[SCSI] st: remove st_mutex
[firefly-linux-kernel-4.4.55.git] / arch / x86 / kvm / x86.c
1 /*
2  * Kernel-based Virtual Machine driver for Linux
3  *
4  * derived from drivers/kvm/kvm_main.c
5  *
6  * Copyright (C) 2006 Qumranet, Inc.
7  * Copyright (C) 2008 Qumranet, Inc.
8  * Copyright IBM Corporation, 2008
9  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
10  *
11  * Authors:
12  *   Avi Kivity   <avi@qumranet.com>
13  *   Yaniv Kamay  <yaniv@qumranet.com>
14  *   Amit Shah    <amit.shah@qumranet.com>
15  *   Ben-Ami Yassour <benami@il.ibm.com>
16  *
17  * This work is licensed under the terms of the GNU GPL, version 2.  See
18  * the COPYING file in the top-level directory.
19  *
20  */
21
22 #include <linux/kvm_host.h>
23 #include "irq.h"
24 #include "mmu.h"
25 #include "i8254.h"
26 #include "tss.h"
27 #include "kvm_cache_regs.h"
28 #include "x86.h"
29 #include "cpuid.h"
30
31 #include <linux/clocksource.h>
32 #include <linux/interrupt.h>
33 #include <linux/kvm.h>
34 #include <linux/fs.h>
35 #include <linux/vmalloc.h>
36 #include <linux/module.h>
37 #include <linux/mman.h>
38 #include <linux/highmem.h>
39 #include <linux/iommu.h>
40 #include <linux/intel-iommu.h>
41 #include <linux/cpufreq.h>
42 #include <linux/user-return-notifier.h>
43 #include <linux/srcu.h>
44 #include <linux/slab.h>
45 #include <linux/perf_event.h>
46 #include <linux/uaccess.h>
47 #include <linux/hash.h>
48 #include <linux/pci.h>
49 #include <trace/events/kvm.h>
50
51 #define CREATE_TRACE_POINTS
52 #include "trace.h"
53
54 #include <asm/debugreg.h>
55 #include <asm/msr.h>
56 #include <asm/desc.h>
57 #include <asm/mtrr.h>
58 #include <asm/mce.h>
59 #include <asm/i387.h>
60 #include <asm/fpu-internal.h> /* Ugh! */
61 #include <asm/xcr.h>
62 #include <asm/pvclock.h>
63 #include <asm/div64.h>
64
65 #define MAX_IO_MSRS 256
66 #define KVM_MAX_MCE_BANKS 32
67 #define KVM_MCE_CAP_SUPPORTED (MCG_CTL_P | MCG_SER_P)
68
69 #define emul_to_vcpu(ctxt) \
70         container_of(ctxt, struct kvm_vcpu, arch.emulate_ctxt)
71
72 /* EFER defaults:
73  * - enable syscall per default because its emulated by KVM
74  * - enable LME and LMA per default on 64 bit KVM
75  */
76 #ifdef CONFIG_X86_64
77 static
78 u64 __read_mostly efer_reserved_bits = ~((u64)(EFER_SCE | EFER_LME | EFER_LMA));
79 #else
80 static u64 __read_mostly efer_reserved_bits = ~((u64)EFER_SCE);
81 #endif
82
83 #define VM_STAT(x) offsetof(struct kvm, stat.x), KVM_STAT_VM
84 #define VCPU_STAT(x) offsetof(struct kvm_vcpu, stat.x), KVM_STAT_VCPU
85
86 static void update_cr8_intercept(struct kvm_vcpu *vcpu);
87 static void process_nmi(struct kvm_vcpu *vcpu);
88
89 struct kvm_x86_ops *kvm_x86_ops;
90 EXPORT_SYMBOL_GPL(kvm_x86_ops);
91
92 static bool ignore_msrs = 0;
93 module_param(ignore_msrs, bool, S_IRUGO | S_IWUSR);
94
95 bool kvm_has_tsc_control;
96 EXPORT_SYMBOL_GPL(kvm_has_tsc_control);
97 u32  kvm_max_guest_tsc_khz;
98 EXPORT_SYMBOL_GPL(kvm_max_guest_tsc_khz);
99
100 /* tsc tolerance in parts per million - default to 1/2 of the NTP threshold */
101 static u32 tsc_tolerance_ppm = 250;
102 module_param(tsc_tolerance_ppm, uint, S_IRUGO | S_IWUSR);
103
104 #define KVM_NR_SHARED_MSRS 16
105
106 struct kvm_shared_msrs_global {
107         int nr;
108         u32 msrs[KVM_NR_SHARED_MSRS];
109 };
110
111 struct kvm_shared_msrs {
112         struct user_return_notifier urn;
113         bool registered;
114         struct kvm_shared_msr_values {
115                 u64 host;
116                 u64 curr;
117         } values[KVM_NR_SHARED_MSRS];
118 };
119
120 static struct kvm_shared_msrs_global __read_mostly shared_msrs_global;
121 static DEFINE_PER_CPU(struct kvm_shared_msrs, shared_msrs);
122
123 struct kvm_stats_debugfs_item debugfs_entries[] = {
124         { "pf_fixed", VCPU_STAT(pf_fixed) },
125         { "pf_guest", VCPU_STAT(pf_guest) },
126         { "tlb_flush", VCPU_STAT(tlb_flush) },
127         { "invlpg", VCPU_STAT(invlpg) },
128         { "exits", VCPU_STAT(exits) },
129         { "io_exits", VCPU_STAT(io_exits) },
130         { "mmio_exits", VCPU_STAT(mmio_exits) },
131         { "signal_exits", VCPU_STAT(signal_exits) },
132         { "irq_window", VCPU_STAT(irq_window_exits) },
133         { "nmi_window", VCPU_STAT(nmi_window_exits) },
134         { "halt_exits", VCPU_STAT(halt_exits) },
135         { "halt_wakeup", VCPU_STAT(halt_wakeup) },
136         { "hypercalls", VCPU_STAT(hypercalls) },
137         { "request_irq", VCPU_STAT(request_irq_exits) },
138         { "irq_exits", VCPU_STAT(irq_exits) },
139         { "host_state_reload", VCPU_STAT(host_state_reload) },
140         { "efer_reload", VCPU_STAT(efer_reload) },
141         { "fpu_reload", VCPU_STAT(fpu_reload) },
142         { "insn_emulation", VCPU_STAT(insn_emulation) },
143         { "insn_emulation_fail", VCPU_STAT(insn_emulation_fail) },
144         { "irq_injections", VCPU_STAT(irq_injections) },
145         { "nmi_injections", VCPU_STAT(nmi_injections) },
146         { "mmu_shadow_zapped", VM_STAT(mmu_shadow_zapped) },
147         { "mmu_pte_write", VM_STAT(mmu_pte_write) },
148         { "mmu_pte_updated", VM_STAT(mmu_pte_updated) },
149         { "mmu_pde_zapped", VM_STAT(mmu_pde_zapped) },
150         { "mmu_flooded", VM_STAT(mmu_flooded) },
151         { "mmu_recycled", VM_STAT(mmu_recycled) },
152         { "mmu_cache_miss", VM_STAT(mmu_cache_miss) },
153         { "mmu_unsync", VM_STAT(mmu_unsync) },
154         { "remote_tlb_flush", VM_STAT(remote_tlb_flush) },
155         { "largepages", VM_STAT(lpages) },
156         { NULL }
157 };
158
159 u64 __read_mostly host_xcr0;
160
161 int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt);
162
163 static inline void kvm_async_pf_hash_reset(struct kvm_vcpu *vcpu)
164 {
165         int i;
166         for (i = 0; i < roundup_pow_of_two(ASYNC_PF_PER_VCPU); i++)
167                 vcpu->arch.apf.gfns[i] = ~0;
168 }
169
170 static void kvm_on_user_return(struct user_return_notifier *urn)
171 {
172         unsigned slot;
173         struct kvm_shared_msrs *locals
174                 = container_of(urn, struct kvm_shared_msrs, urn);
175         struct kvm_shared_msr_values *values;
176
177         for (slot = 0; slot < shared_msrs_global.nr; ++slot) {
178                 values = &locals->values[slot];
179                 if (values->host != values->curr) {
180                         wrmsrl(shared_msrs_global.msrs[slot], values->host);
181                         values->curr = values->host;
182                 }
183         }
184         locals->registered = false;
185         user_return_notifier_unregister(urn);
186 }
187
188 static void shared_msr_update(unsigned slot, u32 msr)
189 {
190         struct kvm_shared_msrs *smsr;
191         u64 value;
192
193         smsr = &__get_cpu_var(shared_msrs);
194         /* only read, and nobody should modify it at this time,
195          * so don't need lock */
196         if (slot >= shared_msrs_global.nr) {
197                 printk(KERN_ERR "kvm: invalid MSR slot!");
198                 return;
199         }
200         rdmsrl_safe(msr, &value);
201         smsr->values[slot].host = value;
202         smsr->values[slot].curr = value;
203 }
204
205 void kvm_define_shared_msr(unsigned slot, u32 msr)
206 {
207         if (slot >= shared_msrs_global.nr)
208                 shared_msrs_global.nr = slot + 1;
209         shared_msrs_global.msrs[slot] = msr;
210         /* we need ensured the shared_msr_global have been updated */
211         smp_wmb();
212 }
213 EXPORT_SYMBOL_GPL(kvm_define_shared_msr);
214
215 static void kvm_shared_msr_cpu_online(void)
216 {
217         unsigned i;
218
219         for (i = 0; i < shared_msrs_global.nr; ++i)
220                 shared_msr_update(i, shared_msrs_global.msrs[i]);
221 }
222
223 void kvm_set_shared_msr(unsigned slot, u64 value, u64 mask)
224 {
225         struct kvm_shared_msrs *smsr = &__get_cpu_var(shared_msrs);
226
227         if (((value ^ smsr->values[slot].curr) & mask) == 0)
228                 return;
229         smsr->values[slot].curr = value;
230         wrmsrl(shared_msrs_global.msrs[slot], value);
231         if (!smsr->registered) {
232                 smsr->urn.on_user_return = kvm_on_user_return;
233                 user_return_notifier_register(&smsr->urn);
234                 smsr->registered = true;
235         }
236 }
237 EXPORT_SYMBOL_GPL(kvm_set_shared_msr);
238
239 static void drop_user_return_notifiers(void *ignore)
240 {
241         struct kvm_shared_msrs *smsr = &__get_cpu_var(shared_msrs);
242
243         if (smsr->registered)
244                 kvm_on_user_return(&smsr->urn);
245 }
246
247 u64 kvm_get_apic_base(struct kvm_vcpu *vcpu)
248 {
249         if (irqchip_in_kernel(vcpu->kvm))
250                 return vcpu->arch.apic_base;
251         else
252                 return vcpu->arch.apic_base;
253 }
254 EXPORT_SYMBOL_GPL(kvm_get_apic_base);
255
256 void kvm_set_apic_base(struct kvm_vcpu *vcpu, u64 data)
257 {
258         /* TODO: reserve bits check */
259         if (irqchip_in_kernel(vcpu->kvm))
260                 kvm_lapic_set_base(vcpu, data);
261         else
262                 vcpu->arch.apic_base = data;
263 }
264 EXPORT_SYMBOL_GPL(kvm_set_apic_base);
265
266 #define EXCPT_BENIGN            0
267 #define EXCPT_CONTRIBUTORY      1
268 #define EXCPT_PF                2
269
270 static int exception_class(int vector)
271 {
272         switch (vector) {
273         case PF_VECTOR:
274                 return EXCPT_PF;
275         case DE_VECTOR:
276         case TS_VECTOR:
277         case NP_VECTOR:
278         case SS_VECTOR:
279         case GP_VECTOR:
280                 return EXCPT_CONTRIBUTORY;
281         default:
282                 break;
283         }
284         return EXCPT_BENIGN;
285 }
286
287 static void kvm_multiple_exception(struct kvm_vcpu *vcpu,
288                 unsigned nr, bool has_error, u32 error_code,
289                 bool reinject)
290 {
291         u32 prev_nr;
292         int class1, class2;
293
294         kvm_make_request(KVM_REQ_EVENT, vcpu);
295
296         if (!vcpu->arch.exception.pending) {
297         queue:
298                 vcpu->arch.exception.pending = true;
299                 vcpu->arch.exception.has_error_code = has_error;
300                 vcpu->arch.exception.nr = nr;
301                 vcpu->arch.exception.error_code = error_code;
302                 vcpu->arch.exception.reinject = reinject;
303                 return;
304         }
305
306         /* to check exception */
307         prev_nr = vcpu->arch.exception.nr;
308         if (prev_nr == DF_VECTOR) {
309                 /* triple fault -> shutdown */
310                 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
311                 return;
312         }
313         class1 = exception_class(prev_nr);
314         class2 = exception_class(nr);
315         if ((class1 == EXCPT_CONTRIBUTORY && class2 == EXCPT_CONTRIBUTORY)
316                 || (class1 == EXCPT_PF && class2 != EXCPT_BENIGN)) {
317                 /* generate double fault per SDM Table 5-5 */
318                 vcpu->arch.exception.pending = true;
319                 vcpu->arch.exception.has_error_code = true;
320                 vcpu->arch.exception.nr = DF_VECTOR;
321                 vcpu->arch.exception.error_code = 0;
322         } else
323                 /* replace previous exception with a new one in a hope
324                    that instruction re-execution will regenerate lost
325                    exception */
326                 goto queue;
327 }
328
329 void kvm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr)
330 {
331         kvm_multiple_exception(vcpu, nr, false, 0, false);
332 }
333 EXPORT_SYMBOL_GPL(kvm_queue_exception);
334
335 void kvm_requeue_exception(struct kvm_vcpu *vcpu, unsigned nr)
336 {
337         kvm_multiple_exception(vcpu, nr, false, 0, true);
338 }
339 EXPORT_SYMBOL_GPL(kvm_requeue_exception);
340
341 void kvm_complete_insn_gp(struct kvm_vcpu *vcpu, int err)
342 {
343         if (err)
344                 kvm_inject_gp(vcpu, 0);
345         else
346                 kvm_x86_ops->skip_emulated_instruction(vcpu);
347 }
348 EXPORT_SYMBOL_GPL(kvm_complete_insn_gp);
349
350 void kvm_inject_page_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault)
351 {
352         ++vcpu->stat.pf_guest;
353         vcpu->arch.cr2 = fault->address;
354         kvm_queue_exception_e(vcpu, PF_VECTOR, fault->error_code);
355 }
356 EXPORT_SYMBOL_GPL(kvm_inject_page_fault);
357
358 void kvm_propagate_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault)
359 {
360         if (mmu_is_nested(vcpu) && !fault->nested_page_fault)
361                 vcpu->arch.nested_mmu.inject_page_fault(vcpu, fault);
362         else
363                 vcpu->arch.mmu.inject_page_fault(vcpu, fault);
364 }
365
366 void kvm_inject_nmi(struct kvm_vcpu *vcpu)
367 {
368         atomic_inc(&vcpu->arch.nmi_queued);
369         kvm_make_request(KVM_REQ_NMI, vcpu);
370 }
371 EXPORT_SYMBOL_GPL(kvm_inject_nmi);
372
373 void kvm_queue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
374 {
375         kvm_multiple_exception(vcpu, nr, true, error_code, false);
376 }
377 EXPORT_SYMBOL_GPL(kvm_queue_exception_e);
378
379 void kvm_requeue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
380 {
381         kvm_multiple_exception(vcpu, nr, true, error_code, true);
382 }
383 EXPORT_SYMBOL_GPL(kvm_requeue_exception_e);
384
385 /*
386  * Checks if cpl <= required_cpl; if true, return true.  Otherwise queue
387  * a #GP and return false.
388  */
389 bool kvm_require_cpl(struct kvm_vcpu *vcpu, int required_cpl)
390 {
391         if (kvm_x86_ops->get_cpl(vcpu) <= required_cpl)
392                 return true;
393         kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
394         return false;
395 }
396 EXPORT_SYMBOL_GPL(kvm_require_cpl);
397
398 /*
399  * This function will be used to read from the physical memory of the currently
400  * running guest. The difference to kvm_read_guest_page is that this function
401  * can read from guest physical or from the guest's guest physical memory.
402  */
403 int kvm_read_guest_page_mmu(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
404                             gfn_t ngfn, void *data, int offset, int len,
405                             u32 access)
406 {
407         gfn_t real_gfn;
408         gpa_t ngpa;
409
410         ngpa     = gfn_to_gpa(ngfn);
411         real_gfn = mmu->translate_gpa(vcpu, ngpa, access);
412         if (real_gfn == UNMAPPED_GVA)
413                 return -EFAULT;
414
415         real_gfn = gpa_to_gfn(real_gfn);
416
417         return kvm_read_guest_page(vcpu->kvm, real_gfn, data, offset, len);
418 }
419 EXPORT_SYMBOL_GPL(kvm_read_guest_page_mmu);
420
421 int kvm_read_nested_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn,
422                                void *data, int offset, int len, u32 access)
423 {
424         return kvm_read_guest_page_mmu(vcpu, vcpu->arch.walk_mmu, gfn,
425                                        data, offset, len, access);
426 }
427
428 /*
429  * Load the pae pdptrs.  Return true is they are all valid.
430  */
431 int load_pdptrs(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu, unsigned long cr3)
432 {
433         gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT;
434         unsigned offset = ((cr3 & (PAGE_SIZE-1)) >> 5) << 2;
435         int i;
436         int ret;
437         u64 pdpte[ARRAY_SIZE(mmu->pdptrs)];
438
439         ret = kvm_read_guest_page_mmu(vcpu, mmu, pdpt_gfn, pdpte,
440                                       offset * sizeof(u64), sizeof(pdpte),
441                                       PFERR_USER_MASK|PFERR_WRITE_MASK);
442         if (ret < 0) {
443                 ret = 0;
444                 goto out;
445         }
446         for (i = 0; i < ARRAY_SIZE(pdpte); ++i) {
447                 if (is_present_gpte(pdpte[i]) &&
448                     (pdpte[i] & vcpu->arch.mmu.rsvd_bits_mask[0][2])) {
449                         ret = 0;
450                         goto out;
451                 }
452         }
453         ret = 1;
454
455         memcpy(mmu->pdptrs, pdpte, sizeof(mmu->pdptrs));
456         __set_bit(VCPU_EXREG_PDPTR,
457                   (unsigned long *)&vcpu->arch.regs_avail);
458         __set_bit(VCPU_EXREG_PDPTR,
459                   (unsigned long *)&vcpu->arch.regs_dirty);
460 out:
461
462         return ret;
463 }
464 EXPORT_SYMBOL_GPL(load_pdptrs);
465
466 static bool pdptrs_changed(struct kvm_vcpu *vcpu)
467 {
468         u64 pdpte[ARRAY_SIZE(vcpu->arch.walk_mmu->pdptrs)];
469         bool changed = true;
470         int offset;
471         gfn_t gfn;
472         int r;
473
474         if (is_long_mode(vcpu) || !is_pae(vcpu))
475                 return false;
476
477         if (!test_bit(VCPU_EXREG_PDPTR,
478                       (unsigned long *)&vcpu->arch.regs_avail))
479                 return true;
480
481         gfn = (kvm_read_cr3(vcpu) & ~31u) >> PAGE_SHIFT;
482         offset = (kvm_read_cr3(vcpu) & ~31u) & (PAGE_SIZE - 1);
483         r = kvm_read_nested_guest_page(vcpu, gfn, pdpte, offset, sizeof(pdpte),
484                                        PFERR_USER_MASK | PFERR_WRITE_MASK);
485         if (r < 0)
486                 goto out;
487         changed = memcmp(pdpte, vcpu->arch.walk_mmu->pdptrs, sizeof(pdpte)) != 0;
488 out:
489
490         return changed;
491 }
492
493 int kvm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
494 {
495         unsigned long old_cr0 = kvm_read_cr0(vcpu);
496         unsigned long update_bits = X86_CR0_PG | X86_CR0_WP |
497                                     X86_CR0_CD | X86_CR0_NW;
498
499         cr0 |= X86_CR0_ET;
500
501 #ifdef CONFIG_X86_64
502         if (cr0 & 0xffffffff00000000UL)
503                 return 1;
504 #endif
505
506         cr0 &= ~CR0_RESERVED_BITS;
507
508         if ((cr0 & X86_CR0_NW) && !(cr0 & X86_CR0_CD))
509                 return 1;
510
511         if ((cr0 & X86_CR0_PG) && !(cr0 & X86_CR0_PE))
512                 return 1;
513
514         if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) {
515 #ifdef CONFIG_X86_64
516                 if ((vcpu->arch.efer & EFER_LME)) {
517                         int cs_db, cs_l;
518
519                         if (!is_pae(vcpu))
520                                 return 1;
521                         kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
522                         if (cs_l)
523                                 return 1;
524                 } else
525 #endif
526                 if (is_pae(vcpu) && !load_pdptrs(vcpu, vcpu->arch.walk_mmu,
527                                                  kvm_read_cr3(vcpu)))
528                         return 1;
529         }
530
531         if (!(cr0 & X86_CR0_PG) && kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE))
532                 return 1;
533
534         kvm_x86_ops->set_cr0(vcpu, cr0);
535
536         if ((cr0 ^ old_cr0) & X86_CR0_PG) {
537                 kvm_clear_async_pf_completion_queue(vcpu);
538                 kvm_async_pf_hash_reset(vcpu);
539         }
540
541         if ((cr0 ^ old_cr0) & update_bits)
542                 kvm_mmu_reset_context(vcpu);
543         return 0;
544 }
545 EXPORT_SYMBOL_GPL(kvm_set_cr0);
546
547 void kvm_lmsw(struct kvm_vcpu *vcpu, unsigned long msw)
548 {
549         (void)kvm_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~0x0eul) | (msw & 0x0f));
550 }
551 EXPORT_SYMBOL_GPL(kvm_lmsw);
552
553 int __kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr)
554 {
555         u64 xcr0;
556
557         /* Only support XCR_XFEATURE_ENABLED_MASK(xcr0) now  */
558         if (index != XCR_XFEATURE_ENABLED_MASK)
559                 return 1;
560         xcr0 = xcr;
561         if (kvm_x86_ops->get_cpl(vcpu) != 0)
562                 return 1;
563         if (!(xcr0 & XSTATE_FP))
564                 return 1;
565         if ((xcr0 & XSTATE_YMM) && !(xcr0 & XSTATE_SSE))
566                 return 1;
567         if (xcr0 & ~host_xcr0)
568                 return 1;
569         vcpu->arch.xcr0 = xcr0;
570         vcpu->guest_xcr0_loaded = 0;
571         return 0;
572 }
573
574 int kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr)
575 {
576         if (__kvm_set_xcr(vcpu, index, xcr)) {
577                 kvm_inject_gp(vcpu, 0);
578                 return 1;
579         }
580         return 0;
581 }
582 EXPORT_SYMBOL_GPL(kvm_set_xcr);
583
584 int kvm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
585 {
586         unsigned long old_cr4 = kvm_read_cr4(vcpu);
587         unsigned long pdptr_bits = X86_CR4_PGE | X86_CR4_PSE |
588                                    X86_CR4_PAE | X86_CR4_SMEP;
589         if (cr4 & CR4_RESERVED_BITS)
590                 return 1;
591
592         if (!guest_cpuid_has_xsave(vcpu) && (cr4 & X86_CR4_OSXSAVE))
593                 return 1;
594
595         if (!guest_cpuid_has_smep(vcpu) && (cr4 & X86_CR4_SMEP))
596                 return 1;
597
598         if (!guest_cpuid_has_fsgsbase(vcpu) && (cr4 & X86_CR4_RDWRGSFS))
599                 return 1;
600
601         if (is_long_mode(vcpu)) {
602                 if (!(cr4 & X86_CR4_PAE))
603                         return 1;
604         } else if (is_paging(vcpu) && (cr4 & X86_CR4_PAE)
605                    && ((cr4 ^ old_cr4) & pdptr_bits)
606                    && !load_pdptrs(vcpu, vcpu->arch.walk_mmu,
607                                    kvm_read_cr3(vcpu)))
608                 return 1;
609
610         if ((cr4 & X86_CR4_PCIDE) && !(old_cr4 & X86_CR4_PCIDE)) {
611                 if (!guest_cpuid_has_pcid(vcpu))
612                         return 1;
613
614                 /* PCID can not be enabled when cr3[11:0]!=000H or EFER.LMA=0 */
615                 if ((kvm_read_cr3(vcpu) & X86_CR3_PCID_MASK) || !is_long_mode(vcpu))
616                         return 1;
617         }
618
619         if (kvm_x86_ops->set_cr4(vcpu, cr4))
620                 return 1;
621
622         if (((cr4 ^ old_cr4) & pdptr_bits) ||
623             (!(cr4 & X86_CR4_PCIDE) && (old_cr4 & X86_CR4_PCIDE)))
624                 kvm_mmu_reset_context(vcpu);
625
626         if ((cr4 ^ old_cr4) & X86_CR4_OSXSAVE)
627                 kvm_update_cpuid(vcpu);
628
629         return 0;
630 }
631 EXPORT_SYMBOL_GPL(kvm_set_cr4);
632
633 int kvm_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
634 {
635         if (cr3 == kvm_read_cr3(vcpu) && !pdptrs_changed(vcpu)) {
636                 kvm_mmu_sync_roots(vcpu);
637                 kvm_mmu_flush_tlb(vcpu);
638                 return 0;
639         }
640
641         if (is_long_mode(vcpu)) {
642                 if (kvm_read_cr4(vcpu) & X86_CR4_PCIDE) {
643                         if (cr3 & CR3_PCID_ENABLED_RESERVED_BITS)
644                                 return 1;
645                 } else
646                         if (cr3 & CR3_L_MODE_RESERVED_BITS)
647                                 return 1;
648         } else {
649                 if (is_pae(vcpu)) {
650                         if (cr3 & CR3_PAE_RESERVED_BITS)
651                                 return 1;
652                         if (is_paging(vcpu) &&
653                             !load_pdptrs(vcpu, vcpu->arch.walk_mmu, cr3))
654                                 return 1;
655                 }
656                 /*
657                  * We don't check reserved bits in nonpae mode, because
658                  * this isn't enforced, and VMware depends on this.
659                  */
660         }
661
662         /*
663          * Does the new cr3 value map to physical memory? (Note, we
664          * catch an invalid cr3 even in real-mode, because it would
665          * cause trouble later on when we turn on paging anyway.)
666          *
667          * A real CPU would silently accept an invalid cr3 and would
668          * attempt to use it - with largely undefined (and often hard
669          * to debug) behavior on the guest side.
670          */
671         if (unlikely(!gfn_to_memslot(vcpu->kvm, cr3 >> PAGE_SHIFT)))
672                 return 1;
673         vcpu->arch.cr3 = cr3;
674         __set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail);
675         vcpu->arch.mmu.new_cr3(vcpu);
676         return 0;
677 }
678 EXPORT_SYMBOL_GPL(kvm_set_cr3);
679
680 int kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8)
681 {
682         if (cr8 & CR8_RESERVED_BITS)
683                 return 1;
684         if (irqchip_in_kernel(vcpu->kvm))
685                 kvm_lapic_set_tpr(vcpu, cr8);
686         else
687                 vcpu->arch.cr8 = cr8;
688         return 0;
689 }
690 EXPORT_SYMBOL_GPL(kvm_set_cr8);
691
692 unsigned long kvm_get_cr8(struct kvm_vcpu *vcpu)
693 {
694         if (irqchip_in_kernel(vcpu->kvm))
695                 return kvm_lapic_get_cr8(vcpu);
696         else
697                 return vcpu->arch.cr8;
698 }
699 EXPORT_SYMBOL_GPL(kvm_get_cr8);
700
701 static int __kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)
702 {
703         switch (dr) {
704         case 0 ... 3:
705                 vcpu->arch.db[dr] = val;
706                 if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP))
707                         vcpu->arch.eff_db[dr] = val;
708                 break;
709         case 4:
710                 if (kvm_read_cr4_bits(vcpu, X86_CR4_DE))
711                         return 1; /* #UD */
712                 /* fall through */
713         case 6:
714                 if (val & 0xffffffff00000000ULL)
715                         return -1; /* #GP */
716                 vcpu->arch.dr6 = (val & DR6_VOLATILE) | DR6_FIXED_1;
717                 break;
718         case 5:
719                 if (kvm_read_cr4_bits(vcpu, X86_CR4_DE))
720                         return 1; /* #UD */
721                 /* fall through */
722         default: /* 7 */
723                 if (val & 0xffffffff00000000ULL)
724                         return -1; /* #GP */
725                 vcpu->arch.dr7 = (val & DR7_VOLATILE) | DR7_FIXED_1;
726                 if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)) {
727                         kvm_x86_ops->set_dr7(vcpu, vcpu->arch.dr7);
728                         vcpu->arch.switch_db_regs = (val & DR7_BP_EN_MASK);
729                 }
730                 break;
731         }
732
733         return 0;
734 }
735
736 int kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)
737 {
738         int res;
739
740         res = __kvm_set_dr(vcpu, dr, val);
741         if (res > 0)
742                 kvm_queue_exception(vcpu, UD_VECTOR);
743         else if (res < 0)
744                 kvm_inject_gp(vcpu, 0);
745
746         return res;
747 }
748 EXPORT_SYMBOL_GPL(kvm_set_dr);
749
750 static int _kvm_get_dr(struct kvm_vcpu *vcpu, int dr, unsigned long *val)
751 {
752         switch (dr) {
753         case 0 ... 3:
754                 *val = vcpu->arch.db[dr];
755                 break;
756         case 4:
757                 if (kvm_read_cr4_bits(vcpu, X86_CR4_DE))
758                         return 1;
759                 /* fall through */
760         case 6:
761                 *val = vcpu->arch.dr6;
762                 break;
763         case 5:
764                 if (kvm_read_cr4_bits(vcpu, X86_CR4_DE))
765                         return 1;
766                 /* fall through */
767         default: /* 7 */
768                 *val = vcpu->arch.dr7;
769                 break;
770         }
771
772         return 0;
773 }
774
775 int kvm_get_dr(struct kvm_vcpu *vcpu, int dr, unsigned long *val)
776 {
777         if (_kvm_get_dr(vcpu, dr, val)) {
778                 kvm_queue_exception(vcpu, UD_VECTOR);
779                 return 1;
780         }
781         return 0;
782 }
783 EXPORT_SYMBOL_GPL(kvm_get_dr);
784
785 bool kvm_rdpmc(struct kvm_vcpu *vcpu)
786 {
787         u32 ecx = kvm_register_read(vcpu, VCPU_REGS_RCX);
788         u64 data;
789         int err;
790
791         err = kvm_pmu_read_pmc(vcpu, ecx, &data);
792         if (err)
793                 return err;
794         kvm_register_write(vcpu, VCPU_REGS_RAX, (u32)data);
795         kvm_register_write(vcpu, VCPU_REGS_RDX, data >> 32);
796         return err;
797 }
798 EXPORT_SYMBOL_GPL(kvm_rdpmc);
799
800 /*
801  * List of msr numbers which we expose to userspace through KVM_GET_MSRS
802  * and KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST.
803  *
804  * This list is modified at module load time to reflect the
805  * capabilities of the host cpu. This capabilities test skips MSRs that are
806  * kvm-specific. Those are put in the beginning of the list.
807  */
808
809 #define KVM_SAVE_MSRS_BEGIN     9
810 static u32 msrs_to_save[] = {
811         MSR_KVM_SYSTEM_TIME, MSR_KVM_WALL_CLOCK,
812         MSR_KVM_SYSTEM_TIME_NEW, MSR_KVM_WALL_CLOCK_NEW,
813         HV_X64_MSR_GUEST_OS_ID, HV_X64_MSR_HYPERCALL,
814         HV_X64_MSR_APIC_ASSIST_PAGE, MSR_KVM_ASYNC_PF_EN, MSR_KVM_STEAL_TIME,
815         MSR_KVM_PV_EOI_EN,
816         MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
817         MSR_STAR,
818 #ifdef CONFIG_X86_64
819         MSR_CSTAR, MSR_KERNEL_GS_BASE, MSR_SYSCALL_MASK, MSR_LSTAR,
820 #endif
821         MSR_IA32_TSC, MSR_IA32_CR_PAT, MSR_VM_HSAVE_PA
822 };
823
824 static unsigned num_msrs_to_save;
825
826 static u32 emulated_msrs[] = {
827         MSR_IA32_TSCDEADLINE,
828         MSR_IA32_MISC_ENABLE,
829         MSR_IA32_MCG_STATUS,
830         MSR_IA32_MCG_CTL,
831 };
832
833 static int set_efer(struct kvm_vcpu *vcpu, u64 efer)
834 {
835         u64 old_efer = vcpu->arch.efer;
836
837         if (efer & efer_reserved_bits)
838                 return 1;
839
840         if (is_paging(vcpu)
841             && (vcpu->arch.efer & EFER_LME) != (efer & EFER_LME))
842                 return 1;
843
844         if (efer & EFER_FFXSR) {
845                 struct kvm_cpuid_entry2 *feat;
846
847                 feat = kvm_find_cpuid_entry(vcpu, 0x80000001, 0);
848                 if (!feat || !(feat->edx & bit(X86_FEATURE_FXSR_OPT)))
849                         return 1;
850         }
851
852         if (efer & EFER_SVME) {
853                 struct kvm_cpuid_entry2 *feat;
854
855                 feat = kvm_find_cpuid_entry(vcpu, 0x80000001, 0);
856                 if (!feat || !(feat->ecx & bit(X86_FEATURE_SVM)))
857                         return 1;
858         }
859
860         efer &= ~EFER_LMA;
861         efer |= vcpu->arch.efer & EFER_LMA;
862
863         kvm_x86_ops->set_efer(vcpu, efer);
864
865         vcpu->arch.mmu.base_role.nxe = (efer & EFER_NX) && !tdp_enabled;
866
867         /* Update reserved bits */
868         if ((efer ^ old_efer) & EFER_NX)
869                 kvm_mmu_reset_context(vcpu);
870
871         return 0;
872 }
873
874 void kvm_enable_efer_bits(u64 mask)
875 {
876        efer_reserved_bits &= ~mask;
877 }
878 EXPORT_SYMBOL_GPL(kvm_enable_efer_bits);
879
880
881 /*
882  * Writes msr value into into the appropriate "register".
883  * Returns 0 on success, non-0 otherwise.
884  * Assumes vcpu_load() was already called.
885  */
886 int kvm_set_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 data)
887 {
888         return kvm_x86_ops->set_msr(vcpu, msr_index, data);
889 }
890
891 /*
892  * Adapt set_msr() to msr_io()'s calling convention
893  */
894 static int do_set_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
895 {
896         return kvm_set_msr(vcpu, index, *data);
897 }
898
899 static void kvm_write_wall_clock(struct kvm *kvm, gpa_t wall_clock)
900 {
901         int version;
902         int r;
903         struct pvclock_wall_clock wc;
904         struct timespec boot;
905
906         if (!wall_clock)
907                 return;
908
909         r = kvm_read_guest(kvm, wall_clock, &version, sizeof(version));
910         if (r)
911                 return;
912
913         if (version & 1)
914                 ++version;  /* first time write, random junk */
915
916         ++version;
917
918         kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
919
920         /*
921          * The guest calculates current wall clock time by adding
922          * system time (updated by kvm_guest_time_update below) to the
923          * wall clock specified here.  guest system time equals host
924          * system time for us, thus we must fill in host boot time here.
925          */
926         getboottime(&boot);
927
928         if (kvm->arch.kvmclock_offset) {
929                 struct timespec ts = ns_to_timespec(kvm->arch.kvmclock_offset);
930                 boot = timespec_sub(boot, ts);
931         }
932         wc.sec = boot.tv_sec;
933         wc.nsec = boot.tv_nsec;
934         wc.version = version;
935
936         kvm_write_guest(kvm, wall_clock, &wc, sizeof(wc));
937
938         version++;
939         kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
940 }
941
942 static uint32_t div_frac(uint32_t dividend, uint32_t divisor)
943 {
944         uint32_t quotient, remainder;
945
946         /* Don't try to replace with do_div(), this one calculates
947          * "(dividend << 32) / divisor" */
948         __asm__ ( "divl %4"
949                   : "=a" (quotient), "=d" (remainder)
950                   : "0" (0), "1" (dividend), "r" (divisor) );
951         return quotient;
952 }
953
954 static void kvm_get_time_scale(uint32_t scaled_khz, uint32_t base_khz,
955                                s8 *pshift, u32 *pmultiplier)
956 {
957         uint64_t scaled64;
958         int32_t  shift = 0;
959         uint64_t tps64;
960         uint32_t tps32;
961
962         tps64 = base_khz * 1000LL;
963         scaled64 = scaled_khz * 1000LL;
964         while (tps64 > scaled64*2 || tps64 & 0xffffffff00000000ULL) {
965                 tps64 >>= 1;
966                 shift--;
967         }
968
969         tps32 = (uint32_t)tps64;
970         while (tps32 <= scaled64 || scaled64 & 0xffffffff00000000ULL) {
971                 if (scaled64 & 0xffffffff00000000ULL || tps32 & 0x80000000)
972                         scaled64 >>= 1;
973                 else
974                         tps32 <<= 1;
975                 shift++;
976         }
977
978         *pshift = shift;
979         *pmultiplier = div_frac(scaled64, tps32);
980
981         pr_debug("%s: base_khz %u => %u, shift %d, mul %u\n",
982                  __func__, base_khz, scaled_khz, shift, *pmultiplier);
983 }
984
985 static inline u64 get_kernel_ns(void)
986 {
987         struct timespec ts;
988
989         WARN_ON(preemptible());
990         ktime_get_ts(&ts);
991         monotonic_to_bootbased(&ts);
992         return timespec_to_ns(&ts);
993 }
994
995 static DEFINE_PER_CPU(unsigned long, cpu_tsc_khz);
996 unsigned long max_tsc_khz;
997
998 static inline u64 nsec_to_cycles(struct kvm_vcpu *vcpu, u64 nsec)
999 {
1000         return pvclock_scale_delta(nsec, vcpu->arch.virtual_tsc_mult,
1001                                    vcpu->arch.virtual_tsc_shift);
1002 }
1003
1004 static u32 adjust_tsc_khz(u32 khz, s32 ppm)
1005 {
1006         u64 v = (u64)khz * (1000000 + ppm);
1007         do_div(v, 1000000);
1008         return v;
1009 }
1010
1011 static void kvm_set_tsc_khz(struct kvm_vcpu *vcpu, u32 this_tsc_khz)
1012 {
1013         u32 thresh_lo, thresh_hi;
1014         int use_scaling = 0;
1015
1016         /* Compute a scale to convert nanoseconds in TSC cycles */
1017         kvm_get_time_scale(this_tsc_khz, NSEC_PER_SEC / 1000,
1018                            &vcpu->arch.virtual_tsc_shift,
1019                            &vcpu->arch.virtual_tsc_mult);
1020         vcpu->arch.virtual_tsc_khz = this_tsc_khz;
1021
1022         /*
1023          * Compute the variation in TSC rate which is acceptable
1024          * within the range of tolerance and decide if the
1025          * rate being applied is within that bounds of the hardware
1026          * rate.  If so, no scaling or compensation need be done.
1027          */
1028         thresh_lo = adjust_tsc_khz(tsc_khz, -tsc_tolerance_ppm);
1029         thresh_hi = adjust_tsc_khz(tsc_khz, tsc_tolerance_ppm);
1030         if (this_tsc_khz < thresh_lo || this_tsc_khz > thresh_hi) {
1031                 pr_debug("kvm: requested TSC rate %u falls outside tolerance [%u,%u]\n", this_tsc_khz, thresh_lo, thresh_hi);
1032                 use_scaling = 1;
1033         }
1034         kvm_x86_ops->set_tsc_khz(vcpu, this_tsc_khz, use_scaling);
1035 }
1036
1037 static u64 compute_guest_tsc(struct kvm_vcpu *vcpu, s64 kernel_ns)
1038 {
1039         u64 tsc = pvclock_scale_delta(kernel_ns-vcpu->arch.this_tsc_nsec,
1040                                       vcpu->arch.virtual_tsc_mult,
1041                                       vcpu->arch.virtual_tsc_shift);
1042         tsc += vcpu->arch.this_tsc_write;
1043         return tsc;
1044 }
1045
1046 void kvm_write_tsc(struct kvm_vcpu *vcpu, u64 data)
1047 {
1048         struct kvm *kvm = vcpu->kvm;
1049         u64 offset, ns, elapsed;
1050         unsigned long flags;
1051         s64 usdiff;
1052
1053         raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags);
1054         offset = kvm_x86_ops->compute_tsc_offset(vcpu, data);
1055         ns = get_kernel_ns();
1056         elapsed = ns - kvm->arch.last_tsc_nsec;
1057
1058         /* n.b - signed multiplication and division required */
1059         usdiff = data - kvm->arch.last_tsc_write;
1060 #ifdef CONFIG_X86_64
1061         usdiff = (usdiff * 1000) / vcpu->arch.virtual_tsc_khz;
1062 #else
1063         /* do_div() only does unsigned */
1064         asm("idivl %2; xor %%edx, %%edx"
1065             : "=A"(usdiff)
1066             : "A"(usdiff * 1000), "rm"(vcpu->arch.virtual_tsc_khz));
1067 #endif
1068         do_div(elapsed, 1000);
1069         usdiff -= elapsed;
1070         if (usdiff < 0)
1071                 usdiff = -usdiff;
1072
1073         /*
1074          * Special case: TSC write with a small delta (1 second) of virtual
1075          * cycle time against real time is interpreted as an attempt to
1076          * synchronize the CPU.
1077          *
1078          * For a reliable TSC, we can match TSC offsets, and for an unstable
1079          * TSC, we add elapsed time in this computation.  We could let the
1080          * compensation code attempt to catch up if we fall behind, but
1081          * it's better to try to match offsets from the beginning.
1082          */
1083         if (usdiff < USEC_PER_SEC &&
1084             vcpu->arch.virtual_tsc_khz == kvm->arch.last_tsc_khz) {
1085                 if (!check_tsc_unstable()) {
1086                         offset = kvm->arch.cur_tsc_offset;
1087                         pr_debug("kvm: matched tsc offset for %llu\n", data);
1088                 } else {
1089                         u64 delta = nsec_to_cycles(vcpu, elapsed);
1090                         data += delta;
1091                         offset = kvm_x86_ops->compute_tsc_offset(vcpu, data);
1092                         pr_debug("kvm: adjusted tsc offset by %llu\n", delta);
1093                 }
1094         } else {
1095                 /*
1096                  * We split periods of matched TSC writes into generations.
1097                  * For each generation, we track the original measured
1098                  * nanosecond time, offset, and write, so if TSCs are in
1099                  * sync, we can match exact offset, and if not, we can match
1100                  * exact software computaion in compute_guest_tsc()
1101                  *
1102                  * These values are tracked in kvm->arch.cur_xxx variables.
1103                  */
1104                 kvm->arch.cur_tsc_generation++;
1105                 kvm->arch.cur_tsc_nsec = ns;
1106                 kvm->arch.cur_tsc_write = data;
1107                 kvm->arch.cur_tsc_offset = offset;
1108                 pr_debug("kvm: new tsc generation %u, clock %llu\n",
1109                          kvm->arch.cur_tsc_generation, data);
1110         }
1111
1112         /*
1113          * We also track th most recent recorded KHZ, write and time to
1114          * allow the matching interval to be extended at each write.
1115          */
1116         kvm->arch.last_tsc_nsec = ns;
1117         kvm->arch.last_tsc_write = data;
1118         kvm->arch.last_tsc_khz = vcpu->arch.virtual_tsc_khz;
1119
1120         /* Reset of TSC must disable overshoot protection below */
1121         vcpu->arch.hv_clock.tsc_timestamp = 0;
1122         vcpu->arch.last_guest_tsc = data;
1123
1124         /* Keep track of which generation this VCPU has synchronized to */
1125         vcpu->arch.this_tsc_generation = kvm->arch.cur_tsc_generation;
1126         vcpu->arch.this_tsc_nsec = kvm->arch.cur_tsc_nsec;
1127         vcpu->arch.this_tsc_write = kvm->arch.cur_tsc_write;
1128
1129         kvm_x86_ops->write_tsc_offset(vcpu, offset);
1130         raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags);
1131 }
1132
1133 EXPORT_SYMBOL_GPL(kvm_write_tsc);
1134
1135 static int kvm_guest_time_update(struct kvm_vcpu *v)
1136 {
1137         unsigned long flags;
1138         struct kvm_vcpu_arch *vcpu = &v->arch;
1139         void *shared_kaddr;
1140         unsigned long this_tsc_khz;
1141         s64 kernel_ns, max_kernel_ns;
1142         u64 tsc_timestamp;
1143
1144         /* Keep irq disabled to prevent changes to the clock */
1145         local_irq_save(flags);
1146         tsc_timestamp = kvm_x86_ops->read_l1_tsc(v);
1147         kernel_ns = get_kernel_ns();
1148         this_tsc_khz = __get_cpu_var(cpu_tsc_khz);
1149         if (unlikely(this_tsc_khz == 0)) {
1150                 local_irq_restore(flags);
1151                 kvm_make_request(KVM_REQ_CLOCK_UPDATE, v);
1152                 return 1;
1153         }
1154
1155         /*
1156          * We may have to catch up the TSC to match elapsed wall clock
1157          * time for two reasons, even if kvmclock is used.
1158          *   1) CPU could have been running below the maximum TSC rate
1159          *   2) Broken TSC compensation resets the base at each VCPU
1160          *      entry to avoid unknown leaps of TSC even when running
1161          *      again on the same CPU.  This may cause apparent elapsed
1162          *      time to disappear, and the guest to stand still or run
1163          *      very slowly.
1164          */
1165         if (vcpu->tsc_catchup) {
1166                 u64 tsc = compute_guest_tsc(v, kernel_ns);
1167                 if (tsc > tsc_timestamp) {
1168                         adjust_tsc_offset_guest(v, tsc - tsc_timestamp);
1169                         tsc_timestamp = tsc;
1170                 }
1171         }
1172
1173         local_irq_restore(flags);
1174
1175         if (!vcpu->time_page)
1176                 return 0;
1177
1178         /*
1179          * Time as measured by the TSC may go backwards when resetting the base
1180          * tsc_timestamp.  The reason for this is that the TSC resolution is
1181          * higher than the resolution of the other clock scales.  Thus, many
1182          * possible measurments of the TSC correspond to one measurement of any
1183          * other clock, and so a spread of values is possible.  This is not a
1184          * problem for the computation of the nanosecond clock; with TSC rates
1185          * around 1GHZ, there can only be a few cycles which correspond to one
1186          * nanosecond value, and any path through this code will inevitably
1187          * take longer than that.  However, with the kernel_ns value itself,
1188          * the precision may be much lower, down to HZ granularity.  If the
1189          * first sampling of TSC against kernel_ns ends in the low part of the
1190          * range, and the second in the high end of the range, we can get:
1191          *
1192          * (TSC - offset_low) * S + kns_old > (TSC - offset_high) * S + kns_new
1193          *
1194          * As the sampling errors potentially range in the thousands of cycles,
1195          * it is possible such a time value has already been observed by the
1196          * guest.  To protect against this, we must compute the system time as
1197          * observed by the guest and ensure the new system time is greater.
1198          */
1199         max_kernel_ns = 0;
1200         if (vcpu->hv_clock.tsc_timestamp) {
1201                 max_kernel_ns = vcpu->last_guest_tsc -
1202                                 vcpu->hv_clock.tsc_timestamp;
1203                 max_kernel_ns = pvclock_scale_delta(max_kernel_ns,
1204                                     vcpu->hv_clock.tsc_to_system_mul,
1205                                     vcpu->hv_clock.tsc_shift);
1206                 max_kernel_ns += vcpu->last_kernel_ns;
1207         }
1208
1209         if (unlikely(vcpu->hw_tsc_khz != this_tsc_khz)) {
1210                 kvm_get_time_scale(NSEC_PER_SEC / 1000, this_tsc_khz,
1211                                    &vcpu->hv_clock.tsc_shift,
1212                                    &vcpu->hv_clock.tsc_to_system_mul);
1213                 vcpu->hw_tsc_khz = this_tsc_khz;
1214         }
1215
1216         if (max_kernel_ns > kernel_ns)
1217                 kernel_ns = max_kernel_ns;
1218
1219         /* With all the info we got, fill in the values */
1220         vcpu->hv_clock.tsc_timestamp = tsc_timestamp;
1221         vcpu->hv_clock.system_time = kernel_ns + v->kvm->arch.kvmclock_offset;
1222         vcpu->last_kernel_ns = kernel_ns;
1223         vcpu->last_guest_tsc = tsc_timestamp;
1224         vcpu->hv_clock.flags = 0;
1225
1226         /*
1227          * The interface expects us to write an even number signaling that the
1228          * update is finished. Since the guest won't see the intermediate
1229          * state, we just increase by 2 at the end.
1230          */
1231         vcpu->hv_clock.version += 2;
1232
1233         shared_kaddr = kmap_atomic(vcpu->time_page);
1234
1235         memcpy(shared_kaddr + vcpu->time_offset, &vcpu->hv_clock,
1236                sizeof(vcpu->hv_clock));
1237
1238         kunmap_atomic(shared_kaddr);
1239
1240         mark_page_dirty(v->kvm, vcpu->time >> PAGE_SHIFT);
1241         return 0;
1242 }
1243
1244 static bool msr_mtrr_valid(unsigned msr)
1245 {
1246         switch (msr) {
1247         case 0x200 ... 0x200 + 2 * KVM_NR_VAR_MTRR - 1:
1248         case MSR_MTRRfix64K_00000:
1249         case MSR_MTRRfix16K_80000:
1250         case MSR_MTRRfix16K_A0000:
1251         case MSR_MTRRfix4K_C0000:
1252         case MSR_MTRRfix4K_C8000:
1253         case MSR_MTRRfix4K_D0000:
1254         case MSR_MTRRfix4K_D8000:
1255         case MSR_MTRRfix4K_E0000:
1256         case MSR_MTRRfix4K_E8000:
1257         case MSR_MTRRfix4K_F0000:
1258         case MSR_MTRRfix4K_F8000:
1259         case MSR_MTRRdefType:
1260         case MSR_IA32_CR_PAT:
1261                 return true;
1262         case 0x2f8:
1263                 return true;
1264         }
1265         return false;
1266 }
1267
1268 static bool valid_pat_type(unsigned t)
1269 {
1270         return t < 8 && (1 << t) & 0xf3; /* 0, 1, 4, 5, 6, 7 */
1271 }
1272
1273 static bool valid_mtrr_type(unsigned t)
1274 {
1275         return t < 8 && (1 << t) & 0x73; /* 0, 1, 4, 5, 6 */
1276 }
1277
1278 static bool mtrr_valid(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1279 {
1280         int i;
1281
1282         if (!msr_mtrr_valid(msr))
1283                 return false;
1284
1285         if (msr == MSR_IA32_CR_PAT) {
1286                 for (i = 0; i < 8; i++)
1287                         if (!valid_pat_type((data >> (i * 8)) & 0xff))
1288                                 return false;
1289                 return true;
1290         } else if (msr == MSR_MTRRdefType) {
1291                 if (data & ~0xcff)
1292                         return false;
1293                 return valid_mtrr_type(data & 0xff);
1294         } else if (msr >= MSR_MTRRfix64K_00000 && msr <= MSR_MTRRfix4K_F8000) {
1295                 for (i = 0; i < 8 ; i++)
1296                         if (!valid_mtrr_type((data >> (i * 8)) & 0xff))
1297                                 return false;
1298                 return true;
1299         }
1300
1301         /* variable MTRRs */
1302         return valid_mtrr_type(data & 0xff);
1303 }
1304
1305 static int set_msr_mtrr(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1306 {
1307         u64 *p = (u64 *)&vcpu->arch.mtrr_state.fixed_ranges;
1308
1309         if (!mtrr_valid(vcpu, msr, data))
1310                 return 1;
1311
1312         if (msr == MSR_MTRRdefType) {
1313                 vcpu->arch.mtrr_state.def_type = data;
1314                 vcpu->arch.mtrr_state.enabled = (data & 0xc00) >> 10;
1315         } else if (msr == MSR_MTRRfix64K_00000)
1316                 p[0] = data;
1317         else if (msr == MSR_MTRRfix16K_80000 || msr == MSR_MTRRfix16K_A0000)
1318                 p[1 + msr - MSR_MTRRfix16K_80000] = data;
1319         else if (msr >= MSR_MTRRfix4K_C0000 && msr <= MSR_MTRRfix4K_F8000)
1320                 p[3 + msr - MSR_MTRRfix4K_C0000] = data;
1321         else if (msr == MSR_IA32_CR_PAT)
1322                 vcpu->arch.pat = data;
1323         else {  /* Variable MTRRs */
1324                 int idx, is_mtrr_mask;
1325                 u64 *pt;
1326
1327                 idx = (msr - 0x200) / 2;
1328                 is_mtrr_mask = msr - 0x200 - 2 * idx;
1329                 if (!is_mtrr_mask)
1330                         pt =
1331                           (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].base_lo;
1332                 else
1333                         pt =
1334                           (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].mask_lo;
1335                 *pt = data;
1336         }
1337
1338         kvm_mmu_reset_context(vcpu);
1339         return 0;
1340 }
1341
1342 static int set_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1343 {
1344         u64 mcg_cap = vcpu->arch.mcg_cap;
1345         unsigned bank_num = mcg_cap & 0xff;
1346
1347         switch (msr) {
1348         case MSR_IA32_MCG_STATUS:
1349                 vcpu->arch.mcg_status = data;
1350                 break;
1351         case MSR_IA32_MCG_CTL:
1352                 if (!(mcg_cap & MCG_CTL_P))
1353                         return 1;
1354                 if (data != 0 && data != ~(u64)0)
1355                         return -1;
1356                 vcpu->arch.mcg_ctl = data;
1357                 break;
1358         default:
1359                 if (msr >= MSR_IA32_MC0_CTL &&
1360                     msr < MSR_IA32_MC0_CTL + 4 * bank_num) {
1361                         u32 offset = msr - MSR_IA32_MC0_CTL;
1362                         /* only 0 or all 1s can be written to IA32_MCi_CTL
1363                          * some Linux kernels though clear bit 10 in bank 4 to
1364                          * workaround a BIOS/GART TBL issue on AMD K8s, ignore
1365                          * this to avoid an uncatched #GP in the guest
1366                          */
1367                         if ((offset & 0x3) == 0 &&
1368                             data != 0 && (data | (1 << 10)) != ~(u64)0)
1369                                 return -1;
1370                         vcpu->arch.mce_banks[offset] = data;
1371                         break;
1372                 }
1373                 return 1;
1374         }
1375         return 0;
1376 }
1377
1378 static int xen_hvm_config(struct kvm_vcpu *vcpu, u64 data)
1379 {
1380         struct kvm *kvm = vcpu->kvm;
1381         int lm = is_long_mode(vcpu);
1382         u8 *blob_addr = lm ? (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_64
1383                 : (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_32;
1384         u8 blob_size = lm ? kvm->arch.xen_hvm_config.blob_size_64
1385                 : kvm->arch.xen_hvm_config.blob_size_32;
1386         u32 page_num = data & ~PAGE_MASK;
1387         u64 page_addr = data & PAGE_MASK;
1388         u8 *page;
1389         int r;
1390
1391         r = -E2BIG;
1392         if (page_num >= blob_size)
1393                 goto out;
1394         r = -ENOMEM;
1395         page = memdup_user(blob_addr + (page_num * PAGE_SIZE), PAGE_SIZE);
1396         if (IS_ERR(page)) {
1397                 r = PTR_ERR(page);
1398                 goto out;
1399         }
1400         if (kvm_write_guest(kvm, page_addr, page, PAGE_SIZE))
1401                 goto out_free;
1402         r = 0;
1403 out_free:
1404         kfree(page);
1405 out:
1406         return r;
1407 }
1408
1409 static bool kvm_hv_hypercall_enabled(struct kvm *kvm)
1410 {
1411         return kvm->arch.hv_hypercall & HV_X64_MSR_HYPERCALL_ENABLE;
1412 }
1413
1414 static bool kvm_hv_msr_partition_wide(u32 msr)
1415 {
1416         bool r = false;
1417         switch (msr) {
1418         case HV_X64_MSR_GUEST_OS_ID:
1419         case HV_X64_MSR_HYPERCALL:
1420                 r = true;
1421                 break;
1422         }
1423
1424         return r;
1425 }
1426
1427 static int set_msr_hyperv_pw(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1428 {
1429         struct kvm *kvm = vcpu->kvm;
1430
1431         switch (msr) {
1432         case HV_X64_MSR_GUEST_OS_ID:
1433                 kvm->arch.hv_guest_os_id = data;
1434                 /* setting guest os id to zero disables hypercall page */
1435                 if (!kvm->arch.hv_guest_os_id)
1436                         kvm->arch.hv_hypercall &= ~HV_X64_MSR_HYPERCALL_ENABLE;
1437                 break;
1438         case HV_X64_MSR_HYPERCALL: {
1439                 u64 gfn;
1440                 unsigned long addr;
1441                 u8 instructions[4];
1442
1443                 /* if guest os id is not set hypercall should remain disabled */
1444                 if (!kvm->arch.hv_guest_os_id)
1445                         break;
1446                 if (!(data & HV_X64_MSR_HYPERCALL_ENABLE)) {
1447                         kvm->arch.hv_hypercall = data;
1448                         break;
1449                 }
1450                 gfn = data >> HV_X64_MSR_HYPERCALL_PAGE_ADDRESS_SHIFT;
1451                 addr = gfn_to_hva(kvm, gfn);
1452                 if (kvm_is_error_hva(addr))
1453                         return 1;
1454                 kvm_x86_ops->patch_hypercall(vcpu, instructions);
1455                 ((unsigned char *)instructions)[3] = 0xc3; /* ret */
1456                 if (__copy_to_user((void __user *)addr, instructions, 4))
1457                         return 1;
1458                 kvm->arch.hv_hypercall = data;
1459                 break;
1460         }
1461         default:
1462                 vcpu_unimpl(vcpu, "HYPER-V unimplemented wrmsr: 0x%x "
1463                             "data 0x%llx\n", msr, data);
1464                 return 1;
1465         }
1466         return 0;
1467 }
1468
1469 static int set_msr_hyperv(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1470 {
1471         switch (msr) {
1472         case HV_X64_MSR_APIC_ASSIST_PAGE: {
1473                 unsigned long addr;
1474
1475                 if (!(data & HV_X64_MSR_APIC_ASSIST_PAGE_ENABLE)) {
1476                         vcpu->arch.hv_vapic = data;
1477                         break;
1478                 }
1479                 addr = gfn_to_hva(vcpu->kvm, data >>
1480                                   HV_X64_MSR_APIC_ASSIST_PAGE_ADDRESS_SHIFT);
1481                 if (kvm_is_error_hva(addr))
1482                         return 1;
1483                 if (__clear_user((void __user *)addr, PAGE_SIZE))
1484                         return 1;
1485                 vcpu->arch.hv_vapic = data;
1486                 break;
1487         }
1488         case HV_X64_MSR_EOI:
1489                 return kvm_hv_vapic_msr_write(vcpu, APIC_EOI, data);
1490         case HV_X64_MSR_ICR:
1491                 return kvm_hv_vapic_msr_write(vcpu, APIC_ICR, data);
1492         case HV_X64_MSR_TPR:
1493                 return kvm_hv_vapic_msr_write(vcpu, APIC_TASKPRI, data);
1494         default:
1495                 vcpu_unimpl(vcpu, "HYPER-V unimplemented wrmsr: 0x%x "
1496                             "data 0x%llx\n", msr, data);
1497                 return 1;
1498         }
1499
1500         return 0;
1501 }
1502
1503 static int kvm_pv_enable_async_pf(struct kvm_vcpu *vcpu, u64 data)
1504 {
1505         gpa_t gpa = data & ~0x3f;
1506
1507         /* Bits 2:5 are resrved, Should be zero */
1508         if (data & 0x3c)
1509                 return 1;
1510
1511         vcpu->arch.apf.msr_val = data;
1512
1513         if (!(data & KVM_ASYNC_PF_ENABLED)) {
1514                 kvm_clear_async_pf_completion_queue(vcpu);
1515                 kvm_async_pf_hash_reset(vcpu);
1516                 return 0;
1517         }
1518
1519         if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.apf.data, gpa))
1520                 return 1;
1521
1522         vcpu->arch.apf.send_user_only = !(data & KVM_ASYNC_PF_SEND_ALWAYS);
1523         kvm_async_pf_wakeup_all(vcpu);
1524         return 0;
1525 }
1526
1527 static void kvmclock_reset(struct kvm_vcpu *vcpu)
1528 {
1529         if (vcpu->arch.time_page) {
1530                 kvm_release_page_dirty(vcpu->arch.time_page);
1531                 vcpu->arch.time_page = NULL;
1532         }
1533 }
1534
1535 static void accumulate_steal_time(struct kvm_vcpu *vcpu)
1536 {
1537         u64 delta;
1538
1539         if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED))
1540                 return;
1541
1542         delta = current->sched_info.run_delay - vcpu->arch.st.last_steal;
1543         vcpu->arch.st.last_steal = current->sched_info.run_delay;
1544         vcpu->arch.st.accum_steal = delta;
1545 }
1546
1547 static void record_steal_time(struct kvm_vcpu *vcpu)
1548 {
1549         if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED))
1550                 return;
1551
1552         if (unlikely(kvm_read_guest_cached(vcpu->kvm, &vcpu->arch.st.stime,
1553                 &vcpu->arch.st.steal, sizeof(struct kvm_steal_time))))
1554                 return;
1555
1556         vcpu->arch.st.steal.steal += vcpu->arch.st.accum_steal;
1557         vcpu->arch.st.steal.version += 2;
1558         vcpu->arch.st.accum_steal = 0;
1559
1560         kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.st.stime,
1561                 &vcpu->arch.st.steal, sizeof(struct kvm_steal_time));
1562 }
1563
1564 int kvm_set_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1565 {
1566         bool pr = false;
1567
1568         switch (msr) {
1569         case MSR_EFER:
1570                 return set_efer(vcpu, data);
1571         case MSR_K7_HWCR:
1572                 data &= ~(u64)0x40;     /* ignore flush filter disable */
1573                 data &= ~(u64)0x100;    /* ignore ignne emulation enable */
1574                 data &= ~(u64)0x8;      /* ignore TLB cache disable */
1575                 if (data != 0) {
1576                         vcpu_unimpl(vcpu, "unimplemented HWCR wrmsr: 0x%llx\n",
1577                                     data);
1578                         return 1;
1579                 }
1580                 break;
1581         case MSR_FAM10H_MMIO_CONF_BASE:
1582                 if (data != 0) {
1583                         vcpu_unimpl(vcpu, "unimplemented MMIO_CONF_BASE wrmsr: "
1584                                     "0x%llx\n", data);
1585                         return 1;
1586                 }
1587                 break;
1588         case MSR_AMD64_NB_CFG:
1589                 break;
1590         case MSR_IA32_DEBUGCTLMSR:
1591                 if (!data) {
1592                         /* We support the non-activated case already */
1593                         break;
1594                 } else if (data & ~(DEBUGCTLMSR_LBR | DEBUGCTLMSR_BTF)) {
1595                         /* Values other than LBR and BTF are vendor-specific,
1596                            thus reserved and should throw a #GP */
1597                         return 1;
1598                 }
1599                 vcpu_unimpl(vcpu, "%s: MSR_IA32_DEBUGCTLMSR 0x%llx, nop\n",
1600                             __func__, data);
1601                 break;
1602         case MSR_IA32_UCODE_REV:
1603         case MSR_IA32_UCODE_WRITE:
1604         case MSR_VM_HSAVE_PA:
1605         case MSR_AMD64_PATCH_LOADER:
1606                 break;
1607         case 0x200 ... 0x2ff:
1608                 return set_msr_mtrr(vcpu, msr, data);
1609         case MSR_IA32_APICBASE:
1610                 kvm_set_apic_base(vcpu, data);
1611                 break;
1612         case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff:
1613                 return kvm_x2apic_msr_write(vcpu, msr, data);
1614         case MSR_IA32_TSCDEADLINE:
1615                 kvm_set_lapic_tscdeadline_msr(vcpu, data);
1616                 break;
1617         case MSR_IA32_MISC_ENABLE:
1618                 vcpu->arch.ia32_misc_enable_msr = data;
1619                 break;
1620         case MSR_KVM_WALL_CLOCK_NEW:
1621         case MSR_KVM_WALL_CLOCK:
1622                 vcpu->kvm->arch.wall_clock = data;
1623                 kvm_write_wall_clock(vcpu->kvm, data);
1624                 break;
1625         case MSR_KVM_SYSTEM_TIME_NEW:
1626         case MSR_KVM_SYSTEM_TIME: {
1627                 kvmclock_reset(vcpu);
1628
1629                 vcpu->arch.time = data;
1630                 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
1631
1632                 /* we verify if the enable bit is set... */
1633                 if (!(data & 1))
1634                         break;
1635
1636                 /* ...but clean it before doing the actual write */
1637                 vcpu->arch.time_offset = data & ~(PAGE_MASK | 1);
1638
1639                 vcpu->arch.time_page =
1640                                 gfn_to_page(vcpu->kvm, data >> PAGE_SHIFT);
1641
1642                 if (is_error_page(vcpu->arch.time_page)) {
1643                         kvm_release_page_clean(vcpu->arch.time_page);
1644                         vcpu->arch.time_page = NULL;
1645                 }
1646                 break;
1647         }
1648         case MSR_KVM_ASYNC_PF_EN:
1649                 if (kvm_pv_enable_async_pf(vcpu, data))
1650                         return 1;
1651                 break;
1652         case MSR_KVM_STEAL_TIME:
1653
1654                 if (unlikely(!sched_info_on()))
1655                         return 1;
1656
1657                 if (data & KVM_STEAL_RESERVED_MASK)
1658                         return 1;
1659
1660                 if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.st.stime,
1661                                                         data & KVM_STEAL_VALID_BITS))
1662                         return 1;
1663
1664                 vcpu->arch.st.msr_val = data;
1665
1666                 if (!(data & KVM_MSR_ENABLED))
1667                         break;
1668
1669                 vcpu->arch.st.last_steal = current->sched_info.run_delay;
1670
1671                 preempt_disable();
1672                 accumulate_steal_time(vcpu);
1673                 preempt_enable();
1674
1675                 kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
1676
1677                 break;
1678         case MSR_KVM_PV_EOI_EN:
1679                 if (kvm_lapic_enable_pv_eoi(vcpu, data))
1680                         return 1;
1681                 break;
1682
1683         case MSR_IA32_MCG_CTL:
1684         case MSR_IA32_MCG_STATUS:
1685         case MSR_IA32_MC0_CTL ... MSR_IA32_MC0_CTL + 4 * KVM_MAX_MCE_BANKS - 1:
1686                 return set_msr_mce(vcpu, msr, data);
1687
1688         /* Performance counters are not protected by a CPUID bit,
1689          * so we should check all of them in the generic path for the sake of
1690          * cross vendor migration.
1691          * Writing a zero into the event select MSRs disables them,
1692          * which we perfectly emulate ;-). Any other value should be at least
1693          * reported, some guests depend on them.
1694          */
1695         case MSR_K7_EVNTSEL0:
1696         case MSR_K7_EVNTSEL1:
1697         case MSR_K7_EVNTSEL2:
1698         case MSR_K7_EVNTSEL3:
1699                 if (data != 0)
1700                         vcpu_unimpl(vcpu, "unimplemented perfctr wrmsr: "
1701                                     "0x%x data 0x%llx\n", msr, data);
1702                 break;
1703         /* at least RHEL 4 unconditionally writes to the perfctr registers,
1704          * so we ignore writes to make it happy.
1705          */
1706         case MSR_K7_PERFCTR0:
1707         case MSR_K7_PERFCTR1:
1708         case MSR_K7_PERFCTR2:
1709         case MSR_K7_PERFCTR3:
1710                 vcpu_unimpl(vcpu, "unimplemented perfctr wrmsr: "
1711                             "0x%x data 0x%llx\n", msr, data);
1712                 break;
1713         case MSR_P6_PERFCTR0:
1714         case MSR_P6_PERFCTR1:
1715                 pr = true;
1716         case MSR_P6_EVNTSEL0:
1717         case MSR_P6_EVNTSEL1:
1718                 if (kvm_pmu_msr(vcpu, msr))
1719                         return kvm_pmu_set_msr(vcpu, msr, data);
1720
1721                 if (pr || data != 0)
1722                         vcpu_unimpl(vcpu, "disabled perfctr wrmsr: "
1723                                     "0x%x data 0x%llx\n", msr, data);
1724                 break;
1725         case MSR_K7_CLK_CTL:
1726                 /*
1727                  * Ignore all writes to this no longer documented MSR.
1728                  * Writes are only relevant for old K7 processors,
1729                  * all pre-dating SVM, but a recommended workaround from
1730                  * AMD for these chips. It is possible to speicify the
1731                  * affected processor models on the command line, hence
1732                  * the need to ignore the workaround.
1733                  */
1734                 break;
1735         case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
1736                 if (kvm_hv_msr_partition_wide(msr)) {
1737                         int r;
1738                         mutex_lock(&vcpu->kvm->lock);
1739                         r = set_msr_hyperv_pw(vcpu, msr, data);
1740                         mutex_unlock(&vcpu->kvm->lock);
1741                         return r;
1742                 } else
1743                         return set_msr_hyperv(vcpu, msr, data);
1744                 break;
1745         case MSR_IA32_BBL_CR_CTL3:
1746                 /* Drop writes to this legacy MSR -- see rdmsr
1747                  * counterpart for further detail.
1748                  */
1749                 vcpu_unimpl(vcpu, "ignored wrmsr: 0x%x data %llx\n", msr, data);
1750                 break;
1751         case MSR_AMD64_OSVW_ID_LENGTH:
1752                 if (!guest_cpuid_has_osvw(vcpu))
1753                         return 1;
1754                 vcpu->arch.osvw.length = data;
1755                 break;
1756         case MSR_AMD64_OSVW_STATUS:
1757                 if (!guest_cpuid_has_osvw(vcpu))
1758                         return 1;
1759                 vcpu->arch.osvw.status = data;
1760                 break;
1761         default:
1762                 if (msr && (msr == vcpu->kvm->arch.xen_hvm_config.msr))
1763                         return xen_hvm_config(vcpu, data);
1764                 if (kvm_pmu_msr(vcpu, msr))
1765                         return kvm_pmu_set_msr(vcpu, msr, data);
1766                 if (!ignore_msrs) {
1767                         vcpu_unimpl(vcpu, "unhandled wrmsr: 0x%x data %llx\n",
1768                                     msr, data);
1769                         return 1;
1770                 } else {
1771                         vcpu_unimpl(vcpu, "ignored wrmsr: 0x%x data %llx\n",
1772                                     msr, data);
1773                         break;
1774                 }
1775         }
1776         return 0;
1777 }
1778 EXPORT_SYMBOL_GPL(kvm_set_msr_common);
1779
1780
1781 /*
1782  * Reads an msr value (of 'msr_index') into 'pdata'.
1783  * Returns 0 on success, non-0 otherwise.
1784  * Assumes vcpu_load() was already called.
1785  */
1786 int kvm_get_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata)
1787 {
1788         return kvm_x86_ops->get_msr(vcpu, msr_index, pdata);
1789 }
1790
1791 static int get_msr_mtrr(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
1792 {
1793         u64 *p = (u64 *)&vcpu->arch.mtrr_state.fixed_ranges;
1794
1795         if (!msr_mtrr_valid(msr))
1796                 return 1;
1797
1798         if (msr == MSR_MTRRdefType)
1799                 *pdata = vcpu->arch.mtrr_state.def_type +
1800                          (vcpu->arch.mtrr_state.enabled << 10);
1801         else if (msr == MSR_MTRRfix64K_00000)
1802                 *pdata = p[0];
1803         else if (msr == MSR_MTRRfix16K_80000 || msr == MSR_MTRRfix16K_A0000)
1804                 *pdata = p[1 + msr - MSR_MTRRfix16K_80000];
1805         else if (msr >= MSR_MTRRfix4K_C0000 && msr <= MSR_MTRRfix4K_F8000)
1806                 *pdata = p[3 + msr - MSR_MTRRfix4K_C0000];
1807         else if (msr == MSR_IA32_CR_PAT)
1808                 *pdata = vcpu->arch.pat;
1809         else {  /* Variable MTRRs */
1810                 int idx, is_mtrr_mask;
1811                 u64 *pt;
1812
1813                 idx = (msr - 0x200) / 2;
1814                 is_mtrr_mask = msr - 0x200 - 2 * idx;
1815                 if (!is_mtrr_mask)
1816                         pt =
1817                           (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].base_lo;
1818                 else
1819                         pt =
1820                           (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].mask_lo;
1821                 *pdata = *pt;
1822         }
1823
1824         return 0;
1825 }
1826
1827 static int get_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
1828 {
1829         u64 data;
1830         u64 mcg_cap = vcpu->arch.mcg_cap;
1831         unsigned bank_num = mcg_cap & 0xff;
1832
1833         switch (msr) {
1834         case MSR_IA32_P5_MC_ADDR:
1835         case MSR_IA32_P5_MC_TYPE:
1836                 data = 0;
1837                 break;
1838         case MSR_IA32_MCG_CAP:
1839                 data = vcpu->arch.mcg_cap;
1840                 break;
1841         case MSR_IA32_MCG_CTL:
1842                 if (!(mcg_cap & MCG_CTL_P))
1843                         return 1;
1844                 data = vcpu->arch.mcg_ctl;
1845                 break;
1846         case MSR_IA32_MCG_STATUS:
1847                 data = vcpu->arch.mcg_status;
1848                 break;
1849         default:
1850                 if (msr >= MSR_IA32_MC0_CTL &&
1851                     msr < MSR_IA32_MC0_CTL + 4 * bank_num) {
1852                         u32 offset = msr - MSR_IA32_MC0_CTL;
1853                         data = vcpu->arch.mce_banks[offset];
1854                         break;
1855                 }
1856                 return 1;
1857         }
1858         *pdata = data;
1859         return 0;
1860 }
1861
1862 static int get_msr_hyperv_pw(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
1863 {
1864         u64 data = 0;
1865         struct kvm *kvm = vcpu->kvm;
1866
1867         switch (msr) {
1868         case HV_X64_MSR_GUEST_OS_ID:
1869                 data = kvm->arch.hv_guest_os_id;
1870                 break;
1871         case HV_X64_MSR_HYPERCALL:
1872                 data = kvm->arch.hv_hypercall;
1873                 break;
1874         default:
1875                 vcpu_unimpl(vcpu, "Hyper-V unhandled rdmsr: 0x%x\n", msr);
1876                 return 1;
1877         }
1878
1879         *pdata = data;
1880         return 0;
1881 }
1882
1883 static int get_msr_hyperv(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
1884 {
1885         u64 data = 0;
1886
1887         switch (msr) {
1888         case HV_X64_MSR_VP_INDEX: {
1889                 int r;
1890                 struct kvm_vcpu *v;
1891                 kvm_for_each_vcpu(r, v, vcpu->kvm)
1892                         if (v == vcpu)
1893                                 data = r;
1894                 break;
1895         }
1896         case HV_X64_MSR_EOI:
1897                 return kvm_hv_vapic_msr_read(vcpu, APIC_EOI, pdata);
1898         case HV_X64_MSR_ICR:
1899                 return kvm_hv_vapic_msr_read(vcpu, APIC_ICR, pdata);
1900         case HV_X64_MSR_TPR:
1901                 return kvm_hv_vapic_msr_read(vcpu, APIC_TASKPRI, pdata);
1902         case HV_X64_MSR_APIC_ASSIST_PAGE:
1903                 data = vcpu->arch.hv_vapic;
1904                 break;
1905         default:
1906                 vcpu_unimpl(vcpu, "Hyper-V unhandled rdmsr: 0x%x\n", msr);
1907                 return 1;
1908         }
1909         *pdata = data;
1910         return 0;
1911 }
1912
1913 int kvm_get_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
1914 {
1915         u64 data;
1916
1917         switch (msr) {
1918         case MSR_IA32_PLATFORM_ID:
1919         case MSR_IA32_EBL_CR_POWERON:
1920         case MSR_IA32_DEBUGCTLMSR:
1921         case MSR_IA32_LASTBRANCHFROMIP:
1922         case MSR_IA32_LASTBRANCHTOIP:
1923         case MSR_IA32_LASTINTFROMIP:
1924         case MSR_IA32_LASTINTTOIP:
1925         case MSR_K8_SYSCFG:
1926         case MSR_K7_HWCR:
1927         case MSR_VM_HSAVE_PA:
1928         case MSR_K7_EVNTSEL0:
1929         case MSR_K7_PERFCTR0:
1930         case MSR_K8_INT_PENDING_MSG:
1931         case MSR_AMD64_NB_CFG:
1932         case MSR_FAM10H_MMIO_CONF_BASE:
1933                 data = 0;
1934                 break;
1935         case MSR_P6_PERFCTR0:
1936         case MSR_P6_PERFCTR1:
1937         case MSR_P6_EVNTSEL0:
1938         case MSR_P6_EVNTSEL1:
1939                 if (kvm_pmu_msr(vcpu, msr))
1940                         return kvm_pmu_get_msr(vcpu, msr, pdata);
1941                 data = 0;
1942                 break;
1943         case MSR_IA32_UCODE_REV:
1944                 data = 0x100000000ULL;
1945                 break;
1946         case MSR_MTRRcap:
1947                 data = 0x500 | KVM_NR_VAR_MTRR;
1948                 break;
1949         case 0x200 ... 0x2ff:
1950                 return get_msr_mtrr(vcpu, msr, pdata);
1951         case 0xcd: /* fsb frequency */
1952                 data = 3;
1953                 break;
1954                 /*
1955                  * MSR_EBC_FREQUENCY_ID
1956                  * Conservative value valid for even the basic CPU models.
1957                  * Models 0,1: 000 in bits 23:21 indicating a bus speed of
1958                  * 100MHz, model 2 000 in bits 18:16 indicating 100MHz,
1959                  * and 266MHz for model 3, or 4. Set Core Clock
1960                  * Frequency to System Bus Frequency Ratio to 1 (bits
1961                  * 31:24) even though these are only valid for CPU
1962                  * models > 2, however guests may end up dividing or
1963                  * multiplying by zero otherwise.
1964                  */
1965         case MSR_EBC_FREQUENCY_ID:
1966                 data = 1 << 24;
1967                 break;
1968         case MSR_IA32_APICBASE:
1969                 data = kvm_get_apic_base(vcpu);
1970                 break;
1971         case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff:
1972                 return kvm_x2apic_msr_read(vcpu, msr, pdata);
1973                 break;
1974         case MSR_IA32_TSCDEADLINE:
1975                 data = kvm_get_lapic_tscdeadline_msr(vcpu);
1976                 break;
1977         case MSR_IA32_MISC_ENABLE:
1978                 data = vcpu->arch.ia32_misc_enable_msr;
1979                 break;
1980         case MSR_IA32_PERF_STATUS:
1981                 /* TSC increment by tick */
1982                 data = 1000ULL;
1983                 /* CPU multiplier */
1984                 data |= (((uint64_t)4ULL) << 40);
1985                 break;
1986         case MSR_EFER:
1987                 data = vcpu->arch.efer;
1988                 break;
1989         case MSR_KVM_WALL_CLOCK:
1990         case MSR_KVM_WALL_CLOCK_NEW:
1991                 data = vcpu->kvm->arch.wall_clock;
1992                 break;
1993         case MSR_KVM_SYSTEM_TIME:
1994         case MSR_KVM_SYSTEM_TIME_NEW:
1995                 data = vcpu->arch.time;
1996                 break;
1997         case MSR_KVM_ASYNC_PF_EN:
1998                 data = vcpu->arch.apf.msr_val;
1999                 break;
2000         case MSR_KVM_STEAL_TIME:
2001                 data = vcpu->arch.st.msr_val;
2002                 break;
2003         case MSR_IA32_P5_MC_ADDR:
2004         case MSR_IA32_P5_MC_TYPE:
2005         case MSR_IA32_MCG_CAP:
2006         case MSR_IA32_MCG_CTL:
2007         case MSR_IA32_MCG_STATUS:
2008         case MSR_IA32_MC0_CTL ... MSR_IA32_MC0_CTL + 4 * KVM_MAX_MCE_BANKS - 1:
2009                 return get_msr_mce(vcpu, msr, pdata);
2010         case MSR_K7_CLK_CTL:
2011                 /*
2012                  * Provide expected ramp-up count for K7. All other
2013                  * are set to zero, indicating minimum divisors for
2014                  * every field.
2015                  *
2016                  * This prevents guest kernels on AMD host with CPU
2017                  * type 6, model 8 and higher from exploding due to
2018                  * the rdmsr failing.
2019                  */
2020                 data = 0x20000000;
2021                 break;
2022         case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
2023                 if (kvm_hv_msr_partition_wide(msr)) {
2024                         int r;
2025                         mutex_lock(&vcpu->kvm->lock);
2026                         r = get_msr_hyperv_pw(vcpu, msr, pdata);
2027                         mutex_unlock(&vcpu->kvm->lock);
2028                         return r;
2029                 } else
2030                         return get_msr_hyperv(vcpu, msr, pdata);
2031                 break;
2032         case MSR_IA32_BBL_CR_CTL3:
2033                 /* This legacy MSR exists but isn't fully documented in current
2034                  * silicon.  It is however accessed by winxp in very narrow
2035                  * scenarios where it sets bit #19, itself documented as
2036                  * a "reserved" bit.  Best effort attempt to source coherent
2037                  * read data here should the balance of the register be
2038                  * interpreted by the guest:
2039                  *
2040                  * L2 cache control register 3: 64GB range, 256KB size,
2041                  * enabled, latency 0x1, configured
2042                  */
2043                 data = 0xbe702111;
2044                 break;
2045         case MSR_AMD64_OSVW_ID_LENGTH:
2046                 if (!guest_cpuid_has_osvw(vcpu))
2047                         return 1;
2048                 data = vcpu->arch.osvw.length;
2049                 break;
2050         case MSR_AMD64_OSVW_STATUS:
2051                 if (!guest_cpuid_has_osvw(vcpu))
2052                         return 1;
2053                 data = vcpu->arch.osvw.status;
2054                 break;
2055         default:
2056                 if (kvm_pmu_msr(vcpu, msr))
2057                         return kvm_pmu_get_msr(vcpu, msr, pdata);
2058                 if (!ignore_msrs) {
2059                         vcpu_unimpl(vcpu, "unhandled rdmsr: 0x%x\n", msr);
2060                         return 1;
2061                 } else {
2062                         vcpu_unimpl(vcpu, "ignored rdmsr: 0x%x\n", msr);
2063                         data = 0;
2064                 }
2065                 break;
2066         }
2067         *pdata = data;
2068         return 0;
2069 }
2070 EXPORT_SYMBOL_GPL(kvm_get_msr_common);
2071
2072 /*
2073  * Read or write a bunch of msrs. All parameters are kernel addresses.
2074  *
2075  * @return number of msrs set successfully.
2076  */
2077 static int __msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs *msrs,
2078                     struct kvm_msr_entry *entries,
2079                     int (*do_msr)(struct kvm_vcpu *vcpu,
2080                                   unsigned index, u64 *data))
2081 {
2082         int i, idx;
2083
2084         idx = srcu_read_lock(&vcpu->kvm->srcu);
2085         for (i = 0; i < msrs->nmsrs; ++i)
2086                 if (do_msr(vcpu, entries[i].index, &entries[i].data))
2087                         break;
2088         srcu_read_unlock(&vcpu->kvm->srcu, idx);
2089
2090         return i;
2091 }
2092
2093 /*
2094  * Read or write a bunch of msrs. Parameters are user addresses.
2095  *
2096  * @return number of msrs set successfully.
2097  */
2098 static int msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs __user *user_msrs,
2099                   int (*do_msr)(struct kvm_vcpu *vcpu,
2100                                 unsigned index, u64 *data),
2101                   int writeback)
2102 {
2103         struct kvm_msrs msrs;
2104         struct kvm_msr_entry *entries;
2105         int r, n;
2106         unsigned size;
2107
2108         r = -EFAULT;
2109         if (copy_from_user(&msrs, user_msrs, sizeof msrs))
2110                 goto out;
2111
2112         r = -E2BIG;
2113         if (msrs.nmsrs >= MAX_IO_MSRS)
2114                 goto out;
2115
2116         size = sizeof(struct kvm_msr_entry) * msrs.nmsrs;
2117         entries = memdup_user(user_msrs->entries, size);
2118         if (IS_ERR(entries)) {
2119                 r = PTR_ERR(entries);
2120                 goto out;
2121         }
2122
2123         r = n = __msr_io(vcpu, &msrs, entries, do_msr);
2124         if (r < 0)
2125                 goto out_free;
2126
2127         r = -EFAULT;
2128         if (writeback && copy_to_user(user_msrs->entries, entries, size))
2129                 goto out_free;
2130
2131         r = n;
2132
2133 out_free:
2134         kfree(entries);
2135 out:
2136         return r;
2137 }
2138
2139 int kvm_dev_ioctl_check_extension(long ext)
2140 {
2141         int r;
2142
2143         switch (ext) {
2144         case KVM_CAP_IRQCHIP:
2145         case KVM_CAP_HLT:
2146         case KVM_CAP_MMU_SHADOW_CACHE_CONTROL:
2147         case KVM_CAP_SET_TSS_ADDR:
2148         case KVM_CAP_EXT_CPUID:
2149         case KVM_CAP_CLOCKSOURCE:
2150         case KVM_CAP_PIT:
2151         case KVM_CAP_NOP_IO_DELAY:
2152         case KVM_CAP_MP_STATE:
2153         case KVM_CAP_SYNC_MMU:
2154         case KVM_CAP_USER_NMI:
2155         case KVM_CAP_REINJECT_CONTROL:
2156         case KVM_CAP_IRQ_INJECT_STATUS:
2157         case KVM_CAP_ASSIGN_DEV_IRQ:
2158         case KVM_CAP_IRQFD:
2159         case KVM_CAP_IOEVENTFD:
2160         case KVM_CAP_PIT2:
2161         case KVM_CAP_PIT_STATE2:
2162         case KVM_CAP_SET_IDENTITY_MAP_ADDR:
2163         case KVM_CAP_XEN_HVM:
2164         case KVM_CAP_ADJUST_CLOCK:
2165         case KVM_CAP_VCPU_EVENTS:
2166         case KVM_CAP_HYPERV:
2167         case KVM_CAP_HYPERV_VAPIC:
2168         case KVM_CAP_HYPERV_SPIN:
2169         case KVM_CAP_PCI_SEGMENT:
2170         case KVM_CAP_DEBUGREGS:
2171         case KVM_CAP_X86_ROBUST_SINGLESTEP:
2172         case KVM_CAP_XSAVE:
2173         case KVM_CAP_ASYNC_PF:
2174         case KVM_CAP_GET_TSC_KHZ:
2175         case KVM_CAP_PCI_2_3:
2176         case KVM_CAP_KVMCLOCK_CTRL:
2177                 r = 1;
2178                 break;
2179         case KVM_CAP_COALESCED_MMIO:
2180                 r = KVM_COALESCED_MMIO_PAGE_OFFSET;
2181                 break;
2182         case KVM_CAP_VAPIC:
2183                 r = !kvm_x86_ops->cpu_has_accelerated_tpr();
2184                 break;
2185         case KVM_CAP_NR_VCPUS:
2186                 r = KVM_SOFT_MAX_VCPUS;
2187                 break;
2188         case KVM_CAP_MAX_VCPUS:
2189                 r = KVM_MAX_VCPUS;
2190                 break;
2191         case KVM_CAP_NR_MEMSLOTS:
2192                 r = KVM_MEMORY_SLOTS;
2193                 break;
2194         case KVM_CAP_PV_MMU:    /* obsolete */
2195                 r = 0;
2196                 break;
2197         case KVM_CAP_IOMMU:
2198                 r = iommu_present(&pci_bus_type);
2199                 break;
2200         case KVM_CAP_MCE:
2201                 r = KVM_MAX_MCE_BANKS;
2202                 break;
2203         case KVM_CAP_XCRS:
2204                 r = cpu_has_xsave;
2205                 break;
2206         case KVM_CAP_TSC_CONTROL:
2207                 r = kvm_has_tsc_control;
2208                 break;
2209         case KVM_CAP_TSC_DEADLINE_TIMER:
2210                 r = boot_cpu_has(X86_FEATURE_TSC_DEADLINE_TIMER);
2211                 break;
2212         default:
2213                 r = 0;
2214                 break;
2215         }
2216         return r;
2217
2218 }
2219
2220 long kvm_arch_dev_ioctl(struct file *filp,
2221                         unsigned int ioctl, unsigned long arg)
2222 {
2223         void __user *argp = (void __user *)arg;
2224         long r;
2225
2226         switch (ioctl) {
2227         case KVM_GET_MSR_INDEX_LIST: {
2228                 struct kvm_msr_list __user *user_msr_list = argp;
2229                 struct kvm_msr_list msr_list;
2230                 unsigned n;
2231
2232                 r = -EFAULT;
2233                 if (copy_from_user(&msr_list, user_msr_list, sizeof msr_list))
2234                         goto out;
2235                 n = msr_list.nmsrs;
2236                 msr_list.nmsrs = num_msrs_to_save + ARRAY_SIZE(emulated_msrs);
2237                 if (copy_to_user(user_msr_list, &msr_list, sizeof msr_list))
2238                         goto out;
2239                 r = -E2BIG;
2240                 if (n < msr_list.nmsrs)
2241                         goto out;
2242                 r = -EFAULT;
2243                 if (copy_to_user(user_msr_list->indices, &msrs_to_save,
2244                                  num_msrs_to_save * sizeof(u32)))
2245                         goto out;
2246                 if (copy_to_user(user_msr_list->indices + num_msrs_to_save,
2247                                  &emulated_msrs,
2248                                  ARRAY_SIZE(emulated_msrs) * sizeof(u32)))
2249                         goto out;
2250                 r = 0;
2251                 break;
2252         }
2253         case KVM_GET_SUPPORTED_CPUID: {
2254                 struct kvm_cpuid2 __user *cpuid_arg = argp;
2255                 struct kvm_cpuid2 cpuid;
2256
2257                 r = -EFAULT;
2258                 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
2259                         goto out;
2260                 r = kvm_dev_ioctl_get_supported_cpuid(&cpuid,
2261                                                       cpuid_arg->entries);
2262                 if (r)
2263                         goto out;
2264
2265                 r = -EFAULT;
2266                 if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
2267                         goto out;
2268                 r = 0;
2269                 break;
2270         }
2271         case KVM_X86_GET_MCE_CAP_SUPPORTED: {
2272                 u64 mce_cap;
2273
2274                 mce_cap = KVM_MCE_CAP_SUPPORTED;
2275                 r = -EFAULT;
2276                 if (copy_to_user(argp, &mce_cap, sizeof mce_cap))
2277                         goto out;
2278                 r = 0;
2279                 break;
2280         }
2281         default:
2282                 r = -EINVAL;
2283         }
2284 out:
2285         return r;
2286 }
2287
2288 static void wbinvd_ipi(void *garbage)
2289 {
2290         wbinvd();
2291 }
2292
2293 static bool need_emulate_wbinvd(struct kvm_vcpu *vcpu)
2294 {
2295         return vcpu->kvm->arch.iommu_domain &&
2296                 !(vcpu->kvm->arch.iommu_flags & KVM_IOMMU_CACHE_COHERENCY);
2297 }
2298
2299 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
2300 {
2301         /* Address WBINVD may be executed by guest */
2302         if (need_emulate_wbinvd(vcpu)) {
2303                 if (kvm_x86_ops->has_wbinvd_exit())
2304                         cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
2305                 else if (vcpu->cpu != -1 && vcpu->cpu != cpu)
2306                         smp_call_function_single(vcpu->cpu,
2307                                         wbinvd_ipi, NULL, 1);
2308         }
2309
2310         kvm_x86_ops->vcpu_load(vcpu, cpu);
2311
2312         /* Apply any externally detected TSC adjustments (due to suspend) */
2313         if (unlikely(vcpu->arch.tsc_offset_adjustment)) {
2314                 adjust_tsc_offset_host(vcpu, vcpu->arch.tsc_offset_adjustment);
2315                 vcpu->arch.tsc_offset_adjustment = 0;
2316                 set_bit(KVM_REQ_CLOCK_UPDATE, &vcpu->requests);
2317         }
2318
2319         if (unlikely(vcpu->cpu != cpu) || check_tsc_unstable()) {
2320                 s64 tsc_delta = !vcpu->arch.last_host_tsc ? 0 :
2321                                 native_read_tsc() - vcpu->arch.last_host_tsc;
2322                 if (tsc_delta < 0)
2323                         mark_tsc_unstable("KVM discovered backwards TSC");
2324                 if (check_tsc_unstable()) {
2325                         u64 offset = kvm_x86_ops->compute_tsc_offset(vcpu,
2326                                                 vcpu->arch.last_guest_tsc);
2327                         kvm_x86_ops->write_tsc_offset(vcpu, offset);
2328                         vcpu->arch.tsc_catchup = 1;
2329                 }
2330                 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
2331                 if (vcpu->cpu != cpu)
2332                         kvm_migrate_timers(vcpu);
2333                 vcpu->cpu = cpu;
2334         }
2335
2336         accumulate_steal_time(vcpu);
2337         kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
2338 }
2339
2340 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
2341 {
2342         kvm_x86_ops->vcpu_put(vcpu);
2343         kvm_put_guest_fpu(vcpu);
2344         vcpu->arch.last_host_tsc = native_read_tsc();
2345 }
2346
2347 static int kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu *vcpu,
2348                                     struct kvm_lapic_state *s)
2349 {
2350         memcpy(s->regs, vcpu->arch.apic->regs, sizeof *s);
2351
2352         return 0;
2353 }
2354
2355 static int kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu *vcpu,
2356                                     struct kvm_lapic_state *s)
2357 {
2358         memcpy(vcpu->arch.apic->regs, s->regs, sizeof *s);
2359         kvm_apic_post_state_restore(vcpu);
2360         update_cr8_intercept(vcpu);
2361
2362         return 0;
2363 }
2364
2365 static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu,
2366                                     struct kvm_interrupt *irq)
2367 {
2368         if (irq->irq < 0 || irq->irq >= 256)
2369                 return -EINVAL;
2370         if (irqchip_in_kernel(vcpu->kvm))
2371                 return -ENXIO;
2372
2373         kvm_queue_interrupt(vcpu, irq->irq, false);
2374         kvm_make_request(KVM_REQ_EVENT, vcpu);
2375
2376         return 0;
2377 }
2378
2379 static int kvm_vcpu_ioctl_nmi(struct kvm_vcpu *vcpu)
2380 {
2381         kvm_inject_nmi(vcpu);
2382
2383         return 0;
2384 }
2385
2386 static int vcpu_ioctl_tpr_access_reporting(struct kvm_vcpu *vcpu,
2387                                            struct kvm_tpr_access_ctl *tac)
2388 {
2389         if (tac->flags)
2390                 return -EINVAL;
2391         vcpu->arch.tpr_access_reporting = !!tac->enabled;
2392         return 0;
2393 }
2394
2395 static int kvm_vcpu_ioctl_x86_setup_mce(struct kvm_vcpu *vcpu,
2396                                         u64 mcg_cap)
2397 {
2398         int r;
2399         unsigned bank_num = mcg_cap & 0xff, bank;
2400
2401         r = -EINVAL;
2402         if (!bank_num || bank_num >= KVM_MAX_MCE_BANKS)
2403                 goto out;
2404         if (mcg_cap & ~(KVM_MCE_CAP_SUPPORTED | 0xff | 0xff0000))
2405                 goto out;
2406         r = 0;
2407         vcpu->arch.mcg_cap = mcg_cap;
2408         /* Init IA32_MCG_CTL to all 1s */
2409         if (mcg_cap & MCG_CTL_P)
2410                 vcpu->arch.mcg_ctl = ~(u64)0;
2411         /* Init IA32_MCi_CTL to all 1s */
2412         for (bank = 0; bank < bank_num; bank++)
2413                 vcpu->arch.mce_banks[bank*4] = ~(u64)0;
2414 out:
2415         return r;
2416 }
2417
2418 static int kvm_vcpu_ioctl_x86_set_mce(struct kvm_vcpu *vcpu,
2419                                       struct kvm_x86_mce *mce)
2420 {
2421         u64 mcg_cap = vcpu->arch.mcg_cap;
2422         unsigned bank_num = mcg_cap & 0xff;
2423         u64 *banks = vcpu->arch.mce_banks;
2424
2425         if (mce->bank >= bank_num || !(mce->status & MCI_STATUS_VAL))
2426                 return -EINVAL;
2427         /*
2428          * if IA32_MCG_CTL is not all 1s, the uncorrected error
2429          * reporting is disabled
2430          */
2431         if ((mce->status & MCI_STATUS_UC) && (mcg_cap & MCG_CTL_P) &&
2432             vcpu->arch.mcg_ctl != ~(u64)0)
2433                 return 0;
2434         banks += 4 * mce->bank;
2435         /*
2436          * if IA32_MCi_CTL is not all 1s, the uncorrected error
2437          * reporting is disabled for the bank
2438          */
2439         if ((mce->status & MCI_STATUS_UC) && banks[0] != ~(u64)0)
2440                 return 0;
2441         if (mce->status & MCI_STATUS_UC) {
2442                 if ((vcpu->arch.mcg_status & MCG_STATUS_MCIP) ||
2443                     !kvm_read_cr4_bits(vcpu, X86_CR4_MCE)) {
2444                         kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
2445                         return 0;
2446                 }
2447                 if (banks[1] & MCI_STATUS_VAL)
2448                         mce->status |= MCI_STATUS_OVER;
2449                 banks[2] = mce->addr;
2450                 banks[3] = mce->misc;
2451                 vcpu->arch.mcg_status = mce->mcg_status;
2452                 banks[1] = mce->status;
2453                 kvm_queue_exception(vcpu, MC_VECTOR);
2454         } else if (!(banks[1] & MCI_STATUS_VAL)
2455                    || !(banks[1] & MCI_STATUS_UC)) {
2456                 if (banks[1] & MCI_STATUS_VAL)
2457                         mce->status |= MCI_STATUS_OVER;
2458                 banks[2] = mce->addr;
2459                 banks[3] = mce->misc;
2460                 banks[1] = mce->status;
2461         } else
2462                 banks[1] |= MCI_STATUS_OVER;
2463         return 0;
2464 }
2465
2466 static void kvm_vcpu_ioctl_x86_get_vcpu_events(struct kvm_vcpu *vcpu,
2467                                                struct kvm_vcpu_events *events)
2468 {
2469         process_nmi(vcpu);
2470         events->exception.injected =
2471                 vcpu->arch.exception.pending &&
2472                 !kvm_exception_is_soft(vcpu->arch.exception.nr);
2473         events->exception.nr = vcpu->arch.exception.nr;
2474         events->exception.has_error_code = vcpu->arch.exception.has_error_code;
2475         events->exception.pad = 0;
2476         events->exception.error_code = vcpu->arch.exception.error_code;
2477
2478         events->interrupt.injected =
2479                 vcpu->arch.interrupt.pending && !vcpu->arch.interrupt.soft;
2480         events->interrupt.nr = vcpu->arch.interrupt.nr;
2481         events->interrupt.soft = 0;
2482         events->interrupt.shadow =
2483                 kvm_x86_ops->get_interrupt_shadow(vcpu,
2484                         KVM_X86_SHADOW_INT_MOV_SS | KVM_X86_SHADOW_INT_STI);
2485
2486         events->nmi.injected = vcpu->arch.nmi_injected;
2487         events->nmi.pending = vcpu->arch.nmi_pending != 0;
2488         events->nmi.masked = kvm_x86_ops->get_nmi_mask(vcpu);
2489         events->nmi.pad = 0;
2490
2491         events->sipi_vector = vcpu->arch.sipi_vector;
2492
2493         events->flags = (KVM_VCPUEVENT_VALID_NMI_PENDING
2494                          | KVM_VCPUEVENT_VALID_SIPI_VECTOR
2495                          | KVM_VCPUEVENT_VALID_SHADOW);
2496         memset(&events->reserved, 0, sizeof(events->reserved));
2497 }
2498
2499 static int kvm_vcpu_ioctl_x86_set_vcpu_events(struct kvm_vcpu *vcpu,
2500                                               struct kvm_vcpu_events *events)
2501 {
2502         if (events->flags & ~(KVM_VCPUEVENT_VALID_NMI_PENDING
2503                               | KVM_VCPUEVENT_VALID_SIPI_VECTOR
2504                               | KVM_VCPUEVENT_VALID_SHADOW))
2505                 return -EINVAL;
2506
2507         process_nmi(vcpu);
2508         vcpu->arch.exception.pending = events->exception.injected;
2509         vcpu->arch.exception.nr = events->exception.nr;
2510         vcpu->arch.exception.has_error_code = events->exception.has_error_code;
2511         vcpu->arch.exception.error_code = events->exception.error_code;
2512
2513         vcpu->arch.interrupt.pending = events->interrupt.injected;
2514         vcpu->arch.interrupt.nr = events->interrupt.nr;
2515         vcpu->arch.interrupt.soft = events->interrupt.soft;
2516         if (events->flags & KVM_VCPUEVENT_VALID_SHADOW)
2517                 kvm_x86_ops->set_interrupt_shadow(vcpu,
2518                                                   events->interrupt.shadow);
2519
2520         vcpu->arch.nmi_injected = events->nmi.injected;
2521         if (events->flags & KVM_VCPUEVENT_VALID_NMI_PENDING)
2522                 vcpu->arch.nmi_pending = events->nmi.pending;
2523         kvm_x86_ops->set_nmi_mask(vcpu, events->nmi.masked);
2524
2525         if (events->flags & KVM_VCPUEVENT_VALID_SIPI_VECTOR)
2526                 vcpu->arch.sipi_vector = events->sipi_vector;
2527
2528         kvm_make_request(KVM_REQ_EVENT, vcpu);
2529
2530         return 0;
2531 }
2532
2533 static void kvm_vcpu_ioctl_x86_get_debugregs(struct kvm_vcpu *vcpu,
2534                                              struct kvm_debugregs *dbgregs)
2535 {
2536         memcpy(dbgregs->db, vcpu->arch.db, sizeof(vcpu->arch.db));
2537         dbgregs->dr6 = vcpu->arch.dr6;
2538         dbgregs->dr7 = vcpu->arch.dr7;
2539         dbgregs->flags = 0;
2540         memset(&dbgregs->reserved, 0, sizeof(dbgregs->reserved));
2541 }
2542
2543 static int kvm_vcpu_ioctl_x86_set_debugregs(struct kvm_vcpu *vcpu,
2544                                             struct kvm_debugregs *dbgregs)
2545 {
2546         if (dbgregs->flags)
2547                 return -EINVAL;
2548
2549         memcpy(vcpu->arch.db, dbgregs->db, sizeof(vcpu->arch.db));
2550         vcpu->arch.dr6 = dbgregs->dr6;
2551         vcpu->arch.dr7 = dbgregs->dr7;
2552
2553         return 0;
2554 }
2555
2556 static void kvm_vcpu_ioctl_x86_get_xsave(struct kvm_vcpu *vcpu,
2557                                          struct kvm_xsave *guest_xsave)
2558 {
2559         if (cpu_has_xsave)
2560                 memcpy(guest_xsave->region,
2561                         &vcpu->arch.guest_fpu.state->xsave,
2562                         xstate_size);
2563         else {
2564                 memcpy(guest_xsave->region,
2565                         &vcpu->arch.guest_fpu.state->fxsave,
2566                         sizeof(struct i387_fxsave_struct));
2567                 *(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)] =
2568                         XSTATE_FPSSE;
2569         }
2570 }
2571
2572 static int kvm_vcpu_ioctl_x86_set_xsave(struct kvm_vcpu *vcpu,
2573                                         struct kvm_xsave *guest_xsave)
2574 {
2575         u64 xstate_bv =
2576                 *(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)];
2577
2578         if (cpu_has_xsave)
2579                 memcpy(&vcpu->arch.guest_fpu.state->xsave,
2580                         guest_xsave->region, xstate_size);
2581         else {
2582                 if (xstate_bv & ~XSTATE_FPSSE)
2583                         return -EINVAL;
2584                 memcpy(&vcpu->arch.guest_fpu.state->fxsave,
2585                         guest_xsave->region, sizeof(struct i387_fxsave_struct));
2586         }
2587         return 0;
2588 }
2589
2590 static void kvm_vcpu_ioctl_x86_get_xcrs(struct kvm_vcpu *vcpu,
2591                                         struct kvm_xcrs *guest_xcrs)
2592 {
2593         if (!cpu_has_xsave) {
2594                 guest_xcrs->nr_xcrs = 0;
2595                 return;
2596         }
2597
2598         guest_xcrs->nr_xcrs = 1;
2599         guest_xcrs->flags = 0;
2600         guest_xcrs->xcrs[0].xcr = XCR_XFEATURE_ENABLED_MASK;
2601         guest_xcrs->xcrs[0].value = vcpu->arch.xcr0;
2602 }
2603
2604 static int kvm_vcpu_ioctl_x86_set_xcrs(struct kvm_vcpu *vcpu,
2605                                        struct kvm_xcrs *guest_xcrs)
2606 {
2607         int i, r = 0;
2608
2609         if (!cpu_has_xsave)
2610                 return -EINVAL;
2611
2612         if (guest_xcrs->nr_xcrs > KVM_MAX_XCRS || guest_xcrs->flags)
2613                 return -EINVAL;
2614
2615         for (i = 0; i < guest_xcrs->nr_xcrs; i++)
2616                 /* Only support XCR0 currently */
2617                 if (guest_xcrs->xcrs[0].xcr == XCR_XFEATURE_ENABLED_MASK) {
2618                         r = __kvm_set_xcr(vcpu, XCR_XFEATURE_ENABLED_MASK,
2619                                 guest_xcrs->xcrs[0].value);
2620                         break;
2621                 }
2622         if (r)
2623                 r = -EINVAL;
2624         return r;
2625 }
2626
2627 /*
2628  * kvm_set_guest_paused() indicates to the guest kernel that it has been
2629  * stopped by the hypervisor.  This function will be called from the host only.
2630  * EINVAL is returned when the host attempts to set the flag for a guest that
2631  * does not support pv clocks.
2632  */
2633 static int kvm_set_guest_paused(struct kvm_vcpu *vcpu)
2634 {
2635         struct pvclock_vcpu_time_info *src = &vcpu->arch.hv_clock;
2636         if (!vcpu->arch.time_page)
2637                 return -EINVAL;
2638         src->flags |= PVCLOCK_GUEST_STOPPED;
2639         mark_page_dirty(vcpu->kvm, vcpu->arch.time >> PAGE_SHIFT);
2640         kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
2641         return 0;
2642 }
2643
2644 long kvm_arch_vcpu_ioctl(struct file *filp,
2645                          unsigned int ioctl, unsigned long arg)
2646 {
2647         struct kvm_vcpu *vcpu = filp->private_data;
2648         void __user *argp = (void __user *)arg;
2649         int r;
2650         union {
2651                 struct kvm_lapic_state *lapic;
2652                 struct kvm_xsave *xsave;
2653                 struct kvm_xcrs *xcrs;
2654                 void *buffer;
2655         } u;
2656
2657         u.buffer = NULL;
2658         switch (ioctl) {
2659         case KVM_GET_LAPIC: {
2660                 r = -EINVAL;
2661                 if (!vcpu->arch.apic)
2662                         goto out;
2663                 u.lapic = kzalloc(sizeof(struct kvm_lapic_state), GFP_KERNEL);
2664
2665                 r = -ENOMEM;
2666                 if (!u.lapic)
2667                         goto out;
2668                 r = kvm_vcpu_ioctl_get_lapic(vcpu, u.lapic);
2669                 if (r)
2670                         goto out;
2671                 r = -EFAULT;
2672                 if (copy_to_user(argp, u.lapic, sizeof(struct kvm_lapic_state)))
2673                         goto out;
2674                 r = 0;
2675                 break;
2676         }
2677         case KVM_SET_LAPIC: {
2678                 r = -EINVAL;
2679                 if (!vcpu->arch.apic)
2680                         goto out;
2681                 u.lapic = memdup_user(argp, sizeof(*u.lapic));
2682                 if (IS_ERR(u.lapic)) {
2683                         r = PTR_ERR(u.lapic);
2684                         goto out;
2685                 }
2686
2687                 r = kvm_vcpu_ioctl_set_lapic(vcpu, u.lapic);
2688                 if (r)
2689                         goto out;
2690                 r = 0;
2691                 break;
2692         }
2693         case KVM_INTERRUPT: {
2694                 struct kvm_interrupt irq;
2695
2696                 r = -EFAULT;
2697                 if (copy_from_user(&irq, argp, sizeof irq))
2698                         goto out;
2699                 r = kvm_vcpu_ioctl_interrupt(vcpu, &irq);
2700                 if (r)
2701                         goto out;
2702                 r = 0;
2703                 break;
2704         }
2705         case KVM_NMI: {
2706                 r = kvm_vcpu_ioctl_nmi(vcpu);
2707                 if (r)
2708                         goto out;
2709                 r = 0;
2710                 break;
2711         }
2712         case KVM_SET_CPUID: {
2713                 struct kvm_cpuid __user *cpuid_arg = argp;
2714                 struct kvm_cpuid cpuid;
2715
2716                 r = -EFAULT;
2717                 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
2718                         goto out;
2719                 r = kvm_vcpu_ioctl_set_cpuid(vcpu, &cpuid, cpuid_arg->entries);
2720                 if (r)
2721                         goto out;
2722                 break;
2723         }
2724         case KVM_SET_CPUID2: {
2725                 struct kvm_cpuid2 __user *cpuid_arg = argp;
2726                 struct kvm_cpuid2 cpuid;
2727
2728                 r = -EFAULT;
2729                 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
2730                         goto out;
2731                 r = kvm_vcpu_ioctl_set_cpuid2(vcpu, &cpuid,
2732                                               cpuid_arg->entries);
2733                 if (r)
2734                         goto out;
2735                 break;
2736         }
2737         case KVM_GET_CPUID2: {
2738                 struct kvm_cpuid2 __user *cpuid_arg = argp;
2739                 struct kvm_cpuid2 cpuid;
2740
2741                 r = -EFAULT;
2742                 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
2743                         goto out;
2744                 r = kvm_vcpu_ioctl_get_cpuid2(vcpu, &cpuid,
2745                                               cpuid_arg->entries);
2746                 if (r)
2747                         goto out;
2748                 r = -EFAULT;
2749                 if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
2750                         goto out;
2751                 r = 0;
2752                 break;
2753         }
2754         case KVM_GET_MSRS:
2755                 r = msr_io(vcpu, argp, kvm_get_msr, 1);
2756                 break;
2757         case KVM_SET_MSRS:
2758                 r = msr_io(vcpu, argp, do_set_msr, 0);
2759                 break;
2760         case KVM_TPR_ACCESS_REPORTING: {
2761                 struct kvm_tpr_access_ctl tac;
2762
2763                 r = -EFAULT;
2764                 if (copy_from_user(&tac, argp, sizeof tac))
2765                         goto out;
2766                 r = vcpu_ioctl_tpr_access_reporting(vcpu, &tac);
2767                 if (r)
2768                         goto out;
2769                 r = -EFAULT;
2770                 if (copy_to_user(argp, &tac, sizeof tac))
2771                         goto out;
2772                 r = 0;
2773                 break;
2774         };
2775         case KVM_SET_VAPIC_ADDR: {
2776                 struct kvm_vapic_addr va;
2777
2778                 r = -EINVAL;
2779                 if (!irqchip_in_kernel(vcpu->kvm))
2780                         goto out;
2781                 r = -EFAULT;
2782                 if (copy_from_user(&va, argp, sizeof va))
2783                         goto out;
2784                 r = 0;
2785                 kvm_lapic_set_vapic_addr(vcpu, va.vapic_addr);
2786                 break;
2787         }
2788         case KVM_X86_SETUP_MCE: {
2789                 u64 mcg_cap;
2790
2791                 r = -EFAULT;
2792                 if (copy_from_user(&mcg_cap, argp, sizeof mcg_cap))
2793                         goto out;
2794                 r = kvm_vcpu_ioctl_x86_setup_mce(vcpu, mcg_cap);
2795                 break;
2796         }
2797         case KVM_X86_SET_MCE: {
2798                 struct kvm_x86_mce mce;
2799
2800                 r = -EFAULT;
2801                 if (copy_from_user(&mce, argp, sizeof mce))
2802                         goto out;
2803                 r = kvm_vcpu_ioctl_x86_set_mce(vcpu, &mce);
2804                 break;
2805         }
2806         case KVM_GET_VCPU_EVENTS: {
2807                 struct kvm_vcpu_events events;
2808
2809                 kvm_vcpu_ioctl_x86_get_vcpu_events(vcpu, &events);
2810
2811                 r = -EFAULT;
2812                 if (copy_to_user(argp, &events, sizeof(struct kvm_vcpu_events)))
2813                         break;
2814                 r = 0;
2815                 break;
2816         }
2817         case KVM_SET_VCPU_EVENTS: {
2818                 struct kvm_vcpu_events events;
2819
2820                 r = -EFAULT;
2821                 if (copy_from_user(&events, argp, sizeof(struct kvm_vcpu_events)))
2822                         break;
2823
2824                 r = kvm_vcpu_ioctl_x86_set_vcpu_events(vcpu, &events);
2825                 break;
2826         }
2827         case KVM_GET_DEBUGREGS: {
2828                 struct kvm_debugregs dbgregs;
2829
2830                 kvm_vcpu_ioctl_x86_get_debugregs(vcpu, &dbgregs);
2831
2832                 r = -EFAULT;
2833                 if (copy_to_user(argp, &dbgregs,
2834                                  sizeof(struct kvm_debugregs)))
2835                         break;
2836                 r = 0;
2837                 break;
2838         }
2839         case KVM_SET_DEBUGREGS: {
2840                 struct kvm_debugregs dbgregs;
2841
2842                 r = -EFAULT;
2843                 if (copy_from_user(&dbgregs, argp,
2844                                    sizeof(struct kvm_debugregs)))
2845                         break;
2846
2847                 r = kvm_vcpu_ioctl_x86_set_debugregs(vcpu, &dbgregs);
2848                 break;
2849         }
2850         case KVM_GET_XSAVE: {
2851                 u.xsave = kzalloc(sizeof(struct kvm_xsave), GFP_KERNEL);
2852                 r = -ENOMEM;
2853                 if (!u.xsave)
2854                         break;
2855
2856                 kvm_vcpu_ioctl_x86_get_xsave(vcpu, u.xsave);
2857
2858                 r = -EFAULT;
2859                 if (copy_to_user(argp, u.xsave, sizeof(struct kvm_xsave)))
2860                         break;
2861                 r = 0;
2862                 break;
2863         }
2864         case KVM_SET_XSAVE: {
2865                 u.xsave = memdup_user(argp, sizeof(*u.xsave));
2866                 if (IS_ERR(u.xsave)) {
2867                         r = PTR_ERR(u.xsave);
2868                         goto out;
2869                 }
2870
2871                 r = kvm_vcpu_ioctl_x86_set_xsave(vcpu, u.xsave);
2872                 break;
2873         }
2874         case KVM_GET_XCRS: {
2875                 u.xcrs = kzalloc(sizeof(struct kvm_xcrs), GFP_KERNEL);
2876                 r = -ENOMEM;
2877                 if (!u.xcrs)
2878                         break;
2879
2880                 kvm_vcpu_ioctl_x86_get_xcrs(vcpu, u.xcrs);
2881
2882                 r = -EFAULT;
2883                 if (copy_to_user(argp, u.xcrs,
2884                                  sizeof(struct kvm_xcrs)))
2885                         break;
2886                 r = 0;
2887                 break;
2888         }
2889         case KVM_SET_XCRS: {
2890                 u.xcrs = memdup_user(argp, sizeof(*u.xcrs));
2891                 if (IS_ERR(u.xcrs)) {
2892                         r = PTR_ERR(u.xcrs);
2893                         goto out;
2894                 }
2895
2896                 r = kvm_vcpu_ioctl_x86_set_xcrs(vcpu, u.xcrs);
2897                 break;
2898         }
2899         case KVM_SET_TSC_KHZ: {
2900                 u32 user_tsc_khz;
2901
2902                 r = -EINVAL;
2903                 user_tsc_khz = (u32)arg;
2904
2905                 if (user_tsc_khz >= kvm_max_guest_tsc_khz)
2906                         goto out;
2907
2908                 if (user_tsc_khz == 0)
2909                         user_tsc_khz = tsc_khz;
2910
2911                 kvm_set_tsc_khz(vcpu, user_tsc_khz);
2912
2913                 r = 0;
2914                 goto out;
2915         }
2916         case KVM_GET_TSC_KHZ: {
2917                 r = vcpu->arch.virtual_tsc_khz;
2918                 goto out;
2919         }
2920         case KVM_KVMCLOCK_CTRL: {
2921                 r = kvm_set_guest_paused(vcpu);
2922                 goto out;
2923         }
2924         default:
2925                 r = -EINVAL;
2926         }
2927 out:
2928         kfree(u.buffer);
2929         return r;
2930 }
2931
2932 int kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
2933 {
2934         return VM_FAULT_SIGBUS;
2935 }
2936
2937 static int kvm_vm_ioctl_set_tss_addr(struct kvm *kvm, unsigned long addr)
2938 {
2939         int ret;
2940
2941         if (addr > (unsigned int)(-3 * PAGE_SIZE))
2942                 return -1;
2943         ret = kvm_x86_ops->set_tss_addr(kvm, addr);
2944         return ret;
2945 }
2946
2947 static int kvm_vm_ioctl_set_identity_map_addr(struct kvm *kvm,
2948                                               u64 ident_addr)
2949 {
2950         kvm->arch.ept_identity_map_addr = ident_addr;
2951         return 0;
2952 }
2953
2954 static int kvm_vm_ioctl_set_nr_mmu_pages(struct kvm *kvm,
2955                                           u32 kvm_nr_mmu_pages)
2956 {
2957         if (kvm_nr_mmu_pages < KVM_MIN_ALLOC_MMU_PAGES)
2958                 return -EINVAL;
2959
2960         mutex_lock(&kvm->slots_lock);
2961         spin_lock(&kvm->mmu_lock);
2962
2963         kvm_mmu_change_mmu_pages(kvm, kvm_nr_mmu_pages);
2964         kvm->arch.n_requested_mmu_pages = kvm_nr_mmu_pages;
2965
2966         spin_unlock(&kvm->mmu_lock);
2967         mutex_unlock(&kvm->slots_lock);
2968         return 0;
2969 }
2970
2971 static int kvm_vm_ioctl_get_nr_mmu_pages(struct kvm *kvm)
2972 {
2973         return kvm->arch.n_max_mmu_pages;
2974 }
2975
2976 static int kvm_vm_ioctl_get_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
2977 {
2978         int r;
2979
2980         r = 0;
2981         switch (chip->chip_id) {
2982         case KVM_IRQCHIP_PIC_MASTER:
2983                 memcpy(&chip->chip.pic,
2984                         &pic_irqchip(kvm)->pics[0],
2985                         sizeof(struct kvm_pic_state));
2986                 break;
2987         case KVM_IRQCHIP_PIC_SLAVE:
2988                 memcpy(&chip->chip.pic,
2989                         &pic_irqchip(kvm)->pics[1],
2990                         sizeof(struct kvm_pic_state));
2991                 break;
2992         case KVM_IRQCHIP_IOAPIC:
2993                 r = kvm_get_ioapic(kvm, &chip->chip.ioapic);
2994                 break;
2995         default:
2996                 r = -EINVAL;
2997                 break;
2998         }
2999         return r;
3000 }
3001
3002 static int kvm_vm_ioctl_set_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
3003 {
3004         int r;
3005
3006         r = 0;
3007         switch (chip->chip_id) {
3008         case KVM_IRQCHIP_PIC_MASTER:
3009                 spin_lock(&pic_irqchip(kvm)->lock);
3010                 memcpy(&pic_irqchip(kvm)->pics[0],
3011                         &chip->chip.pic,
3012                         sizeof(struct kvm_pic_state));
3013                 spin_unlock(&pic_irqchip(kvm)->lock);
3014                 break;
3015         case KVM_IRQCHIP_PIC_SLAVE:
3016                 spin_lock(&pic_irqchip(kvm)->lock);
3017                 memcpy(&pic_irqchip(kvm)->pics[1],
3018                         &chip->chip.pic,
3019                         sizeof(struct kvm_pic_state));
3020                 spin_unlock(&pic_irqchip(kvm)->lock);
3021                 break;
3022         case KVM_IRQCHIP_IOAPIC:
3023                 r = kvm_set_ioapic(kvm, &chip->chip.ioapic);
3024                 break;
3025         default:
3026                 r = -EINVAL;
3027                 break;
3028         }
3029         kvm_pic_update_irq(pic_irqchip(kvm));
3030         return r;
3031 }
3032
3033 static int kvm_vm_ioctl_get_pit(struct kvm *kvm, struct kvm_pit_state *ps)
3034 {
3035         int r = 0;
3036
3037         mutex_lock(&kvm->arch.vpit->pit_state.lock);
3038         memcpy(ps, &kvm->arch.vpit->pit_state, sizeof(struct kvm_pit_state));
3039         mutex_unlock(&kvm->arch.vpit->pit_state.lock);
3040         return r;
3041 }
3042
3043 static int kvm_vm_ioctl_set_pit(struct kvm *kvm, struct kvm_pit_state *ps)
3044 {
3045         int r = 0;
3046
3047         mutex_lock(&kvm->arch.vpit->pit_state.lock);
3048         memcpy(&kvm->arch.vpit->pit_state, ps, sizeof(struct kvm_pit_state));
3049         kvm_pit_load_count(kvm, 0, ps->channels[0].count, 0);
3050         mutex_unlock(&kvm->arch.vpit->pit_state.lock);
3051         return r;
3052 }
3053
3054 static int kvm_vm_ioctl_get_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
3055 {
3056         int r = 0;
3057
3058         mutex_lock(&kvm->arch.vpit->pit_state.lock);
3059         memcpy(ps->channels, &kvm->arch.vpit->pit_state.channels,
3060                 sizeof(ps->channels));
3061         ps->flags = kvm->arch.vpit->pit_state.flags;
3062         mutex_unlock(&kvm->arch.vpit->pit_state.lock);
3063         memset(&ps->reserved, 0, sizeof(ps->reserved));
3064         return r;
3065 }
3066
3067 static int kvm_vm_ioctl_set_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
3068 {
3069         int r = 0, start = 0;
3070         u32 prev_legacy, cur_legacy;
3071         mutex_lock(&kvm->arch.vpit->pit_state.lock);
3072         prev_legacy = kvm->arch.vpit->pit_state.flags & KVM_PIT_FLAGS_HPET_LEGACY;
3073         cur_legacy = ps->flags & KVM_PIT_FLAGS_HPET_LEGACY;
3074         if (!prev_legacy && cur_legacy)
3075                 start = 1;
3076         memcpy(&kvm->arch.vpit->pit_state.channels, &ps->channels,
3077                sizeof(kvm->arch.vpit->pit_state.channels));
3078         kvm->arch.vpit->pit_state.flags = ps->flags;
3079         kvm_pit_load_count(kvm, 0, kvm->arch.vpit->pit_state.channels[0].count, start);
3080         mutex_unlock(&kvm->arch.vpit->pit_state.lock);
3081         return r;
3082 }
3083
3084 static int kvm_vm_ioctl_reinject(struct kvm *kvm,
3085                                  struct kvm_reinject_control *control)
3086 {
3087         if (!kvm->arch.vpit)
3088                 return -ENXIO;
3089         mutex_lock(&kvm->arch.vpit->pit_state.lock);
3090         kvm->arch.vpit->pit_state.pit_timer.reinject = control->pit_reinject;
3091         mutex_unlock(&kvm->arch.vpit->pit_state.lock);
3092         return 0;
3093 }
3094
3095 /**
3096  * kvm_vm_ioctl_get_dirty_log - get and clear the log of dirty pages in a slot
3097  * @kvm: kvm instance
3098  * @log: slot id and address to which we copy the log
3099  *
3100  * We need to keep it in mind that VCPU threads can write to the bitmap
3101  * concurrently.  So, to avoid losing data, we keep the following order for
3102  * each bit:
3103  *
3104  *   1. Take a snapshot of the bit and clear it if needed.
3105  *   2. Write protect the corresponding page.
3106  *   3. Flush TLB's if needed.
3107  *   4. Copy the snapshot to the userspace.
3108  *
3109  * Between 2 and 3, the guest may write to the page using the remaining TLB
3110  * entry.  This is not a problem because the page will be reported dirty at
3111  * step 4 using the snapshot taken before and step 3 ensures that successive
3112  * writes will be logged for the next call.
3113  */
3114 int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log)
3115 {
3116         int r;
3117         struct kvm_memory_slot *memslot;
3118         unsigned long n, i;
3119         unsigned long *dirty_bitmap;
3120         unsigned long *dirty_bitmap_buffer;
3121         bool is_dirty = false;
3122
3123         mutex_lock(&kvm->slots_lock);
3124
3125         r = -EINVAL;
3126         if (log->slot >= KVM_MEMORY_SLOTS)
3127                 goto out;
3128
3129         memslot = id_to_memslot(kvm->memslots, log->slot);
3130
3131         dirty_bitmap = memslot->dirty_bitmap;
3132         r = -ENOENT;
3133         if (!dirty_bitmap)
3134                 goto out;
3135
3136         n = kvm_dirty_bitmap_bytes(memslot);
3137
3138         dirty_bitmap_buffer = dirty_bitmap + n / sizeof(long);
3139         memset(dirty_bitmap_buffer, 0, n);
3140
3141         spin_lock(&kvm->mmu_lock);
3142
3143         for (i = 0; i < n / sizeof(long); i++) {
3144                 unsigned long mask;
3145                 gfn_t offset;
3146
3147                 if (!dirty_bitmap[i])
3148                         continue;
3149
3150                 is_dirty = true;
3151
3152                 mask = xchg(&dirty_bitmap[i], 0);
3153                 dirty_bitmap_buffer[i] = mask;
3154
3155                 offset = i * BITS_PER_LONG;
3156                 kvm_mmu_write_protect_pt_masked(kvm, memslot, offset, mask);
3157         }
3158         if (is_dirty)
3159                 kvm_flush_remote_tlbs(kvm);
3160
3161         spin_unlock(&kvm->mmu_lock);
3162
3163         r = -EFAULT;
3164         if (copy_to_user(log->dirty_bitmap, dirty_bitmap_buffer, n))
3165                 goto out;
3166
3167         r = 0;
3168 out:
3169         mutex_unlock(&kvm->slots_lock);
3170         return r;
3171 }
3172
3173 long kvm_arch_vm_ioctl(struct file *filp,
3174                        unsigned int ioctl, unsigned long arg)
3175 {
3176         struct kvm *kvm = filp->private_data;
3177         void __user *argp = (void __user *)arg;
3178         int r = -ENOTTY;
3179         /*
3180          * This union makes it completely explicit to gcc-3.x
3181          * that these two variables' stack usage should be
3182          * combined, not added together.
3183          */
3184         union {
3185                 struct kvm_pit_state ps;
3186                 struct kvm_pit_state2 ps2;
3187                 struct kvm_pit_config pit_config;
3188         } u;
3189
3190         switch (ioctl) {
3191         case KVM_SET_TSS_ADDR:
3192                 r = kvm_vm_ioctl_set_tss_addr(kvm, arg);
3193                 if (r < 0)
3194                         goto out;
3195                 break;
3196         case KVM_SET_IDENTITY_MAP_ADDR: {
3197                 u64 ident_addr;
3198
3199                 r = -EFAULT;
3200                 if (copy_from_user(&ident_addr, argp, sizeof ident_addr))
3201                         goto out;
3202                 r = kvm_vm_ioctl_set_identity_map_addr(kvm, ident_addr);
3203                 if (r < 0)
3204                         goto out;
3205                 break;
3206         }
3207         case KVM_SET_NR_MMU_PAGES:
3208                 r = kvm_vm_ioctl_set_nr_mmu_pages(kvm, arg);
3209                 if (r)
3210                         goto out;
3211                 break;
3212         case KVM_GET_NR_MMU_PAGES:
3213                 r = kvm_vm_ioctl_get_nr_mmu_pages(kvm);
3214                 break;
3215         case KVM_CREATE_IRQCHIP: {
3216                 struct kvm_pic *vpic;
3217
3218                 mutex_lock(&kvm->lock);
3219                 r = -EEXIST;
3220                 if (kvm->arch.vpic)
3221                         goto create_irqchip_unlock;
3222                 r = -EINVAL;
3223                 if (atomic_read(&kvm->online_vcpus))
3224                         goto create_irqchip_unlock;
3225                 r = -ENOMEM;
3226                 vpic = kvm_create_pic(kvm);
3227                 if (vpic) {
3228                         r = kvm_ioapic_init(kvm);
3229                         if (r) {
3230                                 mutex_lock(&kvm->slots_lock);
3231                                 kvm_io_bus_unregister_dev(kvm, KVM_PIO_BUS,
3232                                                           &vpic->dev_master);
3233                                 kvm_io_bus_unregister_dev(kvm, KVM_PIO_BUS,
3234                                                           &vpic->dev_slave);
3235                                 kvm_io_bus_unregister_dev(kvm, KVM_PIO_BUS,
3236                                                           &vpic->dev_eclr);
3237                                 mutex_unlock(&kvm->slots_lock);
3238                                 kfree(vpic);
3239                                 goto create_irqchip_unlock;
3240                         }
3241                 } else
3242                         goto create_irqchip_unlock;
3243                 smp_wmb();
3244                 kvm->arch.vpic = vpic;
3245                 smp_wmb();
3246                 r = kvm_setup_default_irq_routing(kvm);
3247                 if (r) {
3248                         mutex_lock(&kvm->slots_lock);
3249                         mutex_lock(&kvm->irq_lock);
3250                         kvm_ioapic_destroy(kvm);
3251                         kvm_destroy_pic(kvm);
3252                         mutex_unlock(&kvm->irq_lock);
3253                         mutex_unlock(&kvm->slots_lock);
3254                 }
3255         create_irqchip_unlock:
3256                 mutex_unlock(&kvm->lock);
3257                 break;
3258         }
3259         case KVM_CREATE_PIT:
3260                 u.pit_config.flags = KVM_PIT_SPEAKER_DUMMY;
3261                 goto create_pit;
3262         case KVM_CREATE_PIT2:
3263                 r = -EFAULT;
3264                 if (copy_from_user(&u.pit_config, argp,
3265                                    sizeof(struct kvm_pit_config)))
3266                         goto out;
3267         create_pit:
3268                 mutex_lock(&kvm->slots_lock);
3269                 r = -EEXIST;
3270                 if (kvm->arch.vpit)
3271                         goto create_pit_unlock;
3272                 r = -ENOMEM;
3273                 kvm->arch.vpit = kvm_create_pit(kvm, u.pit_config.flags);
3274                 if (kvm->arch.vpit)
3275                         r = 0;
3276         create_pit_unlock:
3277                 mutex_unlock(&kvm->slots_lock);
3278                 break;
3279         case KVM_IRQ_LINE_STATUS:
3280         case KVM_IRQ_LINE: {
3281                 struct kvm_irq_level irq_event;
3282
3283                 r = -EFAULT;
3284                 if (copy_from_user(&irq_event, argp, sizeof irq_event))
3285                         goto out;
3286                 r = -ENXIO;
3287                 if (irqchip_in_kernel(kvm)) {
3288                         __s32 status;
3289                         status = kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID,
3290                                         irq_event.irq, irq_event.level);
3291                         if (ioctl == KVM_IRQ_LINE_STATUS) {
3292                                 r = -EFAULT;
3293                                 irq_event.status = status;
3294                                 if (copy_to_user(argp, &irq_event,
3295                                                         sizeof irq_event))
3296                                         goto out;
3297                         }
3298                         r = 0;
3299                 }
3300                 break;
3301         }
3302         case KVM_GET_IRQCHIP: {
3303                 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
3304                 struct kvm_irqchip *chip;
3305
3306                 chip = memdup_user(argp, sizeof(*chip));
3307                 if (IS_ERR(chip)) {
3308                         r = PTR_ERR(chip);
3309                         goto out;
3310                 }
3311
3312                 r = -ENXIO;
3313                 if (!irqchip_in_kernel(kvm))
3314                         goto get_irqchip_out;
3315                 r = kvm_vm_ioctl_get_irqchip(kvm, chip);
3316                 if (r)
3317                         goto get_irqchip_out;
3318                 r = -EFAULT;
3319                 if (copy_to_user(argp, chip, sizeof *chip))
3320                         goto get_irqchip_out;
3321                 r = 0;
3322         get_irqchip_out:
3323                 kfree(chip);
3324                 if (r)
3325                         goto out;
3326                 break;
3327         }
3328         case KVM_SET_IRQCHIP: {
3329                 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
3330                 struct kvm_irqchip *chip;
3331
3332                 chip = memdup_user(argp, sizeof(*chip));
3333                 if (IS_ERR(chip)) {
3334                         r = PTR_ERR(chip);
3335                         goto out;
3336                 }
3337
3338                 r = -ENXIO;
3339                 if (!irqchip_in_kernel(kvm))
3340                         goto set_irqchip_out;
3341                 r = kvm_vm_ioctl_set_irqchip(kvm, chip);
3342                 if (r)
3343                         goto set_irqchip_out;
3344                 r = 0;
3345         set_irqchip_out:
3346                 kfree(chip);
3347                 if (r)
3348                         goto out;
3349                 break;
3350         }
3351         case KVM_GET_PIT: {
3352                 r = -EFAULT;
3353                 if (copy_from_user(&u.ps, argp, sizeof(struct kvm_pit_state)))
3354                         goto out;
3355                 r = -ENXIO;
3356                 if (!kvm->arch.vpit)
3357                         goto out;
3358                 r = kvm_vm_ioctl_get_pit(kvm, &u.ps);
3359                 if (r)
3360                         goto out;
3361                 r = -EFAULT;
3362                 if (copy_to_user(argp, &u.ps, sizeof(struct kvm_pit_state)))
3363                         goto out;
3364                 r = 0;
3365                 break;
3366         }
3367         case KVM_SET_PIT: {
3368                 r = -EFAULT;
3369                 if (copy_from_user(&u.ps, argp, sizeof u.ps))
3370                         goto out;
3371                 r = -ENXIO;
3372                 if (!kvm->arch.vpit)
3373                         goto out;
3374                 r = kvm_vm_ioctl_set_pit(kvm, &u.ps);
3375                 if (r)
3376                         goto out;
3377                 r = 0;
3378                 break;
3379         }
3380         case KVM_GET_PIT2: {
3381                 r = -ENXIO;
3382                 if (!kvm->arch.vpit)
3383                         goto out;
3384                 r = kvm_vm_ioctl_get_pit2(kvm, &u.ps2);
3385                 if (r)
3386                         goto out;
3387                 r = -EFAULT;
3388                 if (copy_to_user(argp, &u.ps2, sizeof(u.ps2)))
3389                         goto out;
3390                 r = 0;
3391                 break;
3392         }
3393         case KVM_SET_PIT2: {
3394                 r = -EFAULT;
3395                 if (copy_from_user(&u.ps2, argp, sizeof(u.ps2)))
3396                         goto out;
3397                 r = -ENXIO;
3398                 if (!kvm->arch.vpit)
3399                         goto out;
3400                 r = kvm_vm_ioctl_set_pit2(kvm, &u.ps2);
3401                 if (r)
3402                         goto out;
3403                 r = 0;
3404                 break;
3405         }
3406         case KVM_REINJECT_CONTROL: {
3407                 struct kvm_reinject_control control;
3408                 r =  -EFAULT;
3409                 if (copy_from_user(&control, argp, sizeof(control)))
3410                         goto out;
3411                 r = kvm_vm_ioctl_reinject(kvm, &control);
3412                 if (r)
3413                         goto out;
3414                 r = 0;
3415                 break;
3416         }
3417         case KVM_XEN_HVM_CONFIG: {
3418                 r = -EFAULT;
3419                 if (copy_from_user(&kvm->arch.xen_hvm_config, argp,
3420                                    sizeof(struct kvm_xen_hvm_config)))
3421                         goto out;
3422                 r = -EINVAL;
3423                 if (kvm->arch.xen_hvm_config.flags)
3424                         goto out;
3425                 r = 0;
3426                 break;
3427         }
3428         case KVM_SET_CLOCK: {
3429                 struct kvm_clock_data user_ns;
3430                 u64 now_ns;
3431                 s64 delta;
3432
3433                 r = -EFAULT;
3434                 if (copy_from_user(&user_ns, argp, sizeof(user_ns)))
3435                         goto out;
3436
3437                 r = -EINVAL;
3438                 if (user_ns.flags)
3439                         goto out;
3440
3441                 r = 0;
3442                 local_irq_disable();
3443                 now_ns = get_kernel_ns();
3444                 delta = user_ns.clock - now_ns;
3445                 local_irq_enable();
3446                 kvm->arch.kvmclock_offset = delta;
3447                 break;
3448         }
3449         case KVM_GET_CLOCK: {
3450                 struct kvm_clock_data user_ns;
3451                 u64 now_ns;
3452
3453                 local_irq_disable();
3454                 now_ns = get_kernel_ns();
3455                 user_ns.clock = kvm->arch.kvmclock_offset + now_ns;
3456                 local_irq_enable();
3457                 user_ns.flags = 0;
3458                 memset(&user_ns.pad, 0, sizeof(user_ns.pad));
3459
3460                 r = -EFAULT;
3461                 if (copy_to_user(argp, &user_ns, sizeof(user_ns)))
3462                         goto out;
3463                 r = 0;
3464                 break;
3465         }
3466
3467         default:
3468                 ;
3469         }
3470 out:
3471         return r;
3472 }
3473
3474 static void kvm_init_msr_list(void)
3475 {
3476         u32 dummy[2];
3477         unsigned i, j;
3478
3479         /* skip the first msrs in the list. KVM-specific */
3480         for (i = j = KVM_SAVE_MSRS_BEGIN; i < ARRAY_SIZE(msrs_to_save); i++) {
3481                 if (rdmsr_safe(msrs_to_save[i], &dummy[0], &dummy[1]) < 0)
3482                         continue;
3483                 if (j < i)
3484                         msrs_to_save[j] = msrs_to_save[i];
3485                 j++;
3486         }
3487         num_msrs_to_save = j;
3488 }
3489
3490 static int vcpu_mmio_write(struct kvm_vcpu *vcpu, gpa_t addr, int len,
3491                            const void *v)
3492 {
3493         int handled = 0;
3494         int n;
3495
3496         do {
3497                 n = min(len, 8);
3498                 if (!(vcpu->arch.apic &&
3499                       !kvm_iodevice_write(&vcpu->arch.apic->dev, addr, n, v))
3500                     && kvm_io_bus_write(vcpu->kvm, KVM_MMIO_BUS, addr, n, v))
3501                         break;
3502                 handled += n;
3503                 addr += n;
3504                 len -= n;
3505                 v += n;
3506         } while (len);
3507
3508         return handled;
3509 }
3510
3511 static int vcpu_mmio_read(struct kvm_vcpu *vcpu, gpa_t addr, int len, void *v)
3512 {
3513         int handled = 0;
3514         int n;
3515
3516         do {
3517                 n = min(len, 8);
3518                 if (!(vcpu->arch.apic &&
3519                       !kvm_iodevice_read(&vcpu->arch.apic->dev, addr, n, v))
3520                     && kvm_io_bus_read(vcpu->kvm, KVM_MMIO_BUS, addr, n, v))
3521                         break;
3522                 trace_kvm_mmio(KVM_TRACE_MMIO_READ, n, addr, *(u64 *)v);
3523                 handled += n;
3524                 addr += n;
3525                 len -= n;
3526                 v += n;
3527         } while (len);
3528
3529         return handled;
3530 }
3531
3532 static void kvm_set_segment(struct kvm_vcpu *vcpu,
3533                         struct kvm_segment *var, int seg)
3534 {
3535         kvm_x86_ops->set_segment(vcpu, var, seg);
3536 }
3537
3538 void kvm_get_segment(struct kvm_vcpu *vcpu,
3539                      struct kvm_segment *var, int seg)
3540 {
3541         kvm_x86_ops->get_segment(vcpu, var, seg);
3542 }
3543
3544 gpa_t translate_nested_gpa(struct kvm_vcpu *vcpu, gpa_t gpa, u32 access)
3545 {
3546         gpa_t t_gpa;
3547         struct x86_exception exception;
3548
3549         BUG_ON(!mmu_is_nested(vcpu));
3550
3551         /* NPT walks are always user-walks */
3552         access |= PFERR_USER_MASK;
3553         t_gpa  = vcpu->arch.mmu.gva_to_gpa(vcpu, gpa, access, &exception);
3554
3555         return t_gpa;
3556 }
3557
3558 gpa_t kvm_mmu_gva_to_gpa_read(struct kvm_vcpu *vcpu, gva_t gva,
3559                               struct x86_exception *exception)
3560 {
3561         u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
3562         return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
3563 }
3564
3565  gpa_t kvm_mmu_gva_to_gpa_fetch(struct kvm_vcpu *vcpu, gva_t gva,
3566                                 struct x86_exception *exception)
3567 {
3568         u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
3569         access |= PFERR_FETCH_MASK;
3570         return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
3571 }
3572
3573 gpa_t kvm_mmu_gva_to_gpa_write(struct kvm_vcpu *vcpu, gva_t gva,
3574                                struct x86_exception *exception)
3575 {
3576         u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
3577         access |= PFERR_WRITE_MASK;
3578         return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
3579 }
3580
3581 /* uses this to access any guest's mapped memory without checking CPL */
3582 gpa_t kvm_mmu_gva_to_gpa_system(struct kvm_vcpu *vcpu, gva_t gva,
3583                                 struct x86_exception *exception)
3584 {
3585         return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, 0, exception);
3586 }
3587
3588 static int kvm_read_guest_virt_helper(gva_t addr, void *val, unsigned int bytes,
3589                                       struct kvm_vcpu *vcpu, u32 access,
3590                                       struct x86_exception *exception)
3591 {
3592         void *data = val;
3593         int r = X86EMUL_CONTINUE;
3594
3595         while (bytes) {
3596                 gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr, access,
3597                                                             exception);
3598                 unsigned offset = addr & (PAGE_SIZE-1);
3599                 unsigned toread = min(bytes, (unsigned)PAGE_SIZE - offset);
3600                 int ret;
3601
3602                 if (gpa == UNMAPPED_GVA)
3603                         return X86EMUL_PROPAGATE_FAULT;
3604                 ret = kvm_read_guest(vcpu->kvm, gpa, data, toread);
3605                 if (ret < 0) {
3606                         r = X86EMUL_IO_NEEDED;
3607                         goto out;
3608                 }
3609
3610                 bytes -= toread;
3611                 data += toread;
3612                 addr += toread;
3613         }
3614 out:
3615         return r;
3616 }
3617
3618 /* used for instruction fetching */
3619 static int kvm_fetch_guest_virt(struct x86_emulate_ctxt *ctxt,
3620                                 gva_t addr, void *val, unsigned int bytes,
3621                                 struct x86_exception *exception)
3622 {
3623         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
3624         u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
3625
3626         return kvm_read_guest_virt_helper(addr, val, bytes, vcpu,
3627                                           access | PFERR_FETCH_MASK,
3628                                           exception);
3629 }
3630
3631 int kvm_read_guest_virt(struct x86_emulate_ctxt *ctxt,
3632                                gva_t addr, void *val, unsigned int bytes,
3633                                struct x86_exception *exception)
3634 {
3635         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
3636         u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
3637
3638         return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access,
3639                                           exception);
3640 }
3641 EXPORT_SYMBOL_GPL(kvm_read_guest_virt);
3642
3643 static int kvm_read_guest_virt_system(struct x86_emulate_ctxt *ctxt,
3644                                       gva_t addr, void *val, unsigned int bytes,
3645                                       struct x86_exception *exception)
3646 {
3647         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
3648         return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, 0, exception);
3649 }
3650
3651 int kvm_write_guest_virt_system(struct x86_emulate_ctxt *ctxt,
3652                                        gva_t addr, void *val,
3653                                        unsigned int bytes,
3654                                        struct x86_exception *exception)
3655 {
3656         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
3657         void *data = val;
3658         int r = X86EMUL_CONTINUE;
3659
3660         while (bytes) {
3661                 gpa_t gpa =  vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr,
3662                                                              PFERR_WRITE_MASK,
3663                                                              exception);
3664                 unsigned offset = addr & (PAGE_SIZE-1);
3665                 unsigned towrite = min(bytes, (unsigned)PAGE_SIZE - offset);
3666                 int ret;
3667
3668                 if (gpa == UNMAPPED_GVA)
3669                         return X86EMUL_PROPAGATE_FAULT;
3670                 ret = kvm_write_guest(vcpu->kvm, gpa, data, towrite);
3671                 if (ret < 0) {
3672                         r = X86EMUL_IO_NEEDED;
3673                         goto out;
3674                 }
3675
3676                 bytes -= towrite;
3677                 data += towrite;
3678                 addr += towrite;
3679         }
3680 out:
3681         return r;
3682 }
3683 EXPORT_SYMBOL_GPL(kvm_write_guest_virt_system);
3684
3685 static int vcpu_mmio_gva_to_gpa(struct kvm_vcpu *vcpu, unsigned long gva,
3686                                 gpa_t *gpa, struct x86_exception *exception,
3687                                 bool write)
3688 {
3689         u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
3690
3691         if (vcpu_match_mmio_gva(vcpu, gva) &&
3692                   check_write_user_access(vcpu, write, access,
3693                   vcpu->arch.access)) {
3694                 *gpa = vcpu->arch.mmio_gfn << PAGE_SHIFT |
3695                                         (gva & (PAGE_SIZE - 1));
3696                 trace_vcpu_match_mmio(gva, *gpa, write, false);
3697                 return 1;
3698         }
3699
3700         if (write)
3701                 access |= PFERR_WRITE_MASK;
3702
3703         *gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
3704
3705         if (*gpa == UNMAPPED_GVA)
3706                 return -1;
3707
3708         /* For APIC access vmexit */
3709         if ((*gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
3710                 return 1;
3711
3712         if (vcpu_match_mmio_gpa(vcpu, *gpa)) {
3713                 trace_vcpu_match_mmio(gva, *gpa, write, true);
3714                 return 1;
3715         }
3716
3717         return 0;
3718 }
3719
3720 int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa,
3721                         const void *val, int bytes)
3722 {
3723         int ret;
3724
3725         ret = kvm_write_guest(vcpu->kvm, gpa, val, bytes);
3726         if (ret < 0)
3727                 return 0;
3728         kvm_mmu_pte_write(vcpu, gpa, val, bytes);
3729         return 1;
3730 }
3731
3732 struct read_write_emulator_ops {
3733         int (*read_write_prepare)(struct kvm_vcpu *vcpu, void *val,
3734                                   int bytes);
3735         int (*read_write_emulate)(struct kvm_vcpu *vcpu, gpa_t gpa,
3736                                   void *val, int bytes);
3737         int (*read_write_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa,
3738                                int bytes, void *val);
3739         int (*read_write_exit_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa,
3740                                     void *val, int bytes);
3741         bool write;
3742 };
3743
3744 static int read_prepare(struct kvm_vcpu *vcpu, void *val, int bytes)
3745 {
3746         if (vcpu->mmio_read_completed) {
3747                 trace_kvm_mmio(KVM_TRACE_MMIO_READ, bytes,
3748                                vcpu->mmio_fragments[0].gpa, *(u64 *)val);
3749                 vcpu->mmio_read_completed = 0;
3750                 return 1;
3751         }
3752
3753         return 0;
3754 }
3755
3756 static int read_emulate(struct kvm_vcpu *vcpu, gpa_t gpa,
3757                         void *val, int bytes)
3758 {
3759         return !kvm_read_guest(vcpu->kvm, gpa, val, bytes);
3760 }
3761
3762 static int write_emulate(struct kvm_vcpu *vcpu, gpa_t gpa,
3763                          void *val, int bytes)
3764 {
3765         return emulator_write_phys(vcpu, gpa, val, bytes);
3766 }
3767
3768 static int write_mmio(struct kvm_vcpu *vcpu, gpa_t gpa, int bytes, void *val)
3769 {
3770         trace_kvm_mmio(KVM_TRACE_MMIO_WRITE, bytes, gpa, *(u64 *)val);
3771         return vcpu_mmio_write(vcpu, gpa, bytes, val);
3772 }
3773
3774 static int read_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
3775                           void *val, int bytes)
3776 {
3777         trace_kvm_mmio(KVM_TRACE_MMIO_READ_UNSATISFIED, bytes, gpa, 0);
3778         return X86EMUL_IO_NEEDED;
3779 }
3780
3781 static int write_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
3782                            void *val, int bytes)
3783 {
3784         struct kvm_mmio_fragment *frag = &vcpu->mmio_fragments[0];
3785
3786         memcpy(vcpu->run->mmio.data, frag->data, frag->len);
3787         return X86EMUL_CONTINUE;
3788 }
3789
3790 static struct read_write_emulator_ops read_emultor = {
3791         .read_write_prepare = read_prepare,
3792         .read_write_emulate = read_emulate,
3793         .read_write_mmio = vcpu_mmio_read,
3794         .read_write_exit_mmio = read_exit_mmio,
3795 };
3796
3797 static struct read_write_emulator_ops write_emultor = {
3798         .read_write_emulate = write_emulate,
3799         .read_write_mmio = write_mmio,
3800         .read_write_exit_mmio = write_exit_mmio,
3801         .write = true,
3802 };
3803
3804 static int emulator_read_write_onepage(unsigned long addr, void *val,
3805                                        unsigned int bytes,
3806                                        struct x86_exception *exception,
3807                                        struct kvm_vcpu *vcpu,
3808                                        struct read_write_emulator_ops *ops)
3809 {
3810         gpa_t gpa;
3811         int handled, ret;
3812         bool write = ops->write;
3813         struct kvm_mmio_fragment *frag;
3814
3815         ret = vcpu_mmio_gva_to_gpa(vcpu, addr, &gpa, exception, write);
3816
3817         if (ret < 0)
3818                 return X86EMUL_PROPAGATE_FAULT;
3819
3820         /* For APIC access vmexit */
3821         if (ret)
3822                 goto mmio;
3823
3824         if (ops->read_write_emulate(vcpu, gpa, val, bytes))
3825                 return X86EMUL_CONTINUE;
3826
3827 mmio:
3828         /*
3829          * Is this MMIO handled locally?
3830          */
3831         handled = ops->read_write_mmio(vcpu, gpa, bytes, val);
3832         if (handled == bytes)
3833                 return X86EMUL_CONTINUE;
3834
3835         gpa += handled;
3836         bytes -= handled;
3837         val += handled;
3838
3839         while (bytes) {
3840                 unsigned now = min(bytes, 8U);
3841
3842                 frag = &vcpu->mmio_fragments[vcpu->mmio_nr_fragments++];
3843                 frag->gpa = gpa;
3844                 frag->data = val;
3845                 frag->len = now;
3846
3847                 gpa += now;
3848                 val += now;
3849                 bytes -= now;
3850         }
3851         return X86EMUL_CONTINUE;
3852 }
3853
3854 int emulator_read_write(struct x86_emulate_ctxt *ctxt, unsigned long addr,
3855                         void *val, unsigned int bytes,
3856                         struct x86_exception *exception,
3857                         struct read_write_emulator_ops *ops)
3858 {
3859         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
3860         gpa_t gpa;
3861         int rc;
3862
3863         if (ops->read_write_prepare &&
3864                   ops->read_write_prepare(vcpu, val, bytes))
3865                 return X86EMUL_CONTINUE;
3866
3867         vcpu->mmio_nr_fragments = 0;
3868
3869         /* Crossing a page boundary? */
3870         if (((addr + bytes - 1) ^ addr) & PAGE_MASK) {
3871                 int now;
3872
3873                 now = -addr & ~PAGE_MASK;
3874                 rc = emulator_read_write_onepage(addr, val, now, exception,
3875                                                  vcpu, ops);
3876
3877                 if (rc != X86EMUL_CONTINUE)
3878                         return rc;
3879                 addr += now;
3880                 val += now;
3881                 bytes -= now;
3882         }
3883
3884         rc = emulator_read_write_onepage(addr, val, bytes, exception,
3885                                          vcpu, ops);
3886         if (rc != X86EMUL_CONTINUE)
3887                 return rc;
3888
3889         if (!vcpu->mmio_nr_fragments)
3890                 return rc;
3891
3892         gpa = vcpu->mmio_fragments[0].gpa;
3893
3894         vcpu->mmio_needed = 1;
3895         vcpu->mmio_cur_fragment = 0;
3896
3897         vcpu->run->mmio.len = vcpu->mmio_fragments[0].len;
3898         vcpu->run->mmio.is_write = vcpu->mmio_is_write = ops->write;
3899         vcpu->run->exit_reason = KVM_EXIT_MMIO;
3900         vcpu->run->mmio.phys_addr = gpa;
3901
3902         return ops->read_write_exit_mmio(vcpu, gpa, val, bytes);
3903 }
3904
3905 static int emulator_read_emulated(struct x86_emulate_ctxt *ctxt,
3906                                   unsigned long addr,
3907                                   void *val,
3908                                   unsigned int bytes,
3909                                   struct x86_exception *exception)
3910 {
3911         return emulator_read_write(ctxt, addr, val, bytes,
3912                                    exception, &read_emultor);
3913 }
3914
3915 int emulator_write_emulated(struct x86_emulate_ctxt *ctxt,
3916                             unsigned long addr,
3917                             const void *val,
3918                             unsigned int bytes,
3919                             struct x86_exception *exception)
3920 {
3921         return emulator_read_write(ctxt, addr, (void *)val, bytes,
3922                                    exception, &write_emultor);
3923 }
3924
3925 #define CMPXCHG_TYPE(t, ptr, old, new) \
3926         (cmpxchg((t *)(ptr), *(t *)(old), *(t *)(new)) == *(t *)(old))
3927
3928 #ifdef CONFIG_X86_64
3929 #  define CMPXCHG64(ptr, old, new) CMPXCHG_TYPE(u64, ptr, old, new)
3930 #else
3931 #  define CMPXCHG64(ptr, old, new) \
3932         (cmpxchg64((u64 *)(ptr), *(u64 *)(old), *(u64 *)(new)) == *(u64 *)(old))
3933 #endif
3934
3935 static int emulator_cmpxchg_emulated(struct x86_emulate_ctxt *ctxt,
3936                                      unsigned long addr,
3937                                      const void *old,
3938                                      const void *new,
3939                                      unsigned int bytes,
3940                                      struct x86_exception *exception)
3941 {
3942         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
3943         gpa_t gpa;
3944         struct page *page;
3945         char *kaddr;
3946         bool exchanged;
3947
3948         /* guests cmpxchg8b have to be emulated atomically */
3949         if (bytes > 8 || (bytes & (bytes - 1)))
3950                 goto emul_write;
3951
3952         gpa = kvm_mmu_gva_to_gpa_write(vcpu, addr, NULL);
3953
3954         if (gpa == UNMAPPED_GVA ||
3955             (gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
3956                 goto emul_write;
3957
3958         if (((gpa + bytes - 1) & PAGE_MASK) != (gpa & PAGE_MASK))
3959                 goto emul_write;
3960
3961         page = gfn_to_page(vcpu->kvm, gpa >> PAGE_SHIFT);
3962         if (is_error_page(page)) {
3963                 kvm_release_page_clean(page);
3964                 goto emul_write;
3965         }
3966
3967         kaddr = kmap_atomic(page);
3968         kaddr += offset_in_page(gpa);
3969         switch (bytes) {
3970         case 1:
3971                 exchanged = CMPXCHG_TYPE(u8, kaddr, old, new);
3972                 break;
3973         case 2:
3974                 exchanged = CMPXCHG_TYPE(u16, kaddr, old, new);
3975                 break;
3976         case 4:
3977                 exchanged = CMPXCHG_TYPE(u32, kaddr, old, new);
3978                 break;
3979         case 8:
3980                 exchanged = CMPXCHG64(kaddr, old, new);
3981                 break;
3982         default:
3983                 BUG();
3984         }
3985         kunmap_atomic(kaddr);
3986         kvm_release_page_dirty(page);
3987
3988         if (!exchanged)
3989                 return X86EMUL_CMPXCHG_FAILED;
3990
3991         kvm_mmu_pte_write(vcpu, gpa, new, bytes);
3992
3993         return X86EMUL_CONTINUE;
3994
3995 emul_write:
3996         printk_once(KERN_WARNING "kvm: emulating exchange as write\n");
3997
3998         return emulator_write_emulated(ctxt, addr, new, bytes, exception);
3999 }
4000
4001 static int kernel_pio(struct kvm_vcpu *vcpu, void *pd)
4002 {
4003         /* TODO: String I/O for in kernel device */
4004         int r;
4005
4006         if (vcpu->arch.pio.in)
4007                 r = kvm_io_bus_read(vcpu->kvm, KVM_PIO_BUS, vcpu->arch.pio.port,
4008                                     vcpu->arch.pio.size, pd);
4009         else
4010                 r = kvm_io_bus_write(vcpu->kvm, KVM_PIO_BUS,
4011                                      vcpu->arch.pio.port, vcpu->arch.pio.size,
4012                                      pd);
4013         return r;
4014 }
4015
4016 static int emulator_pio_in_out(struct kvm_vcpu *vcpu, int size,
4017                                unsigned short port, void *val,
4018                                unsigned int count, bool in)
4019 {
4020         trace_kvm_pio(!in, port, size, count);
4021
4022         vcpu->arch.pio.port = port;
4023         vcpu->arch.pio.in = in;
4024         vcpu->arch.pio.count  = count;
4025         vcpu->arch.pio.size = size;
4026
4027         if (!kernel_pio(vcpu, vcpu->arch.pio_data)) {
4028                 vcpu->arch.pio.count = 0;
4029                 return 1;
4030         }
4031
4032         vcpu->run->exit_reason = KVM_EXIT_IO;
4033         vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT;
4034         vcpu->run->io.size = size;
4035         vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
4036         vcpu->run->io.count = count;
4037         vcpu->run->io.port = port;
4038
4039         return 0;
4040 }
4041
4042 static int emulator_pio_in_emulated(struct x86_emulate_ctxt *ctxt,
4043                                     int size, unsigned short port, void *val,
4044                                     unsigned int count)
4045 {
4046         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4047         int ret;
4048
4049         if (vcpu->arch.pio.count)
4050                 goto data_avail;
4051
4052         ret = emulator_pio_in_out(vcpu, size, port, val, count, true);
4053         if (ret) {
4054 data_avail:
4055                 memcpy(val, vcpu->arch.pio_data, size * count);
4056                 vcpu->arch.pio.count = 0;
4057                 return 1;
4058         }
4059
4060         return 0;
4061 }
4062
4063 static int emulator_pio_out_emulated(struct x86_emulate_ctxt *ctxt,
4064                                      int size, unsigned short port,
4065                                      const void *val, unsigned int count)
4066 {
4067         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4068
4069         memcpy(vcpu->arch.pio_data, val, size * count);
4070         return emulator_pio_in_out(vcpu, size, port, (void *)val, count, false);
4071 }
4072
4073 static unsigned long get_segment_base(struct kvm_vcpu *vcpu, int seg)
4074 {
4075         return kvm_x86_ops->get_segment_base(vcpu, seg);
4076 }
4077
4078 static void emulator_invlpg(struct x86_emulate_ctxt *ctxt, ulong address)
4079 {
4080         kvm_mmu_invlpg(emul_to_vcpu(ctxt), address);
4081 }
4082
4083 int kvm_emulate_wbinvd(struct kvm_vcpu *vcpu)
4084 {
4085         if (!need_emulate_wbinvd(vcpu))
4086                 return X86EMUL_CONTINUE;
4087
4088         if (kvm_x86_ops->has_wbinvd_exit()) {
4089                 int cpu = get_cpu();
4090
4091                 cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
4092                 smp_call_function_many(vcpu->arch.wbinvd_dirty_mask,
4093                                 wbinvd_ipi, NULL, 1);
4094                 put_cpu();
4095                 cpumask_clear(vcpu->arch.wbinvd_dirty_mask);
4096         } else
4097                 wbinvd();
4098         return X86EMUL_CONTINUE;
4099 }
4100 EXPORT_SYMBOL_GPL(kvm_emulate_wbinvd);
4101
4102 static void emulator_wbinvd(struct x86_emulate_ctxt *ctxt)
4103 {
4104         kvm_emulate_wbinvd(emul_to_vcpu(ctxt));
4105 }
4106
4107 int emulator_get_dr(struct x86_emulate_ctxt *ctxt, int dr, unsigned long *dest)
4108 {
4109         return _kvm_get_dr(emul_to_vcpu(ctxt), dr, dest);
4110 }
4111
4112 int emulator_set_dr(struct x86_emulate_ctxt *ctxt, int dr, unsigned long value)
4113 {
4114
4115         return __kvm_set_dr(emul_to_vcpu(ctxt), dr, value);
4116 }
4117
4118 static u64 mk_cr_64(u64 curr_cr, u32 new_val)
4119 {
4120         return (curr_cr & ~((1ULL << 32) - 1)) | new_val;
4121 }
4122
4123 static unsigned long emulator_get_cr(struct x86_emulate_ctxt *ctxt, int cr)
4124 {
4125         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4126         unsigned long value;
4127
4128         switch (cr) {
4129         case 0:
4130                 value = kvm_read_cr0(vcpu);
4131                 break;
4132         case 2:
4133                 value = vcpu->arch.cr2;
4134                 break;
4135         case 3:
4136                 value = kvm_read_cr3(vcpu);
4137                 break;
4138         case 4:
4139                 value = kvm_read_cr4(vcpu);
4140                 break;
4141         case 8:
4142                 value = kvm_get_cr8(vcpu);
4143                 break;
4144         default:
4145                 kvm_err("%s: unexpected cr %u\n", __func__, cr);
4146                 return 0;
4147         }
4148
4149         return value;
4150 }
4151
4152 static int emulator_set_cr(struct x86_emulate_ctxt *ctxt, int cr, ulong val)
4153 {
4154         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4155         int res = 0;
4156
4157         switch (cr) {
4158         case 0:
4159                 res = kvm_set_cr0(vcpu, mk_cr_64(kvm_read_cr0(vcpu), val));
4160                 break;
4161         case 2:
4162                 vcpu->arch.cr2 = val;
4163                 break;
4164         case 3:
4165                 res = kvm_set_cr3(vcpu, val);
4166                 break;
4167         case 4:
4168                 res = kvm_set_cr4(vcpu, mk_cr_64(kvm_read_cr4(vcpu), val));
4169                 break;
4170         case 8:
4171                 res = kvm_set_cr8(vcpu, val);
4172                 break;
4173         default:
4174                 kvm_err("%s: unexpected cr %u\n", __func__, cr);
4175                 res = -1;
4176         }
4177
4178         return res;
4179 }
4180
4181 static void emulator_set_rflags(struct x86_emulate_ctxt *ctxt, ulong val)
4182 {
4183         kvm_set_rflags(emul_to_vcpu(ctxt), val);
4184 }
4185
4186 static int emulator_get_cpl(struct x86_emulate_ctxt *ctxt)
4187 {
4188         return kvm_x86_ops->get_cpl(emul_to_vcpu(ctxt));
4189 }
4190
4191 static void emulator_get_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
4192 {
4193         kvm_x86_ops->get_gdt(emul_to_vcpu(ctxt), dt);
4194 }
4195
4196 static void emulator_get_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
4197 {
4198         kvm_x86_ops->get_idt(emul_to_vcpu(ctxt), dt);
4199 }
4200
4201 static void emulator_set_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
4202 {
4203         kvm_x86_ops->set_gdt(emul_to_vcpu(ctxt), dt);
4204 }
4205
4206 static void emulator_set_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
4207 {
4208         kvm_x86_ops->set_idt(emul_to_vcpu(ctxt), dt);
4209 }
4210
4211 static unsigned long emulator_get_cached_segment_base(
4212         struct x86_emulate_ctxt *ctxt, int seg)
4213 {
4214         return get_segment_base(emul_to_vcpu(ctxt), seg);
4215 }
4216
4217 static bool emulator_get_segment(struct x86_emulate_ctxt *ctxt, u16 *selector,
4218                                  struct desc_struct *desc, u32 *base3,
4219                                  int seg)
4220 {
4221         struct kvm_segment var;
4222
4223         kvm_get_segment(emul_to_vcpu(ctxt), &var, seg);
4224         *selector = var.selector;
4225
4226         if (var.unusable)
4227                 return false;
4228
4229         if (var.g)
4230                 var.limit >>= 12;
4231         set_desc_limit(desc, var.limit);
4232         set_desc_base(desc, (unsigned long)var.base);
4233 #ifdef CONFIG_X86_64
4234         if (base3)
4235                 *base3 = var.base >> 32;
4236 #endif
4237         desc->type = var.type;
4238         desc->s = var.s;
4239         desc->dpl = var.dpl;
4240         desc->p = var.present;
4241         desc->avl = var.avl;
4242         desc->l = var.l;
4243         desc->d = var.db;
4244         desc->g = var.g;
4245
4246         return true;
4247 }
4248
4249 static void emulator_set_segment(struct x86_emulate_ctxt *ctxt, u16 selector,
4250                                  struct desc_struct *desc, u32 base3,
4251                                  int seg)
4252 {
4253         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4254         struct kvm_segment var;
4255
4256         var.selector = selector;
4257         var.base = get_desc_base(desc);
4258 #ifdef CONFIG_X86_64
4259         var.base |= ((u64)base3) << 32;
4260 #endif
4261         var.limit = get_desc_limit(desc);
4262         if (desc->g)
4263                 var.limit = (var.limit << 12) | 0xfff;
4264         var.type = desc->type;
4265         var.present = desc->p;
4266         var.dpl = desc->dpl;
4267         var.db = desc->d;
4268         var.s = desc->s;
4269         var.l = desc->l;
4270         var.g = desc->g;
4271         var.avl = desc->avl;
4272         var.present = desc->p;
4273         var.unusable = !var.present;
4274         var.padding = 0;
4275
4276         kvm_set_segment(vcpu, &var, seg);
4277         return;
4278 }
4279
4280 static int emulator_get_msr(struct x86_emulate_ctxt *ctxt,
4281                             u32 msr_index, u64 *pdata)
4282 {
4283         return kvm_get_msr(emul_to_vcpu(ctxt), msr_index, pdata);
4284 }
4285
4286 static int emulator_set_msr(struct x86_emulate_ctxt *ctxt,
4287                             u32 msr_index, u64 data)
4288 {
4289         return kvm_set_msr(emul_to_vcpu(ctxt), msr_index, data);
4290 }
4291
4292 static int emulator_read_pmc(struct x86_emulate_ctxt *ctxt,
4293                              u32 pmc, u64 *pdata)
4294 {
4295         return kvm_pmu_read_pmc(emul_to_vcpu(ctxt), pmc, pdata);
4296 }
4297
4298 static void emulator_halt(struct x86_emulate_ctxt *ctxt)
4299 {
4300         emul_to_vcpu(ctxt)->arch.halt_request = 1;
4301 }
4302
4303 static void emulator_get_fpu(struct x86_emulate_ctxt *ctxt)
4304 {
4305         preempt_disable();
4306         kvm_load_guest_fpu(emul_to_vcpu(ctxt));
4307         /*
4308          * CR0.TS may reference the host fpu state, not the guest fpu state,
4309          * so it may be clear at this point.
4310          */
4311         clts();
4312 }
4313
4314 static void emulator_put_fpu(struct x86_emulate_ctxt *ctxt)
4315 {
4316         preempt_enable();
4317 }
4318
4319 static int emulator_intercept(struct x86_emulate_ctxt *ctxt,
4320                               struct x86_instruction_info *info,
4321                               enum x86_intercept_stage stage)
4322 {
4323         return kvm_x86_ops->check_intercept(emul_to_vcpu(ctxt), info, stage);
4324 }
4325
4326 static void emulator_get_cpuid(struct x86_emulate_ctxt *ctxt,
4327                                u32 *eax, u32 *ebx, u32 *ecx, u32 *edx)
4328 {
4329         kvm_cpuid(emul_to_vcpu(ctxt), eax, ebx, ecx, edx);
4330 }
4331
4332 static struct x86_emulate_ops emulate_ops = {
4333         .read_std            = kvm_read_guest_virt_system,
4334         .write_std           = kvm_write_guest_virt_system,
4335         .fetch               = kvm_fetch_guest_virt,
4336         .read_emulated       = emulator_read_emulated,
4337         .write_emulated      = emulator_write_emulated,
4338         .cmpxchg_emulated    = emulator_cmpxchg_emulated,
4339         .invlpg              = emulator_invlpg,
4340         .pio_in_emulated     = emulator_pio_in_emulated,
4341         .pio_out_emulated    = emulator_pio_out_emulated,
4342         .get_segment         = emulator_get_segment,
4343         .set_segment         = emulator_set_segment,
4344         .get_cached_segment_base = emulator_get_cached_segment_base,
4345         .get_gdt             = emulator_get_gdt,
4346         .get_idt             = emulator_get_idt,
4347         .set_gdt             = emulator_set_gdt,
4348         .set_idt             = emulator_set_idt,
4349         .get_cr              = emulator_get_cr,
4350         .set_cr              = emulator_set_cr,
4351         .set_rflags          = emulator_set_rflags,
4352         .cpl                 = emulator_get_cpl,
4353         .get_dr              = emulator_get_dr,
4354         .set_dr              = emulator_set_dr,
4355         .set_msr             = emulator_set_msr,
4356         .get_msr             = emulator_get_msr,
4357         .read_pmc            = emulator_read_pmc,
4358         .halt                = emulator_halt,
4359         .wbinvd              = emulator_wbinvd,
4360         .fix_hypercall       = emulator_fix_hypercall,
4361         .get_fpu             = emulator_get_fpu,
4362         .put_fpu             = emulator_put_fpu,
4363         .intercept           = emulator_intercept,
4364         .get_cpuid           = emulator_get_cpuid,
4365 };
4366
4367 static void cache_all_regs(struct kvm_vcpu *vcpu)
4368 {
4369         kvm_register_read(vcpu, VCPU_REGS_RAX);
4370         kvm_register_read(vcpu, VCPU_REGS_RSP);
4371         kvm_register_read(vcpu, VCPU_REGS_RIP);
4372         vcpu->arch.regs_dirty = ~0;
4373 }
4374
4375 static void toggle_interruptibility(struct kvm_vcpu *vcpu, u32 mask)
4376 {
4377         u32 int_shadow = kvm_x86_ops->get_interrupt_shadow(vcpu, mask);
4378         /*
4379          * an sti; sti; sequence only disable interrupts for the first
4380          * instruction. So, if the last instruction, be it emulated or
4381          * not, left the system with the INT_STI flag enabled, it
4382          * means that the last instruction is an sti. We should not
4383          * leave the flag on in this case. The same goes for mov ss
4384          */
4385         if (!(int_shadow & mask))
4386                 kvm_x86_ops->set_interrupt_shadow(vcpu, mask);
4387 }
4388
4389 static void inject_emulated_exception(struct kvm_vcpu *vcpu)
4390 {
4391         struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
4392         if (ctxt->exception.vector == PF_VECTOR)
4393                 kvm_propagate_fault(vcpu, &ctxt->exception);
4394         else if (ctxt->exception.error_code_valid)
4395                 kvm_queue_exception_e(vcpu, ctxt->exception.vector,
4396                                       ctxt->exception.error_code);
4397         else
4398                 kvm_queue_exception(vcpu, ctxt->exception.vector);
4399 }
4400
4401 static void init_decode_cache(struct x86_emulate_ctxt *ctxt,
4402                               const unsigned long *regs)
4403 {
4404         memset(&ctxt->twobyte, 0,
4405                (void *)&ctxt->regs - (void *)&ctxt->twobyte);
4406         memcpy(ctxt->regs, regs, sizeof(ctxt->regs));
4407
4408         ctxt->fetch.start = 0;
4409         ctxt->fetch.end = 0;
4410         ctxt->io_read.pos = 0;
4411         ctxt->io_read.end = 0;
4412         ctxt->mem_read.pos = 0;
4413         ctxt->mem_read.end = 0;
4414 }
4415
4416 static void init_emulate_ctxt(struct kvm_vcpu *vcpu)
4417 {
4418         struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
4419         int cs_db, cs_l;
4420
4421         /*
4422          * TODO: fix emulate.c to use guest_read/write_register
4423          * instead of direct ->regs accesses, can save hundred cycles
4424          * on Intel for instructions that don't read/change RSP, for
4425          * for example.
4426          */
4427         cache_all_regs(vcpu);
4428
4429         kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
4430
4431         ctxt->eflags = kvm_get_rflags(vcpu);
4432         ctxt->eip = kvm_rip_read(vcpu);
4433         ctxt->mode = (!is_protmode(vcpu))               ? X86EMUL_MODE_REAL :
4434                      (ctxt->eflags & X86_EFLAGS_VM)     ? X86EMUL_MODE_VM86 :
4435                      cs_l                               ? X86EMUL_MODE_PROT64 :
4436                      cs_db                              ? X86EMUL_MODE_PROT32 :
4437                                                           X86EMUL_MODE_PROT16;
4438         ctxt->guest_mode = is_guest_mode(vcpu);
4439
4440         init_decode_cache(ctxt, vcpu->arch.regs);
4441         vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
4442 }
4443
4444 int kvm_inject_realmode_interrupt(struct kvm_vcpu *vcpu, int irq, int inc_eip)
4445 {
4446         struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
4447         int ret;
4448
4449         init_emulate_ctxt(vcpu);
4450
4451         ctxt->op_bytes = 2;
4452         ctxt->ad_bytes = 2;
4453         ctxt->_eip = ctxt->eip + inc_eip;
4454         ret = emulate_int_real(ctxt, irq);
4455
4456         if (ret != X86EMUL_CONTINUE)
4457                 return EMULATE_FAIL;
4458
4459         ctxt->eip = ctxt->_eip;
4460         memcpy(vcpu->arch.regs, ctxt->regs, sizeof ctxt->regs);
4461         kvm_rip_write(vcpu, ctxt->eip);
4462         kvm_set_rflags(vcpu, ctxt->eflags);
4463
4464         if (irq == NMI_VECTOR)
4465                 vcpu->arch.nmi_pending = 0;
4466         else
4467                 vcpu->arch.interrupt.pending = false;
4468
4469         return EMULATE_DONE;
4470 }
4471 EXPORT_SYMBOL_GPL(kvm_inject_realmode_interrupt);
4472
4473 static int handle_emulation_failure(struct kvm_vcpu *vcpu)
4474 {
4475         int r = EMULATE_DONE;
4476
4477         ++vcpu->stat.insn_emulation_fail;
4478         trace_kvm_emulate_insn_failed(vcpu);
4479         if (!is_guest_mode(vcpu)) {
4480                 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
4481                 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
4482                 vcpu->run->internal.ndata = 0;
4483                 r = EMULATE_FAIL;
4484         }
4485         kvm_queue_exception(vcpu, UD_VECTOR);
4486
4487         return r;
4488 }
4489
4490 static bool reexecute_instruction(struct kvm_vcpu *vcpu, gva_t gva)
4491 {
4492         gpa_t gpa;
4493
4494         if (tdp_enabled)
4495                 return false;
4496
4497         /*
4498          * if emulation was due to access to shadowed page table
4499          * and it failed try to unshadow page and re-entetr the
4500          * guest to let CPU execute the instruction.
4501          */
4502         if (kvm_mmu_unprotect_page_virt(vcpu, gva))
4503                 return true;
4504
4505         gpa = kvm_mmu_gva_to_gpa_system(vcpu, gva, NULL);
4506
4507         if (gpa == UNMAPPED_GVA)
4508                 return true; /* let cpu generate fault */
4509
4510         if (!kvm_is_error_hva(gfn_to_hva(vcpu->kvm, gpa >> PAGE_SHIFT)))
4511                 return true;
4512
4513         return false;
4514 }
4515
4516 static bool retry_instruction(struct x86_emulate_ctxt *ctxt,
4517                               unsigned long cr2,  int emulation_type)
4518 {
4519         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4520         unsigned long last_retry_eip, last_retry_addr, gpa = cr2;
4521
4522         last_retry_eip = vcpu->arch.last_retry_eip;
4523         last_retry_addr = vcpu->arch.last_retry_addr;
4524
4525         /*
4526          * If the emulation is caused by #PF and it is non-page_table
4527          * writing instruction, it means the VM-EXIT is caused by shadow
4528          * page protected, we can zap the shadow page and retry this
4529          * instruction directly.
4530          *
4531          * Note: if the guest uses a non-page-table modifying instruction
4532          * on the PDE that points to the instruction, then we will unmap
4533          * the instruction and go to an infinite loop. So, we cache the
4534          * last retried eip and the last fault address, if we meet the eip
4535          * and the address again, we can break out of the potential infinite
4536          * loop.
4537          */
4538         vcpu->arch.last_retry_eip = vcpu->arch.last_retry_addr = 0;
4539
4540         if (!(emulation_type & EMULTYPE_RETRY))
4541                 return false;
4542
4543         if (x86_page_table_writing_insn(ctxt))
4544                 return false;
4545
4546         if (ctxt->eip == last_retry_eip && last_retry_addr == cr2)
4547                 return false;
4548
4549         vcpu->arch.last_retry_eip = ctxt->eip;
4550         vcpu->arch.last_retry_addr = cr2;
4551
4552         if (!vcpu->arch.mmu.direct_map)
4553                 gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2, NULL);
4554
4555         kvm_mmu_unprotect_page(vcpu->kvm, gpa >> PAGE_SHIFT);
4556
4557         return true;
4558 }
4559
4560 int x86_emulate_instruction(struct kvm_vcpu *vcpu,
4561                             unsigned long cr2,
4562                             int emulation_type,
4563                             void *insn,
4564                             int insn_len)
4565 {
4566         int r;
4567         struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
4568         bool writeback = true;
4569
4570         kvm_clear_exception_queue(vcpu);
4571
4572         if (!(emulation_type & EMULTYPE_NO_DECODE)) {
4573                 init_emulate_ctxt(vcpu);
4574                 ctxt->interruptibility = 0;
4575                 ctxt->have_exception = false;
4576                 ctxt->perm_ok = false;
4577
4578                 ctxt->only_vendor_specific_insn
4579                         = emulation_type & EMULTYPE_TRAP_UD;
4580
4581                 r = x86_decode_insn(ctxt, insn, insn_len);
4582
4583                 trace_kvm_emulate_insn_start(vcpu);
4584                 ++vcpu->stat.insn_emulation;
4585                 if (r != EMULATION_OK)  {
4586                         if (emulation_type & EMULTYPE_TRAP_UD)
4587                                 return EMULATE_FAIL;
4588                         if (reexecute_instruction(vcpu, cr2))
4589                                 return EMULATE_DONE;
4590                         if (emulation_type & EMULTYPE_SKIP)
4591                                 return EMULATE_FAIL;
4592                         return handle_emulation_failure(vcpu);
4593                 }
4594         }
4595
4596         if (emulation_type & EMULTYPE_SKIP) {
4597                 kvm_rip_write(vcpu, ctxt->_eip);
4598                 return EMULATE_DONE;
4599         }
4600
4601         if (retry_instruction(ctxt, cr2, emulation_type))
4602                 return EMULATE_DONE;
4603
4604         /* this is needed for vmware backdoor interface to work since it
4605            changes registers values  during IO operation */
4606         if (vcpu->arch.emulate_regs_need_sync_from_vcpu) {
4607                 vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
4608                 memcpy(ctxt->regs, vcpu->arch.regs, sizeof ctxt->regs);
4609         }
4610
4611 restart:
4612         r = x86_emulate_insn(ctxt);
4613
4614         if (r == EMULATION_INTERCEPTED)
4615                 return EMULATE_DONE;
4616
4617         if (r == EMULATION_FAILED) {
4618                 if (reexecute_instruction(vcpu, cr2))
4619                         return EMULATE_DONE;
4620
4621                 return handle_emulation_failure(vcpu);
4622         }
4623
4624         if (ctxt->have_exception) {
4625                 inject_emulated_exception(vcpu);
4626                 r = EMULATE_DONE;
4627         } else if (vcpu->arch.pio.count) {
4628                 if (!vcpu->arch.pio.in)
4629                         vcpu->arch.pio.count = 0;
4630                 else
4631                         writeback = false;
4632                 r = EMULATE_DO_MMIO;
4633         } else if (vcpu->mmio_needed) {
4634                 if (!vcpu->mmio_is_write)
4635                         writeback = false;
4636                 r = EMULATE_DO_MMIO;
4637         } else if (r == EMULATION_RESTART)
4638                 goto restart;
4639         else
4640                 r = EMULATE_DONE;
4641
4642         if (writeback) {
4643                 toggle_interruptibility(vcpu, ctxt->interruptibility);
4644                 kvm_set_rflags(vcpu, ctxt->eflags);
4645                 kvm_make_request(KVM_REQ_EVENT, vcpu);
4646                 memcpy(vcpu->arch.regs, ctxt->regs, sizeof ctxt->regs);
4647                 vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
4648                 kvm_rip_write(vcpu, ctxt->eip);
4649         } else
4650                 vcpu->arch.emulate_regs_need_sync_to_vcpu = true;
4651
4652         return r;
4653 }
4654 EXPORT_SYMBOL_GPL(x86_emulate_instruction);
4655
4656 int kvm_fast_pio_out(struct kvm_vcpu *vcpu, int size, unsigned short port)
4657 {
4658         unsigned long val = kvm_register_read(vcpu, VCPU_REGS_RAX);
4659         int ret = emulator_pio_out_emulated(&vcpu->arch.emulate_ctxt,
4660                                             size, port, &val, 1);
4661         /* do not return to emulator after return from userspace */
4662         vcpu->arch.pio.count = 0;
4663         return ret;
4664 }
4665 EXPORT_SYMBOL_GPL(kvm_fast_pio_out);
4666
4667 static void tsc_bad(void *info)
4668 {
4669         __this_cpu_write(cpu_tsc_khz, 0);
4670 }
4671
4672 static void tsc_khz_changed(void *data)
4673 {
4674         struct cpufreq_freqs *freq = data;
4675         unsigned long khz = 0;
4676
4677         if (data)
4678                 khz = freq->new;
4679         else if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
4680                 khz = cpufreq_quick_get(raw_smp_processor_id());
4681         if (!khz)
4682                 khz = tsc_khz;
4683         __this_cpu_write(cpu_tsc_khz, khz);
4684 }
4685
4686 static int kvmclock_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
4687                                      void *data)
4688 {
4689         struct cpufreq_freqs *freq = data;
4690         struct kvm *kvm;
4691         struct kvm_vcpu *vcpu;
4692         int i, send_ipi = 0;
4693
4694         /*
4695          * We allow guests to temporarily run on slowing clocks,
4696          * provided we notify them after, or to run on accelerating
4697          * clocks, provided we notify them before.  Thus time never
4698          * goes backwards.
4699          *
4700          * However, we have a problem.  We can't atomically update
4701          * the frequency of a given CPU from this function; it is
4702          * merely a notifier, which can be called from any CPU.
4703          * Changing the TSC frequency at arbitrary points in time
4704          * requires a recomputation of local variables related to
4705          * the TSC for each VCPU.  We must flag these local variables
4706          * to be updated and be sure the update takes place with the
4707          * new frequency before any guests proceed.
4708          *
4709          * Unfortunately, the combination of hotplug CPU and frequency
4710          * change creates an intractable locking scenario; the order
4711          * of when these callouts happen is undefined with respect to
4712          * CPU hotplug, and they can race with each other.  As such,
4713          * merely setting per_cpu(cpu_tsc_khz) = X during a hotadd is
4714          * undefined; you can actually have a CPU frequency change take
4715          * place in between the computation of X and the setting of the
4716          * variable.  To protect against this problem, all updates of
4717          * the per_cpu tsc_khz variable are done in an interrupt
4718          * protected IPI, and all callers wishing to update the value
4719          * must wait for a synchronous IPI to complete (which is trivial
4720          * if the caller is on the CPU already).  This establishes the
4721          * necessary total order on variable updates.
4722          *
4723          * Note that because a guest time update may take place
4724          * anytime after the setting of the VCPU's request bit, the
4725          * correct TSC value must be set before the request.  However,
4726          * to ensure the update actually makes it to any guest which
4727          * starts running in hardware virtualization between the set
4728          * and the acquisition of the spinlock, we must also ping the
4729          * CPU after setting the request bit.
4730          *
4731          */
4732
4733         if (val == CPUFREQ_PRECHANGE && freq->old > freq->new)
4734                 return 0;
4735         if (val == CPUFREQ_POSTCHANGE && freq->old < freq->new)
4736                 return 0;
4737
4738         smp_call_function_single(freq->cpu, tsc_khz_changed, freq, 1);
4739
4740         raw_spin_lock(&kvm_lock);
4741         list_for_each_entry(kvm, &vm_list, vm_list) {
4742                 kvm_for_each_vcpu(i, vcpu, kvm) {
4743                         if (vcpu->cpu != freq->cpu)
4744                                 continue;
4745                         kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
4746                         if (vcpu->cpu != smp_processor_id())
4747                                 send_ipi = 1;
4748                 }
4749         }
4750         raw_spin_unlock(&kvm_lock);
4751
4752         if (freq->old < freq->new && send_ipi) {
4753                 /*
4754                  * We upscale the frequency.  Must make the guest
4755                  * doesn't see old kvmclock values while running with
4756                  * the new frequency, otherwise we risk the guest sees
4757                  * time go backwards.
4758                  *
4759                  * In case we update the frequency for another cpu
4760                  * (which might be in guest context) send an interrupt
4761                  * to kick the cpu out of guest context.  Next time
4762                  * guest context is entered kvmclock will be updated,
4763                  * so the guest will not see stale values.
4764                  */
4765                 smp_call_function_single(freq->cpu, tsc_khz_changed, freq, 1);
4766         }
4767         return 0;
4768 }
4769
4770 static struct notifier_block kvmclock_cpufreq_notifier_block = {
4771         .notifier_call  = kvmclock_cpufreq_notifier
4772 };
4773
4774 static int kvmclock_cpu_notifier(struct notifier_block *nfb,
4775                                         unsigned long action, void *hcpu)
4776 {
4777         unsigned int cpu = (unsigned long)hcpu;
4778
4779         switch (action) {
4780                 case CPU_ONLINE:
4781                 case CPU_DOWN_FAILED:
4782                         smp_call_function_single(cpu, tsc_khz_changed, NULL, 1);
4783                         break;
4784                 case CPU_DOWN_PREPARE:
4785                         smp_call_function_single(cpu, tsc_bad, NULL, 1);
4786                         break;
4787         }
4788         return NOTIFY_OK;
4789 }
4790
4791 static struct notifier_block kvmclock_cpu_notifier_block = {
4792         .notifier_call  = kvmclock_cpu_notifier,
4793         .priority = -INT_MAX
4794 };
4795
4796 static void kvm_timer_init(void)
4797 {
4798         int cpu;
4799
4800         max_tsc_khz = tsc_khz;
4801         register_hotcpu_notifier(&kvmclock_cpu_notifier_block);
4802         if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) {
4803 #ifdef CONFIG_CPU_FREQ
4804                 struct cpufreq_policy policy;
4805                 memset(&policy, 0, sizeof(policy));
4806                 cpu = get_cpu();
4807                 cpufreq_get_policy(&policy, cpu);
4808                 if (policy.cpuinfo.max_freq)
4809                         max_tsc_khz = policy.cpuinfo.max_freq;
4810                 put_cpu();
4811 #endif
4812                 cpufreq_register_notifier(&kvmclock_cpufreq_notifier_block,
4813                                           CPUFREQ_TRANSITION_NOTIFIER);
4814         }
4815         pr_debug("kvm: max_tsc_khz = %ld\n", max_tsc_khz);
4816         for_each_online_cpu(cpu)
4817                 smp_call_function_single(cpu, tsc_khz_changed, NULL, 1);
4818 }
4819
4820 static DEFINE_PER_CPU(struct kvm_vcpu *, current_vcpu);
4821
4822 int kvm_is_in_guest(void)
4823 {
4824         return __this_cpu_read(current_vcpu) != NULL;
4825 }
4826
4827 static int kvm_is_user_mode(void)
4828 {
4829         int user_mode = 3;
4830
4831         if (__this_cpu_read(current_vcpu))
4832                 user_mode = kvm_x86_ops->get_cpl(__this_cpu_read(current_vcpu));
4833
4834         return user_mode != 0;
4835 }
4836
4837 static unsigned long kvm_get_guest_ip(void)
4838 {
4839         unsigned long ip = 0;
4840
4841         if (__this_cpu_read(current_vcpu))
4842                 ip = kvm_rip_read(__this_cpu_read(current_vcpu));
4843
4844         return ip;
4845 }
4846
4847 static struct perf_guest_info_callbacks kvm_guest_cbs = {
4848         .is_in_guest            = kvm_is_in_guest,
4849         .is_user_mode           = kvm_is_user_mode,
4850         .get_guest_ip           = kvm_get_guest_ip,
4851 };
4852
4853 void kvm_before_handle_nmi(struct kvm_vcpu *vcpu)
4854 {
4855         __this_cpu_write(current_vcpu, vcpu);
4856 }
4857 EXPORT_SYMBOL_GPL(kvm_before_handle_nmi);
4858
4859 void kvm_after_handle_nmi(struct kvm_vcpu *vcpu)
4860 {
4861         __this_cpu_write(current_vcpu, NULL);
4862 }
4863 EXPORT_SYMBOL_GPL(kvm_after_handle_nmi);
4864
4865 static void kvm_set_mmio_spte_mask(void)
4866 {
4867         u64 mask;
4868         int maxphyaddr = boot_cpu_data.x86_phys_bits;
4869
4870         /*
4871          * Set the reserved bits and the present bit of an paging-structure
4872          * entry to generate page fault with PFER.RSV = 1.
4873          */
4874         mask = ((1ull << (62 - maxphyaddr + 1)) - 1) << maxphyaddr;
4875         mask |= 1ull;
4876
4877 #ifdef CONFIG_X86_64
4878         /*
4879          * If reserved bit is not supported, clear the present bit to disable
4880          * mmio page fault.
4881          */
4882         if (maxphyaddr == 52)
4883                 mask &= ~1ull;
4884 #endif
4885
4886         kvm_mmu_set_mmio_spte_mask(mask);
4887 }
4888
4889 int kvm_arch_init(void *opaque)
4890 {
4891         int r;
4892         struct kvm_x86_ops *ops = (struct kvm_x86_ops *)opaque;
4893
4894         if (kvm_x86_ops) {
4895                 printk(KERN_ERR "kvm: already loaded the other module\n");
4896                 r = -EEXIST;
4897                 goto out;
4898         }
4899
4900         if (!ops->cpu_has_kvm_support()) {
4901                 printk(KERN_ERR "kvm: no hardware support\n");
4902                 r = -EOPNOTSUPP;
4903                 goto out;
4904         }
4905         if (ops->disabled_by_bios()) {
4906                 printk(KERN_ERR "kvm: disabled by bios\n");
4907                 r = -EOPNOTSUPP;
4908                 goto out;
4909         }
4910
4911         r = kvm_mmu_module_init();
4912         if (r)
4913                 goto out;
4914
4915         kvm_set_mmio_spte_mask();
4916         kvm_init_msr_list();
4917
4918         kvm_x86_ops = ops;
4919         kvm_mmu_set_mask_ptes(PT_USER_MASK, PT_ACCESSED_MASK,
4920                         PT_DIRTY_MASK, PT64_NX_MASK, 0);
4921
4922         kvm_timer_init();
4923
4924         perf_register_guest_info_callbacks(&kvm_guest_cbs);
4925
4926         if (cpu_has_xsave)
4927                 host_xcr0 = xgetbv(XCR_XFEATURE_ENABLED_MASK);
4928
4929         return 0;
4930
4931 out:
4932         return r;
4933 }
4934
4935 void kvm_arch_exit(void)
4936 {
4937         perf_unregister_guest_info_callbacks(&kvm_guest_cbs);
4938
4939         if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
4940                 cpufreq_unregister_notifier(&kvmclock_cpufreq_notifier_block,
4941                                             CPUFREQ_TRANSITION_NOTIFIER);
4942         unregister_hotcpu_notifier(&kvmclock_cpu_notifier_block);
4943         kvm_x86_ops = NULL;
4944         kvm_mmu_module_exit();
4945 }
4946
4947 int kvm_emulate_halt(struct kvm_vcpu *vcpu)
4948 {
4949         ++vcpu->stat.halt_exits;
4950         if (irqchip_in_kernel(vcpu->kvm)) {
4951                 vcpu->arch.mp_state = KVM_MP_STATE_HALTED;
4952                 return 1;
4953         } else {
4954                 vcpu->run->exit_reason = KVM_EXIT_HLT;
4955                 return 0;
4956         }
4957 }
4958 EXPORT_SYMBOL_GPL(kvm_emulate_halt);
4959
4960 int kvm_hv_hypercall(struct kvm_vcpu *vcpu)
4961 {
4962         u64 param, ingpa, outgpa, ret;
4963         uint16_t code, rep_idx, rep_cnt, res = HV_STATUS_SUCCESS, rep_done = 0;
4964         bool fast, longmode;
4965         int cs_db, cs_l;
4966
4967         /*
4968          * hypercall generates UD from non zero cpl and real mode
4969          * per HYPER-V spec
4970          */
4971         if (kvm_x86_ops->get_cpl(vcpu) != 0 || !is_protmode(vcpu)) {
4972                 kvm_queue_exception(vcpu, UD_VECTOR);
4973                 return 0;
4974         }
4975
4976         kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
4977         longmode = is_long_mode(vcpu) && cs_l == 1;
4978
4979         if (!longmode) {
4980                 param = ((u64)kvm_register_read(vcpu, VCPU_REGS_RDX) << 32) |
4981                         (kvm_register_read(vcpu, VCPU_REGS_RAX) & 0xffffffff);
4982                 ingpa = ((u64)kvm_register_read(vcpu, VCPU_REGS_RBX) << 32) |
4983                         (kvm_register_read(vcpu, VCPU_REGS_RCX) & 0xffffffff);
4984                 outgpa = ((u64)kvm_register_read(vcpu, VCPU_REGS_RDI) << 32) |
4985                         (kvm_register_read(vcpu, VCPU_REGS_RSI) & 0xffffffff);
4986         }
4987 #ifdef CONFIG_X86_64
4988         else {
4989                 param = kvm_register_read(vcpu, VCPU_REGS_RCX);
4990                 ingpa = kvm_register_read(vcpu, VCPU_REGS_RDX);
4991                 outgpa = kvm_register_read(vcpu, VCPU_REGS_R8);
4992         }
4993 #endif
4994
4995         code = param & 0xffff;
4996         fast = (param >> 16) & 0x1;
4997         rep_cnt = (param >> 32) & 0xfff;
4998         rep_idx = (param >> 48) & 0xfff;
4999
5000         trace_kvm_hv_hypercall(code, fast, rep_cnt, rep_idx, ingpa, outgpa);
5001
5002         switch (code) {
5003         case HV_X64_HV_NOTIFY_LONG_SPIN_WAIT:
5004                 kvm_vcpu_on_spin(vcpu);
5005                 break;
5006         default:
5007                 res = HV_STATUS_INVALID_HYPERCALL_CODE;
5008                 break;
5009         }
5010
5011         ret = res | (((u64)rep_done & 0xfff) << 32);
5012         if (longmode) {
5013                 kvm_register_write(vcpu, VCPU_REGS_RAX, ret);
5014         } else {
5015                 kvm_register_write(vcpu, VCPU_REGS_RDX, ret >> 32);
5016                 kvm_register_write(vcpu, VCPU_REGS_RAX, ret & 0xffffffff);
5017         }
5018
5019         return 1;
5020 }
5021
5022 int kvm_emulate_hypercall(struct kvm_vcpu *vcpu)
5023 {
5024         unsigned long nr, a0, a1, a2, a3, ret;
5025         int r = 1;
5026
5027         if (kvm_hv_hypercall_enabled(vcpu->kvm))
5028                 return kvm_hv_hypercall(vcpu);
5029
5030         nr = kvm_register_read(vcpu, VCPU_REGS_RAX);
5031         a0 = kvm_register_read(vcpu, VCPU_REGS_RBX);
5032         a1 = kvm_register_read(vcpu, VCPU_REGS_RCX);
5033         a2 = kvm_register_read(vcpu, VCPU_REGS_RDX);
5034         a3 = kvm_register_read(vcpu, VCPU_REGS_RSI);
5035
5036         trace_kvm_hypercall(nr, a0, a1, a2, a3);
5037
5038         if (!is_long_mode(vcpu)) {
5039                 nr &= 0xFFFFFFFF;
5040                 a0 &= 0xFFFFFFFF;
5041                 a1 &= 0xFFFFFFFF;
5042                 a2 &= 0xFFFFFFFF;
5043                 a3 &= 0xFFFFFFFF;
5044         }
5045
5046         if (kvm_x86_ops->get_cpl(vcpu) != 0) {
5047                 ret = -KVM_EPERM;
5048                 goto out;
5049         }
5050
5051         switch (nr) {
5052         case KVM_HC_VAPIC_POLL_IRQ:
5053                 ret = 0;
5054                 break;
5055         default:
5056                 ret = -KVM_ENOSYS;
5057                 break;
5058         }
5059 out:
5060         kvm_register_write(vcpu, VCPU_REGS_RAX, ret);
5061         ++vcpu->stat.hypercalls;
5062         return r;
5063 }
5064 EXPORT_SYMBOL_GPL(kvm_emulate_hypercall);
5065
5066 int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt)
5067 {
5068         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5069         char instruction[3];
5070         unsigned long rip = kvm_rip_read(vcpu);
5071
5072         /*
5073          * Blow out the MMU to ensure that no other VCPU has an active mapping
5074          * to ensure that the updated hypercall appears atomically across all
5075          * VCPUs.
5076          */
5077         kvm_mmu_zap_all(vcpu->kvm);
5078
5079         kvm_x86_ops->patch_hypercall(vcpu, instruction);
5080
5081         return emulator_write_emulated(ctxt, rip, instruction, 3, NULL);
5082 }
5083
5084 /*
5085  * Check if userspace requested an interrupt window, and that the
5086  * interrupt window is open.
5087  *
5088  * No need to exit to userspace if we already have an interrupt queued.
5089  */
5090 static int dm_request_for_irq_injection(struct kvm_vcpu *vcpu)
5091 {
5092         return (!irqchip_in_kernel(vcpu->kvm) && !kvm_cpu_has_interrupt(vcpu) &&
5093                 vcpu->run->request_interrupt_window &&
5094                 kvm_arch_interrupt_allowed(vcpu));
5095 }
5096
5097 static void post_kvm_run_save(struct kvm_vcpu *vcpu)
5098 {
5099         struct kvm_run *kvm_run = vcpu->run;
5100
5101         kvm_run->if_flag = (kvm_get_rflags(vcpu) & X86_EFLAGS_IF) != 0;
5102         kvm_run->cr8 = kvm_get_cr8(vcpu);
5103         kvm_run->apic_base = kvm_get_apic_base(vcpu);
5104         if (irqchip_in_kernel(vcpu->kvm))
5105                 kvm_run->ready_for_interrupt_injection = 1;
5106         else
5107                 kvm_run->ready_for_interrupt_injection =
5108                         kvm_arch_interrupt_allowed(vcpu) &&
5109                         !kvm_cpu_has_interrupt(vcpu) &&
5110                         !kvm_event_needs_reinjection(vcpu);
5111 }
5112
5113 static void vapic_enter(struct kvm_vcpu *vcpu)
5114 {
5115         struct kvm_lapic *apic = vcpu->arch.apic;
5116         struct page *page;
5117
5118         if (!apic || !apic->vapic_addr)
5119                 return;
5120
5121         page = gfn_to_page(vcpu->kvm, apic->vapic_addr >> PAGE_SHIFT);
5122
5123         vcpu->arch.apic->vapic_page = page;
5124 }
5125
5126 static void vapic_exit(struct kvm_vcpu *vcpu)
5127 {
5128         struct kvm_lapic *apic = vcpu->arch.apic;
5129         int idx;
5130
5131         if (!apic || !apic->vapic_addr)
5132                 return;
5133
5134         idx = srcu_read_lock(&vcpu->kvm->srcu);
5135         kvm_release_page_dirty(apic->vapic_page);
5136         mark_page_dirty(vcpu->kvm, apic->vapic_addr >> PAGE_SHIFT);
5137         srcu_read_unlock(&vcpu->kvm->srcu, idx);
5138 }
5139
5140 static void update_cr8_intercept(struct kvm_vcpu *vcpu)
5141 {
5142         int max_irr, tpr;
5143
5144         if (!kvm_x86_ops->update_cr8_intercept)
5145                 return;
5146
5147         if (!vcpu->arch.apic)
5148                 return;
5149
5150         if (!vcpu->arch.apic->vapic_addr)
5151                 max_irr = kvm_lapic_find_highest_irr(vcpu);
5152         else
5153                 max_irr = -1;
5154
5155         if (max_irr != -1)
5156                 max_irr >>= 4;
5157
5158         tpr = kvm_lapic_get_cr8(vcpu);
5159
5160         kvm_x86_ops->update_cr8_intercept(vcpu, tpr, max_irr);
5161 }
5162
5163 static void inject_pending_event(struct kvm_vcpu *vcpu)
5164 {
5165         /* try to reinject previous events if any */
5166         if (vcpu->arch.exception.pending) {
5167                 trace_kvm_inj_exception(vcpu->arch.exception.nr,
5168                                         vcpu->arch.exception.has_error_code,
5169                                         vcpu->arch.exception.error_code);
5170                 kvm_x86_ops->queue_exception(vcpu, vcpu->arch.exception.nr,
5171                                           vcpu->arch.exception.has_error_code,
5172                                           vcpu->arch.exception.error_code,
5173                                           vcpu->arch.exception.reinject);
5174                 return;
5175         }
5176
5177         if (vcpu->arch.nmi_injected) {
5178                 kvm_x86_ops->set_nmi(vcpu);
5179                 return;
5180         }
5181
5182         if (vcpu->arch.interrupt.pending) {
5183                 kvm_x86_ops->set_irq(vcpu);
5184                 return;
5185         }
5186
5187         /* try to inject new event if pending */
5188         if (vcpu->arch.nmi_pending) {
5189                 if (kvm_x86_ops->nmi_allowed(vcpu)) {
5190                         --vcpu->arch.nmi_pending;
5191                         vcpu->arch.nmi_injected = true;
5192                         kvm_x86_ops->set_nmi(vcpu);
5193                 }
5194         } else if (kvm_cpu_has_interrupt(vcpu)) {
5195                 if (kvm_x86_ops->interrupt_allowed(vcpu)) {
5196                         kvm_queue_interrupt(vcpu, kvm_cpu_get_interrupt(vcpu),
5197                                             false);
5198                         kvm_x86_ops->set_irq(vcpu);
5199                 }
5200         }
5201 }
5202
5203 static void kvm_load_guest_xcr0(struct kvm_vcpu *vcpu)
5204 {
5205         if (kvm_read_cr4_bits(vcpu, X86_CR4_OSXSAVE) &&
5206                         !vcpu->guest_xcr0_loaded) {
5207                 /* kvm_set_xcr() also depends on this */
5208                 xsetbv(XCR_XFEATURE_ENABLED_MASK, vcpu->arch.xcr0);
5209                 vcpu->guest_xcr0_loaded = 1;
5210         }
5211 }
5212
5213 static void kvm_put_guest_xcr0(struct kvm_vcpu *vcpu)
5214 {
5215         if (vcpu->guest_xcr0_loaded) {
5216                 if (vcpu->arch.xcr0 != host_xcr0)
5217                         xsetbv(XCR_XFEATURE_ENABLED_MASK, host_xcr0);
5218                 vcpu->guest_xcr0_loaded = 0;
5219         }
5220 }
5221
5222 static void process_nmi(struct kvm_vcpu *vcpu)
5223 {
5224         unsigned limit = 2;
5225
5226         /*
5227          * x86 is limited to one NMI running, and one NMI pending after it.
5228          * If an NMI is already in progress, limit further NMIs to just one.
5229          * Otherwise, allow two (and we'll inject the first one immediately).
5230          */
5231         if (kvm_x86_ops->get_nmi_mask(vcpu) || vcpu->arch.nmi_injected)
5232                 limit = 1;
5233
5234         vcpu->arch.nmi_pending += atomic_xchg(&vcpu->arch.nmi_queued, 0);
5235         vcpu->arch.nmi_pending = min(vcpu->arch.nmi_pending, limit);
5236         kvm_make_request(KVM_REQ_EVENT, vcpu);
5237 }
5238
5239 static int vcpu_enter_guest(struct kvm_vcpu *vcpu)
5240 {
5241         int r;
5242         bool req_int_win = !irqchip_in_kernel(vcpu->kvm) &&
5243                 vcpu->run->request_interrupt_window;
5244         bool req_immediate_exit = 0;
5245
5246         if (vcpu->requests) {
5247                 if (kvm_check_request(KVM_REQ_MMU_RELOAD, vcpu))
5248                         kvm_mmu_unload(vcpu);
5249                 if (kvm_check_request(KVM_REQ_MIGRATE_TIMER, vcpu))
5250                         __kvm_migrate_timers(vcpu);
5251                 if (kvm_check_request(KVM_REQ_CLOCK_UPDATE, vcpu)) {
5252                         r = kvm_guest_time_update(vcpu);
5253                         if (unlikely(r))
5254                                 goto out;
5255                 }
5256                 if (kvm_check_request(KVM_REQ_MMU_SYNC, vcpu))
5257                         kvm_mmu_sync_roots(vcpu);
5258                 if (kvm_check_request(KVM_REQ_TLB_FLUSH, vcpu))
5259                         kvm_x86_ops->tlb_flush(vcpu);
5260                 if (kvm_check_request(KVM_REQ_REPORT_TPR_ACCESS, vcpu)) {
5261                         vcpu->run->exit_reason = KVM_EXIT_TPR_ACCESS;
5262                         r = 0;
5263                         goto out;
5264                 }
5265                 if (kvm_check_request(KVM_REQ_TRIPLE_FAULT, vcpu)) {
5266                         vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
5267                         r = 0;
5268                         goto out;
5269                 }
5270                 if (kvm_check_request(KVM_REQ_DEACTIVATE_FPU, vcpu)) {
5271                         vcpu->fpu_active = 0;
5272                         kvm_x86_ops->fpu_deactivate(vcpu);
5273                 }
5274                 if (kvm_check_request(KVM_REQ_APF_HALT, vcpu)) {
5275                         /* Page is swapped out. Do synthetic halt */
5276                         vcpu->arch.apf.halted = true;
5277                         r = 1;
5278                         goto out;
5279                 }
5280                 if (kvm_check_request(KVM_REQ_STEAL_UPDATE, vcpu))
5281                         record_steal_time(vcpu);
5282                 if (kvm_check_request(KVM_REQ_NMI, vcpu))
5283                         process_nmi(vcpu);
5284                 req_immediate_exit =
5285                         kvm_check_request(KVM_REQ_IMMEDIATE_EXIT, vcpu);
5286                 if (kvm_check_request(KVM_REQ_PMU, vcpu))
5287                         kvm_handle_pmu_event(vcpu);
5288                 if (kvm_check_request(KVM_REQ_PMI, vcpu))
5289                         kvm_deliver_pmi(vcpu);
5290         }
5291
5292         if (kvm_check_request(KVM_REQ_EVENT, vcpu) || req_int_win) {
5293                 inject_pending_event(vcpu);
5294
5295                 /* enable NMI/IRQ window open exits if needed */
5296                 if (vcpu->arch.nmi_pending)
5297                         kvm_x86_ops->enable_nmi_window(vcpu);
5298                 else if (kvm_cpu_has_interrupt(vcpu) || req_int_win)
5299                         kvm_x86_ops->enable_irq_window(vcpu);
5300
5301                 if (kvm_lapic_enabled(vcpu)) {
5302                         update_cr8_intercept(vcpu);
5303                         kvm_lapic_sync_to_vapic(vcpu);
5304                 }
5305         }
5306
5307         r = kvm_mmu_reload(vcpu);
5308         if (unlikely(r)) {
5309                 goto cancel_injection;
5310         }
5311
5312         preempt_disable();
5313
5314         kvm_x86_ops->prepare_guest_switch(vcpu);
5315         if (vcpu->fpu_active)
5316                 kvm_load_guest_fpu(vcpu);
5317         kvm_load_guest_xcr0(vcpu);
5318
5319         vcpu->mode = IN_GUEST_MODE;
5320
5321         /* We should set ->mode before check ->requests,
5322          * see the comment in make_all_cpus_request.
5323          */
5324         smp_mb();
5325
5326         local_irq_disable();
5327
5328         if (vcpu->mode == EXITING_GUEST_MODE || vcpu->requests
5329             || need_resched() || signal_pending(current)) {
5330                 vcpu->mode = OUTSIDE_GUEST_MODE;
5331                 smp_wmb();
5332                 local_irq_enable();
5333                 preempt_enable();
5334                 r = 1;
5335                 goto cancel_injection;
5336         }
5337
5338         srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
5339
5340         if (req_immediate_exit)
5341                 smp_send_reschedule(vcpu->cpu);
5342
5343         kvm_guest_enter();
5344
5345         if (unlikely(vcpu->arch.switch_db_regs)) {
5346                 set_debugreg(0, 7);
5347                 set_debugreg(vcpu->arch.eff_db[0], 0);
5348                 set_debugreg(vcpu->arch.eff_db[1], 1);
5349                 set_debugreg(vcpu->arch.eff_db[2], 2);
5350                 set_debugreg(vcpu->arch.eff_db[3], 3);
5351         }
5352
5353         trace_kvm_entry(vcpu->vcpu_id);
5354         kvm_x86_ops->run(vcpu);
5355
5356         /*
5357          * If the guest has used debug registers, at least dr7
5358          * will be disabled while returning to the host.
5359          * If we don't have active breakpoints in the host, we don't
5360          * care about the messed up debug address registers. But if
5361          * we have some of them active, restore the old state.
5362          */
5363         if (hw_breakpoint_active())
5364                 hw_breakpoint_restore();
5365
5366         vcpu->arch.last_guest_tsc = kvm_x86_ops->read_l1_tsc(vcpu);
5367
5368         vcpu->mode = OUTSIDE_GUEST_MODE;
5369         smp_wmb();
5370         local_irq_enable();
5371
5372         ++vcpu->stat.exits;
5373
5374         /*
5375          * We must have an instruction between local_irq_enable() and
5376          * kvm_guest_exit(), so the timer interrupt isn't delayed by
5377          * the interrupt shadow.  The stat.exits increment will do nicely.
5378          * But we need to prevent reordering, hence this barrier():
5379          */
5380         barrier();
5381
5382         kvm_guest_exit();
5383
5384         preempt_enable();
5385
5386         vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
5387
5388         /*
5389          * Profile KVM exit RIPs:
5390          */
5391         if (unlikely(prof_on == KVM_PROFILING)) {
5392                 unsigned long rip = kvm_rip_read(vcpu);
5393                 profile_hit(KVM_PROFILING, (void *)rip);
5394         }
5395
5396         if (unlikely(vcpu->arch.tsc_always_catchup))
5397                 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
5398
5399         if (vcpu->arch.apic_attention)
5400                 kvm_lapic_sync_from_vapic(vcpu);
5401
5402         r = kvm_x86_ops->handle_exit(vcpu);
5403         return r;
5404
5405 cancel_injection:
5406         kvm_x86_ops->cancel_injection(vcpu);
5407         if (unlikely(vcpu->arch.apic_attention))
5408                 kvm_lapic_sync_from_vapic(vcpu);
5409 out:
5410         return r;
5411 }
5412
5413
5414 static int __vcpu_run(struct kvm_vcpu *vcpu)
5415 {
5416         int r;
5417         struct kvm *kvm = vcpu->kvm;
5418
5419         if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_SIPI_RECEIVED)) {
5420                 pr_debug("vcpu %d received sipi with vector # %x\n",
5421                          vcpu->vcpu_id, vcpu->arch.sipi_vector);
5422                 kvm_lapic_reset(vcpu);
5423                 r = kvm_arch_vcpu_reset(vcpu);
5424                 if (r)
5425                         return r;
5426                 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
5427         }
5428
5429         vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
5430         vapic_enter(vcpu);
5431
5432         r = 1;
5433         while (r > 0) {
5434                 if (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE &&
5435                     !vcpu->arch.apf.halted)
5436                         r = vcpu_enter_guest(vcpu);
5437                 else {
5438                         srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
5439                         kvm_vcpu_block(vcpu);
5440                         vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
5441                         if (kvm_check_request(KVM_REQ_UNHALT, vcpu))
5442                         {
5443                                 switch(vcpu->arch.mp_state) {
5444                                 case KVM_MP_STATE_HALTED:
5445                                         vcpu->arch.mp_state =
5446                                                 KVM_MP_STATE_RUNNABLE;
5447                                 case KVM_MP_STATE_RUNNABLE:
5448                                         vcpu->arch.apf.halted = false;
5449                                         break;
5450                                 case KVM_MP_STATE_SIPI_RECEIVED:
5451                                 default:
5452                                         r = -EINTR;
5453                                         break;
5454                                 }
5455                         }
5456                 }
5457
5458                 if (r <= 0)
5459                         break;
5460
5461                 clear_bit(KVM_REQ_PENDING_TIMER, &vcpu->requests);
5462                 if (kvm_cpu_has_pending_timer(vcpu))
5463                         kvm_inject_pending_timer_irqs(vcpu);
5464
5465                 if (dm_request_for_irq_injection(vcpu)) {
5466                         r = -EINTR;
5467                         vcpu->run->exit_reason = KVM_EXIT_INTR;
5468                         ++vcpu->stat.request_irq_exits;
5469                 }
5470
5471                 kvm_check_async_pf_completion(vcpu);
5472
5473                 if (signal_pending(current)) {
5474                         r = -EINTR;
5475                         vcpu->run->exit_reason = KVM_EXIT_INTR;
5476                         ++vcpu->stat.signal_exits;
5477                 }
5478                 if (need_resched()) {
5479                         srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
5480                         kvm_resched(vcpu);
5481                         vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
5482                 }
5483         }
5484
5485         srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
5486
5487         vapic_exit(vcpu);
5488
5489         return r;
5490 }
5491
5492 /*
5493  * Implements the following, as a state machine:
5494  *
5495  * read:
5496  *   for each fragment
5497  *     write gpa, len
5498  *     exit
5499  *     copy data
5500  *   execute insn
5501  *
5502  * write:
5503  *   for each fragment
5504  *      write gpa, len
5505  *      copy data
5506  *      exit
5507  */
5508 static int complete_mmio(struct kvm_vcpu *vcpu)
5509 {
5510         struct kvm_run *run = vcpu->run;
5511         struct kvm_mmio_fragment *frag;
5512         int r;
5513
5514         if (!(vcpu->arch.pio.count || vcpu->mmio_needed))
5515                 return 1;
5516
5517         if (vcpu->mmio_needed) {
5518                 /* Complete previous fragment */
5519                 frag = &vcpu->mmio_fragments[vcpu->mmio_cur_fragment++];
5520                 if (!vcpu->mmio_is_write)
5521                         memcpy(frag->data, run->mmio.data, frag->len);
5522                 if (vcpu->mmio_cur_fragment == vcpu->mmio_nr_fragments) {
5523                         vcpu->mmio_needed = 0;
5524                         if (vcpu->mmio_is_write)
5525                                 return 1;
5526                         vcpu->mmio_read_completed = 1;
5527                         goto done;
5528                 }
5529                 /* Initiate next fragment */
5530                 ++frag;
5531                 run->exit_reason = KVM_EXIT_MMIO;
5532                 run->mmio.phys_addr = frag->gpa;
5533                 if (vcpu->mmio_is_write)
5534                         memcpy(run->mmio.data, frag->data, frag->len);
5535                 run->mmio.len = frag->len;
5536                 run->mmio.is_write = vcpu->mmio_is_write;
5537                 return 0;
5538
5539         }
5540 done:
5541         vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
5542         r = emulate_instruction(vcpu, EMULTYPE_NO_DECODE);
5543         srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
5544         if (r != EMULATE_DONE)
5545                 return 0;
5546         return 1;
5547 }
5548
5549 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
5550 {
5551         int r;
5552         sigset_t sigsaved;
5553
5554         if (!tsk_used_math(current) && init_fpu(current))
5555                 return -ENOMEM;
5556
5557         if (vcpu->sigset_active)
5558                 sigprocmask(SIG_SETMASK, &vcpu->sigset, &sigsaved);
5559
5560         if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_UNINITIALIZED)) {
5561                 kvm_vcpu_block(vcpu);
5562                 clear_bit(KVM_REQ_UNHALT, &vcpu->requests);
5563                 r = -EAGAIN;
5564                 goto out;
5565         }
5566
5567         /* re-sync apic's tpr */
5568         if (!irqchip_in_kernel(vcpu->kvm)) {
5569                 if (kvm_set_cr8(vcpu, kvm_run->cr8) != 0) {
5570                         r = -EINVAL;
5571                         goto out;
5572                 }
5573         }
5574
5575         r = complete_mmio(vcpu);
5576         if (r <= 0)
5577                 goto out;
5578
5579         r = __vcpu_run(vcpu);
5580
5581 out:
5582         post_kvm_run_save(vcpu);
5583         if (vcpu->sigset_active)
5584                 sigprocmask(SIG_SETMASK, &sigsaved, NULL);
5585
5586         return r;
5587 }
5588
5589 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
5590 {
5591         if (vcpu->arch.emulate_regs_need_sync_to_vcpu) {
5592                 /*
5593                  * We are here if userspace calls get_regs() in the middle of
5594                  * instruction emulation. Registers state needs to be copied
5595                  * back from emulation context to vcpu. Usrapace shouldn't do
5596                  * that usually, but some bad designed PV devices (vmware
5597                  * backdoor interface) need this to work
5598                  */
5599                 struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
5600                 memcpy(vcpu->arch.regs, ctxt->regs, sizeof ctxt->regs);
5601                 vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
5602         }
5603         regs->rax = kvm_register_read(vcpu, VCPU_REGS_RAX);
5604         regs->rbx = kvm_register_read(vcpu, VCPU_REGS_RBX);
5605         regs->rcx = kvm_register_read(vcpu, VCPU_REGS_RCX);
5606         regs->rdx = kvm_register_read(vcpu, VCPU_REGS_RDX);
5607         regs->rsi = kvm_register_read(vcpu, VCPU_REGS_RSI);
5608         regs->rdi = kvm_register_read(vcpu, VCPU_REGS_RDI);
5609         regs->rsp = kvm_register_read(vcpu, VCPU_REGS_RSP);
5610         regs->rbp = kvm_register_read(vcpu, VCPU_REGS_RBP);
5611 #ifdef CONFIG_X86_64
5612         regs->r8 = kvm_register_read(vcpu, VCPU_REGS_R8);
5613         regs->r9 = kvm_register_read(vcpu, VCPU_REGS_R9);
5614         regs->r10 = kvm_register_read(vcpu, VCPU_REGS_R10);
5615         regs->r11 = kvm_register_read(vcpu, VCPU_REGS_R11);
5616         regs->r12 = kvm_register_read(vcpu, VCPU_REGS_R12);
5617         regs->r13 = kvm_register_read(vcpu, VCPU_REGS_R13);
5618         regs->r14 = kvm_register_read(vcpu, VCPU_REGS_R14);
5619         regs->r15 = kvm_register_read(vcpu, VCPU_REGS_R15);
5620 #endif
5621
5622         regs->rip = kvm_rip_read(vcpu);
5623         regs->rflags = kvm_get_rflags(vcpu);
5624
5625         return 0;
5626 }
5627
5628 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
5629 {
5630         vcpu->arch.emulate_regs_need_sync_from_vcpu = true;
5631         vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
5632
5633         kvm_register_write(vcpu, VCPU_REGS_RAX, regs->rax);
5634         kvm_register_write(vcpu, VCPU_REGS_RBX, regs->rbx);
5635         kvm_register_write(vcpu, VCPU_REGS_RCX, regs->rcx);
5636         kvm_register_write(vcpu, VCPU_REGS_RDX, regs->rdx);
5637         kvm_register_write(vcpu, VCPU_REGS_RSI, regs->rsi);
5638         kvm_register_write(vcpu, VCPU_REGS_RDI, regs->rdi);
5639         kvm_register_write(vcpu, VCPU_REGS_RSP, regs->rsp);
5640         kvm_register_write(vcpu, VCPU_REGS_RBP, regs->rbp);
5641 #ifdef CONFIG_X86_64
5642         kvm_register_write(vcpu, VCPU_REGS_R8, regs->r8);
5643         kvm_register_write(vcpu, VCPU_REGS_R9, regs->r9);
5644         kvm_register_write(vcpu, VCPU_REGS_R10, regs->r10);
5645         kvm_register_write(vcpu, VCPU_REGS_R11, regs->r11);
5646         kvm_register_write(vcpu, VCPU_REGS_R12, regs->r12);
5647         kvm_register_write(vcpu, VCPU_REGS_R13, regs->r13);
5648         kvm_register_write(vcpu, VCPU_REGS_R14, regs->r14);
5649         kvm_register_write(vcpu, VCPU_REGS_R15, regs->r15);
5650 #endif
5651
5652         kvm_rip_write(vcpu, regs->rip);
5653         kvm_set_rflags(vcpu, regs->rflags);
5654
5655         vcpu->arch.exception.pending = false;
5656
5657         kvm_make_request(KVM_REQ_EVENT, vcpu);
5658
5659         return 0;
5660 }
5661
5662 void kvm_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
5663 {
5664         struct kvm_segment cs;
5665
5666         kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
5667         *db = cs.db;
5668         *l = cs.l;
5669 }
5670 EXPORT_SYMBOL_GPL(kvm_get_cs_db_l_bits);
5671
5672 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
5673                                   struct kvm_sregs *sregs)
5674 {
5675         struct desc_ptr dt;
5676
5677         kvm_get_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
5678         kvm_get_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
5679         kvm_get_segment(vcpu, &sregs->es, VCPU_SREG_ES);
5680         kvm_get_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
5681         kvm_get_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
5682         kvm_get_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
5683
5684         kvm_get_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
5685         kvm_get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
5686
5687         kvm_x86_ops->get_idt(vcpu, &dt);
5688         sregs->idt.limit = dt.size;
5689         sregs->idt.base = dt.address;
5690         kvm_x86_ops->get_gdt(vcpu, &dt);
5691         sregs->gdt.limit = dt.size;
5692         sregs->gdt.base = dt.address;
5693
5694         sregs->cr0 = kvm_read_cr0(vcpu);
5695         sregs->cr2 = vcpu->arch.cr2;
5696         sregs->cr3 = kvm_read_cr3(vcpu);
5697         sregs->cr4 = kvm_read_cr4(vcpu);
5698         sregs->cr8 = kvm_get_cr8(vcpu);
5699         sregs->efer = vcpu->arch.efer;
5700         sregs->apic_base = kvm_get_apic_base(vcpu);
5701
5702         memset(sregs->interrupt_bitmap, 0, sizeof sregs->interrupt_bitmap);
5703
5704         if (vcpu->arch.interrupt.pending && !vcpu->arch.interrupt.soft)
5705                 set_bit(vcpu->arch.interrupt.nr,
5706                         (unsigned long *)sregs->interrupt_bitmap);
5707
5708         return 0;
5709 }
5710
5711 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
5712                                     struct kvm_mp_state *mp_state)
5713 {
5714         mp_state->mp_state = vcpu->arch.mp_state;
5715         return 0;
5716 }
5717
5718 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
5719                                     struct kvm_mp_state *mp_state)
5720 {
5721         vcpu->arch.mp_state = mp_state->mp_state;
5722         kvm_make_request(KVM_REQ_EVENT, vcpu);
5723         return 0;
5724 }
5725
5726 int kvm_task_switch(struct kvm_vcpu *vcpu, u16 tss_selector, int idt_index,
5727                     int reason, bool has_error_code, u32 error_code)
5728 {
5729         struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
5730         int ret;
5731
5732         init_emulate_ctxt(vcpu);
5733
5734         ret = emulator_task_switch(ctxt, tss_selector, idt_index, reason,
5735                                    has_error_code, error_code);
5736
5737         if (ret)
5738                 return EMULATE_FAIL;
5739
5740         memcpy(vcpu->arch.regs, ctxt->regs, sizeof ctxt->regs);
5741         kvm_rip_write(vcpu, ctxt->eip);
5742         kvm_set_rflags(vcpu, ctxt->eflags);
5743         kvm_make_request(KVM_REQ_EVENT, vcpu);
5744         return EMULATE_DONE;
5745 }
5746 EXPORT_SYMBOL_GPL(kvm_task_switch);
5747
5748 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
5749                                   struct kvm_sregs *sregs)
5750 {
5751         int mmu_reset_needed = 0;
5752         int pending_vec, max_bits, idx;
5753         struct desc_ptr dt;
5754
5755         dt.size = sregs->idt.limit;
5756         dt.address = sregs->idt.base;
5757         kvm_x86_ops->set_idt(vcpu, &dt);
5758         dt.size = sregs->gdt.limit;
5759         dt.address = sregs->gdt.base;
5760         kvm_x86_ops->set_gdt(vcpu, &dt);
5761
5762         vcpu->arch.cr2 = sregs->cr2;
5763         mmu_reset_needed |= kvm_read_cr3(vcpu) != sregs->cr3;
5764         vcpu->arch.cr3 = sregs->cr3;
5765         __set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail);
5766
5767         kvm_set_cr8(vcpu, sregs->cr8);
5768
5769         mmu_reset_needed |= vcpu->arch.efer != sregs->efer;
5770         kvm_x86_ops->set_efer(vcpu, sregs->efer);
5771         kvm_set_apic_base(vcpu, sregs->apic_base);
5772
5773         mmu_reset_needed |= kvm_read_cr0(vcpu) != sregs->cr0;
5774         kvm_x86_ops->set_cr0(vcpu, sregs->cr0);
5775         vcpu->arch.cr0 = sregs->cr0;
5776
5777         mmu_reset_needed |= kvm_read_cr4(vcpu) != sregs->cr4;
5778         kvm_x86_ops->set_cr4(vcpu, sregs->cr4);
5779         if (sregs->cr4 & X86_CR4_OSXSAVE)
5780                 kvm_update_cpuid(vcpu);
5781
5782         idx = srcu_read_lock(&vcpu->kvm->srcu);
5783         if (!is_long_mode(vcpu) && is_pae(vcpu)) {
5784                 load_pdptrs(vcpu, vcpu->arch.walk_mmu, kvm_read_cr3(vcpu));
5785                 mmu_reset_needed = 1;
5786         }
5787         srcu_read_unlock(&vcpu->kvm->srcu, idx);
5788
5789         if (mmu_reset_needed)
5790                 kvm_mmu_reset_context(vcpu);
5791
5792         max_bits = (sizeof sregs->interrupt_bitmap) << 3;
5793         pending_vec = find_first_bit(
5794                 (const unsigned long *)sregs->interrupt_bitmap, max_bits);
5795         if (pending_vec < max_bits) {
5796                 kvm_queue_interrupt(vcpu, pending_vec, false);
5797                 pr_debug("Set back pending irq %d\n", pending_vec);
5798         }
5799
5800         kvm_set_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
5801         kvm_set_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
5802         kvm_set_segment(vcpu, &sregs->es, VCPU_SREG_ES);
5803         kvm_set_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
5804         kvm_set_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
5805         kvm_set_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
5806
5807         kvm_set_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
5808         kvm_set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
5809
5810         update_cr8_intercept(vcpu);
5811
5812         /* Older userspace won't unhalt the vcpu on reset. */
5813         if (kvm_vcpu_is_bsp(vcpu) && kvm_rip_read(vcpu) == 0xfff0 &&
5814             sregs->cs.selector == 0xf000 && sregs->cs.base == 0xffff0000 &&
5815             !is_protmode(vcpu))
5816                 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
5817
5818         kvm_make_request(KVM_REQ_EVENT, vcpu);
5819
5820         return 0;
5821 }
5822
5823 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
5824                                         struct kvm_guest_debug *dbg)
5825 {
5826         unsigned long rflags;
5827         int i, r;
5828
5829         if (dbg->control & (KVM_GUESTDBG_INJECT_DB | KVM_GUESTDBG_INJECT_BP)) {
5830                 r = -EBUSY;
5831                 if (vcpu->arch.exception.pending)
5832                         goto out;
5833                 if (dbg->control & KVM_GUESTDBG_INJECT_DB)
5834                         kvm_queue_exception(vcpu, DB_VECTOR);
5835                 else
5836                         kvm_queue_exception(vcpu, BP_VECTOR);
5837         }
5838
5839         /*
5840          * Read rflags as long as potentially injected trace flags are still
5841          * filtered out.
5842          */
5843         rflags = kvm_get_rflags(vcpu);
5844
5845         vcpu->guest_debug = dbg->control;
5846         if (!(vcpu->guest_debug & KVM_GUESTDBG_ENABLE))
5847                 vcpu->guest_debug = 0;
5848
5849         if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
5850                 for (i = 0; i < KVM_NR_DB_REGS; ++i)
5851                         vcpu->arch.eff_db[i] = dbg->arch.debugreg[i];
5852                 vcpu->arch.switch_db_regs =
5853                         (dbg->arch.debugreg[7] & DR7_BP_EN_MASK);
5854         } else {
5855                 for (i = 0; i < KVM_NR_DB_REGS; i++)
5856                         vcpu->arch.eff_db[i] = vcpu->arch.db[i];
5857                 vcpu->arch.switch_db_regs = (vcpu->arch.dr7 & DR7_BP_EN_MASK);
5858         }
5859
5860         if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
5861                 vcpu->arch.singlestep_rip = kvm_rip_read(vcpu) +
5862                         get_segment_base(vcpu, VCPU_SREG_CS);
5863
5864         /*
5865          * Trigger an rflags update that will inject or remove the trace
5866          * flags.
5867          */
5868         kvm_set_rflags(vcpu, rflags);
5869
5870         kvm_x86_ops->set_guest_debug(vcpu, dbg);
5871
5872         r = 0;
5873
5874 out:
5875
5876         return r;
5877 }
5878
5879 /*
5880  * Translate a guest virtual address to a guest physical address.
5881  */
5882 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
5883                                     struct kvm_translation *tr)
5884 {
5885         unsigned long vaddr = tr->linear_address;
5886         gpa_t gpa;
5887         int idx;
5888
5889         idx = srcu_read_lock(&vcpu->kvm->srcu);
5890         gpa = kvm_mmu_gva_to_gpa_system(vcpu, vaddr, NULL);
5891         srcu_read_unlock(&vcpu->kvm->srcu, idx);
5892         tr->physical_address = gpa;
5893         tr->valid = gpa != UNMAPPED_GVA;
5894         tr->writeable = 1;
5895         tr->usermode = 0;
5896
5897         return 0;
5898 }
5899
5900 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
5901 {
5902         struct i387_fxsave_struct *fxsave =
5903                         &vcpu->arch.guest_fpu.state->fxsave;
5904
5905         memcpy(fpu->fpr, fxsave->st_space, 128);
5906         fpu->fcw = fxsave->cwd;
5907         fpu->fsw = fxsave->swd;
5908         fpu->ftwx = fxsave->twd;
5909         fpu->last_opcode = fxsave->fop;
5910         fpu->last_ip = fxsave->rip;
5911         fpu->last_dp = fxsave->rdp;
5912         memcpy(fpu->xmm, fxsave->xmm_space, sizeof fxsave->xmm_space);
5913
5914         return 0;
5915 }
5916
5917 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
5918 {
5919         struct i387_fxsave_struct *fxsave =
5920                         &vcpu->arch.guest_fpu.state->fxsave;
5921
5922         memcpy(fxsave->st_space, fpu->fpr, 128);
5923         fxsave->cwd = fpu->fcw;
5924         fxsave->swd = fpu->fsw;
5925         fxsave->twd = fpu->ftwx;
5926         fxsave->fop = fpu->last_opcode;
5927         fxsave->rip = fpu->last_ip;
5928         fxsave->rdp = fpu->last_dp;
5929         memcpy(fxsave->xmm_space, fpu->xmm, sizeof fxsave->xmm_space);
5930
5931         return 0;
5932 }
5933
5934 int fx_init(struct kvm_vcpu *vcpu)
5935 {
5936         int err;
5937
5938         err = fpu_alloc(&vcpu->arch.guest_fpu);
5939         if (err)
5940                 return err;
5941
5942         fpu_finit(&vcpu->arch.guest_fpu);
5943
5944         /*
5945          * Ensure guest xcr0 is valid for loading
5946          */
5947         vcpu->arch.xcr0 = XSTATE_FP;
5948
5949         vcpu->arch.cr0 |= X86_CR0_ET;
5950
5951         return 0;
5952 }
5953 EXPORT_SYMBOL_GPL(fx_init);
5954
5955 static void fx_free(struct kvm_vcpu *vcpu)
5956 {
5957         fpu_free(&vcpu->arch.guest_fpu);
5958 }
5959
5960 void kvm_load_guest_fpu(struct kvm_vcpu *vcpu)
5961 {
5962         if (vcpu->guest_fpu_loaded)
5963                 return;
5964
5965         /*
5966          * Restore all possible states in the guest,
5967          * and assume host would use all available bits.
5968          * Guest xcr0 would be loaded later.
5969          */
5970         kvm_put_guest_xcr0(vcpu);
5971         vcpu->guest_fpu_loaded = 1;
5972         unlazy_fpu(current);
5973         fpu_restore_checking(&vcpu->arch.guest_fpu);
5974         trace_kvm_fpu(1);
5975 }
5976
5977 void kvm_put_guest_fpu(struct kvm_vcpu *vcpu)
5978 {
5979         kvm_put_guest_xcr0(vcpu);
5980
5981         if (!vcpu->guest_fpu_loaded)
5982                 return;
5983
5984         vcpu->guest_fpu_loaded = 0;
5985         fpu_save_init(&vcpu->arch.guest_fpu);
5986         ++vcpu->stat.fpu_reload;
5987         kvm_make_request(KVM_REQ_DEACTIVATE_FPU, vcpu);
5988         trace_kvm_fpu(0);
5989 }
5990
5991 void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu)
5992 {
5993         kvmclock_reset(vcpu);
5994
5995         free_cpumask_var(vcpu->arch.wbinvd_dirty_mask);
5996         fx_free(vcpu);
5997         kvm_x86_ops->vcpu_free(vcpu);
5998 }
5999
6000 struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm,
6001                                                 unsigned int id)
6002 {
6003         if (check_tsc_unstable() && atomic_read(&kvm->online_vcpus) != 0)
6004                 printk_once(KERN_WARNING
6005                 "kvm: SMP vm created on host with unstable TSC; "
6006                 "guest TSC will not be reliable\n");
6007         return kvm_x86_ops->vcpu_create(kvm, id);
6008 }
6009
6010 int kvm_arch_vcpu_setup(struct kvm_vcpu *vcpu)
6011 {
6012         int r;
6013
6014         vcpu->arch.mtrr_state.have_fixed = 1;
6015         vcpu_load(vcpu);
6016         r = kvm_arch_vcpu_reset(vcpu);
6017         if (r == 0)
6018                 r = kvm_mmu_setup(vcpu);
6019         vcpu_put(vcpu);
6020
6021         return r;
6022 }
6023
6024 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
6025 {
6026         vcpu->arch.apf.msr_val = 0;
6027
6028         vcpu_load(vcpu);
6029         kvm_mmu_unload(vcpu);
6030         vcpu_put(vcpu);
6031
6032         fx_free(vcpu);
6033         kvm_x86_ops->vcpu_free(vcpu);
6034 }
6035
6036 int kvm_arch_vcpu_reset(struct kvm_vcpu *vcpu)
6037 {
6038         atomic_set(&vcpu->arch.nmi_queued, 0);
6039         vcpu->arch.nmi_pending = 0;
6040         vcpu->arch.nmi_injected = false;
6041
6042         vcpu->arch.switch_db_regs = 0;
6043         memset(vcpu->arch.db, 0, sizeof(vcpu->arch.db));
6044         vcpu->arch.dr6 = DR6_FIXED_1;
6045         vcpu->arch.dr7 = DR7_FIXED_1;
6046
6047         kvm_make_request(KVM_REQ_EVENT, vcpu);
6048         vcpu->arch.apf.msr_val = 0;
6049         vcpu->arch.st.msr_val = 0;
6050
6051         kvmclock_reset(vcpu);
6052
6053         kvm_clear_async_pf_completion_queue(vcpu);
6054         kvm_async_pf_hash_reset(vcpu);
6055         vcpu->arch.apf.halted = false;
6056
6057         kvm_pmu_reset(vcpu);
6058
6059         return kvm_x86_ops->vcpu_reset(vcpu);
6060 }
6061
6062 int kvm_arch_hardware_enable(void *garbage)
6063 {
6064         struct kvm *kvm;
6065         struct kvm_vcpu *vcpu;
6066         int i;
6067         int ret;
6068         u64 local_tsc;
6069         u64 max_tsc = 0;
6070         bool stable, backwards_tsc = false;
6071
6072         kvm_shared_msr_cpu_online();
6073         ret = kvm_x86_ops->hardware_enable(garbage);
6074         if (ret != 0)
6075                 return ret;
6076
6077         local_tsc = native_read_tsc();
6078         stable = !check_tsc_unstable();
6079         list_for_each_entry(kvm, &vm_list, vm_list) {
6080                 kvm_for_each_vcpu(i, vcpu, kvm) {
6081                         if (!stable && vcpu->cpu == smp_processor_id())
6082                                 set_bit(KVM_REQ_CLOCK_UPDATE, &vcpu->requests);
6083                         if (stable && vcpu->arch.last_host_tsc > local_tsc) {
6084                                 backwards_tsc = true;
6085                                 if (vcpu->arch.last_host_tsc > max_tsc)
6086                                         max_tsc = vcpu->arch.last_host_tsc;
6087                         }
6088                 }
6089         }
6090
6091         /*
6092          * Sometimes, even reliable TSCs go backwards.  This happens on
6093          * platforms that reset TSC during suspend or hibernate actions, but
6094          * maintain synchronization.  We must compensate.  Fortunately, we can
6095          * detect that condition here, which happens early in CPU bringup,
6096          * before any KVM threads can be running.  Unfortunately, we can't
6097          * bring the TSCs fully up to date with real time, as we aren't yet far
6098          * enough into CPU bringup that we know how much real time has actually
6099          * elapsed; our helper function, get_kernel_ns() will be using boot
6100          * variables that haven't been updated yet.
6101          *
6102          * So we simply find the maximum observed TSC above, then record the
6103          * adjustment to TSC in each VCPU.  When the VCPU later gets loaded,
6104          * the adjustment will be applied.  Note that we accumulate
6105          * adjustments, in case multiple suspend cycles happen before some VCPU
6106          * gets a chance to run again.  In the event that no KVM threads get a
6107          * chance to run, we will miss the entire elapsed period, as we'll have
6108          * reset last_host_tsc, so VCPUs will not have the TSC adjusted and may
6109          * loose cycle time.  This isn't too big a deal, since the loss will be
6110          * uniform across all VCPUs (not to mention the scenario is extremely
6111          * unlikely). It is possible that a second hibernate recovery happens
6112          * much faster than a first, causing the observed TSC here to be
6113          * smaller; this would require additional padding adjustment, which is
6114          * why we set last_host_tsc to the local tsc observed here.
6115          *
6116          * N.B. - this code below runs only on platforms with reliable TSC,
6117          * as that is the only way backwards_tsc is set above.  Also note
6118          * that this runs for ALL vcpus, which is not a bug; all VCPUs should
6119          * have the same delta_cyc adjustment applied if backwards_tsc
6120          * is detected.  Note further, this adjustment is only done once,
6121          * as we reset last_host_tsc on all VCPUs to stop this from being
6122          * called multiple times (one for each physical CPU bringup).
6123          *
6124          * Platforms with unnreliable TSCs don't have to deal with this, they
6125          * will be compensated by the logic in vcpu_load, which sets the TSC to
6126          * catchup mode.  This will catchup all VCPUs to real time, but cannot
6127          * guarantee that they stay in perfect synchronization.
6128          */
6129         if (backwards_tsc) {
6130                 u64 delta_cyc = max_tsc - local_tsc;
6131                 list_for_each_entry(kvm, &vm_list, vm_list) {
6132                         kvm_for_each_vcpu(i, vcpu, kvm) {
6133                                 vcpu->arch.tsc_offset_adjustment += delta_cyc;
6134                                 vcpu->arch.last_host_tsc = local_tsc;
6135                         }
6136
6137                         /*
6138                          * We have to disable TSC offset matching.. if you were
6139                          * booting a VM while issuing an S4 host suspend....
6140                          * you may have some problem.  Solving this issue is
6141                          * left as an exercise to the reader.
6142                          */
6143                         kvm->arch.last_tsc_nsec = 0;
6144                         kvm->arch.last_tsc_write = 0;
6145                 }
6146
6147         }
6148         return 0;
6149 }
6150
6151 void kvm_arch_hardware_disable(void *garbage)
6152 {
6153         kvm_x86_ops->hardware_disable(garbage);
6154         drop_user_return_notifiers(garbage);
6155 }
6156
6157 int kvm_arch_hardware_setup(void)
6158 {
6159         return kvm_x86_ops->hardware_setup();
6160 }
6161
6162 void kvm_arch_hardware_unsetup(void)
6163 {
6164         kvm_x86_ops->hardware_unsetup();
6165 }
6166
6167 void kvm_arch_check_processor_compat(void *rtn)
6168 {
6169         kvm_x86_ops->check_processor_compatibility(rtn);
6170 }
6171
6172 bool kvm_vcpu_compatible(struct kvm_vcpu *vcpu)
6173 {
6174         return irqchip_in_kernel(vcpu->kvm) == (vcpu->arch.apic != NULL);
6175 }
6176
6177 int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
6178 {
6179         struct page *page;
6180         struct kvm *kvm;
6181         int r;
6182
6183         BUG_ON(vcpu->kvm == NULL);
6184         kvm = vcpu->kvm;
6185
6186         vcpu->arch.emulate_ctxt.ops = &emulate_ops;
6187         if (!irqchip_in_kernel(kvm) || kvm_vcpu_is_bsp(vcpu))
6188                 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
6189         else
6190                 vcpu->arch.mp_state = KVM_MP_STATE_UNINITIALIZED;
6191
6192         page = alloc_page(GFP_KERNEL | __GFP_ZERO);
6193         if (!page) {
6194                 r = -ENOMEM;
6195                 goto fail;
6196         }
6197         vcpu->arch.pio_data = page_address(page);
6198
6199         kvm_set_tsc_khz(vcpu, max_tsc_khz);
6200
6201         r = kvm_mmu_create(vcpu);
6202         if (r < 0)
6203                 goto fail_free_pio_data;
6204
6205         if (irqchip_in_kernel(kvm)) {
6206                 r = kvm_create_lapic(vcpu);
6207                 if (r < 0)
6208                         goto fail_mmu_destroy;
6209         }
6210
6211         vcpu->arch.mce_banks = kzalloc(KVM_MAX_MCE_BANKS * sizeof(u64) * 4,
6212                                        GFP_KERNEL);
6213         if (!vcpu->arch.mce_banks) {
6214                 r = -ENOMEM;
6215                 goto fail_free_lapic;
6216         }
6217         vcpu->arch.mcg_cap = KVM_MAX_MCE_BANKS;
6218
6219         if (!zalloc_cpumask_var(&vcpu->arch.wbinvd_dirty_mask, GFP_KERNEL))
6220                 goto fail_free_mce_banks;
6221
6222         kvm_async_pf_hash_reset(vcpu);
6223         kvm_pmu_init(vcpu);
6224
6225         return 0;
6226 fail_free_mce_banks:
6227         kfree(vcpu->arch.mce_banks);
6228 fail_free_lapic:
6229         kvm_free_lapic(vcpu);
6230 fail_mmu_destroy:
6231         kvm_mmu_destroy(vcpu);
6232 fail_free_pio_data:
6233         free_page((unsigned long)vcpu->arch.pio_data);
6234 fail:
6235         return r;
6236 }
6237
6238 void kvm_arch_vcpu_uninit(struct kvm_vcpu *vcpu)
6239 {
6240         int idx;
6241
6242         kvm_pmu_destroy(vcpu);
6243         kfree(vcpu->arch.mce_banks);
6244         kvm_free_lapic(vcpu);
6245         idx = srcu_read_lock(&vcpu->kvm->srcu);
6246         kvm_mmu_destroy(vcpu);
6247         srcu_read_unlock(&vcpu->kvm->srcu, idx);
6248         free_page((unsigned long)vcpu->arch.pio_data);
6249 }
6250
6251 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
6252 {
6253         if (type)
6254                 return -EINVAL;
6255
6256         INIT_LIST_HEAD(&kvm->arch.active_mmu_pages);
6257         INIT_LIST_HEAD(&kvm->arch.assigned_dev_head);
6258
6259         /* Reserve bit 0 of irq_sources_bitmap for userspace irq source */
6260         set_bit(KVM_USERSPACE_IRQ_SOURCE_ID, &kvm->arch.irq_sources_bitmap);
6261
6262         raw_spin_lock_init(&kvm->arch.tsc_write_lock);
6263
6264         return 0;
6265 }
6266
6267 static void kvm_unload_vcpu_mmu(struct kvm_vcpu *vcpu)
6268 {
6269         vcpu_load(vcpu);
6270         kvm_mmu_unload(vcpu);
6271         vcpu_put(vcpu);
6272 }
6273
6274 static void kvm_free_vcpus(struct kvm *kvm)
6275 {
6276         unsigned int i;
6277         struct kvm_vcpu *vcpu;
6278
6279         /*
6280          * Unpin any mmu pages first.
6281          */
6282         kvm_for_each_vcpu(i, vcpu, kvm) {
6283                 kvm_clear_async_pf_completion_queue(vcpu);
6284                 kvm_unload_vcpu_mmu(vcpu);
6285         }
6286         kvm_for_each_vcpu(i, vcpu, kvm)
6287                 kvm_arch_vcpu_free(vcpu);
6288
6289         mutex_lock(&kvm->lock);
6290         for (i = 0; i < atomic_read(&kvm->online_vcpus); i++)
6291                 kvm->vcpus[i] = NULL;
6292
6293         atomic_set(&kvm->online_vcpus, 0);
6294         mutex_unlock(&kvm->lock);
6295 }
6296
6297 void kvm_arch_sync_events(struct kvm *kvm)
6298 {
6299         kvm_free_all_assigned_devices(kvm);
6300         kvm_free_pit(kvm);
6301 }
6302
6303 void kvm_arch_destroy_vm(struct kvm *kvm)
6304 {
6305         kvm_iommu_unmap_guest(kvm);
6306         kfree(kvm->arch.vpic);
6307         kfree(kvm->arch.vioapic);
6308         kvm_free_vcpus(kvm);
6309         if (kvm->arch.apic_access_page)
6310                 put_page(kvm->arch.apic_access_page);
6311         if (kvm->arch.ept_identity_pagetable)
6312                 put_page(kvm->arch.ept_identity_pagetable);
6313 }
6314
6315 void kvm_arch_free_memslot(struct kvm_memory_slot *free,
6316                            struct kvm_memory_slot *dont)
6317 {
6318         int i;
6319
6320         for (i = 0; i < KVM_NR_PAGE_SIZES - 1; ++i) {
6321                 if (!dont || free->arch.lpage_info[i] != dont->arch.lpage_info[i]) {
6322                         kvm_kvfree(free->arch.lpage_info[i]);
6323                         free->arch.lpage_info[i] = NULL;
6324                 }
6325         }
6326 }
6327
6328 int kvm_arch_create_memslot(struct kvm_memory_slot *slot, unsigned long npages)
6329 {
6330         int i;
6331
6332         for (i = 0; i < KVM_NR_PAGE_SIZES - 1; ++i) {
6333                 unsigned long ugfn;
6334                 int lpages;
6335                 int level = i + 2;
6336
6337                 lpages = gfn_to_index(slot->base_gfn + npages - 1,
6338                                       slot->base_gfn, level) + 1;
6339
6340                 slot->arch.lpage_info[i] =
6341                         kvm_kvzalloc(lpages * sizeof(*slot->arch.lpage_info[i]));
6342                 if (!slot->arch.lpage_info[i])
6343                         goto out_free;
6344
6345                 if (slot->base_gfn & (KVM_PAGES_PER_HPAGE(level) - 1))
6346                         slot->arch.lpage_info[i][0].write_count = 1;
6347                 if ((slot->base_gfn + npages) & (KVM_PAGES_PER_HPAGE(level) - 1))
6348                         slot->arch.lpage_info[i][lpages - 1].write_count = 1;
6349                 ugfn = slot->userspace_addr >> PAGE_SHIFT;
6350                 /*
6351                  * If the gfn and userspace address are not aligned wrt each
6352                  * other, or if explicitly asked to, disable large page
6353                  * support for this slot
6354                  */
6355                 if ((slot->base_gfn ^ ugfn) & (KVM_PAGES_PER_HPAGE(level) - 1) ||
6356                     !kvm_largepages_enabled()) {
6357                         unsigned long j;
6358
6359                         for (j = 0; j < lpages; ++j)
6360                                 slot->arch.lpage_info[i][j].write_count = 1;
6361                 }
6362         }
6363
6364         return 0;
6365
6366 out_free:
6367         for (i = 0; i < KVM_NR_PAGE_SIZES - 1; ++i) {
6368                 kvm_kvfree(slot->arch.lpage_info[i]);
6369                 slot->arch.lpage_info[i] = NULL;
6370         }
6371         return -ENOMEM;
6372 }
6373
6374 int kvm_arch_prepare_memory_region(struct kvm *kvm,
6375                                 struct kvm_memory_slot *memslot,
6376                                 struct kvm_memory_slot old,
6377                                 struct kvm_userspace_memory_region *mem,
6378                                 int user_alloc)
6379 {
6380         int npages = memslot->npages;
6381         int map_flags = MAP_PRIVATE | MAP_ANONYMOUS;
6382
6383         /* Prevent internal slot pages from being moved by fork()/COW. */
6384         if (memslot->id >= KVM_MEMORY_SLOTS)
6385                 map_flags = MAP_SHARED | MAP_ANONYMOUS;
6386
6387         /*To keep backward compatibility with older userspace,
6388          *x86 needs to hanlde !user_alloc case.
6389          */
6390         if (!user_alloc) {
6391                 if (npages && !old.rmap) {
6392                         unsigned long userspace_addr;
6393
6394                         userspace_addr = vm_mmap(NULL, 0,
6395                                                  npages * PAGE_SIZE,
6396                                                  PROT_READ | PROT_WRITE,
6397                                                  map_flags,
6398                                                  0);
6399
6400                         if (IS_ERR((void *)userspace_addr))
6401                                 return PTR_ERR((void *)userspace_addr);
6402
6403                         memslot->userspace_addr = userspace_addr;
6404                 }
6405         }
6406
6407
6408         return 0;
6409 }
6410
6411 void kvm_arch_commit_memory_region(struct kvm *kvm,
6412                                 struct kvm_userspace_memory_region *mem,
6413                                 struct kvm_memory_slot old,
6414                                 int user_alloc)
6415 {
6416
6417         int nr_mmu_pages = 0, npages = mem->memory_size >> PAGE_SHIFT;
6418
6419         if (!user_alloc && !old.user_alloc && old.rmap && !npages) {
6420                 int ret;
6421
6422                 ret = vm_munmap(old.userspace_addr,
6423                                 old.npages * PAGE_SIZE);
6424                 if (ret < 0)
6425                         printk(KERN_WARNING
6426                                "kvm_vm_ioctl_set_memory_region: "
6427                                "failed to munmap memory\n");
6428         }
6429
6430         if (!kvm->arch.n_requested_mmu_pages)
6431                 nr_mmu_pages = kvm_mmu_calculate_mmu_pages(kvm);
6432
6433         spin_lock(&kvm->mmu_lock);
6434         if (nr_mmu_pages)
6435                 kvm_mmu_change_mmu_pages(kvm, nr_mmu_pages);
6436         kvm_mmu_slot_remove_write_access(kvm, mem->slot);
6437         spin_unlock(&kvm->mmu_lock);
6438 }
6439
6440 void kvm_arch_flush_shadow(struct kvm *kvm)
6441 {
6442         kvm_mmu_zap_all(kvm);
6443         kvm_reload_remote_mmus(kvm);
6444 }
6445
6446 int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)
6447 {
6448         return (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE &&
6449                 !vcpu->arch.apf.halted)
6450                 || !list_empty_careful(&vcpu->async_pf.done)
6451                 || vcpu->arch.mp_state == KVM_MP_STATE_SIPI_RECEIVED
6452                 || atomic_read(&vcpu->arch.nmi_queued) ||
6453                 (kvm_arch_interrupt_allowed(vcpu) &&
6454                  kvm_cpu_has_interrupt(vcpu));
6455 }
6456
6457 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
6458 {
6459         return kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE;
6460 }
6461
6462 int kvm_arch_interrupt_allowed(struct kvm_vcpu *vcpu)
6463 {
6464         return kvm_x86_ops->interrupt_allowed(vcpu);
6465 }
6466
6467 bool kvm_is_linear_rip(struct kvm_vcpu *vcpu, unsigned long linear_rip)
6468 {
6469         unsigned long current_rip = kvm_rip_read(vcpu) +
6470                 get_segment_base(vcpu, VCPU_SREG_CS);
6471
6472         return current_rip == linear_rip;
6473 }
6474 EXPORT_SYMBOL_GPL(kvm_is_linear_rip);
6475
6476 unsigned long kvm_get_rflags(struct kvm_vcpu *vcpu)
6477 {
6478         unsigned long rflags;
6479
6480         rflags = kvm_x86_ops->get_rflags(vcpu);
6481         if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
6482                 rflags &= ~X86_EFLAGS_TF;
6483         return rflags;
6484 }
6485 EXPORT_SYMBOL_GPL(kvm_get_rflags);
6486
6487 void kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
6488 {
6489         if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP &&
6490             kvm_is_linear_rip(vcpu, vcpu->arch.singlestep_rip))
6491                 rflags |= X86_EFLAGS_TF;
6492         kvm_x86_ops->set_rflags(vcpu, rflags);
6493         kvm_make_request(KVM_REQ_EVENT, vcpu);
6494 }
6495 EXPORT_SYMBOL_GPL(kvm_set_rflags);
6496
6497 void kvm_arch_async_page_ready(struct kvm_vcpu *vcpu, struct kvm_async_pf *work)
6498 {
6499         int r;
6500
6501         if ((vcpu->arch.mmu.direct_map != work->arch.direct_map) ||
6502               is_error_page(work->page))
6503                 return;
6504
6505         r = kvm_mmu_reload(vcpu);
6506         if (unlikely(r))
6507                 return;
6508
6509         if (!vcpu->arch.mmu.direct_map &&
6510               work->arch.cr3 != vcpu->arch.mmu.get_cr3(vcpu))
6511                 return;
6512
6513         vcpu->arch.mmu.page_fault(vcpu, work->gva, 0, true);
6514 }
6515
6516 static inline u32 kvm_async_pf_hash_fn(gfn_t gfn)
6517 {
6518         return hash_32(gfn & 0xffffffff, order_base_2(ASYNC_PF_PER_VCPU));
6519 }
6520
6521 static inline u32 kvm_async_pf_next_probe(u32 key)
6522 {
6523         return (key + 1) & (roundup_pow_of_two(ASYNC_PF_PER_VCPU) - 1);
6524 }
6525
6526 static void kvm_add_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
6527 {
6528         u32 key = kvm_async_pf_hash_fn(gfn);
6529
6530         while (vcpu->arch.apf.gfns[key] != ~0)
6531                 key = kvm_async_pf_next_probe(key);
6532
6533         vcpu->arch.apf.gfns[key] = gfn;
6534 }
6535
6536 static u32 kvm_async_pf_gfn_slot(struct kvm_vcpu *vcpu, gfn_t gfn)
6537 {
6538         int i;
6539         u32 key = kvm_async_pf_hash_fn(gfn);
6540
6541         for (i = 0; i < roundup_pow_of_two(ASYNC_PF_PER_VCPU) &&
6542                      (vcpu->arch.apf.gfns[key] != gfn &&
6543                       vcpu->arch.apf.gfns[key] != ~0); i++)
6544                 key = kvm_async_pf_next_probe(key);
6545
6546         return key;
6547 }
6548
6549 bool kvm_find_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
6550 {
6551         return vcpu->arch.apf.gfns[kvm_async_pf_gfn_slot(vcpu, gfn)] == gfn;
6552 }
6553
6554 static void kvm_del_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
6555 {
6556         u32 i, j, k;
6557
6558         i = j = kvm_async_pf_gfn_slot(vcpu, gfn);
6559         while (true) {
6560                 vcpu->arch.apf.gfns[i] = ~0;
6561                 do {
6562                         j = kvm_async_pf_next_probe(j);
6563                         if (vcpu->arch.apf.gfns[j] == ~0)
6564                                 return;
6565                         k = kvm_async_pf_hash_fn(vcpu->arch.apf.gfns[j]);
6566                         /*
6567                          * k lies cyclically in ]i,j]
6568                          * |    i.k.j |
6569                          * |....j i.k.| or  |.k..j i...|
6570                          */
6571                 } while ((i <= j) ? (i < k && k <= j) : (i < k || k <= j));
6572                 vcpu->arch.apf.gfns[i] = vcpu->arch.apf.gfns[j];
6573                 i = j;
6574         }
6575 }
6576
6577 static int apf_put_user(struct kvm_vcpu *vcpu, u32 val)
6578 {
6579
6580         return kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.apf.data, &val,
6581                                       sizeof(val));
6582 }
6583
6584 void kvm_arch_async_page_not_present(struct kvm_vcpu *vcpu,
6585                                      struct kvm_async_pf *work)
6586 {
6587         struct x86_exception fault;
6588
6589         trace_kvm_async_pf_not_present(work->arch.token, work->gva);
6590         kvm_add_async_pf_gfn(vcpu, work->arch.gfn);
6591
6592         if (!(vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED) ||
6593             (vcpu->arch.apf.send_user_only &&
6594              kvm_x86_ops->get_cpl(vcpu) == 0))
6595                 kvm_make_request(KVM_REQ_APF_HALT, vcpu);
6596         else if (!apf_put_user(vcpu, KVM_PV_REASON_PAGE_NOT_PRESENT)) {
6597                 fault.vector = PF_VECTOR;
6598                 fault.error_code_valid = true;
6599                 fault.error_code = 0;
6600                 fault.nested_page_fault = false;
6601                 fault.address = work->arch.token;
6602                 kvm_inject_page_fault(vcpu, &fault);
6603         }
6604 }
6605
6606 void kvm_arch_async_page_present(struct kvm_vcpu *vcpu,
6607                                  struct kvm_async_pf *work)
6608 {
6609         struct x86_exception fault;
6610
6611         trace_kvm_async_pf_ready(work->arch.token, work->gva);
6612         if (is_error_page(work->page))
6613                 work->arch.token = ~0; /* broadcast wakeup */
6614         else
6615                 kvm_del_async_pf_gfn(vcpu, work->arch.gfn);
6616
6617         if ((vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED) &&
6618             !apf_put_user(vcpu, KVM_PV_REASON_PAGE_READY)) {
6619                 fault.vector = PF_VECTOR;
6620                 fault.error_code_valid = true;
6621                 fault.error_code = 0;
6622                 fault.nested_page_fault = false;
6623                 fault.address = work->arch.token;
6624                 kvm_inject_page_fault(vcpu, &fault);
6625         }
6626         vcpu->arch.apf.halted = false;
6627         vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
6628 }
6629
6630 bool kvm_arch_can_inject_async_page_present(struct kvm_vcpu *vcpu)
6631 {
6632         if (!(vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED))
6633                 return true;
6634         else
6635                 return !kvm_event_needs_reinjection(vcpu) &&
6636                         kvm_x86_ops->interrupt_allowed(vcpu);
6637 }
6638
6639 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_exit);
6640 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_inj_virq);
6641 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_page_fault);
6642 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_msr);
6643 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_cr);
6644 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmrun);
6645 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit);
6646 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit_inject);
6647 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intr_vmexit);
6648 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_invlpga);
6649 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_skinit);
6650 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intercepts);