ARM: KVM: vgic: take distributor lock on sync_hwstate path
[firefly-linux-kernel-4.4.55.git] / arch / x86 / kvm / i8254.c
1 /*
2  * 8253/8254 interval timer emulation
3  *
4  * Copyright (c) 2003-2004 Fabrice Bellard
5  * Copyright (c) 2006 Intel Corporation
6  * Copyright (c) 2007 Keir Fraser, XenSource Inc
7  * Copyright (c) 2008 Intel Corporation
8  * Copyright 2009 Red Hat, Inc. and/or its affiliates.
9  *
10  * Permission is hereby granted, free of charge, to any person obtaining a copy
11  * of this software and associated documentation files (the "Software"), to deal
12  * in the Software without restriction, including without limitation the rights
13  * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
14  * copies of the Software, and to permit persons to whom the Software is
15  * furnished to do so, subject to the following conditions:
16  *
17  * The above copyright notice and this permission notice shall be included in
18  * all copies or substantial portions of the Software.
19  *
20  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
21  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
22  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
23  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
24  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
25  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
26  * THE SOFTWARE.
27  *
28  * Authors:
29  *   Sheng Yang <sheng.yang@intel.com>
30  *   Based on QEMU and Xen.
31  */
32
33 #define pr_fmt(fmt) "pit: " fmt
34
35 #include <linux/kvm_host.h>
36 #include <linux/slab.h>
37
38 #include "irq.h"
39 #include "i8254.h"
40
41 #ifndef CONFIG_X86_64
42 #define mod_64(x, y) ((x) - (y) * div64_u64(x, y))
43 #else
44 #define mod_64(x, y) ((x) % (y))
45 #endif
46
47 #define RW_STATE_LSB 1
48 #define RW_STATE_MSB 2
49 #define RW_STATE_WORD0 3
50 #define RW_STATE_WORD1 4
51
52 /* Compute with 96 bit intermediate result: (a*b)/c */
53 static u64 muldiv64(u64 a, u32 b, u32 c)
54 {
55         union {
56                 u64 ll;
57                 struct {
58                         u32 low, high;
59                 } l;
60         } u, res;
61         u64 rl, rh;
62
63         u.ll = a;
64         rl = (u64)u.l.low * (u64)b;
65         rh = (u64)u.l.high * (u64)b;
66         rh += (rl >> 32);
67         res.l.high = div64_u64(rh, c);
68         res.l.low = div64_u64(((mod_64(rh, c) << 32) + (rl & 0xffffffff)), c);
69         return res.ll;
70 }
71
72 static void pit_set_gate(struct kvm *kvm, int channel, u32 val)
73 {
74         struct kvm_kpit_channel_state *c =
75                 &kvm->arch.vpit->pit_state.channels[channel];
76
77         WARN_ON(!mutex_is_locked(&kvm->arch.vpit->pit_state.lock));
78
79         switch (c->mode) {
80         default:
81         case 0:
82         case 4:
83                 /* XXX: just disable/enable counting */
84                 break;
85         case 1:
86         case 2:
87         case 3:
88         case 5:
89                 /* Restart counting on rising edge. */
90                 if (c->gate < val)
91                         c->count_load_time = ktime_get();
92                 break;
93         }
94
95         c->gate = val;
96 }
97
98 static int pit_get_gate(struct kvm *kvm, int channel)
99 {
100         WARN_ON(!mutex_is_locked(&kvm->arch.vpit->pit_state.lock));
101
102         return kvm->arch.vpit->pit_state.channels[channel].gate;
103 }
104
105 static s64 __kpit_elapsed(struct kvm *kvm)
106 {
107         s64 elapsed;
108         ktime_t remaining;
109         struct kvm_kpit_state *ps = &kvm->arch.vpit->pit_state;
110
111         if (!ps->period)
112                 return 0;
113
114         /*
115          * The Counter does not stop when it reaches zero. In
116          * Modes 0, 1, 4, and 5 the Counter ``wraps around'' to
117          * the highest count, either FFFF hex for binary counting
118          * or 9999 for BCD counting, and continues counting.
119          * Modes 2 and 3 are periodic; the Counter reloads
120          * itself with the initial count and continues counting
121          * from there.
122          */
123         remaining = hrtimer_get_remaining(&ps->timer);
124         elapsed = ps->period - ktime_to_ns(remaining);
125         elapsed = mod_64(elapsed, ps->period);
126
127         return elapsed;
128 }
129
130 static s64 kpit_elapsed(struct kvm *kvm, struct kvm_kpit_channel_state *c,
131                         int channel)
132 {
133         if (channel == 0)
134                 return __kpit_elapsed(kvm);
135
136         return ktime_to_ns(ktime_sub(ktime_get(), c->count_load_time));
137 }
138
139 static int pit_get_count(struct kvm *kvm, int channel)
140 {
141         struct kvm_kpit_channel_state *c =
142                 &kvm->arch.vpit->pit_state.channels[channel];
143         s64 d, t;
144         int counter;
145
146         WARN_ON(!mutex_is_locked(&kvm->arch.vpit->pit_state.lock));
147
148         t = kpit_elapsed(kvm, c, channel);
149         d = muldiv64(t, KVM_PIT_FREQ, NSEC_PER_SEC);
150
151         switch (c->mode) {
152         case 0:
153         case 1:
154         case 4:
155         case 5:
156                 counter = (c->count - d) & 0xffff;
157                 break;
158         case 3:
159                 /* XXX: may be incorrect for odd counts */
160                 counter = c->count - (mod_64((2 * d), c->count));
161                 break;
162         default:
163                 counter = c->count - mod_64(d, c->count);
164                 break;
165         }
166         return counter;
167 }
168
169 static int pit_get_out(struct kvm *kvm, int channel)
170 {
171         struct kvm_kpit_channel_state *c =
172                 &kvm->arch.vpit->pit_state.channels[channel];
173         s64 d, t;
174         int out;
175
176         WARN_ON(!mutex_is_locked(&kvm->arch.vpit->pit_state.lock));
177
178         t = kpit_elapsed(kvm, c, channel);
179         d = muldiv64(t, KVM_PIT_FREQ, NSEC_PER_SEC);
180
181         switch (c->mode) {
182         default:
183         case 0:
184                 out = (d >= c->count);
185                 break;
186         case 1:
187                 out = (d < c->count);
188                 break;
189         case 2:
190                 out = ((mod_64(d, c->count) == 0) && (d != 0));
191                 break;
192         case 3:
193                 out = (mod_64(d, c->count) < ((c->count + 1) >> 1));
194                 break;
195         case 4:
196         case 5:
197                 out = (d == c->count);
198                 break;
199         }
200
201         return out;
202 }
203
204 static void pit_latch_count(struct kvm *kvm, int channel)
205 {
206         struct kvm_kpit_channel_state *c =
207                 &kvm->arch.vpit->pit_state.channels[channel];
208
209         WARN_ON(!mutex_is_locked(&kvm->arch.vpit->pit_state.lock));
210
211         if (!c->count_latched) {
212                 c->latched_count = pit_get_count(kvm, channel);
213                 c->count_latched = c->rw_mode;
214         }
215 }
216
217 static void pit_latch_status(struct kvm *kvm, int channel)
218 {
219         struct kvm_kpit_channel_state *c =
220                 &kvm->arch.vpit->pit_state.channels[channel];
221
222         WARN_ON(!mutex_is_locked(&kvm->arch.vpit->pit_state.lock));
223
224         if (!c->status_latched) {
225                 /* TODO: Return NULL COUNT (bit 6). */
226                 c->status = ((pit_get_out(kvm, channel) << 7) |
227                                 (c->rw_mode << 4) |
228                                 (c->mode << 1) |
229                                 c->bcd);
230                 c->status_latched = 1;
231         }
232 }
233
234 static void kvm_pit_ack_irq(struct kvm_irq_ack_notifier *kian)
235 {
236         struct kvm_kpit_state *ps = container_of(kian, struct kvm_kpit_state,
237                                                  irq_ack_notifier);
238         int value;
239
240         spin_lock(&ps->inject_lock);
241         value = atomic_dec_return(&ps->pending);
242         if (value < 0)
243                 /* spurious acks can be generated if, for example, the
244                  * PIC is being reset.  Handle it gracefully here
245                  */
246                 atomic_inc(&ps->pending);
247         else if (value > 0)
248                 /* in this case, we had multiple outstanding pit interrupts
249                  * that we needed to inject.  Reinject
250                  */
251                 queue_kthread_work(&ps->pit->worker, &ps->pit->expired);
252         ps->irq_ack = 1;
253         spin_unlock(&ps->inject_lock);
254 }
255
256 void __kvm_migrate_pit_timer(struct kvm_vcpu *vcpu)
257 {
258         struct kvm_pit *pit = vcpu->kvm->arch.vpit;
259         struct hrtimer *timer;
260
261         if (!kvm_vcpu_is_bsp(vcpu) || !pit)
262                 return;
263
264         timer = &pit->pit_state.timer;
265         if (hrtimer_cancel(timer))
266                 hrtimer_start_expires(timer, HRTIMER_MODE_ABS);
267 }
268
269 static void destroy_pit_timer(struct kvm_pit *pit)
270 {
271         hrtimer_cancel(&pit->pit_state.timer);
272         flush_kthread_work(&pit->expired);
273 }
274
275 static void pit_do_work(struct kthread_work *work)
276 {
277         struct kvm_pit *pit = container_of(work, struct kvm_pit, expired);
278         struct kvm *kvm = pit->kvm;
279         struct kvm_vcpu *vcpu;
280         int i;
281         struct kvm_kpit_state *ps = &pit->pit_state;
282         int inject = 0;
283
284         /* Try to inject pending interrupts when
285          * last one has been acked.
286          */
287         spin_lock(&ps->inject_lock);
288         if (ps->irq_ack) {
289                 ps->irq_ack = 0;
290                 inject = 1;
291         }
292         spin_unlock(&ps->inject_lock);
293         if (inject) {
294                 kvm_set_irq(kvm, kvm->arch.vpit->irq_source_id, 0, 1);
295                 kvm_set_irq(kvm, kvm->arch.vpit->irq_source_id, 0, 0);
296
297                 /*
298                  * Provides NMI watchdog support via Virtual Wire mode.
299                  * The route is: PIT -> PIC -> LVT0 in NMI mode.
300                  *
301                  * Note: Our Virtual Wire implementation is simplified, only
302                  * propagating PIT interrupts to all VCPUs when they have set
303                  * LVT0 to NMI delivery. Other PIC interrupts are just sent to
304                  * VCPU0, and only if its LVT0 is in EXTINT mode.
305                  */
306                 if (kvm->arch.vapics_in_nmi_mode > 0)
307                         kvm_for_each_vcpu(i, vcpu, kvm)
308                                 kvm_apic_nmi_wd_deliver(vcpu);
309         }
310 }
311
312 static enum hrtimer_restart pit_timer_fn(struct hrtimer *data)
313 {
314         struct kvm_kpit_state *ps = container_of(data, struct kvm_kpit_state, timer);
315         struct kvm_pit *pt = ps->kvm->arch.vpit;
316
317         if (ps->reinject || !atomic_read(&ps->pending)) {
318                 atomic_inc(&ps->pending);
319                 queue_kthread_work(&pt->worker, &pt->expired);
320         }
321
322         if (ps->is_periodic) {
323                 hrtimer_add_expires_ns(&ps->timer, ps->period);
324                 return HRTIMER_RESTART;
325         } else
326                 return HRTIMER_NORESTART;
327 }
328
329 static void create_pit_timer(struct kvm *kvm, u32 val, int is_period)
330 {
331         struct kvm_kpit_state *ps = &kvm->arch.vpit->pit_state;
332         s64 interval;
333
334         if (!irqchip_in_kernel(kvm) || ps->flags & KVM_PIT_FLAGS_HPET_LEGACY)
335                 return;
336
337         interval = muldiv64(val, NSEC_PER_SEC, KVM_PIT_FREQ);
338
339         pr_debug("create pit timer, interval is %llu nsec\n", interval);
340
341         /* TODO The new value only affected after the retriggered */
342         hrtimer_cancel(&ps->timer);
343         flush_kthread_work(&ps->pit->expired);
344         ps->period = interval;
345         ps->is_periodic = is_period;
346
347         ps->timer.function = pit_timer_fn;
348         ps->kvm = ps->pit->kvm;
349
350         atomic_set(&ps->pending, 0);
351         ps->irq_ack = 1;
352
353         hrtimer_start(&ps->timer, ktime_add_ns(ktime_get(), interval),
354                       HRTIMER_MODE_ABS);
355 }
356
357 static void pit_load_count(struct kvm *kvm, int channel, u32 val)
358 {
359         struct kvm_kpit_state *ps = &kvm->arch.vpit->pit_state;
360
361         WARN_ON(!mutex_is_locked(&ps->lock));
362
363         pr_debug("load_count val is %d, channel is %d\n", val, channel);
364
365         /*
366          * The largest possible initial count is 0; this is equivalent
367          * to 216 for binary counting and 104 for BCD counting.
368          */
369         if (val == 0)
370                 val = 0x10000;
371
372         ps->channels[channel].count = val;
373
374         if (channel != 0) {
375                 ps->channels[channel].count_load_time = ktime_get();
376                 return;
377         }
378
379         /* Two types of timer
380          * mode 1 is one shot, mode 2 is period, otherwise del timer */
381         switch (ps->channels[0].mode) {
382         case 0:
383         case 1:
384         /* FIXME: enhance mode 4 precision */
385         case 4:
386                 create_pit_timer(kvm, val, 0);
387                 break;
388         case 2:
389         case 3:
390                 create_pit_timer(kvm, val, 1);
391                 break;
392         default:
393                 destroy_pit_timer(kvm->arch.vpit);
394         }
395 }
396
397 void kvm_pit_load_count(struct kvm *kvm, int channel, u32 val, int hpet_legacy_start)
398 {
399         u8 saved_mode;
400         if (hpet_legacy_start) {
401                 /* save existing mode for later reenablement */
402                 saved_mode = kvm->arch.vpit->pit_state.channels[0].mode;
403                 kvm->arch.vpit->pit_state.channels[0].mode = 0xff; /* disable timer */
404                 pit_load_count(kvm, channel, val);
405                 kvm->arch.vpit->pit_state.channels[0].mode = saved_mode;
406         } else {
407                 pit_load_count(kvm, channel, val);
408         }
409 }
410
411 static inline struct kvm_pit *dev_to_pit(struct kvm_io_device *dev)
412 {
413         return container_of(dev, struct kvm_pit, dev);
414 }
415
416 static inline struct kvm_pit *speaker_to_pit(struct kvm_io_device *dev)
417 {
418         return container_of(dev, struct kvm_pit, speaker_dev);
419 }
420
421 static inline int pit_in_range(gpa_t addr)
422 {
423         return ((addr >= KVM_PIT_BASE_ADDRESS) &&
424                 (addr < KVM_PIT_BASE_ADDRESS + KVM_PIT_MEM_LENGTH));
425 }
426
427 static int pit_ioport_write(struct kvm_io_device *this,
428                             gpa_t addr, int len, const void *data)
429 {
430         struct kvm_pit *pit = dev_to_pit(this);
431         struct kvm_kpit_state *pit_state = &pit->pit_state;
432         struct kvm *kvm = pit->kvm;
433         int channel, access;
434         struct kvm_kpit_channel_state *s;
435         u32 val = *(u32 *) data;
436         if (!pit_in_range(addr))
437                 return -EOPNOTSUPP;
438
439         val  &= 0xff;
440         addr &= KVM_PIT_CHANNEL_MASK;
441
442         mutex_lock(&pit_state->lock);
443
444         if (val != 0)
445                 pr_debug("write addr is 0x%x, len is %d, val is 0x%x\n",
446                          (unsigned int)addr, len, val);
447
448         if (addr == 3) {
449                 channel = val >> 6;
450                 if (channel == 3) {
451                         /* Read-Back Command. */
452                         for (channel = 0; channel < 3; channel++) {
453                                 s = &pit_state->channels[channel];
454                                 if (val & (2 << channel)) {
455                                         if (!(val & 0x20))
456                                                 pit_latch_count(kvm, channel);
457                                         if (!(val & 0x10))
458                                                 pit_latch_status(kvm, channel);
459                                 }
460                         }
461                 } else {
462                         /* Select Counter <channel>. */
463                         s = &pit_state->channels[channel];
464                         access = (val >> 4) & KVM_PIT_CHANNEL_MASK;
465                         if (access == 0) {
466                                 pit_latch_count(kvm, channel);
467                         } else {
468                                 s->rw_mode = access;
469                                 s->read_state = access;
470                                 s->write_state = access;
471                                 s->mode = (val >> 1) & 7;
472                                 if (s->mode > 5)
473                                         s->mode -= 4;
474                                 s->bcd = val & 1;
475                         }
476                 }
477         } else {
478                 /* Write Count. */
479                 s = &pit_state->channels[addr];
480                 switch (s->write_state) {
481                 default:
482                 case RW_STATE_LSB:
483                         pit_load_count(kvm, addr, val);
484                         break;
485                 case RW_STATE_MSB:
486                         pit_load_count(kvm, addr, val << 8);
487                         break;
488                 case RW_STATE_WORD0:
489                         s->write_latch = val;
490                         s->write_state = RW_STATE_WORD1;
491                         break;
492                 case RW_STATE_WORD1:
493                         pit_load_count(kvm, addr, s->write_latch | (val << 8));
494                         s->write_state = RW_STATE_WORD0;
495                         break;
496                 }
497         }
498
499         mutex_unlock(&pit_state->lock);
500         return 0;
501 }
502
503 static int pit_ioport_read(struct kvm_io_device *this,
504                            gpa_t addr, int len, void *data)
505 {
506         struct kvm_pit *pit = dev_to_pit(this);
507         struct kvm_kpit_state *pit_state = &pit->pit_state;
508         struct kvm *kvm = pit->kvm;
509         int ret, count;
510         struct kvm_kpit_channel_state *s;
511         if (!pit_in_range(addr))
512                 return -EOPNOTSUPP;
513
514         addr &= KVM_PIT_CHANNEL_MASK;
515         if (addr == 3)
516                 return 0;
517
518         s = &pit_state->channels[addr];
519
520         mutex_lock(&pit_state->lock);
521
522         if (s->status_latched) {
523                 s->status_latched = 0;
524                 ret = s->status;
525         } else if (s->count_latched) {
526                 switch (s->count_latched) {
527                 default:
528                 case RW_STATE_LSB:
529                         ret = s->latched_count & 0xff;
530                         s->count_latched = 0;
531                         break;
532                 case RW_STATE_MSB:
533                         ret = s->latched_count >> 8;
534                         s->count_latched = 0;
535                         break;
536                 case RW_STATE_WORD0:
537                         ret = s->latched_count & 0xff;
538                         s->count_latched = RW_STATE_MSB;
539                         break;
540                 }
541         } else {
542                 switch (s->read_state) {
543                 default:
544                 case RW_STATE_LSB:
545                         count = pit_get_count(kvm, addr);
546                         ret = count & 0xff;
547                         break;
548                 case RW_STATE_MSB:
549                         count = pit_get_count(kvm, addr);
550                         ret = (count >> 8) & 0xff;
551                         break;
552                 case RW_STATE_WORD0:
553                         count = pit_get_count(kvm, addr);
554                         ret = count & 0xff;
555                         s->read_state = RW_STATE_WORD1;
556                         break;
557                 case RW_STATE_WORD1:
558                         count = pit_get_count(kvm, addr);
559                         ret = (count >> 8) & 0xff;
560                         s->read_state = RW_STATE_WORD0;
561                         break;
562                 }
563         }
564
565         if (len > sizeof(ret))
566                 len = sizeof(ret);
567         memcpy(data, (char *)&ret, len);
568
569         mutex_unlock(&pit_state->lock);
570         return 0;
571 }
572
573 static int speaker_ioport_write(struct kvm_io_device *this,
574                                 gpa_t addr, int len, const void *data)
575 {
576         struct kvm_pit *pit = speaker_to_pit(this);
577         struct kvm_kpit_state *pit_state = &pit->pit_state;
578         struct kvm *kvm = pit->kvm;
579         u32 val = *(u32 *) data;
580         if (addr != KVM_SPEAKER_BASE_ADDRESS)
581                 return -EOPNOTSUPP;
582
583         mutex_lock(&pit_state->lock);
584         pit_state->speaker_data_on = (val >> 1) & 1;
585         pit_set_gate(kvm, 2, val & 1);
586         mutex_unlock(&pit_state->lock);
587         return 0;
588 }
589
590 static int speaker_ioport_read(struct kvm_io_device *this,
591                                gpa_t addr, int len, void *data)
592 {
593         struct kvm_pit *pit = speaker_to_pit(this);
594         struct kvm_kpit_state *pit_state = &pit->pit_state;
595         struct kvm *kvm = pit->kvm;
596         unsigned int refresh_clock;
597         int ret;
598         if (addr != KVM_SPEAKER_BASE_ADDRESS)
599                 return -EOPNOTSUPP;
600
601         /* Refresh clock toggles at about 15us. We approximate as 2^14ns. */
602         refresh_clock = ((unsigned int)ktime_to_ns(ktime_get()) >> 14) & 1;
603
604         mutex_lock(&pit_state->lock);
605         ret = ((pit_state->speaker_data_on << 1) | pit_get_gate(kvm, 2) |
606                 (pit_get_out(kvm, 2) << 5) | (refresh_clock << 4));
607         if (len > sizeof(ret))
608                 len = sizeof(ret);
609         memcpy(data, (char *)&ret, len);
610         mutex_unlock(&pit_state->lock);
611         return 0;
612 }
613
614 void kvm_pit_reset(struct kvm_pit *pit)
615 {
616         int i;
617         struct kvm_kpit_channel_state *c;
618
619         mutex_lock(&pit->pit_state.lock);
620         pit->pit_state.flags = 0;
621         for (i = 0; i < 3; i++) {
622                 c = &pit->pit_state.channels[i];
623                 c->mode = 0xff;
624                 c->gate = (i != 2);
625                 pit_load_count(pit->kvm, i, 0);
626         }
627         mutex_unlock(&pit->pit_state.lock);
628
629         atomic_set(&pit->pit_state.pending, 0);
630         pit->pit_state.irq_ack = 1;
631 }
632
633 static void pit_mask_notifer(struct kvm_irq_mask_notifier *kimn, bool mask)
634 {
635         struct kvm_pit *pit = container_of(kimn, struct kvm_pit, mask_notifier);
636
637         if (!mask) {
638                 atomic_set(&pit->pit_state.pending, 0);
639                 pit->pit_state.irq_ack = 1;
640         }
641 }
642
643 static const struct kvm_io_device_ops pit_dev_ops = {
644         .read     = pit_ioport_read,
645         .write    = pit_ioport_write,
646 };
647
648 static const struct kvm_io_device_ops speaker_dev_ops = {
649         .read     = speaker_ioport_read,
650         .write    = speaker_ioport_write,
651 };
652
653 /* Caller must hold slots_lock */
654 struct kvm_pit *kvm_create_pit(struct kvm *kvm, u32 flags)
655 {
656         struct kvm_pit *pit;
657         struct kvm_kpit_state *pit_state;
658         struct pid *pid;
659         pid_t pid_nr;
660         int ret;
661
662         pit = kzalloc(sizeof(struct kvm_pit), GFP_KERNEL);
663         if (!pit)
664                 return NULL;
665
666         pit->irq_source_id = kvm_request_irq_source_id(kvm);
667         if (pit->irq_source_id < 0) {
668                 kfree(pit);
669                 return NULL;
670         }
671
672         mutex_init(&pit->pit_state.lock);
673         mutex_lock(&pit->pit_state.lock);
674         spin_lock_init(&pit->pit_state.inject_lock);
675
676         pid = get_pid(task_tgid(current));
677         pid_nr = pid_vnr(pid);
678         put_pid(pid);
679
680         init_kthread_worker(&pit->worker);
681         pit->worker_task = kthread_run(kthread_worker_fn, &pit->worker,
682                                        "kvm-pit/%d", pid_nr);
683         if (IS_ERR(pit->worker_task)) {
684                 mutex_unlock(&pit->pit_state.lock);
685                 kvm_free_irq_source_id(kvm, pit->irq_source_id);
686                 kfree(pit);
687                 return NULL;
688         }
689         init_kthread_work(&pit->expired, pit_do_work);
690
691         kvm->arch.vpit = pit;
692         pit->kvm = kvm;
693
694         pit_state = &pit->pit_state;
695         pit_state->pit = pit;
696         hrtimer_init(&pit_state->timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
697         pit_state->irq_ack_notifier.gsi = 0;
698         pit_state->irq_ack_notifier.irq_acked = kvm_pit_ack_irq;
699         kvm_register_irq_ack_notifier(kvm, &pit_state->irq_ack_notifier);
700         pit_state->reinject = true;
701         mutex_unlock(&pit->pit_state.lock);
702
703         kvm_pit_reset(pit);
704
705         pit->mask_notifier.func = pit_mask_notifer;
706         kvm_register_irq_mask_notifier(kvm, 0, &pit->mask_notifier);
707
708         kvm_iodevice_init(&pit->dev, &pit_dev_ops);
709         ret = kvm_io_bus_register_dev(kvm, KVM_PIO_BUS, KVM_PIT_BASE_ADDRESS,
710                                       KVM_PIT_MEM_LENGTH, &pit->dev);
711         if (ret < 0)
712                 goto fail;
713
714         if (flags & KVM_PIT_SPEAKER_DUMMY) {
715                 kvm_iodevice_init(&pit->speaker_dev, &speaker_dev_ops);
716                 ret = kvm_io_bus_register_dev(kvm, KVM_PIO_BUS,
717                                               KVM_SPEAKER_BASE_ADDRESS, 4,
718                                               &pit->speaker_dev);
719                 if (ret < 0)
720                         goto fail_unregister;
721         }
722
723         return pit;
724
725 fail_unregister:
726         kvm_io_bus_unregister_dev(kvm, KVM_PIO_BUS, &pit->dev);
727
728 fail:
729         kvm_unregister_irq_mask_notifier(kvm, 0, &pit->mask_notifier);
730         kvm_unregister_irq_ack_notifier(kvm, &pit_state->irq_ack_notifier);
731         kvm_free_irq_source_id(kvm, pit->irq_source_id);
732         kthread_stop(pit->worker_task);
733         kfree(pit);
734         return NULL;
735 }
736
737 void kvm_free_pit(struct kvm *kvm)
738 {
739         struct hrtimer *timer;
740
741         if (kvm->arch.vpit) {
742                 kvm_io_bus_unregister_dev(kvm, KVM_PIO_BUS, &kvm->arch.vpit->dev);
743                 kvm_io_bus_unregister_dev(kvm, KVM_PIO_BUS,
744                                               &kvm->arch.vpit->speaker_dev);
745                 kvm_unregister_irq_mask_notifier(kvm, 0,
746                                                &kvm->arch.vpit->mask_notifier);
747                 kvm_unregister_irq_ack_notifier(kvm,
748                                 &kvm->arch.vpit->pit_state.irq_ack_notifier);
749                 mutex_lock(&kvm->arch.vpit->pit_state.lock);
750                 timer = &kvm->arch.vpit->pit_state.timer;
751                 hrtimer_cancel(timer);
752                 flush_kthread_work(&kvm->arch.vpit->expired);
753                 kthread_stop(kvm->arch.vpit->worker_task);
754                 kvm_free_irq_source_id(kvm, kvm->arch.vpit->irq_source_id);
755                 mutex_unlock(&kvm->arch.vpit->pit_state.lock);
756                 kfree(kvm->arch.vpit);
757         }
758 }