                 img_request_layered_set(img_request);
1998         spin_lock_init(&img_request->completion_lock);
1999         img_request->next_completion = 0;
2000         img_request->callback = NULL;
2001         img_request->result = 0;
2002         img_request->obj_request_count = 0;
2003         INIT_LIST_HEAD(&img_request->obj_requests);
2004         kref_init(&img_request->kref);
2005
2006         dout("%s: rbd_dev %p %s %llu/%llu -> img %p\n", __func__, rbd_dev,
2007                 write_request ? "write" : "read", offset, length,
2008                 img_request);
2009
2010         return img_request;
2011 }
2012
2013 static void rbd_img_request_destroy(struct kref *kref)
2014 {
2015         struct rbd_img_request *img_request;
2016         struct rbd_obj_request *obj_request;
2017         struct rbd_obj_request *next_obj_request;
2018
2019         img_request = container_of(kref, struct rbd_img_request, kref);
2020
2021         dout("%s: img %p\n", __func__, img_request);
2022
2023         for_each_obj_request_safe(img_request, obj_request, next_obj_request)
2024                 rbd_img_obj_request_del(img_request, obj_request);
2025         rbd_assert(img_request->obj_request_count == 0);
2026
2027         if (img_request_layered_test(img_request)) {
2028                 img_request_layered_clear(img_request);
2029                 rbd_dev_parent_put(img_request->rbd_dev);
2030         }
2031
2032         if (img_request_write_test(img_request))
2033                 ceph_put_snap_context(img_request->snapc);
2034
2035         kmem_cache_free(rbd_img_request_cache, img_request);
2036 }
2037
2038 static struct rbd_img_request *rbd_parent_request_create(
2039                                         struct rbd_obj_request *obj_request,
2040                                         u64 img_offset, u64 length)
2041 {
2042         struct rbd_img_request *parent_request;
2043         struct rbd_device *rbd_dev;
2044
2045         rbd_assert(obj_request->img_request);
2046         rbd_dev = obj_request->img_request->rbd_dev;
2047
2048         parent_request = rbd_img_request_create(rbd_dev->parent,
2049                                                 img_offset, length, false);
2050         if (!parent_request)
2051                 return NULL;
2052
2053         img_request_child_set(parent_request);
2054         rbd_obj_request_get(obj_request);
2055         parent_request->obj_request = obj_request;
2056
2057         return parent_request;
2058 }
2059
2060 static void rbd_parent_request_destroy(struct kref *kref)
2061 {
2062         struct rbd_img_request *parent_request;
2063         struct rbd_obj_request *orig_request;
2064
2065         parent_request = container_of(kref, struct rbd_img_request, kref);
2066         orig_request = parent_request->obj_request;
2067
2068         parent_request->obj_request = NULL;
2069         rbd_obj_request_put(orig_request);
2070         img_request_child_clear(parent_request);
2071
2072         rbd_img_request_destroy(kref);
2073 }
2074
2075 static bool rbd_img_obj_end_request(struct rbd_obj_request *obj_request)
2076 {
2077         struct rbd_img_request *img_request;
2078         unsigned int xferred;
2079         int result;
2080         bool more;
2081
2082         rbd_assert(obj_request_img_data_test(obj_request));
2083         img_request = obj_request->img_request;
2084
2085         rbd_assert(obj_request->xferred <= (u64)UINT_MAX);
2086         xferred = (unsigned int)obj_request->xferred;
2087         result = obj_request->result;
2088         if (result) {
2089                 struct rbd_device *rbd_dev = img_request->rbd_dev;
2090
2091                 rbd_warn(rbd_dev, "%s %llx at %llx (%llx)\n",
2092                         img_request_write_test(img_request) ? "write" : "read",
2093                         obj_request->length, obj_request->img_offset,
2094                         obj_request->offset);
2095                 rbd_warn(rbd_dev, "  result %d xferred %x\n",
2096                         result, xferred);
2097                 if (!img_request->result)
2098                         img_request->result = result;
2099         }
2100
2101         /* Image object requests don't own their page array */
2102
2103         if (obj_request->type == OBJ_REQUEST_PAGES) {
2104                 obj_request->pages = NULL;
2105                 obj_request->page_count = 0;
2106         }
2107
2108         if (img_request_child_test(img_request)) {
2109                 rbd_assert(img_request->obj_request != NULL);
2110                 more = obj_request->which < img_request->obj_request_count - 1;
2111         } else {
2112                 rbd_assert(img_request->rq != NULL);
2113                 more = blk_end_request(img_request->rq, result, xferred);
2114         }
2115
2116         return more;
2117 }
2118
2119 static void rbd_img_obj_callback(struct rbd_obj_request *obj_request)
2120 {
2121         struct rbd_img_request *img_request;
2122         u32 which = obj_request->which;
2123         bool more = true;
2124
2125         rbd_assert(obj_request_img_data_test(obj_request));
2126         img_request = obj_request->img_request;
2127
2128         dout("%s: img %p obj %p\n", __func__, img_request, obj_request);
2129         rbd_assert(img_request != NULL);
2130         rbd_assert(img_request->obj_request_count > 0);
2131         rbd_assert(which != BAD_WHICH);
2132         rbd_assert(which < img_request->obj_request_count);
2133         rbd_assert(which >= img_request->next_completion);
2134
2135         spin_lock_irq(&img_request->completion_lock);
2136         if (which != img_request->next_completion)
2137                 goto out;
2138
2139         for_each_obj_request_from(img_request, obj_request) {
2140                 rbd_assert(more);
2141                 rbd_assert(which < img_request->obj_request_count);
2142
2143                 if (!obj_request_done_test(obj_request))
2144                         break;
2145                 more = rbd_img_obj_end_request(obj_request);
2146                 which++;
2147         }
2148
2149         rbd_assert(more ^ (which == img_request->obj_request_count));
2150         img_request->next_completion = which;
2151 out:
2152         spin_unlock_irq(&img_request->completion_lock);
2153
2154         if (!more)
2155                 rbd_img_request_complete(img_request);
2156 }
2157
2158 /*
2159  * Split up an image request into one or more object requests, each
2160  * to a different object.  The "type" parameter indicates whether
2161  * "data_desc" is the pointer to the head of a list of bio
2162  * structures, or the base of a page array.  In either case this
2163  * function assumes data_desc describes memory sufficient to hold
2164  * all data described by the image request.
2165  */
2166 static int rbd_img_request_fill(struct rbd_img_request *img_request,
2167                                         enum obj_request_type type,
2168                                         void *data_desc)
2169 {
2170         struct rbd_device *rbd_dev = img_request->rbd_dev;
2171         struct rbd_obj_request *obj_request = NULL;
2172         struct rbd_obj_request *next_obj_request;
2173         bool write_request = img_request_write_test(img_request);
2174         struct bio *bio_list;
2175         unsigned int bio_offset = 0;
2176         struct page **pages;
2177         u64 img_offset;
2178         u64 resid;
2179         u16 opcode;
2180
2181         dout("%s: img %p type %d data_desc %p\n", __func__, img_request,
2182                 (int)type, data_desc);
2183
2184         opcode = write_request ? CEPH_OSD_OP_WRITE : CEPH_OSD_OP_READ;
2185         img_offset = img_request->offset;
2186         resid = img_request->length;
2187         rbd_assert(resid > 0);
2188
2189         if (type == OBJ_REQUEST_BIO) {
2190                 bio_list = data_desc;
2191                 rbd_assert(img_offset == bio_list->bi_sector << SECTOR_SHIFT);
2192         } else {
2193                 rbd_assert(type == OBJ_REQUEST_PAGES);
2194                 pages = data_desc;
2195         }
2196
2197         while (resid) {
2198                 struct ceph_osd_request *osd_req;
2199                 const char *object_name;
2200                 u64 offset;
2201                 u64 length;
2202
2203                 object_name = rbd_segment_name(rbd_dev, img_offset);
2204                 if (!object_name)
2205                         goto out_unwind;
2206                 offset = rbd_segment_offset(rbd_dev, img_offset);
2207                 length = rbd_segment_length(rbd_dev, img_offset, resid);
2208                 obj_request = rbd_obj_request_create(object_name,
2209                                                 offset, length, type);
2210                 /* object request has its own copy of the object name */
2211                 rbd_segment_name_free(object_name);
2212                 if (!obj_request)
2213                         goto out_unwind;
2214
2215                 if (type == OBJ_REQUEST_BIO) {
2216                         unsigned int clone_size;
2217
2218                         rbd_assert(length <= (u64)UINT_MAX);
2219                         clone_size = (unsigned int)length;
2220                         obj_request->bio_list =
2221                                         bio_chain_clone_range(&bio_list,
2222                                                                 &bio_offset,
2223                                                                 clone_size,
2224                                                                 GFP_ATOMIC);
2225                         if (!obj_request->bio_list)
2226                                 goto out_partial;
2227                 } else {
2228                         unsigned int page_count;
2229
2230                         obj_request->pages = pages;
2231                         page_count = (u32)calc_pages_for(offset, length);
2232                         obj_request->page_count = page_count;
2233                         if ((offset + length) & ~PAGE_MASK)
2234                                 page_count--;   /* more on last page */
2235                         pages += page_count;
2236                 }
2237
2238                 osd_req = rbd_osd_req_create(rbd_dev, write_request,
2239                                                 obj_request);
2240                 if (!osd_req)
2241                         goto out_partial;
2242                 obj_request->osd_req = osd_req;
2243                 obj_request->callback = rbd_img_obj_callback;
2244
2245                 osd_req_op_extent_init(osd_req, 0, opcode, offset, length,
2246                                                 0, 0);
2247                 if (type == OBJ_REQUEST_BIO)
2248                         osd_req_op_extent_osd_data_bio(osd_req, 0,
2249                                         obj_request->bio_list, length);
2250                 else
2251                         osd_req_op_extent_osd_data_pages(osd_req, 0,
2252                                         obj_request->pages, length,
2253                                         offset & ~PAGE_MASK, false, false);
2254
2255                 if (write_request)
2256                         rbd_osd_req_format_write(obj_request);
2257                 else
2258                         rbd_osd_req_format_read(obj_request);
2259
2260                 obj_request->img_offset = img_offset;
2261                 rbd_img_obj_request_add(img_request, obj_request);
2262
2263                 img_offset += length;
2264                 resid -= length;
2265         }
2266
2267         return 0;
2268
2269 out_partial:
2270         rbd_obj_request_put(obj_request);
2271 out_unwind:
2272         for_each_obj_request_safe(img_request, obj_request, next_obj_request)
2273                 rbd_obj_request_put(obj_request);
2274
2275         return -ENOMEM;
2276 }
2277
2278 static void
2279 rbd_img_obj_copyup_callback(struct rbd_obj_request *obj_request)
2280 {
2281         struct rbd_img_request *img_request;
2282         struct rbd_device *rbd_dev;
2283         struct page **pages;
2284         u32 page_count;
2285
2286         rbd_assert(obj_request->type == OBJ_REQUEST_BIO);
2287         rbd_assert(obj_request_img_data_test(obj_request));
2288         img_request = obj_request->img_request;
2289         rbd_assert(img_request);
2290
2291         rbd_dev = img_request->rbd_dev;
2292         rbd_assert(rbd_dev);
2293
2294         pages = obj_request->copyup_pages;
2295         rbd_assert(pages != NULL);
2296         obj_request->copyup_pages = NULL;
2297         page_count = obj_request->copyup_page_count;
2298         rbd_assert(page_count);
2299         obj_request->copyup_page_count = 0;
2300         ceph_release_page_vector(pages, page_count);
2301
2302         /*
2303          * We want the transfer count to reflect the size of the
2304          * original write request.  There is no such thing as a
2305          * successful short write, so if the request was successful
2306          * we can just set it to the originally-requested length.
2307          */
2308         if (!obj_request->result)
2309                 obj_request->xferred = obj_request->length;
2310
2311         /* Finish up with the normal image object callback */
2312
2313         rbd_img_obj_callback(obj_request);
2314 }
2315
2316 static void
2317 rbd_img_obj_parent_read_full_callback(struct rbd_img_request *img_request)
2318 {
2319         struct rbd_obj_request *orig_request;
2320         struct ceph_osd_request *osd_req;
2321         struct ceph_osd_client *osdc;
2322         struct rbd_device *rbd_dev;
2323         struct page **pages;
2324         u32 page_count;
2325         int img_result;
2326         u64 parent_length;
2327         u64 offset;
2328         u64 length;
2329
2330         rbd_assert(img_request_child_test(img_request));
2331
2332         /* First get what we need from the image request */
2333
2334         pages = img_request->copyup_pages;
2335         rbd_assert(pages != NULL);
2336         img_request->copyup_pages = NULL;
2337         page_count = img_request->copyup_page_count;
2338         rbd_assert(page_count);
2339         img_request->copyup_page_count = 0;
2340
2341         orig_request = img_request->obj_request;
2342         rbd_assert(orig_request != NULL);
2343         rbd_assert(obj_request_type_valid(orig_request->type));
2344         img_result = img_request->result;
2345         parent_length = img_request->length;
2346         rbd_assert(parent_length == img_request->xferred);
2347         rbd_img_request_put(img_request);
2348
2349         rbd_assert(orig_request->img_request);
2350         rbd_dev = orig_request->img_request->rbd_dev;
2351         rbd_assert(rbd_dev);
2352
2353         /*
2354          * If the overlap has become 0 (most likely because the
2355          * image has been flattened) we need to free the pages
2356          * and re-submit the original write request.
2357          */
2358         if (!rbd_dev->parent_overlap) {
2359                 struct ceph_osd_client *osdc;
2360
2361                 ceph_release_page_vector(pages, page_count);
2362                 osdc = &rbd_dev->rbd_client->client->osdc;
2363                 img_result = rbd_obj_request_submit(osdc, orig_request);
2364                 if (!img_result)
2365                         return;
2366         }
2367
2368         if (img_result)
2369                 goto out_err;
2370
2371         /*
2372          * The original osd request is of no use to use any more.
2373          * We need a new one that can hold the two ops in a copyup
2374          * request.  Allocate the new copyup osd request for the
2375          * original request, and release the old one.
2376          */
2377         img_result = -ENOMEM;
2378         osd_req = rbd_osd_req_create_copyup(orig_request);
2379         if (!osd_req)
2380                 goto out_err;
2381         rbd_osd_req_destroy(orig_request->osd_req);
2382         orig_request->osd_req = osd_req;
2383         orig_request->copyup_pages = pages;
2384         orig_request->copyup_page_count = page_count;
2385
2386         /* Initialize the copyup op */
2387
2388         osd_req_op_cls_init(osd_req, 0, CEPH_OSD_OP_CALL, "rbd", "copyup");
2389         osd_req_op_cls_request_data_pages(osd_req, 0, pages, parent_length, 0,
2390                                                 false, false);
2391
2392         /* Then the original write request op */
2393
2394         offset = orig_request->offset;
2395         length = orig_request->length;
2396         osd_req_op_extent_init(osd_req, 1, CEPH_OSD_OP_WRITE,
2397                                         offset, length, 0, 0);
2398         if (orig_request->type == OBJ_REQUEST_BIO)
2399                 osd_req_op_extent_osd_data_bio(osd_req, 1,
2400                                         orig_request->bio_list, length);
2401         else
2402                 osd_req_op_extent_osd_data_pages(osd_req, 1,
2403                                         orig_request->pages, length,
2404                                         offset & ~PAGE_MASK, false, false);
2405
2406         rbd_osd_req_format_write(orig_request);
2407
2408         /* All set, send it off. */
2409
2410         orig_request->callback = rbd_img_obj_copyup_callback;
2411         osdc = &rbd_dev->rbd_client->client->osdc;
2412         img_result = rbd_obj_request_submit(osdc, orig_request);
2413         if (!img_result)
2414                 return;
2415 out_err:
2416         /* Record the error code and complete the request */
2417
2418         orig_request->result = img_result;
2419         orig_request->xferred = 0;
2420         obj_request_done_set(orig_request);
2421         rbd_obj_request_complete(orig_request);
2422 }
2423
2424 /*
2425  * Read from the parent image the range of data that covers the
2426  * entire target of the given object request.  This is used for
2427  * satisfying a layered image write request when the target of an
2428  * object request from the image request does not exist.
2429  *
2430  * A page array big enough to hold the returned data is allocated
2431  * and supplied to rbd_img_request_fill() as the "data descriptor."
2432  * When the read completes, this page array will be transferred to
2433  * the original object request for the copyup operation.
2434  *
2435  * If an error occurs, record it as the result of the original
2436  * object request and mark it done so it gets completed.
2437  */
2438 static int rbd_img_obj_parent_read_full(struct rbd_obj_request *obj_request)
2439 {
2440         struct rbd_img_request *img_request = NULL;
2441         struct rbd_img_request *parent_request = NULL;
2442         struct rbd_device *rbd_dev;
2443         u64 img_offset;
2444         u64 length;
2445         struct page **pages = NULL;
2446         u32 page_count;
2447         int result;
2448
2449         rbd_assert(obj_request_img_data_test(obj_request));
2450         rbd_assert(obj_request_type_valid(obj_request->type));
2451
2452         img_request = obj_request->img_request;
2453         rbd_assert(img_request != NULL);
2454         rbd_dev = img_request->rbd_dev;
2455         rbd_assert(rbd_dev->parent != NULL);
2456
2457         /*
2458          * Determine the byte range covered by the object in the
2459          * child image to which the original request was to be sent.
2460          */
2461         img_offset = obj_request->img_offset - obj_request->offset;
2462         length = (u64)1 << rbd_dev->header.obj_order;
2463
2464         /*
2465          * There is no defined parent data beyond the parent
2466          * overlap, so limit what we read at that boundary if
2467          * necessary.
2468          */
2469         if (img_offset + length > rbd_dev->parent_overlap) {
2470                 rbd_assert(img_offset < rbd_dev->parent_overlap);
2471                 length = rbd_dev->parent_overlap - img_offset;
2472         }
2473
2474         /*
2475          * Allocate a page array big enough to receive the data read
2476          * from the parent.
2477          */
2478         page_count = (u32)calc_pages_for(0, length);
2479         pages = ceph_alloc_page_vector(page_count, GFP_KERNEL);
2480         if (IS_ERR(pages)) {
2481                 result = PTR_ERR(pages);
2482                 pages = NULL;
2483                 goto out_err;
2484         }
2485
2486         result = -ENOMEM;
2487         parent_request = rbd_parent_request_create(obj_request,
2488                                                 img_offset, length);
2489         if (!parent_request)
2490                 goto out_err;
2491
2492         result = rbd_img_request_fill(parent_request, OBJ_REQUEST_PAGES, pages);
2493         if (result)
2494                 goto out_err;
2495         parent_request->copyup_pages = pages;
2496         parent_request->copyup_page_count = page_count;
2497
2498         parent_request->callback = rbd_img_obj_parent_read_full_callback;
2499         result = rbd_img_request_submit(parent_request);
2500         if (!result)
2501                 return 0;
2502
2503         parent_request->copyup_pages = NULL;
2504         parent_request->copyup_page_count = 0;
2505         parent_request->obj_request = NULL;
2506         rbd_obj_request_put(obj_request);
2507 out_err:
2508         if (pages)
2509                 ceph_release_page_vector(pages, page_count);
2510         if (parent_request)
2511                 rbd_img_request_put(parent_request);
2512         obj_request->result = result;
2513         obj_request->xferred = 0;
2514         obj_request_done_set(obj_request);
2515
2516         return result;
2517 }
2518
2519 static void rbd_img_obj_exists_callback(struct rbd_obj_request *obj_request)
2520 {
2521         struct rbd_obj_request *orig_request;
2522         struct rbd_device *rbd_dev;
2523         int result;
2524
2525         rbd_assert(!obj_request_img_data_test(obj_request));
2526
2527         /*
2528          * All we need from the object request is the original
2529          * request and the result of the STAT op.  Grab those, then
2530          * we're done with the request.
2531          */
2532         orig_request = obj_request->obj_request;
2533         obj_request->obj_request = NULL;
2534         rbd_assert(orig_request);
2535         rbd_assert(orig_request->img_request);
2536
2537         result = obj_request->result;
2538         obj_request->result = 0;
2539
2540         dout("%s: obj %p for obj %p result %d %llu/%llu\n", __func__,
2541                 obj_request, orig_request, result,
2542                 obj_request->xferred, obj_request->length);
2543         rbd_obj_request_put(obj_request);
2544
2545         /*
2546          * If the overlap has become 0 (most likely because the
2547          * image has been flattened) we need to free the pages
2548          * and re-submit the original write request.
2549          */
2550         rbd_dev = orig_request->img_request->rbd_dev;
2551         if (!rbd_dev->parent_overlap) {
2552                 struct ceph_osd_client *osdc;
2553
2554                 rbd_obj_request_put(orig_request);
2555                 osdc = &rbd_dev->rbd_client->client->osdc;
2556                 result = rbd_obj_request_submit(osdc, orig_request);
2557                 if (!result)
2558                         return;
2559         }
2560
2561         /*
2562          * Our only purpose here is to determine whether the object
2563          * exists, and we don't want to treat the non-existence as
2564          * an error.  If something else comes back, transfer the
2565          * error to the original request and complete it now.
2566          */
2567         if (!result) {
2568                 obj_request_existence_set(orig_request, true);
2569         } else if (result == -ENOENT) {
2570                 obj_request_existence_set(orig_request, false);
2571         } else if (result) {
2572                 orig_request->result = result;
2573                 goto out;
2574         }
2575
2576         /*
2577          * Resubmit the original request now that we have recorded
2578          * whether the target object exists.
2579          */
2580         orig_request->result = rbd_img_obj_request_submit(orig_request);
2581 out:
2582         if (orig_request->result)
2583                 rbd_obj_request_complete(orig_request);
2584         rbd_obj_request_put(orig_request);
2585 }
2586
2587 static int rbd_img_obj_exists_submit(struct rbd_obj_request *obj_request)
2588 {
2589         struct rbd_obj_request *stat_request;
2590         struct rbd_device *rbd_dev;
2591         struct ceph_osd_client *osdc;
2592         struct page **pages = NULL;
2593         u32 page_count;
2594         size_t size;
2595         int ret;
2596
2597         /*
2598          * The response data for a STAT call consists of:
2599          *     le64 length;
2600          *     struct {
2601          *         le32 tv_sec;
2602          *         le32 tv_nsec;
2603          *     } mtime;
2604          */
2605         size = sizeof (__le64) + sizeof (__le32) + sizeof (__le32);
2606         page_count = (u32)calc_pages_for(0, size);
2607         pages = ceph_alloc_page_vector(page_count, GFP_KERNEL);
2608         if (IS_ERR(pages))
2609                 return PTR_ERR(pages);
2610
2611         ret = -ENOMEM;
2612         stat_request = rbd_obj_request_create(obj_request->object_name, 0, 0,
2613                                                         OBJ_REQUEST_PAGES);
2614         if (!stat_request)
2615                 goto out;
2616
2617         rbd_obj_request_get(obj_request);
2618         stat_request->obj_request = obj_request;
2619         stat_request->pages = pages;
2620         stat_request->page_count = page_count;
2621
2622         rbd_assert(obj_request->img_request);
2623         rbd_dev = obj_request->img_request->rbd_dev;
2624         stat_request->osd_req = rbd_osd_req_create(rbd_dev, false,
2625                                                 stat_request);
2626         if (!stat_request->osd_req)
2627                 goto out;
2628         stat_request->callback = rbd_img_obj_exists_callback;
2629
2630         osd_req_op_init(stat_request->osd_req, 0, CEPH_OSD_OP_STAT);
2631         osd_req_op_raw_data_in_pages(stat_request->osd_req, 0, pages, size, 0,
2632                                         false, false);
2633         rbd_osd_req_format_read(stat_request);
2634
2635         osdc = &rbd_dev->rbd_client->client->osdc;
2636         ret = rbd_obj_request_submit(osdc, stat_request);
2637 out:
2638         if (ret)
2639                 rbd_obj_request_put(obj_request);
2640
2641         return ret;
2642 }
2643
2644 static int rbd_img_obj_request_submit(struct rbd_obj_request *obj_request)
2645 {
2646         struct rbd_img_request *img_request;
2647         struct rbd_device *rbd_dev;
2648         bool known;
2649
2650         rbd_assert(obj_request_img_data_test(obj_request));
2651
2652         img_request = obj_request->img_request;
2653         rbd_assert(img_request);
2654         rbd_dev = img_request->rbd_dev;
2655
2656         /*
2657          * Only writes to layered images need special handling.
2658          * Reads and non-layered writes are simple object requests.
2659          * Layered writes that start beyond the end of the overlap
2660          * with the parent have no parent data, so they too are
2661          * simple object requests.  Finally, if the target object is
2662          * known to already exist, its parent data has already been
2663          * copied, so a write to the object can also be handled as a
2664          * simple object request.
2665          */
2666         if (!img_request_write_test(img_request) ||
2667                 !img_request_layered_test(img_request) ||
2668                 rbd_dev->parent_overlap <= obj_request->img_offset ||
2669                 ((known = obj_request_known_test(obj_request)) &&
2670                         obj_request_exists_test(obj_request))) {
2671
2672                 struct rbd_device *rbd_dev;
2673                 struct ceph_osd_client *osdc;
2674
2675                 rbd_dev = obj_request->img_request->rbd_dev;
2676                 osdc = &rbd_dev->rbd_client->client->osdc;
2677
2678                 return rbd_obj_request_submit(osdc, obj_request);
2679         }
2680
2681         /*
2682          * It's a layered write.  The target object might exist but
2683          * we may not know that yet.  If we know it doesn't exist,
2684          * start by reading the data for the full target object from
2685          * the parent so we can use it for a copyup to the target.
2686          */
2687         if (known)
2688                 return rbd_img_obj_parent_read_full(obj_request);
2689
2690         /* We don't know whether the target exists.  Go find out. */
2691
2692         return rbd_img_obj_exists_submit(obj_request);
2693 }
2694
2695 static int rbd_img_request_submit(struct rbd_img_request *img_request)
2696 {
2697         struct rbd_obj_request *obj_request;
2698         struct rbd_obj_request *next_obj_request;
2699
2700         dout("%s: img %p\n", __func__, img_request);
2701         for_each_obj_request_safe(img_request, obj_request, next_obj_request) {
2702                 int ret;
2703
2704                 ret = rbd_img_obj_request_submit(obj_request);
2705                 if (ret)
2706                         return ret;
2707         }
2708
2709         return 0;
2710 }
2711
2712 static void rbd_img_parent_read_callback(struct rbd_img_request *img_request)
2713 {
2714         struct rbd_obj_request *obj_request;
2715         struct rbd_device *rbd_dev;
2716         u64 obj_end;
2717         u64 img_xferred;
2718         int img_result;
2719
2720         rbd_assert(img_request_child_test(img_request));
2721
2722         /* First get what we need from the image request and release it */
2723
2724         obj_request = img_request->obj_request;
2725         img_xferred = img_request->xferred;
2726         img_result = img_request->result;
2727         rbd_img_request_put(img_request);
2728
2729         /*
2730          * If the overlap has become 0 (most likely because the
2731          * image has been flattened) we need to re-submit the
2732          * original request.
2733          */
2734         rbd_assert(obj_request);
2735         rbd_assert(obj_request->img_request);
2736         rbd_dev = obj_request->img_request->rbd_dev;
2737         if (!rbd_dev->parent_overlap) {
2738                 struct ceph_osd_client *osdc;
2739
2740                 osdc = &rbd_dev->rbd_client->client->osdc;
2741                 img_result = rbd_obj_request_submit(osdc, obj_request);
2742                 if (!img_result)
2743                         return;
2744         }
2745
2746         obj_request->result = img_result;
2747         if (obj_request->result)
2748                 goto out;
2749
2750         /*
2751          * We need to zero anything beyond the parent overlap
2752          * boundary.  Since rbd_img_obj_request_read_callback()
2753          * will zero anything beyond the end of a short read, an
2754          * easy way to do this is to pretend the data from the
2755          * parent came up short--ending at the overlap boundary.
2756          */
2757         rbd_assert(obj_request->img_offset < U64_MAX - obj_request->length);
2758         obj_end = obj_request->img_offset + obj_request->length;
2759         if (obj_end > rbd_dev->parent_overlap) {
2760                 u64 xferred = 0;
2761
2762                 if (obj_request->img_offset < rbd_dev->parent_overlap)
2763                         xferred = rbd_dev->parent_overlap -
2764                                         obj_request->img_offset;
2765
2766                 obj_request->xferred = min(img_xferred, xferred);
2767         } else {
2768                 obj_request->xferred = img_xferred;
2769         }
2770 out:
2771         rbd_img_obj_request_read_callback(obj_request);
2772         rbd_obj_request_complete(obj_request);
2773 }
2774
2775 static void rbd_img_parent_read(struct rbd_obj_request *obj_request)
2776 {
2777         struct rbd_img_request *img_request;
2778         int result;
2779
2780         rbd_assert(obj_request_img_data_test(obj_request));
2781         rbd_assert(obj_request->img_request != NULL);
2782         rbd_assert(obj_request->result == (s32) -ENOENT);
2783         rbd_assert(obj_request_type_valid(obj_request->type));
2784
2785         /* rbd_read_finish(obj_request, obj_request->length); */
2786         img_request = rbd_parent_request_create(obj_request,
2787                                                 obj_request->img_offset,
2788                                                 obj_request->length);
2789         result = -ENOMEM;
2790         if (!img_request)
2791                 goto out_err;
2792
2793         if (obj_request->type == OBJ_REQUEST_BIO)
2794                 result = rbd_img_request_fill(img_request, OBJ_REQUEST_BIO,
2795                                                 obj_request->bio_list);
2796         else
2797                 result = rbd_img_request_fill(img_request, OBJ_REQUEST_PAGES,
2798                                                 obj_request->pages);
2799         if (result)
2800                 goto out_err;
2801
2802         img_request->callback = rbd_img_parent_read_callback;
2803         result = rbd_img_request_submit(img_request);
2804         if (result)
2805                 goto out_err;
2806
2807         return;
2808 out_err:
2809         if (img_request)
2810                 rbd_img_request_put(img_request);
2811         obj_request->result = result;
2812         obj_request->xferred = 0;
2813         obj_request_done_set(obj_request);
2814 }
2815
2816 static int rbd_obj_notify_ack(struct rbd_device *rbd_dev, u64 notify_id)
2817 {
2818         struct rbd_obj_request *obj_request;
2819         struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
2820         int ret;
2821
2822         obj_request = rbd_obj_request_create(rbd_dev->header_name, 0, 0,
2823                                                         OBJ_REQUEST_NODATA);
2824         if (!obj_request)
2825                 return -ENOMEM;
2826
2827         ret = -ENOMEM;
2828         obj_request->osd_req = rbd_osd_req_create(rbd_dev, false, obj_request);
2829         if (!obj_request->osd_req)
2830                 goto out;
2831         obj_request->callback = rbd_obj_request_put;
2832
2833         osd_req_op_watch_init(obj_request->osd_req, 0, CEPH_OSD_OP_NOTIFY_ACK,
2834                                         notify_id, 0, 0);
2835         rbd_osd_req_format_read(obj_request);
2836
2837         ret = rbd_obj_request_submit(osdc, obj_request);
2838 out:
2839         if (ret)
2840                 rbd_obj_request_put(obj_request);
2841
2842         return ret;
2843 }
2844
2845 static void rbd_watch_cb(u64 ver, u64 notify_id, u8 opcode, void *data)
2846 {
2847         struct rbd_device *rbd_dev = (struct rbd_device *)data;
2848         int ret;
2849
2850         if (!rbd_dev)
2851                 return;
2852
2853         dout("%s: \"%s\" notify_id %llu opcode %u\n", __func__,
2854                 rbd_dev->header_name, (unsigned long long)notify_id,
2855                 (unsigned int)opcode);
2856         ret = rbd_dev_refresh(rbd_dev);
2857         if (ret)
2858                 rbd_warn(rbd_dev, ": header refresh error (%d)\n", ret);
2859
2860         rbd_obj_notify_ack(rbd_dev, notify_id);
2861 }
2862
2863 /*
2864  * Request sync osd watch/unwatch.  The value of "start" determines
2865  * whether a watch request is being initiated or torn down.
2866  */
2867 static int rbd_dev_header_watch_sync(struct rbd_device *rbd_dev, bool start)
2868 {
2869         struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
2870         struct rbd_obj_request *obj_request;
2871         int ret;
2872
2873         rbd_assert(start ^ !!rbd_dev->watch_event);
2874         rbd_assert(start ^ !!rbd_dev->watch_request);
2875
2876         if (start) {
2877                 ret = ceph_osdc_create_event(osdc, rbd_watch_cb, rbd_dev,
2878                                                 &rbd_dev->watch_event);
2879                 if (ret < 0)
2880                         return ret;
2881                 rbd_assert(rbd_dev->watch_event != NULL);
2882         }
2883
2884         ret = -ENOMEM;
2885         obj_request = rbd_obj_request_create(rbd_dev->header_name, 0, 0,
2886                                                         OBJ_REQUEST_NODATA);
2887         if (!obj_request)
2888                 goto out_cancel;
2889
2890         obj_request->osd_req = rbd_osd_req_create(rbd_dev, true, obj_request);
2891         if (!obj_request->osd_req)
2892                 goto out_cancel;
2893
2894         if (start)
2895                 ceph_osdc_set_request_linger(osdc, obj_request->osd_req);
2896         else
2897                 ceph_osdc_unregister_linger_request(osdc,
2898                                         rbd_dev->watch_request->osd_req);
2899
2900         osd_req_op_watch_init(obj_request->osd_req, 0, CEPH_OSD_OP_WATCH,
2901                                 rbd_dev->watch_event->cookie, 0, start ? 1 : 0);
2902         rbd_osd_req_format_write(obj_request);
2903
2904         ret = rbd_obj_request_submit(osdc, obj_request);
2905         if (ret)
2906                 goto out_cancel;
2907         ret = rbd_obj_request_wait(obj_request);
2908         if (ret)
2909                 goto out_cancel;
2910         ret = obj_request->result;
2911         if (ret)
2912                 goto out_cancel;
2913
2914         /*
2915          * A watch request is set to linger, so the underlying osd
2916          * request won't go away until we unregister it.  We retain
2917          * a pointer to the object request during that time (in
2918          * rbd_dev->watch_request), so we'll keep a reference to
2919          * it.  We'll drop that reference (below) after we've
2920          * unregistered it.
2921          */
2922         if (start) {
2923                 rbd_dev->watch_request = obj_request;
2924
2925                 return 0;
2926         }
2927
2928         /* We have successfully torn down the watch request */
2929
2930         rbd_obj_request_put(rbd_dev->watch_request);
2931         rbd_dev->watch_request = NULL;
2932 out_cancel:
2933         /* Cancel the event if we're tearing down, or on error */
2934         ceph_osdc_cancel_event(rbd_dev->watch_event);
2935         rbd_dev->watch_event = NULL;
2936         if (obj_request)
2937                 rbd_obj_request_put(obj_request);
2938
2939         return ret;
2940 }
2941
2942 /*
2943  * Synchronous osd object method call.  Returns the number of bytes
2944  * returned in the outbound buffer, or a negative error code.
2945  */
2946 static int rbd_obj_method_sync(struct rbd_device *rbd_dev,
2947                              const char *object_name,
2948                              const char *class_name,
2949                              const char *method_name,
2950                              const void *outbound,
2951                              size_t outbound_size,
2952                              void *inbound,
2953                              size_t inbound_size)
2954 {
2955         struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
2956         struct rbd_obj_request *obj_request;
2957         struct page **pages;
2958         u32 page_count;
2959         int ret;
2960
2961         /*
2962          * Method calls are ultimately read operations.  The result
2963          * should placed into the inbound buffer provided.  They
2964          * also supply outbound data--parameters for the object
2965          * method.  Currently if this is present it will be a
2966          * snapshot id.
2967          */
2968         page_count = (u32)calc_pages_for(0, inbound_size);
2969         pages = ceph_alloc_page_vector(page_count, GFP_KERNEL);
2970         if (IS_ERR(pages))
2971                 return PTR_ERR(pages);
2972
2973         ret = -ENOMEM;
2974         obj_request = rbd_obj_request_create(object_name, 0, inbound_size,
2975                                                         OBJ_REQUEST_PAGES);
2976         if (!obj_request)
2977                 goto out;
2978
2979         obj_request->pages = pages;
2980         obj_request->page_count = page_count;
2981
2982         obj_request->osd_req = rbd_osd_req_create(rbd_dev, false, obj_request);
2983         if (!obj_request->osd_req)
2984                 goto out;
2985
2986         osd_req_op_cls_init(obj_request->osd_req, 0, CEPH_OSD_OP_CALL,
2987                                         class_name, method_name);
2988         if (outbound_size) {
2989                 struct ceph_pagelist *pagelist;
2990
2991                 pagelist = kmalloc(sizeof (*pagelist), GFP_NOFS);
2992                 if (!pagelist)
2993                         goto out;
2994
2995                 ceph_pagelist_init(pagelist);
2996                 ceph_pagelist_append(pagelist, outbound, outbound_size);
2997                 osd_req_op_cls_request_data_pagelist(obj_request->osd_req, 0,
2998                                                 pagelist);
2999         }
3000         osd_req_op_cls_response_data_pages(obj_request->osd_req, 0,
3001                                         obj_request->pages, inbound_size,
3002                                         0, false, false);
3003         rbd_osd_req_format_read(obj_request);
3004
3005         ret = rbd_obj_request_submit(osdc, obj_request);
3006         if (ret)
3007                 goto out;
3008         ret = rbd_obj_request_wait(obj_request);
3009         if (ret)
3010                 goto out;
3011
3012         ret = obj_request->result;
3013         if (ret < 0)
3014                 goto out;
3015
3016         rbd_assert(obj_request->xferred < (u64)INT_MAX);
3017         ret = (int)obj_request->xferred;
3018         ceph_copy_from_page_vector(pages, inbound, 0, obj_request->xferred);
3019 out:
3020         if (obj_request)
3021                 rbd_obj_request_put(obj_request);
3022         else
3023                 ceph_release_page_vector(pages, page_count);
3024
3025         return ret;
3026 }
3027
3028 static void rbd_request_fn(struct request_queue *q)
3029                 __releases(q->queue_lock) __acquires(q->queue_lock)
3030 {
3031         struct rbd_device *rbd_dev = q->queuedata;
3032         bool read_only = rbd_dev->mapping.read_only;
3033         struct request *rq;
3034         int result;
3035
3036         while ((rq = blk_fetch_request(q))) {
3037                 bool write_request = rq_data_dir(rq) == WRITE;
3038                 struct rbd_img_request *img_request;
3039                 u64 offset;
3040                 u64 length;
3041
3042                 /* Ignore any non-FS requests that filter through. */
3043
3044                 if (rq->cmd_type != REQ_TYPE_FS) {
3045                         dout("%s: non-fs request type %d\n", __func__,
3046                                 (int) rq->cmd_type);
3047                         __blk_end_request_all(rq, 0);
3048                         continue;
3049                 }
3050
3051                 /* Ignore/skip any zero-length requests */
3052
3053                 offset = (u64) blk_rq_pos(rq) << SECTOR_SHIFT;
3054                 length = (u64) blk_rq_bytes(rq);
3055
3056                 if (!length) {
3057                         dout("%s: zero-length request\n", __func__);
3058                         __blk_end_request_all(rq, 0);
3059                         continue;
3060                 }
3061
3062                 spin_unlock_irq(q->queue_lock);
3063
3064                 /* Disallow writes to a read-only device */
3065
3066                 if (write_request) {
3067                         result = -EROFS;
3068                         if (read_only)
3069                                 goto end_request;
3070                         rbd_assert(rbd_dev->spec->snap_id == CEPH_NOSNAP);
3071                 }
3072
3073                 /*
3074                  * Quit early if the mapped snapshot no longer
3075                  * exists.  It's still possible the snapshot will
3076                  * have disappeared by the time our request arrives
3077                  * at the osd, but there's no sense in sending it if
3078                  * we already know.
3079                  */
3080                 if (!test_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags)) {
3081                         dout("request for non-existent snapshot");
3082                         rbd_assert(rbd_dev->spec->snap_id != CEPH_NOSNAP);
3083                         result = -ENXIO;
3084                         goto end_request;
3085                 }
3086
3087                 result = -EINVAL;
3088                 if (offset && length > U64_MAX - offset + 1) {
3089                         rbd_warn(rbd_dev, "bad request range (%llu~%llu)\n",
3090                                 offset, length);
3091                         goto end_request;       /* Shouldn't happen */
3092                 }
3093
3094                 result = -EIO;
3095                 if (offset + length > rbd_dev->mapping.size) {
3096                         rbd_warn(rbd_dev, "beyond EOD (%llu~%llu > %llu)\n",
3097                                 offset, length, rbd_dev->mapping.size);
3098                         goto end_request;
3099                 }
3100
3101                 result = -ENOMEM;
3102                 img_request = rbd_img_request_create(rbd_dev, offset, length,
3103                                                         write_request);
3104                 if (!img_request)
3105                         goto end_request;
3106
3107                 img_request->rq = rq;
3108
3109                 result = rbd_img_request_fill(img_request, OBJ_REQUEST_BIO,
3110                                                 rq->bio);
3111                 if (!result)
3112                         result = rbd_img_request_submit(img_request);
3113                 if (result)
3114                         rbd_img_request_put(img_request);
3115 end_request:
3116                 spin_lock_irq(q->queue_lock);
3117                 if (result < 0) {
3118                         rbd_warn(rbd_dev, "%s %llx at %llx result %d\n",
3119                                 write_request ? "write" : "read",
3120                                 length, offset, result);
3121
3122                         __blk_end_request_all(rq, result);
3123                 }
3124         }
3125 }
3126
3127 /*
3128  * a queue callback. Makes sure that we don't create a bio that spans across
3129  * multiple osd objects. One exception would be with a single page bios,
3130  * which we handle later at bio_chain_clone_range()
3131  */
3132 static int rbd_merge_bvec(struct request_queue *q, struct bvec_merge_data *bmd,
3133                           struct bio_vec *bvec)
3134 {
3135         struct rbd_device *rbd_dev = q->queuedata;
3136         sector_t sector_offset;
3137         sector_t sectors_per_obj;
3138         sector_t obj_sector_offset;
3139         int ret;
3140
3141         /*
3142          * Find how far into its rbd object the partition-relative
3143          * bio start sector is to offset relative to the enclosing
3144          * device.
3145          */
3146         sector_offset = get_start_sect(bmd->bi_bdev) + bmd->bi_sector;
3147         sectors_per_obj = 1 << (rbd_dev->header.obj_order - SECTOR_SHIFT);
3148         obj_sector_offset = sector_offset & (sectors_per_obj - 1);
3149
3150         /*
3151          * Compute the number of bytes from that offset to the end
3152          * of the object.  Account for what's already used by the bio.
3153          */
3154         ret = (int) (sectors_per_obj - obj_sector_offset) << SECTOR_SHIFT;
3155         if (ret > bmd->bi_size)
3156                 ret -= bmd->bi_size;
3157         else
3158                 ret = 0;
3159
3160         /*
3161          * Don't send back more than was asked for.  And if the bio
3162          * was empty, let the whole thing through because:  "Note
3163          * that a block device *must* allow a single page to be
3164          * added to an empty bio."
3165          */
3166         rbd_assert(bvec->bv_len <= PAGE_SIZE);
3167         if (ret > (int) bvec->bv_len || !bmd->bi_size)
3168                 ret = (int) bvec->bv_len;
3169
3170         return ret;
3171 }
3172
3173 static void rbd_free_disk(struct rbd_device *rbd_dev)
3174 {
3175         struct gendisk *disk = rbd_dev->disk;
3176
3177         if (!disk)
3178                 return;
3179
3180         rbd_dev->disk = NULL;
3181         if (disk->flags & GENHD_FL_UP) {
3182                 del_gendisk(disk);
3183                 if (disk->queue)
3184                         blk_cleanup_queue(disk->queue);
3185         }
3186         put_disk(disk);
3187 }
3188
3189 static int rbd_obj_read_sync(struct rbd_device *rbd_dev,
3190                                 const char *object_name,
3191                                 u64 offset, u64 length, void *buf)
3192
3193 {
3194         struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
3195         struct rbd_obj_request *obj_request;
3196         struct page **pages = NULL;
3197         u32 page_count;
3198         size_t size;
3199         int ret;
3200
3201         page_count = (u32) calc_pages_for(offset, length);
3202         pages = ceph_alloc_page_vector(page_count, GFP_KERNEL);
3203         if (IS_ERR(pages))
3204                 ret = PTR_ERR(pages);
3205
3206         ret = -ENOMEM;
3207         obj_request = rbd_obj_request_create(object_name, offset, length,
3208                                                         OBJ_REQUEST_PAGES);
3209         if (!obj_request)
3210                 goto out;
3211
3212         obj_request->pages = pages;
3213         obj_request->page_count = page_count;
3214
3215         obj_request->osd_req = rbd_osd_req_create(rbd_dev, false, obj_request);
3216         if (!obj_request->osd_req)
3217                 goto out;
3218
3219         osd_req_op_extent_init(obj_request->osd_req, 0, CEPH_OSD_OP_READ,
3220                                         offset, length, 0, 0);
3221         osd_req_op_extent_osd_data_pages(obj_request->osd_req, 0,
3222                                         obj_request->pages,
3223                                         obj_request->length,
3224                                         obj_request->offset & ~PAGE_MASK,
3225                                         false, false);
3226         rbd_osd_req_format_read(obj_request);
3227
3228         ret = rbd_obj_request_submit(osdc, obj_request);
3229         if (ret)
3230                 goto out;
3231         ret = rbd_obj_request_wait(obj_request);
3232         if (ret)
3233                 goto out;
3234
3235         ret = obj_request->result;
3236         if (ret < 0)
3237                 goto out;
3238
3239         rbd_assert(obj_request->xferred <= (u64) SIZE_MAX);
3240         size = (size_t) obj_request->xferred;
3241         ceph_copy_from_page_vector(pages, buf, 0, size);
3242         rbd_assert(size <= (size_t)INT_MAX);
3243         ret = (int)size;
3244 out:
3245         if (obj_request)
3246                 rbd_obj_request_put(obj_request);
3247         else
3248                 ceph_release_page_vector(pages, page_count);
3249
3250         return ret;
3251 }
3252
3253 /*
3254  * Read the complete header for the given rbd device.  On successful
3255  * return, the rbd_dev->header field will contain up-to-date
3256  * information about the image.
3257  */
3258 static int rbd_dev_v1_header_info(struct rbd_device *rbd_dev)
3259 {
3260         struct rbd_image_header_ondisk *ondisk = NULL;
3261         u32 snap_count = 0;
3262         u64 names_size = 0;
3263         u32 want_count;
3264         int ret;
3265
3266         /*
3267          * The complete header will include an array of its 64-bit
3268          * snapshot ids, followed by the names of those snapshots as
3269          * a contiguous block of NUL-terminated strings.  Note that
3270          * the number of snapshots could change by the time we read
3271          * it in, in which case we re-read it.
3272          */
3273         do {
3274                 size_t size;
3275
3276                 kfree(ondisk);
3277
3278                 size = sizeof (*ondisk);
3279                 size += snap_count * sizeof (struct rbd_image_snap_ondisk);
3280                 size += names_size;
3281                 ondisk = kmalloc(size, GFP_KERNEL);
3282                 if (!ondisk)
3283                         return -ENOMEM;
3284
3285                 ret = rbd_obj_read_sync(rbd_dev, rbd_dev->header_name,
3286                                        0, size, ondisk);
3287                 if (ret < 0)
3288                         goto out;
3289                 if ((size_t)ret < size) {
3290                         ret = -ENXIO;
3291                         rbd_warn(rbd_dev, "short header read (want %zd got %d)",
3292                                 size, ret);
3293                         goto out;
3294                 }
3295                 if (!rbd_dev_ondisk_valid(ondisk)) {
3296                         ret = -ENXIO;
3297                         rbd_warn(rbd_dev, "invalid header");
3298                         goto out;
3299                 }
3300
3301                 names_size = le64_to_cpu(ondisk->snap_names_len);
3302                 want_count = snap_count;
3303                 snap_count = le32_to_cpu(ondisk->snap_count);
3304         } while (snap_count != want_count);
3305
3306         ret = rbd_header_from_disk(rbd_dev, ondisk);
3307 out:
3308         kfree(ondisk);
3309
3310         return ret;
3311 }
3312
3313 /*
3314  * Clear the rbd device's EXISTS flag if the snapshot it's mapped to
3315  * has disappeared from the (just updated) snapshot context.
3316  */
3317 static void rbd_exists_validate(struct rbd_device *rbd_dev)
3318 {
3319         u64 snap_id;
3320
3321         if (!test_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags))
3322                 return;
3323
3324         snap_id = rbd_dev->spec->snap_id;
3325         if (snap_id == CEPH_NOSNAP)
3326                 return;
3327
3328         if (rbd_dev_snap_index(rbd_dev, snap_id) == BAD_SNAP_INDEX)
3329                 clear_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags);
3330 }
3331
3332 static int rbd_dev_refresh(struct rbd_device *rbd_dev)
3333 {
3334         u64 mapping_size;
3335         int ret;
3336
3337         rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
3338         mapping_size = rbd_dev->mapping.size;
3339         mutex_lock_nested(&ctl_mutex, SINGLE_DEPTH_NESTING);
3340         if (rbd_dev->image_format == 1)
3341                 ret = rbd_dev_v1_header_info(rbd_dev);
3342         else
3343                 ret = rbd_dev_v2_header_info(rbd_dev);
3344
3345         /* If it's a mapped snapshot, validate its EXISTS flag */
3346
3347         rbd_exists_validate(rbd_dev);
3348         mutex_unlock(&ctl_mutex);
3349         if (mapping_size != rbd_dev->mapping.size) {
3350                 sector_t size;
3351
3352                 size = (sector_t)rbd_dev->mapping.size / SECTOR_SIZE;
3353                 dout("setting size to %llu sectors", (unsigned long long)size);
3354                 set_capacity(rbd_dev->disk, size);
3355                 revalidate_disk(rbd_dev->disk);
3356         }
3357
3358         return ret;
3359 }
3360
3361 static int rbd_init_disk(struct rbd_device *rbd_dev)
3362 {
3363         struct gendisk *disk;
3364         struct request_queue *q;
3365         u64 segment_size;
3366
3367         /* create gendisk info */
3368         disk = alloc_disk(RBD_MINORS_PER_MAJOR);
3369         if (!disk)
3370                 return -ENOMEM;
3371
3372         snprintf(disk->disk_name, sizeof(disk->disk_name), RBD_DRV_NAME "%d",
3373                  rbd_dev->dev_id);
3374         disk->major = rbd_dev->major;
3375         disk->first_minor = 0;
3376         disk->fops = &rbd_bd_ops;
3377         disk->private_data = rbd_dev;
3378
3379         q = blk_init_queue(rbd_request_fn, &rbd_dev->lock);
3380         if (!q)
3381                 goto out_disk;
3382
3383         /* We use the default size, but let's be explicit about it. */
3384         blk_queue_physical_block_size(q, SECTOR_SIZE);
3385
3386         /* set io sizes to object size */
3387         segment_size = rbd_obj_bytes(&rbd_dev->header);
3388         blk_queue_max_hw_sectors(q, segment_size / SECTOR_SIZE);
3389         blk_queue_max_segment_size(q, segment_size);
3390         blk_queue_io_min(q, segment_size);
3391         blk_queue_io_opt(q, segment_size);
3392
3393         blk_queue_merge_bvec(q, rbd_merge_bvec);
3394         disk->queue = q;
3395
3396         q->queuedata = rbd_dev;
3397
3398         rbd_dev->disk = disk;
3399
3400         return 0;
3401 out_disk:
3402         put_disk(disk);
3403
3404         return -ENOMEM;
3405 }
3406
3407 /*
3408   sysfs
3409 */
3410
3411 static struct rbd_device *dev_to_rbd_dev(struct device *dev)
3412 {
3413         return container_of(dev, struct rbd_device, dev);
3414 }
3415
3416 static ssize_t rbd_size_show(struct device *dev,
3417                              struct device_attribute *attr, char *buf)
3418 {
3419         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3420
3421         return sprintf(buf, "%llu\n",
3422                 (unsigned long long)rbd_dev->mapping.size);
3423 }
3424
3425 /*
3426  * Note this shows the features for whatever's mapped, which is not
3427  * necessarily the base image.
3428  */
3429 static ssize_t rbd_features_show(struct device *dev,
3430                              struct device_attribute *attr, char *buf)
3431 {
3432         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3433
3434         return sprintf(buf, "0x%016llx\n",
3435                         (unsigned long long)rbd_dev->mapping.features);
3436 }
3437
3438 static ssize_t rbd_major_show(struct device *dev,
3439                               struct device_attribute *attr, char *buf)
3440 {
3441         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3442
3443         if (rbd_dev->major)
3444                 return sprintf(buf, "%d\n", rbd_dev->major);
3445
3446         return sprintf(buf, "(none)\n");
3447
3448 }
3449
3450 static ssize_t rbd_client_id_show(struct device *dev,
3451                                   struct device_attribute *attr, char *buf)
3452 {
3453         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3454
3455         return sprintf(buf, "client%lld\n",
3456                         ceph_client_id(rbd_dev->rbd_client->client));
3457 }
3458
3459 static ssize_t rbd_pool_show(struct device *dev,
3460                              struct device_attribute *attr, char *buf)
3461 {
3462         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3463
3464         return sprintf(buf, "%s\n", rbd_dev->spec->pool_name);
3465 }
3466
3467 static ssize_t rbd_pool_id_show(struct device *dev,
3468                              struct device_attribute *attr, char *buf)
3469 {
3470         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3471
3472         return sprintf(buf, "%llu\n",
3473                         (unsigned long long) rbd_dev->spec->pool_id);
3474 }
3475
3476 static ssize_t rbd_name_show(struct device *dev,
3477                              struct device_attribute *attr, char *buf)
3478 {
3479         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3480
3481         if (rbd_dev->spec->image_name)
3482                 return sprintf(buf, "%s\n", rbd_dev->spec->image_name);
3483
3484         return sprintf(buf, "(unknown)\n");
3485 }
3486
3487 static ssize_t rbd_image_id_show(struct device *dev,
3488                              struct device_attribute *attr, char *buf)
3489 {
3490         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3491
3492         return sprintf(buf, "%s\n", rbd_dev->spec->image_id);
3493 }
3494
3495 /*
3496  * Shows the name of the currently-mapped snapshot (or
3497  * RBD_SNAP_HEAD_NAME for the base image).
3498  */
3499 static ssize_t rbd_snap_show(struct device *dev,
3500                              struct device_attribute *attr,
3501                              char *buf)
3502 {
3503         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3504
3505         return sprintf(buf, "%s\n", rbd_dev->spec->snap_name);
3506 }
3507
3508 /*
3509  * For an rbd v2 image, shows the pool id, image id, and snapshot id
3510  * for the parent image.  If there is no parent, simply shows
3511  * "(no parent image)".
3512  */
3513 static ssize_t rbd_parent_show(struct device *dev,
3514                              struct device_attribute *attr,
3515                              char *buf)
3516 {
3517         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3518         struct rbd_spec *spec = rbd_dev->parent_spec;
3519         int count;
3520         char *bufp = buf;
3521
3522         if (!spec)
3523                 return sprintf(buf, "(no parent image)\n");
3524
3525         count = sprintf(bufp, "pool_id %llu\npool_name %s\n",
3526                         (unsigned long long) spec->pool_id, spec->pool_name);
3527         if (count < 0)
3528                 return count;
3529         bufp += count;
3530
3531         count = sprintf(bufp, "image_id %s\nimage_name %s\n", spec->image_id,
3532                         spec->image_name ? spec->image_name : "(unknown)");
3533         if (count < 0)
3534                 return count;
3535         bufp += count;
3536
3537         count = sprintf(bufp, "snap_id %llu\nsnap_name %s\n",
3538                         (unsigned long long) spec->snap_id, spec->snap_name);
3539         if (count < 0)
3540                 return count;
3541         bufp += count;
3542
3543         count = sprintf(bufp, "overlap %llu\n", rbd_dev->parent_overlap);
3544         if (count < 0)
3545                 return count;
3546         bufp += count;
3547
3548         return (ssize_t) (bufp - buf);
3549 }
3550
3551 static ssize_t rbd_image_refresh(struct device *dev,
3552                                  struct device_attribute *attr,
3553                                  const char *buf,
3554                                  size_t size)
3555 {
3556         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3557         int ret;
3558
3559         ret = rbd_dev_refresh(rbd_dev);
3560         if (ret)
3561                 rbd_warn(rbd_dev, ": manual header refresh error (%d)\n", ret);
3562
3563         return ret < 0 ? ret : size;
3564 }
3565
3566 static DEVICE_ATTR(size, S_IRUGO, rbd_size_show, NULL);
3567 static DEVICE_ATTR(features, S_IRUGO, rbd_features_show, NULL);
3568 static DEVICE_ATTR(major, S_IRUGO, rbd_major_show, NULL);
3569 static DEVICE_ATTR(client_id, S_IRUGO, rbd_client_id_show, NULL);
3570 static DEVICE_ATTR(pool, S_IRUGO, rbd_pool_show, NULL);
3571 static DEVICE_ATTR(pool_id, S_IRUGO, rbd_pool_id_show, NULL);
3572 static DEVICE_ATTR(name, S_IRUGO, rbd_name_show, NULL);
3573 static DEVICE_ATTR(image_id, S_IRUGO, rbd_image_id_show, NULL);
3574 static DEVICE_ATTR(refresh, S_IWUSR, NULL, rbd_image_refresh);
3575 static DEVICE_ATTR(current_snap, S_IRUGO, rbd_snap_show, NULL);
3576 static DEVICE_ATTR(parent, S_IRUGO, rbd_parent_show, NULL);
3577
3578 static struct attribute *rbd_attrs[] = {
3579         &dev_attr_size.attr,
3580         &dev_attr_features.attr,
3581         &dev_attr_major.attr,
3582         &dev_attr_client_id.attr,
3583         &dev_attr_pool.attr,
3584         &dev_attr_pool_id.attr,
3585         &dev_attr_name.attr,
3586         &dev_attr_image_id.attr,
3587         &dev_attr_current_snap.attr,
3588         &dev_attr_parent.attr,
3589         &dev_attr_refresh.attr,
3590         NULL
3591 };
3592
3593 static struct attribute_group rbd_attr_group = {
3594         .attrs = rbd_attrs,
3595 };
3596
3597 static const struct attribute_group *rbd_attr_groups[] = {
3598         &rbd_attr_group,
3599         NULL
3600 };
3601
3602 static void rbd_sysfs_dev_release(struct device *dev)
3603 {
3604 }
3605
3606 static struct device_type rbd_device_type = {
3607         .name           = "rbd",
3608         .groups         = rbd_attr_groups,
3609         .release        = rbd_sysfs_dev_release,
3610 };
3611
3612 static struct rbd_spec *rbd_spec_get(struct rbd_spec *spec)
3613 {
3614         kref_get(&spec->kref);
3615
3616         return spec;
3617 }
3618
3619 static void rbd_spec_free(struct kref *kref);
3620 static void rbd_spec_put(struct rbd_spec *spec)
3621 {
3622         if (spec)
3623                 kref_put(&spec->kref, rbd_spec_free);
3624 }
3625
3626 static struct rbd_spec *rbd_spec_alloc(void)
3627 {
3628         struct rbd_spec *spec;
3629
3630         spec = kzalloc(sizeof (*spec), GFP_KERNEL);
3631         if (!spec)
3632                 return NULL;
3633         kref_init(&spec->kref);
3634
3635         return spec;
3636 }
3637
3638 static void rbd_spec_free(struct kref *kref)
3639 {
3640         struct rbd_spec *spec = container_of(kref, struct rbd_spec, kref);
3641
3642         kfree(spec->pool_name);
3643         kfree(spec->image_id);
3644         kfree(spec->image_name);
3645         kfree(spec->snap_name);
3646         kfree(spec);
3647 }
3648
3649 static struct rbd_device *rbd_dev_create(struct rbd_client *rbdc,
3650                                 struct rbd_spec *spec)
3651 {
3652         struct rbd_device *rbd_dev;
3653
3654         rbd_dev = kzalloc(sizeof (*rbd_dev), GFP_KERNEL);
3655         if (!rbd_dev)
3656                 return NULL;
3657
3658         spin_lock_init(&rbd_dev->lock);
3659         rbd_dev->flags = 0;
3660         atomic_set(&rbd_dev->parent_ref, 0);
3661         INIT_LIST_HEAD(&rbd_dev->node);
3662         init_rwsem(&rbd_dev->header_rwsem);
3663
3664         rbd_dev->spec = spec;
3665         rbd_dev->rbd_client = rbdc;
3666
3667         /* Initialize the layout used for all rbd requests */
3668
3669         rbd_dev->layout.fl_stripe_unit = cpu_to_le32(1 << RBD_MAX_OBJ_ORDER);
3670         rbd_dev->layout.fl_stripe_count = cpu_to_le32(1);
3671         rbd_dev->layout.fl_object_size = cpu_to_le32(1 << RBD_MAX_OBJ_ORDER);
3672         rbd_dev->layout.fl_pg_pool = cpu_to_le32((u32) spec->pool_id);
3673
3674         return rbd_dev;
3675 }
3676
3677 static void rbd_dev_destroy(struct rbd_device *rbd_dev)
3678 {
3679         rbd_put_client(rbd_dev->rbd_client);
3680         rbd_spec_put(rbd_dev->spec);
3681         kfree(rbd_dev);
3682 }
3683
3684 /*
3685  * Get the size and object order for an image snapshot, or if
3686  * snap_id is CEPH_NOSNAP, gets this information for the base
3687  * image.
3688  */
3689 static int _rbd_dev_v2_snap_size(struct rbd_device *rbd_dev, u64 snap_id,
3690                                 u8 *order, u64 *snap_size)
3691 {
3692         __le64 snapid = cpu_to_le64(snap_id);
3693         int ret;
3694         struct {
3695                 u8 order;
3696                 __le64 size;
3697         } __attribute__ ((packed)) size_buf = { 0 };
3698
3699         ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name,
3700                                 "rbd", "get_size",
3701                                 &snapid, sizeof (snapid),
3702                                 &size_buf, sizeof (size_buf));
3703         dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
3704         if (ret < 0)
3705                 return ret;
3706         if (ret < sizeof (size_buf))
3707                 return -ERANGE;
3708
3709         if (order)
3710                 *order = size_buf.order;
3711         *snap_size = le64_to_cpu(size_buf.size);
3712
3713         dout("  snap_id 0x%016llx order = %u, snap_size = %llu\n",
3714                 (unsigned long long)snap_id, (unsigned int)*order,
3715                 (unsigned long long)*snap_size);
3716
3717         return 0;
3718 }
3719
3720 static int rbd_dev_v2_image_size(struct rbd_device *rbd_dev)
3721 {
3722         return _rbd_dev_v2_snap_size(rbd_dev, CEPH_NOSNAP,
3723                                         &rbd_dev->header.obj_order,
3724                                         &rbd_dev->header.image_size);
3725 }
3726
3727 static int rbd_dev_v2_object_prefix(struct rbd_device *rbd_dev)
3728 {
3729         void *reply_buf;
3730         int ret;
3731         void *p;
3732
3733         reply_buf = kzalloc(RBD_OBJ_PREFIX_LEN_MAX, GFP_KERNEL);
3734         if (!reply_buf)
3735                 return -ENOMEM;
3736
3737         ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name,
3738                                 "rbd", "get_object_prefix", NULL, 0,
3739                                 reply_buf, RBD_OBJ_PREFIX_LEN_MAX);
3740         dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
3741         if (ret < 0)
3742                 goto out;
3743
3744         p = reply_buf;
3745         rbd_dev->header.object_prefix = ceph_extract_encoded_string(&p,
3746                                                 p + ret, NULL, GFP_NOIO);
3747         ret = 0;
3748
3749         if (IS_ERR(rbd_dev->header.object_prefix)) {
3750                 ret = PTR_ERR(rbd_dev->header.object_prefix);
3751                 rbd_dev->header.object_prefix = NULL;
3752         } else {
3753                 dout("  object_prefix = %s\n", rbd_dev->header.object_prefix);
3754         }
3755 out:
3756         kfree(reply_buf);
3757
3758         return ret;
3759 }
3760
3761 static int _rbd_dev_v2_snap_features(struct rbd_device *rbd_dev, u64 snap_id,
3762                 u64 *snap_features)
3763 {
3764         __le64 snapid = cpu_to_le64(snap_id);
3765         struct {
3766                 __le64 features;
3767                 __le64 incompat;
3768         } __attribute__ ((packed)) features_buf = { 0 };
3769         u64 incompat;
3770         int ret;
3771
3772         ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name,
3773                                 "rbd", "get_features",
3774                                 &snapid, sizeof (snapid),
3775                                 &features_buf, sizeof (features_buf));
3776         dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
3777         if (ret < 0)
3778                 return ret;
3779         if (ret < sizeof (features_buf))
3780                 return -ERANGE;
3781
3782         incompat = le64_to_cpu(features_buf.incompat);
3783         if (incompat & ~RBD_FEATURES_SUPPORTED)
3784                 return -ENXIO;
3785
3786         *snap_features = le64_to_cpu(features_buf.features);
3787
3788         dout("  snap_id 0x%016llx features = 0x%016llx incompat = 0x%016llx\n",
3789                 (unsigned long long)snap_id,
3790                 (unsigned long long)*snap_features,
3791                 (unsigned long long)le64_to_cpu(features_buf.incompat));
3792
3793         return 0;
3794 }
3795
3796 static int rbd_dev_v2_features(struct rbd_device *rbd_dev)
3797 {
3798         return _rbd_dev_v2_snap_features(rbd_dev, CEPH_NOSNAP,
3799                                                 &rbd_dev->header.features);
3800 }
3801
3802 static int rbd_dev_v2_parent_info(struct rbd_device *rbd_dev)
3803 {
3804         struct rbd_spec *parent_spec;
3805         size_t size;
3806         void *reply_buf = NULL;
3807         __le64 snapid;
3808         void *p;
3809         void *end;
3810         u64 pool_id;
3811         char *image_id;
3812         u64 overlap;
3813         int ret;
3814
3815         parent_spec = rbd_spec_alloc();
3816         if (!parent_spec)
3817                 return -ENOMEM;
3818
3819         size = sizeof (__le64) +                                /* pool_id */
3820                 sizeof (__le32) + RBD_IMAGE_ID_LEN_MAX +        /* image_id */
3821                 sizeof (__le64) +                               /* snap_id */
3822                 sizeof (__le64);                                /* overlap */
3823         reply_buf = kmalloc(size, GFP_KERNEL);
3824         if (!reply_buf) {
3825                 ret = -ENOMEM;
3826                 goto out_err;
3827         }
3828
3829         snapid = cpu_to_le64(CEPH_NOSNAP);
3830         ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name,
3831                                 "rbd", "get_parent",
3832                                 &snapid, sizeof (snapid),
3833                                 reply_buf, size);
3834         dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
3835         if (ret < 0)
3836                 goto out_err;
3837
3838         p = reply_buf;
3839         end = reply_buf + ret;
3840         ret = -ERANGE;
3841         ceph_decode_64_safe(&p, end, pool_id, out_err);
3842         if (pool_id == CEPH_NOPOOL) {
3843                 /*
3844                  * Either the parent never existed, or we have
3845                  * record of it but the image got flattened so it no
3846                  * longer has a parent.  When the parent of a
3847                  * layered image disappears we immediately set the
3848                  * overlap to 0.  The effect of this is that all new
3849                  * requests will be treated as if the image had no
3850                  * parent.
3851                  */
3852                 if (rbd_dev->parent_overlap) {
3853                         rbd_dev->parent_overlap = 0;
3854                         smp_mb();
3855                         rbd_dev_parent_put(rbd_dev);
3856                         pr_info("%s: clone image has been flattened\n",
3857                                 rbd_dev->disk->disk_name);
3858                 }
3859
3860                 goto out;       /* No parent?  No problem. */
3861         }
3862
3863         /* The ceph file layout needs to fit pool id in 32 bits */
3864
3865         ret = -EIO;
3866         if (pool_id > (u64)U32_MAX) {
3867                 rbd_warn(NULL, "parent pool id too large (%llu > %u)\n",
3868                         (unsigned long long)pool_id, U32_MAX);
3869                 goto out_err;
3870         }
3871         parent_spec->pool_id = pool_id;
3872
3873         image_id = ceph_extract_encoded_string(&p, end, NULL, GFP_KERNEL);
3874         if (IS_ERR(image_id)) {
3875                 ret = PTR_ERR(image_id);
3876                 goto out_err;
3877         }
3878         parent_spec->image_id = image_id;
3879         ceph_decode_64_safe(&p, end, parent_spec->snap_id, out_err);
3880         ceph_decode_64_safe(&p, end, overlap, out_err);
3881
3882         if (overlap) {
3883                 rbd_spec_put(rbd_dev->parent_spec);
3884                 rbd_dev->parent_spec = parent_spec;
3885                 parent_spec = NULL;     /* rbd_dev now owns this */
3886                 rbd_dev->parent_overlap = overlap;
3887         } else {
3888                 rbd_warn(rbd_dev, "ignoring parent of clone with overlap 0\n");
3889         }
3890 out:
3891         ret = 0;
3892 out_err:
3893         kfree(reply_buf);
3894         rbd_spec_put(parent_spec);
3895
3896         return ret;
3897 }
3898
3899 static int rbd_dev_v2_striping_info(struct rbd_device *rbd_dev)
3900 {
3901         struct {
3902                 __le64 stripe_unit;
3903                 __le64 stripe_count;
3904         } __attribute__ ((packed)) striping_info_buf = { 0 };
3905         size_t size = sizeof (striping_info_buf);
3906         void *p;
3907         u64 obj_size;
3908         u64 stripe_unit;
3909         u64 stripe_count;
3910         int ret;
3911
3912         ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name,
3913                                 "rbd", "get_stripe_unit_count", NULL, 0,
3914                                 (char *)&striping_info_buf, size);
3915         dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
3916         if (ret < 0)
3917                 return ret;
3918         if (ret < size)
3919                 return -ERANGE;
3920
3921         /*
3922          * We don't actually support the "fancy striping" feature
3923          * (STRIPINGV2) yet, but if the striping sizes are the
3924          * defaults the behavior is the same as before.  So find
3925          * out, and only fail if the image has non-default values.
3926          */
3927         ret = -EINVAL;
3928         obj_size = (u64)1 << rbd_dev->header.obj_order;
3929         p = &striping_info_buf;
3930         stripe_unit = ceph_decode_64(&p);
3931         if (stripe_unit != obj_size) {
3932                 rbd_warn(rbd_dev, "unsupported stripe unit "
3933                                 "(got %llu want %llu)",
3934                                 stripe_unit, obj_size);
3935                 return -EINVAL;
3936         }
3937         stripe_count = ceph_decode_64(&p);
3938         if (stripe_count != 1) {
3939                 rbd_warn(rbd_dev, "unsupported stripe count "
3940                                 "(got %llu want 1)", stripe_count);
3941                 return -EINVAL;
3942         }
3943         rbd_dev->header.stripe_unit = stripe_unit;
3944         rbd_dev->header.stripe_count = stripe_count;
3945
3946         return 0;
3947 }
3948
3949 static char *rbd_dev_image_name(struct rbd_device *rbd_dev)
3950 {
3951         size_t image_id_size;
3952         char *image_id;
3953         void *p;
3954         void *end;
3955         size_t size;
3956         void *reply_buf = NULL;
3957         size_t len = 0;
3958         char *image_name = NULL;
3959         int ret;
3960
3961         rbd_assert(!rbd_dev->spec->image_name);
3962
3963         len = strlen(rbd_dev->spec->image_id);
3964         image_id_size = sizeof (__le32) + len;
3965         image_id = kmalloc(image_id_size, GFP_KERNEL);
3966         if (!image_id)
3967                 return NULL;
3968
3969         p = image_id;
3970         end = image_id + image_id_size;
3971         ceph_encode_string(&p, end, rbd_dev->spec->image_id, (u32)len);
3972
3973         size = sizeof (__le32) + RBD_IMAGE_NAME_LEN_MAX;
3974         reply_buf = kmalloc(size, GFP_KERNEL);
3975         if (!reply_buf)
3976                 goto out;
3977
3978         ret = rbd_obj_method_sync(rbd_dev, RBD_DIRECTORY,
3979                                 "rbd", "dir_get_name",
3980                                 image_id, image_id_size,
3981                                 reply_buf, size);
3982         if (ret < 0)
3983                 goto out;
3984         p = reply_buf;
3985         end = reply_buf + ret;
3986
3987         image_name = ceph_extract_encoded_string(&p, end, &len, GFP_KERNEL);
3988         if (IS_ERR(image_name))
3989                 image_name = NULL;
3990         else
3991                 dout("%s: name is %s len is %zd\n", __func__, image_name, len);
3992 out:
3993         kfree(reply_buf);
3994         kfree(image_id);
3995
3996         return image_name;
3997 }
3998
3999 static u64 rbd_v1_snap_id_by_name(struct rbd_device *rbd_dev, const char *name)
4000 {
4001         struct ceph_snap_context *snapc = rbd_dev->header.snapc;
4002         const char *snap_name;
4003         u32 which = 0;
4004
4005         /* Skip over names until we find the one we are looking for */
4006
4007         snap_name = rbd_dev->header.snap_names;
4008         while (which < snapc->num_snaps) {
4009                 if (!strcmp(name, snap_name))
4010                         return snapc->snaps[which];
4011                 snap_name += strlen(snap_name) + 1;
4012                 which++;
4013         }
4014         return CEPH_NOSNAP;
4015 }
4016
4017 static u64 rbd_v2_snap_id_by_name(struct rbd_device *rbd_dev, const char *name)
4018 {
4019         struct ceph_snap_context *snapc = rbd_dev->header.snapc;
4020         u32 which;
4021         bool found = false;
4022         u64 snap_id;
4023
4024         for (which = 0; !found && which < snapc->num_snaps; which++) {
4025                 const char *snap_name;
4026
4027                 snap_id = snapc->snaps[which];
4028                 snap_name = rbd_dev_v2_snap_name(rbd_dev, snap_id);
4029                 if (IS_ERR(snap_name))
4030                         break;
4031                 found = !strcmp(name, snap_name);
4032                 kfree(snap_name);
4033         }
4034         return found ? snap_id : CEPH_NOSNAP;
4035 }
4036
4037 /*
4038  * Assumes name is never RBD_SNAP_HEAD_NAME; returns CEPH_NOSNAP if
4039  * no snapshot by that name is found, or if an error occurs.
4040  */
4041 static u64 rbd_snap_id_by_name(struct rbd_device *rbd_dev, const char *name)
4042 {
4043         if (rbd_dev->image_format == 1)
4044                 return rbd_v1_snap_id_by_name(rbd_dev, name);
4045
4046         return rbd_v2_snap_id_by_name(rbd_dev, name);
4047 }
4048
4049 /*
4050  * When an rbd image has a parent image, it is identified by the
4051  * pool, image, and snapshot ids (not names).  This function fills
4052  * in the names for those ids.  (It's OK if we can't figure out the
4053  * name for an image id, but the pool and snapshot ids should always
4054  * exist and have names.)  All names in an rbd spec are dynamically
4055  * allocated.
4056  *
4057  * When an image being mapped (not a parent) is probed, we have the
4058  * pool name and pool id, image name and image id, and the snapshot
4059  * name.  The only thing we're missing is the snapshot id.
4060  */
4061 static int rbd_dev_spec_update(struct rbd_device *rbd_dev)
4062 {
4063         struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
4064         struct rbd_spec *spec = rbd_dev->spec;
4065         const char *pool_name;
4066         const char *image_name;
4067         const char *snap_name;
4068         int ret;
4069
4070         /*
4071          * An image being mapped will have the pool name (etc.), but
4072          * we need to look up the snapshot id.
4073          */
4074         if (spec->pool_name) {
4075                 if (strcmp(spec->snap_name, RBD_SNAP_HEAD_NAME)) {
4076                         u64 snap_id;
4077
4078                         snap_id = rbd_snap_id_by_name(rbd_dev, spec->snap_name);
4079                         if (snap_id == CEPH_NOSNAP)
4080                                 return -ENOENT;
4081                         spec->snap_id = snap_id;
4082                 } else {
4083                         spec->snap_id = CEPH_NOSNAP;
4084                 }
4085
4086                 return 0;
4087         }
4088
4089         /* Get the pool name; we have to make our own copy of this */
4090
4091         pool_name = ceph_pg_pool_name_by_id(osdc->osdmap, spec->pool_id);
4092         if (!pool_name) {
4093                 rbd_warn(rbd_dev, "no pool with id %llu", spec->pool_id);
4094                 return -EIO;
4095         }
4096         pool_name = kstrdup(pool_name, GFP_KERNEL);
4097         if (!pool_name)
4098                 return -ENOMEM;
4099
4100         /* Fetch the image name; tolerate failure here */
4101
4102         image_name = rbd_dev_image_name(rbd_dev);
4103         if (!image_name)
4104                 rbd_warn(rbd_dev, "unable to get image name");
4105
4106         /* Look up the snapshot name, and make a copy */
4107
4108         snap_name = rbd_snap_name(rbd_dev, spec->snap_id);
4109         if (!snap_name) {
4110                 ret = -ENOMEM;
4111                 goto out_err;
4112         }
4113
4114         spec->pool_name = pool_name;
4115         spec->image_name = image_name;
4116         spec->snap_name = snap_name;
4117
4118         return 0;
4119 out_err:
4120         kfree(image_name);
4121         kfree(pool_name);
4122
4123         return ret;
4124 }
4125
4126 static int rbd_dev_v2_snap_context(struct rbd_device *rbd_dev)
4127 {
4128         size_t size;
4129         int ret;
4130         void *reply_buf;
4131         void *p;
4132         void *end;
4133         u64 seq;
4134         u32 snap_count;
4135         struct ceph_snap_context *snapc;
4136         u32 i;
4137
4138         /*
4139          * We'll need room for the seq value (maximum snapshot id),
4140          * snapshot count, and array of that many snapshot ids.
4141          * For now we have a fixed upper limit on the number we're
4142          * prepared to receive.
4143          */
4144         size = sizeof (__le64) + sizeof (__le32) +
4145                         RBD_MAX_SNAP_COUNT * sizeof (__le64);
4146         reply_buf = kzalloc(size, GFP_KERNEL);
4147         if (!reply_buf)
4148                 return -ENOMEM;
4149
4150         ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name,
4151                                 "rbd", "get_snapcontext", NULL, 0,
4152                                 reply_buf, size);
4153         dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
4154         if (ret < 0)
4155                 goto out;
4156
4157         p = reply_buf;
4158         end = reply_buf + ret;
4159         ret = -ERANGE;
4160         ceph_decode_64_safe(&p, end, seq, out);
4161         ceph_decode_32_safe(&p, end, snap_count, out);
4162
4163         /*
4164          * Make sure the reported number of snapshot ids wouldn't go
4165          * beyond the end of our buffer.  But before checking that,
4166          * make sure the computed size of the snapshot context we
4167          * allocate is representable in a size_t.
4168          */
4169         if (snap_count > (SIZE_MAX - sizeof (struct ceph_snap_context))
4170                                  / sizeof (u64)) {
4171                 ret = -EINVAL;
4172                 goto out;
4173         }
4174         if (!ceph_has_room(&p, end, snap_count * sizeof (__le64)))
4175                 goto out;
4176         ret = 0;
4177
4178         snapc = ceph_create_snap_context(snap_count, GFP_KERNEL);
4179         if (!snapc) {
4180                 ret = -ENOMEM;
4181                 goto out;
4182         }
4183         snapc->seq = seq;
4184         for (i = 0; i < snap_count; i++)
4185                 snapc->snaps[i] = ceph_decode_64(&p);
4186
4187         ceph_put_snap_context(rbd_dev->header.snapc);
4188         rbd_dev->header.snapc = snapc;
4189
4190         dout("  snap context seq = %llu, snap_count = %u\n",
4191                 (unsigned long long)seq, (unsigned int)snap_count);
4192 out:
4193         kfree(reply_buf);
4194
4195         return ret;
4196 }
4197
4198 static const char *rbd_dev_v2_snap_name(struct rbd_device *rbd_dev,
4199                                         u64 snap_id)
4200 {
4201         size_t size;
4202         void *reply_buf;
4203         __le64 snapid;
4204         int ret;
4205         void *p;
4206         void *end;
4207         char *snap_name;
4208
4209         size = sizeof (__le32) + RBD_MAX_SNAP_NAME_LEN;
4210         reply_buf = kmalloc(size, GFP_KERNEL);
4211         if (!reply_buf)
4212                 return ERR_PTR(-ENOMEM);
4213
4214         snapid = cpu_to_le64(snap_id);
4215         ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name,
4216                                 "rbd", "get_snapshot_name",
4217                                 &snapid, sizeof (snapid),
4218                                 reply_buf, size);
4219         dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
4220         if (ret < 0) {
4221                 snap_name = ERR_PTR(ret);
4222                 goto out;
4223         }
4224
4225         p = reply_buf;
4226         end = reply_buf + ret;
4227         snap_name = ceph_extract_encoded_string(&p, end, NULL, GFP_KERNEL);
4228         if (IS_ERR(snap_name))
4229                 goto out;
4230
4231         dout("  snap_id 0x%016llx snap_name = %s\n",
4232                 (unsigned long long)snap_id, snap_name);
4233 out:
4234         kfree(reply_buf);
4235
4236         return snap_name;
4237 }
4238
4239 static int rbd_dev_v2_header_info(struct rbd_device *rbd_dev)
4240 {
4241         bool first_time = rbd_dev->header.object_prefix == NULL;
4242         int ret;
4243
4244         down_write(&rbd_dev->header_rwsem);
4245
4246         ret = rbd_dev_v2_image_size(rbd_dev);
4247         if (ret)
4248                 goto out;
4249
4250         if (first_time) {
4251                 ret = rbd_dev_v2_header_onetime(rbd_dev);
4252                 if (ret)
4253                         goto out;
4254         }
4255
4256         /*
4257          * If the image supports layering, get the parent info.  We
4258          * need to probe the first time regardless.  Thereafter we
4259          * only need to if there's a parent, to see if it has
4260          * disappeared due to the mapped image getting flattened.
4261          */
4262         if (rbd_dev->header.features & RBD_FEATURE_LAYERING &&
4263                         (first_time || rbd_dev->parent_spec)) {
4264                 bool warn;
4265
4266                 ret = rbd_dev_v2_parent_info(rbd_dev);
4267                 if (ret)
4268                         goto out;
4269
4270                 /*
4271                  * Print a warning if this is the initial probe and
4272                  * the image has a parent.  Don't print it if the
4273                  * image now being probed is itself a parent.  We
4274                  * can tell at this point because we won't know its
4275                  * pool name yet (just its pool id).
4276                  */
4277                 warn = rbd_dev->parent_spec && rbd_dev->spec->pool_name;
4278                 if (first_time && warn)
4279                         rbd_warn(rbd_dev, "WARNING: kernel layering "
4280                                         "is EXPERIMENTAL!");
4281         }
4282
4283         if (rbd_dev->spec->snap_id == CEPH_NOSNAP)
4284                 if (rbd_dev->mapping.size != rbd_dev->header.image_size)
4285                         rbd_dev->mapping.size = rbd_dev->header.image_size;
4286
4287         ret = rbd_dev_v2_snap_context(rbd_dev);
4288         dout("rbd_dev_v2_snap_context returned %d\n", ret);
4289 out:
4290         up_write(&rbd_dev->header_rwsem);
4291
4292         return ret;
4293 }
4294
4295 static int rbd_bus_add_dev(struct rbd_device *rbd_dev)
4296 {
4297         struct device *dev;
4298         int ret;
4299
4300         mutex_lock_nested(&ctl_mutex, SINGLE_DEPTH_NESTING);
4301
4302         dev = &rbd_dev->dev;
4303         dev->bus = &rbd_bus_type;
4304         dev->type = &rbd_device_type;
4305         dev->parent = &rbd_root_dev;
4306         dev->release = rbd_dev_device_release;
4307         dev_set_name(dev, "%d", rbd_dev->dev_id);
4308         ret = device_register(dev);
4309
4310         mutex_unlock(&ctl_mutex);
4311
4312         return ret;
4313 }
4314
4315 static void rbd_bus_del_dev(struct rbd_device *rbd_dev)
4316 {
4317         device_unregister(&rbd_dev->dev);
4318 }
4319
4320 static atomic64_t rbd_dev_id_max = ATOMIC64_INIT(0);
4321
4322 /*
4323  * Get a unique rbd identifier for the given new rbd_dev, and add
4324  * the rbd_dev to the global list.  The minimum rbd id is 1.
4325  */
4326 static void rbd_dev_id_get(struct rbd_device *rbd_dev)
4327 {
4328         rbd_dev->dev_id = atomic64_inc_return(&rbd_dev_id_max);
4329
4330         spin_lock(&rbd_dev_list_lock);
4331         list_add_tail(&rbd_dev->node, &rbd_dev_list);
4332         spin_unlock(&rbd_dev_list_lock);
4333         dout("rbd_dev %p given dev id %llu\n", rbd_dev,
4334                 (unsigned long long) rbd_dev->dev_id);
4335 }
4336
4337 /*
4338  * Remove an rbd_dev from the global list, and record that its
4339  * identifier is no longer in use.
4340  */
4341 static void rbd_dev_id_put(struct rbd_device *rbd_dev)
4342 {
4343         struct list_head *tmp;
4344         int rbd_id = rbd_dev->dev_id;
4345         int max_id;
4346
4347         rbd_assert(rbd_id > 0);
4348
4349         dout("rbd_dev %p released dev id %llu\n", rbd_dev,
4350                 (unsigned long long) rbd_dev->dev_id);
4351         spin_lock(&rbd_dev_list_lock);
4352         list_del_init(&rbd_dev->node);
4353
4354         /*
4355          * If the id being "put" is not the current maximum, there
4356          * is nothing special we need to do.
4357          */
4358         if (rbd_id != atomic64_read(&rbd_dev_id_max)) {
4359                 spin_unlock(&rbd_dev_list_lock);
4360                 return;
4361         }
4362
4363         /*
4364          * We need to update the current maximum id.  Search the
4365          * list to find out what it is.  We're more likely to find
4366          * the maximum at the end, so search the list backward.
4367          */
4368         max_id = 0;
4369         list_for_each_prev(tmp, &rbd_dev_list) {
4370                 struct rbd_device *rbd_dev;
4371
4372                 rbd_dev = list_entry(tmp, struct rbd_device, node);
4373                 if (rbd_dev->dev_id > max_id)
4374                         max_id = rbd_dev->dev_id;
4375         }
4376         spin_unlock(&rbd_dev_list_lock);
4377
4378         /*
4379          * The max id could have been updated by rbd_dev_id_get(), in
4380          * which case it now accurately reflects the new maximum.
4381          * Be careful not to overwrite the maximum value in that
4382          * case.
4383          */
4384         atomic64_cmpxchg(&rbd_dev_id_max, rbd_id, max_id);
4385         dout("  max dev id has been reset\n");
4386 }
4387
4388 /*
4389  * Skips over white space at *buf, and updates *buf to point to the
4390  * first found non-space character (if any). Returns the length of
4391  * the token (string of non-white space characters) found.  Note
4392  * that *buf must be terminated with '\0'.
4393  */
4394 static inline size_t next_token(const char **buf)
4395 {
4396         /*
4397         * These are the characters that produce nonzero for
4398         * isspace() in the "C" and "POSIX" locales.
4399         */
4400         const char *spaces = " \f\n\r\t\v";
4401
4402         *buf += strspn(*buf, spaces);   /* Find start of token */
4403
4404         return strcspn(*buf, spaces);   /* Return token length */
4405 }
4406
4407 /*
4408  * Finds the next token in *buf, and if the provided token buffer is
4409  * big enough, copies the found token into it.  The result, if
4410  * copied, is guaranteed to be terminated with '\0'.  Note that *buf
4411  * must be terminated with '\0' on entry.
4412  *
4413  * Returns the length of the token found (not including the '\0').
4414  * Return value will be 0 if no token is found, and it will be >=
4415  * token_size if the token would not fit.
4416  *
4417  * The *buf pointer will be updated to point beyond the end of the
4418  * found token.  Note that this occurs even if the token buffer is
4419  * too small to hold it.
4420  */
4421 static inline size_t copy_token(const char **buf,
4422                                 char *token,
4423                                 size_t token_size)
4424 {
4425         size_t len;
4426
4427         len = next_token(buf);
4428         if (len < token_size) {
4429                 memcpy(token, *buf, len);
4430                 *(token + len) = '\0';
4431         }
4432         *buf += len;
4433
4434         return len;
4435 }
4436
4437 /*
4438  * Finds the next token in *buf, dynamically allocates a buffer big
4439  * enough to hold a copy of it, and copies the token into the new
4440  * buffer.  The copy is guaranteed to be terminated with '\0'.  Note
4441  * that a duplicate buffer is created even for a zero-length token.
4442  *
4443  * Returns a pointer to the newly-allocated duplicate, or a null
4444  * pointer if memory for the duplicate was not available.  If
4445  * the lenp argument is a non-null pointer, the length of the token
4446  * (not including the '\0') is returned in *lenp.
4447  *
4448  * If successful, the *buf pointer will be updated to point beyond
4449  * the end of the found token.
4450  *
4451  * Note: uses GFP_KERNEL for allocation.
4452  */
4453 static inline char *dup_token(const char **buf, size_t *lenp)
4454 {
4455         char *dup;
4456         size_t len;
4457
4458         len = next_token(buf);
4459         dup = kmemdup(*buf, len + 1, GFP_KERNEL);
4460         if (!dup)
4461                 return NULL;
4462         *(dup + len) = '\0';
4463         *buf += len;
4464
4465         if (lenp)
4466                 *lenp = len;
4467
4468         return dup;
4469 }
4470
4471 /*
4472  * Parse the options provided for an "rbd add" (i.e., rbd image
4473  * mapping) request.  These arrive via a write to /sys/bus/rbd/add,
4474  * and the data written is passed here via a NUL-terminated buffer.
4475  * Returns 0 if successful or an error code otherwise.
4476  *
4477  * The information extracted from these options is recorded in
4478  * the other parameters which return dynamically-allocated
4479  * structures:
4480  *  ceph_opts
4481  *      The address of a pointer that will refer to a ceph options
4482  *      structure.  Caller must release the returned pointer using
4483  *      ceph_destroy_options() when it is no longer needed.
4484  *  rbd_opts
4485  *      Address of an rbd options pointer.  Fully initialized by
4486  *      this function; caller must release with kfree().
4487  *  spec
4488  *      Address of an rbd image specification pointer.  Fully
4489  *      initialized by this function based on parsed options.
4490  *      Caller must release with rbd_spec_put().
4491  *
4492  * The options passed take this form:
4493  *  <mon_addrs> <options> <pool_name> <image_name> [<snap_id>]
4494  * where:
4495  *  <mon_addrs>
4496  *      A comma-separated list of one or more monitor addresses.
4497  *      A monitor address is an ip address, optionally followed
4498  *      by a port number (separated by a colon).
4499  *        I.e.:  ip1[:port1][,ip2[:port2]...]
4500  *  <options>
4501  *      A comma-separated list of ceph and/or rbd options.
4502  *  <pool_name>
4503  *      The name of the rados pool containing the rbd image.
4504  *  <image_name>
4505  *      The name of the image in that pool to map.
4506  *  <snap_id>
4507  *      An optional snapshot id.  If provided, the mapping will
4508  *      present data from the image at the time that snapshot was
4509  *      created.  The image head is used if no snapshot id is
4510  *      provided.  Snapshot mappings are always read-only.
4511  */
4512 static int rbd_add_parse_args(const char *buf,
4513                                 struct ceph_options **ceph_opts,
4514                                 struct rbd_options **opts,
4515                                 struct rbd_spec **rbd_spec)
4516 {
4517         size_t len;
4518         char *options;
4519         const char *mon_addrs;
4520         char *snap_name;
4521         size_t mon_addrs_size;
4522         struct rbd_spec *spec = NULL;
4523         struct rbd_options *rbd_opts = NULL;
4524         struct ceph_options *copts;
4525         int ret;
4526
4527         /* The first four tokens are required */
4528
4529         len = next_token(&buf);
4530         if (!len) {
4531                 rbd_warn(NULL, "no monitor address(es) provided");
4532                 return -EINVAL;
4533         }
4534         mon_addrs = buf;
4535         mon_addrs_size = len + 1;
4536         buf += len;
4537
4538         ret = -EINVAL;
4539         options = dup_token(&buf, NULL);
4540         if (!options)
4541                 return -ENOMEM;
4542         if (!*options) {
4543                 rbd_warn(NULL, "no options provided");
4544                 goto out_err;
4545         }
4546
4547         spec = rbd_spec_alloc();
4548         if (!spec)
4549                 goto out_mem;
4550
4551         spec->pool_name = dup_token(&buf, NULL);
4552         if (!spec->pool_name)
4553                 goto out_mem;
4554         if (!*spec->pool_name) {
4555                 rbd_warn(NULL, "no pool name provided");
4556                 goto out_err;
4557         }
4558
4559         spec->image_name = dup_token(&buf, NULL);
4560         if (!spec->image_name)
4561                 goto out_mem;
4562         if (!*spec->image_name) {
4563                 rbd_warn(NULL, "no image name provided");
4564                 goto out_err;
4565         }
4566
4567         /*
4568          * Snapshot name is optional; default is to use "-"
4569          * (indicating the head/no snapshot).
4570          */
4571         len = next_token(&buf);
4572         if (!len) {
4573                 buf = RBD_SNAP_HEAD_NAME; /* No snapshot supplied */
4574                 len = sizeof (RBD_SNAP_HEAD_NAME) - 1;
4575         } else if (len > RBD_MAX_SNAP_NAME_LEN) {
4576                 ret = -ENAMETOOLONG;
4577                 goto out_err;
4578         }
4579         snap_name = kmemdup(buf, len + 1, GFP_KERNEL);
4580         if (!snap_name)
4581                 goto out_mem;
4582         *(snap_name + len) = '\0';
4583         spec->snap_name = snap_name;
4584
4585         /* Initialize all rbd options to the defaults */
4586
4587         rbd_opts = kzalloc(sizeof (*rbd_opts), GFP_KERNEL);
4588         if (!rbd_opts)
4589                 goto out_mem;
4590
4591         rbd_opts->read_only = RBD_READ_ONLY_DEFAULT;
4592
4593         copts = ceph_parse_options(options, mon_addrs,
4594                                         mon_addrs + mon_addrs_size - 1,
4595                                         parse_rbd_opts_token, rbd_opts);
4596         if (IS_ERR(copts)) {
4597                 ret = PTR_ERR(copts);
4598                 goto out_err;
4599         }
4600         kfree(options);
4601
4602         *ceph_opts = copts;
4603         *opts = rbd_opts;
4604         *rbd_spec = spec;
4605
4606         return 0;
4607 out_mem:
4608         ret = -ENOMEM;
4609 out_err:
4610         kfree(rbd_opts);
4611         rbd_spec_put(spec);
4612         kfree(options);
4613
4614         return ret;
4615 }
4616
4617 /*
4618  * An rbd format 2 image has a unique identifier, distinct from the
4619  * name given to it by the user.  Internally, that identifier is
4620  * what's used to specify the names of objects related to the image.
4621  *
4622  * A special "rbd id" object is used to map an rbd image name to its
4623  * id.  If that object doesn't exist, then there is no v2 rbd image
4624  * with the supplied name.
4625  *
4626  * This function will record the given rbd_dev's image_id field if
4627  * it can be determined, and in that case will return 0.  If any
4628  * errors occur a negative errno will be returned and the rbd_dev's
4629  * image_id field will be unchanged (and should be NULL).
4630  */
4631 static int rbd_dev_image_id(struct rbd_device *rbd_dev)
4632 {
4633         int ret;
4634         size_t size;
4635         char *object_name;
4636         void *response;
4637         char *image_id;
4638
4639         /*
4640          * When probing a parent image, the image id is already
4641          * known (and the image name likely is not).  There's no
4642          * need to fetch the image id again in this case.  We
4643          * do still need to set the image format though.
4644          */
4645         if (rbd_dev->spec->image_id) {
4646                 rbd_dev->image_format = *rbd_dev->spec->image_id ? 2 : 1;
4647
4648                 return 0;
4649         }
4650
4651         /*
4652          * First, see if the format 2 image id file exists, and if
4653          * so, get the image's persistent id from it.
4654          */
4655         size = sizeof (RBD_ID_PREFIX) + strlen(rbd_dev->spec->image_name);
4656         object_name = kmalloc(size, GFP_NOIO);
4657         if (!object_name)
4658                 return -ENOMEM;
4659         sprintf(object_name, "%s%s", RBD_ID_PREFIX, rbd_dev->spec->image_name);
4660         dout("rbd id object name is %s\n", object_name);
4661
4662         /* Response will be an encoded string, which includes a length */
4663
4664         size = sizeof (__le32) + RBD_IMAGE_ID_LEN_MAX;
4665         response = kzalloc(size, GFP_NOIO);
4666         if (!response) {
4667                 ret = -ENOMEM;
4668                 goto out;
4669         }
4670
4671         /* If it doesn't exist we'll assume it's a format 1 image */
4672
4673         ret = rbd_obj_method_sync(rbd_dev, object_name,
4674                                 "rbd", "get_id", NULL, 0,
4675                                 response, RBD_IMAGE_ID_LEN_MAX);
4676         dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
4677         if (ret == -ENOENT) {
4678                 image_id = kstrdup("", GFP_KERNEL);
4679                 ret = image_id ? 0 : -ENOMEM;
4680                 if (!ret)
4681                         rbd_dev->image_format = 1;
4682         } else if (ret > sizeof (__le32)) {
4683                 void *p = response;
4684
4685                 image_id = ceph_extract_encoded_string(&p, p + ret,
4686                                                 NULL, GFP_NOIO);
4687                 ret = IS_ERR(image_id) ? PTR_ERR(image_id) : 0;
4688                 if (!ret)
4689                         rbd_dev->image_format = 2;
4690         } else {
4691                 ret = -EINVAL;
4692         }
4693
4694         if (!ret) {
4695                 rbd_dev->spec->image_id = image_id;
4696                 dout("image_id is %s\n", image_id);
4697         }
4698 out:
4699         kfree(response);
4700         kfree(object_name);
4701
4702         return ret;
4703 }
4704
4705 /*
4706  * Undo whatever state changes are made by v1 or v2 header info
4707  * call.
4708  */
4709 static void rbd_dev_unprobe(struct rbd_device *rbd_dev)
4710 {
4711         struct rbd_image_header *header;
4712
4713         /* Drop parent reference unless it's already been done (or none) */
4714
4715         if (rbd_dev->parent_overlap)
4716                 rbd_dev_parent_put(rbd_dev);
4717
4718         /* Free dynamic fields from the header, then zero it out */
4719
4720         header = &rbd_dev->header;
4721         ceph_put_snap_context(header->snapc);
4722         kfree(header->snap_sizes);
4723         kfree(header->snap_names);
4724         kfree(header->object_prefix);
4725         memset(header, 0, sizeof (*header));
4726 }
4727
4728 static int rbd_dev_v2_header_onetime(struct rbd_device *rbd_dev)
4729 {
4730         int ret;
4731
4732         ret = rbd_dev_v2_object_prefix(rbd_dev);
4733         if (ret)
4734                 goto out_err;
4735
4736         /*
4737          * Get the and check features for the image.  Currently the
4738          * features are assumed to never change.
4739          */
4740         ret = rbd_dev_v2_features(rbd_dev);
4741         if (ret)
4742                 goto out_err;
4743
4744         /* If the image supports fancy striping, get its parameters */
4745
4746         if (rbd_dev->header.features & RBD_FEATURE_STRIPINGV2) {
4747                 ret = rbd_dev_v2_striping_info(rbd_dev);
4748                 if (ret < 0)
4749                         goto out_err;
4750         }
4751         /* No support for crypto and compression type format 2 images */
4752
4753         return 0;
4754 out_err:
4755         rbd_dev->header.features = 0;
4756         kfree(rbd_dev->header.object_prefix);
4757         rbd_dev->header.object_prefix = NULL;
4758
4759         return ret;
4760 }
4761
4762 static int rbd_dev_probe_parent(struct rbd_device *rbd_dev)
4763 {
4764         struct rbd_device *parent = NULL;
4765         struct rbd_spec *parent_spec;
4766         struct rbd_client *rbdc;
4767         int ret;
4768
4769         if (!rbd_dev->parent_spec)
4770                 return 0;
4771         /*
4772          * We need to pass a reference to the client and the parent
4773          * spec when creating the parent rbd_dev.  Images related by
4774          * parent/child relationships always share both.
4775          */
4776         parent_spec = rbd_spec_get(rbd_dev->parent_spec);
4777         rbdc = __rbd_get_client(rbd_dev->rbd_client);
4778
4779         ret = -ENOMEM;
4780         parent = rbd_dev_create(rbdc, parent_spec);
4781         if (!parent)
4782                 goto out_err;
4783
4784         ret = rbd_dev_image_probe(parent, false);
4785         if (ret < 0)
4786                 goto out_err;
4787         rbd_dev->parent = parent;
4788         atomic_set(&rbd_dev->parent_ref, 1);
4789
4790         return 0;
4791 out_err:
4792         if (parent) {
4793                 rbd_dev_unparent(rbd_dev);
4794                 kfree(rbd_dev->header_name);
4795                 rbd_dev_destroy(parent);
4796         } else {
4797                 rbd_put_client(rbdc);
4798                 rbd_spec_put(parent_spec);
4799         }
4800
4801         return ret;
4802 }
4803
4804 static int rbd_dev_device_setup(struct rbd_device *rbd_dev)
4805 {
4806         int ret;
4807
4808         /* generate unique id: find highest unique id, add one */
4809         rbd_dev_id_get(rbd_dev);
4810
4811         /* Fill in the device name, now that we have its id. */
4812         BUILD_BUG_ON(DEV_NAME_LEN
4813                         < sizeof (RBD_DRV_NAME) + MAX_INT_FORMAT_WIDTH);
4814         sprintf(rbd_dev->name, "%s%d", RBD_DRV_NAME, rbd_dev->dev_id);
4815
4816         /* Get our block major device number. */
4817
4818         ret = register_blkdev(0, rbd_dev->name);
4819         if (ret < 0)
4820                 goto err_out_id;
4821         rbd_dev->major = ret;
4822
4823         /* Set up the blkdev mapping. */
4824
4825         ret = rbd_init_disk(rbd_dev);
4826         if (ret)
4827                 goto err_out_blkdev;
4828
4829         ret = rbd_dev_mapping_set(rbd_dev);
4830         if (ret)
4831                 goto err_out_disk;
4832         set_capacity(rbd_dev->disk, rbd_dev->mapping.size / SECTOR_SIZE);
4833
4834         ret = rbd_bus_add_dev(rbd_dev);
4835         if (ret)
4836                 goto err_out_mapping;
4837
4838         /* Everything's ready.  Announce the disk to the world. */
4839
4840         set_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags);
4841         add_disk(rbd_dev->disk);
4842
4843         pr_info("%s: added with size 0x%llx\n", rbd_dev->disk->disk_name,
4844                 (unsigned long long) rbd_dev->mapping.size);
4845
4846         return ret;
4847
4848 err_out_mapping:
4849         rbd_dev_mapping_clear(rbd_dev);
4850 err_out_disk:
4851         rbd_free_disk(rbd_dev);
4852 err_out_blkdev:
4853         unregister_blkdev(rbd_dev->major, rbd_dev->name);
4854 err_out_id:
4855         rbd_dev_id_put(rbd_dev);
4856         rbd_dev_mapping_clear(rbd_dev);
4857
4858         return ret;
4859 }
4860
4861 static int rbd_dev_header_name(struct rbd_device *rbd_dev)
4862 {
4863         struct rbd_spec *spec = rbd_dev->spec;
4864         size_t size;
4865
4866         /* Record the header object name for this rbd image. */
4867
4868         rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
4869
4870         if (rbd_dev->image_format == 1)
4871                 size = strlen(spec->image_name) + sizeof (RBD_SUFFIX);
4872         else
4873                 size = sizeof (RBD_HEADER_PREFIX) + strlen(spec->image_id);
4874
4875         rbd_dev->header_name = kmalloc(size, GFP_KERNEL);
4876         if (!rbd_dev->header_name)
4877                 return -ENOMEM;
4878
4879         if (rbd_dev->image_format == 1)
4880                 sprintf(rbd_dev->header_name, "%s%s",
4881                         spec->image_name, RBD_SUFFIX);
4882         else
4883                 sprintf(rbd_dev->header_name, "%s%s",
4884                         RBD_HEADER_PREFIX, spec->image_id);
4885         return 0;
4886 }
4887
4888 static void rbd_dev_image_release(struct rbd_device *rbd_dev)
4889 {
4890         rbd_dev_unprobe(rbd_dev);
4891         kfree(rbd_dev->header_name);
4892         rbd_dev->header_name = NULL;
4893         rbd_dev->image_format = 0;
4894         kfree(rbd_dev->spec->image_id);
4895         rbd_dev->spec->image_id = NULL;
4896
4897         rbd_dev_destroy(rbd_dev);
4898 }
4899
4900 /*
4901  * Probe for the existence of the header object for the given rbd
4902  * device.  If this image is the one being mapped (i.e., not a
4903  * parent), initiate a watch on its header object before using that
4904  * object to get detailed information about the rbd image.
4905  */
4906 static int rbd_dev_image_probe(struct rbd_device *rbd_dev, bool mapping)
4907 {
4908         int ret;
4909         int tmp;
4910
4911         /*
4912          * Get the id from the image id object.  Unless there's an
4913          * error, rbd_dev->spec->image_id will be filled in with
4914          * a dynamically-allocated string, and rbd_dev->image_format
4915          * will be set to either 1 or 2.
4916          */
4917         ret = rbd_dev_image_id(rbd_dev);
4918         if (ret)
4919                 return ret;
4920         rbd_assert(rbd_dev->spec->image_id);
4921         rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
4922
4923         ret = rbd_dev_header_name(rbd_dev);
4924         if (ret)
4925                 goto err_out_format;
4926
4927         if (mapping) {
4928                 ret = rbd_dev_header_watch_sync(rbd_dev, true);
4929                 if (ret)
4930                         goto out_header_name;
4931         }
4932
4933         if (rbd_dev->image_format == 1)
4934                 ret = rbd_dev_v1_header_info(rbd_dev);
4935         else
4936                 ret = rbd_dev_v2_header_info(rbd_dev);
4937         if (ret)
4938                 goto err_out_watch;
4939
4940         ret = rbd_dev_spec_update(rbd_dev);
4941         if (ret)
4942                 goto err_out_probe;
4943
4944         ret = rbd_dev_probe_parent(rbd_dev);
4945         if (ret)
4946                 goto err_out_probe;
4947
4948         dout("discovered format %u image, header name is %s\n",
4949                 rbd_dev->image_format, rbd_dev->header_name);
4950
4951         return 0;
4952 err_out_probe:
4953         rbd_dev_unprobe(rbd_dev);
4954 err_out_watch:
4955         if (mapping) {
4956                 tmp = rbd_dev_header_watch_sync(rbd_dev, false);
4957                 if (tmp)
4958                         rbd_warn(rbd_dev, "unable to tear down "
4959                                         "watch request (%d)\n", tmp);
4960         }
4961 out_header_name:
4962         kfree(rbd_dev->header_name);
4963         rbd_dev->header_name = NULL;
4964 err_out_format:
4965         rbd_dev->image_format = 0;
4966         kfree(rbd_dev->spec->image_id);
4967         rbd_dev->spec->image_id = NULL;
4968
4969         dout("probe failed, returning %d\n", ret);
4970
4971         return ret;
4972 }
4973
4974 static ssize_t rbd_add(struct bus_type *bus,
4975                        const char *buf,
4976                        size_t count)
4977 {
4978         struct rbd_device *rbd_dev = NULL;
4979         struct ceph_options *ceph_opts = NULL;
4980         struct rbd_options *rbd_opts = NULL;
4981         struct rbd_spec *spec = NULL;
4982         struct rbd_client *rbdc;
4983         struct ceph_osd_client *osdc;
4984         bool read_only;
4985         int rc = -ENOMEM;
4986
4987         if (!try_module_get(THIS_MODULE))
4988                 return -ENODEV;
4989
4990         /* parse add command */
4991         rc = rbd_add_parse_args(buf, &ceph_opts, &rbd_opts, &spec);
4992         if (rc < 0)
4993                 goto err_out_module;
4994         read_only = rbd_opts->read_only;
4995         kfree(rbd_opts);
4996         rbd_opts = NULL;        /* done with this */
4997
4998         rbdc = rbd_get_client(ceph_opts);
4999         if (IS_ERR(rbdc)) {
5000                 rc = PTR_ERR(rbdc);
5001                 goto err_out_args;
5002         }
5003
5004         /* pick the pool */
5005         osdc = &rbdc->client->osdc;
5006         rc = ceph_pg_poolid_by_name(osdc->osdmap, spec->pool_name);
5007         if (rc < 0)
5008                 goto err_out_client;
5009         spec->pool_id = (u64)rc;
5010
5011         /* The ceph file layout needs to fit pool id in 32 bits */
5012
5013         if (spec->pool_id > (u64)U32_MAX) {
5014                 rbd_warn(NULL, "pool id too large (%llu > %u)\n",
5015                                 (unsigned long long)spec->pool_id, U32_MAX);
5016                 rc = -EIO;
5017                 goto err_out_client;
5018         }
5019
5020         rbd_dev = rbd_dev_create(rbdc, spec);
5021         if (!rbd_dev)
5022                 goto err_out_client;
5023         rbdc = NULL;            /* rbd_dev now owns this */
5024         spec = NULL;            /* rbd_dev now owns this */
5025
5026         rc = rbd_dev_image_probe(rbd_dev, true);
5027         if (rc < 0)
5028                 goto err_out_rbd_dev;
5029
5030         /* If we are mapping a snapshot it must be marked read-only */
5031
5032         if (rbd_dev->spec->snap_id != CEPH_NOSNAP)
5033                 read_only = true;
5034         rbd_dev->mapping.read_only = read_only;
5035
5036         rc = rbd_dev_device_setup(rbd_dev);
5037         if (rc) {
5038                 rbd_dev_image_release(rbd_dev);
5039                 goto err_out_module;
5040         }
5041
5042         return count;
5043
5044 err_out_rbd_dev:
5045         rbd_dev_destroy(rbd_dev);
5046 err_out_client:
5047         rbd_put_client(rbdc);
5048 err_out_args:
5049         rbd_spec_put(spec);
5050 err_out_module:
5051         module_put(THIS_MODULE);
5052
5053         dout("Error adding device %s\n", buf);
5054
5055         return (ssize_t)rc;
5056 }
5057
5058 static struct rbd_device *__rbd_get_dev(unsigned long dev_id)
5059 {
5060         struct list_head *tmp;
5061         struct rbd_device *rbd_dev;
5062
5063         spin_lock(&rbd_dev_list_lock);
5064         list_for_each(tmp, &rbd_dev_list) {
5065                 rbd_dev = list_entry(tmp, struct rbd_device, node);
5066                 if (rbd_dev->dev_id == dev_id) {
5067                         spin_unlock(&rbd_dev_list_lock);
5068                         return rbd_dev;
5069                 }
5070         }
5071         spin_unlock(&rbd_dev_list_lock);
5072         return NULL;
5073 }
5074
5075 static void rbd_dev_device_release(struct device *dev)
5076 {
5077         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
5078
5079         rbd_free_disk(rbd_dev);
5080         clear_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags);
5081         rbd_dev_mapping_clear(rbd_dev);
5082         unregister_blkdev(rbd_dev->major, rbd_dev->name);
5083         rbd_dev->major = 0;
5084         rbd_dev_id_put(rbd_dev);
5085         rbd_dev_mapping_clear(rbd_dev);
5086 }
5087
5088 static void rbd_dev_remove_parent(struct rbd_device *rbd_dev)
5089 {
5090         while (rbd_dev->parent) {
5091                 struct rbd_device *first = rbd_dev;
5092                 struct rbd_device *second = first->parent;
5093                 struct rbd_device *third;
5094
5095                 /*
5096                  * Follow to the parent with no grandparent and
5097                  * remove it.
5098                  */
5099                 while (second && (third = second->parent)) {
5100                         first = second;
5101                         second = third;
5102                 }
5103                 rbd_assert(second);
5104                 rbd_dev_image_release(second);
5105                 first->parent = NULL;
5106                 first->parent_overlap = 0;
5107
5108                 rbd_assert(first->parent_spec);
5109                 rbd_spec_put(first->parent_spec);
5110                 first->parent_spec = NULL;
5111         }
5112 }
5113
5114 static ssize_t rbd_remove(struct bus_type *bus,
5115                           const char *buf,
5116                           size_t count)
5117 {
5118         struct rbd_device *rbd_dev = NULL;
5119         int target_id;
5120         unsigned long ul;
5121         int ret;
5122
5123         ret = strict_strtoul(buf, 10, &ul);
5124         if (ret)
5125                 return ret;
5126
5127         /* convert to int; abort if we lost anything in the conversion */
5128         target_id = (int) ul;
5129         if (target_id != ul)
5130                 return -EINVAL;
5131
5132         mutex_lock_nested(&ctl_mutex, SINGLE_DEPTH_NESTING);
5133
5134         rbd_dev = __rbd_get_dev(target_id);
5135         if (!rbd_dev) {
5136                 ret = -ENOENT;
5137                 goto done;
5138         }
5139
5140         spin_lock_irq(&rbd_dev->lock);
5141         if (rbd_dev->open_count)
5142                 ret = -EBUSY;
5143         else
5144                 set_bit(RBD_DEV_FLAG_REMOVING, &rbd_dev->flags);
5145         spin_unlock_irq(&rbd_dev->lock);
5146         if (ret < 0)
5147                 goto done;
5148         rbd_bus_del_dev(rbd_dev);
5149         ret = rbd_dev_header_watch_sync(rbd_dev, false);
5150         if (ret)
5151                 rbd_warn(rbd_dev, "failed to cancel watch event (%d)\n", ret);
5152         rbd_dev_image_release(rbd_dev);
5153         module_put(THIS_MODULE);
5154         ret = count;
5155 done:
5156         mutex_unlock(&ctl_mutex);
5157
5158         return ret;
5159 }
5160
5161 /*
5162  * create control files in sysfs
5163  * /sys/bus/rbd/...
5164  */
5165 static int rbd_sysfs_init(void)
5166 {
5167         int ret;
5168
5169         ret = device_register(&rbd_root_dev);
5170         if (ret < 0)
5171                 return ret;
5172
5173         ret = bus_register(&rbd_bus_type);
5174         if (ret < 0)
5175                 device_unregister(&rbd_root_dev);
5176
5177         return ret;
5178 }
5179
5180 static void rbd_sysfs_cleanup(void)
5181 {
5182         bus_unregister(&rbd_bus_type);
5183         device_unregister(&rbd_root_dev);
5184 }
5185
5186 static int rbd_slab_init(void)
5187 {
5188         rbd_assert(!rbd_img_request_cache);
5189         rbd_img_request_cache = kmem_cache_create("rbd_img_request",
5190                                         sizeof (struct rbd_img_request),
5191                                         __alignof__(struct rbd_img_request),
5192                                         0, NULL);
5193         if (!rbd_img_request_cache)
5194                 return -ENOMEM;
5195
5196         rbd_assert(!rbd_obj_request_cache);
5197         rbd_obj_request_cache = kmem_cache_create("rbd_obj_request",
5198                                         sizeof (struct rbd_obj_request),
5199                                         __alignof__(struct rbd_obj_request),
5200                                         0, NULL);
5201         if (!rbd_obj_request_cache)
5202                 goto out_err;
5203
5204         rbd_assert(!rbd_segment_name_cache);
5205         rbd_segment_name_cache = kmem_cache_create("rbd_segment_name",
5206                                         MAX_OBJ_NAME_SIZE + 1, 1, 0, NULL);
5207         if (rbd_segment_name_cache)
5208                 return 0;
5209 out_err:
5210         if (rbd_obj_request_cache) {
5211                 kmem_cache_destroy(rbd_obj_request_cache);
5212                 rbd_obj_request_cache = NULL;
5213         }
5214
5215         kmem_cache_destroy(rbd_img_request_cache);
5216         rbd_img_request_cache = NULL;
5217
5218         return -ENOMEM;
5219 }
5220
5221 static void rbd_slab_exit(void)
5222 {
5223         rbd_assert(rbd_segment_name_cache);
5224         kmem_cache_destroy(rbd_segment_name_cache);
5225         rbd_segment_name_cache = NULL;
5226
5227         rbd_assert(rbd_obj_request_cache);
5228         kmem_cache_destroy(rbd_obj_request_cache);
5229         rbd_obj_request_cache = NULL;
5230
5231         rbd_assert(rbd_img_request_cache);
5232         kmem_cache_destroy(rbd_img_request_cache);
5233         rbd_img_request_cache = NULL;
5234 }
5235
5236 static int __init rbd_init(void)
5237 {
5238         int rc;
5239
5240         if (!libceph_compatible(NULL)) {
5241                 rbd_warn(NULL, "libceph incompatibility (quitting)");
5242
5243                 return -EINVAL;
5244         }
5245         rc = rbd_slab_init();
5246         if (rc)
5247                 return rc;
5248         rc = rbd_sysfs_init();
5249         if (rc)
5250                 rbd_slab_exit();
5251         else
5252                 pr_info("loaded " RBD_DRV_NAME_LONG "\n");
5253
5254         return rc;
5255 }
5256
5257 static void __exit rbd_exit(void)
5258 {
5259         rbd_sysfs_cleanup();
5260         rbd_slab_exit();
5261 }
5262
5263 module_init(rbd_init);
5264 module_exit(rbd_exit);
5265
5266 MODULE_AUTHOR("Sage Weil <sage@newdream.net>");
5267 MODULE_AUTHOR("Yehuda Sadeh <yehuda@hq.newdream.net>");
5268 MODULE_DESCRIPTION("rados block device");
5269
5270 /* following authorship retained from original osdblk.c */
5271 MODULE_AUTHOR("Jeff Garzik <jeff@garzik.org>");
5272
5273 MODULE_LICENSE("GPL");