Merge remote-tracking branch 'lsk/v3.10/topic/gator' into linux-linaro-lsk
[firefly-linux-kernel-4.4.55.git] / arch / sparc / kernel / process_64.c
1 /*  arch/sparc64/kernel/process.c
2  *
3  *  Copyright (C) 1995, 1996, 2008 David S. Miller (davem@davemloft.net)
4  *  Copyright (C) 1996       Eddie C. Dost   (ecd@skynet.be)
5  *  Copyright (C) 1997, 1998 Jakub Jelinek   (jj@sunsite.mff.cuni.cz)
6  */
7
8 /*
9  * This file handles the architecture-dependent parts of process handling..
10  */
11
12 #include <stdarg.h>
13
14 #include <linux/errno.h>
15 #include <linux/export.h>
16 #include <linux/sched.h>
17 #include <linux/kernel.h>
18 #include <linux/mm.h>
19 #include <linux/fs.h>
20 #include <linux/smp.h>
21 #include <linux/stddef.h>
22 #include <linux/ptrace.h>
23 #include <linux/slab.h>
24 #include <linux/user.h>
25 #include <linux/delay.h>
26 #include <linux/compat.h>
27 #include <linux/tick.h>
28 #include <linux/init.h>
29 #include <linux/cpu.h>
30 #include <linux/perf_event.h>
31 #include <linux/elfcore.h>
32 #include <linux/sysrq.h>
33 #include <linux/nmi.h>
34
35 #include <asm/uaccess.h>
36 #include <asm/page.h>
37 #include <asm/pgalloc.h>
38 #include <asm/pgtable.h>
39 #include <asm/processor.h>
40 #include <asm/pstate.h>
41 #include <asm/elf.h>
42 #include <asm/fpumacro.h>
43 #include <asm/head.h>
44 #include <asm/cpudata.h>
45 #include <asm/mmu_context.h>
46 #include <asm/unistd.h>
47 #include <asm/hypervisor.h>
48 #include <asm/syscalls.h>
49 #include <asm/irq_regs.h>
50 #include <asm/smp.h>
51 #include <asm/pcr.h>
52
53 #include "kstack.h"
54
55 /* Idle loop support on sparc64. */
56 void arch_cpu_idle(void)
57 {
58         if (tlb_type != hypervisor) {
59                 touch_nmi_watchdog();
60                 local_irq_enable();
61         } else {
62                 unsigned long pstate;
63
64                 local_irq_enable();
65
66                 /* The sun4v sleeping code requires that we have PSTATE.IE cleared over
67                  * the cpu sleep hypervisor call.
68                  */
69                 __asm__ __volatile__(
70                         "rdpr %%pstate, %0\n\t"
71                         "andn %0, %1, %0\n\t"
72                         "wrpr %0, %%g0, %%pstate"
73                         : "=&r" (pstate)
74                         : "i" (PSTATE_IE));
75
76                 if (!need_resched() && !cpu_is_offline(smp_processor_id()))
77                         sun4v_cpu_yield();
78
79                 /* Re-enable interrupts. */
80                 __asm__ __volatile__(
81                         "rdpr %%pstate, %0\n\t"
82                         "or %0, %1, %0\n\t"
83                         "wrpr %0, %%g0, %%pstate"
84                         : "=&r" (pstate)
85                         : "i" (PSTATE_IE));
86         }
87 }
88
89 #ifdef CONFIG_HOTPLUG_CPU
90 void arch_cpu_idle_dead()
91 {
92         sched_preempt_enable_no_resched();
93         cpu_play_dead();
94 }
95 #endif
96
97 #ifdef CONFIG_COMPAT
98 static void show_regwindow32(struct pt_regs *regs)
99 {
100         struct reg_window32 __user *rw;
101         struct reg_window32 r_w;
102         mm_segment_t old_fs;
103         
104         __asm__ __volatile__ ("flushw");
105         rw = compat_ptr((unsigned)regs->u_regs[14]);
106         old_fs = get_fs();
107         set_fs (USER_DS);
108         if (copy_from_user (&r_w, rw, sizeof(r_w))) {
109                 set_fs (old_fs);
110                 return;
111         }
112
113         set_fs (old_fs);                        
114         printk("l0: %08x l1: %08x l2: %08x l3: %08x "
115                "l4: %08x l5: %08x l6: %08x l7: %08x\n",
116                r_w.locals[0], r_w.locals[1], r_w.locals[2], r_w.locals[3],
117                r_w.locals[4], r_w.locals[5], r_w.locals[6], r_w.locals[7]);
118         printk("i0: %08x i1: %08x i2: %08x i3: %08x "
119                "i4: %08x i5: %08x i6: %08x i7: %08x\n",
120                r_w.ins[0], r_w.ins[1], r_w.ins[2], r_w.ins[3],
121                r_w.ins[4], r_w.ins[5], r_w.ins[6], r_w.ins[7]);
122 }
123 #else
124 #define show_regwindow32(regs)  do { } while (0)
125 #endif
126
127 static void show_regwindow(struct pt_regs *regs)
128 {
129         struct reg_window __user *rw;
130         struct reg_window *rwk;
131         struct reg_window r_w;
132         mm_segment_t old_fs;
133
134         if ((regs->tstate & TSTATE_PRIV) || !(test_thread_flag(TIF_32BIT))) {
135                 __asm__ __volatile__ ("flushw");
136                 rw = (struct reg_window __user *)
137                         (regs->u_regs[14] + STACK_BIAS);
138                 rwk = (struct reg_window *)
139                         (regs->u_regs[14] + STACK_BIAS);
140                 if (!(regs->tstate & TSTATE_PRIV)) {
141                         old_fs = get_fs();
142                         set_fs (USER_DS);
143                         if (copy_from_user (&r_w, rw, sizeof(r_w))) {
144                                 set_fs (old_fs);
145                                 return;
146                         }
147                         rwk = &r_w;
148                         set_fs (old_fs);                        
149                 }
150         } else {
151                 show_regwindow32(regs);
152                 return;
153         }
154         printk("l0: %016lx l1: %016lx l2: %016lx l3: %016lx\n",
155                rwk->locals[0], rwk->locals[1], rwk->locals[2], rwk->locals[3]);
156         printk("l4: %016lx l5: %016lx l6: %016lx l7: %016lx\n",
157                rwk->locals[4], rwk->locals[5], rwk->locals[6], rwk->locals[7]);
158         printk("i0: %016lx i1: %016lx i2: %016lx i3: %016lx\n",
159                rwk->ins[0], rwk->ins[1], rwk->ins[2], rwk->ins[3]);
160         printk("i4: %016lx i5: %016lx i6: %016lx i7: %016lx\n",
161                rwk->ins[4], rwk->ins[5], rwk->ins[6], rwk->ins[7]);
162         if (regs->tstate & TSTATE_PRIV)
163                 printk("I7: <%pS>\n", (void *) rwk->ins[7]);
164 }
165
166 void show_regs(struct pt_regs *regs)
167 {
168         show_regs_print_info(KERN_DEFAULT);
169
170         printk("TSTATE: %016lx TPC: %016lx TNPC: %016lx Y: %08x    %s\n", regs->tstate,
171                regs->tpc, regs->tnpc, regs->y, print_tainted());
172         printk("TPC: <%pS>\n", (void *) regs->tpc);
173         printk("g0: %016lx g1: %016lx g2: %016lx g3: %016lx\n",
174                regs->u_regs[0], regs->u_regs[1], regs->u_regs[2],
175                regs->u_regs[3]);
176         printk("g4: %016lx g5: %016lx g6: %016lx g7: %016lx\n",
177                regs->u_regs[4], regs->u_regs[5], regs->u_regs[6],
178                regs->u_regs[7]);
179         printk("o0: %016lx o1: %016lx o2: %016lx o3: %016lx\n",
180                regs->u_regs[8], regs->u_regs[9], regs->u_regs[10],
181                regs->u_regs[11]);
182         printk("o4: %016lx o5: %016lx sp: %016lx ret_pc: %016lx\n",
183                regs->u_regs[12], regs->u_regs[13], regs->u_regs[14],
184                regs->u_regs[15]);
185         printk("RPC: <%pS>\n", (void *) regs->u_regs[15]);
186         show_regwindow(regs);
187         show_stack(current, (unsigned long *) regs->u_regs[UREG_FP]);
188 }
189
190 union global_cpu_snapshot global_cpu_snapshot[NR_CPUS];
191 static DEFINE_SPINLOCK(global_cpu_snapshot_lock);
192
193 static void __global_reg_self(struct thread_info *tp, struct pt_regs *regs,
194                               int this_cpu)
195 {
196         struct global_reg_snapshot *rp;
197
198         flushw_all();
199
200         rp = &global_cpu_snapshot[this_cpu].reg;
201
202         rp->tstate = regs->tstate;
203         rp->tpc = regs->tpc;
204         rp->tnpc = regs->tnpc;
205         rp->o7 = regs->u_regs[UREG_I7];
206
207         if (regs->tstate & TSTATE_PRIV) {
208                 struct reg_window *rw;
209
210                 rw = (struct reg_window *)
211                         (regs->u_regs[UREG_FP] + STACK_BIAS);
212                 if (kstack_valid(tp, (unsigned long) rw)) {
213                         rp->i7 = rw->ins[7];
214                         rw = (struct reg_window *)
215                                 (rw->ins[6] + STACK_BIAS);
216                         if (kstack_valid(tp, (unsigned long) rw))
217                                 rp->rpc = rw->ins[7];
218                 }
219         } else {
220                 rp->i7 = 0;
221                 rp->rpc = 0;
222         }
223         rp->thread = tp;
224 }
225
226 /* In order to avoid hangs we do not try to synchronize with the
227  * global register dump client cpus.  The last store they make is to
228  * the thread pointer, so do a short poll waiting for that to become
229  * non-NULL.
230  */
231 static void __global_reg_poll(struct global_reg_snapshot *gp)
232 {
233         int limit = 0;
234
235         while (!gp->thread && ++limit < 100) {
236                 barrier();
237                 udelay(1);
238         }
239 }
240
241 void arch_trigger_all_cpu_backtrace(void)
242 {
243         struct thread_info *tp = current_thread_info();
244         struct pt_regs *regs = get_irq_regs();
245         unsigned long flags;
246         int this_cpu, cpu;
247
248         if (!regs)
249                 regs = tp->kregs;
250
251         spin_lock_irqsave(&global_cpu_snapshot_lock, flags);
252
253         memset(global_cpu_snapshot, 0, sizeof(global_cpu_snapshot));
254
255         this_cpu = raw_smp_processor_id();
256
257         __global_reg_self(tp, regs, this_cpu);
258
259         smp_fetch_global_regs();
260
261         for_each_online_cpu(cpu) {
262                 struct global_reg_snapshot *gp = &global_cpu_snapshot[cpu].reg;
263
264                 __global_reg_poll(gp);
265
266                 tp = gp->thread;
267                 printk("%c CPU[%3d]: TSTATE[%016lx] TPC[%016lx] TNPC[%016lx] TASK[%s:%d]\n",
268                        (cpu == this_cpu ? '*' : ' '), cpu,
269                        gp->tstate, gp->tpc, gp->tnpc,
270                        ((tp && tp->task) ? tp->task->comm : "NULL"),
271                        ((tp && tp->task) ? tp->task->pid : -1));
272
273                 if (gp->tstate & TSTATE_PRIV) {
274                         printk("             TPC[%pS] O7[%pS] I7[%pS] RPC[%pS]\n",
275                                (void *) gp->tpc,
276                                (void *) gp->o7,
277                                (void *) gp->i7,
278                                (void *) gp->rpc);
279                 } else {
280                         printk("             TPC[%lx] O7[%lx] I7[%lx] RPC[%lx]\n",
281                                gp->tpc, gp->o7, gp->i7, gp->rpc);
282                 }
283         }
284
285         memset(global_cpu_snapshot, 0, sizeof(global_cpu_snapshot));
286
287         spin_unlock_irqrestore(&global_cpu_snapshot_lock, flags);
288 }
289
290 #ifdef CONFIG_MAGIC_SYSRQ
291
292 static void sysrq_handle_globreg(int key)
293 {
294         arch_trigger_all_cpu_backtrace();
295 }
296
297 static struct sysrq_key_op sparc_globalreg_op = {
298         .handler        = sysrq_handle_globreg,
299         .help_msg       = "global-regs(y)",
300         .action_msg     = "Show Global CPU Regs",
301 };
302
303 static void __global_pmu_self(int this_cpu)
304 {
305         struct global_pmu_snapshot *pp;
306         int i, num;
307
308         pp = &global_cpu_snapshot[this_cpu].pmu;
309
310         num = 1;
311         if (tlb_type == hypervisor &&
312             sun4v_chip_type >= SUN4V_CHIP_NIAGARA4)
313                 num = 4;
314
315         for (i = 0; i < num; i++) {
316                 pp->pcr[i] = pcr_ops->read_pcr(i);
317                 pp->pic[i] = pcr_ops->read_pic(i);
318         }
319 }
320
321 static void __global_pmu_poll(struct global_pmu_snapshot *pp)
322 {
323         int limit = 0;
324
325         while (!pp->pcr[0] && ++limit < 100) {
326                 barrier();
327                 udelay(1);
328         }
329 }
330
331 static void pmu_snapshot_all_cpus(void)
332 {
333         unsigned long flags;
334         int this_cpu, cpu;
335
336         spin_lock_irqsave(&global_cpu_snapshot_lock, flags);
337
338         memset(global_cpu_snapshot, 0, sizeof(global_cpu_snapshot));
339
340         this_cpu = raw_smp_processor_id();
341
342         __global_pmu_self(this_cpu);
343
344         smp_fetch_global_pmu();
345
346         for_each_online_cpu(cpu) {
347                 struct global_pmu_snapshot *pp = &global_cpu_snapshot[cpu].pmu;
348
349                 __global_pmu_poll(pp);
350
351                 printk("%c CPU[%3d]: PCR[%08lx:%08lx:%08lx:%08lx] PIC[%08lx:%08lx:%08lx:%08lx]\n",
352                        (cpu == this_cpu ? '*' : ' '), cpu,
353                        pp->pcr[0], pp->pcr[1], pp->pcr[2], pp->pcr[3],
354                        pp->pic[0], pp->pic[1], pp->pic[2], pp->pic[3]);
355         }
356
357         memset(global_cpu_snapshot, 0, sizeof(global_cpu_snapshot));
358
359         spin_unlock_irqrestore(&global_cpu_snapshot_lock, flags);
360 }
361
362 static void sysrq_handle_globpmu(int key)
363 {
364         pmu_snapshot_all_cpus();
365 }
366
367 static struct sysrq_key_op sparc_globalpmu_op = {
368         .handler        = sysrq_handle_globpmu,
369         .help_msg       = "global-pmu(x)",
370         .action_msg     = "Show Global PMU Regs",
371 };
372
373 static int __init sparc_sysrq_init(void)
374 {
375         int ret = register_sysrq_key('y', &sparc_globalreg_op);
376
377         if (!ret)
378                 ret = register_sysrq_key('x', &sparc_globalpmu_op);
379         return ret;
380 }
381
382 core_initcall(sparc_sysrq_init);
383
384 #endif
385
386 unsigned long thread_saved_pc(struct task_struct *tsk)
387 {
388         struct thread_info *ti = task_thread_info(tsk);
389         unsigned long ret = 0xdeadbeefUL;
390         
391         if (ti && ti->ksp) {
392                 unsigned long *sp;
393                 sp = (unsigned long *)(ti->ksp + STACK_BIAS);
394                 if (((unsigned long)sp & (sizeof(long) - 1)) == 0UL &&
395                     sp[14]) {
396                         unsigned long *fp;
397                         fp = (unsigned long *)(sp[14] + STACK_BIAS);
398                         if (((unsigned long)fp & (sizeof(long) - 1)) == 0UL)
399                                 ret = fp[15];
400                 }
401         }
402         return ret;
403 }
404
405 /* Free current thread data structures etc.. */
406 void exit_thread(void)
407 {
408         struct thread_info *t = current_thread_info();
409
410         if (t->utraps) {
411                 if (t->utraps[0] < 2)
412                         kfree (t->utraps);
413                 else
414                         t->utraps[0]--;
415         }
416 }
417
418 void flush_thread(void)
419 {
420         struct thread_info *t = current_thread_info();
421         struct mm_struct *mm;
422
423         mm = t->task->mm;
424         if (mm)
425                 tsb_context_switch(mm);
426
427         set_thread_wsaved(0);
428
429         /* Clear FPU register state. */
430         t->fpsaved[0] = 0;
431 }
432
433 /* It's a bit more tricky when 64-bit tasks are involved... */
434 static unsigned long clone_stackframe(unsigned long csp, unsigned long psp)
435 {
436         bool stack_64bit = test_thread_64bit_stack(psp);
437         unsigned long fp, distance, rval;
438
439         if (stack_64bit) {
440                 csp += STACK_BIAS;
441                 psp += STACK_BIAS;
442                 __get_user(fp, &(((struct reg_window __user *)psp)->ins[6]));
443                 fp += STACK_BIAS;
444                 if (test_thread_flag(TIF_32BIT))
445                         fp &= 0xffffffff;
446         } else
447                 __get_user(fp, &(((struct reg_window32 __user *)psp)->ins[6]));
448
449         /* Now align the stack as this is mandatory in the Sparc ABI
450          * due to how register windows work.  This hides the
451          * restriction from thread libraries etc.
452          */
453         csp &= ~15UL;
454
455         distance = fp - psp;
456         rval = (csp - distance);
457         if (copy_in_user((void __user *) rval, (void __user *) psp, distance))
458                 rval = 0;
459         else if (!stack_64bit) {
460                 if (put_user(((u32)csp),
461                              &(((struct reg_window32 __user *)rval)->ins[6])))
462                         rval = 0;
463         } else {
464                 if (put_user(((u64)csp - STACK_BIAS),
465                              &(((struct reg_window __user *)rval)->ins[6])))
466                         rval = 0;
467                 else
468                         rval = rval - STACK_BIAS;
469         }
470
471         return rval;
472 }
473
474 /* Standard stuff. */
475 static inline void shift_window_buffer(int first_win, int last_win,
476                                        struct thread_info *t)
477 {
478         int i;
479
480         for (i = first_win; i < last_win; i++) {
481                 t->rwbuf_stkptrs[i] = t->rwbuf_stkptrs[i+1];
482                 memcpy(&t->reg_window[i], &t->reg_window[i+1],
483                        sizeof(struct reg_window));
484         }
485 }
486
487 void synchronize_user_stack(void)
488 {
489         struct thread_info *t = current_thread_info();
490         unsigned long window;
491
492         flush_user_windows();
493         if ((window = get_thread_wsaved()) != 0) {
494                 window -= 1;
495                 do {
496                         struct reg_window *rwin = &t->reg_window[window];
497                         int winsize = sizeof(struct reg_window);
498                         unsigned long sp;
499
500                         sp = t->rwbuf_stkptrs[window];
501
502                         if (test_thread_64bit_stack(sp))
503                                 sp += STACK_BIAS;
504                         else
505                                 winsize = sizeof(struct reg_window32);
506
507                         if (!copy_to_user((char __user *)sp, rwin, winsize)) {
508                                 shift_window_buffer(window, get_thread_wsaved() - 1, t);
509                                 set_thread_wsaved(get_thread_wsaved() - 1);
510                         }
511                 } while (window--);
512         }
513 }
514
515 static void stack_unaligned(unsigned long sp)
516 {
517         siginfo_t info;
518
519         info.si_signo = SIGBUS;
520         info.si_errno = 0;
521         info.si_code = BUS_ADRALN;
522         info.si_addr = (void __user *) sp;
523         info.si_trapno = 0;
524         force_sig_info(SIGBUS, &info, current);
525 }
526
527 void fault_in_user_windows(void)
528 {
529         struct thread_info *t = current_thread_info();
530         unsigned long window;
531
532         flush_user_windows();
533         window = get_thread_wsaved();
534
535         if (likely(window != 0)) {
536                 window -= 1;
537                 do {
538                         struct reg_window *rwin = &t->reg_window[window];
539                         int winsize = sizeof(struct reg_window);
540                         unsigned long sp;
541
542                         sp = t->rwbuf_stkptrs[window];
543
544                         if (test_thread_64bit_stack(sp))
545                                 sp += STACK_BIAS;
546                         else
547                                 winsize = sizeof(struct reg_window32);
548
549                         if (unlikely(sp & 0x7UL))
550                                 stack_unaligned(sp);
551
552                         if (unlikely(copy_to_user((char __user *)sp,
553                                                   rwin, winsize)))
554                                 goto barf;
555                 } while (window--);
556         }
557         set_thread_wsaved(0);
558         return;
559
560 barf:
561         set_thread_wsaved(window + 1);
562         do_exit(SIGILL);
563 }
564
565 asmlinkage long sparc_do_fork(unsigned long clone_flags,
566                               unsigned long stack_start,
567                               struct pt_regs *regs,
568                               unsigned long stack_size)
569 {
570         int __user *parent_tid_ptr, *child_tid_ptr;
571         unsigned long orig_i1 = regs->u_regs[UREG_I1];
572         long ret;
573
574 #ifdef CONFIG_COMPAT
575         if (test_thread_flag(TIF_32BIT)) {
576                 parent_tid_ptr = compat_ptr(regs->u_regs[UREG_I2]);
577                 child_tid_ptr = compat_ptr(regs->u_regs[UREG_I4]);
578         } else
579 #endif
580         {
581                 parent_tid_ptr = (int __user *) regs->u_regs[UREG_I2];
582                 child_tid_ptr = (int __user *) regs->u_regs[UREG_I4];
583         }
584
585         ret = do_fork(clone_flags, stack_start, stack_size,
586                       parent_tid_ptr, child_tid_ptr);
587
588         /* If we get an error and potentially restart the system
589          * call, we're screwed because copy_thread() clobbered
590          * the parent's %o1.  So detect that case and restore it
591          * here.
592          */
593         if ((unsigned long)ret >= -ERESTART_RESTARTBLOCK)
594                 regs->u_regs[UREG_I1] = orig_i1;
595
596         return ret;
597 }
598
599 /* Copy a Sparc thread.  The fork() return value conventions
600  * under SunOS are nothing short of bletcherous:
601  * Parent -->  %o0 == childs  pid, %o1 == 0
602  * Child  -->  %o0 == parents pid, %o1 == 1
603  */
604 int copy_thread(unsigned long clone_flags, unsigned long sp,
605                 unsigned long arg, struct task_struct *p)
606 {
607         struct thread_info *t = task_thread_info(p);
608         struct pt_regs *regs = current_pt_regs();
609         struct sparc_stackf *parent_sf;
610         unsigned long child_stack_sz;
611         char *child_trap_frame;
612
613         /* Calculate offset to stack_frame & pt_regs */
614         child_stack_sz = (STACKFRAME_SZ + TRACEREG_SZ);
615         child_trap_frame = (task_stack_page(p) +
616                             (THREAD_SIZE - child_stack_sz));
617
618         t->new_child = 1;
619         t->ksp = ((unsigned long) child_trap_frame) - STACK_BIAS;
620         t->kregs = (struct pt_regs *) (child_trap_frame +
621                                        sizeof(struct sparc_stackf));
622         t->fpsaved[0] = 0;
623
624         if (unlikely(p->flags & PF_KTHREAD)) {
625                 memset(child_trap_frame, 0, child_stack_sz);
626                 __thread_flag_byte_ptr(t)[TI_FLAG_BYTE_CWP] = 
627                         (current_pt_regs()->tstate + 1) & TSTATE_CWP;
628                 t->current_ds = ASI_P;
629                 t->kregs->u_regs[UREG_G1] = sp; /* function */
630                 t->kregs->u_regs[UREG_G2] = arg;
631                 return 0;
632         }
633
634         parent_sf = ((struct sparc_stackf *) regs) - 1;
635         memcpy(child_trap_frame, parent_sf, child_stack_sz);
636         if (t->flags & _TIF_32BIT) {
637                 sp &= 0x00000000ffffffffUL;
638                 regs->u_regs[UREG_FP] &= 0x00000000ffffffffUL;
639         }
640         t->kregs->u_regs[UREG_FP] = sp;
641         __thread_flag_byte_ptr(t)[TI_FLAG_BYTE_CWP] = 
642                 (regs->tstate + 1) & TSTATE_CWP;
643         t->current_ds = ASI_AIUS;
644         if (sp != regs->u_regs[UREG_FP]) {
645                 unsigned long csp;
646
647                 csp = clone_stackframe(sp, regs->u_regs[UREG_FP]);
648                 if (!csp)
649                         return -EFAULT;
650                 t->kregs->u_regs[UREG_FP] = csp;
651         }
652         if (t->utraps)
653                 t->utraps[0]++;
654
655         /* Set the return value for the child. */
656         t->kregs->u_regs[UREG_I0] = current->pid;
657         t->kregs->u_regs[UREG_I1] = 1;
658
659         /* Set the second return value for the parent. */
660         regs->u_regs[UREG_I1] = 0;
661
662         if (clone_flags & CLONE_SETTLS)
663                 t->kregs->u_regs[UREG_G7] = regs->u_regs[UREG_I3];
664
665         return 0;
666 }
667
668 typedef struct {
669         union {
670                 unsigned int    pr_regs[32];
671                 unsigned long   pr_dregs[16];
672         } pr_fr;
673         unsigned int __unused;
674         unsigned int    pr_fsr;
675         unsigned char   pr_qcnt;
676         unsigned char   pr_q_entrysize;
677         unsigned char   pr_en;
678         unsigned int    pr_q[64];
679 } elf_fpregset_t32;
680
681 /*
682  * fill in the fpu structure for a core dump.
683  */
684 int dump_fpu (struct pt_regs * regs, elf_fpregset_t * fpregs)
685 {
686         unsigned long *kfpregs = current_thread_info()->fpregs;
687         unsigned long fprs = current_thread_info()->fpsaved[0];
688
689         if (test_thread_flag(TIF_32BIT)) {
690                 elf_fpregset_t32 *fpregs32 = (elf_fpregset_t32 *)fpregs;
691
692                 if (fprs & FPRS_DL)
693                         memcpy(&fpregs32->pr_fr.pr_regs[0], kfpregs,
694                                sizeof(unsigned int) * 32);
695                 else
696                         memset(&fpregs32->pr_fr.pr_regs[0], 0,
697                                sizeof(unsigned int) * 32);
698                 fpregs32->pr_qcnt = 0;
699                 fpregs32->pr_q_entrysize = 8;
700                 memset(&fpregs32->pr_q[0], 0,
701                        (sizeof(unsigned int) * 64));
702                 if (fprs & FPRS_FEF) {
703                         fpregs32->pr_fsr = (unsigned int) current_thread_info()->xfsr[0];
704                         fpregs32->pr_en = 1;
705                 } else {
706                         fpregs32->pr_fsr = 0;
707                         fpregs32->pr_en = 0;
708                 }
709         } else {
710                 if(fprs & FPRS_DL)
711                         memcpy(&fpregs->pr_regs[0], kfpregs,
712                                sizeof(unsigned int) * 32);
713                 else
714                         memset(&fpregs->pr_regs[0], 0,
715                                sizeof(unsigned int) * 32);
716                 if(fprs & FPRS_DU)
717                         memcpy(&fpregs->pr_regs[16], kfpregs+16,
718                                sizeof(unsigned int) * 32);
719                 else
720                         memset(&fpregs->pr_regs[16], 0,
721                                sizeof(unsigned int) * 32);
722                 if(fprs & FPRS_FEF) {
723                         fpregs->pr_fsr = current_thread_info()->xfsr[0];
724                         fpregs->pr_gsr = current_thread_info()->gsr[0];
725                 } else {
726                         fpregs->pr_fsr = fpregs->pr_gsr = 0;
727                 }
728                 fpregs->pr_fprs = fprs;
729         }
730         return 1;
731 }
732 EXPORT_SYMBOL(dump_fpu);
733
734 unsigned long get_wchan(struct task_struct *task)
735 {
736         unsigned long pc, fp, bias = 0;
737         struct thread_info *tp;
738         struct reg_window *rw;
739         unsigned long ret = 0;
740         int count = 0; 
741
742         if (!task || task == current ||
743             task->state == TASK_RUNNING)
744                 goto out;
745
746         tp = task_thread_info(task);
747         bias = STACK_BIAS;
748         fp = task_thread_info(task)->ksp + bias;
749
750         do {
751                 if (!kstack_valid(tp, fp))
752                         break;
753                 rw = (struct reg_window *) fp;
754                 pc = rw->ins[7];
755                 if (!in_sched_functions(pc)) {
756                         ret = pc;
757                         goto out;
758                 }
759                 fp = rw->ins[6] + bias;
760         } while (++count < 16);
761
762 out:
763         return ret;
764 }