Merge commit 'ed30f24e8d07d30aa3e69d1f508f4d7bd2e8ea14' of git://git.linaro.org/landi...
[firefly-linux-kernel-4.4.55.git] / arch / x86 / kernel / i387.c
1 /*
2  *  Copyright (C) 1994 Linus Torvalds
3  *
4  *  Pentium III FXSR, SSE support
5  *  General FPU state handling cleanups
6  *      Gareth Hughes <gareth@valinux.com>, May 2000
7  */
8 #include <linux/module.h>
9 #include <linux/regset.h>
10 #include <linux/sched.h>
11 #include <linux/slab.h>
12
13 #include <asm/sigcontext.h>
14 #include <asm/processor.h>
15 #include <asm/math_emu.h>
16 #include <asm/uaccess.h>
17 #include <asm/ptrace.h>
18 #include <asm/i387.h>
19 #include <asm/fpu-internal.h>
20 #include <asm/user.h>
21
22 /*
23  * Were we in an interrupt that interrupted kernel mode?
24  *
25  * On others, we can do a kernel_fpu_begin/end() pair *ONLY* if that
26  * pair does nothing at all: the thread must not have fpu (so
27  * that we don't try to save the FPU state), and TS must
28  * be set (so that the clts/stts pair does nothing that is
29  * visible in the interrupted kernel thread).
30  *
31  * Except for the eagerfpu case when we return 1 unless we've already
32  * been eager and saved the state in kernel_fpu_begin().
33  */
34 static inline bool interrupted_kernel_fpu_idle(void)
35 {
36         if (use_eager_fpu())
37                 return __thread_has_fpu(current);
38
39         return !__thread_has_fpu(current) &&
40                 (read_cr0() & X86_CR0_TS);
41 }
42
43 /*
44  * Were we in user mode (or vm86 mode) when we were
45  * interrupted?
46  *
47  * Doing kernel_fpu_begin/end() is ok if we are running
48  * in an interrupt context from user mode - we'll just
49  * save the FPU state as required.
50  */
51 static inline bool interrupted_user_mode(void)
52 {
53         struct pt_regs *regs = get_irq_regs();
54         return regs && user_mode_vm(regs);
55 }
56
57 /*
58  * Can we use the FPU in kernel mode with the
59  * whole "kernel_fpu_begin/end()" sequence?
60  *
61  * It's always ok in process context (ie "not interrupt")
62  * but it is sometimes ok even from an irq.
63  */
64 bool irq_fpu_usable(void)
65 {
66         return !in_interrupt() ||
67                 interrupted_user_mode() ||
68                 interrupted_kernel_fpu_idle();
69 }
70 EXPORT_SYMBOL(irq_fpu_usable);
71
72 void __kernel_fpu_begin(void)
73 {
74         struct task_struct *me = current;
75
76         if (__thread_has_fpu(me)) {
77                 __thread_clear_has_fpu(me);
78                 __save_init_fpu(me);
79                 /* We do 'stts()' in __kernel_fpu_end() */
80         } else if (!use_eager_fpu()) {
81                 this_cpu_write(fpu_owner_task, NULL);
82                 clts();
83         }
84 }
85 EXPORT_SYMBOL(__kernel_fpu_begin);
86
87 void __kernel_fpu_end(void)
88 {
89         if (use_eager_fpu())
90                 math_state_restore();
91         else
92                 stts();
93 }
94 EXPORT_SYMBOL(__kernel_fpu_end);
95
96 void unlazy_fpu(struct task_struct *tsk)
97 {
98         preempt_disable();
99         if (__thread_has_fpu(tsk)) {
100                 __save_init_fpu(tsk);
101                 __thread_fpu_end(tsk);
102         } else
103                 tsk->fpu_counter = 0;
104         preempt_enable();
105 }
106 EXPORT_SYMBOL(unlazy_fpu);
107
108 unsigned int mxcsr_feature_mask __read_mostly = 0xffffffffu;
109 unsigned int xstate_size;
110 EXPORT_SYMBOL_GPL(xstate_size);
111 static struct i387_fxsave_struct fx_scratch __cpuinitdata;
112
113 static void __cpuinit mxcsr_feature_mask_init(void)
114 {
115         unsigned long mask = 0;
116
117         if (cpu_has_fxsr) {
118                 memset(&fx_scratch, 0, sizeof(struct i387_fxsave_struct));
119                 asm volatile("fxsave %0" : : "m" (fx_scratch));
120                 mask = fx_scratch.mxcsr_mask;
121                 if (mask == 0)
122                         mask = 0x0000ffbf;
123         }
124         mxcsr_feature_mask &= mask;
125 }
126
127 static void __cpuinit init_thread_xstate(void)
128 {
129         /*
130          * Note that xstate_size might be overwriten later during
131          * xsave_init().
132          */
133
134         if (!HAVE_HWFP) {
135                 /*
136                  * Disable xsave as we do not support it if i387
137                  * emulation is enabled.
138                  */
139                 setup_clear_cpu_cap(X86_FEATURE_XSAVE);
140                 setup_clear_cpu_cap(X86_FEATURE_XSAVEOPT);
141                 xstate_size = sizeof(struct i387_soft_struct);
142                 return;
143         }
144
145         if (cpu_has_fxsr)
146                 xstate_size = sizeof(struct i387_fxsave_struct);
147         else
148                 xstate_size = sizeof(struct i387_fsave_struct);
149 }
150
151 /*
152  * Called at bootup to set up the initial FPU state that is later cloned
153  * into all processes.
154  */
155
156 void __cpuinit fpu_init(void)
157 {
158         unsigned long cr0;
159         unsigned long cr4_mask = 0;
160
161         if (cpu_has_fxsr)
162                 cr4_mask |= X86_CR4_OSFXSR;
163         if (cpu_has_xmm)
164                 cr4_mask |= X86_CR4_OSXMMEXCPT;
165         if (cr4_mask)
166                 set_in_cr4(cr4_mask);
167
168         cr0 = read_cr0();
169         cr0 &= ~(X86_CR0_TS|X86_CR0_EM); /* clear TS and EM */
170         if (!HAVE_HWFP)
171                 cr0 |= X86_CR0_EM;
172         write_cr0(cr0);
173
174         /*
175          * init_thread_xstate is only called once to avoid overriding
176          * xstate_size during boot time or during CPU hotplug.
177          */
178         if (xstate_size == 0)
179                 init_thread_xstate();
180
181         mxcsr_feature_mask_init();
182         xsave_init();
183         eager_fpu_init();
184 }
185
186 void fpu_finit(struct fpu *fpu)
187 {
188         if (!HAVE_HWFP) {
189                 finit_soft_fpu(&fpu->state->soft);
190                 return;
191         }
192
193         if (cpu_has_fxsr) {
194                 fx_finit(&fpu->state->fxsave);
195         } else {
196                 struct i387_fsave_struct *fp = &fpu->state->fsave;
197                 memset(fp, 0, xstate_size);
198                 fp->cwd = 0xffff037fu;
199                 fp->swd = 0xffff0000u;
200                 fp->twd = 0xffffffffu;
201                 fp->fos = 0xffff0000u;
202         }
203 }
204 EXPORT_SYMBOL_GPL(fpu_finit);
205
206 /*
207  * The _current_ task is using the FPU for the first time
208  * so initialize it and set the mxcsr to its default
209  * value at reset if we support XMM instructions and then
210  * remember the current task has used the FPU.
211  */
212 int init_fpu(struct task_struct *tsk)
213 {
214         int ret;
215
216         if (tsk_used_math(tsk)) {
217                 if (HAVE_HWFP && tsk == current)
218                         unlazy_fpu(tsk);
219                 tsk->thread.fpu.last_cpu = ~0;
220                 return 0;
221         }
222
223         /*
224          * Memory allocation at the first usage of the FPU and other state.
225          */
226         ret = fpu_alloc(&tsk->thread.fpu);
227         if (ret)
228                 return ret;
229
230         fpu_finit(&tsk->thread.fpu);
231
232         set_stopped_child_used_math(tsk);
233         return 0;
234 }
235 EXPORT_SYMBOL_GPL(init_fpu);
236
237 /*
238  * The xstateregs_active() routine is the same as the fpregs_active() routine,
239  * as the "regset->n" for the xstate regset will be updated based on the feature
240  * capabilites supported by the xsave.
241  */
242 int fpregs_active(struct task_struct *target, const struct user_regset *regset)
243 {
244         return tsk_used_math(target) ? regset->n : 0;
245 }
246
247 int xfpregs_active(struct task_struct *target, const struct user_regset *regset)
248 {
249         return (cpu_has_fxsr && tsk_used_math(target)) ? regset->n : 0;
250 }
251
252 int xfpregs_get(struct task_struct *target, const struct user_regset *regset,
253                 unsigned int pos, unsigned int count,
254                 void *kbuf, void __user *ubuf)
255 {
256         int ret;
257
258         if (!cpu_has_fxsr)
259                 return -ENODEV;
260
261         ret = init_fpu(target);
262         if (ret)
263                 return ret;
264
265         sanitize_i387_state(target);
266
267         return user_regset_copyout(&pos, &count, &kbuf, &ubuf,
268                                    &target->thread.fpu.state->fxsave, 0, -1);
269 }
270
271 int xfpregs_set(struct task_struct *target, const struct user_regset *regset,
272                 unsigned int pos, unsigned int count,
273                 const void *kbuf, const void __user *ubuf)
274 {
275         int ret;
276
277         if (!cpu_has_fxsr)
278                 return -ENODEV;
279
280         ret = init_fpu(target);
281         if (ret)
282                 return ret;
283
284         sanitize_i387_state(target);
285
286         ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
287                                  &target->thread.fpu.state->fxsave, 0, -1);
288
289         /*
290          * mxcsr reserved bits must be masked to zero for security reasons.
291          */
292         target->thread.fpu.state->fxsave.mxcsr &= mxcsr_feature_mask;
293
294         /*
295          * update the header bits in the xsave header, indicating the
296          * presence of FP and SSE state.
297          */
298         if (cpu_has_xsave)
299                 target->thread.fpu.state->xsave.xsave_hdr.xstate_bv |= XSTATE_FPSSE;
300
301         return ret;
302 }
303
304 int xstateregs_get(struct task_struct *target, const struct user_regset *regset,
305                 unsigned int pos, unsigned int count,
306                 void *kbuf, void __user *ubuf)
307 {
308         int ret;
309
310         if (!cpu_has_xsave)
311                 return -ENODEV;
312
313         ret = init_fpu(target);
314         if (ret)
315                 return ret;
316
317         /*
318          * Copy the 48bytes defined by the software first into the xstate
319          * memory layout in the thread struct, so that we can copy the entire
320          * xstateregs to the user using one user_regset_copyout().
321          */
322         memcpy(&target->thread.fpu.state->fxsave.sw_reserved,
323                xstate_fx_sw_bytes, sizeof(xstate_fx_sw_bytes));
324
325         /*
326          * Copy the xstate memory layout.
327          */
328         ret = user_regset_copyout(&pos, &count, &kbuf, &ubuf,
329                                   &target->thread.fpu.state->xsave, 0, -1);
330         return ret;
331 }
332
333 int xstateregs_set(struct task_struct *target, const struct user_regset *regset,
334                   unsigned int pos, unsigned int count,
335                   const void *kbuf, const void __user *ubuf)
336 {
337         int ret;
338         struct xsave_hdr_struct *xsave_hdr;
339
340         if (!cpu_has_xsave)
341                 return -ENODEV;
342
343         ret = init_fpu(target);
344         if (ret)
345                 return ret;
346
347         ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
348                                  &target->thread.fpu.state->xsave, 0, -1);
349
350         /*
351          * mxcsr reserved bits must be masked to zero for security reasons.
352          */
353         target->thread.fpu.state->fxsave.mxcsr &= mxcsr_feature_mask;
354
355         xsave_hdr = &target->thread.fpu.state->xsave.xsave_hdr;
356
357         xsave_hdr->xstate_bv &= pcntxt_mask;
358         /*
359          * These bits must be zero.
360          */
361         xsave_hdr->reserved1[0] = xsave_hdr->reserved1[1] = 0;
362
363         return ret;
364 }
365
366 #if defined CONFIG_X86_32 || defined CONFIG_IA32_EMULATION
367
368 /*
369  * FPU tag word conversions.
370  */
371
372 static inline unsigned short twd_i387_to_fxsr(unsigned short twd)
373 {
374         unsigned int tmp; /* to avoid 16 bit prefixes in the code */
375
376         /* Transform each pair of bits into 01 (valid) or 00 (empty) */
377         tmp = ~twd;
378         tmp = (tmp | (tmp>>1)) & 0x5555; /* 0V0V0V0V0V0V0V0V */
379         /* and move the valid bits to the lower byte. */
380         tmp = (tmp | (tmp >> 1)) & 0x3333; /* 00VV00VV00VV00VV */
381         tmp = (tmp | (tmp >> 2)) & 0x0f0f; /* 0000VVVV0000VVVV */
382         tmp = (tmp | (tmp >> 4)) & 0x00ff; /* 00000000VVVVVVVV */
383
384         return tmp;
385 }
386
387 #define FPREG_ADDR(f, n)        ((void *)&(f)->st_space + (n) * 16)
388 #define FP_EXP_TAG_VALID        0
389 #define FP_EXP_TAG_ZERO         1
390 #define FP_EXP_TAG_SPECIAL      2
391 #define FP_EXP_TAG_EMPTY        3
392
393 static inline u32 twd_fxsr_to_i387(struct i387_fxsave_struct *fxsave)
394 {
395         struct _fpxreg *st;
396         u32 tos = (fxsave->swd >> 11) & 7;
397         u32 twd = (unsigned long) fxsave->twd;
398         u32 tag;
399         u32 ret = 0xffff0000u;
400         int i;
401
402         for (i = 0; i < 8; i++, twd >>= 1) {
403                 if (twd & 0x1) {
404                         st = FPREG_ADDR(fxsave, (i - tos) & 7);
405
406                         switch (st->exponent & 0x7fff) {
407                         case 0x7fff:
408                                 tag = FP_EXP_TAG_SPECIAL;
409                                 break;
410                         case 0x0000:
411                                 if (!st->significand[0] &&
412                                     !st->significand[1] &&
413                                     !st->significand[2] &&
414                                     !st->significand[3])
415                                         tag = FP_EXP_TAG_ZERO;
416                                 else
417                                         tag = FP_EXP_TAG_SPECIAL;
418                                 break;
419                         default:
420                                 if (st->significand[3] & 0x8000)
421                                         tag = FP_EXP_TAG_VALID;
422                                 else
423                                         tag = FP_EXP_TAG_SPECIAL;
424                                 break;
425                         }
426                 } else {
427                         tag = FP_EXP_TAG_EMPTY;
428                 }
429                 ret |= tag << (2 * i);
430         }
431         return ret;
432 }
433
434 /*
435  * FXSR floating point environment conversions.
436  */
437
438 void
439 convert_from_fxsr(struct user_i387_ia32_struct *env, struct task_struct *tsk)
440 {
441         struct i387_fxsave_struct *fxsave = &tsk->thread.fpu.state->fxsave;
442         struct _fpreg *to = (struct _fpreg *) &env->st_space[0];
443         struct _fpxreg *from = (struct _fpxreg *) &fxsave->st_space[0];
444         int i;
445
446         env->cwd = fxsave->cwd | 0xffff0000u;
447         env->swd = fxsave->swd | 0xffff0000u;
448         env->twd = twd_fxsr_to_i387(fxsave);
449
450 #ifdef CONFIG_X86_64
451         env->fip = fxsave->rip;
452         env->foo = fxsave->rdp;
453         /*
454          * should be actually ds/cs at fpu exception time, but
455          * that information is not available in 64bit mode.
456          */
457         env->fcs = task_pt_regs(tsk)->cs;
458         if (tsk == current) {
459                 savesegment(ds, env->fos);
460         } else {
461                 env->fos = tsk->thread.ds;
462         }
463         env->fos |= 0xffff0000;
464 #else
465         env->fip = fxsave->fip;
466         env->fcs = (u16) fxsave->fcs | ((u32) fxsave->fop << 16);
467         env->foo = fxsave->foo;
468         env->fos = fxsave->fos;
469 #endif
470
471         for (i = 0; i < 8; ++i)
472                 memcpy(&to[i], &from[i], sizeof(to[0]));
473 }
474
475 void convert_to_fxsr(struct task_struct *tsk,
476                      const struct user_i387_ia32_struct *env)
477
478 {
479         struct i387_fxsave_struct *fxsave = &tsk->thread.fpu.state->fxsave;
480         struct _fpreg *from = (struct _fpreg *) &env->st_space[0];
481         struct _fpxreg *to = (struct _fpxreg *) &fxsave->st_space[0];
482         int i;
483
484         fxsave->cwd = env->cwd;
485         fxsave->swd = env->swd;
486         fxsave->twd = twd_i387_to_fxsr(env->twd);
487         fxsave->fop = (u16) ((u32) env->fcs >> 16);
488 #ifdef CONFIG_X86_64
489         fxsave->rip = env->fip;
490         fxsave->rdp = env->foo;
491         /* cs and ds ignored */
492 #else
493         fxsave->fip = env->fip;
494         fxsave->fcs = (env->fcs & 0xffff);
495         fxsave->foo = env->foo;
496         fxsave->fos = env->fos;
497 #endif
498
499         for (i = 0; i < 8; ++i)
500                 memcpy(&to[i], &from[i], sizeof(from[0]));
501 }
502
503 int fpregs_get(struct task_struct *target, const struct user_regset *regset,
504                unsigned int pos, unsigned int count,
505                void *kbuf, void __user *ubuf)
506 {
507         struct user_i387_ia32_struct env;
508         int ret;
509
510         ret = init_fpu(target);
511         if (ret)
512                 return ret;
513
514         if (!HAVE_HWFP)
515                 return fpregs_soft_get(target, regset, pos, count, kbuf, ubuf);
516
517         if (!cpu_has_fxsr) {
518                 return user_regset_copyout(&pos, &count, &kbuf, &ubuf,
519                                            &target->thread.fpu.state->fsave, 0,
520                                            -1);
521         }
522
523         sanitize_i387_state(target);
524
525         if (kbuf && pos == 0 && count == sizeof(env)) {
526                 convert_from_fxsr(kbuf, target);
527                 return 0;
528         }
529
530         convert_from_fxsr(&env, target);
531
532         return user_regset_copyout(&pos, &count, &kbuf, &ubuf, &env, 0, -1);
533 }
534
535 int fpregs_set(struct task_struct *target, const struct user_regset *regset,
536                unsigned int pos, unsigned int count,
537                const void *kbuf, const void __user *ubuf)
538 {
539         struct user_i387_ia32_struct env;
540         int ret;
541
542         ret = init_fpu(target);
543         if (ret)
544                 return ret;
545
546         sanitize_i387_state(target);
547
548         if (!HAVE_HWFP)
549                 return fpregs_soft_set(target, regset, pos, count, kbuf, ubuf);
550
551         if (!cpu_has_fxsr) {
552                 return user_regset_copyin(&pos, &count, &kbuf, &ubuf,
553                                           &target->thread.fpu.state->fsave, 0, -1);
554         }
555
556         if (pos > 0 || count < sizeof(env))
557                 convert_from_fxsr(&env, target);
558
559         ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, &env, 0, -1);
560         if (!ret)
561                 convert_to_fxsr(target, &env);
562
563         /*
564          * update the header bit in the xsave header, indicating the
565          * presence of FP.
566          */
567         if (cpu_has_xsave)
568                 target->thread.fpu.state->xsave.xsave_hdr.xstate_bv |= XSTATE_FP;
569         return ret;
570 }
571
572 /*
573  * FPU state for core dumps.
574  * This is only used for a.out dumps now.
575  * It is declared generically using elf_fpregset_t (which is
576  * struct user_i387_struct) but is in fact only used for 32-bit
577  * dumps, so on 64-bit it is really struct user_i387_ia32_struct.
578  */
579 int dump_fpu(struct pt_regs *regs, struct user_i387_struct *fpu)
580 {
581         struct task_struct *tsk = current;
582         int fpvalid;
583
584         fpvalid = !!used_math();
585         if (fpvalid)
586                 fpvalid = !fpregs_get(tsk, NULL,
587                                       0, sizeof(struct user_i387_ia32_struct),
588                                       fpu, NULL);
589
590         return fpvalid;
591 }
592 EXPORT_SYMBOL(dump_fpu);
593
594 #endif  /* CONFIG_X86_32 || CONFIG_IA32_EMULATION */