68b139fe0dbd7fdd14ea8b957c0cdef60f774074
[firefly-linux-kernel-4.4.55.git] / arch / x86 / kvm / x86.c
1 /*
2  * Kernel-based Virtual Machine driver for Linux
3  *
4  * derived from drivers/kvm/kvm_main.c
5  *
6  * Copyright (C) 2006 Qumranet, Inc.
7  * Copyright (C) 2008 Qumranet, Inc.
8  * Copyright IBM Corporation, 2008
9  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
10  *
11  * Authors:
12  *   Avi Kivity   <avi@qumranet.com>
13  *   Yaniv Kamay  <yaniv@qumranet.com>
14  *   Amit Shah    <amit.shah@qumranet.com>
15  *   Ben-Ami Yassour <benami@il.ibm.com>
16  *
17  * This work is licensed under the terms of the GNU GPL, version 2.  See
18  * the COPYING file in the top-level directory.
19  *
20  */
21
22 #include <linux/kvm_host.h>
23 #include "irq.h"
24 #include "mmu.h"
25 #include "i8254.h"
26 #include "tss.h"
27 #include "kvm_cache_regs.h"
28 #include "x86.h"
29 #include "cpuid.h"
30
31 #include <linux/clocksource.h>
32 #include <linux/interrupt.h>
33 #include <linux/kvm.h>
34 #include <linux/fs.h>
35 #include <linux/vmalloc.h>
36 #include <linux/module.h>
37 #include <linux/mman.h>
38 #include <linux/highmem.h>
39 #include <linux/iommu.h>
40 #include <linux/intel-iommu.h>
41 #include <linux/cpufreq.h>
42 #include <linux/user-return-notifier.h>
43 #include <linux/srcu.h>
44 #include <linux/slab.h>
45 #include <linux/perf_event.h>
46 #include <linux/uaccess.h>
47 #include <linux/hash.h>
48 #include <linux/pci.h>
49 #include <linux/timekeeper_internal.h>
50 #include <linux/pvclock_gtod.h>
51 #include <trace/events/kvm.h>
52
53 #define CREATE_TRACE_POINTS
54 #include "trace.h"
55
56 #include <asm/debugreg.h>
57 #include <asm/msr.h>
58 #include <asm/desc.h>
59 #include <asm/mtrr.h>
60 #include <asm/mce.h>
61 #include <asm/i387.h>
62 #include <asm/fpu-internal.h> /* Ugh! */
63 #include <asm/xcr.h>
64 #include <asm/pvclock.h>
65 #include <asm/div64.h>
66
67 #define MAX_IO_MSRS 256
68 #define KVM_MAX_MCE_BANKS 32
69 #define KVM_MCE_CAP_SUPPORTED (MCG_CTL_P | MCG_SER_P)
70
71 #define emul_to_vcpu(ctxt) \
72         container_of(ctxt, struct kvm_vcpu, arch.emulate_ctxt)
73
74 /* EFER defaults:
75  * - enable syscall per default because its emulated by KVM
76  * - enable LME and LMA per default on 64 bit KVM
77  */
78 #ifdef CONFIG_X86_64
79 static
80 u64 __read_mostly efer_reserved_bits = ~((u64)(EFER_SCE | EFER_LME | EFER_LMA));
81 #else
82 static u64 __read_mostly efer_reserved_bits = ~((u64)EFER_SCE);
83 #endif
84
85 #define VM_STAT(x) offsetof(struct kvm, stat.x), KVM_STAT_VM
86 #define VCPU_STAT(x) offsetof(struct kvm_vcpu, stat.x), KVM_STAT_VCPU
87
88 static void update_cr8_intercept(struct kvm_vcpu *vcpu);
89 static void process_nmi(struct kvm_vcpu *vcpu);
90
91 struct kvm_x86_ops *kvm_x86_ops;
92 EXPORT_SYMBOL_GPL(kvm_x86_ops);
93
94 static bool ignore_msrs = 0;
95 module_param(ignore_msrs, bool, S_IRUGO | S_IWUSR);
96
97 bool kvm_has_tsc_control;
98 EXPORT_SYMBOL_GPL(kvm_has_tsc_control);
99 u32  kvm_max_guest_tsc_khz;
100 EXPORT_SYMBOL_GPL(kvm_max_guest_tsc_khz);
101
102 /* tsc tolerance in parts per million - default to 1/2 of the NTP threshold */
103 static u32 tsc_tolerance_ppm = 250;
104 module_param(tsc_tolerance_ppm, uint, S_IRUGO | S_IWUSR);
105
106 #define KVM_NR_SHARED_MSRS 16
107
108 struct kvm_shared_msrs_global {
109         int nr;
110         u32 msrs[KVM_NR_SHARED_MSRS];
111 };
112
113 struct kvm_shared_msrs {
114         struct user_return_notifier urn;
115         bool registered;
116         struct kvm_shared_msr_values {
117                 u64 host;
118                 u64 curr;
119         } values[KVM_NR_SHARED_MSRS];
120 };
121
122 static struct kvm_shared_msrs_global __read_mostly shared_msrs_global;
123 static struct kvm_shared_msrs __percpu *shared_msrs;
124
125 struct kvm_stats_debugfs_item debugfs_entries[] = {
126         { "pf_fixed", VCPU_STAT(pf_fixed) },
127         { "pf_guest", VCPU_STAT(pf_guest) },
128         { "tlb_flush", VCPU_STAT(tlb_flush) },
129         { "invlpg", VCPU_STAT(invlpg) },
130         { "exits", VCPU_STAT(exits) },
131         { "io_exits", VCPU_STAT(io_exits) },
132         { "mmio_exits", VCPU_STAT(mmio_exits) },
133         { "signal_exits", VCPU_STAT(signal_exits) },
134         { "irq_window", VCPU_STAT(irq_window_exits) },
135         { "nmi_window", VCPU_STAT(nmi_window_exits) },
136         { "halt_exits", VCPU_STAT(halt_exits) },
137         { "halt_wakeup", VCPU_STAT(halt_wakeup) },
138         { "hypercalls", VCPU_STAT(hypercalls) },
139         { "request_irq", VCPU_STAT(request_irq_exits) },
140         { "irq_exits", VCPU_STAT(irq_exits) },
141         { "host_state_reload", VCPU_STAT(host_state_reload) },
142         { "efer_reload", VCPU_STAT(efer_reload) },
143         { "fpu_reload", VCPU_STAT(fpu_reload) },
144         { "insn_emulation", VCPU_STAT(insn_emulation) },
145         { "insn_emulation_fail", VCPU_STAT(insn_emulation_fail) },
146         { "irq_injections", VCPU_STAT(irq_injections) },
147         { "nmi_injections", VCPU_STAT(nmi_injections) },
148         { "mmu_shadow_zapped", VM_STAT(mmu_shadow_zapped) },
149         { "mmu_pte_write", VM_STAT(mmu_pte_write) },
150         { "mmu_pte_updated", VM_STAT(mmu_pte_updated) },
151         { "mmu_pde_zapped", VM_STAT(mmu_pde_zapped) },
152         { "mmu_flooded", VM_STAT(mmu_flooded) },
153         { "mmu_recycled", VM_STAT(mmu_recycled) },
154         { "mmu_cache_miss", VM_STAT(mmu_cache_miss) },
155         { "mmu_unsync", VM_STAT(mmu_unsync) },
156         { "remote_tlb_flush", VM_STAT(remote_tlb_flush) },
157         { "largepages", VM_STAT(lpages) },
158         { NULL }
159 };
160
161 u64 __read_mostly host_xcr0;
162
163 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt);
164
165 static inline void kvm_async_pf_hash_reset(struct kvm_vcpu *vcpu)
166 {
167         int i;
168         for (i = 0; i < roundup_pow_of_two(ASYNC_PF_PER_VCPU); i++)
169                 vcpu->arch.apf.gfns[i] = ~0;
170 }
171
172 static void kvm_on_user_return(struct user_return_notifier *urn)
173 {
174         unsigned slot;
175         struct kvm_shared_msrs *locals
176                 = container_of(urn, struct kvm_shared_msrs, urn);
177         struct kvm_shared_msr_values *values;
178
179         for (slot = 0; slot < shared_msrs_global.nr; ++slot) {
180                 values = &locals->values[slot];
181                 if (values->host != values->curr) {
182                         wrmsrl(shared_msrs_global.msrs[slot], values->host);
183                         values->curr = values->host;
184                 }
185         }
186         locals->registered = false;
187         user_return_notifier_unregister(urn);
188 }
189
190 static void shared_msr_update(unsigned slot, u32 msr)
191 {
192         u64 value;
193         unsigned int cpu = smp_processor_id();
194         struct kvm_shared_msrs *smsr = per_cpu_ptr(shared_msrs, cpu);
195
196         /* only read, and nobody should modify it at this time,
197          * so don't need lock */
198         if (slot >= shared_msrs_global.nr) {
199                 printk(KERN_ERR "kvm: invalid MSR slot!");
200                 return;
201         }
202         rdmsrl_safe(msr, &value);
203         smsr->values[slot].host = value;
204         smsr->values[slot].curr = value;
205 }
206
207 void kvm_define_shared_msr(unsigned slot, u32 msr)
208 {
209         if (slot >= shared_msrs_global.nr)
210                 shared_msrs_global.nr = slot + 1;
211         shared_msrs_global.msrs[slot] = msr;
212         /* we need ensured the shared_msr_global have been updated */
213         smp_wmb();
214 }
215 EXPORT_SYMBOL_GPL(kvm_define_shared_msr);
216
217 static void kvm_shared_msr_cpu_online(void)
218 {
219         unsigned i;
220
221         for (i = 0; i < shared_msrs_global.nr; ++i)
222                 shared_msr_update(i, shared_msrs_global.msrs[i]);
223 }
224
225 void kvm_set_shared_msr(unsigned slot, u64 value, u64 mask)
226 {
227         unsigned int cpu = smp_processor_id();
228         struct kvm_shared_msrs *smsr = per_cpu_ptr(shared_msrs, cpu);
229
230         if (((value ^ smsr->values[slot].curr) & mask) == 0)
231                 return;
232         smsr->values[slot].curr = value;
233         wrmsrl(shared_msrs_global.msrs[slot], value);
234         if (!smsr->registered) {
235                 smsr->urn.on_user_return = kvm_on_user_return;
236                 user_return_notifier_register(&smsr->urn);
237                 smsr->registered = true;
238         }
239 }
240 EXPORT_SYMBOL_GPL(kvm_set_shared_msr);
241
242 static void drop_user_return_notifiers(void *ignore)
243 {
244         unsigned int cpu = smp_processor_id();
245         struct kvm_shared_msrs *smsr = per_cpu_ptr(shared_msrs, cpu);
246
247         if (smsr->registered)
248                 kvm_on_user_return(&smsr->urn);
249 }
250
251 u64 kvm_get_apic_base(struct kvm_vcpu *vcpu)
252 {
253         return vcpu->arch.apic_base;
254 }
255 EXPORT_SYMBOL_GPL(kvm_get_apic_base);
256
257 void kvm_set_apic_base(struct kvm_vcpu *vcpu, u64 data)
258 {
259         /* TODO: reserve bits check */
260         kvm_lapic_set_base(vcpu, data);
261 }
262 EXPORT_SYMBOL_GPL(kvm_set_apic_base);
263
264 asmlinkage void kvm_spurious_fault(void)
265 {
266         /* Fault while not rebooting.  We want the trace. */
267         BUG();
268 }
269 EXPORT_SYMBOL_GPL(kvm_spurious_fault);
270
271 #define EXCPT_BENIGN            0
272 #define EXCPT_CONTRIBUTORY      1
273 #define EXCPT_PF                2
274
275 static int exception_class(int vector)
276 {
277         switch (vector) {
278         case PF_VECTOR:
279                 return EXCPT_PF;
280         case DE_VECTOR:
281         case TS_VECTOR:
282         case NP_VECTOR:
283         case SS_VECTOR:
284         case GP_VECTOR:
285                 return EXCPT_CONTRIBUTORY;
286         default:
287                 break;
288         }
289         return EXCPT_BENIGN;
290 }
291
292 static void kvm_multiple_exception(struct kvm_vcpu *vcpu,
293                 unsigned nr, bool has_error, u32 error_code,
294                 bool reinject)
295 {
296         u32 prev_nr;
297         int class1, class2;
298
299         kvm_make_request(KVM_REQ_EVENT, vcpu);
300
301         if (!vcpu->arch.exception.pending) {
302         queue:
303                 vcpu->arch.exception.pending = true;
304                 vcpu->arch.exception.has_error_code = has_error;
305                 vcpu->arch.exception.nr = nr;
306                 vcpu->arch.exception.error_code = error_code;
307                 vcpu->arch.exception.reinject = reinject;
308                 return;
309         }
310
311         /* to check exception */
312         prev_nr = vcpu->arch.exception.nr;
313         if (prev_nr == DF_VECTOR) {
314                 /* triple fault -> shutdown */
315                 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
316                 return;
317         }
318         class1 = exception_class(prev_nr);
319         class2 = exception_class(nr);
320         if ((class1 == EXCPT_CONTRIBUTORY && class2 == EXCPT_CONTRIBUTORY)
321                 || (class1 == EXCPT_PF && class2 != EXCPT_BENIGN)) {
322                 /* generate double fault per SDM Table 5-5 */
323                 vcpu->arch.exception.pending = true;
324                 vcpu->arch.exception.has_error_code = true;
325                 vcpu->arch.exception.nr = DF_VECTOR;
326                 vcpu->arch.exception.error_code = 0;
327         } else
328                 /* replace previous exception with a new one in a hope
329                    that instruction re-execution will regenerate lost
330                    exception */
331                 goto queue;
332 }
333
334 void kvm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr)
335 {
336         kvm_multiple_exception(vcpu, nr, false, 0, false);
337 }
338 EXPORT_SYMBOL_GPL(kvm_queue_exception);
339
340 void kvm_requeue_exception(struct kvm_vcpu *vcpu, unsigned nr)
341 {
342         kvm_multiple_exception(vcpu, nr, false, 0, true);
343 }
344 EXPORT_SYMBOL_GPL(kvm_requeue_exception);
345
346 void kvm_complete_insn_gp(struct kvm_vcpu *vcpu, int err)
347 {
348         if (err)
349                 kvm_inject_gp(vcpu, 0);
350         else
351                 kvm_x86_ops->skip_emulated_instruction(vcpu);
352 }
353 EXPORT_SYMBOL_GPL(kvm_complete_insn_gp);
354
355 void kvm_inject_page_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault)
356 {
357         ++vcpu->stat.pf_guest;
358         vcpu->arch.cr2 = fault->address;
359         kvm_queue_exception_e(vcpu, PF_VECTOR, fault->error_code);
360 }
361 EXPORT_SYMBOL_GPL(kvm_inject_page_fault);
362
363 void kvm_propagate_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault)
364 {
365         if (mmu_is_nested(vcpu) && !fault->nested_page_fault)
366                 vcpu->arch.nested_mmu.inject_page_fault(vcpu, fault);
367         else
368                 vcpu->arch.mmu.inject_page_fault(vcpu, fault);
369 }
370
371 void kvm_inject_nmi(struct kvm_vcpu *vcpu)
372 {
373         atomic_inc(&vcpu->arch.nmi_queued);
374         kvm_make_request(KVM_REQ_NMI, vcpu);
375 }
376 EXPORT_SYMBOL_GPL(kvm_inject_nmi);
377
378 void kvm_queue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
379 {
380         kvm_multiple_exception(vcpu, nr, true, error_code, false);
381 }
382 EXPORT_SYMBOL_GPL(kvm_queue_exception_e);
383
384 void kvm_requeue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
385 {
386         kvm_multiple_exception(vcpu, nr, true, error_code, true);
387 }
388 EXPORT_SYMBOL_GPL(kvm_requeue_exception_e);
389
390 /*
391  * Checks if cpl <= required_cpl; if true, return true.  Otherwise queue
392  * a #GP and return false.
393  */
394 bool kvm_require_cpl(struct kvm_vcpu *vcpu, int required_cpl)
395 {
396         if (kvm_x86_ops->get_cpl(vcpu) <= required_cpl)
397                 return true;
398         kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
399         return false;
400 }
401 EXPORT_SYMBOL_GPL(kvm_require_cpl);
402
403 /*
404  * This function will be used to read from the physical memory of the currently
405  * running guest. The difference to kvm_read_guest_page is that this function
406  * can read from guest physical or from the guest's guest physical memory.
407  */
408 int kvm_read_guest_page_mmu(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
409                             gfn_t ngfn, void *data, int offset, int len,
410                             u32 access)
411 {
412         gfn_t real_gfn;
413         gpa_t ngpa;
414
415         ngpa     = gfn_to_gpa(ngfn);
416         real_gfn = mmu->translate_gpa(vcpu, ngpa, access);
417         if (real_gfn == UNMAPPED_GVA)
418                 return -EFAULT;
419
420         real_gfn = gpa_to_gfn(real_gfn);
421
422         return kvm_read_guest_page(vcpu->kvm, real_gfn, data, offset, len);
423 }
424 EXPORT_SYMBOL_GPL(kvm_read_guest_page_mmu);
425
426 int kvm_read_nested_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn,
427                                void *data, int offset, int len, u32 access)
428 {
429         return kvm_read_guest_page_mmu(vcpu, vcpu->arch.walk_mmu, gfn,
430                                        data, offset, len, access);
431 }
432
433 /*
434  * Load the pae pdptrs.  Return true is they are all valid.
435  */
436 int load_pdptrs(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu, unsigned long cr3)
437 {
438         gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT;
439         unsigned offset = ((cr3 & (PAGE_SIZE-1)) >> 5) << 2;
440         int i;
441         int ret;
442         u64 pdpte[ARRAY_SIZE(mmu->pdptrs)];
443
444         ret = kvm_read_guest_page_mmu(vcpu, mmu, pdpt_gfn, pdpte,
445                                       offset * sizeof(u64), sizeof(pdpte),
446                                       PFERR_USER_MASK|PFERR_WRITE_MASK);
447         if (ret < 0) {
448                 ret = 0;
449                 goto out;
450         }
451         for (i = 0; i < ARRAY_SIZE(pdpte); ++i) {
452                 if (is_present_gpte(pdpte[i]) &&
453                     (pdpte[i] & vcpu->arch.mmu.rsvd_bits_mask[0][2])) {
454                         ret = 0;
455                         goto out;
456                 }
457         }
458         ret = 1;
459
460         memcpy(mmu->pdptrs, pdpte, sizeof(mmu->pdptrs));
461         __set_bit(VCPU_EXREG_PDPTR,
462                   (unsigned long *)&vcpu->arch.regs_avail);
463         __set_bit(VCPU_EXREG_PDPTR,
464                   (unsigned long *)&vcpu->arch.regs_dirty);
465 out:
466
467         return ret;
468 }
469 EXPORT_SYMBOL_GPL(load_pdptrs);
470
471 static bool pdptrs_changed(struct kvm_vcpu *vcpu)
472 {
473         u64 pdpte[ARRAY_SIZE(vcpu->arch.walk_mmu->pdptrs)];
474         bool changed = true;
475         int offset;
476         gfn_t gfn;
477         int r;
478
479         if (is_long_mode(vcpu) || !is_pae(vcpu))
480                 return false;
481
482         if (!test_bit(VCPU_EXREG_PDPTR,
483                       (unsigned long *)&vcpu->arch.regs_avail))
484                 return true;
485
486         gfn = (kvm_read_cr3(vcpu) & ~31u) >> PAGE_SHIFT;
487         offset = (kvm_read_cr3(vcpu) & ~31u) & (PAGE_SIZE - 1);
488         r = kvm_read_nested_guest_page(vcpu, gfn, pdpte, offset, sizeof(pdpte),
489                                        PFERR_USER_MASK | PFERR_WRITE_MASK);
490         if (r < 0)
491                 goto out;
492         changed = memcmp(pdpte, vcpu->arch.walk_mmu->pdptrs, sizeof(pdpte)) != 0;
493 out:
494
495         return changed;
496 }
497
498 int kvm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
499 {
500         unsigned long old_cr0 = kvm_read_cr0(vcpu);
501         unsigned long update_bits = X86_CR0_PG | X86_CR0_WP |
502                                     X86_CR0_CD | X86_CR0_NW;
503
504         cr0 |= X86_CR0_ET;
505
506 #ifdef CONFIG_X86_64
507         if (cr0 & 0xffffffff00000000UL)
508                 return 1;
509 #endif
510
511         cr0 &= ~CR0_RESERVED_BITS;
512
513         if ((cr0 & X86_CR0_NW) && !(cr0 & X86_CR0_CD))
514                 return 1;
515
516         if ((cr0 & X86_CR0_PG) && !(cr0 & X86_CR0_PE))
517                 return 1;
518
519         if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) {
520 #ifdef CONFIG_X86_64
521                 if ((vcpu->arch.efer & EFER_LME)) {
522                         int cs_db, cs_l;
523
524                         if (!is_pae(vcpu))
525                                 return 1;
526                         kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
527                         if (cs_l)
528                                 return 1;
529                 } else
530 #endif
531                 if (is_pae(vcpu) && !load_pdptrs(vcpu, vcpu->arch.walk_mmu,
532                                                  kvm_read_cr3(vcpu)))
533                         return 1;
534         }
535
536         if (!(cr0 & X86_CR0_PG) && kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE))
537                 return 1;
538
539         kvm_x86_ops->set_cr0(vcpu, cr0);
540
541         if ((cr0 ^ old_cr0) & X86_CR0_PG) {
542                 kvm_clear_async_pf_completion_queue(vcpu);
543                 kvm_async_pf_hash_reset(vcpu);
544         }
545
546         if ((cr0 ^ old_cr0) & update_bits)
547                 kvm_mmu_reset_context(vcpu);
548         return 0;
549 }
550 EXPORT_SYMBOL_GPL(kvm_set_cr0);
551
552 void kvm_lmsw(struct kvm_vcpu *vcpu, unsigned long msw)
553 {
554         (void)kvm_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~0x0eul) | (msw & 0x0f));
555 }
556 EXPORT_SYMBOL_GPL(kvm_lmsw);
557
558 static void kvm_load_guest_xcr0(struct kvm_vcpu *vcpu)
559 {
560         if (kvm_read_cr4_bits(vcpu, X86_CR4_OSXSAVE) &&
561                         !vcpu->guest_xcr0_loaded) {
562                 /* kvm_set_xcr() also depends on this */
563                 xsetbv(XCR_XFEATURE_ENABLED_MASK, vcpu->arch.xcr0);
564                 vcpu->guest_xcr0_loaded = 1;
565         }
566 }
567
568 static void kvm_put_guest_xcr0(struct kvm_vcpu *vcpu)
569 {
570         if (vcpu->guest_xcr0_loaded) {
571                 if (vcpu->arch.xcr0 != host_xcr0)
572                         xsetbv(XCR_XFEATURE_ENABLED_MASK, host_xcr0);
573                 vcpu->guest_xcr0_loaded = 0;
574         }
575 }
576
577 int __kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr)
578 {
579         u64 xcr0;
580
581         /* Only support XCR_XFEATURE_ENABLED_MASK(xcr0) now  */
582         if (index != XCR_XFEATURE_ENABLED_MASK)
583                 return 1;
584         xcr0 = xcr;
585         if (!(xcr0 & XSTATE_FP))
586                 return 1;
587         if ((xcr0 & XSTATE_YMM) && !(xcr0 & XSTATE_SSE))
588                 return 1;
589         if (xcr0 & ~host_xcr0)
590                 return 1;
591         kvm_put_guest_xcr0(vcpu);
592         vcpu->arch.xcr0 = xcr0;
593         return 0;
594 }
595
596 int kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr)
597 {
598         if (kvm_x86_ops->get_cpl(vcpu) != 0 ||
599             __kvm_set_xcr(vcpu, index, xcr)) {
600                 kvm_inject_gp(vcpu, 0);
601                 return 1;
602         }
603         return 0;
604 }
605 EXPORT_SYMBOL_GPL(kvm_set_xcr);
606
607 int kvm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
608 {
609         unsigned long old_cr4 = kvm_read_cr4(vcpu);
610         unsigned long pdptr_bits = X86_CR4_PGE | X86_CR4_PSE |
611                                    X86_CR4_PAE | X86_CR4_SMEP;
612         if (cr4 & CR4_RESERVED_BITS)
613                 return 1;
614
615         if (!guest_cpuid_has_xsave(vcpu) && (cr4 & X86_CR4_OSXSAVE))
616                 return 1;
617
618         if (!guest_cpuid_has_smep(vcpu) && (cr4 & X86_CR4_SMEP))
619                 return 1;
620
621         if (!guest_cpuid_has_fsgsbase(vcpu) && (cr4 & X86_CR4_RDWRGSFS))
622                 return 1;
623
624         if (is_long_mode(vcpu)) {
625                 if (!(cr4 & X86_CR4_PAE))
626                         return 1;
627         } else if (is_paging(vcpu) && (cr4 & X86_CR4_PAE)
628                    && ((cr4 ^ old_cr4) & pdptr_bits)
629                    && !load_pdptrs(vcpu, vcpu->arch.walk_mmu,
630                                    kvm_read_cr3(vcpu)))
631                 return 1;
632
633         if ((cr4 & X86_CR4_PCIDE) && !(old_cr4 & X86_CR4_PCIDE)) {
634                 if (!guest_cpuid_has_pcid(vcpu))
635                         return 1;
636
637                 /* PCID can not be enabled when cr3[11:0]!=000H or EFER.LMA=0 */
638                 if ((kvm_read_cr3(vcpu) & X86_CR3_PCID_MASK) || !is_long_mode(vcpu))
639                         return 1;
640         }
641
642         if (kvm_x86_ops->set_cr4(vcpu, cr4))
643                 return 1;
644
645         if (((cr4 ^ old_cr4) & pdptr_bits) ||
646             (!(cr4 & X86_CR4_PCIDE) && (old_cr4 & X86_CR4_PCIDE)))
647                 kvm_mmu_reset_context(vcpu);
648
649         if ((cr4 ^ old_cr4) & X86_CR4_OSXSAVE)
650                 kvm_update_cpuid(vcpu);
651
652         return 0;
653 }
654 EXPORT_SYMBOL_GPL(kvm_set_cr4);
655
656 int kvm_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
657 {
658         if (cr3 == kvm_read_cr3(vcpu) && !pdptrs_changed(vcpu)) {
659                 kvm_mmu_sync_roots(vcpu);
660                 kvm_mmu_flush_tlb(vcpu);
661                 return 0;
662         }
663
664         if (is_long_mode(vcpu)) {
665                 if (kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE)) {
666                         if (cr3 & CR3_PCID_ENABLED_RESERVED_BITS)
667                                 return 1;
668                 } else
669                         if (cr3 & CR3_L_MODE_RESERVED_BITS)
670                                 return 1;
671         } else {
672                 if (is_pae(vcpu)) {
673                         if (cr3 & CR3_PAE_RESERVED_BITS)
674                                 return 1;
675                         if (is_paging(vcpu) &&
676                             !load_pdptrs(vcpu, vcpu->arch.walk_mmu, cr3))
677                                 return 1;
678                 }
679                 /*
680                  * We don't check reserved bits in nonpae mode, because
681                  * this isn't enforced, and VMware depends on this.
682                  */
683         }
684
685         /*
686          * Does the new cr3 value map to physical memory? (Note, we
687          * catch an invalid cr3 even in real-mode, because it would
688          * cause trouble later on when we turn on paging anyway.)
689          *
690          * A real CPU would silently accept an invalid cr3 and would
691          * attempt to use it - with largely undefined (and often hard
692          * to debug) behavior on the guest side.
693          */
694         if (unlikely(!gfn_to_memslot(vcpu->kvm, cr3 >> PAGE_SHIFT)))
695                 return 1;
696         vcpu->arch.cr3 = cr3;
697         __set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail);
698         vcpu->arch.mmu.new_cr3(vcpu);
699         return 0;
700 }
701 EXPORT_SYMBOL_GPL(kvm_set_cr3);
702
703 int kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8)
704 {
705         if (cr8 & CR8_RESERVED_BITS)
706                 return 1;
707         if (irqchip_in_kernel(vcpu->kvm))
708                 kvm_lapic_set_tpr(vcpu, cr8);
709         else
710                 vcpu->arch.cr8 = cr8;
711         return 0;
712 }
713 EXPORT_SYMBOL_GPL(kvm_set_cr8);
714
715 unsigned long kvm_get_cr8(struct kvm_vcpu *vcpu)
716 {
717         if (irqchip_in_kernel(vcpu->kvm))
718                 return kvm_lapic_get_cr8(vcpu);
719         else
720                 return vcpu->arch.cr8;
721 }
722 EXPORT_SYMBOL_GPL(kvm_get_cr8);
723
724 static void kvm_update_dr7(struct kvm_vcpu *vcpu)
725 {
726         unsigned long dr7;
727
728         if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
729                 dr7 = vcpu->arch.guest_debug_dr7;
730         else
731                 dr7 = vcpu->arch.dr7;
732         kvm_x86_ops->set_dr7(vcpu, dr7);
733         vcpu->arch.switch_db_regs = (dr7 & DR7_BP_EN_MASK);
734 }
735
736 static int __kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)
737 {
738         switch (dr) {
739         case 0 ... 3:
740                 vcpu->arch.db[dr] = val;
741                 if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP))
742                         vcpu->arch.eff_db[dr] = val;
743                 break;
744         case 4:
745                 if (kvm_read_cr4_bits(vcpu, X86_CR4_DE))
746                         return 1; /* #UD */
747                 /* fall through */
748         case 6:
749                 if (val & 0xffffffff00000000ULL)
750                         return -1; /* #GP */
751                 vcpu->arch.dr6 = (val & DR6_VOLATILE) | DR6_FIXED_1;
752                 break;
753         case 5:
754                 if (kvm_read_cr4_bits(vcpu, X86_CR4_DE))
755                         return 1; /* #UD */
756                 /* fall through */
757         default: /* 7 */
758                 if (val & 0xffffffff00000000ULL)
759                         return -1; /* #GP */
760                 vcpu->arch.dr7 = (val & DR7_VOLATILE) | DR7_FIXED_1;
761                 kvm_update_dr7(vcpu);
762                 break;
763         }
764
765         return 0;
766 }
767
768 int kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)
769 {
770         int res;
771
772         res = __kvm_set_dr(vcpu, dr, val);
773         if (res > 0)
774                 kvm_queue_exception(vcpu, UD_VECTOR);
775         else if (res < 0)
776                 kvm_inject_gp(vcpu, 0);
777
778         return res;
779 }
780 EXPORT_SYMBOL_GPL(kvm_set_dr);
781
782 static int _kvm_get_dr(struct kvm_vcpu *vcpu, int dr, unsigned long *val)
783 {
784         switch (dr) {
785         case 0 ... 3:
786                 *val = vcpu->arch.db[dr];
787                 break;
788         case 4:
789                 if (kvm_read_cr4_bits(vcpu, X86_CR4_DE))
790                         return 1;
791                 /* fall through */
792         case 6:
793                 *val = vcpu->arch.dr6;
794                 break;
795         case 5:
796                 if (kvm_read_cr4_bits(vcpu, X86_CR4_DE))
797                         return 1;
798                 /* fall through */
799         default: /* 7 */
800                 *val = vcpu->arch.dr7;
801                 break;
802         }
803
804         return 0;
805 }
806
807 int kvm_get_dr(struct kvm_vcpu *vcpu, int dr, unsigned long *val)
808 {
809         if (_kvm_get_dr(vcpu, dr, val)) {
810                 kvm_queue_exception(vcpu, UD_VECTOR);
811                 return 1;
812         }
813         return 0;
814 }
815 EXPORT_SYMBOL_GPL(kvm_get_dr);
816
817 bool kvm_rdpmc(struct kvm_vcpu *vcpu)
818 {
819         u32 ecx = kvm_register_read(vcpu, VCPU_REGS_RCX);
820         u64 data;
821         int err;
822
823         err = kvm_pmu_read_pmc(vcpu, ecx, &data);
824         if (err)
825                 return err;
826         kvm_register_write(vcpu, VCPU_REGS_RAX, (u32)data);
827         kvm_register_write(vcpu, VCPU_REGS_RDX, data >> 32);
828         return err;
829 }
830 EXPORT_SYMBOL_GPL(kvm_rdpmc);
831
832 /*
833  * List of msr numbers which we expose to userspace through KVM_GET_MSRS
834  * and KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST.
835  *
836  * This list is modified at module load time to reflect the
837  * capabilities of the host cpu. This capabilities test skips MSRs that are
838  * kvm-specific. Those are put in the beginning of the list.
839  */
840
841 #define KVM_SAVE_MSRS_BEGIN     10
842 static u32 msrs_to_save[] = {
843         MSR_KVM_SYSTEM_TIME, MSR_KVM_WALL_CLOCK,
844         MSR_KVM_SYSTEM_TIME_NEW, MSR_KVM_WALL_CLOCK_NEW,
845         HV_X64_MSR_GUEST_OS_ID, HV_X64_MSR_HYPERCALL,
846         HV_X64_MSR_APIC_ASSIST_PAGE, MSR_KVM_ASYNC_PF_EN, MSR_KVM_STEAL_TIME,
847         MSR_KVM_PV_EOI_EN,
848         MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
849         MSR_STAR,
850 #ifdef CONFIG_X86_64
851         MSR_CSTAR, MSR_KERNEL_GS_BASE, MSR_SYSCALL_MASK, MSR_LSTAR,
852 #endif
853         MSR_IA32_TSC, MSR_IA32_CR_PAT, MSR_VM_HSAVE_PA
854 };
855
856 static unsigned num_msrs_to_save;
857
858 static const u32 emulated_msrs[] = {
859         MSR_IA32_TSC_ADJUST,
860         MSR_IA32_TSCDEADLINE,
861         MSR_IA32_MISC_ENABLE,
862         MSR_IA32_MCG_STATUS,
863         MSR_IA32_MCG_CTL,
864 };
865
866 bool kvm_valid_efer(struct kvm_vcpu *vcpu, u64 efer)
867 {
868         if (efer & efer_reserved_bits)
869                 return false;
870
871         if (efer & EFER_FFXSR) {
872                 struct kvm_cpuid_entry2 *feat;
873
874                 feat = kvm_find_cpuid_entry(vcpu, 0x80000001, 0);
875                 if (!feat || !(feat->edx & bit(X86_FEATURE_FXSR_OPT)))
876                         return false;
877         }
878
879         if (efer & EFER_SVME) {
880                 struct kvm_cpuid_entry2 *feat;
881
882                 feat = kvm_find_cpuid_entry(vcpu, 0x80000001, 0);
883                 if (!feat || !(feat->ecx & bit(X86_FEATURE_SVM)))
884                         return false;
885         }
886
887         return true;
888 }
889 EXPORT_SYMBOL_GPL(kvm_valid_efer);
890
891 static int set_efer(struct kvm_vcpu *vcpu, u64 efer)
892 {
893         u64 old_efer = vcpu->arch.efer;
894
895         if (!kvm_valid_efer(vcpu, efer))
896                 return 1;
897
898         if (is_paging(vcpu)
899             && (vcpu->arch.efer & EFER_LME) != (efer & EFER_LME))
900                 return 1;
901
902         efer &= ~EFER_LMA;
903         efer |= vcpu->arch.efer & EFER_LMA;
904
905         kvm_x86_ops->set_efer(vcpu, efer);
906
907         /* Update reserved bits */
908         if ((efer ^ old_efer) & EFER_NX)
909                 kvm_mmu_reset_context(vcpu);
910
911         return 0;
912 }
913
914 void kvm_enable_efer_bits(u64 mask)
915 {
916        efer_reserved_bits &= ~mask;
917 }
918 EXPORT_SYMBOL_GPL(kvm_enable_efer_bits);
919
920
921 /*
922  * Writes msr value into into the appropriate "register".
923  * Returns 0 on success, non-0 otherwise.
924  * Assumes vcpu_load() was already called.
925  */
926 int kvm_set_msr(struct kvm_vcpu *vcpu, struct msr_data *msr)
927 {
928         return kvm_x86_ops->set_msr(vcpu, msr);
929 }
930
931 /*
932  * Adapt set_msr() to msr_io()'s calling convention
933  */
934 static int do_set_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
935 {
936         struct msr_data msr;
937
938         msr.data = *data;
939         msr.index = index;
940         msr.host_initiated = true;
941         return kvm_set_msr(vcpu, &msr);
942 }
943
944 #ifdef CONFIG_X86_64
945 struct pvclock_gtod_data {
946         seqcount_t      seq;
947
948         struct { /* extract of a clocksource struct */
949                 int vclock_mode;
950                 cycle_t cycle_last;
951                 cycle_t mask;
952                 u32     mult;
953                 u32     shift;
954         } clock;
955
956         /* open coded 'struct timespec' */
957         u64             monotonic_time_snsec;
958         time_t          monotonic_time_sec;
959 };
960
961 static struct pvclock_gtod_data pvclock_gtod_data;
962
963 static void update_pvclock_gtod(struct timekeeper *tk)
964 {
965         struct pvclock_gtod_data *vdata = &pvclock_gtod_data;
966
967         write_seqcount_begin(&vdata->seq);
968
969         /* copy pvclock gtod data */
970         vdata->clock.vclock_mode        = tk->clock->archdata.vclock_mode;
971         vdata->clock.cycle_last         = tk->clock->cycle_last;
972         vdata->clock.mask               = tk->clock->mask;
973         vdata->clock.mult               = tk->mult;
974         vdata->clock.shift              = tk->shift;
975
976         vdata->monotonic_time_sec       = tk->xtime_sec
977                                         + tk->wall_to_monotonic.tv_sec;
978         vdata->monotonic_time_snsec     = tk->xtime_nsec
979                                         + (tk->wall_to_monotonic.tv_nsec
980                                                 << tk->shift);
981         while (vdata->monotonic_time_snsec >=
982                                         (((u64)NSEC_PER_SEC) << tk->shift)) {
983                 vdata->monotonic_time_snsec -=
984                                         ((u64)NSEC_PER_SEC) << tk->shift;
985                 vdata->monotonic_time_sec++;
986         }
987
988         write_seqcount_end(&vdata->seq);
989 }
990 #endif
991
992
993 static void kvm_write_wall_clock(struct kvm *kvm, gpa_t wall_clock)
994 {
995         int version;
996         int r;
997         struct pvclock_wall_clock wc;
998         struct timespec boot;
999
1000         if (!wall_clock)
1001                 return;
1002
1003         r = kvm_read_guest(kvm, wall_clock, &version, sizeof(version));
1004         if (r)
1005                 return;
1006
1007         if (version & 1)
1008                 ++version;  /* first time write, random junk */
1009
1010         ++version;
1011
1012         kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
1013
1014         /*
1015          * The guest calculates current wall clock time by adding
1016          * system time (updated by kvm_guest_time_update below) to the
1017          * wall clock specified here.  guest system time equals host
1018          * system time for us, thus we must fill in host boot time here.
1019          */
1020         getboottime(&boot);
1021
1022         if (kvm->arch.kvmclock_offset) {
1023                 struct timespec ts = ns_to_timespec(kvm->arch.kvmclock_offset);
1024                 boot = timespec_sub(boot, ts);
1025         }
1026         wc.sec = boot.tv_sec;
1027         wc.nsec = boot.tv_nsec;
1028         wc.version = version;
1029
1030         kvm_write_guest(kvm, wall_clock, &wc, sizeof(wc));
1031
1032         version++;
1033         kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
1034 }
1035
1036 static uint32_t div_frac(uint32_t dividend, uint32_t divisor)
1037 {
1038         uint32_t quotient, remainder;
1039
1040         /* Don't try to replace with do_div(), this one calculates
1041          * "(dividend << 32) / divisor" */
1042         __asm__ ( "divl %4"
1043                   : "=a" (quotient), "=d" (remainder)
1044                   : "0" (0), "1" (dividend), "r" (divisor) );
1045         return quotient;
1046 }
1047
1048 static void kvm_get_time_scale(uint32_t scaled_khz, uint32_t base_khz,
1049                                s8 *pshift, u32 *pmultiplier)
1050 {
1051         uint64_t scaled64;
1052         int32_t  shift = 0;
1053         uint64_t tps64;
1054         uint32_t tps32;
1055
1056         tps64 = base_khz * 1000LL;
1057         scaled64 = scaled_khz * 1000LL;
1058         while (tps64 > scaled64*2 || tps64 & 0xffffffff00000000ULL) {
1059                 tps64 >>= 1;
1060                 shift--;
1061         }
1062
1063         tps32 = (uint32_t)tps64;
1064         while (tps32 <= scaled64 || scaled64 & 0xffffffff00000000ULL) {
1065                 if (scaled64 & 0xffffffff00000000ULL || tps32 & 0x80000000)
1066                         scaled64 >>= 1;
1067                 else
1068                         tps32 <<= 1;
1069                 shift++;
1070         }
1071
1072         *pshift = shift;
1073         *pmultiplier = div_frac(scaled64, tps32);
1074
1075         pr_debug("%s: base_khz %u => %u, shift %d, mul %u\n",
1076                  __func__, base_khz, scaled_khz, shift, *pmultiplier);
1077 }
1078
1079 static inline u64 get_kernel_ns(void)
1080 {
1081         struct timespec ts;
1082
1083         WARN_ON(preemptible());
1084         ktime_get_ts(&ts);
1085         monotonic_to_bootbased(&ts);
1086         return timespec_to_ns(&ts);
1087 }
1088
1089 #ifdef CONFIG_X86_64
1090 static atomic_t kvm_guest_has_master_clock = ATOMIC_INIT(0);
1091 #endif
1092
1093 static DEFINE_PER_CPU(unsigned long, cpu_tsc_khz);
1094 unsigned long max_tsc_khz;
1095
1096 static inline u64 nsec_to_cycles(struct kvm_vcpu *vcpu, u64 nsec)
1097 {
1098         return pvclock_scale_delta(nsec, vcpu->arch.virtual_tsc_mult,
1099                                    vcpu->arch.virtual_tsc_shift);
1100 }
1101
1102 static u32 adjust_tsc_khz(u32 khz, s32 ppm)
1103 {
1104         u64 v = (u64)khz * (1000000 + ppm);
1105         do_div(v, 1000000);
1106         return v;
1107 }
1108
1109 static void kvm_set_tsc_khz(struct kvm_vcpu *vcpu, u32 this_tsc_khz)
1110 {
1111         u32 thresh_lo, thresh_hi;
1112         int use_scaling = 0;
1113
1114         /* tsc_khz can be zero if TSC calibration fails */
1115         if (this_tsc_khz == 0)
1116                 return;
1117
1118         /* Compute a scale to convert nanoseconds in TSC cycles */
1119         kvm_get_time_scale(this_tsc_khz, NSEC_PER_SEC / 1000,
1120                            &vcpu->arch.virtual_tsc_shift,
1121                            &vcpu->arch.virtual_tsc_mult);
1122         vcpu->arch.virtual_tsc_khz = this_tsc_khz;
1123
1124         /*
1125          * Compute the variation in TSC rate which is acceptable
1126          * within the range of tolerance and decide if the
1127          * rate being applied is within that bounds of the hardware
1128          * rate.  If so, no scaling or compensation need be done.
1129          */
1130         thresh_lo = adjust_tsc_khz(tsc_khz, -tsc_tolerance_ppm);
1131         thresh_hi = adjust_tsc_khz(tsc_khz, tsc_tolerance_ppm);
1132         if (this_tsc_khz < thresh_lo || this_tsc_khz > thresh_hi) {
1133                 pr_debug("kvm: requested TSC rate %u falls outside tolerance [%u,%u]\n", this_tsc_khz, thresh_lo, thresh_hi);
1134                 use_scaling = 1;
1135         }
1136         kvm_x86_ops->set_tsc_khz(vcpu, this_tsc_khz, use_scaling);
1137 }
1138
1139 static u64 compute_guest_tsc(struct kvm_vcpu *vcpu, s64 kernel_ns)
1140 {
1141         u64 tsc = pvclock_scale_delta(kernel_ns-vcpu->arch.this_tsc_nsec,
1142                                       vcpu->arch.virtual_tsc_mult,
1143                                       vcpu->arch.virtual_tsc_shift);
1144         tsc += vcpu->arch.this_tsc_write;
1145         return tsc;
1146 }
1147
1148 void kvm_track_tsc_matching(struct kvm_vcpu *vcpu)
1149 {
1150 #ifdef CONFIG_X86_64
1151         bool vcpus_matched;
1152         bool do_request = false;
1153         struct kvm_arch *ka = &vcpu->kvm->arch;
1154         struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
1155
1156         vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 ==
1157                          atomic_read(&vcpu->kvm->online_vcpus));
1158
1159         if (vcpus_matched && gtod->clock.vclock_mode == VCLOCK_TSC)
1160                 if (!ka->use_master_clock)
1161                         do_request = 1;
1162
1163         if (!vcpus_matched && ka->use_master_clock)
1164                         do_request = 1;
1165
1166         if (do_request)
1167                 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
1168
1169         trace_kvm_track_tsc(vcpu->vcpu_id, ka->nr_vcpus_matched_tsc,
1170                             atomic_read(&vcpu->kvm->online_vcpus),
1171                             ka->use_master_clock, gtod->clock.vclock_mode);
1172 #endif
1173 }
1174
1175 static void update_ia32_tsc_adjust_msr(struct kvm_vcpu *vcpu, s64 offset)
1176 {
1177         u64 curr_offset = kvm_x86_ops->read_tsc_offset(vcpu);
1178         vcpu->arch.ia32_tsc_adjust_msr += offset - curr_offset;
1179 }
1180
1181 void kvm_write_tsc(struct kvm_vcpu *vcpu, struct msr_data *msr)
1182 {
1183         struct kvm *kvm = vcpu->kvm;
1184         u64 offset, ns, elapsed;
1185         unsigned long flags;
1186         s64 usdiff;
1187         bool matched;
1188         u64 data = msr->data;
1189
1190         raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags);
1191         offset = kvm_x86_ops->compute_tsc_offset(vcpu, data);
1192         ns = get_kernel_ns();
1193         elapsed = ns - kvm->arch.last_tsc_nsec;
1194
1195         if (vcpu->arch.virtual_tsc_khz) {
1196                 /* n.b - signed multiplication and division required */
1197                 usdiff = data - kvm->arch.last_tsc_write;
1198 #ifdef CONFIG_X86_64
1199                 usdiff = (usdiff * 1000) / vcpu->arch.virtual_tsc_khz;
1200 #else
1201                 /* do_div() only does unsigned */
1202                 asm("idivl %2; xor %%edx, %%edx"
1203                 : "=A"(usdiff)
1204                 : "A"(usdiff * 1000), "rm"(vcpu->arch.virtual_tsc_khz));
1205 #endif
1206                 do_div(elapsed, 1000);
1207                 usdiff -= elapsed;
1208                 if (usdiff < 0)
1209                         usdiff = -usdiff;
1210         } else
1211                 usdiff = USEC_PER_SEC; /* disable TSC match window below */
1212
1213         /*
1214          * Special case: TSC write with a small delta (1 second) of virtual
1215          * cycle time against real time is interpreted as an attempt to
1216          * synchronize the CPU.
1217          *
1218          * For a reliable TSC, we can match TSC offsets, and for an unstable
1219          * TSC, we add elapsed time in this computation.  We could let the
1220          * compensation code attempt to catch up if we fall behind, but
1221          * it's better to try to match offsets from the beginning.
1222          */
1223         if (usdiff < USEC_PER_SEC &&
1224             vcpu->arch.virtual_tsc_khz == kvm->arch.last_tsc_khz) {
1225                 if (!check_tsc_unstable()) {
1226                         offset = kvm->arch.cur_tsc_offset;
1227                         pr_debug("kvm: matched tsc offset for %llu\n", data);
1228                 } else {
1229                         u64 delta = nsec_to_cycles(vcpu, elapsed);
1230                         data += delta;
1231                         offset = kvm_x86_ops->compute_tsc_offset(vcpu, data);
1232                         pr_debug("kvm: adjusted tsc offset by %llu\n", delta);
1233                 }
1234                 matched = true;
1235         } else {
1236                 /*
1237                  * We split periods of matched TSC writes into generations.
1238                  * For each generation, we track the original measured
1239                  * nanosecond time, offset, and write, so if TSCs are in
1240                  * sync, we can match exact offset, and if not, we can match
1241                  * exact software computation in compute_guest_tsc()
1242                  *
1243                  * These values are tracked in kvm->arch.cur_xxx variables.
1244                  */
1245                 kvm->arch.cur_tsc_generation++;
1246                 kvm->arch.cur_tsc_nsec = ns;
1247                 kvm->arch.cur_tsc_write = data;
1248                 kvm->arch.cur_tsc_offset = offset;
1249                 matched = false;
1250                 pr_debug("kvm: new tsc generation %u, clock %llu\n",
1251                          kvm->arch.cur_tsc_generation, data);
1252         }
1253
1254         /*
1255          * We also track th most recent recorded KHZ, write and time to
1256          * allow the matching interval to be extended at each write.
1257          */
1258         kvm->arch.last_tsc_nsec = ns;
1259         kvm->arch.last_tsc_write = data;
1260         kvm->arch.last_tsc_khz = vcpu->arch.virtual_tsc_khz;
1261
1262         /* Reset of TSC must disable overshoot protection below */
1263         vcpu->arch.hv_clock.tsc_timestamp = 0;
1264         vcpu->arch.last_guest_tsc = data;
1265
1266         /* Keep track of which generation this VCPU has synchronized to */
1267         vcpu->arch.this_tsc_generation = kvm->arch.cur_tsc_generation;
1268         vcpu->arch.this_tsc_nsec = kvm->arch.cur_tsc_nsec;
1269         vcpu->arch.this_tsc_write = kvm->arch.cur_tsc_write;
1270
1271         if (guest_cpuid_has_tsc_adjust(vcpu) && !msr->host_initiated)
1272                 update_ia32_tsc_adjust_msr(vcpu, offset);
1273         kvm_x86_ops->write_tsc_offset(vcpu, offset);
1274         raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags);
1275
1276         spin_lock(&kvm->arch.pvclock_gtod_sync_lock);
1277         if (matched)
1278                 kvm->arch.nr_vcpus_matched_tsc++;
1279         else
1280                 kvm->arch.nr_vcpus_matched_tsc = 0;
1281
1282         kvm_track_tsc_matching(vcpu);
1283         spin_unlock(&kvm->arch.pvclock_gtod_sync_lock);
1284 }
1285
1286 EXPORT_SYMBOL_GPL(kvm_write_tsc);
1287
1288 #ifdef CONFIG_X86_64
1289
1290 static cycle_t read_tsc(void)
1291 {
1292         cycle_t ret;
1293         u64 last;
1294
1295         /*
1296          * Empirically, a fence (of type that depends on the CPU)
1297          * before rdtsc is enough to ensure that rdtsc is ordered
1298          * with respect to loads.  The various CPU manuals are unclear
1299          * as to whether rdtsc can be reordered with later loads,
1300          * but no one has ever seen it happen.
1301          */
1302         rdtsc_barrier();
1303         ret = (cycle_t)vget_cycles();
1304
1305         last = pvclock_gtod_data.clock.cycle_last;
1306
1307         if (likely(ret >= last))
1308                 return ret;
1309
1310         /*
1311          * GCC likes to generate cmov here, but this branch is extremely
1312          * predictable (it's just a funciton of time and the likely is
1313          * very likely) and there's a data dependence, so force GCC
1314          * to generate a branch instead.  I don't barrier() because
1315          * we don't actually need a barrier, and if this function
1316          * ever gets inlined it will generate worse code.
1317          */
1318         asm volatile ("");
1319         return last;
1320 }
1321
1322 static inline u64 vgettsc(cycle_t *cycle_now)
1323 {
1324         long v;
1325         struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
1326
1327         *cycle_now = read_tsc();
1328
1329         v = (*cycle_now - gtod->clock.cycle_last) & gtod->clock.mask;
1330         return v * gtod->clock.mult;
1331 }
1332
1333 static int do_monotonic(struct timespec *ts, cycle_t *cycle_now)
1334 {
1335         unsigned long seq;
1336         u64 ns;
1337         int mode;
1338         struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
1339
1340         ts->tv_nsec = 0;
1341         do {
1342                 seq = read_seqcount_begin(&gtod->seq);
1343                 mode = gtod->clock.vclock_mode;
1344                 ts->tv_sec = gtod->monotonic_time_sec;
1345                 ns = gtod->monotonic_time_snsec;
1346                 ns += vgettsc(cycle_now);
1347                 ns >>= gtod->clock.shift;
1348         } while (unlikely(read_seqcount_retry(&gtod->seq, seq)));
1349         timespec_add_ns(ts, ns);
1350
1351         return mode;
1352 }
1353
1354 /* returns true if host is using tsc clocksource */
1355 static bool kvm_get_time_and_clockread(s64 *kernel_ns, cycle_t *cycle_now)
1356 {
1357         struct timespec ts;
1358
1359         /* checked again under seqlock below */
1360         if (pvclock_gtod_data.clock.vclock_mode != VCLOCK_TSC)
1361                 return false;
1362
1363         if (do_monotonic(&ts, cycle_now) != VCLOCK_TSC)
1364                 return false;
1365
1366         monotonic_to_bootbased(&ts);
1367         *kernel_ns = timespec_to_ns(&ts);
1368
1369         return true;
1370 }
1371 #endif
1372
1373 /*
1374  *
1375  * Assuming a stable TSC across physical CPUS, and a stable TSC
1376  * across virtual CPUs, the following condition is possible.
1377  * Each numbered line represents an event visible to both
1378  * CPUs at the next numbered event.
1379  *
1380  * "timespecX" represents host monotonic time. "tscX" represents
1381  * RDTSC value.
1382  *
1383  *              VCPU0 on CPU0           |       VCPU1 on CPU1
1384  *
1385  * 1.  read timespec0,tsc0
1386  * 2.                                   | timespec1 = timespec0 + N
1387  *                                      | tsc1 = tsc0 + M
1388  * 3. transition to guest               | transition to guest
1389  * 4. ret0 = timespec0 + (rdtsc - tsc0) |
1390  * 5.                                   | ret1 = timespec1 + (rdtsc - tsc1)
1391  *                                      | ret1 = timespec0 + N + (rdtsc - (tsc0 + M))
1392  *
1393  * Since ret0 update is visible to VCPU1 at time 5, to obey monotonicity:
1394  *
1395  *      - ret0 < ret1
1396  *      - timespec0 + (rdtsc - tsc0) < timespec0 + N + (rdtsc - (tsc0 + M))
1397  *              ...
1398  *      - 0 < N - M => M < N
1399  *
1400  * That is, when timespec0 != timespec1, M < N. Unfortunately that is not
1401  * always the case (the difference between two distinct xtime instances
1402  * might be smaller then the difference between corresponding TSC reads,
1403  * when updating guest vcpus pvclock areas).
1404  *
1405  * To avoid that problem, do not allow visibility of distinct
1406  * system_timestamp/tsc_timestamp values simultaneously: use a master
1407  * copy of host monotonic time values. Update that master copy
1408  * in lockstep.
1409  *
1410  * Rely on synchronization of host TSCs and guest TSCs for monotonicity.
1411  *
1412  */
1413
1414 static void pvclock_update_vm_gtod_copy(struct kvm *kvm)
1415 {
1416 #ifdef CONFIG_X86_64
1417         struct kvm_arch *ka = &kvm->arch;
1418         int vclock_mode;
1419         bool host_tsc_clocksource, vcpus_matched;
1420
1421         vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 ==
1422                         atomic_read(&kvm->online_vcpus));
1423
1424         /*
1425          * If the host uses TSC clock, then passthrough TSC as stable
1426          * to the guest.
1427          */
1428         host_tsc_clocksource = kvm_get_time_and_clockread(
1429                                         &ka->master_kernel_ns,
1430                                         &ka->master_cycle_now);
1431
1432         ka->use_master_clock = host_tsc_clocksource & vcpus_matched;
1433
1434         if (ka->use_master_clock)
1435                 atomic_set(&kvm_guest_has_master_clock, 1);
1436
1437         vclock_mode = pvclock_gtod_data.clock.vclock_mode;
1438         trace_kvm_update_master_clock(ka->use_master_clock, vclock_mode,
1439                                         vcpus_matched);
1440 #endif
1441 }
1442
1443 static int kvm_guest_time_update(struct kvm_vcpu *v)
1444 {
1445         unsigned long flags, this_tsc_khz;
1446         struct kvm_vcpu_arch *vcpu = &v->arch;
1447         struct kvm_arch *ka = &v->kvm->arch;
1448         s64 kernel_ns, max_kernel_ns;
1449         u64 tsc_timestamp, host_tsc;
1450         struct pvclock_vcpu_time_info guest_hv_clock;
1451         u8 pvclock_flags;
1452         bool use_master_clock;
1453
1454         kernel_ns = 0;
1455         host_tsc = 0;
1456
1457         /*
1458          * If the host uses TSC clock, then passthrough TSC as stable
1459          * to the guest.
1460          */
1461         spin_lock(&ka->pvclock_gtod_sync_lock);
1462         use_master_clock = ka->use_master_clock;
1463         if (use_master_clock) {
1464                 host_tsc = ka->master_cycle_now;
1465                 kernel_ns = ka->master_kernel_ns;
1466         }
1467         spin_unlock(&ka->pvclock_gtod_sync_lock);
1468
1469         /* Keep irq disabled to prevent changes to the clock */
1470         local_irq_save(flags);
1471         this_tsc_khz = __get_cpu_var(cpu_tsc_khz);
1472         if (unlikely(this_tsc_khz == 0)) {
1473                 local_irq_restore(flags);
1474                 kvm_make_request(KVM_REQ_CLOCK_UPDATE, v);
1475                 return 1;
1476         }
1477         if (!use_master_clock) {
1478                 host_tsc = native_read_tsc();
1479                 kernel_ns = get_kernel_ns();
1480         }
1481
1482         tsc_timestamp = kvm_x86_ops->read_l1_tsc(v, host_tsc);
1483
1484         /*
1485          * We may have to catch up the TSC to match elapsed wall clock
1486          * time for two reasons, even if kvmclock is used.
1487          *   1) CPU could have been running below the maximum TSC rate
1488          *   2) Broken TSC compensation resets the base at each VCPU
1489          *      entry to avoid unknown leaps of TSC even when running
1490          *      again on the same CPU.  This may cause apparent elapsed
1491          *      time to disappear, and the guest to stand still or run
1492          *      very slowly.
1493          */
1494         if (vcpu->tsc_catchup) {
1495                 u64 tsc = compute_guest_tsc(v, kernel_ns);
1496                 if (tsc > tsc_timestamp) {
1497                         adjust_tsc_offset_guest(v, tsc - tsc_timestamp);
1498                         tsc_timestamp = tsc;
1499                 }
1500         }
1501
1502         local_irq_restore(flags);
1503
1504         if (!vcpu->pv_time_enabled)
1505                 return 0;
1506
1507         /*
1508          * Time as measured by the TSC may go backwards when resetting the base
1509          * tsc_timestamp.  The reason for this is that the TSC resolution is
1510          * higher than the resolution of the other clock scales.  Thus, many
1511          * possible measurments of the TSC correspond to one measurement of any
1512          * other clock, and so a spread of values is possible.  This is not a
1513          * problem for the computation of the nanosecond clock; with TSC rates
1514          * around 1GHZ, there can only be a few cycles which correspond to one
1515          * nanosecond value, and any path through this code will inevitably
1516          * take longer than that.  However, with the kernel_ns value itself,
1517          * the precision may be much lower, down to HZ granularity.  If the
1518          * first sampling of TSC against kernel_ns ends in the low part of the
1519          * range, and the second in the high end of the range, we can get:
1520          *
1521          * (TSC - offset_low) * S + kns_old > (TSC - offset_high) * S + kns_new
1522          *
1523          * As the sampling errors potentially range in the thousands of cycles,
1524          * it is possible such a time value has already been observed by the
1525          * guest.  To protect against this, we must compute the system time as
1526          * observed by the guest and ensure the new system time is greater.
1527          */
1528         max_kernel_ns = 0;
1529         if (vcpu->hv_clock.tsc_timestamp) {
1530                 max_kernel_ns = vcpu->last_guest_tsc -
1531                                 vcpu->hv_clock.tsc_timestamp;
1532                 max_kernel_ns = pvclock_scale_delta(max_kernel_ns,
1533                                     vcpu->hv_clock.tsc_to_system_mul,
1534                                     vcpu->hv_clock.tsc_shift);
1535                 max_kernel_ns += vcpu->last_kernel_ns;
1536         }
1537
1538         if (unlikely(vcpu->hw_tsc_khz != this_tsc_khz)) {
1539                 kvm_get_time_scale(NSEC_PER_SEC / 1000, this_tsc_khz,
1540                                    &vcpu->hv_clock.tsc_shift,
1541                                    &vcpu->hv_clock.tsc_to_system_mul);
1542                 vcpu->hw_tsc_khz = this_tsc_khz;
1543         }
1544
1545         /* with a master <monotonic time, tsc value> tuple,
1546          * pvclock clock reads always increase at the (scaled) rate
1547          * of guest TSC - no need to deal with sampling errors.
1548          */
1549         if (!use_master_clock) {
1550                 if (max_kernel_ns > kernel_ns)
1551                         kernel_ns = max_kernel_ns;
1552         }
1553         /* With all the info we got, fill in the values */
1554         vcpu->hv_clock.tsc_timestamp = tsc_timestamp;
1555         vcpu->hv_clock.system_time = kernel_ns + v->kvm->arch.kvmclock_offset;
1556         vcpu->last_kernel_ns = kernel_ns;
1557         vcpu->last_guest_tsc = tsc_timestamp;
1558
1559         /*
1560          * The interface expects us to write an even number signaling that the
1561          * update is finished. Since the guest won't see the intermediate
1562          * state, we just increase by 2 at the end.
1563          */
1564         vcpu->hv_clock.version += 2;
1565
1566         if (unlikely(kvm_read_guest_cached(v->kvm, &vcpu->pv_time,
1567                 &guest_hv_clock, sizeof(guest_hv_clock))))
1568                 return 0;
1569
1570         /* retain PVCLOCK_GUEST_STOPPED if set in guest copy */
1571         pvclock_flags = (guest_hv_clock.flags & PVCLOCK_GUEST_STOPPED);
1572
1573         if (vcpu->pvclock_set_guest_stopped_request) {
1574                 pvclock_flags |= PVCLOCK_GUEST_STOPPED;
1575                 vcpu->pvclock_set_guest_stopped_request = false;
1576         }
1577
1578         /* If the host uses TSC clocksource, then it is stable */
1579         if (use_master_clock)
1580                 pvclock_flags |= PVCLOCK_TSC_STABLE_BIT;
1581
1582         vcpu->hv_clock.flags = pvclock_flags;
1583
1584         kvm_write_guest_cached(v->kvm, &vcpu->pv_time,
1585                                 &vcpu->hv_clock,
1586                                 sizeof(vcpu->hv_clock));
1587         return 0;
1588 }
1589
1590 static bool msr_mtrr_valid(unsigned msr)
1591 {
1592         switch (msr) {
1593         case 0x200 ... 0x200 + 2 * KVM_NR_VAR_MTRR - 1:
1594         case MSR_MTRRfix64K_00000:
1595         case MSR_MTRRfix16K_80000:
1596         case MSR_MTRRfix16K_A0000:
1597         case MSR_MTRRfix4K_C0000:
1598         case MSR_MTRRfix4K_C8000:
1599         case MSR_MTRRfix4K_D0000:
1600         case MSR_MTRRfix4K_D8000:
1601         case MSR_MTRRfix4K_E0000:
1602         case MSR_MTRRfix4K_E8000:
1603         case MSR_MTRRfix4K_F0000:
1604         case MSR_MTRRfix4K_F8000:
1605         case MSR_MTRRdefType:
1606         case MSR_IA32_CR_PAT:
1607                 return true;
1608         case 0x2f8:
1609                 return true;
1610         }
1611         return false;
1612 }
1613
1614 static bool valid_pat_type(unsigned t)
1615 {
1616         return t < 8 && (1 << t) & 0xf3; /* 0, 1, 4, 5, 6, 7 */
1617 }
1618
1619 static bool valid_mtrr_type(unsigned t)
1620 {
1621         return t < 8 && (1 << t) & 0x73; /* 0, 1, 4, 5, 6 */
1622 }
1623
1624 static bool mtrr_valid(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1625 {
1626         int i;
1627
1628         if (!msr_mtrr_valid(msr))
1629                 return false;
1630
1631         if (msr == MSR_IA32_CR_PAT) {
1632                 for (i = 0; i < 8; i++)
1633                         if (!valid_pat_type((data >> (i * 8)) & 0xff))
1634                                 return false;
1635                 return true;
1636         } else if (msr == MSR_MTRRdefType) {
1637                 if (data & ~0xcff)
1638                         return false;
1639                 return valid_mtrr_type(data & 0xff);
1640         } else if (msr >= MSR_MTRRfix64K_00000 && msr <= MSR_MTRRfix4K_F8000) {
1641                 for (i = 0; i < 8 ; i++)
1642                         if (!valid_mtrr_type((data >> (i * 8)) & 0xff))
1643                                 return false;
1644                 return true;
1645         }
1646
1647         /* variable MTRRs */
1648         return valid_mtrr_type(data & 0xff);
1649 }
1650
1651 static int set_msr_mtrr(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1652 {
1653         u64 *p = (u64 *)&vcpu->arch.mtrr_state.fixed_ranges;
1654
1655         if (!mtrr_valid(vcpu, msr, data))
1656                 return 1;
1657
1658         if (msr == MSR_MTRRdefType) {
1659                 vcpu->arch.mtrr_state.def_type = data;
1660                 vcpu->arch.mtrr_state.enabled = (data & 0xc00) >> 10;
1661         } else if (msr == MSR_MTRRfix64K_00000)
1662                 p[0] = data;
1663         else if (msr == MSR_MTRRfix16K_80000 || msr == MSR_MTRRfix16K_A0000)
1664                 p[1 + msr - MSR_MTRRfix16K_80000] = data;
1665         else if (msr >= MSR_MTRRfix4K_C0000 && msr <= MSR_MTRRfix4K_F8000)
1666                 p[3 + msr - MSR_MTRRfix4K_C0000] = data;
1667         else if (msr == MSR_IA32_CR_PAT)
1668                 vcpu->arch.pat = data;
1669         else {  /* Variable MTRRs */
1670                 int idx, is_mtrr_mask;
1671                 u64 *pt;
1672
1673                 idx = (msr - 0x200) / 2;
1674                 is_mtrr_mask = msr - 0x200 - 2 * idx;
1675                 if (!is_mtrr_mask)
1676                         pt =
1677                           (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].base_lo;
1678                 else
1679                         pt =
1680                           (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].mask_lo;
1681                 *pt = data;
1682         }
1683
1684         kvm_mmu_reset_context(vcpu);
1685         return 0;
1686 }
1687
1688 static int set_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1689 {
1690         u64 mcg_cap = vcpu->arch.mcg_cap;
1691         unsigned bank_num = mcg_cap & 0xff;
1692
1693         switch (msr) {
1694         case MSR_IA32_MCG_STATUS:
1695                 vcpu->arch.mcg_status = data;
1696                 break;
1697         case MSR_IA32_MCG_CTL:
1698                 if (!(mcg_cap & MCG_CTL_P))
1699                         return 1;
1700                 if (data != 0 && data != ~(u64)0)
1701                         return -1;
1702                 vcpu->arch.mcg_ctl = data;
1703                 break;
1704         default:
1705                 if (msr >= MSR_IA32_MC0_CTL &&
1706                     msr < MSR_IA32_MC0_CTL + 4 * bank_num) {
1707                         u32 offset = msr - MSR_IA32_MC0_CTL;
1708                         /* only 0 or all 1s can be written to IA32_MCi_CTL
1709                          * some Linux kernels though clear bit 10 in bank 4 to
1710                          * workaround a BIOS/GART TBL issue on AMD K8s, ignore
1711                          * this to avoid an uncatched #GP in the guest
1712                          */
1713                         if ((offset & 0x3) == 0 &&
1714                             data != 0 && (data | (1 << 10)) != ~(u64)0)
1715                                 return -1;
1716                         vcpu->arch.mce_banks[offset] = data;
1717                         break;
1718                 }
1719                 return 1;
1720         }
1721         return 0;
1722 }
1723
1724 static int xen_hvm_config(struct kvm_vcpu *vcpu, u64 data)
1725 {
1726         struct kvm *kvm = vcpu->kvm;
1727         int lm = is_long_mode(vcpu);
1728         u8 *blob_addr = lm ? (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_64
1729                 : (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_32;
1730         u8 blob_size = lm ? kvm->arch.xen_hvm_config.blob_size_64
1731                 : kvm->arch.xen_hvm_config.blob_size_32;
1732         u32 page_num = data & ~PAGE_MASK;
1733         u64 page_addr = data & PAGE_MASK;
1734         u8 *page;
1735         int r;
1736
1737         r = -E2BIG;
1738         if (page_num >= blob_size)
1739                 goto out;
1740         r = -ENOMEM;
1741         page = memdup_user(blob_addr + (page_num * PAGE_SIZE), PAGE_SIZE);
1742         if (IS_ERR(page)) {
1743                 r = PTR_ERR(page);
1744                 goto out;
1745         }
1746         if (kvm_write_guest(kvm, page_addr, page, PAGE_SIZE))
1747                 goto out_free;
1748         r = 0;
1749 out_free:
1750         kfree(page);
1751 out:
1752         return r;
1753 }
1754
1755 static bool kvm_hv_hypercall_enabled(struct kvm *kvm)
1756 {
1757         return kvm->arch.hv_hypercall & HV_X64_MSR_HYPERCALL_ENABLE;
1758 }
1759
1760 static bool kvm_hv_msr_partition_wide(u32 msr)
1761 {
1762         bool r = false;
1763         switch (msr) {
1764         case HV_X64_MSR_GUEST_OS_ID:
1765         case HV_X64_MSR_HYPERCALL:
1766                 r = true;
1767                 break;
1768         }
1769
1770         return r;
1771 }
1772
1773 static int set_msr_hyperv_pw(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1774 {
1775         struct kvm *kvm = vcpu->kvm;
1776
1777         switch (msr) {
1778         case HV_X64_MSR_GUEST_OS_ID:
1779                 kvm->arch.hv_guest_os_id = data;
1780                 /* setting guest os id to zero disables hypercall page */
1781                 if (!kvm->arch.hv_guest_os_id)
1782                         kvm->arch.hv_hypercall &= ~HV_X64_MSR_HYPERCALL_ENABLE;
1783                 break;
1784         case HV_X64_MSR_HYPERCALL: {
1785                 u64 gfn;
1786                 unsigned long addr;
1787                 u8 instructions[4];
1788
1789                 /* if guest os id is not set hypercall should remain disabled */
1790                 if (!kvm->arch.hv_guest_os_id)
1791                         break;
1792                 if (!(data & HV_X64_MSR_HYPERCALL_ENABLE)) {
1793                         kvm->arch.hv_hypercall = data;
1794                         break;
1795                 }
1796                 gfn = data >> HV_X64_MSR_HYPERCALL_PAGE_ADDRESS_SHIFT;
1797                 addr = gfn_to_hva(kvm, gfn);
1798                 if (kvm_is_error_hva(addr))
1799                         return 1;
1800                 kvm_x86_ops->patch_hypercall(vcpu, instructions);
1801                 ((unsigned char *)instructions)[3] = 0xc3; /* ret */
1802                 if (__copy_to_user((void __user *)addr, instructions, 4))
1803                         return 1;
1804                 kvm->arch.hv_hypercall = data;
1805                 break;
1806         }
1807         default:
1808                 vcpu_unimpl(vcpu, "HYPER-V unimplemented wrmsr: 0x%x "
1809                             "data 0x%llx\n", msr, data);
1810                 return 1;
1811         }
1812         return 0;
1813 }
1814
1815 static int set_msr_hyperv(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1816 {
1817         switch (msr) {
1818         case HV_X64_MSR_APIC_ASSIST_PAGE: {
1819                 unsigned long addr;
1820
1821                 if (!(data & HV_X64_MSR_APIC_ASSIST_PAGE_ENABLE)) {
1822                         vcpu->arch.hv_vapic = data;
1823                         break;
1824                 }
1825                 addr = gfn_to_hva(vcpu->kvm, data >>
1826                                   HV_X64_MSR_APIC_ASSIST_PAGE_ADDRESS_SHIFT);
1827                 if (kvm_is_error_hva(addr))
1828                         return 1;
1829                 if (__clear_user((void __user *)addr, PAGE_SIZE))
1830                         return 1;
1831                 vcpu->arch.hv_vapic = data;
1832                 break;
1833         }
1834         case HV_X64_MSR_EOI:
1835                 return kvm_hv_vapic_msr_write(vcpu, APIC_EOI, data);
1836         case HV_X64_MSR_ICR:
1837                 return kvm_hv_vapic_msr_write(vcpu, APIC_ICR, data);
1838         case HV_X64_MSR_TPR:
1839                 return kvm_hv_vapic_msr_write(vcpu, APIC_TASKPRI, data);
1840         default:
1841                 vcpu_unimpl(vcpu, "HYPER-V unimplemented wrmsr: 0x%x "
1842                             "data 0x%llx\n", msr, data);
1843                 return 1;
1844         }
1845
1846         return 0;
1847 }
1848
1849 static int kvm_pv_enable_async_pf(struct kvm_vcpu *vcpu, u64 data)
1850 {
1851         gpa_t gpa = data & ~0x3f;
1852
1853         /* Bits 2:5 are reserved, Should be zero */
1854         if (data & 0x3c)
1855                 return 1;
1856
1857         vcpu->arch.apf.msr_val = data;
1858
1859         if (!(data & KVM_ASYNC_PF_ENABLED)) {
1860                 kvm_clear_async_pf_completion_queue(vcpu);
1861                 kvm_async_pf_hash_reset(vcpu);
1862                 return 0;
1863         }
1864
1865         if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.apf.data, gpa,
1866                                         sizeof(u32)))
1867                 return 1;
1868
1869         vcpu->arch.apf.send_user_only = !(data & KVM_ASYNC_PF_SEND_ALWAYS);
1870         kvm_async_pf_wakeup_all(vcpu);
1871         return 0;
1872 }
1873
1874 static void kvmclock_reset(struct kvm_vcpu *vcpu)
1875 {
1876         vcpu->arch.pv_time_enabled = false;
1877 }
1878
1879 static void accumulate_steal_time(struct kvm_vcpu *vcpu)
1880 {
1881         u64 delta;
1882
1883         if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED))
1884                 return;
1885
1886         delta = current->sched_info.run_delay - vcpu->arch.st.last_steal;
1887         vcpu->arch.st.last_steal = current->sched_info.run_delay;
1888         vcpu->arch.st.accum_steal = delta;
1889 }
1890
1891 static void record_steal_time(struct kvm_vcpu *vcpu)
1892 {
1893         if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED))
1894                 return;
1895
1896         if (unlikely(kvm_read_guest_cached(vcpu->kvm, &vcpu->arch.st.stime,
1897                 &vcpu->arch.st.steal, sizeof(struct kvm_steal_time))))
1898                 return;
1899
1900         vcpu->arch.st.steal.steal += vcpu->arch.st.accum_steal;
1901         vcpu->arch.st.steal.version += 2;
1902         vcpu->arch.st.accum_steal = 0;
1903
1904         kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.st.stime,
1905                 &vcpu->arch.st.steal, sizeof(struct kvm_steal_time));
1906 }
1907
1908 int kvm_set_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
1909 {
1910         bool pr = false;
1911         u32 msr = msr_info->index;
1912         u64 data = msr_info->data;
1913
1914         switch (msr) {
1915         case MSR_AMD64_NB_CFG:
1916         case MSR_IA32_UCODE_REV:
1917         case MSR_IA32_UCODE_WRITE:
1918         case MSR_VM_HSAVE_PA:
1919         case MSR_AMD64_PATCH_LOADER:
1920         case MSR_AMD64_BU_CFG2:
1921                 break;
1922
1923         case MSR_EFER:
1924                 return set_efer(vcpu, data);
1925         case MSR_K7_HWCR:
1926                 data &= ~(u64)0x40;     /* ignore flush filter disable */
1927                 data &= ~(u64)0x100;    /* ignore ignne emulation enable */
1928                 data &= ~(u64)0x8;      /* ignore TLB cache disable */
1929                 if (data != 0) {
1930                         vcpu_unimpl(vcpu, "unimplemented HWCR wrmsr: 0x%llx\n",
1931                                     data);
1932                         return 1;
1933                 }
1934                 break;
1935         case MSR_FAM10H_MMIO_CONF_BASE:
1936                 if (data != 0) {
1937                         vcpu_unimpl(vcpu, "unimplemented MMIO_CONF_BASE wrmsr: "
1938                                     "0x%llx\n", data);
1939                         return 1;
1940                 }
1941                 break;
1942         case MSR_IA32_DEBUGCTLMSR:
1943                 if (!data) {
1944                         /* We support the non-activated case already */
1945                         break;
1946                 } else if (data & ~(DEBUGCTLMSR_LBR | DEBUGCTLMSR_BTF)) {
1947                         /* Values other than LBR and BTF are vendor-specific,
1948                            thus reserved and should throw a #GP */
1949                         return 1;
1950                 }
1951                 vcpu_unimpl(vcpu, "%s: MSR_IA32_DEBUGCTLMSR 0x%llx, nop\n",
1952                             __func__, data);
1953                 break;
1954         case 0x200 ... 0x2ff:
1955                 return set_msr_mtrr(vcpu, msr, data);
1956         case MSR_IA32_APICBASE:
1957                 kvm_set_apic_base(vcpu, data);
1958                 break;
1959         case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff:
1960                 return kvm_x2apic_msr_write(vcpu, msr, data);
1961         case MSR_IA32_TSCDEADLINE:
1962                 kvm_set_lapic_tscdeadline_msr(vcpu, data);
1963                 break;
1964         case MSR_IA32_TSC_ADJUST:
1965                 if (guest_cpuid_has_tsc_adjust(vcpu)) {
1966                         if (!msr_info->host_initiated) {
1967                                 u64 adj = data - vcpu->arch.ia32_tsc_adjust_msr;
1968                                 kvm_x86_ops->adjust_tsc_offset(vcpu, adj, true);
1969                         }
1970                         vcpu->arch.ia32_tsc_adjust_msr = data;
1971                 }
1972                 break;
1973         case MSR_IA32_MISC_ENABLE:
1974                 vcpu->arch.ia32_misc_enable_msr = data;
1975                 break;
1976         case MSR_KVM_WALL_CLOCK_NEW:
1977         case MSR_KVM_WALL_CLOCK:
1978                 vcpu->kvm->arch.wall_clock = data;
1979                 kvm_write_wall_clock(vcpu->kvm, data);
1980                 break;
1981         case MSR_KVM_SYSTEM_TIME_NEW:
1982         case MSR_KVM_SYSTEM_TIME: {
1983                 u64 gpa_offset;
1984                 kvmclock_reset(vcpu);
1985
1986                 vcpu->arch.time = data;
1987                 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
1988
1989                 /* we verify if the enable bit is set... */
1990                 if (!(data & 1))
1991                         break;
1992
1993                 gpa_offset = data & ~(PAGE_MASK | 1);
1994
1995                 if (kvm_gfn_to_hva_cache_init(vcpu->kvm,
1996                      &vcpu->arch.pv_time, data & ~1ULL,
1997                      sizeof(struct pvclock_vcpu_time_info)))
1998                         vcpu->arch.pv_time_enabled = false;
1999                 else
2000                         vcpu->arch.pv_time_enabled = true;
2001
2002                 break;
2003         }
2004         case MSR_KVM_ASYNC_PF_EN:
2005                 if (kvm_pv_enable_async_pf(vcpu, data))
2006                         return 1;
2007                 break;
2008         case MSR_KVM_STEAL_TIME:
2009
2010                 if (unlikely(!sched_info_on()))
2011                         return 1;
2012
2013                 if (data & KVM_STEAL_RESERVED_MASK)
2014                         return 1;
2015
2016                 if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.st.stime,
2017                                                 data & KVM_STEAL_VALID_BITS,
2018                                                 sizeof(struct kvm_steal_time)))
2019                         return 1;
2020
2021                 vcpu->arch.st.msr_val = data;
2022
2023                 if (!(data & KVM_MSR_ENABLED))
2024                         break;
2025
2026                 vcpu->arch.st.last_steal = current->sched_info.run_delay;
2027
2028                 preempt_disable();
2029                 accumulate_steal_time(vcpu);
2030                 preempt_enable();
2031
2032                 kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
2033
2034                 break;
2035         case MSR_KVM_PV_EOI_EN:
2036                 if (kvm_lapic_enable_pv_eoi(vcpu, data))
2037                         return 1;
2038                 break;
2039
2040         case MSR_IA32_MCG_CTL:
2041         case MSR_IA32_MCG_STATUS:
2042         case MSR_IA32_MC0_CTL ... MSR_IA32_MC0_CTL + 4 * KVM_MAX_MCE_BANKS - 1:
2043                 return set_msr_mce(vcpu, msr, data);
2044
2045         /* Performance counters are not protected by a CPUID bit,
2046          * so we should check all of them in the generic path for the sake of
2047          * cross vendor migration.
2048          * Writing a zero into the event select MSRs disables them,
2049          * which we perfectly emulate ;-). Any other value should be at least
2050          * reported, some guests depend on them.
2051          */
2052         case MSR_K7_EVNTSEL0:
2053         case MSR_K7_EVNTSEL1:
2054         case MSR_K7_EVNTSEL2:
2055         case MSR_K7_EVNTSEL3:
2056                 if (data != 0)
2057                         vcpu_unimpl(vcpu, "unimplemented perfctr wrmsr: "
2058                                     "0x%x data 0x%llx\n", msr, data);
2059                 break;
2060         /* at least RHEL 4 unconditionally writes to the perfctr registers,
2061          * so we ignore writes to make it happy.
2062          */
2063         case MSR_K7_PERFCTR0:
2064         case MSR_K7_PERFCTR1:
2065         case MSR_K7_PERFCTR2:
2066         case MSR_K7_PERFCTR3:
2067                 vcpu_unimpl(vcpu, "unimplemented perfctr wrmsr: "
2068                             "0x%x data 0x%llx\n", msr, data);
2069                 break;
2070         case MSR_P6_PERFCTR0:
2071         case MSR_P6_PERFCTR1:
2072                 pr = true;
2073         case MSR_P6_EVNTSEL0:
2074         case MSR_P6_EVNTSEL1:
2075                 if (kvm_pmu_msr(vcpu, msr))
2076                         return kvm_pmu_set_msr(vcpu, msr_info);
2077
2078                 if (pr || data != 0)
2079                         vcpu_unimpl(vcpu, "disabled perfctr wrmsr: "
2080                                     "0x%x data 0x%llx\n", msr, data);
2081                 break;
2082         case MSR_K7_CLK_CTL:
2083                 /*
2084                  * Ignore all writes to this no longer documented MSR.
2085                  * Writes are only relevant for old K7 processors,
2086                  * all pre-dating SVM, but a recommended workaround from
2087                  * AMD for these chips. It is possible to specify the
2088                  * affected processor models on the command line, hence
2089                  * the need to ignore the workaround.
2090                  */
2091                 break;
2092         case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
2093                 if (kvm_hv_msr_partition_wide(msr)) {
2094                         int r;
2095                         mutex_lock(&vcpu->kvm->lock);
2096                         r = set_msr_hyperv_pw(vcpu, msr, data);
2097                         mutex_unlock(&vcpu->kvm->lock);
2098                         return r;
2099                 } else
2100                         return set_msr_hyperv(vcpu, msr, data);
2101                 break;
2102         case MSR_IA32_BBL_CR_CTL3:
2103                 /* Drop writes to this legacy MSR -- see rdmsr
2104                  * counterpart for further detail.
2105                  */
2106                 vcpu_unimpl(vcpu, "ignored wrmsr: 0x%x data %llx\n", msr, data);
2107                 break;
2108         case MSR_AMD64_OSVW_ID_LENGTH:
2109                 if (!guest_cpuid_has_osvw(vcpu))
2110                         return 1;
2111                 vcpu->arch.osvw.length = data;
2112                 break;
2113         case MSR_AMD64_OSVW_STATUS:
2114                 if (!guest_cpuid_has_osvw(vcpu))
2115                         return 1;
2116                 vcpu->arch.osvw.status = data;
2117                 break;
2118         default:
2119                 if (msr && (msr == vcpu->kvm->arch.xen_hvm_config.msr))
2120                         return xen_hvm_config(vcpu, data);
2121                 if (kvm_pmu_msr(vcpu, msr))
2122                         return kvm_pmu_set_msr(vcpu, msr_info);
2123                 if (!ignore_msrs) {
2124                         vcpu_unimpl(vcpu, "unhandled wrmsr: 0x%x data %llx\n",
2125                                     msr, data);
2126                         return 1;
2127                 } else {
2128                         vcpu_unimpl(vcpu, "ignored wrmsr: 0x%x data %llx\n",
2129                                     msr, data);
2130                         break;
2131                 }
2132         }
2133         return 0;
2134 }
2135 EXPORT_SYMBOL_GPL(kvm_set_msr_common);
2136
2137
2138 /*
2139  * Reads an msr value (of 'msr_index') into 'pdata'.
2140  * Returns 0 on success, non-0 otherwise.
2141  * Assumes vcpu_load() was already called.
2142  */
2143 int kvm_get_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata)
2144 {
2145         return kvm_x86_ops->get_msr(vcpu, msr_index, pdata);
2146 }
2147
2148 static int get_msr_mtrr(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
2149 {
2150         u64 *p = (u64 *)&vcpu->arch.mtrr_state.fixed_ranges;
2151
2152         if (!msr_mtrr_valid(msr))
2153                 return 1;
2154
2155         if (msr == MSR_MTRRdefType)
2156                 *pdata = vcpu->arch.mtrr_state.def_type +
2157                          (vcpu->arch.mtrr_state.enabled << 10);
2158         else if (msr == MSR_MTRRfix64K_00000)
2159                 *pdata = p[0];
2160         else if (msr == MSR_MTRRfix16K_80000 || msr == MSR_MTRRfix16K_A0000)
2161                 *pdata = p[1 + msr - MSR_MTRRfix16K_80000];
2162         else if (msr >= MSR_MTRRfix4K_C0000 && msr <= MSR_MTRRfix4K_F8000)
2163                 *pdata = p[3 + msr - MSR_MTRRfix4K_C0000];
2164         else if (msr == MSR_IA32_CR_PAT)
2165                 *pdata = vcpu->arch.pat;
2166         else {  /* Variable MTRRs */
2167                 int idx, is_mtrr_mask;
2168                 u64 *pt;
2169
2170                 idx = (msr - 0x200) / 2;
2171                 is_mtrr_mask = msr - 0x200 - 2 * idx;
2172                 if (!is_mtrr_mask)
2173                         pt =
2174                           (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].base_lo;
2175                 else
2176                         pt =
2177                           (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].mask_lo;
2178                 *pdata = *pt;
2179         }
2180
2181         return 0;
2182 }
2183
2184 static int get_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
2185 {
2186         u64 data;
2187         u64 mcg_cap = vcpu->arch.mcg_cap;
2188         unsigned bank_num = mcg_cap & 0xff;
2189
2190         switch (msr) {
2191         case MSR_IA32_P5_MC_ADDR:
2192         case MSR_IA32_P5_MC_TYPE:
2193                 data = 0;
2194                 break;
2195         case MSR_IA32_MCG_CAP:
2196                 data = vcpu->arch.mcg_cap;
2197                 break;
2198         case MSR_IA32_MCG_CTL:
2199                 if (!(mcg_cap & MCG_CTL_P))
2200                         return 1;
2201                 data = vcpu->arch.mcg_ctl;
2202                 break;
2203         case MSR_IA32_MCG_STATUS:
2204                 data = vcpu->arch.mcg_status;
2205                 break;
2206         default:
2207                 if (msr >= MSR_IA32_MC0_CTL &&
2208                     msr < MSR_IA32_MC0_CTL + 4 * bank_num) {
2209                         u32 offset = msr - MSR_IA32_MC0_CTL;
2210                         data = vcpu->arch.mce_banks[offset];
2211                         break;
2212                 }
2213                 return 1;
2214         }
2215         *pdata = data;
2216         return 0;
2217 }
2218
2219 static int get_msr_hyperv_pw(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
2220 {
2221         u64 data = 0;
2222         struct kvm *kvm = vcpu->kvm;
2223
2224         switch (msr) {
2225         case HV_X64_MSR_GUEST_OS_ID:
2226                 data = kvm->arch.hv_guest_os_id;
2227                 break;
2228         case HV_X64_MSR_HYPERCALL:
2229                 data = kvm->arch.hv_hypercall;
2230                 break;
2231         default:
2232                 vcpu_unimpl(vcpu, "Hyper-V unhandled rdmsr: 0x%x\n", msr);
2233                 return 1;
2234         }
2235
2236         *pdata = data;
2237         return 0;
2238 }
2239
2240 static int get_msr_hyperv(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
2241 {
2242         u64 data = 0;
2243
2244         switch (msr) {
2245         case HV_X64_MSR_VP_INDEX: {
2246                 int r;
2247                 struct kvm_vcpu *v;
2248                 kvm_for_each_vcpu(r, v, vcpu->kvm)
2249                         if (v == vcpu)
2250                                 data = r;
2251                 break;
2252         }
2253         case HV_X64_MSR_EOI:
2254                 return kvm_hv_vapic_msr_read(vcpu, APIC_EOI, pdata);
2255         case HV_X64_MSR_ICR:
2256                 return kvm_hv_vapic_msr_read(vcpu, APIC_ICR, pdata);
2257         case HV_X64_MSR_TPR:
2258                 return kvm_hv_vapic_msr_read(vcpu, APIC_TASKPRI, pdata);
2259         case HV_X64_MSR_APIC_ASSIST_PAGE:
2260                 data = vcpu->arch.hv_vapic;
2261                 break;
2262         default:
2263                 vcpu_unimpl(vcpu, "Hyper-V unhandled rdmsr: 0x%x\n", msr);
2264                 return 1;
2265         }
2266         *pdata = data;
2267         return 0;
2268 }
2269
2270 int kvm_get_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
2271 {
2272         u64 data;
2273
2274         switch (msr) {
2275         case MSR_IA32_PLATFORM_ID:
2276         case MSR_IA32_EBL_CR_POWERON:
2277         case MSR_IA32_DEBUGCTLMSR:
2278         case MSR_IA32_LASTBRANCHFROMIP:
2279         case MSR_IA32_LASTBRANCHTOIP:
2280         case MSR_IA32_LASTINTFROMIP:
2281         case MSR_IA32_LASTINTTOIP:
2282         case MSR_K8_SYSCFG:
2283         case MSR_K7_HWCR:
2284         case MSR_VM_HSAVE_PA:
2285         case MSR_K7_EVNTSEL0:
2286         case MSR_K7_PERFCTR0:
2287         case MSR_K8_INT_PENDING_MSG:
2288         case MSR_AMD64_NB_CFG:
2289         case MSR_FAM10H_MMIO_CONF_BASE:
2290         case MSR_AMD64_BU_CFG2:
2291                 data = 0;
2292                 break;
2293         case MSR_P6_PERFCTR0:
2294         case MSR_P6_PERFCTR1:
2295         case MSR_P6_EVNTSEL0:
2296         case MSR_P6_EVNTSEL1:
2297                 if (kvm_pmu_msr(vcpu, msr))
2298                         return kvm_pmu_get_msr(vcpu, msr, pdata);
2299                 data = 0;
2300                 break;
2301         case MSR_IA32_UCODE_REV:
2302                 data = 0x100000000ULL;
2303                 break;
2304         case MSR_MTRRcap:
2305                 data = 0x500 | KVM_NR_VAR_MTRR;
2306                 break;
2307         case 0x200 ... 0x2ff:
2308                 return get_msr_mtrr(vcpu, msr, pdata);
2309         case 0xcd: /* fsb frequency */
2310                 data = 3;
2311                 break;
2312                 /*
2313                  * MSR_EBC_FREQUENCY_ID
2314                  * Conservative value valid for even the basic CPU models.
2315                  * Models 0,1: 000 in bits 23:21 indicating a bus speed of
2316                  * 100MHz, model 2 000 in bits 18:16 indicating 100MHz,
2317                  * and 266MHz for model 3, or 4. Set Core Clock
2318                  * Frequency to System Bus Frequency Ratio to 1 (bits
2319                  * 31:24) even though these are only valid for CPU
2320                  * models > 2, however guests may end up dividing or
2321                  * multiplying by zero otherwise.
2322                  */
2323         case MSR_EBC_FREQUENCY_ID:
2324                 data = 1 << 24;
2325                 break;
2326         case MSR_IA32_APICBASE:
2327                 data = kvm_get_apic_base(vcpu);
2328                 break;
2329         case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff:
2330                 return kvm_x2apic_msr_read(vcpu, msr, pdata);
2331                 break;
2332         case MSR_IA32_TSCDEADLINE:
2333                 data = kvm_get_lapic_tscdeadline_msr(vcpu);
2334                 break;
2335         case MSR_IA32_TSC_ADJUST:
2336                 data = (u64)vcpu->arch.ia32_tsc_adjust_msr;
2337                 break;
2338         case MSR_IA32_MISC_ENABLE:
2339                 data = vcpu->arch.ia32_misc_enable_msr;
2340                 break;
2341         case MSR_IA32_PERF_STATUS:
2342                 /* TSC increment by tick */
2343                 data = 1000ULL;
2344                 /* CPU multiplier */
2345                 data |= (((uint64_t)4ULL) << 40);
2346                 break;
2347         case MSR_EFER:
2348                 data = vcpu->arch.efer;
2349                 break;
2350         case MSR_KVM_WALL_CLOCK:
2351         case MSR_KVM_WALL_CLOCK_NEW:
2352                 data = vcpu->kvm->arch.wall_clock;
2353                 break;
2354         case MSR_KVM_SYSTEM_TIME:
2355         case MSR_KVM_SYSTEM_TIME_NEW:
2356                 data = vcpu->arch.time;
2357                 break;
2358         case MSR_KVM_ASYNC_PF_EN:
2359                 data = vcpu->arch.apf.msr_val;
2360                 break;
2361         case MSR_KVM_STEAL_TIME:
2362                 data = vcpu->arch.st.msr_val;
2363                 break;
2364         case MSR_KVM_PV_EOI_EN:
2365                 data = vcpu->arch.pv_eoi.msr_val;
2366                 break;
2367         case MSR_IA32_P5_MC_ADDR:
2368         case MSR_IA32_P5_MC_TYPE:
2369         case MSR_IA32_MCG_CAP:
2370         case MSR_IA32_MCG_CTL:
2371         case MSR_IA32_MCG_STATUS:
2372         case MSR_IA32_MC0_CTL ... MSR_IA32_MC0_CTL + 4 * KVM_MAX_MCE_BANKS - 1:
2373                 return get_msr_mce(vcpu, msr, pdata);
2374         case MSR_K7_CLK_CTL:
2375                 /*
2376                  * Provide expected ramp-up count for K7. All other
2377                  * are set to zero, indicating minimum divisors for
2378                  * every field.
2379                  *
2380                  * This prevents guest kernels on AMD host with CPU
2381                  * type 6, model 8 and higher from exploding due to
2382                  * the rdmsr failing.
2383                  */
2384                 data = 0x20000000;
2385                 break;
2386         case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
2387                 if (kvm_hv_msr_partition_wide(msr)) {
2388                         int r;
2389                         mutex_lock(&vcpu->kvm->lock);
2390                         r = get_msr_hyperv_pw(vcpu, msr, pdata);
2391                         mutex_unlock(&vcpu->kvm->lock);
2392                         return r;
2393                 } else
2394                         return get_msr_hyperv(vcpu, msr, pdata);
2395                 break;
2396         case MSR_IA32_BBL_CR_CTL3:
2397                 /* This legacy MSR exists but isn't fully documented in current
2398                  * silicon.  It is however accessed by winxp in very narrow
2399                  * scenarios where it sets bit #19, itself documented as
2400                  * a "reserved" bit.  Best effort attempt to source coherent
2401                  * read data here should the balance of the register be
2402                  * interpreted by the guest:
2403                  *
2404                  * L2 cache control register 3: 64GB range, 256KB size,
2405                  * enabled, latency 0x1, configured
2406                  */
2407                 data = 0xbe702111;
2408                 break;
2409         case MSR_AMD64_OSVW_ID_LENGTH:
2410                 if (!guest_cpuid_has_osvw(vcpu))
2411                         return 1;
2412                 data = vcpu->arch.osvw.length;
2413                 break;
2414         case MSR_AMD64_OSVW_STATUS:
2415                 if (!guest_cpuid_has_osvw(vcpu))
2416                         return 1;
2417                 data = vcpu->arch.osvw.status;
2418                 break;
2419         default:
2420                 if (kvm_pmu_msr(vcpu, msr))
2421                         return kvm_pmu_get_msr(vcpu, msr, pdata);
2422                 if (!ignore_msrs) {
2423                         vcpu_unimpl(vcpu, "unhandled rdmsr: 0x%x\n", msr);
2424                         return 1;
2425                 } else {
2426                         vcpu_unimpl(vcpu, "ignored rdmsr: 0x%x\n", msr);
2427                         data = 0;
2428                 }
2429                 break;
2430         }
2431         *pdata = data;
2432         return 0;
2433 }
2434 EXPORT_SYMBOL_GPL(kvm_get_msr_common);
2435
2436 /*
2437  * Read or write a bunch of msrs. All parameters are kernel addresses.
2438  *
2439  * @return number of msrs set successfully.
2440  */
2441 static int __msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs *msrs,
2442                     struct kvm_msr_entry *entries,
2443                     int (*do_msr)(struct kvm_vcpu *vcpu,
2444                                   unsigned index, u64 *data))
2445 {
2446         int i, idx;
2447
2448         idx = srcu_read_lock(&vcpu->kvm->srcu);
2449         for (i = 0; i < msrs->nmsrs; ++i)
2450                 if (do_msr(vcpu, entries[i].index, &entries[i].data))
2451                         break;
2452         srcu_read_unlock(&vcpu->kvm->srcu, idx);
2453
2454         return i;
2455 }
2456
2457 /*
2458  * Read or write a bunch of msrs. Parameters are user addresses.
2459  *
2460  * @return number of msrs set successfully.
2461  */
2462 static int msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs __user *user_msrs,
2463                   int (*do_msr)(struct kvm_vcpu *vcpu,
2464                                 unsigned index, u64 *data),
2465                   int writeback)
2466 {
2467         struct kvm_msrs msrs;
2468         struct kvm_msr_entry *entries;
2469         int r, n;
2470         unsigned size;
2471
2472         r = -EFAULT;
2473         if (copy_from_user(&msrs, user_msrs, sizeof msrs))
2474                 goto out;
2475
2476         r = -E2BIG;
2477         if (msrs.nmsrs >= MAX_IO_MSRS)
2478                 goto out;
2479
2480         size = sizeof(struct kvm_msr_entry) * msrs.nmsrs;
2481         entries = memdup_user(user_msrs->entries, size);
2482         if (IS_ERR(entries)) {
2483                 r = PTR_ERR(entries);
2484                 goto out;
2485         }
2486
2487         r = n = __msr_io(vcpu, &msrs, entries, do_msr);
2488         if (r < 0)
2489                 goto out_free;
2490
2491         r = -EFAULT;
2492         if (writeback && copy_to_user(user_msrs->entries, entries, size))
2493                 goto out_free;
2494
2495         r = n;
2496
2497 out_free:
2498         kfree(entries);
2499 out:
2500         return r;
2501 }
2502
2503 int kvm_dev_ioctl_check_extension(long ext)
2504 {
2505         int r;
2506
2507         switch (ext) {
2508         case KVM_CAP_IRQCHIP:
2509         case KVM_CAP_HLT:
2510         case KVM_CAP_MMU_SHADOW_CACHE_CONTROL:
2511         case KVM_CAP_SET_TSS_ADDR:
2512         case KVM_CAP_EXT_CPUID:
2513         case KVM_CAP_CLOCKSOURCE:
2514         case KVM_CAP_PIT:
2515         case KVM_CAP_NOP_IO_DELAY:
2516         case KVM_CAP_MP_STATE:
2517         case KVM_CAP_SYNC_MMU:
2518         case KVM_CAP_USER_NMI:
2519         case KVM_CAP_REINJECT_CONTROL:
2520         case KVM_CAP_IRQ_INJECT_STATUS:
2521         case KVM_CAP_IRQFD:
2522         case KVM_CAP_IOEVENTFD:
2523         case KVM_CAP_PIT2:
2524         case KVM_CAP_PIT_STATE2:
2525         case KVM_CAP_SET_IDENTITY_MAP_ADDR:
2526         case KVM_CAP_XEN_HVM:
2527         case KVM_CAP_ADJUST_CLOCK:
2528         case KVM_CAP_VCPU_EVENTS:
2529         case KVM_CAP_HYPERV:
2530         case KVM_CAP_HYPERV_VAPIC:
2531         case KVM_CAP_HYPERV_SPIN:
2532         case KVM_CAP_PCI_SEGMENT:
2533         case KVM_CAP_DEBUGREGS:
2534         case KVM_CAP_X86_ROBUST_SINGLESTEP:
2535         case KVM_CAP_XSAVE:
2536         case KVM_CAP_ASYNC_PF:
2537         case KVM_CAP_GET_TSC_KHZ:
2538         case KVM_CAP_KVMCLOCK_CTRL:
2539         case KVM_CAP_READONLY_MEM:
2540 #ifdef CONFIG_KVM_DEVICE_ASSIGNMENT
2541         case KVM_CAP_ASSIGN_DEV_IRQ:
2542         case KVM_CAP_PCI_2_3:
2543 #endif
2544                 r = 1;
2545                 break;
2546         case KVM_CAP_COALESCED_MMIO:
2547                 r = KVM_COALESCED_MMIO_PAGE_OFFSET;
2548                 break;
2549         case KVM_CAP_VAPIC:
2550                 r = !kvm_x86_ops->cpu_has_accelerated_tpr();
2551                 break;
2552         case KVM_CAP_NR_VCPUS:
2553                 r = KVM_SOFT_MAX_VCPUS;
2554                 break;
2555         case KVM_CAP_MAX_VCPUS:
2556                 r = KVM_MAX_VCPUS;
2557                 break;
2558         case KVM_CAP_NR_MEMSLOTS:
2559                 r = KVM_USER_MEM_SLOTS;
2560                 break;
2561         case KVM_CAP_PV_MMU:    /* obsolete */
2562                 r = 0;
2563                 break;
2564 #ifdef CONFIG_KVM_DEVICE_ASSIGNMENT
2565         case KVM_CAP_IOMMU:
2566                 r = iommu_present(&pci_bus_type);
2567                 break;
2568 #endif
2569         case KVM_CAP_MCE:
2570                 r = KVM_MAX_MCE_BANKS;
2571                 break;
2572         case KVM_CAP_XCRS:
2573                 r = cpu_has_xsave;
2574                 break;
2575         case KVM_CAP_TSC_CONTROL:
2576                 r = kvm_has_tsc_control;
2577                 break;
2578         case KVM_CAP_TSC_DEADLINE_TIMER:
2579                 r = boot_cpu_has(X86_FEATURE_TSC_DEADLINE_TIMER);
2580                 break;
2581         default:
2582                 r = 0;
2583                 break;
2584         }
2585         return r;
2586
2587 }
2588
2589 long kvm_arch_dev_ioctl(struct file *filp,
2590                         unsigned int ioctl, unsigned long arg)
2591 {
2592         void __user *argp = (void __user *)arg;
2593         long r;
2594
2595         switch (ioctl) {
2596         case KVM_GET_MSR_INDEX_LIST: {
2597                 struct kvm_msr_list __user *user_msr_list = argp;
2598                 struct kvm_msr_list msr_list;
2599                 unsigned n;
2600
2601                 r = -EFAULT;
2602                 if (copy_from_user(&msr_list, user_msr_list, sizeof msr_list))
2603                         goto out;
2604                 n = msr_list.nmsrs;
2605                 msr_list.nmsrs = num_msrs_to_save + ARRAY_SIZE(emulated_msrs);
2606                 if (copy_to_user(user_msr_list, &msr_list, sizeof msr_list))
2607                         goto out;
2608                 r = -E2BIG;
2609                 if (n < msr_list.nmsrs)
2610                         goto out;
2611                 r = -EFAULT;
2612                 if (copy_to_user(user_msr_list->indices, &msrs_to_save,
2613                                  num_msrs_to_save * sizeof(u32)))
2614                         goto out;
2615                 if (copy_to_user(user_msr_list->indices + num_msrs_to_save,
2616                                  &emulated_msrs,
2617                                  ARRAY_SIZE(emulated_msrs) * sizeof(u32)))
2618                         goto out;
2619                 r = 0;
2620                 break;
2621         }
2622         case KVM_GET_SUPPORTED_CPUID: {
2623                 struct kvm_cpuid2 __user *cpuid_arg = argp;
2624                 struct kvm_cpuid2 cpuid;
2625
2626                 r = -EFAULT;
2627                 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
2628                         goto out;
2629                 r = kvm_dev_ioctl_get_supported_cpuid(&cpuid,
2630                                                       cpuid_arg->entries);
2631                 if (r)
2632                         goto out;
2633
2634                 r = -EFAULT;
2635                 if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
2636                         goto out;
2637                 r = 0;
2638                 break;
2639         }
2640         case KVM_X86_GET_MCE_CAP_SUPPORTED: {
2641                 u64 mce_cap;
2642
2643                 mce_cap = KVM_MCE_CAP_SUPPORTED;
2644                 r = -EFAULT;
2645                 if (copy_to_user(argp, &mce_cap, sizeof mce_cap))
2646                         goto out;
2647                 r = 0;
2648                 break;
2649         }
2650         default:
2651                 r = -EINVAL;
2652         }
2653 out:
2654         return r;
2655 }
2656
2657 static void wbinvd_ipi(void *garbage)
2658 {
2659         wbinvd();
2660 }
2661
2662 static bool need_emulate_wbinvd(struct kvm_vcpu *vcpu)
2663 {
2664         return vcpu->kvm->arch.iommu_domain &&
2665                 !(vcpu->kvm->arch.iommu_flags & KVM_IOMMU_CACHE_COHERENCY);
2666 }
2667
2668 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
2669 {
2670         /* Address WBINVD may be executed by guest */
2671         if (need_emulate_wbinvd(vcpu)) {
2672                 if (kvm_x86_ops->has_wbinvd_exit())
2673                         cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
2674                 else if (vcpu->cpu != -1 && vcpu->cpu != cpu)
2675                         smp_call_function_single(vcpu->cpu,
2676                                         wbinvd_ipi, NULL, 1);
2677         }
2678
2679         kvm_x86_ops->vcpu_load(vcpu, cpu);
2680
2681         /* Apply any externally detected TSC adjustments (due to suspend) */
2682         if (unlikely(vcpu->arch.tsc_offset_adjustment)) {
2683                 adjust_tsc_offset_host(vcpu, vcpu->arch.tsc_offset_adjustment);
2684                 vcpu->arch.tsc_offset_adjustment = 0;
2685                 set_bit(KVM_REQ_CLOCK_UPDATE, &vcpu->requests);
2686         }
2687
2688         if (unlikely(vcpu->cpu != cpu) || check_tsc_unstable()) {
2689                 s64 tsc_delta = !vcpu->arch.last_host_tsc ? 0 :
2690                                 native_read_tsc() - vcpu->arch.last_host_tsc;
2691                 if (tsc_delta < 0)
2692                         mark_tsc_unstable("KVM discovered backwards TSC");
2693                 if (check_tsc_unstable()) {
2694                         u64 offset = kvm_x86_ops->compute_tsc_offset(vcpu,
2695                                                 vcpu->arch.last_guest_tsc);
2696                         kvm_x86_ops->write_tsc_offset(vcpu, offset);
2697                         vcpu->arch.tsc_catchup = 1;
2698                 }
2699                 /*
2700                  * On a host with synchronized TSC, there is no need to update
2701                  * kvmclock on vcpu->cpu migration
2702                  */
2703                 if (!vcpu->kvm->arch.use_master_clock || vcpu->cpu == -1)
2704                         kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
2705                 if (vcpu->cpu != cpu)
2706                         kvm_migrate_timers(vcpu);
2707                 vcpu->cpu = cpu;
2708         }
2709
2710         accumulate_steal_time(vcpu);
2711         kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
2712 }
2713
2714 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
2715 {
2716         kvm_x86_ops->vcpu_put(vcpu);
2717         kvm_put_guest_fpu(vcpu);
2718         vcpu->arch.last_host_tsc = native_read_tsc();
2719 }
2720
2721 static int kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu *vcpu,
2722                                     struct kvm_lapic_state *s)
2723 {
2724         kvm_x86_ops->sync_pir_to_irr(vcpu);
2725         memcpy(s->regs, vcpu->arch.apic->regs, sizeof *s);
2726
2727         return 0;
2728 }
2729
2730 static int kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu *vcpu,
2731                                     struct kvm_lapic_state *s)
2732 {
2733         kvm_apic_post_state_restore(vcpu, s);
2734         update_cr8_intercept(vcpu);
2735
2736         return 0;
2737 }
2738
2739 static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu,
2740                                     struct kvm_interrupt *irq)
2741 {
2742         if (irq->irq >= KVM_NR_INTERRUPTS)
2743                 return -EINVAL;
2744         if (irqchip_in_kernel(vcpu->kvm))
2745                 return -ENXIO;
2746
2747         kvm_queue_interrupt(vcpu, irq->irq, false);
2748         kvm_make_request(KVM_REQ_EVENT, vcpu);
2749
2750         return 0;
2751 }
2752
2753 static int kvm_vcpu_ioctl_nmi(struct kvm_vcpu *vcpu)
2754 {
2755         kvm_inject_nmi(vcpu);
2756
2757         return 0;
2758 }
2759
2760 static int vcpu_ioctl_tpr_access_reporting(struct kvm_vcpu *vcpu,
2761                                            struct kvm_tpr_access_ctl *tac)
2762 {
2763         if (tac->flags)
2764                 return -EINVAL;
2765         vcpu->arch.tpr_access_reporting = !!tac->enabled;
2766         return 0;
2767 }
2768
2769 static int kvm_vcpu_ioctl_x86_setup_mce(struct kvm_vcpu *vcpu,
2770                                         u64 mcg_cap)
2771 {
2772         int r;
2773         unsigned bank_num = mcg_cap & 0xff, bank;
2774
2775         r = -EINVAL;
2776         if (!bank_num || bank_num >= KVM_MAX_MCE_BANKS)
2777                 goto out;
2778         if (mcg_cap & ~(KVM_MCE_CAP_SUPPORTED | 0xff | 0xff0000))
2779                 goto out;
2780         r = 0;
2781         vcpu->arch.mcg_cap = mcg_cap;
2782         /* Init IA32_MCG_CTL to all 1s */
2783         if (mcg_cap & MCG_CTL_P)
2784                 vcpu->arch.mcg_ctl = ~(u64)0;
2785         /* Init IA32_MCi_CTL to all 1s */
2786         for (bank = 0; bank < bank_num; bank++)
2787                 vcpu->arch.mce_banks[bank*4] = ~(u64)0;
2788 out:
2789         return r;
2790 }
2791
2792 static int kvm_vcpu_ioctl_x86_set_mce(struct kvm_vcpu *vcpu,
2793                                       struct kvm_x86_mce *mce)
2794 {
2795         u64 mcg_cap = vcpu->arch.mcg_cap;
2796         unsigned bank_num = mcg_cap & 0xff;
2797         u64 *banks = vcpu->arch.mce_banks;
2798
2799         if (mce->bank >= bank_num || !(mce->status & MCI_STATUS_VAL))
2800                 return -EINVAL;
2801         /*
2802          * if IA32_MCG_CTL is not all 1s, the uncorrected error
2803          * reporting is disabled
2804          */
2805         if ((mce->status & MCI_STATUS_UC) && (mcg_cap & MCG_CTL_P) &&
2806             vcpu->arch.mcg_ctl != ~(u64)0)
2807                 return 0;
2808         banks += 4 * mce->bank;
2809         /*
2810          * if IA32_MCi_CTL is not all 1s, the uncorrected error
2811          * reporting is disabled for the bank
2812          */
2813         if ((mce->status & MCI_STATUS_UC) && banks[0] != ~(u64)0)
2814                 return 0;
2815         if (mce->status & MCI_STATUS_UC) {
2816                 if ((vcpu->arch.mcg_status & MCG_STATUS_MCIP) ||
2817                     !kvm_read_cr4_bits(vcpu, X86_CR4_MCE)) {
2818                         kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
2819                         return 0;
2820                 }
2821                 if (banks[1] & MCI_STATUS_VAL)
2822                         mce->status |= MCI_STATUS_OVER;
2823                 banks[2] = mce->addr;
2824                 banks[3] = mce->misc;
2825                 vcpu->arch.mcg_status = mce->mcg_status;
2826                 banks[1] = mce->status;
2827                 kvm_queue_exception(vcpu, MC_VECTOR);
2828         } else if (!(banks[1] & MCI_STATUS_VAL)
2829                    || !(banks[1] & MCI_STATUS_UC)) {
2830                 if (banks[1] & MCI_STATUS_VAL)
2831                         mce->status |= MCI_STATUS_OVER;
2832                 banks[2] = mce->addr;
2833                 banks[3] = mce->misc;
2834                 banks[1] = mce->status;
2835         } else
2836                 banks[1] |= MCI_STATUS_OVER;
2837         return 0;
2838 }
2839
2840 static void kvm_vcpu_ioctl_x86_get_vcpu_events(struct kvm_vcpu *vcpu,
2841                                                struct kvm_vcpu_events *events)
2842 {
2843         process_nmi(vcpu);
2844         events->exception.injected =
2845                 vcpu->arch.exception.pending &&
2846                 !kvm_exception_is_soft(vcpu->arch.exception.nr);
2847         events->exception.nr = vcpu->arch.exception.nr;
2848         events->exception.has_error_code = vcpu->arch.exception.has_error_code;
2849         events->exception.pad = 0;
2850         events->exception.error_code = vcpu->arch.exception.error_code;
2851
2852         events->interrupt.injected =
2853                 vcpu->arch.interrupt.pending && !vcpu->arch.interrupt.soft;
2854         events->interrupt.nr = vcpu->arch.interrupt.nr;
2855         events->interrupt.soft = 0;
2856         events->interrupt.shadow =
2857                 kvm_x86_ops->get_interrupt_shadow(vcpu,
2858                         KVM_X86_SHADOW_INT_MOV_SS | KVM_X86_SHADOW_INT_STI);
2859
2860         events->nmi.injected = vcpu->arch.nmi_injected;
2861         events->nmi.pending = vcpu->arch.nmi_pending != 0;
2862         events->nmi.masked = kvm_x86_ops->get_nmi_mask(vcpu);
2863         events->nmi.pad = 0;
2864
2865         events->sipi_vector = 0; /* never valid when reporting to user space */
2866
2867         events->flags = (KVM_VCPUEVENT_VALID_NMI_PENDING
2868                          | KVM_VCPUEVENT_VALID_SHADOW);
2869         memset(&events->reserved, 0, sizeof(events->reserved));
2870 }
2871
2872 static int kvm_vcpu_ioctl_x86_set_vcpu_events(struct kvm_vcpu *vcpu,
2873                                               struct kvm_vcpu_events *events)
2874 {
2875         if (events->flags & ~(KVM_VCPUEVENT_VALID_NMI_PENDING
2876                               | KVM_VCPUEVENT_VALID_SIPI_VECTOR
2877                               | KVM_VCPUEVENT_VALID_SHADOW))
2878                 return -EINVAL;
2879
2880         process_nmi(vcpu);
2881         vcpu->arch.exception.pending = events->exception.injected;
2882         vcpu->arch.exception.nr = events->exception.nr;
2883         vcpu->arch.exception.has_error_code = events->exception.has_error_code;
2884         vcpu->arch.exception.error_code = events->exception.error_code;
2885
2886         vcpu->arch.interrupt.pending = events->interrupt.injected;
2887         vcpu->arch.interrupt.nr = events->interrupt.nr;
2888         vcpu->arch.interrupt.soft = events->interrupt.soft;
2889         if (events->flags & KVM_VCPUEVENT_VALID_SHADOW)
2890                 kvm_x86_ops->set_interrupt_shadow(vcpu,
2891                                                   events->interrupt.shadow);
2892
2893         vcpu->arch.nmi_injected = events->nmi.injected;
2894         if (events->flags & KVM_VCPUEVENT_VALID_NMI_PENDING)
2895                 vcpu->arch.nmi_pending = events->nmi.pending;
2896         kvm_x86_ops->set_nmi_mask(vcpu, events->nmi.masked);
2897
2898         if (events->flags & KVM_VCPUEVENT_VALID_SIPI_VECTOR &&
2899             kvm_vcpu_has_lapic(vcpu))
2900                 vcpu->arch.apic->sipi_vector = events->sipi_vector;
2901
2902         kvm_make_request(KVM_REQ_EVENT, vcpu);
2903
2904         return 0;
2905 }
2906
2907 static void kvm_vcpu_ioctl_x86_get_debugregs(struct kvm_vcpu *vcpu,
2908                                              struct kvm_debugregs *dbgregs)
2909 {
2910         memcpy(dbgregs->db, vcpu->arch.db, sizeof(vcpu->arch.db));
2911         dbgregs->dr6 = vcpu->arch.dr6;
2912         dbgregs->dr7 = vcpu->arch.dr7;
2913         dbgregs->flags = 0;
2914         memset(&dbgregs->reserved, 0, sizeof(dbgregs->reserved));
2915 }
2916
2917 static int kvm_vcpu_ioctl_x86_set_debugregs(struct kvm_vcpu *vcpu,
2918                                             struct kvm_debugregs *dbgregs)
2919 {
2920         if (dbgregs->flags)
2921                 return -EINVAL;
2922
2923         memcpy(vcpu->arch.db, dbgregs->db, sizeof(vcpu->arch.db));
2924         vcpu->arch.dr6 = dbgregs->dr6;
2925         vcpu->arch.dr7 = dbgregs->dr7;
2926
2927         return 0;
2928 }
2929
2930 static void kvm_vcpu_ioctl_x86_get_xsave(struct kvm_vcpu *vcpu,
2931                                          struct kvm_xsave *guest_xsave)
2932 {
2933         if (cpu_has_xsave)
2934                 memcpy(guest_xsave->region,
2935                         &vcpu->arch.guest_fpu.state->xsave,
2936                         xstate_size);
2937         else {
2938                 memcpy(guest_xsave->region,
2939                         &vcpu->arch.guest_fpu.state->fxsave,
2940                         sizeof(struct i387_fxsave_struct));
2941                 *(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)] =
2942                         XSTATE_FPSSE;
2943         }
2944 }
2945
2946 static int kvm_vcpu_ioctl_x86_set_xsave(struct kvm_vcpu *vcpu,
2947                                         struct kvm_xsave *guest_xsave)
2948 {
2949         u64 xstate_bv =
2950                 *(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)];
2951
2952         if (cpu_has_xsave)
2953                 memcpy(&vcpu->arch.guest_fpu.state->xsave,
2954                         guest_xsave->region, xstate_size);
2955         else {
2956                 if (xstate_bv & ~XSTATE_FPSSE)
2957                         return -EINVAL;
2958                 memcpy(&vcpu->arch.guest_fpu.state->fxsave,
2959                         guest_xsave->region, sizeof(struct i387_fxsave_struct));
2960         }
2961         return 0;
2962 }
2963
2964 static void kvm_vcpu_ioctl_x86_get_xcrs(struct kvm_vcpu *vcpu,
2965                                         struct kvm_xcrs *guest_xcrs)
2966 {
2967         if (!cpu_has_xsave) {
2968                 guest_xcrs->nr_xcrs = 0;
2969                 return;
2970         }
2971
2972         guest_xcrs->nr_xcrs = 1;
2973         guest_xcrs->flags = 0;
2974         guest_xcrs->xcrs[0].xcr = XCR_XFEATURE_ENABLED_MASK;
2975         guest_xcrs->xcrs[0].value = vcpu->arch.xcr0;
2976 }
2977
2978 static int kvm_vcpu_ioctl_x86_set_xcrs(struct kvm_vcpu *vcpu,
2979                                        struct kvm_xcrs *guest_xcrs)
2980 {
2981         int i, r = 0;
2982
2983         if (!cpu_has_xsave)
2984                 return -EINVAL;
2985
2986         if (guest_xcrs->nr_xcrs > KVM_MAX_XCRS || guest_xcrs->flags)
2987                 return -EINVAL;
2988
2989         for (i = 0; i < guest_xcrs->nr_xcrs; i++)
2990                 /* Only support XCR0 currently */
2991                 if (guest_xcrs->xcrs[0].xcr == XCR_XFEATURE_ENABLED_MASK) {
2992                         r = __kvm_set_xcr(vcpu, XCR_XFEATURE_ENABLED_MASK,
2993                                 guest_xcrs->xcrs[0].value);
2994                         break;
2995                 }
2996         if (r)
2997                 r = -EINVAL;
2998         return r;
2999 }
3000
3001 /*
3002  * kvm_set_guest_paused() indicates to the guest kernel that it has been
3003  * stopped by the hypervisor.  This function will be called from the host only.
3004  * EINVAL is returned when the host attempts to set the flag for a guest that
3005  * does not support pv clocks.
3006  */
3007 static int kvm_set_guest_paused(struct kvm_vcpu *vcpu)
3008 {
3009         if (!vcpu->arch.pv_time_enabled)
3010                 return -EINVAL;
3011         vcpu->arch.pvclock_set_guest_stopped_request = true;
3012         kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
3013         return 0;
3014 }
3015
3016 long kvm_arch_vcpu_ioctl(struct file *filp,
3017                          unsigned int ioctl, unsigned long arg)
3018 {
3019         struct kvm_vcpu *vcpu = filp->private_data;
3020         void __user *argp = (void __user *)arg;
3021         int r;
3022         union {
3023                 struct kvm_lapic_state *lapic;
3024                 struct kvm_xsave *xsave;
3025                 struct kvm_xcrs *xcrs;
3026                 void *buffer;
3027         } u;
3028
3029         u.buffer = NULL;
3030         switch (ioctl) {
3031         case KVM_GET_LAPIC: {
3032                 r = -EINVAL;
3033                 if (!vcpu->arch.apic)
3034                         goto out;
3035                 u.lapic = kzalloc(sizeof(struct kvm_lapic_state), GFP_KERNEL);
3036
3037                 r = -ENOMEM;
3038                 if (!u.lapic)
3039                         goto out;
3040                 r = kvm_vcpu_ioctl_get_lapic(vcpu, u.lapic);
3041                 if (r)
3042                         goto out;
3043                 r = -EFAULT;
3044                 if (copy_to_user(argp, u.lapic, sizeof(struct kvm_lapic_state)))
3045                         goto out;
3046                 r = 0;
3047                 break;
3048         }
3049         case KVM_SET_LAPIC: {
3050                 r = -EINVAL;
3051                 if (!vcpu->arch.apic)
3052                         goto out;
3053                 u.lapic = memdup_user(argp, sizeof(*u.lapic));
3054                 if (IS_ERR(u.lapic))
3055                         return PTR_ERR(u.lapic);
3056
3057                 r = kvm_vcpu_ioctl_set_lapic(vcpu, u.lapic);
3058                 break;
3059         }
3060         case KVM_INTERRUPT: {
3061                 struct kvm_interrupt irq;
3062
3063                 r = -EFAULT;
3064                 if (copy_from_user(&irq, argp, sizeof irq))
3065                         goto out;
3066                 r = kvm_vcpu_ioctl_interrupt(vcpu, &irq);
3067                 break;
3068         }
3069         case KVM_NMI: {
3070                 r = kvm_vcpu_ioctl_nmi(vcpu);
3071                 break;
3072         }
3073         case KVM_SET_CPUID: {
3074                 struct kvm_cpuid __user *cpuid_arg = argp;
3075                 struct kvm_cpuid cpuid;
3076
3077                 r = -EFAULT;
3078                 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
3079                         goto out;
3080                 r = kvm_vcpu_ioctl_set_cpuid(vcpu, &cpuid, cpuid_arg->entries);
3081                 break;
3082         }
3083         case KVM_SET_CPUID2: {
3084                 struct kvm_cpuid2 __user *cpuid_arg = argp;
3085                 struct kvm_cpuid2 cpuid;
3086
3087                 r = -EFAULT;
3088                 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
3089                         goto out;
3090                 r = kvm_vcpu_ioctl_set_cpuid2(vcpu, &cpuid,
3091                                               cpuid_arg->entries);
3092                 break;
3093         }
3094         case KVM_GET_CPUID2: {
3095                 struct kvm_cpuid2 __user *cpuid_arg = argp;
3096                 struct kvm_cpuid2 cpuid;
3097
3098                 r = -EFAULT;
3099                 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
3100                         goto out;
3101                 r = kvm_vcpu_ioctl_get_cpuid2(vcpu, &cpuid,
3102                                               cpuid_arg->entries);
3103                 if (r)
3104                         goto out;
3105                 r = -EFAULT;
3106                 if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
3107                         goto out;
3108                 r = 0;
3109                 break;
3110         }
3111         case KVM_GET_MSRS:
3112                 r = msr_io(vcpu, argp, kvm_get_msr, 1);
3113                 break;
3114         case KVM_SET_MSRS:
3115                 r = msr_io(vcpu, argp, do_set_msr, 0);
3116                 break;
3117         case KVM_TPR_ACCESS_REPORTING: {
3118                 struct kvm_tpr_access_ctl tac;
3119
3120                 r = -EFAULT;
3121                 if (copy_from_user(&tac, argp, sizeof tac))
3122                         goto out;
3123                 r = vcpu_ioctl_tpr_access_reporting(vcpu, &tac);
3124                 if (r)
3125                         goto out;
3126                 r = -EFAULT;
3127                 if (copy_to_user(argp, &tac, sizeof tac))
3128                         goto out;
3129                 r = 0;
3130                 break;
3131         };
3132         case KVM_SET_VAPIC_ADDR: {
3133                 struct kvm_vapic_addr va;
3134
3135                 r = -EINVAL;
3136                 if (!irqchip_in_kernel(vcpu->kvm))
3137                         goto out;
3138                 r = -EFAULT;
3139                 if (copy_from_user(&va, argp, sizeof va))
3140                         goto out;
3141                 r = 0;
3142                 kvm_lapic_set_vapic_addr(vcpu, va.vapic_addr);
3143                 break;
3144         }
3145         case KVM_X86_SETUP_MCE: {
3146                 u64 mcg_cap;
3147
3148                 r = -EFAULT;
3149                 if (copy_from_user(&mcg_cap, argp, sizeof mcg_cap))
3150                         goto out;
3151                 r = kvm_vcpu_ioctl_x86_setup_mce(vcpu, mcg_cap);
3152                 break;
3153         }
3154         case KVM_X86_SET_MCE: {
3155                 struct kvm_x86_mce mce;
3156
3157                 r = -EFAULT;
3158                 if (copy_from_user(&mce, argp, sizeof mce))
3159                         goto out;
3160                 r = kvm_vcpu_ioctl_x86_set_mce(vcpu, &mce);
3161                 break;
3162         }
3163         case KVM_GET_VCPU_EVENTS: {
3164                 struct kvm_vcpu_events events;
3165
3166                 kvm_vcpu_ioctl_x86_get_vcpu_events(vcpu, &events);
3167
3168                 r = -EFAULT;
3169                 if (copy_to_user(argp, &events, sizeof(struct kvm_vcpu_events)))
3170                         break;
3171                 r = 0;
3172                 break;
3173         }
3174         case KVM_SET_VCPU_EVENTS: {
3175                 struct kvm_vcpu_events events;
3176
3177                 r = -EFAULT;
3178                 if (copy_from_user(&events, argp, sizeof(struct kvm_vcpu_events)))
3179                         break;
3180
3181                 r = kvm_vcpu_ioctl_x86_set_vcpu_events(vcpu, &events);
3182                 break;
3183         }
3184         case KVM_GET_DEBUGREGS: {
3185                 struct kvm_debugregs dbgregs;
3186
3187                 kvm_vcpu_ioctl_x86_get_debugregs(vcpu, &dbgregs);
3188
3189                 r = -EFAULT;
3190                 if (copy_to_user(argp, &dbgregs,
3191                                  sizeof(struct kvm_debugregs)))
3192                         break;
3193                 r = 0;
3194                 break;
3195         }
3196         case KVM_SET_DEBUGREGS: {
3197                 struct kvm_debugregs dbgregs;
3198
3199                 r = -EFAULT;
3200                 if (copy_from_user(&dbgregs, argp,
3201                                    sizeof(struct kvm_debugregs)))
3202                         break;
3203
3204                 r = kvm_vcpu_ioctl_x86_set_debugregs(vcpu, &dbgregs);
3205                 break;
3206         }
3207         case KVM_GET_XSAVE: {
3208                 u.xsave = kzalloc(sizeof(struct kvm_xsave), GFP_KERNEL);
3209                 r = -ENOMEM;
3210                 if (!u.xsave)
3211                         break;
3212
3213                 kvm_vcpu_ioctl_x86_get_xsave(vcpu, u.xsave);
3214
3215                 r = -EFAULT;
3216                 if (copy_to_user(argp, u.xsave, sizeof(struct kvm_xsave)))
3217                         break;
3218                 r = 0;
3219                 break;
3220         }
3221         case KVM_SET_XSAVE: {
3222                 u.xsave = memdup_user(argp, sizeof(*u.xsave));
3223                 if (IS_ERR(u.xsave))
3224                         return PTR_ERR(u.xsave);
3225
3226                 r = kvm_vcpu_ioctl_x86_set_xsave(vcpu, u.xsave);
3227                 break;
3228         }
3229         case KVM_GET_XCRS: {
3230                 u.xcrs = kzalloc(sizeof(struct kvm_xcrs), GFP_KERNEL);
3231                 r = -ENOMEM;
3232                 if (!u.xcrs)
3233                         break;
3234
3235                 kvm_vcpu_ioctl_x86_get_xcrs(vcpu, u.xcrs);
3236
3237                 r = -EFAULT;
3238                 if (copy_to_user(argp, u.xcrs,
3239                                  sizeof(struct kvm_xcrs)))
3240                         break;
3241                 r = 0;
3242                 break;
3243         }
3244         case KVM_SET_XCRS: {
3245                 u.xcrs = memdup_user(argp, sizeof(*u.xcrs));
3246                 if (IS_ERR(u.xcrs))
3247                         return PTR_ERR(u.xcrs);
3248
3249                 r = kvm_vcpu_ioctl_x86_set_xcrs(vcpu, u.xcrs);
3250                 break;
3251         }
3252         case KVM_SET_TSC_KHZ: {
3253                 u32 user_tsc_khz;
3254
3255                 r = -EINVAL;
3256                 user_tsc_khz = (u32)arg;
3257
3258                 if (user_tsc_khz >= kvm_max_guest_tsc_khz)
3259                         goto out;
3260
3261                 if (user_tsc_khz == 0)
3262                         user_tsc_khz = tsc_khz;
3263
3264                 kvm_set_tsc_khz(vcpu, user_tsc_khz);
3265
3266                 r = 0;
3267                 goto out;
3268         }
3269         case KVM_GET_TSC_KHZ: {
3270                 r = vcpu->arch.virtual_tsc_khz;
3271                 goto out;
3272         }
3273         case KVM_KVMCLOCK_CTRL: {
3274                 r = kvm_set_guest_paused(vcpu);
3275                 goto out;
3276         }
3277         default:
3278                 r = -EINVAL;
3279         }
3280 out:
3281         kfree(u.buffer);
3282         return r;
3283 }
3284
3285 int kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
3286 {
3287         return VM_FAULT_SIGBUS;
3288 }
3289
3290 static int kvm_vm_ioctl_set_tss_addr(struct kvm *kvm, unsigned long addr)
3291 {
3292         int ret;
3293
3294         if (addr > (unsigned int)(-3 * PAGE_SIZE))
3295                 return -EINVAL;
3296         ret = kvm_x86_ops->set_tss_addr(kvm, addr);
3297         return ret;
3298 }
3299
3300 static int kvm_vm_ioctl_set_identity_map_addr(struct kvm *kvm,
3301                                               u64 ident_addr)
3302 {
3303         kvm->arch.ept_identity_map_addr = ident_addr;
3304         return 0;
3305 }
3306
3307 static int kvm_vm_ioctl_set_nr_mmu_pages(struct kvm *kvm,
3308                                           u32 kvm_nr_mmu_pages)
3309 {
3310         if (kvm_nr_mmu_pages < KVM_MIN_ALLOC_MMU_PAGES)
3311                 return -EINVAL;
3312
3313         mutex_lock(&kvm->slots_lock);
3314
3315         kvm_mmu_change_mmu_pages(kvm, kvm_nr_mmu_pages);
3316         kvm->arch.n_requested_mmu_pages = kvm_nr_mmu_pages;
3317
3318         mutex_unlock(&kvm->slots_lock);
3319         return 0;
3320 }
3321
3322 static int kvm_vm_ioctl_get_nr_mmu_pages(struct kvm *kvm)
3323 {
3324         return kvm->arch.n_max_mmu_pages;
3325 }
3326
3327 static int kvm_vm_ioctl_get_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
3328 {
3329         int r;
3330
3331         r = 0;
3332         switch (chip->chip_id) {
3333         case KVM_IRQCHIP_PIC_MASTER:
3334                 memcpy(&chip->chip.pic,
3335                         &pic_irqchip(kvm)->pics[0],
3336                         sizeof(struct kvm_pic_state));
3337                 break;
3338         case KVM_IRQCHIP_PIC_SLAVE:
3339                 memcpy(&chip->chip.pic,
3340                         &pic_irqchip(kvm)->pics[1],
3341                         sizeof(struct kvm_pic_state));
3342                 break;
3343         case KVM_IRQCHIP_IOAPIC:
3344                 r = kvm_get_ioapic(kvm, &chip->chip.ioapic);
3345                 break;
3346         default:
3347                 r = -EINVAL;
3348                 break;
3349         }
3350         return r;
3351 }
3352
3353 static int kvm_vm_ioctl_set_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
3354 {
3355         int r;
3356
3357         r = 0;
3358         switch (chip->chip_id) {
3359         case KVM_IRQCHIP_PIC_MASTER:
3360                 spin_lock(&pic_irqchip(kvm)->lock);
3361                 memcpy(&pic_irqchip(kvm)->pics[0],
3362                         &chip->chip.pic,
3363                         sizeof(struct kvm_pic_state));
3364                 spin_unlock(&pic_irqchip(kvm)->lock);
3365                 break;
3366         case KVM_IRQCHIP_PIC_SLAVE:
3367                 spin_lock(&pic_irqchip(kvm)->lock);
3368                 memcpy(&pic_irqchip(kvm)->pics[1],
3369                         &chip->chip.pic,
3370                         sizeof(struct kvm_pic_state));
3371                 spin_unlock(&pic_irqchip(kvm)->lock);
3372                 break;
3373         case KVM_IRQCHIP_IOAPIC:
3374                 r = kvm_set_ioapic(kvm, &chip->chip.ioapic);
3375                 break;
3376         default:
3377                 r = -EINVAL;
3378                 break;
3379         }
3380         kvm_pic_update_irq(pic_irqchip(kvm));
3381         return r;
3382 }
3383
3384 static int kvm_vm_ioctl_get_pit(struct kvm *kvm, struct kvm_pit_state *ps)
3385 {
3386         int r = 0;
3387
3388         mutex_lock(&kvm->arch.vpit->pit_state.lock);
3389         memcpy(ps, &kvm->arch.vpit->pit_state, sizeof(struct kvm_pit_state));
3390         mutex_unlock(&kvm->arch.vpit->pit_state.lock);
3391         return r;
3392 }
3393
3394 static int kvm_vm_ioctl_set_pit(struct kvm *kvm, struct kvm_pit_state *ps)
3395 {
3396         int r = 0;
3397
3398         mutex_lock(&kvm->arch.vpit->pit_state.lock);
3399         memcpy(&kvm->arch.vpit->pit_state, ps, sizeof(struct kvm_pit_state));
3400         kvm_pit_load_count(kvm, 0, ps->channels[0].count, 0);
3401         mutex_unlock(&kvm->arch.vpit->pit_state.lock);
3402         return r;
3403 }
3404
3405 static int kvm_vm_ioctl_get_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
3406 {
3407         int r = 0;
3408
3409         mutex_lock(&kvm->arch.vpit->pit_state.lock);
3410         memcpy(ps->channels, &kvm->arch.vpit->pit_state.channels,
3411                 sizeof(ps->channels));
3412         ps->flags = kvm->arch.vpit->pit_state.flags;
3413         mutex_unlock(&kvm->arch.vpit->pit_state.lock);
3414         memset(&ps->reserved, 0, sizeof(ps->reserved));
3415         return r;
3416 }
3417
3418 static int kvm_vm_ioctl_set_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
3419 {
3420         int r = 0, start = 0;
3421         u32 prev_legacy, cur_legacy;
3422         mutex_lock(&kvm->arch.vpit->pit_state.lock);
3423         prev_legacy = kvm->arch.vpit->pit_state.flags & KVM_PIT_FLAGS_HPET_LEGACY;
3424         cur_legacy = ps->flags & KVM_PIT_FLAGS_HPET_LEGACY;
3425         if (!prev_legacy && cur_legacy)
3426                 start = 1;
3427         memcpy(&kvm->arch.vpit->pit_state.channels, &ps->channels,
3428                sizeof(kvm->arch.vpit->pit_state.channels));
3429         kvm->arch.vpit->pit_state.flags = ps->flags;
3430         kvm_pit_load_count(kvm, 0, kvm->arch.vpit->pit_state.channels[0].count, start);
3431         mutex_unlock(&kvm->arch.vpit->pit_state.lock);
3432         return r;
3433 }
3434
3435 static int kvm_vm_ioctl_reinject(struct kvm *kvm,
3436                                  struct kvm_reinject_control *control)
3437 {
3438         if (!kvm->arch.vpit)
3439                 return -ENXIO;
3440         mutex_lock(&kvm->arch.vpit->pit_state.lock);
3441         kvm->arch.vpit->pit_state.reinject = control->pit_reinject;
3442         mutex_unlock(&kvm->arch.vpit->pit_state.lock);
3443         return 0;
3444 }
3445
3446 /**
3447  * kvm_vm_ioctl_get_dirty_log - get and clear the log of dirty pages in a slot
3448  * @kvm: kvm instance
3449  * @log: slot id and address to which we copy the log
3450  *
3451  * We need to keep it in mind that VCPU threads can write to the bitmap
3452  * concurrently.  So, to avoid losing data, we keep the following order for
3453  * each bit:
3454  *
3455  *   1. Take a snapshot of the bit and clear it if needed.
3456  *   2. Write protect the corresponding page.
3457  *   3. Flush TLB's if needed.
3458  *   4. Copy the snapshot to the userspace.
3459  *
3460  * Between 2 and 3, the guest may write to the page using the remaining TLB
3461  * entry.  This is not a problem because the page will be reported dirty at
3462  * step 4 using the snapshot taken before and step 3 ensures that successive
3463  * writes will be logged for the next call.
3464  */
3465 int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log)
3466 {
3467         int r;
3468         struct kvm_memory_slot *memslot;
3469         unsigned long n, i;
3470         unsigned long *dirty_bitmap;
3471         unsigned long *dirty_bitmap_buffer;
3472         bool is_dirty = false;
3473
3474         mutex_lock(&kvm->slots_lock);
3475
3476         r = -EINVAL;
3477         if (log->slot >= KVM_USER_MEM_SLOTS)
3478                 goto out;
3479
3480         memslot = id_to_memslot(kvm->memslots, log->slot);
3481
3482         dirty_bitmap = memslot->dirty_bitmap;
3483         r = -ENOENT;
3484         if (!dirty_bitmap)
3485                 goto out;
3486
3487         n = kvm_dirty_bitmap_bytes(memslot);
3488
3489         dirty_bitmap_buffer = dirty_bitmap + n / sizeof(long);
3490         memset(dirty_bitmap_buffer, 0, n);
3491
3492         spin_lock(&kvm->mmu_lock);
3493
3494         for (i = 0; i < n / sizeof(long); i++) {
3495                 unsigned long mask;
3496                 gfn_t offset;
3497
3498                 if (!dirty_bitmap[i])
3499                         continue;
3500
3501                 is_dirty = true;
3502
3503                 mask = xchg(&dirty_bitmap[i], 0);
3504                 dirty_bitmap_buffer[i] = mask;
3505
3506                 offset = i * BITS_PER_LONG;
3507                 kvm_mmu_write_protect_pt_masked(kvm, memslot, offset, mask);
3508         }
3509         if (is_dirty)
3510                 kvm_flush_remote_tlbs(kvm);
3511
3512         spin_unlock(&kvm->mmu_lock);
3513
3514         r = -EFAULT;
3515         if (copy_to_user(log->dirty_bitmap, dirty_bitmap_buffer, n))
3516                 goto out;
3517
3518         r = 0;
3519 out:
3520         mutex_unlock(&kvm->slots_lock);
3521         return r;
3522 }
3523
3524 int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_event,
3525                         bool line_status)
3526 {
3527         if (!irqchip_in_kernel(kvm))
3528                 return -ENXIO;
3529
3530         irq_event->status = kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID,
3531                                         irq_event->irq, irq_event->level,
3532                                         line_status);
3533         return 0;
3534 }
3535
3536 long kvm_arch_vm_ioctl(struct file *filp,
3537                        unsigned int ioctl, unsigned long arg)
3538 {
3539         struct kvm *kvm = filp->private_data;
3540         void __user *argp = (void __user *)arg;
3541         int r = -ENOTTY;
3542         /*
3543          * This union makes it completely explicit to gcc-3.x
3544          * that these two variables' stack usage should be
3545          * combined, not added together.
3546          */
3547         union {
3548                 struct kvm_pit_state ps;
3549                 struct kvm_pit_state2 ps2;
3550                 struct kvm_pit_config pit_config;
3551         } u;
3552
3553         switch (ioctl) {
3554         case KVM_SET_TSS_ADDR:
3555                 r = kvm_vm_ioctl_set_tss_addr(kvm, arg);
3556                 break;
3557         case KVM_SET_IDENTITY_MAP_ADDR: {
3558                 u64 ident_addr;
3559
3560                 r = -EFAULT;
3561                 if (copy_from_user(&ident_addr, argp, sizeof ident_addr))
3562                         goto out;
3563                 r = kvm_vm_ioctl_set_identity_map_addr(kvm, ident_addr);
3564                 break;
3565         }
3566         case KVM_SET_NR_MMU_PAGES:
3567                 r = kvm_vm_ioctl_set_nr_mmu_pages(kvm, arg);
3568                 break;
3569         case KVM_GET_NR_MMU_PAGES:
3570                 r = kvm_vm_ioctl_get_nr_mmu_pages(kvm);
3571                 break;
3572         case KVM_CREATE_IRQCHIP: {
3573                 struct kvm_pic *vpic;
3574
3575                 mutex_lock(&kvm->lock);
3576                 r = -EEXIST;
3577                 if (kvm->arch.vpic)
3578                         goto create_irqchip_unlock;
3579                 r = -EINVAL;
3580                 if (atomic_read(&kvm->online_vcpus))
3581                         goto create_irqchip_unlock;
3582                 r = -ENOMEM;
3583                 vpic = kvm_create_pic(kvm);
3584                 if (vpic) {
3585                         r = kvm_ioapic_init(kvm);
3586                         if (r) {
3587                                 mutex_lock(&kvm->slots_lock);
3588                                 kvm_io_bus_unregister_dev(kvm, KVM_PIO_BUS,
3589                                                           &vpic->dev_master);
3590                                 kvm_io_bus_unregister_dev(kvm, KVM_PIO_BUS,
3591                                                           &vpic->dev_slave);
3592                                 kvm_io_bus_unregister_dev(kvm, KVM_PIO_BUS,
3593                                                           &vpic->dev_eclr);
3594                                 mutex_unlock(&kvm->slots_lock);
3595                                 kfree(vpic);
3596                                 goto create_irqchip_unlock;
3597                         }
3598                 } else
3599                         goto create_irqchip_unlock;
3600                 smp_wmb();
3601                 kvm->arch.vpic = vpic;
3602                 smp_wmb();
3603                 r = kvm_setup_default_irq_routing(kvm);
3604                 if (r) {
3605                         mutex_lock(&kvm->slots_lock);
3606                         mutex_lock(&kvm->irq_lock);
3607                         kvm_ioapic_destroy(kvm);
3608                         kvm_destroy_pic(kvm);
3609                         mutex_unlock(&kvm->irq_lock);
3610                         mutex_unlock(&kvm->slots_lock);
3611                 }
3612         create_irqchip_unlock:
3613                 mutex_unlock(&kvm->lock);
3614                 break;
3615         }
3616         case KVM_CREATE_PIT:
3617                 u.pit_config.flags = KVM_PIT_SPEAKER_DUMMY;
3618                 goto create_pit;
3619         case KVM_CREATE_PIT2:
3620                 r = -EFAULT;
3621                 if (copy_from_user(&u.pit_config, argp,
3622                                    sizeof(struct kvm_pit_config)))
3623                         goto out;
3624         create_pit:
3625                 mutex_lock(&kvm->slots_lock);
3626                 r = -EEXIST;
3627                 if (kvm->arch.vpit)
3628                         goto create_pit_unlock;
3629                 r = -ENOMEM;
3630                 kvm->arch.vpit = kvm_create_pit(kvm, u.pit_config.flags);
3631                 if (kvm->arch.vpit)
3632                         r = 0;
3633         create_pit_unlock:
3634                 mutex_unlock(&kvm->slots_lock);
3635                 break;
3636         case KVM_GET_IRQCHIP: {
3637                 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
3638                 struct kvm_irqchip *chip;
3639
3640                 chip = memdup_user(argp, sizeof(*chip));
3641                 if (IS_ERR(chip)) {
3642                         r = PTR_ERR(chip);
3643                         goto out;
3644                 }
3645
3646                 r = -ENXIO;
3647                 if (!irqchip_in_kernel(kvm))
3648                         goto get_irqchip_out;
3649                 r = kvm_vm_ioctl_get_irqchip(kvm, chip);
3650                 if (r)
3651                         goto get_irqchip_out;
3652                 r = -EFAULT;
3653                 if (copy_to_user(argp, chip, sizeof *chip))
3654                         goto get_irqchip_out;
3655                 r = 0;
3656         get_irqchip_out:
3657                 kfree(chip);
3658                 break;
3659         }
3660         case KVM_SET_IRQCHIP: {
3661                 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
3662                 struct kvm_irqchip *chip;
3663
3664                 chip = memdup_user(argp, sizeof(*chip));
3665                 if (IS_ERR(chip)) {
3666                         r = PTR_ERR(chip);
3667                         goto out;
3668                 }
3669
3670                 r = -ENXIO;
3671                 if (!irqchip_in_kernel(kvm))
3672                         goto set_irqchip_out;
3673                 r = kvm_vm_ioctl_set_irqchip(kvm, chip);
3674                 if (r)
3675                         goto set_irqchip_out;
3676                 r = 0;
3677         set_irqchip_out:
3678                 kfree(chip);
3679                 break;
3680         }
3681         case KVM_GET_PIT: {
3682                 r = -EFAULT;
3683                 if (copy_from_user(&u.ps, argp, sizeof(struct kvm_pit_state)))
3684                         goto out;
3685                 r = -ENXIO;
3686                 if (!kvm->arch.vpit)
3687                         goto out;
3688                 r = kvm_vm_ioctl_get_pit(kvm, &u.ps);
3689                 if (r)
3690                         goto out;
3691                 r = -EFAULT;
3692                 if (copy_to_user(argp, &u.ps, sizeof(struct kvm_pit_state)))
3693                         goto out;
3694                 r = 0;
3695                 break;
3696         }
3697         case KVM_SET_PIT: {
3698                 r = -EFAULT;
3699                 if (copy_from_user(&u.ps, argp, sizeof u.ps))
3700                         goto out;
3701                 r = -ENXIO;
3702                 if (!kvm->arch.vpit)
3703                         goto out;
3704                 r = kvm_vm_ioctl_set_pit(kvm, &u.ps);
3705                 break;
3706         }
3707         case KVM_GET_PIT2: {
3708                 r = -ENXIO;
3709                 if (!kvm->arch.vpit)
3710                         goto out;
3711                 r = kvm_vm_ioctl_get_pit2(kvm, &u.ps2);
3712                 if (r)
3713                         goto out;
3714                 r = -EFAULT;
3715                 if (copy_to_user(argp, &u.ps2, sizeof(u.ps2)))
3716                         goto out;
3717                 r = 0;
3718                 break;
3719         }
3720         case KVM_SET_PIT2: {
3721                 r = -EFAULT;
3722                 if (copy_from_user(&u.ps2, argp, sizeof(u.ps2)))
3723                         goto out;
3724                 r = -ENXIO;
3725                 if (!kvm->arch.vpit)
3726                         goto out;
3727                 r = kvm_vm_ioctl_set_pit2(kvm, &u.ps2);
3728                 break;
3729         }
3730         case KVM_REINJECT_CONTROL: {
3731                 struct kvm_reinject_control control;
3732                 r =  -EFAULT;
3733                 if (copy_from_user(&control, argp, sizeof(control)))
3734                         goto out;
3735                 r = kvm_vm_ioctl_reinject(kvm, &control);
3736                 break;
3737         }
3738         case KVM_XEN_HVM_CONFIG: {
3739                 r = -EFAULT;
3740                 if (copy_from_user(&kvm->arch.xen_hvm_config, argp,
3741                                    sizeof(struct kvm_xen_hvm_config)))
3742                         goto out;
3743                 r = -EINVAL;
3744                 if (kvm->arch.xen_hvm_config.flags)
3745                         goto out;
3746                 r = 0;
3747                 break;
3748         }
3749         case KVM_SET_CLOCK: {
3750                 struct kvm_clock_data user_ns;
3751                 u64 now_ns;
3752                 s64 delta;
3753
3754                 r = -EFAULT;
3755                 if (copy_from_user(&user_ns, argp, sizeof(user_ns)))
3756                         goto out;
3757
3758                 r = -EINVAL;
3759                 if (user_ns.flags)
3760                         goto out;
3761
3762                 r = 0;
3763                 local_irq_disable();
3764                 now_ns = get_kernel_ns();
3765                 delta = user_ns.clock - now_ns;
3766                 local_irq_enable();
3767                 kvm->arch.kvmclock_offset = delta;
3768                 break;
3769         }
3770         case KVM_GET_CLOCK: {
3771                 struct kvm_clock_data user_ns;
3772                 u64 now_ns;
3773
3774                 local_irq_disable();
3775                 now_ns = get_kernel_ns();
3776                 user_ns.clock = kvm->arch.kvmclock_offset + now_ns;
3777                 local_irq_enable();
3778                 user_ns.flags = 0;
3779                 memset(&user_ns.pad, 0, sizeof(user_ns.pad));
3780
3781                 r = -EFAULT;
3782                 if (copy_to_user(argp, &user_ns, sizeof(user_ns)))
3783                         goto out;
3784                 r = 0;
3785                 break;
3786         }
3787
3788         default:
3789                 ;
3790         }
3791 out:
3792         return r;
3793 }
3794
3795 static void kvm_init_msr_list(void)
3796 {
3797         u32 dummy[2];
3798         unsigned i, j;
3799
3800         /* skip the first msrs in the list. KVM-specific */
3801         for (i = j = KVM_SAVE_MSRS_BEGIN; i < ARRAY_SIZE(msrs_to_save); i++) {
3802                 if (rdmsr_safe(msrs_to_save[i], &dummy[0], &dummy[1]) < 0)
3803                         continue;
3804                 if (j < i)
3805                         msrs_to_save[j] = msrs_to_save[i];
3806                 j++;
3807         }
3808         num_msrs_to_save = j;
3809 }
3810
3811 static int vcpu_mmio_write(struct kvm_vcpu *vcpu, gpa_t addr, int len,
3812                            const void *v)
3813 {
3814         int handled = 0;
3815         int n;
3816
3817         do {
3818                 n = min(len, 8);
3819                 if (!(vcpu->arch.apic &&
3820                       !kvm_iodevice_write(&vcpu->arch.apic->dev, addr, n, v))
3821                     && kvm_io_bus_write(vcpu->kvm, KVM_MMIO_BUS, addr, n, v))
3822                         break;
3823                 handled += n;
3824                 addr += n;
3825                 len -= n;
3826                 v += n;
3827         } while (len);
3828
3829         return handled;
3830 }
3831
3832 static int vcpu_mmio_read(struct kvm_vcpu *vcpu, gpa_t addr, int len, void *v)
3833 {
3834         int handled = 0;
3835         int n;
3836
3837         do {
3838                 n = min(len, 8);
3839                 if (!(vcpu->arch.apic &&
3840                       !kvm_iodevice_read(&vcpu->arch.apic->dev, addr, n, v))
3841                     && kvm_io_bus_read(vcpu->kvm, KVM_MMIO_BUS, addr, n, v))
3842                         break;
3843                 trace_kvm_mmio(KVM_TRACE_MMIO_READ, n, addr, *(u64 *)v);
3844                 handled += n;
3845                 addr += n;
3846                 len -= n;
3847                 v += n;
3848         } while (len);
3849
3850         return handled;
3851 }
3852
3853 static void kvm_set_segment(struct kvm_vcpu *vcpu,
3854                         struct kvm_segment *var, int seg)
3855 {
3856         kvm_x86_ops->set_segment(vcpu, var, seg);
3857 }
3858
3859 void kvm_get_segment(struct kvm_vcpu *vcpu,
3860                      struct kvm_segment *var, int seg)
3861 {
3862         kvm_x86_ops->get_segment(vcpu, var, seg);
3863 }
3864
3865 gpa_t translate_nested_gpa(struct kvm_vcpu *vcpu, gpa_t gpa, u32 access)
3866 {
3867         gpa_t t_gpa;
3868         struct x86_exception exception;
3869
3870         BUG_ON(!mmu_is_nested(vcpu));
3871
3872         /* NPT walks are always user-walks */
3873         access |= PFERR_USER_MASK;
3874         t_gpa  = vcpu->arch.mmu.gva_to_gpa(vcpu, gpa, access, &exception);
3875
3876         return t_gpa;
3877 }
3878
3879 gpa_t kvm_mmu_gva_to_gpa_read(struct kvm_vcpu *vcpu, gva_t gva,
3880                               struct x86_exception *exception)
3881 {
3882         u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
3883         return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
3884 }
3885
3886  gpa_t kvm_mmu_gva_to_gpa_fetch(struct kvm_vcpu *vcpu, gva_t gva,
3887                                 struct x86_exception *exception)
3888 {
3889         u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
3890         access |= PFERR_FETCH_MASK;
3891         return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
3892 }
3893
3894 gpa_t kvm_mmu_gva_to_gpa_write(struct kvm_vcpu *vcpu, gva_t gva,
3895                                struct x86_exception *exception)
3896 {
3897         u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
3898         access |= PFERR_WRITE_MASK;
3899         return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
3900 }
3901
3902 /* uses this to access any guest's mapped memory without checking CPL */
3903 gpa_t kvm_mmu_gva_to_gpa_system(struct kvm_vcpu *vcpu, gva_t gva,
3904                                 struct x86_exception *exception)
3905 {
3906         return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, 0, exception);
3907 }
3908
3909 static int kvm_read_guest_virt_helper(gva_t addr, void *val, unsigned int bytes,
3910                                       struct kvm_vcpu *vcpu, u32 access,
3911                                       struct x86_exception *exception)
3912 {
3913         void *data = val;
3914         int r = X86EMUL_CONTINUE;
3915
3916         while (bytes) {
3917                 gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr, access,
3918                                                             exception);
3919                 unsigned offset = addr & (PAGE_SIZE-1);
3920                 unsigned toread = min(bytes, (unsigned)PAGE_SIZE - offset);
3921                 int ret;
3922
3923                 if (gpa == UNMAPPED_GVA)
3924                         return X86EMUL_PROPAGATE_FAULT;
3925                 ret = kvm_read_guest(vcpu->kvm, gpa, data, toread);
3926                 if (ret < 0) {
3927                         r = X86EMUL_IO_NEEDED;
3928                         goto out;
3929                 }
3930
3931                 bytes -= toread;
3932                 data += toread;
3933                 addr += toread;
3934         }
3935 out:
3936         return r;
3937 }
3938
3939 /* used for instruction fetching */
3940 static int kvm_fetch_guest_virt(struct x86_emulate_ctxt *ctxt,
3941                                 gva_t addr, void *val, unsigned int bytes,
3942                                 struct x86_exception *exception)
3943 {
3944         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
3945         u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
3946
3947         return kvm_read_guest_virt_helper(addr, val, bytes, vcpu,
3948                                           access | PFERR_FETCH_MASK,
3949                                           exception);
3950 }
3951
3952 int kvm_read_guest_virt(struct x86_emulate_ctxt *ctxt,
3953                                gva_t addr, void *val, unsigned int bytes,
3954                                struct x86_exception *exception)
3955 {
3956         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
3957         u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
3958
3959         return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access,
3960                                           exception);
3961 }
3962 EXPORT_SYMBOL_GPL(kvm_read_guest_virt);
3963
3964 static int kvm_read_guest_virt_system(struct x86_emulate_ctxt *ctxt,
3965                                       gva_t addr, void *val, unsigned int bytes,
3966                                       struct x86_exception *exception)
3967 {
3968         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
3969         return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, 0, exception);
3970 }
3971
3972 int kvm_write_guest_virt_system(struct x86_emulate_ctxt *ctxt,
3973                                        gva_t addr, void *val,
3974                                        unsigned int bytes,
3975                                        struct x86_exception *exception)
3976 {
3977         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
3978         void *data = val;
3979         int r = X86EMUL_CONTINUE;
3980
3981         while (bytes) {
3982                 gpa_t gpa =  vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr,
3983                                                              PFERR_WRITE_MASK,
3984                                                              exception);
3985                 unsigned offset = addr & (PAGE_SIZE-1);
3986                 unsigned towrite = min(bytes, (unsigned)PAGE_SIZE - offset);
3987                 int ret;
3988
3989                 if (gpa == UNMAPPED_GVA)
3990                         return X86EMUL_PROPAGATE_FAULT;
3991                 ret = kvm_write_guest(vcpu->kvm, gpa, data, towrite);
3992                 if (ret < 0) {
3993                         r = X86EMUL_IO_NEEDED;
3994                         goto out;
3995                 }
3996
3997                 bytes -= towrite;
3998                 data += towrite;
3999                 addr += towrite;
4000         }
4001 out:
4002         return r;
4003 }
4004 EXPORT_SYMBOL_GPL(kvm_write_guest_virt_system);
4005
4006 static int vcpu_mmio_gva_to_gpa(struct kvm_vcpu *vcpu, unsigned long gva,
4007                                 gpa_t *gpa, struct x86_exception *exception,
4008                                 bool write)
4009 {
4010         u32 access = ((kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0)
4011                 | (write ? PFERR_WRITE_MASK : 0);
4012
4013         if (vcpu_match_mmio_gva(vcpu, gva)
4014             && !permission_fault(vcpu->arch.walk_mmu, vcpu->arch.access, access)) {
4015                 *gpa = vcpu->arch.mmio_gfn << PAGE_SHIFT |
4016                                         (gva & (PAGE_SIZE - 1));
4017                 trace_vcpu_match_mmio(gva, *gpa, write, false);
4018                 return 1;
4019         }
4020
4021         *gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
4022
4023         if (*gpa == UNMAPPED_GVA)
4024                 return -1;
4025
4026         /* For APIC access vmexit */
4027         if ((*gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
4028                 return 1;
4029
4030         if (vcpu_match_mmio_gpa(vcpu, *gpa)) {
4031                 trace_vcpu_match_mmio(gva, *gpa, write, true);
4032                 return 1;
4033         }
4034
4035         return 0;
4036 }
4037
4038 int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa,
4039                         const void *val, int bytes)
4040 {
4041         int ret;
4042
4043         ret = kvm_write_guest(vcpu->kvm, gpa, val, bytes);
4044         if (ret < 0)
4045                 return 0;
4046         kvm_mmu_pte_write(vcpu, gpa, val, bytes);
4047         return 1;
4048 }
4049
4050 struct read_write_emulator_ops {
4051         int (*read_write_prepare)(struct kvm_vcpu *vcpu, void *val,
4052                                   int bytes);
4053         int (*read_write_emulate)(struct kvm_vcpu *vcpu, gpa_t gpa,
4054                                   void *val, int bytes);
4055         int (*read_write_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa,
4056                                int bytes, void *val);
4057         int (*read_write_exit_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa,
4058                                     void *val, int bytes);
4059         bool write;
4060 };
4061
4062 static int read_prepare(struct kvm_vcpu *vcpu, void *val, int bytes)
4063 {
4064         if (vcpu->mmio_read_completed) {
4065                 trace_kvm_mmio(KVM_TRACE_MMIO_READ, bytes,
4066                                vcpu->mmio_fragments[0].gpa, *(u64 *)val);
4067                 vcpu->mmio_read_completed = 0;
4068                 return 1;
4069         }
4070
4071         return 0;
4072 }
4073
4074 static int read_emulate(struct kvm_vcpu *vcpu, gpa_t gpa,
4075                         void *val, int bytes)
4076 {
4077         return !kvm_read_guest(vcpu->kvm, gpa, val, bytes);
4078 }
4079
4080 static int write_emulate(struct kvm_vcpu *vcpu, gpa_t gpa,
4081                          void *val, int bytes)
4082 {
4083         return emulator_write_phys(vcpu, gpa, val, bytes);
4084 }
4085
4086 static int write_mmio(struct kvm_vcpu *vcpu, gpa_t gpa, int bytes, void *val)
4087 {
4088         trace_kvm_mmio(KVM_TRACE_MMIO_WRITE, bytes, gpa, *(u64 *)val);
4089         return vcpu_mmio_write(vcpu, gpa, bytes, val);
4090 }
4091
4092 static int read_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
4093                           void *val, int bytes)
4094 {
4095         trace_kvm_mmio(KVM_TRACE_MMIO_READ_UNSATISFIED, bytes, gpa, 0);
4096         return X86EMUL_IO_NEEDED;
4097 }
4098
4099 static int write_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
4100                            void *val, int bytes)
4101 {
4102         struct kvm_mmio_fragment *frag = &vcpu->mmio_fragments[0];
4103
4104         memcpy(vcpu->run->mmio.data, frag->data, min(8u, frag->len));
4105         return X86EMUL_CONTINUE;
4106 }
4107
4108 static const struct read_write_emulator_ops read_emultor = {
4109         .read_write_prepare = read_prepare,
4110         .read_write_emulate = read_emulate,
4111         .read_write_mmio = vcpu_mmio_read,
4112         .read_write_exit_mmio = read_exit_mmio,
4113 };
4114
4115 static const struct read_write_emulator_ops write_emultor = {
4116         .read_write_emulate = write_emulate,
4117         .read_write_mmio = write_mmio,
4118         .read_write_exit_mmio = write_exit_mmio,
4119         .write = true,
4120 };
4121
4122 static int emulator_read_write_onepage(unsigned long addr, void *val,
4123                                        unsigned int bytes,
4124                                        struct x86_exception *exception,
4125                                        struct kvm_vcpu *vcpu,
4126                                        const struct read_write_emulator_ops *ops)
4127 {
4128         gpa_t gpa;
4129         int handled, ret;
4130         bool write = ops->write;
4131         struct kvm_mmio_fragment *frag;
4132
4133         ret = vcpu_mmio_gva_to_gpa(vcpu, addr, &gpa, exception, write);
4134
4135         if (ret < 0)
4136                 return X86EMUL_PROPAGATE_FAULT;
4137
4138         /* For APIC access vmexit */
4139         if (ret)
4140                 goto mmio;
4141
4142         if (ops->read_write_emulate(vcpu, gpa, val, bytes))
4143                 return X86EMUL_CONTINUE;
4144
4145 mmio:
4146         /*
4147          * Is this MMIO handled locally?
4148          */
4149         handled = ops->read_write_mmio(vcpu, gpa, bytes, val);
4150         if (handled == bytes)
4151                 return X86EMUL_CONTINUE;
4152
4153         gpa += handled;
4154         bytes -= handled;
4155         val += handled;
4156
4157         WARN_ON(vcpu->mmio_nr_fragments >= KVM_MAX_MMIO_FRAGMENTS);
4158         frag = &vcpu->mmio_fragments[vcpu->mmio_nr_fragments++];
4159         frag->gpa = gpa;
4160         frag->data = val;
4161         frag->len = bytes;
4162         return X86EMUL_CONTINUE;
4163 }
4164
4165 int emulator_read_write(struct x86_emulate_ctxt *ctxt, unsigned long addr,
4166                         void *val, unsigned int bytes,
4167                         struct x86_exception *exception,
4168                         const struct read_write_emulator_ops *ops)
4169 {
4170         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4171         gpa_t gpa;
4172         int rc;
4173
4174         if (ops->read_write_prepare &&
4175                   ops->read_write_prepare(vcpu, val, bytes))
4176                 return X86EMUL_CONTINUE;
4177
4178         vcpu->mmio_nr_fragments = 0;
4179
4180         /* Crossing a page boundary? */
4181         if (((addr + bytes - 1) ^ addr) & PAGE_MASK) {
4182                 int now;
4183
4184                 now = -addr & ~PAGE_MASK;
4185                 rc = emulator_read_write_onepage(addr, val, now, exception,
4186                                                  vcpu, ops);
4187
4188                 if (rc != X86EMUL_CONTINUE)
4189                         return rc;
4190                 addr += now;
4191                 val += now;
4192                 bytes -= now;
4193         }
4194
4195         rc = emulator_read_write_onepage(addr, val, bytes, exception,
4196                                          vcpu, ops);
4197         if (rc != X86EMUL_CONTINUE)
4198                 return rc;
4199
4200         if (!vcpu->mmio_nr_fragments)
4201                 return rc;
4202
4203         gpa = vcpu->mmio_fragments[0].gpa;
4204
4205         vcpu->mmio_needed = 1;
4206         vcpu->mmio_cur_fragment = 0;
4207
4208         vcpu->run->mmio.len = min(8u, vcpu->mmio_fragments[0].len);
4209         vcpu->run->mmio.is_write = vcpu->mmio_is_write = ops->write;
4210         vcpu->run->exit_reason = KVM_EXIT_MMIO;
4211         vcpu->run->mmio.phys_addr = gpa;
4212
4213         return ops->read_write_exit_mmio(vcpu, gpa, val, bytes);
4214 }
4215
4216 static int emulator_read_emulated(struct x86_emulate_ctxt *ctxt,
4217                                   unsigned long addr,
4218                                   void *val,
4219                                   unsigned int bytes,
4220                                   struct x86_exception *exception)
4221 {
4222         return emulator_read_write(ctxt, addr, val, bytes,
4223                                    exception, &read_emultor);
4224 }
4225
4226 int emulator_write_emulated(struct x86_emulate_ctxt *ctxt,
4227                             unsigned long addr,
4228                             const void *val,
4229                             unsigned int bytes,
4230                             struct x86_exception *exception)
4231 {
4232         return emulator_read_write(ctxt, addr, (void *)val, bytes,
4233                                    exception, &write_emultor);
4234 }
4235
4236 #define CMPXCHG_TYPE(t, ptr, old, new) \
4237         (cmpxchg((t *)(ptr), *(t *)(old), *(t *)(new)) == *(t *)(old))
4238
4239 #ifdef CONFIG_X86_64
4240 #  define CMPXCHG64(ptr, old, new) CMPXCHG_TYPE(u64, ptr, old, new)
4241 #else
4242 #  define CMPXCHG64(ptr, old, new) \
4243         (cmpxchg64((u64 *)(ptr), *(u64 *)(old), *(u64 *)(new)) == *(u64 *)(old))
4244 #endif
4245
4246 static int emulator_cmpxchg_emulated(struct x86_emulate_ctxt *ctxt,
4247                                      unsigned long addr,
4248                                      const void *old,
4249                                      const void *new,
4250                                      unsigned int bytes,
4251                                      struct x86_exception *exception)
4252 {
4253         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4254         gpa_t gpa;
4255         struct page *page;
4256         char *kaddr;
4257         bool exchanged;
4258
4259         /* guests cmpxchg8b have to be emulated atomically */
4260         if (bytes > 8 || (bytes & (bytes - 1)))
4261                 goto emul_write;
4262
4263         gpa = kvm_mmu_gva_to_gpa_write(vcpu, addr, NULL);
4264
4265         if (gpa == UNMAPPED_GVA ||
4266             (gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
4267                 goto emul_write;
4268
4269         if (((gpa + bytes - 1) & PAGE_MASK) != (gpa & PAGE_MASK))
4270                 goto emul_write;
4271
4272         page = gfn_to_page(vcpu->kvm, gpa >> PAGE_SHIFT);
4273         if (is_error_page(page))
4274                 goto emul_write;
4275
4276         kaddr = kmap_atomic(page);
4277         kaddr += offset_in_page(gpa);
4278         switch (bytes) {
4279         case 1:
4280                 exchanged = CMPXCHG_TYPE(u8, kaddr, old, new);
4281                 break;
4282         case 2:
4283                 exchanged = CMPXCHG_TYPE(u16, kaddr, old, new);
4284                 break;
4285         case 4:
4286                 exchanged = CMPXCHG_TYPE(u32, kaddr, old, new);
4287                 break;
4288         case 8:
4289                 exchanged = CMPXCHG64(kaddr, old, new);
4290                 break;
4291         default:
4292                 BUG();
4293         }
4294         kunmap_atomic(kaddr);
4295         kvm_release_page_dirty(page);
4296
4297         if (!exchanged)
4298                 return X86EMUL_CMPXCHG_FAILED;
4299
4300         kvm_mmu_pte_write(vcpu, gpa, new, bytes);
4301
4302         return X86EMUL_CONTINUE;
4303
4304 emul_write:
4305         printk_once(KERN_WARNING "kvm: emulating exchange as write\n");
4306
4307         return emulator_write_emulated(ctxt, addr, new, bytes, exception);
4308 }
4309
4310 static int kernel_pio(struct kvm_vcpu *vcpu, void *pd)
4311 {
4312         /* TODO: String I/O for in kernel device */
4313         int r;
4314
4315         if (vcpu->arch.pio.in)
4316                 r = kvm_io_bus_read(vcpu->kvm, KVM_PIO_BUS, vcpu->arch.pio.port,
4317                                     vcpu->arch.pio.size, pd);
4318         else
4319                 r = kvm_io_bus_write(vcpu->kvm, KVM_PIO_BUS,
4320                                      vcpu->arch.pio.port, vcpu->arch.pio.size,
4321                                      pd);
4322         return r;
4323 }
4324
4325 static int emulator_pio_in_out(struct kvm_vcpu *vcpu, int size,
4326                                unsigned short port, void *val,
4327                                unsigned int count, bool in)
4328 {
4329         trace_kvm_pio(!in, port, size, count);
4330
4331         vcpu->arch.pio.port = port;
4332         vcpu->arch.pio.in = in;
4333         vcpu->arch.pio.count  = count;
4334         vcpu->arch.pio.size = size;
4335
4336         if (!kernel_pio(vcpu, vcpu->arch.pio_data)) {
4337                 vcpu->arch.pio.count = 0;
4338                 return 1;
4339         }
4340
4341         vcpu->run->exit_reason = KVM_EXIT_IO;
4342         vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT;
4343         vcpu->run->io.size = size;
4344         vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
4345         vcpu->run->io.count = count;
4346         vcpu->run->io.port = port;
4347
4348         return 0;
4349 }
4350
4351 static int emulator_pio_in_emulated(struct x86_emulate_ctxt *ctxt,
4352                                     int size, unsigned short port, void *val,
4353                                     unsigned int count)
4354 {
4355         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4356         int ret;
4357
4358         if (vcpu->arch.pio.count)
4359                 goto data_avail;
4360
4361         ret = emulator_pio_in_out(vcpu, size, port, val, count, true);
4362         if (ret) {
4363 data_avail:
4364                 memcpy(val, vcpu->arch.pio_data, size * count);
4365                 vcpu->arch.pio.count = 0;
4366                 return 1;
4367         }
4368
4369         return 0;
4370 }
4371
4372 static int emulator_pio_out_emulated(struct x86_emulate_ctxt *ctxt,
4373                                      int size, unsigned short port,
4374                                      const void *val, unsigned int count)
4375 {
4376         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4377
4378         memcpy(vcpu->arch.pio_data, val, size * count);
4379         return emulator_pio_in_out(vcpu, size, port, (void *)val, count, false);
4380 }
4381
4382 static unsigned long get_segment_base(struct kvm_vcpu *vcpu, int seg)
4383 {
4384         return kvm_x86_ops->get_segment_base(vcpu, seg);
4385 }
4386
4387 static void emulator_invlpg(struct x86_emulate_ctxt *ctxt, ulong address)
4388 {
4389         kvm_mmu_invlpg(emul_to_vcpu(ctxt), address);
4390 }
4391
4392 int kvm_emulate_wbinvd(struct kvm_vcpu *vcpu)
4393 {
4394         if (!need_emulate_wbinvd(vcpu))
4395                 return X86EMUL_CONTINUE;
4396
4397         if (kvm_x86_ops->has_wbinvd_exit()) {
4398                 int cpu = get_cpu();
4399
4400                 cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
4401                 smp_call_function_many(vcpu->arch.wbinvd_dirty_mask,
4402                                 wbinvd_ipi, NULL, 1);
4403                 put_cpu();
4404                 cpumask_clear(vcpu->arch.wbinvd_dirty_mask);
4405         } else
4406                 wbinvd();
4407         return X86EMUL_CONTINUE;
4408 }
4409 EXPORT_SYMBOL_GPL(kvm_emulate_wbinvd);
4410
4411 static void emulator_wbinvd(struct x86_emulate_ctxt *ctxt)
4412 {
4413         kvm_emulate_wbinvd(emul_to_vcpu(ctxt));
4414 }
4415
4416 int emulator_get_dr(struct x86_emulate_ctxt *ctxt, int dr, unsigned long *dest)
4417 {
4418         return _kvm_get_dr(emul_to_vcpu(ctxt), dr, dest);
4419 }
4420
4421 int emulator_set_dr(struct x86_emulate_ctxt *ctxt, int dr, unsigned long value)
4422 {
4423
4424         return __kvm_set_dr(emul_to_vcpu(ctxt), dr, value);
4425 }
4426
4427 static u64 mk_cr_64(u64 curr_cr, u32 new_val)
4428 {
4429         return (curr_cr & ~((1ULL << 32) - 1)) | new_val;
4430 }
4431
4432 static unsigned long emulator_get_cr(struct x86_emulate_ctxt *ctxt, int cr)
4433 {
4434         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4435         unsigned long value;
4436
4437         switch (cr) {
4438         case 0:
4439                 value = kvm_read_cr0(vcpu);
4440                 break;
4441         case 2:
4442                 value = vcpu->arch.cr2;
4443                 break;
4444         case 3:
4445                 value = kvm_read_cr3(vcpu);
4446                 break;
4447         case 4:
4448                 value = kvm_read_cr4(vcpu);
4449                 break;
4450         case 8:
4451                 value = kvm_get_cr8(vcpu);
4452                 break;
4453         default:
4454                 kvm_err("%s: unexpected cr %u\n", __func__, cr);
4455                 return 0;
4456         }
4457
4458         return value;
4459 }
4460
4461 static int emulator_set_cr(struct x86_emulate_ctxt *ctxt, int cr, ulong val)
4462 {
4463         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4464         int res = 0;
4465
4466         switch (cr) {
4467         case 0:
4468                 res = kvm_set_cr0(vcpu, mk_cr_64(kvm_read_cr0(vcpu), val));
4469                 break;
4470         case 2:
4471                 vcpu->arch.cr2 = val;
4472                 break;
4473         case 3:
4474                 res = kvm_set_cr3(vcpu, val);
4475                 break;
4476         case 4:
4477                 res = kvm_set_cr4(vcpu, mk_cr_64(kvm_read_cr4(vcpu), val));
4478                 break;
4479         case 8:
4480                 res = kvm_set_cr8(vcpu, val);
4481                 break;
4482         default:
4483                 kvm_err("%s: unexpected cr %u\n", __func__, cr);
4484                 res = -1;
4485         }
4486
4487         return res;
4488 }
4489
4490 static void emulator_set_rflags(struct x86_emulate_ctxt *ctxt, ulong val)
4491 {
4492         kvm_set_rflags(emul_to_vcpu(ctxt), val);
4493 }
4494
4495 static int emulator_get_cpl(struct x86_emulate_ctxt *ctxt)
4496 {
4497         return kvm_x86_ops->get_cpl(emul_to_vcpu(ctxt));
4498 }
4499
4500 static void emulator_get_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
4501 {
4502         kvm_x86_ops->get_gdt(emul_to_vcpu(ctxt), dt);
4503 }
4504
4505 static void emulator_get_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
4506 {
4507         kvm_x86_ops->get_idt(emul_to_vcpu(ctxt), dt);
4508 }
4509
4510 static void emulator_set_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
4511 {
4512         kvm_x86_ops->set_gdt(emul_to_vcpu(ctxt), dt);
4513 }
4514
4515 static void emulator_set_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
4516 {
4517         kvm_x86_ops->set_idt(emul_to_vcpu(ctxt), dt);
4518 }
4519
4520 static unsigned long emulator_get_cached_segment_base(
4521         struct x86_emulate_ctxt *ctxt, int seg)
4522 {
4523         return get_segment_base(emul_to_vcpu(ctxt), seg);
4524 }
4525
4526 static bool emulator_get_segment(struct x86_emulate_ctxt *ctxt, u16 *selector,
4527                                  struct desc_struct *desc, u32 *base3,
4528                                  int seg)
4529 {
4530         struct kvm_segment var;
4531
4532         kvm_get_segment(emul_to_vcpu(ctxt), &var, seg);
4533         *selector = var.selector;
4534
4535         if (var.unusable) {
4536                 memset(desc, 0, sizeof(*desc));
4537                 return false;
4538         }
4539
4540         if (var.g)
4541                 var.limit >>= 12;
4542         set_desc_limit(desc, var.limit);
4543         set_desc_base(desc, (unsigned long)var.base);
4544 #ifdef CONFIG_X86_64
4545         if (base3)
4546                 *base3 = var.base >> 32;
4547 #endif
4548         desc->type = var.type;
4549         desc->s = var.s;
4550         desc->dpl = var.dpl;
4551         desc->p = var.present;
4552         desc->avl = var.avl;
4553         desc->l = var.l;
4554         desc->d = var.db;
4555         desc->g = var.g;
4556
4557         return true;
4558 }
4559
4560 static void emulator_set_segment(struct x86_emulate_ctxt *ctxt, u16 selector,
4561                                  struct desc_struct *desc, u32 base3,
4562                                  int seg)
4563 {
4564         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4565         struct kvm_segment var;
4566
4567         var.selector = selector;
4568         var.base = get_desc_base(desc);
4569 #ifdef CONFIG_X86_64
4570         var.base |= ((u64)base3) << 32;
4571 #endif
4572         var.limit = get_desc_limit(desc);
4573         if (desc->g)
4574                 var.limit = (var.limit << 12) | 0xfff;
4575         var.type = desc->type;
4576         var.present = desc->p;
4577         var.dpl = desc->dpl;
4578         var.db = desc->d;
4579         var.s = desc->s;
4580         var.l = desc->l;
4581         var.g = desc->g;
4582         var.avl = desc->avl;
4583         var.present = desc->p;
4584         var.unusable = !var.present;
4585         var.padding = 0;
4586
4587         kvm_set_segment(vcpu, &var, seg);
4588         return;
4589 }
4590
4591 static int emulator_get_msr(struct x86_emulate_ctxt *ctxt,
4592                             u32 msr_index, u64 *pdata)
4593 {
4594         return kvm_get_msr(emul_to_vcpu(ctxt), msr_index, pdata);
4595 }
4596
4597 static int emulator_set_msr(struct x86_emulate_ctxt *ctxt,
4598                             u32 msr_index, u64 data)
4599 {
4600         struct msr_data msr;
4601
4602         msr.data = data;
4603         msr.index = msr_index;
4604         msr.host_initiated = false;
4605         return kvm_set_msr(emul_to_vcpu(ctxt), &msr);
4606 }
4607
4608 static int emulator_read_pmc(struct x86_emulate_ctxt *ctxt,
4609                              u32 pmc, u64 *pdata)
4610 {
4611         return kvm_pmu_read_pmc(emul_to_vcpu(ctxt), pmc, pdata);
4612 }
4613
4614 static void emulator_halt(struct x86_emulate_ctxt *ctxt)
4615 {
4616         emul_to_vcpu(ctxt)->arch.halt_request = 1;
4617 }
4618
4619 static void emulator_get_fpu(struct x86_emulate_ctxt *ctxt)
4620 {
4621         preempt_disable();
4622         kvm_load_guest_fpu(emul_to_vcpu(ctxt));
4623         /*
4624          * CR0.TS may reference the host fpu state, not the guest fpu state,
4625          * so it may be clear at this point.
4626          */
4627         clts();
4628 }
4629
4630 static void emulator_put_fpu(struct x86_emulate_ctxt *ctxt)
4631 {
4632         preempt_enable();
4633 }
4634
4635 static int emulator_intercept(struct x86_emulate_ctxt *ctxt,
4636                               struct x86_instruction_info *info,
4637                               enum x86_intercept_stage stage)
4638 {
4639         return kvm_x86_ops->check_intercept(emul_to_vcpu(ctxt), info, stage);
4640 }
4641
4642 static void emulator_get_cpuid(struct x86_emulate_ctxt *ctxt,
4643                                u32 *eax, u32 *ebx, u32 *ecx, u32 *edx)
4644 {
4645         kvm_cpuid(emul_to_vcpu(ctxt), eax, ebx, ecx, edx);
4646 }
4647
4648 static ulong emulator_read_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg)
4649 {
4650         return kvm_register_read(emul_to_vcpu(ctxt), reg);
4651 }
4652
4653 static void emulator_write_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg, ulong val)
4654 {
4655         kvm_register_write(emul_to_vcpu(ctxt), reg, val);
4656 }
4657
4658 static const struct x86_emulate_ops emulate_ops = {
4659         .read_gpr            = emulator_read_gpr,
4660         .write_gpr           = emulator_write_gpr,
4661         .read_std            = kvm_read_guest_virt_system,
4662         .write_std           = kvm_write_guest_virt_system,
4663         .fetch               = kvm_fetch_guest_virt,
4664         .read_emulated       = emulator_read_emulated,
4665         .write_emulated      = emulator_write_emulated,
4666         .cmpxchg_emulated    = emulator_cmpxchg_emulated,
4667         .invlpg              = emulator_invlpg,
4668         .pio_in_emulated     = emulator_pio_in_emulated,
4669         .pio_out_emulated    = emulator_pio_out_emulated,
4670         .get_segment         = emulator_get_segment,
4671         .set_segment         = emulator_set_segment,
4672         .get_cached_segment_base = emulator_get_cached_segment_base,
4673         .get_gdt             = emulator_get_gdt,
4674         .get_idt             = emulator_get_idt,
4675         .set_gdt             = emulator_set_gdt,
4676         .set_idt             = emulator_set_idt,
4677         .get_cr              = emulator_get_cr,
4678         .set_cr              = emulator_set_cr,
4679         .set_rflags          = emulator_set_rflags,
4680         .cpl                 = emulator_get_cpl,
4681         .get_dr              = emulator_get_dr,
4682         .set_dr              = emulator_set_dr,
4683         .set_msr             = emulator_set_msr,
4684         .get_msr             = emulator_get_msr,
4685         .read_pmc            = emulator_read_pmc,
4686         .halt                = emulator_halt,
4687         .wbinvd              = emulator_wbinvd,
4688         .fix_hypercall       = emulator_fix_hypercall,
4689         .get_fpu             = emulator_get_fpu,
4690         .put_fpu             = emulator_put_fpu,
4691         .intercept           = emulator_intercept,
4692         .get_cpuid           = emulator_get_cpuid,
4693 };
4694
4695 static void toggle_interruptibility(struct kvm_vcpu *vcpu, u32 mask)
4696 {
4697         u32 int_shadow = kvm_x86_ops->get_interrupt_shadow(vcpu, mask);
4698         /*
4699          * an sti; sti; sequence only disable interrupts for the first
4700          * instruction. So, if the last instruction, be it emulated or
4701          * not, left the system with the INT_STI flag enabled, it
4702          * means that the last instruction is an sti. We should not
4703          * leave the flag on in this case. The same goes for mov ss
4704          */
4705         if (!(int_shadow & mask))
4706                 kvm_x86_ops->set_interrupt_shadow(vcpu, mask);
4707 }
4708
4709 static void inject_emulated_exception(struct kvm_vcpu *vcpu)
4710 {
4711         struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
4712         if (ctxt->exception.vector == PF_VECTOR)
4713                 kvm_propagate_fault(vcpu, &ctxt->exception);
4714         else if (ctxt->exception.error_code_valid)
4715                 kvm_queue_exception_e(vcpu, ctxt->exception.vector,
4716                                       ctxt->exception.error_code);
4717         else
4718                 kvm_queue_exception(vcpu, ctxt->exception.vector);
4719 }
4720
4721 static void init_decode_cache(struct x86_emulate_ctxt *ctxt)
4722 {
4723         memset(&ctxt->twobyte, 0,
4724                (void *)&ctxt->_regs - (void *)&ctxt->twobyte);
4725
4726         ctxt->fetch.start = 0;
4727         ctxt->fetch.end = 0;
4728         ctxt->io_read.pos = 0;
4729         ctxt->io_read.end = 0;
4730         ctxt->mem_read.pos = 0;
4731         ctxt->mem_read.end = 0;
4732 }
4733
4734 static void init_emulate_ctxt(struct kvm_vcpu *vcpu)
4735 {
4736         struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
4737         int cs_db, cs_l;
4738
4739         kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
4740
4741         ctxt->eflags = kvm_get_rflags(vcpu);
4742         ctxt->eip = kvm_rip_read(vcpu);
4743         ctxt->mode = (!is_protmode(vcpu))               ? X86EMUL_MODE_REAL :
4744                      (ctxt->eflags & X86_EFLAGS_VM)     ? X86EMUL_MODE_VM86 :
4745                      cs_l                               ? X86EMUL_MODE_PROT64 :
4746                      cs_db                              ? X86EMUL_MODE_PROT32 :
4747                                                           X86EMUL_MODE_PROT16;
4748         ctxt->guest_mode = is_guest_mode(vcpu);
4749
4750         init_decode_cache(ctxt);
4751         vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
4752 }
4753
4754 int kvm_inject_realmode_interrupt(struct kvm_vcpu *vcpu, int irq, int inc_eip)
4755 {
4756         struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
4757         int ret;
4758
4759         init_emulate_ctxt(vcpu);
4760
4761         ctxt->op_bytes = 2;
4762         ctxt->ad_bytes = 2;
4763         ctxt->_eip = ctxt->eip + inc_eip;
4764         ret = emulate_int_real(ctxt, irq);
4765
4766         if (ret != X86EMUL_CONTINUE)
4767                 return EMULATE_FAIL;
4768
4769         ctxt->eip = ctxt->_eip;
4770         kvm_rip_write(vcpu, ctxt->eip);
4771         kvm_set_rflags(vcpu, ctxt->eflags);
4772
4773         if (irq == NMI_VECTOR)
4774                 vcpu->arch.nmi_pending = 0;
4775         else
4776                 vcpu->arch.interrupt.pending = false;
4777
4778         return EMULATE_DONE;
4779 }
4780 EXPORT_SYMBOL_GPL(kvm_inject_realmode_interrupt);
4781
4782 static int handle_emulation_failure(struct kvm_vcpu *vcpu)
4783 {
4784         int r = EMULATE_DONE;
4785
4786         ++vcpu->stat.insn_emulation_fail;
4787         trace_kvm_emulate_insn_failed(vcpu);
4788         if (!is_guest_mode(vcpu)) {
4789                 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
4790                 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
4791                 vcpu->run->internal.ndata = 0;
4792                 r = EMULATE_FAIL;
4793         }
4794         kvm_queue_exception(vcpu, UD_VECTOR);
4795
4796         return r;
4797 }
4798
4799 static bool reexecute_instruction(struct kvm_vcpu *vcpu, gva_t cr2,
4800                                   bool write_fault_to_shadow_pgtable,
4801                                   int emulation_type)
4802 {
4803         gpa_t gpa = cr2;
4804         pfn_t pfn;
4805
4806         if (emulation_type & EMULTYPE_NO_REEXECUTE)
4807                 return false;
4808
4809         if (!vcpu->arch.mmu.direct_map) {
4810                 /*
4811                  * Write permission should be allowed since only
4812                  * write access need to be emulated.
4813                  */
4814                 gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2, NULL);
4815
4816                 /*
4817                  * If the mapping is invalid in guest, let cpu retry
4818                  * it to generate fault.
4819                  */
4820                 if (gpa == UNMAPPED_GVA)
4821                         return true;
4822         }
4823
4824         /*
4825          * Do not retry the unhandleable instruction if it faults on the
4826          * readonly host memory, otherwise it will goto a infinite loop:
4827          * retry instruction -> write #PF -> emulation fail -> retry
4828          * instruction -> ...
4829          */
4830         pfn = gfn_to_pfn(vcpu->kvm, gpa_to_gfn(gpa));
4831
4832         /*
4833          * If the instruction failed on the error pfn, it can not be fixed,
4834          * report the error to userspace.
4835          */
4836         if (is_error_noslot_pfn(pfn))
4837                 return false;
4838
4839         kvm_release_pfn_clean(pfn);
4840
4841         /* The instructions are well-emulated on direct mmu. */
4842         if (vcpu->arch.mmu.direct_map) {
4843                 unsigned int indirect_shadow_pages;
4844
4845                 spin_lock(&vcpu->kvm->mmu_lock);
4846                 indirect_shadow_pages = vcpu->kvm->arch.indirect_shadow_pages;
4847                 spin_unlock(&vcpu->kvm->mmu_lock);
4848
4849                 if (indirect_shadow_pages)
4850                         kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
4851
4852                 return true;
4853         }
4854
4855         /*
4856          * if emulation was due to access to shadowed page table
4857          * and it failed try to unshadow page and re-enter the
4858          * guest to let CPU execute the instruction.
4859          */
4860         kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
4861
4862         /*
4863          * If the access faults on its page table, it can not
4864          * be fixed by unprotecting shadow page and it should
4865          * be reported to userspace.
4866          */
4867         return !write_fault_to_shadow_pgtable;
4868 }
4869
4870 static bool retry_instruction(struct x86_emulate_ctxt *ctxt,
4871                               unsigned long cr2,  int emulation_type)
4872 {
4873         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4874         unsigned long last_retry_eip, last_retry_addr, gpa = cr2;
4875
4876         last_retry_eip = vcpu->arch.last_retry_eip;
4877         last_retry_addr = vcpu->arch.last_retry_addr;
4878
4879         /*
4880          * If the emulation is caused by #PF and it is non-page_table
4881          * writing instruction, it means the VM-EXIT is caused by shadow
4882          * page protected, we can zap the shadow page and retry this
4883          * instruction directly.
4884          *
4885          * Note: if the guest uses a non-page-table modifying instruction
4886          * on the PDE that points to the instruction, then we will unmap
4887          * the instruction and go to an infinite loop. So, we cache the
4888          * last retried eip and the last fault address, if we meet the eip
4889          * and the address again, we can break out of the potential infinite
4890          * loop.
4891          */
4892         vcpu->arch.last_retry_eip = vcpu->arch.last_retry_addr = 0;
4893
4894         if (!(emulation_type & EMULTYPE_RETRY))
4895                 return false;
4896
4897         if (x86_page_table_writing_insn(ctxt))
4898                 return false;
4899
4900         if (ctxt->eip == last_retry_eip && last_retry_addr == cr2)
4901                 return false;
4902
4903         vcpu->arch.last_retry_eip = ctxt->eip;
4904         vcpu->arch.last_retry_addr = cr2;
4905
4906         if (!vcpu->arch.mmu.direct_map)
4907                 gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2, NULL);
4908
4909         kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
4910
4911         return true;
4912 }
4913
4914 static int complete_emulated_mmio(struct kvm_vcpu *vcpu);
4915 static int complete_emulated_pio(struct kvm_vcpu *vcpu);
4916
4917 int x86_emulate_instruction(struct kvm_vcpu *vcpu,
4918                             unsigned long cr2,
4919                             int emulation_type,
4920                             void *insn,
4921                             int insn_len)
4922 {
4923         int r;
4924         struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
4925         bool writeback = true;
4926         bool write_fault_to_spt = vcpu->arch.write_fault_to_shadow_pgtable;
4927
4928         /*
4929          * Clear write_fault_to_shadow_pgtable here to ensure it is
4930          * never reused.
4931          */
4932         vcpu->arch.write_fault_to_shadow_pgtable = false;
4933         kvm_clear_exception_queue(vcpu);
4934
4935         if (!(emulation_type & EMULTYPE_NO_DECODE)) {
4936                 init_emulate_ctxt(vcpu);
4937                 ctxt->interruptibility = 0;
4938                 ctxt->have_exception = false;
4939                 ctxt->perm_ok = false;
4940
4941                 ctxt->only_vendor_specific_insn
4942                         = emulation_type & EMULTYPE_TRAP_UD;
4943
4944                 r = x86_decode_insn(ctxt, insn, insn_len);
4945
4946                 trace_kvm_emulate_insn_start(vcpu);
4947                 ++vcpu->stat.insn_emulation;
4948                 if (r != EMULATION_OK)  {
4949                         if (emulation_type & EMULTYPE_TRAP_UD)
4950                                 return EMULATE_FAIL;
4951                         if (reexecute_instruction(vcpu, cr2, write_fault_to_spt,
4952                                                 emulation_type))
4953                                 return EMULATE_DONE;
4954                         if (emulation_type & EMULTYPE_SKIP)
4955                                 return EMULATE_FAIL;
4956                         return handle_emulation_failure(vcpu);
4957                 }
4958         }
4959
4960         if (emulation_type & EMULTYPE_SKIP) {
4961                 kvm_rip_write(vcpu, ctxt->_eip);
4962                 return EMULATE_DONE;
4963         }
4964
4965         if (retry_instruction(ctxt, cr2, emulation_type))
4966                 return EMULATE_DONE;
4967
4968         /* this is needed for vmware backdoor interface to work since it
4969            changes registers values  during IO operation */
4970         if (vcpu->arch.emulate_regs_need_sync_from_vcpu) {
4971                 vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
4972                 emulator_invalidate_register_cache(ctxt);
4973         }
4974
4975 restart:
4976         r = x86_emulate_insn(ctxt);
4977
4978         if (r == EMULATION_INTERCEPTED)
4979                 return EMULATE_DONE;
4980
4981         if (r == EMULATION_FAILED) {
4982                 if (reexecute_instruction(vcpu, cr2, write_fault_to_spt,
4983                                         emulation_type))
4984                         return EMULATE_DONE;
4985
4986                 return handle_emulation_failure(vcpu);
4987         }
4988
4989         if (ctxt->have_exception) {
4990                 inject_emulated_exception(vcpu);
4991                 r = EMULATE_DONE;
4992         } else if (vcpu->arch.pio.count) {
4993                 if (!vcpu->arch.pio.in)
4994                         vcpu->arch.pio.count = 0;
4995                 else {
4996                         writeback = false;
4997                         vcpu->arch.complete_userspace_io = complete_emulated_pio;
4998                 }
4999                 r = EMULATE_DO_MMIO;
5000         } else if (vcpu->mmio_needed) {
5001                 if (!vcpu->mmio_is_write)
5002                         writeback = false;
5003                 r = EMULATE_DO_MMIO;
5004                 vcpu->arch.complete_userspace_io = complete_emulated_mmio;
5005         } else if (r == EMULATION_RESTART)
5006                 goto restart;
5007         else
5008                 r = EMULATE_DONE;
5009
5010         if (writeback) {
5011                 toggle_interruptibility(vcpu, ctxt->interruptibility);
5012                 kvm_set_rflags(vcpu, ctxt->eflags);
5013                 kvm_make_request(KVM_REQ_EVENT, vcpu);
5014                 vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
5015                 kvm_rip_write(vcpu, ctxt->eip);
5016         } else
5017                 vcpu->arch.emulate_regs_need_sync_to_vcpu = true;
5018
5019         return r;
5020 }
5021 EXPORT_SYMBOL_GPL(x86_emulate_instruction);
5022
5023 int kvm_fast_pio_out(struct kvm_vcpu *vcpu, int size, unsigned short port)
5024 {
5025         unsigned long val = kvm_register_read(vcpu, VCPU_REGS_RAX);
5026         int ret = emulator_pio_out_emulated(&vcpu->arch.emulate_ctxt,
5027                                             size, port, &val, 1);
5028         /* do not return to emulator after return from userspace */
5029         vcpu->arch.pio.count = 0;
5030         return ret;
5031 }
5032 EXPORT_SYMBOL_GPL(kvm_fast_pio_out);
5033
5034 static void tsc_bad(void *info)
5035 {
5036         __this_cpu_write(cpu_tsc_khz, 0);
5037 }
5038
5039 static void tsc_khz_changed(void *data)
5040 {
5041         struct cpufreq_freqs *freq = data;
5042         unsigned long khz = 0;
5043
5044         if (data)
5045                 khz = freq->new;
5046         else if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
5047                 khz = cpufreq_quick_get(raw_smp_processor_id());
5048         if (!khz)
5049                 khz = tsc_khz;
5050         __this_cpu_write(cpu_tsc_khz, khz);
5051 }
5052
5053 static int kvmclock_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
5054                                      void *data)
5055 {
5056         struct cpufreq_freqs *freq = data;
5057         struct kvm *kvm;
5058         struct kvm_vcpu *vcpu;
5059         int i, send_ipi = 0;
5060
5061         /*
5062          * We allow guests to temporarily run on slowing clocks,
5063          * provided we notify them after, or to run on accelerating
5064          * clocks, provided we notify them before.  Thus time never
5065          * goes backwards.
5066          *
5067          * However, we have a problem.  We can't atomically update
5068          * the frequency of a given CPU from this function; it is
5069          * merely a notifier, which can be called from any CPU.
5070          * Changing the TSC frequency at arbitrary points in time
5071          * requires a recomputation of local variables related to
5072          * the TSC for each VCPU.  We must flag these local variables
5073          * to be updated and be sure the update takes place with the
5074          * new frequency before any guests proceed.
5075          *
5076          * Unfortunately, the combination of hotplug CPU and frequency
5077          * change creates an intractable locking scenario; the order
5078          * of when these callouts happen is undefined with respect to
5079          * CPU hotplug, and they can race with each other.  As such,
5080          * merely setting per_cpu(cpu_tsc_khz) = X during a hotadd is
5081          * undefined; you can actually have a CPU frequency change take
5082          * place in between the computation of X and the setting of the
5083          * variable.  To protect against this problem, all updates of
5084          * the per_cpu tsc_khz variable are done in an interrupt
5085          * protected IPI, and all callers wishing to update the value
5086          * must wait for a synchronous IPI to complete (which is trivial
5087          * if the caller is on the CPU already).  This establishes the
5088          * necessary total order on variable updates.
5089          *
5090          * Note that because a guest time update may take place
5091          * anytime after the setting of the VCPU's request bit, the
5092          * correct TSC value must be set before the request.  However,
5093          * to ensure the update actually makes it to any guest which
5094          * starts running in hardware virtualization between the set
5095          * and the acquisition of the spinlock, we must also ping the
5096          * CPU after setting the request bit.
5097          *
5098          */
5099
5100         if (val == CPUFREQ_PRECHANGE && freq->old > freq->new)
5101                 return 0;
5102         if (val == CPUFREQ_POSTCHANGE && freq->old < freq->new)
5103                 return 0;
5104
5105         smp_call_function_single(freq->cpu, tsc_khz_changed, freq, 1);
5106
5107         spin_lock(&kvm_lock);
5108         list_for_each_entry(kvm, &vm_list, vm_list) {
5109                 kvm_for_each_vcpu(i, vcpu, kvm) {
5110                         if (vcpu->cpu != freq->cpu)
5111                                 continue;
5112                         kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
5113                         if (vcpu->cpu != smp_processor_id())
5114                                 send_ipi = 1;
5115                 }
5116         }
5117         spin_unlock(&kvm_lock);
5118
5119         if (freq->old < freq->new && send_ipi) {
5120                 /*
5121                  * We upscale the frequency.  Must make the guest
5122                  * doesn't see old kvmclock values while running with
5123                  * the new frequency, otherwise we risk the guest sees
5124                  * time go backwards.
5125                  *
5126                  * In case we update the frequency for another cpu
5127                  * (which might be in guest context) send an interrupt
5128                  * to kick the cpu out of guest context.  Next time
5129                  * guest context is entered kvmclock will be updated,
5130                  * so the guest will not see stale values.
5131                  */
5132                 smp_call_function_single(freq->cpu, tsc_khz_changed, freq, 1);
5133         }
5134         return 0;
5135 }
5136
5137 static struct notifier_block kvmclock_cpufreq_notifier_block = {
5138         .notifier_call  = kvmclock_cpufreq_notifier
5139 };
5140
5141 static int kvmclock_cpu_notifier(struct notifier_block *nfb,
5142                                         unsigned long action, void *hcpu)
5143 {
5144         unsigned int cpu = (unsigned long)hcpu;
5145
5146         switch (action) {
5147                 case CPU_ONLINE:
5148                 case CPU_DOWN_FAILED:
5149                         smp_call_function_single(cpu, tsc_khz_changed, NULL, 1);
5150                         break;
5151                 case CPU_DOWN_PREPARE:
5152                         smp_call_function_single(cpu, tsc_bad, NULL, 1);
5153                         break;
5154         }
5155         return NOTIFY_OK;
5156 }
5157
5158 static struct notifier_block kvmclock_cpu_notifier_block = {
5159         .notifier_call  = kvmclock_cpu_notifier,
5160         .priority = -INT_MAX
5161 };
5162
5163 static void kvm_timer_init(void)
5164 {
5165         int cpu;
5166
5167         max_tsc_khz = tsc_khz;
5168         register_hotcpu_notifier(&kvmclock_cpu_notifier_block);
5169         if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) {
5170 #ifdef CONFIG_CPU_FREQ
5171                 struct cpufreq_policy policy;
5172                 memset(&policy, 0, sizeof(policy));
5173                 cpu = get_cpu();
5174                 cpufreq_get_policy(&policy, cpu);
5175                 if (policy.cpuinfo.max_freq)
5176                         max_tsc_khz = policy.cpuinfo.max_freq;
5177                 put_cpu();
5178 #endif
5179                 cpufreq_register_notifier(&kvmclock_cpufreq_notifier_block,
5180                                           CPUFREQ_TRANSITION_NOTIFIER);
5181         }
5182         pr_debug("kvm: max_tsc_khz = %ld\n", max_tsc_khz);
5183         for_each_online_cpu(cpu)
5184                 smp_call_function_single(cpu, tsc_khz_changed, NULL, 1);
5185 }
5186
5187 static DEFINE_PER_CPU(struct kvm_vcpu *, current_vcpu);
5188
5189 int kvm_is_in_guest(void)
5190 {
5191         return __this_cpu_read(current_vcpu) != NULL;
5192 }
5193
5194 static int kvm_is_user_mode(void)
5195 {
5196         int user_mode = 3;
5197
5198         if (__this_cpu_read(current_vcpu))
5199                 user_mode = kvm_x86_ops->get_cpl(__this_cpu_read(current_vcpu));
5200
5201         return user_mode != 0;
5202 }
5203
5204 static unsigned long kvm_get_guest_ip(void)
5205 {
5206         unsigned long ip = 0;
5207
5208         if (__this_cpu_read(current_vcpu))
5209                 ip = kvm_rip_read(__this_cpu_read(current_vcpu));
5210
5211         return ip;
5212 }
5213
5214 static struct perf_guest_info_callbacks kvm_guest_cbs = {
5215         .is_in_guest            = kvm_is_in_guest,
5216         .is_user_mode           = kvm_is_user_mode,
5217         .get_guest_ip           = kvm_get_guest_ip,
5218 };
5219
5220 void kvm_before_handle_nmi(struct kvm_vcpu *vcpu)
5221 {
5222         __this_cpu_write(current_vcpu, vcpu);
5223 }
5224 EXPORT_SYMBOL_GPL(kvm_before_handle_nmi);
5225
5226 void kvm_after_handle_nmi(struct kvm_vcpu *vcpu)
5227 {
5228         __this_cpu_write(current_vcpu, NULL);
5229 }
5230 EXPORT_SYMBOL_GPL(kvm_after_handle_nmi);
5231
5232 static void kvm_set_mmio_spte_mask(void)
5233 {
5234         u64 mask;
5235         int maxphyaddr = boot_cpu_data.x86_phys_bits;
5236
5237         /*
5238          * Set the reserved bits and the present bit of an paging-structure
5239          * entry to generate page fault with PFER.RSV = 1.
5240          */
5241         mask = ((1ull << (62 - maxphyaddr + 1)) - 1) << maxphyaddr;
5242         mask |= 1ull;
5243
5244 #ifdef CONFIG_X86_64
5245         /*
5246          * If reserved bit is not supported, clear the present bit to disable
5247          * mmio page fault.
5248          */
5249         if (maxphyaddr == 52)
5250                 mask &= ~1ull;
5251 #endif
5252
5253         kvm_mmu_set_mmio_spte_mask(mask);
5254 }
5255
5256 #ifdef CONFIG_X86_64
5257 static void pvclock_gtod_update_fn(struct work_struct *work)
5258 {
5259         struct kvm *kvm;
5260
5261         struct kvm_vcpu *vcpu;
5262         int i;
5263
5264         spin_lock(&kvm_lock);
5265         list_for_each_entry(kvm, &vm_list, vm_list)
5266                 kvm_for_each_vcpu(i, vcpu, kvm)
5267                         set_bit(KVM_REQ_MASTERCLOCK_UPDATE, &vcpu->requests);
5268         atomic_set(&kvm_guest_has_master_clock, 0);
5269         spin_unlock(&kvm_lock);
5270 }
5271
5272 static DECLARE_WORK(pvclock_gtod_work, pvclock_gtod_update_fn);
5273
5274 /*
5275  * Notification about pvclock gtod data update.
5276  */
5277 static int pvclock_gtod_notify(struct notifier_block *nb, unsigned long unused,
5278                                void *priv)
5279 {
5280         struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
5281         struct timekeeper *tk = priv;
5282
5283         update_pvclock_gtod(tk);
5284
5285         /* disable master clock if host does not trust, or does not
5286          * use, TSC clocksource
5287          */
5288         if (gtod->clock.vclock_mode != VCLOCK_TSC &&
5289             atomic_read(&kvm_guest_has_master_clock) != 0)
5290                 queue_work(system_long_wq, &pvclock_gtod_work);
5291
5292         return 0;
5293 }
5294
5295 static struct notifier_block pvclock_gtod_notifier = {
5296         .notifier_call = pvclock_gtod_notify,
5297 };
5298 #endif
5299
5300 int kvm_arch_init(void *opaque)
5301 {
5302         int r;
5303         struct kvm_x86_ops *ops = (struct kvm_x86_ops *)opaque;
5304
5305         if (kvm_x86_ops) {
5306                 printk(KERN_ERR "kvm: already loaded the other module\n");
5307                 r = -EEXIST;
5308                 goto out;
5309         }
5310
5311         if (!ops->cpu_has_kvm_support()) {
5312                 printk(KERN_ERR "kvm: no hardware support\n");
5313                 r = -EOPNOTSUPP;
5314                 goto out;
5315         }
5316         if (ops->disabled_by_bios()) {
5317                 printk(KERN_ERR "kvm: disabled by bios\n");
5318                 r = -EOPNOTSUPP;
5319                 goto out;
5320         }
5321
5322         r = -ENOMEM;
5323         shared_msrs = alloc_percpu(struct kvm_shared_msrs);
5324         if (!shared_msrs) {
5325                 printk(KERN_ERR "kvm: failed to allocate percpu kvm_shared_msrs\n");
5326                 goto out;
5327         }
5328
5329         r = kvm_mmu_module_init();
5330         if (r)
5331                 goto out_free_percpu;
5332
5333         kvm_set_mmio_spte_mask();
5334         kvm_init_msr_list();
5335
5336         kvm_x86_ops = ops;
5337         kvm_mmu_set_mask_ptes(PT_USER_MASK, PT_ACCESSED_MASK,
5338                         PT_DIRTY_MASK, PT64_NX_MASK, 0);
5339
5340         kvm_timer_init();
5341
5342         perf_register_guest_info_callbacks(&kvm_guest_cbs);
5343
5344         if (cpu_has_xsave)
5345                 host_xcr0 = xgetbv(XCR_XFEATURE_ENABLED_MASK);
5346
5347         kvm_lapic_init();
5348 #ifdef CONFIG_X86_64
5349         pvclock_gtod_register_notifier(&pvclock_gtod_notifier);
5350 #endif
5351
5352         return 0;
5353
5354 out_free_percpu:
5355         free_percpu(shared_msrs);
5356 out:
5357         return r;
5358 }
5359
5360 void kvm_arch_exit(void)
5361 {
5362         perf_unregister_guest_info_callbacks(&kvm_guest_cbs);
5363
5364         if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
5365                 cpufreq_unregister_notifier(&kvmclock_cpufreq_notifier_block,
5366                                             CPUFREQ_TRANSITION_NOTIFIER);
5367         unregister_hotcpu_notifier(&kvmclock_cpu_notifier_block);
5368 #ifdef CONFIG_X86_64
5369         pvclock_gtod_unregister_notifier(&pvclock_gtod_notifier);
5370 #endif
5371         kvm_x86_ops = NULL;
5372         kvm_mmu_module_exit();
5373         free_percpu(shared_msrs);
5374 }
5375
5376 int kvm_emulate_halt(struct kvm_vcpu *vcpu)
5377 {
5378         ++vcpu->stat.halt_exits;
5379         if (irqchip_in_kernel(vcpu->kvm)) {
5380                 vcpu->arch.mp_state = KVM_MP_STATE_HALTED;
5381                 return 1;
5382         } else {
5383                 vcpu->run->exit_reason = KVM_EXIT_HLT;
5384                 return 0;
5385         }
5386 }
5387 EXPORT_SYMBOL_GPL(kvm_emulate_halt);
5388
5389 int kvm_hv_hypercall(struct kvm_vcpu *vcpu)
5390 {
5391         u64 param, ingpa, outgpa, ret;
5392         uint16_t code, rep_idx, rep_cnt, res = HV_STATUS_SUCCESS, rep_done = 0;
5393         bool fast, longmode;
5394         int cs_db, cs_l;
5395
5396         /*
5397          * hypercall generates UD from non zero cpl and real mode
5398          * per HYPER-V spec
5399          */
5400         if (kvm_x86_ops->get_cpl(vcpu) != 0 || !is_protmode(vcpu)) {
5401                 kvm_queue_exception(vcpu, UD_VECTOR);
5402                 return 0;
5403         }
5404
5405         kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
5406         longmode = is_long_mode(vcpu) && cs_l == 1;
5407
5408         if (!longmode) {
5409                 param = ((u64)kvm_register_read(vcpu, VCPU_REGS_RDX) << 32) |
5410                         (kvm_register_read(vcpu, VCPU_REGS_RAX) & 0xffffffff);
5411                 ingpa = ((u64)kvm_register_read(vcpu, VCPU_REGS_RBX) << 32) |
5412                         (kvm_register_read(vcpu, VCPU_REGS_RCX) & 0xffffffff);
5413                 outgpa = ((u64)kvm_register_read(vcpu, VCPU_REGS_RDI) << 32) |
5414                         (kvm_register_read(vcpu, VCPU_REGS_RSI) & 0xffffffff);
5415         }
5416 #ifdef CONFIG_X86_64
5417         else {
5418                 param = kvm_register_read(vcpu, VCPU_REGS_RCX);
5419                 ingpa = kvm_register_read(vcpu, VCPU_REGS_RDX);
5420                 outgpa = kvm_register_read(vcpu, VCPU_REGS_R8);
5421         }
5422 #endif
5423
5424         code = param & 0xffff;
5425         fast = (param >> 16) & 0x1;
5426         rep_cnt = (param >> 32) & 0xfff;
5427         rep_idx = (param >> 48) & 0xfff;
5428
5429         trace_kvm_hv_hypercall(code, fast, rep_cnt, rep_idx, ingpa, outgpa);
5430
5431         switch (code) {
5432         case HV_X64_HV_NOTIFY_LONG_SPIN_WAIT:
5433                 kvm_vcpu_on_spin(vcpu);
5434                 break;
5435         default:
5436                 res = HV_STATUS_INVALID_HYPERCALL_CODE;
5437                 break;
5438         }
5439
5440         ret = res | (((u64)rep_done & 0xfff) << 32);
5441         if (longmode) {
5442                 kvm_register_write(vcpu, VCPU_REGS_RAX, ret);
5443         } else {
5444                 kvm_register_write(vcpu, VCPU_REGS_RDX, ret >> 32);
5445                 kvm_register_write(vcpu, VCPU_REGS_RAX, ret & 0xffffffff);
5446         }
5447
5448         return 1;
5449 }
5450
5451 int kvm_emulate_hypercall(struct kvm_vcpu *vcpu)
5452 {
5453         unsigned long nr, a0, a1, a2, a3, ret;
5454         int r = 1;
5455
5456         if (kvm_hv_hypercall_enabled(vcpu->kvm))
5457                 return kvm_hv_hypercall(vcpu);
5458
5459         nr = kvm_register_read(vcpu, VCPU_REGS_RAX);
5460         a0 = kvm_register_read(vcpu, VCPU_REGS_RBX);
5461         a1 = kvm_register_read(vcpu, VCPU_REGS_RCX);
5462         a2 = kvm_register_read(vcpu, VCPU_REGS_RDX);
5463         a3 = kvm_register_read(vcpu, VCPU_REGS_RSI);
5464
5465         trace_kvm_hypercall(nr, a0, a1, a2, a3);
5466
5467         if (!is_long_mode(vcpu)) {
5468                 nr &= 0xFFFFFFFF;
5469                 a0 &= 0xFFFFFFFF;
5470                 a1 &= 0xFFFFFFFF;
5471                 a2 &= 0xFFFFFFFF;
5472                 a3 &= 0xFFFFFFFF;
5473         }
5474
5475         if (kvm_x86_ops->get_cpl(vcpu) != 0) {
5476                 ret = -KVM_EPERM;
5477                 goto out;
5478         }
5479
5480         switch (nr) {
5481         case KVM_HC_VAPIC_POLL_IRQ:
5482                 ret = 0;
5483                 break;
5484         default:
5485                 ret = -KVM_ENOSYS;
5486                 break;
5487         }
5488 out:
5489         kvm_register_write(vcpu, VCPU_REGS_RAX, ret);
5490         ++vcpu->stat.hypercalls;
5491         return r;
5492 }
5493 EXPORT_SYMBOL_GPL(kvm_emulate_hypercall);
5494
5495 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt)
5496 {
5497         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5498         char instruction[3];
5499         unsigned long rip = kvm_rip_read(vcpu);
5500
5501         /*
5502          * Blow out the MMU to ensure that no other VCPU has an active mapping
5503          * to ensure that the updated hypercall appears atomically across all
5504          * VCPUs.
5505          */
5506         kvm_mmu_zap_all(vcpu->kvm);
5507
5508         kvm_x86_ops->patch_hypercall(vcpu, instruction);
5509
5510         return emulator_write_emulated(ctxt, rip, instruction, 3, NULL);
5511 }
5512
5513 /*
5514  * Check if userspace requested an interrupt window, and that the
5515  * interrupt window is open.
5516  *
5517  * No need to exit to userspace if we already have an interrupt queued.
5518  */
5519 static int dm_request_for_irq_injection(struct kvm_vcpu *vcpu)
5520 {
5521         return (!irqchip_in_kernel(vcpu->kvm) && !kvm_cpu_has_interrupt(vcpu) &&
5522                 vcpu->run->request_interrupt_window &&
5523                 kvm_arch_interrupt_allowed(vcpu));
5524 }
5525
5526 static void post_kvm_run_save(struct kvm_vcpu *vcpu)
5527 {
5528         struct kvm_run *kvm_run = vcpu->run;
5529
5530         kvm_run->if_flag = (kvm_get_rflags(vcpu) & X86_EFLAGS_IF) != 0;
5531         kvm_run->cr8 = kvm_get_cr8(vcpu);
5532         kvm_run->apic_base = kvm_get_apic_base(vcpu);
5533         if (irqchip_in_kernel(vcpu->kvm))
5534                 kvm_run->ready_for_interrupt_injection = 1;
5535         else
5536                 kvm_run->ready_for_interrupt_injection =
5537                         kvm_arch_interrupt_allowed(vcpu) &&
5538                         !kvm_cpu_has_interrupt(vcpu) &&
5539                         !kvm_event_needs_reinjection(vcpu);
5540 }
5541
5542 static int vapic_enter(struct kvm_vcpu *vcpu)
5543 {
5544         struct kvm_lapic *apic = vcpu->arch.apic;
5545         struct page *page;
5546
5547         if (!apic || !apic->vapic_addr)
5548                 return 0;
5549
5550         page = gfn_to_page(vcpu->kvm, apic->vapic_addr >> PAGE_SHIFT);
5551         if (is_error_page(page))
5552                 return -EFAULT;
5553
5554         vcpu->arch.apic->vapic_page = page;
5555         return 0;
5556 }
5557
5558 static void vapic_exit(struct kvm_vcpu *vcpu)
5559 {
5560         struct kvm_lapic *apic = vcpu->arch.apic;
5561         int idx;
5562
5563         if (!apic || !apic->vapic_addr)
5564                 return;
5565
5566         idx = srcu_read_lock(&vcpu->kvm->srcu);
5567         kvm_release_page_dirty(apic->vapic_page);
5568         mark_page_dirty(vcpu->kvm, apic->vapic_addr >> PAGE_SHIFT);
5569         srcu_read_unlock(&vcpu->kvm->srcu, idx);
5570 }
5571
5572 static void update_cr8_intercept(struct kvm_vcpu *vcpu)
5573 {
5574         int max_irr, tpr;
5575
5576         if (!kvm_x86_ops->update_cr8_intercept)
5577                 return;
5578
5579         if (!vcpu->arch.apic)
5580                 return;
5581
5582         if (!vcpu->arch.apic->vapic_addr)
5583                 max_irr = kvm_lapic_find_highest_irr(vcpu);
5584         else
5585                 max_irr = -1;
5586
5587         if (max_irr != -1)
5588                 max_irr >>= 4;
5589
5590         tpr = kvm_lapic_get_cr8(vcpu);
5591
5592         kvm_x86_ops->update_cr8_intercept(vcpu, tpr, max_irr);
5593 }
5594
5595 static void inject_pending_event(struct kvm_vcpu *vcpu)
5596 {
5597         /* try to reinject previous events if any */
5598         if (vcpu->arch.exception.pending) {
5599                 trace_kvm_inj_exception(vcpu->arch.exception.nr,
5600                                         vcpu->arch.exception.has_error_code,
5601                                         vcpu->arch.exception.error_code);
5602                 kvm_x86_ops->queue_exception(vcpu, vcpu->arch.exception.nr,
5603                                           vcpu->arch.exception.has_error_code,
5604                                           vcpu->arch.exception.error_code,
5605                                           vcpu->arch.exception.reinject);
5606                 return;
5607         }
5608
5609         if (vcpu->arch.nmi_injected) {
5610                 kvm_x86_ops->set_nmi(vcpu);
5611                 return;
5612         }
5613
5614         if (vcpu->arch.interrupt.pending) {
5615                 kvm_x86_ops->set_irq(vcpu);
5616                 return;
5617         }
5618
5619         /* try to inject new event if pending */
5620         if (vcpu->arch.nmi_pending) {
5621                 if (kvm_x86_ops->nmi_allowed(vcpu)) {
5622                         --vcpu->arch.nmi_pending;
5623                         vcpu->arch.nmi_injected = true;
5624                         kvm_x86_ops->set_nmi(vcpu);
5625                 }
5626         } else if (kvm_cpu_has_injectable_intr(vcpu)) {
5627                 if (kvm_x86_ops->interrupt_allowed(vcpu)) {
5628                         kvm_queue_interrupt(vcpu, kvm_cpu_get_interrupt(vcpu),
5629                                             false);
5630                         kvm_x86_ops->set_irq(vcpu);
5631                 }
5632         }
5633 }
5634
5635 static void process_nmi(struct kvm_vcpu *vcpu)
5636 {
5637         unsigned limit = 2;
5638
5639         /*
5640          * x86 is limited to one NMI running, and one NMI pending after it.
5641          * If an NMI is already in progress, limit further NMIs to just one.
5642          * Otherwise, allow two (and we'll inject the first one immediately).
5643          */
5644         if (kvm_x86_ops->get_nmi_mask(vcpu) || vcpu->arch.nmi_injected)
5645                 limit = 1;
5646
5647         vcpu->arch.nmi_pending += atomic_xchg(&vcpu->arch.nmi_queued, 0);
5648         vcpu->arch.nmi_pending = min(vcpu->arch.nmi_pending, limit);
5649         kvm_make_request(KVM_REQ_EVENT, vcpu);
5650 }
5651
5652 static void kvm_gen_update_masterclock(struct kvm *kvm)
5653 {
5654 #ifdef CONFIG_X86_64
5655         int i;
5656         struct kvm_vcpu *vcpu;
5657         struct kvm_arch *ka = &kvm->arch;
5658
5659         spin_lock(&ka->pvclock_gtod_sync_lock);
5660         kvm_make_mclock_inprogress_request(kvm);
5661         /* no guest entries from this point */
5662         pvclock_update_vm_gtod_copy(kvm);
5663
5664         kvm_for_each_vcpu(i, vcpu, kvm)
5665                 set_bit(KVM_REQ_CLOCK_UPDATE, &vcpu->requests);
5666
5667         /* guest entries allowed */
5668         kvm_for_each_vcpu(i, vcpu, kvm)
5669                 clear_bit(KVM_REQ_MCLOCK_INPROGRESS, &vcpu->requests);
5670
5671         spin_unlock(&ka->pvclock_gtod_sync_lock);
5672 #endif
5673 }
5674
5675 static void vcpu_scan_ioapic(struct kvm_vcpu *vcpu)
5676 {
5677         u64 eoi_exit_bitmap[4];
5678         u32 tmr[8];
5679
5680         if (!kvm_apic_hw_enabled(vcpu->arch.apic))
5681                 return;
5682
5683         memset(eoi_exit_bitmap, 0, 32);
5684         memset(tmr, 0, 32);
5685
5686         kvm_ioapic_scan_entry(vcpu, eoi_exit_bitmap, tmr);
5687         kvm_x86_ops->load_eoi_exitmap(vcpu, eoi_exit_bitmap);
5688         kvm_apic_update_tmr(vcpu, tmr);
5689 }
5690
5691 static int vcpu_enter_guest(struct kvm_vcpu *vcpu)
5692 {
5693         int r;
5694         bool req_int_win = !irqchip_in_kernel(vcpu->kvm) &&
5695                 vcpu->run->request_interrupt_window;
5696         bool req_immediate_exit = false;
5697
5698         if (vcpu->requests) {
5699                 if (kvm_check_request(KVM_REQ_MMU_RELOAD, vcpu))
5700                         kvm_mmu_unload(vcpu);
5701                 if (kvm_check_request(KVM_REQ_MIGRATE_TIMER, vcpu))
5702                         __kvm_migrate_timers(vcpu);
5703                 if (kvm_check_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu))
5704                         kvm_gen_update_masterclock(vcpu->kvm);
5705                 if (kvm_check_request(KVM_REQ_CLOCK_UPDATE, vcpu)) {
5706                         r = kvm_guest_time_update(vcpu);
5707                         if (unlikely(r))
5708                                 goto out;
5709                 }
5710                 if (kvm_check_request(KVM_REQ_MMU_SYNC, vcpu))
5711                         kvm_mmu_sync_roots(vcpu);
5712                 if (kvm_check_request(KVM_REQ_TLB_FLUSH, vcpu))
5713                         kvm_x86_ops->tlb_flush(vcpu);
5714                 if (kvm_check_request(KVM_REQ_REPORT_TPR_ACCESS, vcpu)) {
5715                         vcpu->run->exit_reason = KVM_EXIT_TPR_ACCESS;
5716                         r = 0;
5717                         goto out;
5718                 }
5719                 if (kvm_check_request(KVM_REQ_TRIPLE_FAULT, vcpu)) {
5720                         vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
5721                         r = 0;
5722                         goto out;
5723                 }
5724                 if (kvm_check_request(KVM_REQ_DEACTIVATE_FPU, vcpu)) {
5725                         vcpu->fpu_active = 0;
5726                         kvm_x86_ops->fpu_deactivate(vcpu);
5727                 }
5728                 if (kvm_check_request(KVM_REQ_APF_HALT, vcpu)) {
5729                         /* Page is swapped out. Do synthetic halt */
5730                         vcpu->arch.apf.halted = true;
5731                         r = 1;
5732                         goto out;
5733                 }
5734                 if (kvm_check_request(KVM_REQ_STEAL_UPDATE, vcpu))
5735                         record_steal_time(vcpu);
5736                 if (kvm_check_request(KVM_REQ_NMI, vcpu))
5737                         process_nmi(vcpu);
5738                 if (kvm_check_request(KVM_REQ_PMU, vcpu))
5739                         kvm_handle_pmu_event(vcpu);
5740                 if (kvm_check_request(KVM_REQ_PMI, vcpu))
5741                         kvm_deliver_pmi(vcpu);
5742                 if (kvm_check_request(KVM_REQ_SCAN_IOAPIC, vcpu))
5743                         vcpu_scan_ioapic(vcpu);
5744         }
5745
5746         if (kvm_check_request(KVM_REQ_EVENT, vcpu) || req_int_win) {
5747                 kvm_apic_accept_events(vcpu);
5748                 if (vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED) {
5749                         r = 1;
5750                         goto out;
5751                 }
5752
5753                 inject_pending_event(vcpu);
5754
5755                 /* enable NMI/IRQ window open exits if needed */
5756                 if (vcpu->arch.nmi_pending)
5757                         req_immediate_exit =
5758                                 kvm_x86_ops->enable_nmi_window(vcpu) != 0;
5759                 else if (kvm_cpu_has_injectable_intr(vcpu) || req_int_win)
5760                         req_immediate_exit =
5761                                 kvm_x86_ops->enable_irq_window(vcpu) != 0;
5762
5763                 if (kvm_lapic_enabled(vcpu)) {
5764                         /*
5765                          * Update architecture specific hints for APIC
5766                          * virtual interrupt delivery.
5767                          */
5768                         if (kvm_x86_ops->hwapic_irr_update)
5769                                 kvm_x86_ops->hwapic_irr_update(vcpu,
5770                                         kvm_lapic_find_highest_irr(vcpu));
5771                         update_cr8_intercept(vcpu);
5772                         kvm_lapic_sync_to_vapic(vcpu);
5773                 }
5774         }
5775
5776         r = kvm_mmu_reload(vcpu);
5777         if (unlikely(r)) {
5778                 goto cancel_injection;
5779         }
5780
5781         preempt_disable();
5782
5783         kvm_x86_ops->prepare_guest_switch(vcpu);
5784         if (vcpu->fpu_active)
5785                 kvm_load_guest_fpu(vcpu);
5786         kvm_load_guest_xcr0(vcpu);
5787
5788         vcpu->mode = IN_GUEST_MODE;
5789
5790         /* We should set ->mode before check ->requests,
5791          * see the comment in make_all_cpus_request.
5792          */
5793         smp_mb();
5794
5795         local_irq_disable();
5796
5797         if (vcpu->mode == EXITING_GUEST_MODE || vcpu->requests
5798             || need_resched() || signal_pending(current)) {
5799                 vcpu->mode = OUTSIDE_GUEST_MODE;
5800                 smp_wmb();
5801                 local_irq_enable();
5802                 preempt_enable();
5803                 r = 1;
5804                 goto cancel_injection;
5805         }
5806
5807         srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
5808
5809         if (req_immediate_exit)
5810                 smp_send_reschedule(vcpu->cpu);
5811
5812         kvm_guest_enter();
5813
5814         if (unlikely(vcpu->arch.switch_db_regs)) {
5815                 set_debugreg(0, 7);
5816                 set_debugreg(vcpu->arch.eff_db[0], 0);
5817                 set_debugreg(vcpu->arch.eff_db[1], 1);
5818                 set_debugreg(vcpu->arch.eff_db[2], 2);
5819                 set_debugreg(vcpu->arch.eff_db[3], 3);
5820         }
5821
5822         trace_kvm_entry(vcpu->vcpu_id);
5823         kvm_x86_ops->run(vcpu);
5824
5825         /*
5826          * If the guest has used debug registers, at least dr7
5827          * will be disabled while returning to the host.
5828          * If we don't have active breakpoints in the host, we don't
5829          * care about the messed up debug address registers. But if
5830          * we have some of them active, restore the old state.
5831          */
5832         if (hw_breakpoint_active())
5833                 hw_breakpoint_restore();
5834
5835         vcpu->arch.last_guest_tsc = kvm_x86_ops->read_l1_tsc(vcpu,
5836                                                            native_read_tsc());
5837
5838         vcpu->mode = OUTSIDE_GUEST_MODE;
5839         smp_wmb();
5840
5841         /* Interrupt is enabled by handle_external_intr() */
5842         kvm_x86_ops->handle_external_intr(vcpu);
5843
5844         ++vcpu->stat.exits;
5845
5846         /*
5847          * We must have an instruction between local_irq_enable() and
5848          * kvm_guest_exit(), so the timer interrupt isn't delayed by
5849          * the interrupt shadow.  The stat.exits increment will do nicely.
5850          * But we need to prevent reordering, hence this barrier():
5851          */
5852         barrier();
5853
5854         kvm_guest_exit();
5855
5856         preempt_enable();
5857
5858         vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
5859
5860         /*
5861          * Profile KVM exit RIPs:
5862          */
5863         if (unlikely(prof_on == KVM_PROFILING)) {
5864                 unsigned long rip = kvm_rip_read(vcpu);
5865                 profile_hit(KVM_PROFILING, (void *)rip);
5866         }
5867
5868         if (unlikely(vcpu->arch.tsc_always_catchup))
5869                 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
5870
5871         if (vcpu->arch.apic_attention)
5872                 kvm_lapic_sync_from_vapic(vcpu);
5873
5874         r = kvm_x86_ops->handle_exit(vcpu);
5875         return r;
5876
5877 cancel_injection:
5878         kvm_x86_ops->cancel_injection(vcpu);
5879         if (unlikely(vcpu->arch.apic_attention))
5880                 kvm_lapic_sync_from_vapic(vcpu);
5881 out:
5882         return r;
5883 }
5884
5885
5886 static int __vcpu_run(struct kvm_vcpu *vcpu)
5887 {
5888         int r;
5889         struct kvm *kvm = vcpu->kvm;
5890
5891         vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
5892         r = vapic_enter(vcpu);
5893         if (r) {
5894                 srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
5895                 return r;
5896         }
5897
5898         r = 1;
5899         while (r > 0) {
5900                 if (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE &&
5901                     !vcpu->arch.apf.halted)
5902                         r = vcpu_enter_guest(vcpu);
5903                 else {
5904                         srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
5905                         kvm_vcpu_block(vcpu);
5906                         vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
5907                         if (kvm_check_request(KVM_REQ_UNHALT, vcpu)) {
5908                                 kvm_apic_accept_events(vcpu);
5909                                 switch(vcpu->arch.mp_state) {
5910                                 case KVM_MP_STATE_HALTED:
5911                                         vcpu->arch.mp_state =
5912                                                 KVM_MP_STATE_RUNNABLE;
5913                                 case KVM_MP_STATE_RUNNABLE:
5914                                         vcpu->arch.apf.halted = false;
5915                                         break;
5916                                 case KVM_MP_STATE_INIT_RECEIVED:
5917                                         break;
5918                                 default:
5919                                         r = -EINTR;
5920                                         break;
5921                                 }
5922                         }
5923                 }
5924
5925                 if (r <= 0)
5926                         break;
5927
5928                 clear_bit(KVM_REQ_PENDING_TIMER, &vcpu->requests);
5929                 if (kvm_cpu_has_pending_timer(vcpu))
5930                         kvm_inject_pending_timer_irqs(vcpu);
5931
5932                 if (dm_request_for_irq_injection(vcpu)) {
5933                         r = -EINTR;
5934                         vcpu->run->exit_reason = KVM_EXIT_INTR;
5935                         ++vcpu->stat.request_irq_exits;
5936                 }
5937
5938                 kvm_check_async_pf_completion(vcpu);
5939
5940                 if (signal_pending(current)) {
5941                         r = -EINTR;
5942                         vcpu->run->exit_reason = KVM_EXIT_INTR;
5943                         ++vcpu->stat.signal_exits;
5944                 }
5945                 if (need_resched()) {
5946                         srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
5947                         kvm_resched(vcpu);
5948                         vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
5949                 }
5950         }
5951
5952         srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
5953
5954         vapic_exit(vcpu);
5955
5956         return r;
5957 }
5958
5959 static inline int complete_emulated_io(struct kvm_vcpu *vcpu)
5960 {
5961         int r;
5962         vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
5963         r = emulate_instruction(vcpu, EMULTYPE_NO_DECODE);
5964         srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
5965         if (r != EMULATE_DONE)
5966                 return 0;
5967         return 1;
5968 }
5969
5970 static int complete_emulated_pio(struct kvm_vcpu *vcpu)
5971 {
5972         BUG_ON(!vcpu->arch.pio.count);
5973
5974         return complete_emulated_io(vcpu);
5975 }
5976
5977 /*
5978  * Implements the following, as a state machine:
5979  *
5980  * read:
5981  *   for each fragment
5982  *     for each mmio piece in the fragment
5983  *       write gpa, len
5984  *       exit
5985  *       copy data
5986  *   execute insn
5987  *
5988  * write:
5989  *   for each fragment
5990  *     for each mmio piece in the fragment
5991  *       write gpa, len
5992  *       copy data
5993  *       exit
5994  */
5995 static int complete_emulated_mmio(struct kvm_vcpu *vcpu)
5996 {
5997         struct kvm_run *run = vcpu->run;
5998         struct kvm_mmio_fragment *frag;
5999         unsigned len;
6000
6001         BUG_ON(!vcpu->mmio_needed);
6002
6003         /* Complete previous fragment */
6004         frag = &vcpu->mmio_fragments[vcpu->mmio_cur_fragment];
6005         len = min(8u, frag->len);
6006         if (!vcpu->mmio_is_write)
6007                 memcpy(frag->data, run->mmio.data, len);
6008
6009         if (frag->len <= 8) {
6010                 /* Switch to the next fragment. */
6011                 frag++;
6012                 vcpu->mmio_cur_fragment++;
6013         } else {
6014                 /* Go forward to the next mmio piece. */
6015                 frag->data += len;
6016                 frag->gpa += len;
6017                 frag->len -= len;
6018         }
6019
6020         if (vcpu->mmio_cur_fragment == vcpu->mmio_nr_fragments) {
6021                 vcpu->mmio_needed = 0;
6022                 if (vcpu->mmio_is_write)
6023                         return 1;
6024                 vcpu->mmio_read_completed = 1;
6025                 return complete_emulated_io(vcpu);
6026         }
6027
6028         run->exit_reason = KVM_EXIT_MMIO;
6029         run->mmio.phys_addr = frag->gpa;
6030         if (vcpu->mmio_is_write)
6031                 memcpy(run->mmio.data, frag->data, min(8u, frag->len));
6032         run->mmio.len = min(8u, frag->len);
6033         run->mmio.is_write = vcpu->mmio_is_write;
6034         vcpu->arch.complete_userspace_io = complete_emulated_mmio;
6035         return 0;
6036 }
6037
6038
6039 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
6040 {
6041         int r;
6042         sigset_t sigsaved;
6043
6044         if (!tsk_used_math(current) && init_fpu(current))
6045                 return -ENOMEM;
6046
6047         if (vcpu->sigset_active)
6048                 sigprocmask(SIG_SETMASK, &vcpu->sigset, &sigsaved);
6049
6050         if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_UNINITIALIZED)) {
6051                 kvm_vcpu_block(vcpu);
6052                 kvm_apic_accept_events(vcpu);
6053                 clear_bit(KVM_REQ_UNHALT, &vcpu->requests);
6054                 r = -EAGAIN;
6055                 goto out;
6056         }
6057
6058         /* re-sync apic's tpr */
6059         if (!irqchip_in_kernel(vcpu->kvm)) {
6060                 if (kvm_set_cr8(vcpu, kvm_run->cr8) != 0) {
6061                         r = -EINVAL;
6062                         goto out;
6063                 }
6064         }
6065
6066         if (unlikely(vcpu->arch.complete_userspace_io)) {
6067                 int (*cui)(struct kvm_vcpu *) = vcpu->arch.complete_userspace_io;
6068                 vcpu->arch.complete_userspace_io = NULL;
6069                 r = cui(vcpu);
6070                 if (r <= 0)
6071                         goto out;
6072         } else
6073                 WARN_ON(vcpu->arch.pio.count || vcpu->mmio_needed);
6074
6075         r = __vcpu_run(vcpu);
6076
6077 out:
6078         post_kvm_run_save(vcpu);
6079         if (vcpu->sigset_active)
6080                 sigprocmask(SIG_SETMASK, &sigsaved, NULL);
6081
6082         return r;
6083 }
6084
6085 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
6086 {
6087         if (vcpu->arch.emulate_regs_need_sync_to_vcpu) {
6088                 /*
6089                  * We are here if userspace calls get_regs() in the middle of
6090                  * instruction emulation. Registers state needs to be copied
6091                  * back from emulation context to vcpu. Userspace shouldn't do
6092                  * that usually, but some bad designed PV devices (vmware
6093                  * backdoor interface) need this to work
6094                  */
6095                 emulator_writeback_register_cache(&vcpu->arch.emulate_ctxt);
6096                 vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
6097         }
6098         regs->rax = kvm_register_read(vcpu, VCPU_REGS_RAX);
6099         regs->rbx = kvm_register_read(vcpu, VCPU_REGS_RBX);
6100         regs->rcx = kvm_register_read(vcpu, VCPU_REGS_RCX);
6101         regs->rdx = kvm_register_read(vcpu, VCPU_REGS_RDX);
6102         regs->rsi = kvm_register_read(vcpu, VCPU_REGS_RSI);
6103         regs->rdi = kvm_register_read(vcpu, VCPU_REGS_RDI);
6104         regs->rsp = kvm_register_read(vcpu, VCPU_REGS_RSP);
6105         regs->rbp = kvm_register_read(vcpu, VCPU_REGS_RBP);
6106 #ifdef CONFIG_X86_64
6107         regs->r8 = kvm_register_read(vcpu, VCPU_REGS_R8);
6108         regs->r9 = kvm_register_read(vcpu, VCPU_REGS_R9);
6109         regs->r10 = kvm_register_read(vcpu, VCPU_REGS_R10);
6110         regs->r11 = kvm_register_read(vcpu, VCPU_REGS_R11);
6111         regs->r12 = kvm_register_read(vcpu, VCPU_REGS_R12);
6112         regs->r13 = kvm_register_read(vcpu, VCPU_REGS_R13);
6113         regs->r14 = kvm_register_read(vcpu, VCPU_REGS_R14);
6114         regs->r15 = kvm_register_read(vcpu, VCPU_REGS_R15);
6115 #endif
6116
6117         regs->rip = kvm_rip_read(vcpu);
6118         regs->rflags = kvm_get_rflags(vcpu);
6119
6120         return 0;
6121 }
6122
6123 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
6124 {
6125         vcpu->arch.emulate_regs_need_sync_from_vcpu = true;
6126         vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
6127
6128         kvm_register_write(vcpu, VCPU_REGS_RAX, regs->rax);
6129         kvm_register_write(vcpu, VCPU_REGS_RBX, regs->rbx);
6130         kvm_register_write(vcpu, VCPU_REGS_RCX, regs->rcx);
6131         kvm_register_write(vcpu, VCPU_REGS_RDX, regs->rdx);
6132         kvm_register_write(vcpu, VCPU_REGS_RSI, regs->rsi);
6133         kvm_register_write(vcpu, VCPU_REGS_RDI, regs->rdi);
6134         kvm_register_write(vcpu, VCPU_REGS_RSP, regs->rsp);
6135         kvm_register_write(vcpu, VCPU_REGS_RBP, regs->rbp);
6136 #ifdef CONFIG_X86_64
6137         kvm_register_write(vcpu, VCPU_REGS_R8, regs->r8);
6138         kvm_register_write(vcpu, VCPU_REGS_R9, regs->r9);
6139         kvm_register_write(vcpu, VCPU_REGS_R10, regs->r10);
6140         kvm_register_write(vcpu, VCPU_REGS_R11, regs->r11);
6141         kvm_register_write(vcpu, VCPU_REGS_R12, regs->r12);
6142         kvm_register_write(vcpu, VCPU_REGS_R13, regs->r13);
6143         kvm_register_write(vcpu, VCPU_REGS_R14, regs->r14);
6144         kvm_register_write(vcpu, VCPU_REGS_R15, regs->r15);
6145 #endif
6146
6147         kvm_rip_write(vcpu, regs->rip);
6148         kvm_set_rflags(vcpu, regs->rflags);
6149
6150         vcpu->arch.exception.pending = false;
6151
6152         kvm_make_request(KVM_REQ_EVENT, vcpu);
6153
6154         return 0;
6155 }
6156
6157 void kvm_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
6158 {
6159         struct kvm_segment cs;
6160
6161         kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
6162         *db = cs.db;
6163         *l = cs.l;
6164 }
6165 EXPORT_SYMBOL_GPL(kvm_get_cs_db_l_bits);
6166
6167 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
6168                                   struct kvm_sregs *sregs)
6169 {
6170         struct desc_ptr dt;
6171
6172         kvm_get_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
6173         kvm_get_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
6174         kvm_get_segment(vcpu, &sregs->es, VCPU_SREG_ES);
6175         kvm_get_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
6176         kvm_get_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
6177         kvm_get_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
6178
6179         kvm_get_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
6180         kvm_get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
6181
6182         kvm_x86_ops->get_idt(vcpu, &dt);
6183         sregs->idt.limit = dt.size;
6184         sregs->idt.base = dt.address;
6185         kvm_x86_ops->get_gdt(vcpu, &dt);
6186         sregs->gdt.limit = dt.size;
6187         sregs->gdt.base = dt.address;
6188
6189         sregs->cr0 = kvm_read_cr0(vcpu);
6190         sregs->cr2 = vcpu->arch.cr2;
6191         sregs->cr3 = kvm_read_cr3(vcpu);
6192         sregs->cr4 = kvm_read_cr4(vcpu);
6193         sregs->cr8 = kvm_get_cr8(vcpu);
6194         sregs->efer = vcpu->arch.efer;
6195         sregs->apic_base = kvm_get_apic_base(vcpu);
6196
6197         memset(sregs->interrupt_bitmap, 0, sizeof sregs->interrupt_bitmap);
6198
6199         if (vcpu->arch.interrupt.pending && !vcpu->arch.interrupt.soft)
6200                 set_bit(vcpu->arch.interrupt.nr,
6201                         (unsigned long *)sregs->interrupt_bitmap);
6202
6203         return 0;
6204 }
6205
6206 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
6207                                     struct kvm_mp_state *mp_state)
6208 {
6209         kvm_apic_accept_events(vcpu);
6210         mp_state->mp_state = vcpu->arch.mp_state;
6211         return 0;
6212 }
6213
6214 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
6215                                     struct kvm_mp_state *mp_state)
6216 {
6217         if (!kvm_vcpu_has_lapic(vcpu) &&
6218             mp_state->mp_state != KVM_MP_STATE_RUNNABLE)
6219                 return -EINVAL;
6220
6221         if (mp_state->mp_state == KVM_MP_STATE_SIPI_RECEIVED) {
6222                 vcpu->arch.mp_state = KVM_MP_STATE_INIT_RECEIVED;
6223                 set_bit(KVM_APIC_SIPI, &vcpu->arch.apic->pending_events);
6224         } else
6225                 vcpu->arch.mp_state = mp_state->mp_state;
6226         kvm_make_request(KVM_REQ_EVENT, vcpu);
6227         return 0;
6228 }
6229
6230 int kvm_task_switch(struct kvm_vcpu *vcpu, u16 tss_selector, int idt_index,
6231                     int reason, bool has_error_code, u32 error_code)
6232 {
6233         struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
6234         int ret;
6235
6236         init_emulate_ctxt(vcpu);
6237
6238         ret = emulator_task_switch(ctxt, tss_selector, idt_index, reason,
6239                                    has_error_code, error_code);
6240
6241         if (ret)
6242                 return EMULATE_FAIL;
6243
6244         kvm_rip_write(vcpu, ctxt->eip);
6245         kvm_set_rflags(vcpu, ctxt->eflags);
6246         kvm_make_request(KVM_REQ_EVENT, vcpu);
6247         return EMULATE_DONE;
6248 }
6249 EXPORT_SYMBOL_GPL(kvm_task_switch);
6250
6251 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
6252                                   struct kvm_sregs *sregs)
6253 {
6254         int mmu_reset_needed = 0;
6255         int pending_vec, max_bits, idx;
6256         struct desc_ptr dt;
6257
6258         if (!guest_cpuid_has_xsave(vcpu) && (sregs->cr4 & X86_CR4_OSXSAVE))
6259                 return -EINVAL;
6260
6261         dt.size = sregs->idt.limit;
6262         dt.address = sregs->idt.base;
6263         kvm_x86_ops->set_idt(vcpu, &dt);
6264         dt.size = sregs->gdt.limit;
6265         dt.address = sregs->gdt.base;
6266         kvm_x86_ops->set_gdt(vcpu, &dt);
6267
6268         vcpu->arch.cr2 = sregs->cr2;
6269         mmu_reset_needed |= kvm_read_cr3(vcpu) != sregs->cr3;
6270         vcpu->arch.cr3 = sregs->cr3;
6271         __set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail);
6272
6273         kvm_set_cr8(vcpu, sregs->cr8);
6274
6275         mmu_reset_needed |= vcpu->arch.efer != sregs->efer;
6276         kvm_x86_ops->set_efer(vcpu, sregs->efer);
6277         kvm_set_apic_base(vcpu, sregs->apic_base);
6278
6279         mmu_reset_needed |= kvm_read_cr0(vcpu) != sregs->cr0;
6280         kvm_x86_ops->set_cr0(vcpu, sregs->cr0);
6281         vcpu->arch.cr0 = sregs->cr0;
6282
6283         mmu_reset_needed |= kvm_read_cr4(vcpu) != sregs->cr4;
6284         kvm_x86_ops->set_cr4(vcpu, sregs->cr4);
6285         if (sregs->cr4 & X86_CR4_OSXSAVE)
6286                 kvm_update_cpuid(vcpu);
6287
6288         idx = srcu_read_lock(&vcpu->kvm->srcu);
6289         if (!is_long_mode(vcpu) && is_pae(vcpu)) {
6290                 load_pdptrs(vcpu, vcpu->arch.walk_mmu, kvm_read_cr3(vcpu));
6291                 mmu_reset_needed = 1;
6292         }
6293         srcu_read_unlock(&vcpu->kvm->srcu, idx);
6294
6295         if (mmu_reset_needed)
6296                 kvm_mmu_reset_context(vcpu);
6297
6298         max_bits = KVM_NR_INTERRUPTS;
6299         pending_vec = find_first_bit(
6300                 (const unsigned long *)sregs->interrupt_bitmap, max_bits);
6301         if (pending_vec < max_bits) {
6302                 kvm_queue_interrupt(vcpu, pending_vec, false);
6303                 pr_debug("Set back pending irq %d\n", pending_vec);
6304         }
6305
6306         kvm_set_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
6307         kvm_set_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
6308         kvm_set_segment(vcpu, &sregs->es, VCPU_SREG_ES);
6309         kvm_set_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
6310         kvm_set_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
6311         kvm_set_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
6312
6313         kvm_set_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
6314         kvm_set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
6315
6316         update_cr8_intercept(vcpu);
6317
6318         /* Older userspace won't unhalt the vcpu on reset. */
6319         if (kvm_vcpu_is_bsp(vcpu) && kvm_rip_read(vcpu) == 0xfff0 &&
6320             sregs->cs.selector == 0xf000 && sregs->cs.base == 0xffff0000 &&
6321             !is_protmode(vcpu))
6322                 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
6323
6324         kvm_make_request(KVM_REQ_EVENT, vcpu);
6325
6326         return 0;
6327 }
6328
6329 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
6330                                         struct kvm_guest_debug *dbg)
6331 {
6332         unsigned long rflags;
6333         int i, r;
6334
6335         if (dbg->control & (KVM_GUESTDBG_INJECT_DB | KVM_GUESTDBG_INJECT_BP)) {
6336                 r = -EBUSY;
6337                 if (vcpu->arch.exception.pending)
6338                         goto out;
6339                 if (dbg->control & KVM_GUESTDBG_INJECT_DB)
6340                         kvm_queue_exception(vcpu, DB_VECTOR);
6341                 else
6342                         kvm_queue_exception(vcpu, BP_VECTOR);
6343         }
6344
6345         /*
6346          * Read rflags as long as potentially injected trace flags are still
6347          * filtered out.
6348          */
6349         rflags = kvm_get_rflags(vcpu);
6350
6351         vcpu->guest_debug = dbg->control;
6352         if (!(vcpu->guest_debug & KVM_GUESTDBG_ENABLE))
6353                 vcpu->guest_debug = 0;
6354
6355         if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
6356                 for (i = 0; i < KVM_NR_DB_REGS; ++i)
6357                         vcpu->arch.eff_db[i] = dbg->arch.debugreg[i];
6358                 vcpu->arch.guest_debug_dr7 = dbg->arch.debugreg[7];
6359         } else {
6360                 for (i = 0; i < KVM_NR_DB_REGS; i++)
6361                         vcpu->arch.eff_db[i] = vcpu->arch.db[i];
6362         }
6363         kvm_update_dr7(vcpu);
6364
6365         if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
6366                 vcpu->arch.singlestep_rip = kvm_rip_read(vcpu) +
6367                         get_segment_base(vcpu, VCPU_SREG_CS);
6368
6369         /*
6370          * Trigger an rflags update that will inject or remove the trace
6371          * flags.
6372          */
6373         kvm_set_rflags(vcpu, rflags);
6374
6375         kvm_x86_ops->update_db_bp_intercept(vcpu);
6376
6377         r = 0;
6378
6379 out:
6380
6381         return r;
6382 }
6383
6384 /*
6385  * Translate a guest virtual address to a guest physical address.
6386  */
6387 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
6388                                     struct kvm_translation *tr)
6389 {
6390         unsigned long vaddr = tr->linear_address;
6391         gpa_t gpa;
6392         int idx;
6393
6394         idx = srcu_read_lock(&vcpu->kvm->srcu);
6395         gpa = kvm_mmu_gva_to_gpa_system(vcpu, vaddr, NULL);
6396         srcu_read_unlock(&vcpu->kvm->srcu, idx);
6397         tr->physical_address = gpa;
6398         tr->valid = gpa != UNMAPPED_GVA;
6399         tr->writeable = 1;
6400         tr->usermode = 0;
6401
6402         return 0;
6403 }
6404
6405 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
6406 {
6407         struct i387_fxsave_struct *fxsave =
6408                         &vcpu->arch.guest_fpu.state->fxsave;
6409
6410         memcpy(fpu->fpr, fxsave->st_space, 128);
6411         fpu->fcw = fxsave->cwd;
6412         fpu->fsw = fxsave->swd;
6413         fpu->ftwx = fxsave->twd;
6414         fpu->last_opcode = fxsave->fop;
6415         fpu->last_ip = fxsave->rip;
6416         fpu->last_dp = fxsave->rdp;
6417         memcpy(fpu->xmm, fxsave->xmm_space, sizeof fxsave->xmm_space);
6418
6419         return 0;
6420 }
6421
6422 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
6423 {
6424         struct i387_fxsave_struct *fxsave =
6425                         &vcpu->arch.guest_fpu.state->fxsave;
6426
6427         memcpy(fxsave->st_space, fpu->fpr, 128);
6428         fxsave->cwd = fpu->fcw;
6429         fxsave->swd = fpu->fsw;
6430         fxsave->twd = fpu->ftwx;
6431         fxsave->fop = fpu->last_opcode;
6432         fxsave->rip = fpu->last_ip;
6433         fxsave->rdp = fpu->last_dp;
6434         memcpy(fxsave->xmm_space, fpu->xmm, sizeof fxsave->xmm_space);
6435
6436         return 0;
6437 }
6438
6439 int fx_init(struct kvm_vcpu *vcpu)
6440 {
6441         int err;
6442
6443         err = fpu_alloc(&vcpu->arch.guest_fpu);
6444         if (err)
6445                 return err;
6446
6447         fpu_finit(&vcpu->arch.guest_fpu);
6448
6449         /*
6450          * Ensure guest xcr0 is valid for loading
6451          */
6452         vcpu->arch.xcr0 = XSTATE_FP;
6453
6454         vcpu->arch.cr0 |= X86_CR0_ET;
6455
6456         return 0;
6457 }
6458 EXPORT_SYMBOL_GPL(fx_init);
6459
6460 static void fx_free(struct kvm_vcpu *vcpu)
6461 {
6462         fpu_free(&vcpu->arch.guest_fpu);
6463 }
6464
6465 void kvm_load_guest_fpu(struct kvm_vcpu *vcpu)
6466 {
6467         if (vcpu->guest_fpu_loaded)
6468                 return;
6469
6470         /*
6471          * Restore all possible states in the guest,
6472          * and assume host would use all available bits.
6473          * Guest xcr0 would be loaded later.
6474          */
6475         kvm_put_guest_xcr0(vcpu);
6476         vcpu->guest_fpu_loaded = 1;
6477         __kernel_fpu_begin();
6478         fpu_restore_checking(&vcpu->arch.guest_fpu);
6479         trace_kvm_fpu(1);
6480 }
6481
6482 void kvm_put_guest_fpu(struct kvm_vcpu *vcpu)
6483 {
6484         kvm_put_guest_xcr0(vcpu);
6485
6486         if (!vcpu->guest_fpu_loaded)
6487                 return;
6488
6489         vcpu->guest_fpu_loaded = 0;
6490         fpu_save_init(&vcpu->arch.guest_fpu);
6491         __kernel_fpu_end();
6492         ++vcpu->stat.fpu_reload;
6493         kvm_make_request(KVM_REQ_DEACTIVATE_FPU, vcpu);
6494         trace_kvm_fpu(0);
6495 }
6496
6497 void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu)
6498 {
6499         kvmclock_reset(vcpu);
6500
6501         free_cpumask_var(vcpu->arch.wbinvd_dirty_mask);
6502         fx_free(vcpu);
6503         kvm_x86_ops->vcpu_free(vcpu);
6504 }
6505
6506 struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm,
6507                                                 unsigned int id)
6508 {
6509         if (check_tsc_unstable() && atomic_read(&kvm->online_vcpus) != 0)
6510                 printk_once(KERN_WARNING
6511                 "kvm: SMP vm created on host with unstable TSC; "
6512                 "guest TSC will not be reliable\n");
6513         return kvm_x86_ops->vcpu_create(kvm, id);
6514 }
6515
6516 int kvm_arch_vcpu_setup(struct kvm_vcpu *vcpu)
6517 {
6518         int r;
6519
6520         vcpu->arch.mtrr_state.have_fixed = 1;
6521         r = vcpu_load(vcpu);
6522         if (r)
6523                 return r;
6524         kvm_vcpu_reset(vcpu);
6525         r = kvm_mmu_setup(vcpu);
6526         vcpu_put(vcpu);
6527
6528         return r;
6529 }
6530
6531 int kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
6532 {
6533         int r;
6534         struct msr_data msr;
6535
6536         r = vcpu_load(vcpu);
6537         if (r)
6538                 return r;
6539         msr.data = 0x0;
6540         msr.index = MSR_IA32_TSC;
6541         msr.host_initiated = true;
6542         kvm_write_tsc(vcpu, &msr);
6543         vcpu_put(vcpu);
6544
6545         return r;
6546 }
6547
6548 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
6549 {
6550         int r;
6551         vcpu->arch.apf.msr_val = 0;
6552
6553         r = vcpu_load(vcpu);
6554         BUG_ON(r);
6555         kvm_mmu_unload(vcpu);
6556         vcpu_put(vcpu);
6557
6558         fx_free(vcpu);
6559         kvm_x86_ops->vcpu_free(vcpu);
6560 }
6561
6562 void kvm_vcpu_reset(struct kvm_vcpu *vcpu)
6563 {
6564         atomic_set(&vcpu->arch.nmi_queued, 0);
6565         vcpu->arch.nmi_pending = 0;
6566         vcpu->arch.nmi_injected = false;
6567
6568         memset(vcpu->arch.db, 0, sizeof(vcpu->arch.db));
6569         vcpu->arch.dr6 = DR6_FIXED_1;
6570         vcpu->arch.dr7 = DR7_FIXED_1;
6571         kvm_update_dr7(vcpu);
6572
6573         kvm_make_request(KVM_REQ_EVENT, vcpu);
6574         vcpu->arch.apf.msr_val = 0;
6575         vcpu->arch.st.msr_val = 0;
6576
6577         kvmclock_reset(vcpu);
6578
6579         kvm_clear_async_pf_completion_queue(vcpu);
6580         kvm_async_pf_hash_reset(vcpu);
6581         vcpu->arch.apf.halted = false;
6582
6583         kvm_pmu_reset(vcpu);
6584
6585         memset(vcpu->arch.regs, 0, sizeof(vcpu->arch.regs));
6586         vcpu->arch.regs_avail = ~0;
6587         vcpu->arch.regs_dirty = ~0;
6588
6589         kvm_x86_ops->vcpu_reset(vcpu);
6590 }
6591
6592 void kvm_vcpu_deliver_sipi_vector(struct kvm_vcpu *vcpu, unsigned int vector)
6593 {
6594         struct kvm_segment cs;
6595
6596         kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
6597         cs.selector = vector << 8;
6598         cs.base = vector << 12;
6599         kvm_set_segment(vcpu, &cs, VCPU_SREG_CS);
6600         kvm_rip_write(vcpu, 0);
6601 }
6602
6603 int kvm_arch_hardware_enable(void *garbage)
6604 {
6605         struct kvm *kvm;
6606         struct kvm_vcpu *vcpu;
6607         int i;
6608         int ret;
6609         u64 local_tsc;
6610         u64 max_tsc = 0;
6611         bool stable, backwards_tsc = false;
6612
6613         kvm_shared_msr_cpu_online();
6614         ret = kvm_x86_ops->hardware_enable(garbage);
6615         if (ret != 0)
6616                 return ret;
6617
6618         local_tsc = native_read_tsc();
6619         stable = !check_tsc_unstable();
6620         list_for_each_entry(kvm, &vm_list, vm_list) {
6621                 kvm_for_each_vcpu(i, vcpu, kvm) {
6622                         if (!stable && vcpu->cpu == smp_processor_id())
6623                                 set_bit(KVM_REQ_CLOCK_UPDATE, &vcpu->requests);
6624                         if (stable && vcpu->arch.last_host_tsc > local_tsc) {
6625                                 backwards_tsc = true;
6626                                 if (vcpu->arch.last_host_tsc > max_tsc)
6627                                         max_tsc = vcpu->arch.last_host_tsc;
6628                         }
6629                 }
6630         }
6631
6632         /*
6633          * Sometimes, even reliable TSCs go backwards.  This happens on
6634          * platforms that reset TSC during suspend or hibernate actions, but
6635          * maintain synchronization.  We must compensate.  Fortunately, we can
6636          * detect that condition here, which happens early in CPU bringup,
6637          * before any KVM threads can be running.  Unfortunately, we can't
6638          * bring the TSCs fully up to date with real time, as we aren't yet far
6639          * enough into CPU bringup that we know how much real time has actually
6640          * elapsed; our helper function, get_kernel_ns() will be using boot
6641          * variables that haven't been updated yet.
6642          *
6643          * So we simply find the maximum observed TSC above, then record the
6644          * adjustment to TSC in each VCPU.  When the VCPU later gets loaded,
6645          * the adjustment will be applied.  Note that we accumulate
6646          * adjustments, in case multiple suspend cycles happen before some VCPU
6647          * gets a chance to run again.  In the event that no KVM threads get a
6648          * chance to run, we will miss the entire elapsed period, as we'll have
6649          * reset last_host_tsc, so VCPUs will not have the TSC adjusted and may
6650          * loose cycle time.  This isn't too big a deal, since the loss will be
6651          * uniform across all VCPUs (not to mention the scenario is extremely
6652          * unlikely). It is possible that a second hibernate recovery happens
6653          * much faster than a first, causing the observed TSC here to be
6654          * smaller; this would require additional padding adjustment, which is
6655          * why we set last_host_tsc to the local tsc observed here.
6656          *
6657          * N.B. - this code below runs only on platforms with reliable TSC,
6658          * as that is the only way backwards_tsc is set above.  Also note
6659          * that this runs for ALL vcpus, which is not a bug; all VCPUs should
6660          * have the same delta_cyc adjustment applied if backwards_tsc
6661          * is detected.  Note further, this adjustment is only done once,
6662          * as we reset last_host_tsc on all VCPUs to stop this from being
6663          * called multiple times (one for each physical CPU bringup).
6664          *
6665          * Platforms with unreliable TSCs don't have to deal with this, they
6666          * will be compensated by the logic in vcpu_load, which sets the TSC to
6667          * catchup mode.  This will catchup all VCPUs to real time, but cannot
6668          * guarantee that they stay in perfect synchronization.
6669          */
6670         if (backwards_tsc) {
6671                 u64 delta_cyc = max_tsc - local_tsc;
6672                 list_for_each_entry(kvm, &vm_list, vm_list) {
6673                         kvm_for_each_vcpu(i, vcpu, kvm) {
6674                                 vcpu->arch.tsc_offset_adjustment += delta_cyc;
6675                                 vcpu->arch.last_host_tsc = local_tsc;
6676                                 set_bit(KVM_REQ_MASTERCLOCK_UPDATE,
6677                                         &vcpu->requests);
6678                         }
6679
6680                         /*
6681                          * We have to disable TSC offset matching.. if you were
6682                          * booting a VM while issuing an S4 host suspend....
6683                          * you may have some problem.  Solving this issue is
6684                          * left as an exercise to the reader.
6685                          */
6686                         kvm->arch.last_tsc_nsec = 0;
6687                         kvm->arch.last_tsc_write = 0;
6688                 }
6689
6690         }
6691         return 0;
6692 }
6693
6694 void kvm_arch_hardware_disable(void *garbage)
6695 {
6696         kvm_x86_ops->hardware_disable(garbage);
6697         drop_user_return_notifiers(garbage);
6698 }
6699
6700 int kvm_arch_hardware_setup(void)
6701 {
6702         return kvm_x86_ops->hardware_setup();
6703 }
6704
6705 void kvm_arch_hardware_unsetup(void)
6706 {
6707         kvm_x86_ops->hardware_unsetup();
6708 }
6709
6710 void kvm_arch_check_processor_compat(void *rtn)
6711 {
6712         kvm_x86_ops->check_processor_compatibility(rtn);
6713 }
6714
6715 bool kvm_vcpu_compatible(struct kvm_vcpu *vcpu)
6716 {
6717         return irqchip_in_kernel(vcpu->kvm) == (vcpu->arch.apic != NULL);
6718 }
6719
6720 struct static_key kvm_no_apic_vcpu __read_mostly;
6721
6722 int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
6723 {
6724         struct page *page;
6725         struct kvm *kvm;
6726         int r;
6727
6728         BUG_ON(vcpu->kvm == NULL);
6729         kvm = vcpu->kvm;
6730
6731         vcpu->arch.emulate_ctxt.ops = &emulate_ops;
6732         if (!irqchip_in_kernel(kvm) || kvm_vcpu_is_bsp(vcpu))
6733                 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
6734         else
6735                 vcpu->arch.mp_state = KVM_MP_STATE_UNINITIALIZED;
6736
6737         page = alloc_page(GFP_KERNEL | __GFP_ZERO);
6738         if (!page) {
6739                 r = -ENOMEM;
6740                 goto fail;
6741         }
6742         vcpu->arch.pio_data = page_address(page);
6743
6744         kvm_set_tsc_khz(vcpu, max_tsc_khz);
6745
6746         r = kvm_mmu_create(vcpu);
6747         if (r < 0)
6748                 goto fail_free_pio_data;
6749
6750         if (irqchip_in_kernel(kvm)) {
6751                 r = kvm_create_lapic(vcpu);
6752                 if (r < 0)
6753                         goto fail_mmu_destroy;
6754         } else
6755                 static_key_slow_inc(&kvm_no_apic_vcpu);
6756
6757         vcpu->arch.mce_banks = kzalloc(KVM_MAX_MCE_BANKS * sizeof(u64) * 4,
6758                                        GFP_KERNEL);
6759         if (!vcpu->arch.mce_banks) {
6760                 r = -ENOMEM;
6761                 goto fail_free_lapic;
6762         }
6763         vcpu->arch.mcg_cap = KVM_MAX_MCE_BANKS;
6764
6765         if (!zalloc_cpumask_var(&vcpu->arch.wbinvd_dirty_mask, GFP_KERNEL)) {
6766                 r = -ENOMEM;
6767                 goto fail_free_mce_banks;
6768         }
6769
6770         r = fx_init(vcpu);
6771         if (r)
6772                 goto fail_free_wbinvd_dirty_mask;
6773
6774         vcpu->arch.ia32_tsc_adjust_msr = 0x0;
6775         vcpu->arch.pv_time_enabled = false;
6776         kvm_async_pf_hash_reset(vcpu);
6777         kvm_pmu_init(vcpu);
6778
6779         return 0;
6780 fail_free_wbinvd_dirty_mask:
6781         free_cpumask_var(vcpu->arch.wbinvd_dirty_mask);
6782 fail_free_mce_banks:
6783         kfree(vcpu->arch.mce_banks);
6784 fail_free_lapic:
6785         kvm_free_lapic(vcpu);
6786 fail_mmu_destroy:
6787         kvm_mmu_destroy(vcpu);
6788 fail_free_pio_data:
6789         free_page((unsigned long)vcpu->arch.pio_data);
6790 fail:
6791         return r;
6792 }
6793
6794 void kvm_arch_vcpu_uninit(struct kvm_vcpu *vcpu)
6795 {
6796         int idx;
6797
6798         kvm_pmu_destroy(vcpu);
6799         kfree(vcpu->arch.mce_banks);
6800         kvm_free_lapic(vcpu);
6801         idx = srcu_read_lock(&vcpu->kvm->srcu);
6802         kvm_mmu_destroy(vcpu);
6803         srcu_read_unlock(&vcpu->kvm->srcu, idx);
6804         free_page((unsigned long)vcpu->arch.pio_data);
6805         if (!irqchip_in_kernel(vcpu->kvm))
6806                 static_key_slow_dec(&kvm_no_apic_vcpu);
6807 }
6808
6809 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
6810 {
6811         if (type)
6812                 return -EINVAL;
6813
6814         INIT_LIST_HEAD(&kvm->arch.active_mmu_pages);
6815         INIT_LIST_HEAD(&kvm->arch.assigned_dev_head);
6816
6817         /* Reserve bit 0 of irq_sources_bitmap for userspace irq source */
6818         set_bit(KVM_USERSPACE_IRQ_SOURCE_ID, &kvm->arch.irq_sources_bitmap);
6819         /* Reserve bit 1 of irq_sources_bitmap for irqfd-resampler */
6820         set_bit(KVM_IRQFD_RESAMPLE_IRQ_SOURCE_ID,
6821                 &kvm->arch.irq_sources_bitmap);
6822
6823         raw_spin_lock_init(&kvm->arch.tsc_write_lock);
6824         mutex_init(&kvm->arch.apic_map_lock);
6825         spin_lock_init(&kvm->arch.pvclock_gtod_sync_lock);
6826
6827         pvclock_update_vm_gtod_copy(kvm);
6828
6829         return 0;
6830 }
6831
6832 static void kvm_unload_vcpu_mmu(struct kvm_vcpu *vcpu)
6833 {
6834         int r;
6835         r = vcpu_load(vcpu);
6836         BUG_ON(r);
6837         kvm_mmu_unload(vcpu);
6838         vcpu_put(vcpu);
6839 }
6840
6841 static void kvm_free_vcpus(struct kvm *kvm)
6842 {
6843         unsigned int i;
6844         struct kvm_vcpu *vcpu;
6845
6846         /*
6847          * Unpin any mmu pages first.
6848          */
6849         kvm_for_each_vcpu(i, vcpu, kvm) {
6850                 kvm_clear_async_pf_completion_queue(vcpu);
6851                 kvm_unload_vcpu_mmu(vcpu);
6852         }
6853         kvm_for_each_vcpu(i, vcpu, kvm)
6854                 kvm_arch_vcpu_free(vcpu);
6855
6856         mutex_lock(&kvm->lock);
6857         for (i = 0; i < atomic_read(&kvm->online_vcpus); i++)
6858                 kvm->vcpus[i] = NULL;
6859
6860         atomic_set(&kvm->online_vcpus, 0);
6861         mutex_unlock(&kvm->lock);
6862 }
6863
6864 void kvm_arch_sync_events(struct kvm *kvm)
6865 {
6866         kvm_free_all_assigned_devices(kvm);
6867         kvm_free_pit(kvm);
6868 }
6869
6870 void kvm_arch_destroy_vm(struct kvm *kvm)
6871 {
6872         if (current->mm == kvm->mm) {
6873                 /*
6874                  * Free memory regions allocated on behalf of userspace,
6875                  * unless the the memory map has changed due to process exit
6876                  * or fd copying.
6877                  */
6878                 struct kvm_userspace_memory_region mem;
6879                 memset(&mem, 0, sizeof(mem));
6880                 mem.slot = APIC_ACCESS_PAGE_PRIVATE_MEMSLOT;
6881                 kvm_set_memory_region(kvm, &mem);
6882
6883                 mem.slot = IDENTITY_PAGETABLE_PRIVATE_MEMSLOT;
6884                 kvm_set_memory_region(kvm, &mem);
6885
6886                 mem.slot = TSS_PRIVATE_MEMSLOT;
6887                 kvm_set_memory_region(kvm, &mem);
6888         }
6889         kvm_iommu_unmap_guest(kvm);
6890         kfree(kvm->arch.vpic);
6891         kfree(kvm->arch.vioapic);
6892         kvm_free_vcpus(kvm);
6893         if (kvm->arch.apic_access_page)
6894                 put_page(kvm->arch.apic_access_page);
6895         if (kvm->arch.ept_identity_pagetable)
6896                 put_page(kvm->arch.ept_identity_pagetable);
6897         kfree(rcu_dereference_check(kvm->arch.apic_map, 1));
6898 }
6899
6900 void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *free,
6901                            struct kvm_memory_slot *dont)
6902 {
6903         int i;
6904
6905         for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
6906                 if (!dont || free->arch.rmap[i] != dont->arch.rmap[i]) {
6907                         kvm_kvfree(free->arch.rmap[i]);
6908                         free->arch.rmap[i] = NULL;
6909                 }
6910                 if (i == 0)
6911                         continue;
6912
6913                 if (!dont || free->arch.lpage_info[i - 1] !=
6914                              dont->arch.lpage_info[i - 1]) {
6915                         kvm_kvfree(free->arch.lpage_info[i - 1]);
6916                         free->arch.lpage_info[i - 1] = NULL;
6917                 }
6918         }
6919 }
6920
6921 int kvm_arch_create_memslot(struct kvm *kvm, struct kvm_memory_slot *slot,
6922                             unsigned long npages)
6923 {
6924         int i;
6925
6926         for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
6927                 unsigned long ugfn;
6928                 int lpages;
6929                 int level = i + 1;
6930
6931                 lpages = gfn_to_index(slot->base_gfn + npages - 1,
6932                                       slot->base_gfn, level) + 1;
6933
6934                 slot->arch.rmap[i] =
6935                         kvm_kvzalloc(lpages * sizeof(*slot->arch.rmap[i]));
6936                 if (!slot->arch.rmap[i])
6937                         goto out_free;
6938                 if (i == 0)
6939                         continue;
6940
6941                 slot->arch.lpage_info[i - 1] = kvm_kvzalloc(lpages *
6942                                         sizeof(*slot->arch.lpage_info[i - 1]));
6943                 if (!slot->arch.lpage_info[i - 1])
6944                         goto out_free;
6945
6946                 if (slot->base_gfn & (KVM_PAGES_PER_HPAGE(level) - 1))
6947                         slot->arch.lpage_info[i - 1][0].write_count = 1;
6948                 if ((slot->base_gfn + npages) & (KVM_PAGES_PER_HPAGE(level) - 1))
6949                         slot->arch.lpage_info[i - 1][lpages - 1].write_count = 1;
6950                 ugfn = slot->userspace_addr >> PAGE_SHIFT;
6951                 /*
6952                  * If the gfn and userspace address are not aligned wrt each
6953                  * other, or if explicitly asked to, disable large page
6954                  * support for this slot
6955                  */
6956                 if ((slot->base_gfn ^ ugfn) & (KVM_PAGES_PER_HPAGE(level) - 1) ||
6957                     !kvm_largepages_enabled()) {
6958                         unsigned long j;
6959
6960                         for (j = 0; j < lpages; ++j)
6961                                 slot->arch.lpage_info[i - 1][j].write_count = 1;
6962                 }
6963         }
6964
6965         return 0;
6966
6967 out_free:
6968         for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
6969                 kvm_kvfree(slot->arch.rmap[i]);
6970                 slot->arch.rmap[i] = NULL;
6971                 if (i == 0)
6972                         continue;
6973
6974                 kvm_kvfree(slot->arch.lpage_info[i - 1]);
6975                 slot->arch.lpage_info[i - 1] = NULL;
6976         }
6977         return -ENOMEM;
6978 }
6979
6980 void kvm_arch_memslots_updated(struct kvm *kvm)
6981 {
6982 }
6983
6984 int kvm_arch_prepare_memory_region(struct kvm *kvm,
6985                                 struct kvm_memory_slot *memslot,
6986                                 struct kvm_userspace_memory_region *mem,
6987                                 enum kvm_mr_change change)
6988 {
6989         /*
6990          * Only private memory slots need to be mapped here since
6991          * KVM_SET_MEMORY_REGION ioctl is no longer supported.
6992          */
6993         if ((memslot->id >= KVM_USER_MEM_SLOTS) && (change == KVM_MR_CREATE)) {
6994                 unsigned long userspace_addr;
6995
6996                 /*
6997                  * MAP_SHARED to prevent internal slot pages from being moved
6998                  * by fork()/COW.
6999                  */
7000                 userspace_addr = vm_mmap(NULL, 0, memslot->npages * PAGE_SIZE,
7001                                          PROT_READ | PROT_WRITE,
7002                                          MAP_SHARED | MAP_ANONYMOUS, 0);
7003
7004                 if (IS_ERR((void *)userspace_addr))
7005                         return PTR_ERR((void *)userspace_addr);
7006
7007                 memslot->userspace_addr = userspace_addr;
7008         }
7009
7010         return 0;
7011 }
7012
7013 void kvm_arch_commit_memory_region(struct kvm *kvm,
7014                                 struct kvm_userspace_memory_region *mem,
7015                                 const struct kvm_memory_slot *old,
7016                                 enum kvm_mr_change change)
7017 {
7018
7019         int nr_mmu_pages = 0;
7020
7021         if ((mem->slot >= KVM_USER_MEM_SLOTS) && (change == KVM_MR_DELETE)) {
7022                 int ret;
7023
7024                 ret = vm_munmap(old->userspace_addr,
7025                                 old->npages * PAGE_SIZE);
7026                 if (ret < 0)
7027                         printk(KERN_WARNING
7028                                "kvm_vm_ioctl_set_memory_region: "
7029                                "failed to munmap memory\n");
7030         }
7031
7032         if (!kvm->arch.n_requested_mmu_pages)
7033                 nr_mmu_pages = kvm_mmu_calculate_mmu_pages(kvm);
7034
7035         if (nr_mmu_pages)
7036                 kvm_mmu_change_mmu_pages(kvm, nr_mmu_pages);
7037         /*
7038          * Write protect all pages for dirty logging.
7039          * Existing largepage mappings are destroyed here and new ones will
7040          * not be created until the end of the logging.
7041          */
7042         if ((change != KVM_MR_DELETE) && (mem->flags & KVM_MEM_LOG_DIRTY_PAGES))
7043                 kvm_mmu_slot_remove_write_access(kvm, mem->slot);
7044         /*
7045          * If memory slot is created, or moved, we need to clear all
7046          * mmio sptes.
7047          */
7048         if ((change == KVM_MR_CREATE) || (change == KVM_MR_MOVE)) {
7049                 kvm_mmu_zap_mmio_sptes(kvm);
7050                 kvm_reload_remote_mmus(kvm);
7051         }
7052 }
7053
7054 void kvm_arch_flush_shadow_all(struct kvm *kvm)
7055 {
7056         kvm_mmu_zap_all(kvm);
7057         kvm_reload_remote_mmus(kvm);
7058 }
7059
7060 void kvm_arch_flush_shadow_memslot(struct kvm *kvm,
7061                                    struct kvm_memory_slot *slot)
7062 {
7063         kvm_arch_flush_shadow_all(kvm);
7064 }
7065
7066 int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)
7067 {
7068         return (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE &&
7069                 !vcpu->arch.apf.halted)
7070                 || !list_empty_careful(&vcpu->async_pf.done)
7071                 || kvm_apic_has_events(vcpu)
7072                 || atomic_read(&vcpu->arch.nmi_queued) ||
7073                 (kvm_arch_interrupt_allowed(vcpu) &&
7074                  kvm_cpu_has_interrupt(vcpu));
7075 }
7076
7077 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
7078 {
7079         return kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE;
7080 }
7081
7082 int kvm_arch_interrupt_allowed(struct kvm_vcpu *vcpu)
7083 {
7084         return kvm_x86_ops->interrupt_allowed(vcpu);
7085 }
7086
7087 bool kvm_is_linear_rip(struct kvm_vcpu *vcpu, unsigned long linear_rip)
7088 {
7089         unsigned long current_rip = kvm_rip_read(vcpu) +
7090                 get_segment_base(vcpu, VCPU_SREG_CS);
7091
7092         return current_rip == linear_rip;
7093 }
7094 EXPORT_SYMBOL_GPL(kvm_is_linear_rip);
7095
7096 unsigned long kvm_get_rflags(struct kvm_vcpu *vcpu)
7097 {
7098         unsigned long rflags;
7099
7100         rflags = kvm_x86_ops->get_rflags(vcpu);
7101         if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
7102                 rflags &= ~X86_EFLAGS_TF;
7103         return rflags;
7104 }
7105 EXPORT_SYMBOL_GPL(kvm_get_rflags);
7106
7107 void kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
7108 {
7109         if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP &&
7110             kvm_is_linear_rip(vcpu, vcpu->arch.singlestep_rip))
7111                 rflags |= X86_EFLAGS_TF;
7112         kvm_x86_ops->set_rflags(vcpu, rflags);
7113         kvm_make_request(KVM_REQ_EVENT, vcpu);
7114 }
7115 EXPORT_SYMBOL_GPL(kvm_set_rflags);
7116
7117 void kvm_arch_async_page_ready(struct kvm_vcpu *vcpu, struct kvm_async_pf *work)
7118 {
7119         int r;
7120
7121         if ((vcpu->arch.mmu.direct_map != work->arch.direct_map) ||
7122               work->wakeup_all)
7123                 return;
7124
7125         r = kvm_mmu_reload(vcpu);
7126         if (unlikely(r))
7127                 return;
7128
7129         if (!vcpu->arch.mmu.direct_map &&
7130               work->arch.cr3 != vcpu->arch.mmu.get_cr3(vcpu))
7131                 return;
7132
7133         vcpu->arch.mmu.page_fault(vcpu, work->gva, 0, true);
7134 }
7135
7136 static inline u32 kvm_async_pf_hash_fn(gfn_t gfn)
7137 {
7138         return hash_32(gfn & 0xffffffff, order_base_2(ASYNC_PF_PER_VCPU));
7139 }
7140
7141 static inline u32 kvm_async_pf_next_probe(u32 key)
7142 {
7143         return (key + 1) & (roundup_pow_of_two(ASYNC_PF_PER_VCPU) - 1);
7144 }
7145
7146 static void kvm_add_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
7147 {
7148         u32 key = kvm_async_pf_hash_fn(gfn);
7149
7150         while (vcpu->arch.apf.gfns[key] != ~0)
7151                 key = kvm_async_pf_next_probe(key);
7152
7153         vcpu->arch.apf.gfns[key] = gfn;
7154 }
7155
7156 static u32 kvm_async_pf_gfn_slot(struct kvm_vcpu *vcpu, gfn_t gfn)
7157 {
7158         int i;
7159         u32 key = kvm_async_pf_hash_fn(gfn);
7160
7161         for (i = 0; i < roundup_pow_of_two(ASYNC_PF_PER_VCPU) &&
7162                      (vcpu->arch.apf.gfns[key] != gfn &&
7163                       vcpu->arch.apf.gfns[key] != ~0); i++)
7164                 key = kvm_async_pf_next_probe(key);
7165
7166         return key;
7167 }
7168
7169 bool kvm_find_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
7170 {
7171         return vcpu->arch.apf.gfns[kvm_async_pf_gfn_slot(vcpu, gfn)] == gfn;
7172 }
7173
7174 static void kvm_del_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
7175 {
7176         u32 i, j, k;
7177
7178         i = j = kvm_async_pf_gfn_slot(vcpu, gfn);
7179         while (true) {
7180                 vcpu->arch.apf.gfns[i] = ~0;
7181                 do {
7182                         j = kvm_async_pf_next_probe(j);
7183                         if (vcpu->arch.apf.gfns[j] == ~0)
7184                                 return;
7185                         k = kvm_async_pf_hash_fn(vcpu->arch.apf.gfns[j]);
7186                         /*
7187                          * k lies cyclically in ]i,j]
7188                          * |    i.k.j |
7189                          * |....j i.k.| or  |.k..j i...|
7190                          */
7191                 } while ((i <= j) ? (i < k && k <= j) : (i < k || k <= j));
7192                 vcpu->arch.apf.gfns[i] = vcpu->arch.apf.gfns[j];
7193                 i = j;
7194         }
7195 }
7196
7197 static int apf_put_user(struct kvm_vcpu *vcpu, u32 val)
7198 {
7199
7200         return kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.apf.data, &val,
7201                                       sizeof(val));
7202 }
7203
7204 void kvm_arch_async_page_not_present(struct kvm_vcpu *vcpu,
7205                                      struct kvm_async_pf *work)
7206 {
7207         struct x86_exception fault;
7208
7209         trace_kvm_async_pf_not_present(work->arch.token, work->gva);
7210         kvm_add_async_pf_gfn(vcpu, work->arch.gfn);
7211
7212         if (!(vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED) ||
7213             (vcpu->arch.apf.send_user_only &&
7214              kvm_x86_ops->get_cpl(vcpu) == 0))
7215                 kvm_make_request(KVM_REQ_APF_HALT, vcpu);
7216         else if (!apf_put_user(vcpu, KVM_PV_REASON_PAGE_NOT_PRESENT)) {
7217                 fault.vector = PF_VECTOR;
7218                 fault.error_code_valid = true;
7219                 fault.error_code = 0;
7220                 fault.nested_page_fault = false;
7221                 fault.address = work->arch.token;
7222                 kvm_inject_page_fault(vcpu, &fault);
7223         }
7224 }
7225
7226 void kvm_arch_async_page_present(struct kvm_vcpu *vcpu,
7227                                  struct kvm_async_pf *work)
7228 {
7229         struct x86_exception fault;
7230
7231         trace_kvm_async_pf_ready(work->arch.token, work->gva);
7232         if (work->wakeup_all)
7233                 work->arch.token = ~0; /* broadcast wakeup */
7234         else
7235                 kvm_del_async_pf_gfn(vcpu, work->arch.gfn);
7236
7237         if ((vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED) &&
7238             !apf_put_user(vcpu, KVM_PV_REASON_PAGE_READY)) {
7239                 fault.vector = PF_VECTOR;
7240                 fault.error_code_valid = true;
7241                 fault.error_code = 0;
7242                 fault.nested_page_fault = false;
7243                 fault.address = work->arch.token;
7244                 kvm_inject_page_fault(vcpu, &fault);
7245         }
7246         vcpu->arch.apf.halted = false;
7247         vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
7248 }
7249
7250 bool kvm_arch_can_inject_async_page_present(struct kvm_vcpu *vcpu)
7251 {
7252         if (!(vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED))
7253                 return true;
7254         else
7255                 return !kvm_event_needs_reinjection(vcpu) &&
7256                         kvm_x86_ops->interrupt_allowed(vcpu);
7257 }
7258
7259 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_exit);
7260 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_inj_virq);
7261 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_page_fault);
7262 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_msr);
7263 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_cr);
7264 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmrun);
7265 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit);
7266 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit_inject);
7267 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intr_vmexit);
7268 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_invlpga);
7269 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_skinit);
7270 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intercepts);