Merge commit 'ed30f24e8d07d30aa3e69d1f508f4d7bd2e8ea14' of git://git.linaro.org/landi...
[firefly-linux-kernel-4.4.55.git] / arch / s390 / kernel / setup.c
1 /*
2  *  S390 version
3  *    Copyright IBM Corp. 1999, 2012
4  *    Author(s): Hartmut Penner (hp@de.ibm.com),
5  *               Martin Schwidefsky (schwidefsky@de.ibm.com)
6  *
7  *  Derived from "arch/i386/kernel/setup.c"
8  *    Copyright (C) 1995, Linus Torvalds
9  */
10
11 /*
12  * This file handles the architecture-dependent parts of initialization
13  */
14
15 #define KMSG_COMPONENT "setup"
16 #define pr_fmt(fmt) KMSG_COMPONENT ": " fmt
17
18 #include <linux/errno.h>
19 #include <linux/export.h>
20 #include <linux/sched.h>
21 #include <linux/kernel.h>
22 #include <linux/memblock.h>
23 #include <linux/mm.h>
24 #include <linux/stddef.h>
25 #include <linux/unistd.h>
26 #include <linux/ptrace.h>
27 #include <linux/user.h>
28 #include <linux/tty.h>
29 #include <linux/ioport.h>
30 #include <linux/delay.h>
31 #include <linux/init.h>
32 #include <linux/initrd.h>
33 #include <linux/bootmem.h>
34 #include <linux/root_dev.h>
35 #include <linux/console.h>
36 #include <linux/kernel_stat.h>
37 #include <linux/device.h>
38 #include <linux/notifier.h>
39 #include <linux/pfn.h>
40 #include <linux/ctype.h>
41 #include <linux/reboot.h>
42 #include <linux/topology.h>
43 #include <linux/ftrace.h>
44 #include <linux/kexec.h>
45 #include <linux/crash_dump.h>
46 #include <linux/memory.h>
47 #include <linux/compat.h>
48
49 #include <asm/ipl.h>
50 #include <asm/uaccess.h>
51 #include <asm/facility.h>
52 #include <asm/smp.h>
53 #include <asm/mmu_context.h>
54 #include <asm/cpcmd.h>
55 #include <asm/lowcore.h>
56 #include <asm/irq.h>
57 #include <asm/page.h>
58 #include <asm/ptrace.h>
59 #include <asm/sections.h>
60 #include <asm/ebcdic.h>
61 #include <asm/kvm_virtio.h>
62 #include <asm/diag.h>
63 #include <asm/os_info.h>
64 #include <asm/sclp.h>
65 #include "entry.h"
66
67 long psw_kernel_bits    = PSW_DEFAULT_KEY | PSW_MASK_BASE | PSW_ASC_PRIMARY |
68                           PSW_MASK_EA | PSW_MASK_BA;
69 long psw_user_bits      = PSW_MASK_DAT | PSW_MASK_IO | PSW_MASK_EXT |
70                           PSW_DEFAULT_KEY | PSW_MASK_BASE | PSW_MASK_MCHECK |
71                           PSW_MASK_PSTATE | PSW_ASC_HOME;
72
73 /*
74  * User copy operations.
75  */
76 struct uaccess_ops uaccess;
77 EXPORT_SYMBOL(uaccess);
78
79 /*
80  * Machine setup..
81  */
82 unsigned int console_mode = 0;
83 EXPORT_SYMBOL(console_mode);
84
85 unsigned int console_devno = -1;
86 EXPORT_SYMBOL(console_devno);
87
88 unsigned int console_irq = -1;
89 EXPORT_SYMBOL(console_irq);
90
91 unsigned long elf_hwcap = 0;
92 char elf_platform[ELF_PLATFORM_SIZE];
93
94 struct mem_chunk __initdata memory_chunk[MEMORY_CHUNKS];
95
96 int __initdata memory_end_set;
97 unsigned long __initdata memory_end;
98
99 unsigned long VMALLOC_START;
100 EXPORT_SYMBOL(VMALLOC_START);
101
102 unsigned long VMALLOC_END;
103 EXPORT_SYMBOL(VMALLOC_END);
104
105 struct page *vmemmap;
106 EXPORT_SYMBOL(vmemmap);
107
108 #ifdef CONFIG_64BIT
109 unsigned long MODULES_VADDR;
110 unsigned long MODULES_END;
111 #endif
112
113 /* An array with a pointer to the lowcore of every CPU. */
114 struct _lowcore *lowcore_ptr[NR_CPUS];
115 EXPORT_SYMBOL(lowcore_ptr);
116
117 /*
118  * This is set up by the setup-routine at boot-time
119  * for S390 need to find out, what we have to setup
120  * using address 0x10400 ...
121  */
122
123 #include <asm/setup.h>
124
125 /*
126  * condev= and conmode= setup parameter.
127  */
128
129 static int __init condev_setup(char *str)
130 {
131         int vdev;
132
133         vdev = simple_strtoul(str, &str, 0);
134         if (vdev >= 0 && vdev < 65536) {
135                 console_devno = vdev;
136                 console_irq = -1;
137         }
138         return 1;
139 }
140
141 __setup("condev=", condev_setup);
142
143 static void __init set_preferred_console(void)
144 {
145         if (MACHINE_IS_KVM) {
146                 if (sclp_has_vt220())
147                         add_preferred_console("ttyS", 1, NULL);
148                 else if (sclp_has_linemode())
149                         add_preferred_console("ttyS", 0, NULL);
150                 else
151                         add_preferred_console("hvc", 0, NULL);
152         } else if (CONSOLE_IS_3215 || CONSOLE_IS_SCLP)
153                 add_preferred_console("ttyS", 0, NULL);
154         else if (CONSOLE_IS_3270)
155                 add_preferred_console("tty3270", 0, NULL);
156 }
157
158 static int __init conmode_setup(char *str)
159 {
160 #if defined(CONFIG_SCLP_CONSOLE) || defined(CONFIG_SCLP_VT220_CONSOLE)
161         if (strncmp(str, "hwc", 4) == 0 || strncmp(str, "sclp", 5) == 0)
162                 SET_CONSOLE_SCLP;
163 #endif
164 #if defined(CONFIG_TN3215_CONSOLE)
165         if (strncmp(str, "3215", 5) == 0)
166                 SET_CONSOLE_3215;
167 #endif
168 #if defined(CONFIG_TN3270_CONSOLE)
169         if (strncmp(str, "3270", 5) == 0)
170                 SET_CONSOLE_3270;
171 #endif
172         set_preferred_console();
173         return 1;
174 }
175
176 __setup("conmode=", conmode_setup);
177
178 static void __init conmode_default(void)
179 {
180         char query_buffer[1024];
181         char *ptr;
182
183         if (MACHINE_IS_VM) {
184                 cpcmd("QUERY CONSOLE", query_buffer, 1024, NULL);
185                 console_devno = simple_strtoul(query_buffer + 5, NULL, 16);
186                 ptr = strstr(query_buffer, "SUBCHANNEL =");
187                 console_irq = simple_strtoul(ptr + 13, NULL, 16);
188                 cpcmd("QUERY TERM", query_buffer, 1024, NULL);
189                 ptr = strstr(query_buffer, "CONMODE");
190                 /*
191                  * Set the conmode to 3215 so that the device recognition 
192                  * will set the cu_type of the console to 3215. If the
193                  * conmode is 3270 and we don't set it back then both
194                  * 3215 and the 3270 driver will try to access the console
195                  * device (3215 as console and 3270 as normal tty).
196                  */
197                 cpcmd("TERM CONMODE 3215", NULL, 0, NULL);
198                 if (ptr == NULL) {
199 #if defined(CONFIG_SCLP_CONSOLE) || defined(CONFIG_SCLP_VT220_CONSOLE)
200                         SET_CONSOLE_SCLP;
201 #endif
202                         return;
203                 }
204                 if (strncmp(ptr + 8, "3270", 4) == 0) {
205 #if defined(CONFIG_TN3270_CONSOLE)
206                         SET_CONSOLE_3270;
207 #elif defined(CONFIG_TN3215_CONSOLE)
208                         SET_CONSOLE_3215;
209 #elif defined(CONFIG_SCLP_CONSOLE) || defined(CONFIG_SCLP_VT220_CONSOLE)
210                         SET_CONSOLE_SCLP;
211 #endif
212                 } else if (strncmp(ptr + 8, "3215", 4) == 0) {
213 #if defined(CONFIG_TN3215_CONSOLE)
214                         SET_CONSOLE_3215;
215 #elif defined(CONFIG_TN3270_CONSOLE)
216                         SET_CONSOLE_3270;
217 #elif defined(CONFIG_SCLP_CONSOLE) || defined(CONFIG_SCLP_VT220_CONSOLE)
218                         SET_CONSOLE_SCLP;
219 #endif
220                 }
221         } else {
222 #if defined(CONFIG_SCLP_CONSOLE) || defined(CONFIG_SCLP_VT220_CONSOLE)
223                 SET_CONSOLE_SCLP;
224 #endif
225         }
226 }
227
228 #ifdef CONFIG_ZFCPDUMP
229 static void __init setup_zfcpdump(void)
230 {
231         if (ipl_info.type != IPL_TYPE_FCP_DUMP)
232                 return;
233         if (OLDMEM_BASE)
234                 return;
235         strcat(boot_command_line, " cio_ignore=all,!ipldev,!condev");
236         console_loglevel = 2;
237 }
238 #else
239 static inline void setup_zfcpdump(void) {}
240 #endif /* CONFIG_ZFCPDUMP */
241
242  /*
243  * Reboot, halt and power_off stubs. They just call _machine_restart,
244  * _machine_halt or _machine_power_off. 
245  */
246
247 void machine_restart(char *command)
248 {
249         if ((!in_interrupt() && !in_atomic()) || oops_in_progress)
250                 /*
251                  * Only unblank the console if we are called in enabled
252                  * context or a bust_spinlocks cleared the way for us.
253                  */
254                 console_unblank();
255         _machine_restart(command);
256 }
257
258 void machine_halt(void)
259 {
260         if (!in_interrupt() || oops_in_progress)
261                 /*
262                  * Only unblank the console if we are called in enabled
263                  * context or a bust_spinlocks cleared the way for us.
264                  */
265                 console_unblank();
266         _machine_halt();
267 }
268
269 void machine_power_off(void)
270 {
271         if (!in_interrupt() || oops_in_progress)
272                 /*
273                  * Only unblank the console if we are called in enabled
274                  * context or a bust_spinlocks cleared the way for us.
275                  */
276                 console_unblank();
277         _machine_power_off();
278 }
279
280 /*
281  * Dummy power off function.
282  */
283 void (*pm_power_off)(void) = machine_power_off;
284 EXPORT_SYMBOL_GPL(pm_power_off);
285
286 static int __init early_parse_mem(char *p)
287 {
288         memory_end = memparse(p, &p);
289         memory_end_set = 1;
290         return 0;
291 }
292 early_param("mem", early_parse_mem);
293
294 static int __init parse_vmalloc(char *arg)
295 {
296         if (!arg)
297                 return -EINVAL;
298         VMALLOC_END = (memparse(arg, &arg) + PAGE_SIZE - 1) & PAGE_MASK;
299         return 0;
300 }
301 early_param("vmalloc", parse_vmalloc);
302
303 unsigned int s390_user_mode = PRIMARY_SPACE_MODE;
304 EXPORT_SYMBOL_GPL(s390_user_mode);
305
306 static void __init set_user_mode_primary(void)
307 {
308         psw_kernel_bits = (psw_kernel_bits & ~PSW_MASK_ASC) | PSW_ASC_HOME;
309         psw_user_bits = (psw_user_bits & ~PSW_MASK_ASC) | PSW_ASC_PRIMARY;
310 #ifdef CONFIG_COMPAT
311         psw32_user_bits =
312                 (psw32_user_bits & ~PSW32_MASK_ASC) | PSW32_ASC_PRIMARY;
313 #endif
314         uaccess = MACHINE_HAS_MVCOS ? uaccess_mvcos_switch : uaccess_pt;
315 }
316
317 static int __init early_parse_user_mode(char *p)
318 {
319         if (p && strcmp(p, "primary") == 0)
320                 s390_user_mode = PRIMARY_SPACE_MODE;
321         else if (!p || strcmp(p, "home") == 0)
322                 s390_user_mode = HOME_SPACE_MODE;
323         else
324                 return 1;
325         return 0;
326 }
327 early_param("user_mode", early_parse_user_mode);
328
329 static void __init setup_addressing_mode(void)
330 {
331         if (s390_user_mode != PRIMARY_SPACE_MODE)
332                 return;
333         set_user_mode_primary();
334         if (MACHINE_HAS_MVCOS)
335                 pr_info("Address spaces switched, mvcos available\n");
336         else
337                 pr_info("Address spaces switched, mvcos not available\n");
338 }
339
340 void *restart_stack __attribute__((__section__(".data")));
341
342 static void __init setup_lowcore(void)
343 {
344         struct _lowcore *lc;
345
346         /*
347          * Setup lowcore for boot cpu
348          */
349         BUILD_BUG_ON(sizeof(struct _lowcore) != LC_PAGES * 4096);
350         lc = __alloc_bootmem_low(LC_PAGES * PAGE_SIZE, LC_PAGES * PAGE_SIZE, 0);
351         lc->restart_psw.mask = psw_kernel_bits;
352         lc->restart_psw.addr =
353                 PSW_ADDR_AMODE | (unsigned long) restart_int_handler;
354         lc->external_new_psw.mask = psw_kernel_bits |
355                 PSW_MASK_DAT | PSW_MASK_MCHECK;
356         lc->external_new_psw.addr =
357                 PSW_ADDR_AMODE | (unsigned long) ext_int_handler;
358         lc->svc_new_psw.mask = psw_kernel_bits |
359                 PSW_MASK_DAT | PSW_MASK_IO | PSW_MASK_EXT | PSW_MASK_MCHECK;
360         lc->svc_new_psw.addr = PSW_ADDR_AMODE | (unsigned long) system_call;
361         lc->program_new_psw.mask = psw_kernel_bits |
362                 PSW_MASK_DAT | PSW_MASK_MCHECK;
363         lc->program_new_psw.addr =
364                 PSW_ADDR_AMODE | (unsigned long) pgm_check_handler;
365         lc->mcck_new_psw.mask = psw_kernel_bits;
366         lc->mcck_new_psw.addr =
367                 PSW_ADDR_AMODE | (unsigned long) mcck_int_handler;
368         lc->io_new_psw.mask = psw_kernel_bits |
369                 PSW_MASK_DAT | PSW_MASK_MCHECK;
370         lc->io_new_psw.addr = PSW_ADDR_AMODE | (unsigned long) io_int_handler;
371         lc->clock_comparator = -1ULL;
372         lc->kernel_stack = ((unsigned long) &init_thread_union)
373                 + THREAD_SIZE - STACK_FRAME_OVERHEAD - sizeof(struct pt_regs);
374         lc->async_stack = (unsigned long)
375                 __alloc_bootmem(ASYNC_SIZE, ASYNC_SIZE, 0)
376                 + ASYNC_SIZE - STACK_FRAME_OVERHEAD - sizeof(struct pt_regs);
377         lc->panic_stack = (unsigned long)
378                 __alloc_bootmem(PAGE_SIZE, PAGE_SIZE, 0)
379                 + PAGE_SIZE - STACK_FRAME_OVERHEAD - sizeof(struct pt_regs);
380         lc->current_task = (unsigned long) init_thread_union.thread_info.task;
381         lc->thread_info = (unsigned long) &init_thread_union;
382         lc->machine_flags = S390_lowcore.machine_flags;
383         lc->stfl_fac_list = S390_lowcore.stfl_fac_list;
384         memcpy(lc->stfle_fac_list, S390_lowcore.stfle_fac_list,
385                MAX_FACILITY_BIT/8);
386 #ifndef CONFIG_64BIT
387         if (MACHINE_HAS_IEEE) {
388                 lc->extended_save_area_addr = (__u32)
389                         __alloc_bootmem_low(PAGE_SIZE, PAGE_SIZE, 0);
390                 /* enable extended save area */
391                 __ctl_set_bit(14, 29);
392         }
393 #else
394         lc->vdso_per_cpu_data = (unsigned long) &lc->paste[0];
395 #endif
396         lc->sync_enter_timer = S390_lowcore.sync_enter_timer;
397         lc->async_enter_timer = S390_lowcore.async_enter_timer;
398         lc->exit_timer = S390_lowcore.exit_timer;
399         lc->user_timer = S390_lowcore.user_timer;
400         lc->system_timer = S390_lowcore.system_timer;
401         lc->steal_timer = S390_lowcore.steal_timer;
402         lc->last_update_timer = S390_lowcore.last_update_timer;
403         lc->last_update_clock = S390_lowcore.last_update_clock;
404         lc->ftrace_func = S390_lowcore.ftrace_func;
405
406         restart_stack = __alloc_bootmem(ASYNC_SIZE, ASYNC_SIZE, 0);
407         restart_stack += ASYNC_SIZE;
408
409         /*
410          * Set up PSW restart to call ipl.c:do_restart(). Copy the relevant
411          * restart data to the absolute zero lowcore. This is necesary if
412          * PSW restart is done on an offline CPU that has lowcore zero.
413          */
414         lc->restart_stack = (unsigned long) restart_stack;
415         lc->restart_fn = (unsigned long) do_restart;
416         lc->restart_data = 0;
417         lc->restart_source = -1UL;
418
419         /* Setup absolute zero lowcore */
420         mem_assign_absolute(S390_lowcore.restart_stack, lc->restart_stack);
421         mem_assign_absolute(S390_lowcore.restart_fn, lc->restart_fn);
422         mem_assign_absolute(S390_lowcore.restart_data, lc->restart_data);
423         mem_assign_absolute(S390_lowcore.restart_source, lc->restart_source);
424         mem_assign_absolute(S390_lowcore.restart_psw, lc->restart_psw);
425
426         set_prefix((u32)(unsigned long) lc);
427         lowcore_ptr[0] = lc;
428 }
429
430 static struct resource code_resource = {
431         .name  = "Kernel code",
432         .flags = IORESOURCE_BUSY | IORESOURCE_MEM,
433 };
434
435 static struct resource data_resource = {
436         .name = "Kernel data",
437         .flags = IORESOURCE_BUSY | IORESOURCE_MEM,
438 };
439
440 static struct resource bss_resource = {
441         .name = "Kernel bss",
442         .flags = IORESOURCE_BUSY | IORESOURCE_MEM,
443 };
444
445 static struct resource __initdata *standard_resources[] = {
446         &code_resource,
447         &data_resource,
448         &bss_resource,
449 };
450
451 static void __init setup_resources(void)
452 {
453         struct resource *res, *std_res, *sub_res;
454         int i, j;
455
456         code_resource.start = (unsigned long) &_text;
457         code_resource.end = (unsigned long) &_etext - 1;
458         data_resource.start = (unsigned long) &_etext;
459         data_resource.end = (unsigned long) &_edata - 1;
460         bss_resource.start = (unsigned long) &__bss_start;
461         bss_resource.end = (unsigned long) &__bss_stop - 1;
462
463         for (i = 0; i < MEMORY_CHUNKS; i++) {
464                 if (!memory_chunk[i].size)
465                         continue;
466                 res = alloc_bootmem_low(sizeof(*res));
467                 res->flags = IORESOURCE_BUSY | IORESOURCE_MEM;
468                 switch (memory_chunk[i].type) {
469                 case CHUNK_READ_WRITE:
470                         res->name = "System RAM";
471                         break;
472                 case CHUNK_READ_ONLY:
473                         res->name = "System ROM";
474                         res->flags |= IORESOURCE_READONLY;
475                         break;
476                 default:
477                         res->name = "reserved";
478                 }
479                 res->start = memory_chunk[i].addr;
480                 res->end = res->start + memory_chunk[i].size - 1;
481                 request_resource(&iomem_resource, res);
482
483                 for (j = 0; j < ARRAY_SIZE(standard_resources); j++) {
484                         std_res = standard_resources[j];
485                         if (std_res->start < res->start ||
486                             std_res->start > res->end)
487                                 continue;
488                         if (std_res->end > res->end) {
489                                 sub_res = alloc_bootmem_low(sizeof(*sub_res));
490                                 *sub_res = *std_res;
491                                 sub_res->end = res->end;
492                                 std_res->start = res->end + 1;
493                                 request_resource(res, sub_res);
494                         } else {
495                                 request_resource(res, std_res);
496                         }
497                 }
498         }
499 }
500
501 static void __init setup_memory_end(void)
502 {
503         unsigned long vmax, vmalloc_size, tmp;
504         unsigned long real_memory_size = 0;
505         int i;
506
507
508 #ifdef CONFIG_ZFCPDUMP
509         if (ipl_info.type == IPL_TYPE_FCP_DUMP && !OLDMEM_BASE) {
510                 memory_end = ZFCPDUMP_HSA_SIZE;
511                 memory_end_set = 1;
512         }
513 #endif
514         memory_end &= PAGE_MASK;
515
516         /*
517          * Make sure all chunks are MAX_ORDER aligned so we don't need the
518          * extra checks that HOLES_IN_ZONE would require.
519          */
520         for (i = 0; i < MEMORY_CHUNKS; i++) {
521                 unsigned long start, end;
522                 struct mem_chunk *chunk;
523                 unsigned long align;
524
525                 chunk = &memory_chunk[i];
526                 if (!chunk->size)
527                         continue;
528                 align = 1UL << (MAX_ORDER + PAGE_SHIFT - 1);
529                 start = (chunk->addr + align - 1) & ~(align - 1);
530                 end = (chunk->addr + chunk->size) & ~(align - 1);
531                 if (start >= end)
532                         memset(chunk, 0, sizeof(*chunk));
533                 else {
534                         chunk->addr = start;
535                         chunk->size = end - start;
536                 }
537                 real_memory_size = max(real_memory_size,
538                                        chunk->addr + chunk->size);
539         }
540
541         /* Choose kernel address space layout: 2, 3, or 4 levels. */
542 #ifdef CONFIG_64BIT
543         vmalloc_size = VMALLOC_END ?: (128UL << 30) - MODULES_LEN;
544         tmp = (memory_end ?: real_memory_size) / PAGE_SIZE;
545         tmp = tmp * (sizeof(struct page) + PAGE_SIZE) + vmalloc_size;
546         if (tmp <= (1UL << 42))
547                 vmax = 1UL << 42;       /* 3-level kernel page table */
548         else
549                 vmax = 1UL << 53;       /* 4-level kernel page table */
550         /* module area is at the end of the kernel address space. */
551         MODULES_END = vmax;
552         MODULES_VADDR = MODULES_END - MODULES_LEN;
553         VMALLOC_END = MODULES_VADDR;
554 #else
555         vmalloc_size = VMALLOC_END ?: 96UL << 20;
556         vmax = 1UL << 31;               /* 2-level kernel page table */
557         /* vmalloc area is at the end of the kernel address space. */
558         VMALLOC_END = vmax;
559 #endif
560         VMALLOC_START = vmax - vmalloc_size;
561
562         /* Split remaining virtual space between 1:1 mapping & vmemmap array */
563         tmp = VMALLOC_START / (PAGE_SIZE + sizeof(struct page));
564         /* vmemmap contains a multiple of PAGES_PER_SECTION struct pages */
565         tmp = SECTION_ALIGN_UP(tmp);
566         tmp = VMALLOC_START - tmp * sizeof(struct page);
567         tmp &= ~((vmax >> 11) - 1);     /* align to page table level */
568         tmp = min(tmp, 1UL << MAX_PHYSMEM_BITS);
569         vmemmap = (struct page *) tmp;
570
571         /* Take care that memory_end is set and <= vmemmap */
572         memory_end = min(memory_end ?: real_memory_size, tmp);
573
574         /* Fixup memory chunk array to fit into 0..memory_end */
575         for (i = 0; i < MEMORY_CHUNKS; i++) {
576                 struct mem_chunk *chunk = &memory_chunk[i];
577
578                 if (!chunk->size)
579                         continue;
580                 if (chunk->addr >= memory_end) {
581                         memset(chunk, 0, sizeof(*chunk));
582                         continue;
583                 }
584                 if (chunk->addr + chunk->size > memory_end)
585                         chunk->size = memory_end - chunk->addr;
586         }
587 }
588
589 static void __init setup_vmcoreinfo(void)
590 {
591         mem_assign_absolute(S390_lowcore.vmcore_info, paddr_vmcoreinfo_note());
592 }
593
594 #ifdef CONFIG_CRASH_DUMP
595
596 /*
597  * Find suitable location for crashkernel memory
598  */
599 static unsigned long __init find_crash_base(unsigned long crash_size,
600                                             char **msg)
601 {
602         unsigned long crash_base;
603         struct mem_chunk *chunk;
604         int i;
605
606         if (memory_chunk[0].size < crash_size) {
607                 *msg = "first memory chunk must be at least crashkernel size";
608                 return 0;
609         }
610         if (OLDMEM_BASE && crash_size == OLDMEM_SIZE)
611                 return OLDMEM_BASE;
612
613         for (i = MEMORY_CHUNKS - 1; i >= 0; i--) {
614                 chunk = &memory_chunk[i];
615                 if (chunk->size == 0)
616                         continue;
617                 if (chunk->type != CHUNK_READ_WRITE)
618                         continue;
619                 if (chunk->size < crash_size)
620                         continue;
621                 crash_base = (chunk->addr + chunk->size) - crash_size;
622                 if (crash_base < crash_size)
623                         continue;
624                 if (crash_base < ZFCPDUMP_HSA_SIZE_MAX)
625                         continue;
626                 if (crash_base < (unsigned long) INITRD_START + INITRD_SIZE)
627                         continue;
628                 return crash_base;
629         }
630         *msg = "no suitable area found";
631         return 0;
632 }
633
634 /*
635  * Check if crash_base and crash_size is valid
636  */
637 static int __init verify_crash_base(unsigned long crash_base,
638                                     unsigned long crash_size,
639                                     char **msg)
640 {
641         struct mem_chunk *chunk;
642         int i;
643
644         /*
645          * Because we do the swap to zero, we must have at least 'crash_size'
646          * bytes free space before crash_base
647          */
648         if (crash_size > crash_base) {
649                 *msg = "crashkernel offset must be greater than size";
650                 return -EINVAL;
651         }
652
653         /* First memory chunk must be at least crash_size */
654         if (memory_chunk[0].size < crash_size) {
655                 *msg = "first memory chunk must be at least crashkernel size";
656                 return -EINVAL;
657         }
658         /* Check if we fit into the respective memory chunk */
659         for (i = 0; i < MEMORY_CHUNKS; i++) {
660                 chunk = &memory_chunk[i];
661                 if (chunk->size == 0)
662                         continue;
663                 if (crash_base < chunk->addr)
664                         continue;
665                 if (crash_base >= chunk->addr + chunk->size)
666                         continue;
667                 /* we have found the memory chunk */
668                 if (crash_base + crash_size > chunk->addr + chunk->size) {
669                         *msg = "selected memory chunk is too small for "
670                                 "crashkernel memory";
671                         return -EINVAL;
672                 }
673                 return 0;
674         }
675         *msg = "invalid memory range specified";
676         return -EINVAL;
677 }
678
679 /*
680  * When kdump is enabled, we have to ensure that no memory from
681  * the area [0 - crashkernel memory size] and
682  * [crashk_res.start - crashk_res.end] is set offline.
683  */
684 static int kdump_mem_notifier(struct notifier_block *nb,
685                               unsigned long action, void *data)
686 {
687         struct memory_notify *arg = data;
688
689         if (arg->start_pfn < PFN_DOWN(resource_size(&crashk_res)))
690                 return NOTIFY_BAD;
691         if (arg->start_pfn > PFN_DOWN(crashk_res.end))
692                 return NOTIFY_OK;
693         if (arg->start_pfn + arg->nr_pages - 1 < PFN_DOWN(crashk_res.start))
694                 return NOTIFY_OK;
695         return NOTIFY_BAD;
696 }
697
698 static struct notifier_block kdump_mem_nb = {
699         .notifier_call = kdump_mem_notifier,
700 };
701
702 #endif
703
704 /*
705  * Make sure that oldmem, where the dump is stored, is protected
706  */
707 static void reserve_oldmem(void)
708 {
709 #ifdef CONFIG_CRASH_DUMP
710         unsigned long real_size = 0;
711         int i;
712
713         if (!OLDMEM_BASE)
714                 return;
715         for (i = 0; i < MEMORY_CHUNKS; i++) {
716                 struct mem_chunk *chunk = &memory_chunk[i];
717
718                 real_size = max(real_size, chunk->addr + chunk->size);
719         }
720         create_mem_hole(memory_chunk, OLDMEM_BASE, OLDMEM_SIZE);
721         create_mem_hole(memory_chunk, OLDMEM_SIZE, real_size - OLDMEM_SIZE);
722         if (OLDMEM_BASE + OLDMEM_SIZE == real_size)
723                 saved_max_pfn = PFN_DOWN(OLDMEM_BASE) - 1;
724         else
725                 saved_max_pfn = PFN_DOWN(real_size) - 1;
726 #endif
727 }
728
729 /*
730  * Reserve memory for kdump kernel to be loaded with kexec
731  */
732 static void __init reserve_crashkernel(void)
733 {
734 #ifdef CONFIG_CRASH_DUMP
735         unsigned long long crash_base, crash_size;
736         char *msg = NULL;
737         int rc;
738
739         rc = parse_crashkernel(boot_command_line, memory_end, &crash_size,
740                                &crash_base);
741         if (rc || crash_size == 0)
742                 return;
743         crash_base = ALIGN(crash_base, KEXEC_CRASH_MEM_ALIGN);
744         crash_size = ALIGN(crash_size, KEXEC_CRASH_MEM_ALIGN);
745         if (register_memory_notifier(&kdump_mem_nb))
746                 return;
747         if (!crash_base)
748                 crash_base = find_crash_base(crash_size, &msg);
749         if (!crash_base) {
750                 pr_info("crashkernel reservation failed: %s\n", msg);
751                 unregister_memory_notifier(&kdump_mem_nb);
752                 return;
753         }
754         if (verify_crash_base(crash_base, crash_size, &msg)) {
755                 pr_info("crashkernel reservation failed: %s\n", msg);
756                 unregister_memory_notifier(&kdump_mem_nb);
757                 return;
758         }
759         if (!OLDMEM_BASE && MACHINE_IS_VM)
760                 diag10_range(PFN_DOWN(crash_base), PFN_DOWN(crash_size));
761         crashk_res.start = crash_base;
762         crashk_res.end = crash_base + crash_size - 1;
763         insert_resource(&iomem_resource, &crashk_res);
764         create_mem_hole(memory_chunk, crash_base, crash_size);
765         pr_info("Reserving %lluMB of memory at %lluMB "
766                 "for crashkernel (System RAM: %luMB)\n",
767                 crash_size >> 20, crash_base >> 20, memory_end >> 20);
768         os_info_crashkernel_add(crash_base, crash_size);
769 #endif
770 }
771
772 static void __init setup_memory(void)
773 {
774         unsigned long bootmap_size;
775         unsigned long start_pfn, end_pfn;
776         int i;
777
778         /*
779          * partially used pages are not usable - thus
780          * we are rounding upwards:
781          */
782         start_pfn = PFN_UP(__pa(&_end));
783         end_pfn = max_pfn = PFN_DOWN(memory_end);
784
785 #ifdef CONFIG_BLK_DEV_INITRD
786         /*
787          * Move the initrd in case the bitmap of the bootmem allocater
788          * would overwrite it.
789          */
790
791         if (INITRD_START && INITRD_SIZE) {
792                 unsigned long bmap_size;
793                 unsigned long start;
794
795                 bmap_size = bootmem_bootmap_pages(end_pfn - start_pfn + 1);
796                 bmap_size = PFN_PHYS(bmap_size);
797
798                 if (PFN_PHYS(start_pfn) + bmap_size > INITRD_START) {
799                         start = PFN_PHYS(start_pfn) + bmap_size + PAGE_SIZE;
800
801 #ifdef CONFIG_CRASH_DUMP
802                         if (OLDMEM_BASE) {
803                                 /* Move initrd behind kdump oldmem */
804                                 if (start + INITRD_SIZE > OLDMEM_BASE &&
805                                     start < OLDMEM_BASE + OLDMEM_SIZE)
806                                         start = OLDMEM_BASE + OLDMEM_SIZE;
807                         }
808 #endif
809                         if (start + INITRD_SIZE > memory_end) {
810                                 pr_err("initrd extends beyond end of "
811                                        "memory (0x%08lx > 0x%08lx) "
812                                        "disabling initrd\n",
813                                        start + INITRD_SIZE, memory_end);
814                                 INITRD_START = INITRD_SIZE = 0;
815                         } else {
816                                 pr_info("Moving initrd (0x%08lx -> "
817                                         "0x%08lx, size: %ld)\n",
818                                         INITRD_START, start, INITRD_SIZE);
819                                 memmove((void *) start, (void *) INITRD_START,
820                                         INITRD_SIZE);
821                                 INITRD_START = start;
822                         }
823                 }
824         }
825 #endif
826
827         /*
828          * Initialize the boot-time allocator
829          */
830         bootmap_size = init_bootmem(start_pfn, end_pfn);
831
832         /*
833          * Register RAM areas with the bootmem allocator.
834          */
835
836         for (i = 0; i < MEMORY_CHUNKS; i++) {
837                 unsigned long start_chunk, end_chunk, pfn;
838
839                 if (!memory_chunk[i].size)
840                         continue;
841                 start_chunk = PFN_DOWN(memory_chunk[i].addr);
842                 end_chunk = start_chunk + PFN_DOWN(memory_chunk[i].size);
843                 end_chunk = min(end_chunk, end_pfn);
844                 if (start_chunk >= end_chunk)
845                         continue;
846                 memblock_add_node(PFN_PHYS(start_chunk),
847                                   PFN_PHYS(end_chunk - start_chunk), 0);
848                 pfn = max(start_chunk, start_pfn);
849                 storage_key_init_range(PFN_PHYS(pfn), PFN_PHYS(end_chunk));
850         }
851
852         psw_set_key(PAGE_DEFAULT_KEY);
853
854         free_bootmem_with_active_regions(0, max_pfn);
855
856         /*
857          * Reserve memory used for lowcore/command line/kernel image.
858          */
859         reserve_bootmem(0, (unsigned long)_ehead, BOOTMEM_DEFAULT);
860         reserve_bootmem((unsigned long)_stext,
861                         PFN_PHYS(start_pfn) - (unsigned long)_stext,
862                         BOOTMEM_DEFAULT);
863         /*
864          * Reserve the bootmem bitmap itself as well. We do this in two
865          * steps (first step was init_bootmem()) because this catches
866          * the (very unlikely) case of us accidentally initializing the
867          * bootmem allocator with an invalid RAM area.
868          */
869         reserve_bootmem(start_pfn << PAGE_SHIFT, bootmap_size,
870                         BOOTMEM_DEFAULT);
871
872 #ifdef CONFIG_CRASH_DUMP
873         if (crashk_res.start)
874                 reserve_bootmem(crashk_res.start,
875                                 crashk_res.end - crashk_res.start + 1,
876                                 BOOTMEM_DEFAULT);
877         if (is_kdump_kernel())
878                 reserve_bootmem(elfcorehdr_addr - OLDMEM_BASE,
879                                 PAGE_ALIGN(elfcorehdr_size), BOOTMEM_DEFAULT);
880 #endif
881 #ifdef CONFIG_BLK_DEV_INITRD
882         if (INITRD_START && INITRD_SIZE) {
883                 if (INITRD_START + INITRD_SIZE <= memory_end) {
884                         reserve_bootmem(INITRD_START, INITRD_SIZE,
885                                         BOOTMEM_DEFAULT);
886                         initrd_start = INITRD_START;
887                         initrd_end = initrd_start + INITRD_SIZE;
888                 } else {
889                         pr_err("initrd extends beyond end of "
890                                "memory (0x%08lx > 0x%08lx) "
891                                "disabling initrd\n",
892                                initrd_start + INITRD_SIZE, memory_end);
893                         initrd_start = initrd_end = 0;
894                 }
895         }
896 #endif
897 }
898
899 /*
900  * Setup hardware capabilities.
901  */
902 static void __init setup_hwcaps(void)
903 {
904         static const int stfl_bits[6] = { 0, 2, 7, 17, 19, 21 };
905         struct cpuid cpu_id;
906         int i;
907
908         /*
909          * The store facility list bits numbers as found in the principles
910          * of operation are numbered with bit 1UL<<31 as number 0 to
911          * bit 1UL<<0 as number 31.
912          *   Bit 0: instructions named N3, "backported" to esa-mode
913          *   Bit 2: z/Architecture mode is active
914          *   Bit 7: the store-facility-list-extended facility is installed
915          *   Bit 17: the message-security assist is installed
916          *   Bit 19: the long-displacement facility is installed
917          *   Bit 21: the extended-immediate facility is installed
918          *   Bit 22: extended-translation facility 3 is installed
919          *   Bit 30: extended-translation facility 3 enhancement facility
920          * These get translated to:
921          *   HWCAP_S390_ESAN3 bit 0, HWCAP_S390_ZARCH bit 1,
922          *   HWCAP_S390_STFLE bit 2, HWCAP_S390_MSA bit 3,
923          *   HWCAP_S390_LDISP bit 4, HWCAP_S390_EIMM bit 5 and
924          *   HWCAP_S390_ETF3EH bit 8 (22 && 30).
925          */
926         for (i = 0; i < 6; i++)
927                 if (test_facility(stfl_bits[i]))
928                         elf_hwcap |= 1UL << i;
929
930         if (test_facility(22) && test_facility(30))
931                 elf_hwcap |= HWCAP_S390_ETF3EH;
932
933         /*
934          * Check for additional facilities with store-facility-list-extended.
935          * stfle stores doublewords (8 byte) with bit 1ULL<<63 as bit 0
936          * and 1ULL<<0 as bit 63. Bits 0-31 contain the same information
937          * as stored by stfl, bits 32-xxx contain additional facilities.
938          * How many facility words are stored depends on the number of
939          * doublewords passed to the instruction. The additional facilities
940          * are:
941          *   Bit 42: decimal floating point facility is installed
942          *   Bit 44: perform floating point operation facility is installed
943          * translated to:
944          *   HWCAP_S390_DFP bit 6 (42 && 44).
945          */
946         if ((elf_hwcap & (1UL << 2)) && test_facility(42) && test_facility(44))
947                 elf_hwcap |= HWCAP_S390_DFP;
948
949         /*
950          * Huge page support HWCAP_S390_HPAGE is bit 7.
951          */
952         if (MACHINE_HAS_HPAGE)
953                 elf_hwcap |= HWCAP_S390_HPAGE;
954
955 #if defined(CONFIG_64BIT)
956         /*
957          * 64-bit register support for 31-bit processes
958          * HWCAP_S390_HIGH_GPRS is bit 9.
959          */
960         elf_hwcap |= HWCAP_S390_HIGH_GPRS;
961
962         /*
963          * Transactional execution support HWCAP_S390_TE is bit 10.
964          */
965         if (test_facility(50) && test_facility(73))
966                 elf_hwcap |= HWCAP_S390_TE;
967 #endif
968
969         get_cpu_id(&cpu_id);
970         switch (cpu_id.machine) {
971         case 0x9672:
972 #if !defined(CONFIG_64BIT)
973         default:        /* Use "g5" as default for 31 bit kernels. */
974 #endif
975                 strcpy(elf_platform, "g5");
976                 break;
977         case 0x2064:
978         case 0x2066:
979 #if defined(CONFIG_64BIT)
980         default:        /* Use "z900" as default for 64 bit kernels. */
981 #endif
982                 strcpy(elf_platform, "z900");
983                 break;
984         case 0x2084:
985         case 0x2086:
986                 strcpy(elf_platform, "z990");
987                 break;
988         case 0x2094:
989         case 0x2096:
990                 strcpy(elf_platform, "z9-109");
991                 break;
992         case 0x2097:
993         case 0x2098:
994                 strcpy(elf_platform, "z10");
995                 break;
996         case 0x2817:
997         case 0x2818:
998                 strcpy(elf_platform, "z196");
999                 break;
1000         case 0x2827:
1001                 strcpy(elf_platform, "zEC12");
1002                 break;
1003         }
1004 }
1005
1006 /*
1007  * Setup function called from init/main.c just after the banner
1008  * was printed.
1009  */
1010
1011 void __init setup_arch(char **cmdline_p)
1012 {
1013         /*
1014          * print what head.S has found out about the machine
1015          */
1016 #ifndef CONFIG_64BIT
1017         if (MACHINE_IS_VM)
1018                 pr_info("Linux is running as a z/VM "
1019                         "guest operating system in 31-bit mode\n");
1020         else if (MACHINE_IS_LPAR)
1021                 pr_info("Linux is running natively in 31-bit mode\n");
1022         if (MACHINE_HAS_IEEE)
1023                 pr_info("The hardware system has IEEE compatible "
1024                         "floating point units\n");
1025         else
1026                 pr_info("The hardware system has no IEEE compatible "
1027                         "floating point units\n");
1028 #else /* CONFIG_64BIT */
1029         if (MACHINE_IS_VM)
1030                 pr_info("Linux is running as a z/VM "
1031                         "guest operating system in 64-bit mode\n");
1032         else if (MACHINE_IS_KVM)
1033                 pr_info("Linux is running under KVM in 64-bit mode\n");
1034         else if (MACHINE_IS_LPAR)
1035                 pr_info("Linux is running natively in 64-bit mode\n");
1036 #endif /* CONFIG_64BIT */
1037
1038         /* Have one command line that is parsed and saved in /proc/cmdline */
1039         /* boot_command_line has been already set up in early.c */
1040         *cmdline_p = boot_command_line;
1041
1042         ROOT_DEV = Root_RAM0;
1043
1044         init_mm.start_code = PAGE_OFFSET;
1045         init_mm.end_code = (unsigned long) &_etext;
1046         init_mm.end_data = (unsigned long) &_edata;
1047         init_mm.brk = (unsigned long) &_end;
1048
1049         if (MACHINE_HAS_MVCOS)
1050                 memcpy(&uaccess, &uaccess_mvcos, sizeof(uaccess));
1051         else
1052                 memcpy(&uaccess, &uaccess_std, sizeof(uaccess));
1053
1054         parse_early_param();
1055         detect_memory_layout(memory_chunk, memory_end);
1056         os_info_init();
1057         setup_ipl();
1058         reserve_oldmem();
1059         setup_memory_end();
1060         setup_addressing_mode();
1061         reserve_crashkernel();
1062         setup_memory();
1063         setup_resources();
1064         setup_vmcoreinfo();
1065         setup_lowcore();
1066
1067         cpu_init();
1068         s390_init_cpu_topology();
1069
1070         /*
1071          * Setup capabilities (ELF_HWCAP & ELF_PLATFORM).
1072          */
1073         setup_hwcaps();
1074
1075         /*
1076          * Create kernel page tables and switch to virtual addressing.
1077          */
1078         paging_init();
1079
1080         /* Setup default console */
1081         conmode_default();
1082         set_preferred_console();
1083
1084         /* Setup zfcpdump support */
1085         setup_zfcpdump();
1086 }