Merge tag 'dt2' of git://git.kernel.org/pub/scm/linux/kernel/git/arm/arm-soc
[firefly-linux-kernel-4.4.55.git] / arch / x86 / mm / init_64.c
1 /*
2  *  linux/arch/x86_64/mm/init.c
3  *
4  *  Copyright (C) 1995  Linus Torvalds
5  *  Copyright (C) 2000  Pavel Machek <pavel@ucw.cz>
6  *  Copyright (C) 2002,2003 Andi Kleen <ak@suse.de>
7  */
8
9 #include <linux/signal.h>
10 #include <linux/sched.h>
11 #include <linux/kernel.h>
12 #include <linux/errno.h>
13 #include <linux/string.h>
14 #include <linux/types.h>
15 #include <linux/ptrace.h>
16 #include <linux/mman.h>
17 #include <linux/mm.h>
18 #include <linux/swap.h>
19 #include <linux/smp.h>
20 #include <linux/init.h>
21 #include <linux/initrd.h>
22 #include <linux/pagemap.h>
23 #include <linux/bootmem.h>
24 #include <linux/memblock.h>
25 #include <linux/proc_fs.h>
26 #include <linux/pci.h>
27 #include <linux/pfn.h>
28 #include <linux/poison.h>
29 #include <linux/dma-mapping.h>
30 #include <linux/module.h>
31 #include <linux/memory.h>
32 #include <linux/memory_hotplug.h>
33 #include <linux/nmi.h>
34 #include <linux/gfp.h>
35
36 #include <asm/processor.h>
37 #include <asm/bios_ebda.h>
38 #include <asm/uaccess.h>
39 #include <asm/pgtable.h>
40 #include <asm/pgalloc.h>
41 #include <asm/dma.h>
42 #include <asm/fixmap.h>
43 #include <asm/e820.h>
44 #include <asm/apic.h>
45 #include <asm/tlb.h>
46 #include <asm/mmu_context.h>
47 #include <asm/proto.h>
48 #include <asm/smp.h>
49 #include <asm/sections.h>
50 #include <asm/kdebug.h>
51 #include <asm/numa.h>
52 #include <asm/cacheflush.h>
53 #include <asm/init.h>
54 #include <asm/uv/uv.h>
55 #include <asm/setup.h>
56
57 static int __init parse_direct_gbpages_off(char *arg)
58 {
59         direct_gbpages = 0;
60         return 0;
61 }
62 early_param("nogbpages", parse_direct_gbpages_off);
63
64 static int __init parse_direct_gbpages_on(char *arg)
65 {
66         direct_gbpages = 1;
67         return 0;
68 }
69 early_param("gbpages", parse_direct_gbpages_on);
70
71 /*
72  * NOTE: pagetable_init alloc all the fixmap pagetables contiguous on the
73  * physical space so we can cache the place of the first one and move
74  * around without checking the pgd every time.
75  */
76
77 pteval_t __supported_pte_mask __read_mostly = ~_PAGE_IOMAP;
78 EXPORT_SYMBOL_GPL(__supported_pte_mask);
79
80 int force_personality32;
81
82 /*
83  * noexec32=on|off
84  * Control non executable heap for 32bit processes.
85  * To control the stack too use noexec=off
86  *
87  * on   PROT_READ does not imply PROT_EXEC for 32-bit processes (default)
88  * off  PROT_READ implies PROT_EXEC
89  */
90 static int __init nonx32_setup(char *str)
91 {
92         if (!strcmp(str, "on"))
93                 force_personality32 &= ~READ_IMPLIES_EXEC;
94         else if (!strcmp(str, "off"))
95                 force_personality32 |= READ_IMPLIES_EXEC;
96         return 1;
97 }
98 __setup("noexec32=", nonx32_setup);
99
100 /*
101  * When memory was added/removed make sure all the processes MM have
102  * suitable PGD entries in the local PGD level page.
103  */
104 void sync_global_pgds(unsigned long start, unsigned long end)
105 {
106         unsigned long address;
107
108         for (address = start; address <= end; address += PGDIR_SIZE) {
109                 const pgd_t *pgd_ref = pgd_offset_k(address);
110                 struct page *page;
111                 pgd_t *pgd;
112
113                 if (pgd_none(*pgd_ref))
114                         continue;
115
116                 spin_lock(&pgd_lock);
117                 list_for_each_entry(page, &pgd_list, lru) {
118                         spinlock_t *pgt_lock;
119
120                         pgd = (pgd_t *)page_address(page) + pgd_index(address);
121                         /* the pgt_lock only for Xen */
122                         pgt_lock = &pgd_page_get_mm(page)->page_table_lock;
123                         spin_lock(pgt_lock);
124
125                         if (pgd_none(*pgd))
126                                 set_pgd(pgd, *pgd_ref);
127                         else
128                                 BUG_ON(pgd_page_vaddr(*pgd)
129                                        != pgd_page_vaddr(*pgd_ref));
130
131                         spin_unlock(pgt_lock);
132                 }
133
134                 pgd = __va(real_mode_header->trampoline_pgd);
135                 pgd += pgd_index(address);
136
137                 if (pgd_none(*pgd))
138                         set_pgd(pgd, *pgd_ref);
139
140                 spin_unlock(&pgd_lock);
141         }
142 }
143
144 /*
145  * NOTE: This function is marked __ref because it calls __init function
146  * (alloc_bootmem_pages). It's safe to do it ONLY when after_bootmem == 0.
147  */
148 static __ref void *spp_getpage(void)
149 {
150         void *ptr;
151
152         if (after_bootmem)
153                 ptr = (void *) get_zeroed_page(GFP_ATOMIC | __GFP_NOTRACK);
154         else
155                 ptr = alloc_bootmem_pages(PAGE_SIZE);
156
157         if (!ptr || ((unsigned long)ptr & ~PAGE_MASK)) {
158                 panic("set_pte_phys: cannot allocate page data %s\n",
159                         after_bootmem ? "after bootmem" : "");
160         }
161
162         pr_debug("spp_getpage %p\n", ptr);
163
164         return ptr;
165 }
166
167 static pud_t *fill_pud(pgd_t *pgd, unsigned long vaddr)
168 {
169         if (pgd_none(*pgd)) {
170                 pud_t *pud = (pud_t *)spp_getpage();
171                 pgd_populate(&init_mm, pgd, pud);
172                 if (pud != pud_offset(pgd, 0))
173                         printk(KERN_ERR "PAGETABLE BUG #00! %p <-> %p\n",
174                                pud, pud_offset(pgd, 0));
175         }
176         return pud_offset(pgd, vaddr);
177 }
178
179 static pmd_t *fill_pmd(pud_t *pud, unsigned long vaddr)
180 {
181         if (pud_none(*pud)) {
182                 pmd_t *pmd = (pmd_t *) spp_getpage();
183                 pud_populate(&init_mm, pud, pmd);
184                 if (pmd != pmd_offset(pud, 0))
185                         printk(KERN_ERR "PAGETABLE BUG #01! %p <-> %p\n",
186                                pmd, pmd_offset(pud, 0));
187         }
188         return pmd_offset(pud, vaddr);
189 }
190
191 static pte_t *fill_pte(pmd_t *pmd, unsigned long vaddr)
192 {
193         if (pmd_none(*pmd)) {
194                 pte_t *pte = (pte_t *) spp_getpage();
195                 pmd_populate_kernel(&init_mm, pmd, pte);
196                 if (pte != pte_offset_kernel(pmd, 0))
197                         printk(KERN_ERR "PAGETABLE BUG #02!\n");
198         }
199         return pte_offset_kernel(pmd, vaddr);
200 }
201
202 void set_pte_vaddr_pud(pud_t *pud_page, unsigned long vaddr, pte_t new_pte)
203 {
204         pud_t *pud;
205         pmd_t *pmd;
206         pte_t *pte;
207
208         pud = pud_page + pud_index(vaddr);
209         pmd = fill_pmd(pud, vaddr);
210         pte = fill_pte(pmd, vaddr);
211
212         set_pte(pte, new_pte);
213
214         /*
215          * It's enough to flush this one mapping.
216          * (PGE mappings get flushed as well)
217          */
218         __flush_tlb_one(vaddr);
219 }
220
221 void set_pte_vaddr(unsigned long vaddr, pte_t pteval)
222 {
223         pgd_t *pgd;
224         pud_t *pud_page;
225
226         pr_debug("set_pte_vaddr %lx to %lx\n", vaddr, native_pte_val(pteval));
227
228         pgd = pgd_offset_k(vaddr);
229         if (pgd_none(*pgd)) {
230                 printk(KERN_ERR
231                         "PGD FIXMAP MISSING, it should be setup in head.S!\n");
232                 return;
233         }
234         pud_page = (pud_t*)pgd_page_vaddr(*pgd);
235         set_pte_vaddr_pud(pud_page, vaddr, pteval);
236 }
237
238 pmd_t * __init populate_extra_pmd(unsigned long vaddr)
239 {
240         pgd_t *pgd;
241         pud_t *pud;
242
243         pgd = pgd_offset_k(vaddr);
244         pud = fill_pud(pgd, vaddr);
245         return fill_pmd(pud, vaddr);
246 }
247
248 pte_t * __init populate_extra_pte(unsigned long vaddr)
249 {
250         pmd_t *pmd;
251
252         pmd = populate_extra_pmd(vaddr);
253         return fill_pte(pmd, vaddr);
254 }
255
256 /*
257  * Create large page table mappings for a range of physical addresses.
258  */
259 static void __init __init_extra_mapping(unsigned long phys, unsigned long size,
260                                                 pgprot_t prot)
261 {
262         pgd_t *pgd;
263         pud_t *pud;
264         pmd_t *pmd;
265
266         BUG_ON((phys & ~PMD_MASK) || (size & ~PMD_MASK));
267         for (; size; phys += PMD_SIZE, size -= PMD_SIZE) {
268                 pgd = pgd_offset_k((unsigned long)__va(phys));
269                 if (pgd_none(*pgd)) {
270                         pud = (pud_t *) spp_getpage();
271                         set_pgd(pgd, __pgd(__pa(pud) | _KERNPG_TABLE |
272                                                 _PAGE_USER));
273                 }
274                 pud = pud_offset(pgd, (unsigned long)__va(phys));
275                 if (pud_none(*pud)) {
276                         pmd = (pmd_t *) spp_getpage();
277                         set_pud(pud, __pud(__pa(pmd) | _KERNPG_TABLE |
278                                                 _PAGE_USER));
279                 }
280                 pmd = pmd_offset(pud, phys);
281                 BUG_ON(!pmd_none(*pmd));
282                 set_pmd(pmd, __pmd(phys | pgprot_val(prot)));
283         }
284 }
285
286 void __init init_extra_mapping_wb(unsigned long phys, unsigned long size)
287 {
288         __init_extra_mapping(phys, size, PAGE_KERNEL_LARGE);
289 }
290
291 void __init init_extra_mapping_uc(unsigned long phys, unsigned long size)
292 {
293         __init_extra_mapping(phys, size, PAGE_KERNEL_LARGE_NOCACHE);
294 }
295
296 /*
297  * The head.S code sets up the kernel high mapping:
298  *
299  *   from __START_KERNEL_map to __START_KERNEL_map + size (== _end-_text)
300  *
301  * phys_addr holds the negative offset to the kernel, which is added
302  * to the compile time generated pmds. This results in invalid pmds up
303  * to the point where we hit the physaddr 0 mapping.
304  *
305  * We limit the mappings to the region from _text to _brk_end.  _brk_end
306  * is rounded up to the 2MB boundary. This catches the invalid pmds as
307  * well, as they are located before _text:
308  */
309 void __init cleanup_highmap(void)
310 {
311         unsigned long vaddr = __START_KERNEL_map;
312         unsigned long vaddr_end = __START_KERNEL_map + (max_pfn_mapped << PAGE_SHIFT);
313         unsigned long end = roundup((unsigned long)_brk_end, PMD_SIZE) - 1;
314         pmd_t *pmd = level2_kernel_pgt;
315
316         for (; vaddr + PMD_SIZE - 1 < vaddr_end; pmd++, vaddr += PMD_SIZE) {
317                 if (pmd_none(*pmd))
318                         continue;
319                 if (vaddr < (unsigned long) _text || vaddr > end)
320                         set_pmd(pmd, __pmd(0));
321         }
322 }
323
324 static __ref void *alloc_low_page(unsigned long *phys)
325 {
326         unsigned long pfn = pgt_buf_end++;
327         void *adr;
328
329         if (after_bootmem) {
330                 adr = (void *)get_zeroed_page(GFP_ATOMIC | __GFP_NOTRACK);
331                 *phys = __pa(adr);
332
333                 return adr;
334         }
335
336         if (pfn >= pgt_buf_top)
337                 panic("alloc_low_page: ran out of memory");
338
339         adr = early_memremap(pfn * PAGE_SIZE, PAGE_SIZE);
340         clear_page(adr);
341         *phys  = pfn * PAGE_SIZE;
342         return adr;
343 }
344
345 static __ref void *map_low_page(void *virt)
346 {
347         void *adr;
348         unsigned long phys, left;
349
350         if (after_bootmem)
351                 return virt;
352
353         phys = __pa(virt);
354         left = phys & (PAGE_SIZE - 1);
355         adr = early_memremap(phys & PAGE_MASK, PAGE_SIZE);
356         adr = (void *)(((unsigned long)adr) | left);
357
358         return adr;
359 }
360
361 static __ref void unmap_low_page(void *adr)
362 {
363         if (after_bootmem)
364                 return;
365
366         early_iounmap((void *)((unsigned long)adr & PAGE_MASK), PAGE_SIZE);
367 }
368
369 static unsigned long __meminit
370 phys_pte_init(pte_t *pte_page, unsigned long addr, unsigned long end,
371               pgprot_t prot)
372 {
373         unsigned pages = 0;
374         unsigned long last_map_addr = end;
375         int i;
376
377         pte_t *pte = pte_page + pte_index(addr);
378
379         for(i = pte_index(addr); i < PTRS_PER_PTE; i++, addr += PAGE_SIZE, pte++) {
380
381                 if (addr >= end) {
382                         if (!after_bootmem) {
383                                 for(; i < PTRS_PER_PTE; i++, pte++)
384                                         set_pte(pte, __pte(0));
385                         }
386                         break;
387                 }
388
389                 /*
390                  * We will re-use the existing mapping.
391                  * Xen for example has some special requirements, like mapping
392                  * pagetable pages as RO. So assume someone who pre-setup
393                  * these mappings are more intelligent.
394                  */
395                 if (pte_val(*pte)) {
396                         if (!after_bootmem)
397                                 pages++;
398                         continue;
399                 }
400
401                 if (0)
402                         printk("   pte=%p addr=%lx pte=%016lx\n",
403                                pte, addr, pfn_pte(addr >> PAGE_SHIFT, PAGE_KERNEL).pte);
404                 pages++;
405                 set_pte(pte, pfn_pte(addr >> PAGE_SHIFT, prot));
406                 last_map_addr = (addr & PAGE_MASK) + PAGE_SIZE;
407         }
408
409         update_page_count(PG_LEVEL_4K, pages);
410
411         return last_map_addr;
412 }
413
414 static unsigned long __meminit
415 phys_pmd_init(pmd_t *pmd_page, unsigned long address, unsigned long end,
416               unsigned long page_size_mask, pgprot_t prot)
417 {
418         unsigned long pages = 0, next;
419         unsigned long last_map_addr = end;
420
421         int i = pmd_index(address);
422
423         for (; i < PTRS_PER_PMD; i++, address = next) {
424                 unsigned long pte_phys;
425                 pmd_t *pmd = pmd_page + pmd_index(address);
426                 pte_t *pte;
427                 pgprot_t new_prot = prot;
428
429                 if (address >= end) {
430                         if (!after_bootmem) {
431                                 for (; i < PTRS_PER_PMD; i++, pmd++)
432                                         set_pmd(pmd, __pmd(0));
433                         }
434                         break;
435                 }
436
437                 next = (address & PMD_MASK) + PMD_SIZE;
438
439                 if (pmd_val(*pmd)) {
440                         if (!pmd_large(*pmd)) {
441                                 spin_lock(&init_mm.page_table_lock);
442                                 pte = map_low_page((pte_t *)pmd_page_vaddr(*pmd));
443                                 last_map_addr = phys_pte_init(pte, address,
444                                                                 end, prot);
445                                 unmap_low_page(pte);
446                                 spin_unlock(&init_mm.page_table_lock);
447                                 continue;
448                         }
449                         /*
450                          * If we are ok with PG_LEVEL_2M mapping, then we will
451                          * use the existing mapping,
452                          *
453                          * Otherwise, we will split the large page mapping but
454                          * use the same existing protection bits except for
455                          * large page, so that we don't violate Intel's TLB
456                          * Application note (317080) which says, while changing
457                          * the page sizes, new and old translations should
458                          * not differ with respect to page frame and
459                          * attributes.
460                          */
461                         if (page_size_mask & (1 << PG_LEVEL_2M)) {
462                                 if (!after_bootmem)
463                                         pages++;
464                                 last_map_addr = next;
465                                 continue;
466                         }
467                         new_prot = pte_pgprot(pte_clrhuge(*(pte_t *)pmd));
468                 }
469
470                 if (page_size_mask & (1<<PG_LEVEL_2M)) {
471                         pages++;
472                         spin_lock(&init_mm.page_table_lock);
473                         set_pte((pte_t *)pmd,
474                                 pfn_pte(address >> PAGE_SHIFT,
475                                         __pgprot(pgprot_val(prot) | _PAGE_PSE)));
476                         spin_unlock(&init_mm.page_table_lock);
477                         last_map_addr = next;
478                         continue;
479                 }
480
481                 pte = alloc_low_page(&pte_phys);
482                 last_map_addr = phys_pte_init(pte, address, end, new_prot);
483                 unmap_low_page(pte);
484
485                 spin_lock(&init_mm.page_table_lock);
486                 pmd_populate_kernel(&init_mm, pmd, __va(pte_phys));
487                 spin_unlock(&init_mm.page_table_lock);
488         }
489         update_page_count(PG_LEVEL_2M, pages);
490         return last_map_addr;
491 }
492
493 static unsigned long __meminit
494 phys_pud_init(pud_t *pud_page, unsigned long addr, unsigned long end,
495                          unsigned long page_size_mask)
496 {
497         unsigned long pages = 0, next;
498         unsigned long last_map_addr = end;
499         int i = pud_index(addr);
500
501         for (; i < PTRS_PER_PUD; i++, addr = next) {
502                 unsigned long pmd_phys;
503                 pud_t *pud = pud_page + pud_index(addr);
504                 pmd_t *pmd;
505                 pgprot_t prot = PAGE_KERNEL;
506
507                 if (addr >= end)
508                         break;
509
510                 next = (addr & PUD_MASK) + PUD_SIZE;
511
512                 if (!after_bootmem && !e820_any_mapped(addr, next, 0)) {
513                         set_pud(pud, __pud(0));
514                         continue;
515                 }
516
517                 if (pud_val(*pud)) {
518                         if (!pud_large(*pud)) {
519                                 pmd = map_low_page(pmd_offset(pud, 0));
520                                 last_map_addr = phys_pmd_init(pmd, addr, end,
521                                                          page_size_mask, prot);
522                                 unmap_low_page(pmd);
523                                 __flush_tlb_all();
524                                 continue;
525                         }
526                         /*
527                          * If we are ok with PG_LEVEL_1G mapping, then we will
528                          * use the existing mapping.
529                          *
530                          * Otherwise, we will split the gbpage mapping but use
531                          * the same existing protection  bits except for large
532                          * page, so that we don't violate Intel's TLB
533                          * Application note (317080) which says, while changing
534                          * the page sizes, new and old translations should
535                          * not differ with respect to page frame and
536                          * attributes.
537                          */
538                         if (page_size_mask & (1 << PG_LEVEL_1G)) {
539                                 if (!after_bootmem)
540                                         pages++;
541                                 last_map_addr = next;
542                                 continue;
543                         }
544                         prot = pte_pgprot(pte_clrhuge(*(pte_t *)pud));
545                 }
546
547                 if (page_size_mask & (1<<PG_LEVEL_1G)) {
548                         pages++;
549                         spin_lock(&init_mm.page_table_lock);
550                         set_pte((pte_t *)pud,
551                                 pfn_pte(addr >> PAGE_SHIFT, PAGE_KERNEL_LARGE));
552                         spin_unlock(&init_mm.page_table_lock);
553                         last_map_addr = next;
554                         continue;
555                 }
556
557                 pmd = alloc_low_page(&pmd_phys);
558                 last_map_addr = phys_pmd_init(pmd, addr, end, page_size_mask,
559                                               prot);
560                 unmap_low_page(pmd);
561
562                 spin_lock(&init_mm.page_table_lock);
563                 pud_populate(&init_mm, pud, __va(pmd_phys));
564                 spin_unlock(&init_mm.page_table_lock);
565         }
566         __flush_tlb_all();
567
568         update_page_count(PG_LEVEL_1G, pages);
569
570         return last_map_addr;
571 }
572
573 unsigned long __meminit
574 kernel_physical_mapping_init(unsigned long start,
575                              unsigned long end,
576                              unsigned long page_size_mask)
577 {
578         bool pgd_changed = false;
579         unsigned long next, last_map_addr = end;
580         unsigned long addr;
581
582         start = (unsigned long)__va(start);
583         end = (unsigned long)__va(end);
584         addr = start;
585
586         for (; start < end; start = next) {
587                 pgd_t *pgd = pgd_offset_k(start);
588                 unsigned long pud_phys;
589                 pud_t *pud;
590
591                 next = (start + PGDIR_SIZE) & PGDIR_MASK;
592                 if (next > end)
593                         next = end;
594
595                 if (pgd_val(*pgd)) {
596                         pud = map_low_page((pud_t *)pgd_page_vaddr(*pgd));
597                         last_map_addr = phys_pud_init(pud, __pa(start),
598                                                  __pa(end), page_size_mask);
599                         unmap_low_page(pud);
600                         continue;
601                 }
602
603                 pud = alloc_low_page(&pud_phys);
604                 last_map_addr = phys_pud_init(pud, __pa(start), __pa(next),
605                                                  page_size_mask);
606                 unmap_low_page(pud);
607
608                 spin_lock(&init_mm.page_table_lock);
609                 pgd_populate(&init_mm, pgd, __va(pud_phys));
610                 spin_unlock(&init_mm.page_table_lock);
611                 pgd_changed = true;
612         }
613
614         if (pgd_changed)
615                 sync_global_pgds(addr, end);
616
617         __flush_tlb_all();
618
619         return last_map_addr;
620 }
621
622 #ifndef CONFIG_NUMA
623 void __init initmem_init(void)
624 {
625         memblock_set_node(0, (phys_addr_t)ULLONG_MAX, 0);
626 }
627 #endif
628
629 void __init paging_init(void)
630 {
631         sparse_memory_present_with_active_regions(MAX_NUMNODES);
632         sparse_init();
633
634         /*
635          * clear the default setting with node 0
636          * note: don't use nodes_clear here, that is really clearing when
637          *       numa support is not compiled in, and later node_set_state
638          *       will not set it back.
639          */
640         node_clear_state(0, N_MEMORY);
641         if (N_MEMORY != N_NORMAL_MEMORY)
642                 node_clear_state(0, N_NORMAL_MEMORY);
643
644         zone_sizes_init();
645 }
646
647 /*
648  * Memory hotplug specific functions
649  */
650 #ifdef CONFIG_MEMORY_HOTPLUG
651 /*
652  * After memory hotplug the variables max_pfn, max_low_pfn and high_memory need
653  * updating.
654  */
655 static void  update_end_of_memory_vars(u64 start, u64 size)
656 {
657         unsigned long end_pfn = PFN_UP(start + size);
658
659         if (end_pfn > max_pfn) {
660                 max_pfn = end_pfn;
661                 max_low_pfn = end_pfn;
662                 high_memory = (void *)__va(max_pfn * PAGE_SIZE - 1) + 1;
663         }
664 }
665
666 /*
667  * Memory is added always to NORMAL zone. This means you will never get
668  * additional DMA/DMA32 memory.
669  */
670 int arch_add_memory(int nid, u64 start, u64 size)
671 {
672         struct pglist_data *pgdat = NODE_DATA(nid);
673         struct zone *zone = pgdat->node_zones + ZONE_NORMAL;
674         unsigned long last_mapped_pfn, start_pfn = start >> PAGE_SHIFT;
675         unsigned long nr_pages = size >> PAGE_SHIFT;
676         int ret;
677
678         last_mapped_pfn = init_memory_mapping(start, start + size);
679         if (last_mapped_pfn > max_pfn_mapped)
680                 max_pfn_mapped = last_mapped_pfn;
681
682         ret = __add_pages(nid, zone, start_pfn, nr_pages);
683         WARN_ON_ONCE(ret);
684
685         /* update max_pfn, max_low_pfn and high_memory */
686         update_end_of_memory_vars(start, size);
687
688         return ret;
689 }
690 EXPORT_SYMBOL_GPL(arch_add_memory);
691
692 #endif /* CONFIG_MEMORY_HOTPLUG */
693
694 static struct kcore_list kcore_vsyscall;
695
696 void __init mem_init(void)
697 {
698         long codesize, reservedpages, datasize, initsize;
699         unsigned long absent_pages;
700
701         pci_iommu_alloc();
702
703         /* clear_bss() already clear the empty_zero_page */
704
705         reservedpages = 0;
706
707         /* this will put all low memory onto the freelists */
708 #ifdef CONFIG_NUMA
709         totalram_pages = numa_free_all_bootmem();
710 #else
711         totalram_pages = free_all_bootmem();
712 #endif
713
714         absent_pages = absent_pages_in_range(0, max_pfn);
715         reservedpages = max_pfn - totalram_pages - absent_pages;
716         after_bootmem = 1;
717
718         codesize =  (unsigned long) &_etext - (unsigned long) &_text;
719         datasize =  (unsigned long) &_edata - (unsigned long) &_etext;
720         initsize =  (unsigned long) &__init_end - (unsigned long) &__init_begin;
721
722         /* Register memory areas for /proc/kcore */
723         kclist_add(&kcore_vsyscall, (void *)VSYSCALL_START,
724                          VSYSCALL_END - VSYSCALL_START, KCORE_OTHER);
725
726         printk(KERN_INFO "Memory: %luk/%luk available (%ldk kernel code, "
727                          "%ldk absent, %ldk reserved, %ldk data, %ldk init)\n",
728                 nr_free_pages() << (PAGE_SHIFT-10),
729                 max_pfn << (PAGE_SHIFT-10),
730                 codesize >> 10,
731                 absent_pages << (PAGE_SHIFT-10),
732                 reservedpages << (PAGE_SHIFT-10),
733                 datasize >> 10,
734                 initsize >> 10);
735 }
736
737 #ifdef CONFIG_DEBUG_RODATA
738 const int rodata_test_data = 0xC3;
739 EXPORT_SYMBOL_GPL(rodata_test_data);
740
741 int kernel_set_to_readonly;
742
743 void set_kernel_text_rw(void)
744 {
745         unsigned long start = PFN_ALIGN(_text);
746         unsigned long end = PFN_ALIGN(__stop___ex_table);
747
748         if (!kernel_set_to_readonly)
749                 return;
750
751         pr_debug("Set kernel text: %lx - %lx for read write\n",
752                  start, end);
753
754         /*
755          * Make the kernel identity mapping for text RW. Kernel text
756          * mapping will always be RO. Refer to the comment in
757          * static_protections() in pageattr.c
758          */
759         set_memory_rw(start, (end - start) >> PAGE_SHIFT);
760 }
761
762 void set_kernel_text_ro(void)
763 {
764         unsigned long start = PFN_ALIGN(_text);
765         unsigned long end = PFN_ALIGN(__stop___ex_table);
766
767         if (!kernel_set_to_readonly)
768                 return;
769
770         pr_debug("Set kernel text: %lx - %lx for read only\n",
771                  start, end);
772
773         /*
774          * Set the kernel identity mapping for text RO.
775          */
776         set_memory_ro(start, (end - start) >> PAGE_SHIFT);
777 }
778
779 void mark_rodata_ro(void)
780 {
781         unsigned long start = PFN_ALIGN(_text);
782         unsigned long rodata_start =
783                 ((unsigned long)__start_rodata + PAGE_SIZE - 1) & PAGE_MASK;
784         unsigned long end = (unsigned long) &__end_rodata_hpage_align;
785         unsigned long text_end = PAGE_ALIGN((unsigned long) &__stop___ex_table);
786         unsigned long rodata_end = PAGE_ALIGN((unsigned long) &__end_rodata);
787         unsigned long data_start = (unsigned long) &_sdata;
788
789         printk(KERN_INFO "Write protecting the kernel read-only data: %luk\n",
790                (end - start) >> 10);
791         set_memory_ro(start, (end - start) >> PAGE_SHIFT);
792
793         kernel_set_to_readonly = 1;
794
795         /*
796          * The rodata section (but not the kernel text!) should also be
797          * not-executable.
798          */
799         set_memory_nx(rodata_start, (end - rodata_start) >> PAGE_SHIFT);
800
801         rodata_test();
802
803 #ifdef CONFIG_CPA_DEBUG
804         printk(KERN_INFO "Testing CPA: undo %lx-%lx\n", start, end);
805         set_memory_rw(start, (end-start) >> PAGE_SHIFT);
806
807         printk(KERN_INFO "Testing CPA: again\n");
808         set_memory_ro(start, (end-start) >> PAGE_SHIFT);
809 #endif
810
811         free_init_pages("unused kernel memory",
812                         (unsigned long) page_address(virt_to_page(text_end)),
813                         (unsigned long)
814                                  page_address(virt_to_page(rodata_start)));
815         free_init_pages("unused kernel memory",
816                         (unsigned long) page_address(virt_to_page(rodata_end)),
817                         (unsigned long) page_address(virt_to_page(data_start)));
818 }
819
820 #endif
821
822 int kern_addr_valid(unsigned long addr)
823 {
824         unsigned long above = ((long)addr) >> __VIRTUAL_MASK_SHIFT;
825         pgd_t *pgd;
826         pud_t *pud;
827         pmd_t *pmd;
828         pte_t *pte;
829
830         if (above != 0 && above != -1UL)
831                 return 0;
832
833         pgd = pgd_offset_k(addr);
834         if (pgd_none(*pgd))
835                 return 0;
836
837         pud = pud_offset(pgd, addr);
838         if (pud_none(*pud))
839                 return 0;
840
841         pmd = pmd_offset(pud, addr);
842         if (pmd_none(*pmd))
843                 return 0;
844
845         if (pmd_large(*pmd))
846                 return pfn_valid(pmd_pfn(*pmd));
847
848         pte = pte_offset_kernel(pmd, addr);
849         if (pte_none(*pte))
850                 return 0;
851
852         return pfn_valid(pte_pfn(*pte));
853 }
854
855 /*
856  * A pseudo VMA to allow ptrace access for the vsyscall page.  This only
857  * covers the 64bit vsyscall page now. 32bit has a real VMA now and does
858  * not need special handling anymore:
859  */
860 static struct vm_area_struct gate_vma = {
861         .vm_start       = VSYSCALL_START,
862         .vm_end         = VSYSCALL_START + (VSYSCALL_MAPPED_PAGES * PAGE_SIZE),
863         .vm_page_prot   = PAGE_READONLY_EXEC,
864         .vm_flags       = VM_READ | VM_EXEC
865 };
866
867 struct vm_area_struct *get_gate_vma(struct mm_struct *mm)
868 {
869 #ifdef CONFIG_IA32_EMULATION
870         if (!mm || mm->context.ia32_compat)
871                 return NULL;
872 #endif
873         return &gate_vma;
874 }
875
876 int in_gate_area(struct mm_struct *mm, unsigned long addr)
877 {
878         struct vm_area_struct *vma = get_gate_vma(mm);
879
880         if (!vma)
881                 return 0;
882
883         return (addr >= vma->vm_start) && (addr < vma->vm_end);
884 }
885
886 /*
887  * Use this when you have no reliable mm, typically from interrupt
888  * context. It is less reliable than using a task's mm and may give
889  * false positives.
890  */
891 int in_gate_area_no_mm(unsigned long addr)
892 {
893         return (addr >= VSYSCALL_START) && (addr < VSYSCALL_END);
894 }
895
896 const char *arch_vma_name(struct vm_area_struct *vma)
897 {
898         if (vma->vm_mm && vma->vm_start == (long)vma->vm_mm->context.vdso)
899                 return "[vdso]";
900         if (vma == &gate_vma)
901                 return "[vsyscall]";
902         return NULL;
903 }
904
905 #ifdef CONFIG_X86_UV
906 unsigned long memory_block_size_bytes(void)
907 {
908         if (is_uv_system()) {
909                 printk(KERN_INFO "UV: memory block size 2GB\n");
910                 return 2UL * 1024 * 1024 * 1024;
911         }
912         return MIN_MEMORY_BLOCK_SIZE;
913 }
914 #endif
915
916 #ifdef CONFIG_SPARSEMEM_VMEMMAP
917 /*
918  * Initialise the sparsemem vmemmap using huge-pages at the PMD level.
919  */
920 static long __meminitdata addr_start, addr_end;
921 static void __meminitdata *p_start, *p_end;
922 static int __meminitdata node_start;
923
924 int __meminit
925 vmemmap_populate(struct page *start_page, unsigned long size, int node)
926 {
927         unsigned long addr = (unsigned long)start_page;
928         unsigned long end = (unsigned long)(start_page + size);
929         unsigned long next;
930         pgd_t *pgd;
931         pud_t *pud;
932         pmd_t *pmd;
933
934         for (; addr < end; addr = next) {
935                 void *p = NULL;
936
937                 pgd = vmemmap_pgd_populate(addr, node);
938                 if (!pgd)
939                         return -ENOMEM;
940
941                 pud = vmemmap_pud_populate(pgd, addr, node);
942                 if (!pud)
943                         return -ENOMEM;
944
945                 if (!cpu_has_pse) {
946                         next = (addr + PAGE_SIZE) & PAGE_MASK;
947                         pmd = vmemmap_pmd_populate(pud, addr, node);
948
949                         if (!pmd)
950                                 return -ENOMEM;
951
952                         p = vmemmap_pte_populate(pmd, addr, node);
953
954                         if (!p)
955                                 return -ENOMEM;
956
957                         addr_end = addr + PAGE_SIZE;
958                         p_end = p + PAGE_SIZE;
959                 } else {
960                         next = pmd_addr_end(addr, end);
961
962                         pmd = pmd_offset(pud, addr);
963                         if (pmd_none(*pmd)) {
964                                 pte_t entry;
965
966                                 p = vmemmap_alloc_block_buf(PMD_SIZE, node);
967                                 if (!p)
968                                         return -ENOMEM;
969
970                                 entry = pfn_pte(__pa(p) >> PAGE_SHIFT,
971                                                 PAGE_KERNEL_LARGE);
972                                 set_pmd(pmd, __pmd(pte_val(entry)));
973
974                                 /* check to see if we have contiguous blocks */
975                                 if (p_end != p || node_start != node) {
976                                         if (p_start)
977                                                 printk(KERN_DEBUG " [%lx-%lx] PMD -> [%p-%p] on node %d\n",
978                                                        addr_start, addr_end-1, p_start, p_end-1, node_start);
979                                         addr_start = addr;
980                                         node_start = node;
981                                         p_start = p;
982                                 }
983
984                                 addr_end = addr + PMD_SIZE;
985                                 p_end = p + PMD_SIZE;
986                         } else
987                                 vmemmap_verify((pte_t *)pmd, node, addr, next);
988                 }
989
990         }
991         sync_global_pgds((unsigned long)start_page, end);
992         return 0;
993 }
994
995 void __meminit vmemmap_populate_print_last(void)
996 {
997         if (p_start) {
998                 printk(KERN_DEBUG " [%lx-%lx] PMD -> [%p-%p] on node %d\n",
999                         addr_start, addr_end-1, p_start, p_end-1, node_start);
1000                 p_start = NULL;
1001                 p_end = NULL;
1002                 node_start = 0;
1003         }
1004 }
1005 #endif