Merge remote-tracking branch 'lsk/v3.10/topic/gator' into linux-linaro-lsk
[firefly-linux-kernel-4.4.55.git] / arch / powerpc / mm / numa.c
1 /*
2  * pSeries NUMA support
3  *
4  * Copyright (C) 2002 Anton Blanchard <anton@au.ibm.com>, IBM
5  *
6  * This program is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU General Public License
8  * as published by the Free Software Foundation; either version
9  * 2 of the License, or (at your option) any later version.
10  */
11 #include <linux/threads.h>
12 #include <linux/bootmem.h>
13 #include <linux/init.h>
14 #include <linux/mm.h>
15 #include <linux/mmzone.h>
16 #include <linux/export.h>
17 #include <linux/nodemask.h>
18 #include <linux/cpu.h>
19 #include <linux/notifier.h>
20 #include <linux/memblock.h>
21 #include <linux/of.h>
22 #include <linux/pfn.h>
23 #include <linux/cpuset.h>
24 #include <linux/node.h>
25 #include <linux/stop_machine.h>
26 #include <linux/proc_fs.h>
27 #include <linux/seq_file.h>
28 #include <linux/uaccess.h>
29 #include <linux/slab.h>
30 #include <asm/cputhreads.h>
31 #include <asm/sparsemem.h>
32 #include <asm/prom.h>
33 #include <asm/smp.h>
34 #include <asm/cputhreads.h>
35 #include <asm/topology.h>
36 #include <asm/firmware.h>
37 #include <asm/paca.h>
38 #include <asm/hvcall.h>
39 #include <asm/setup.h>
40 #include <asm/vdso.h>
41
42 static int numa_enabled = 1;
43
44 static char *cmdline __initdata;
45
46 static int numa_debug;
47 #define dbg(args...) if (numa_debug) { printk(KERN_INFO args); }
48
49 int numa_cpu_lookup_table[NR_CPUS];
50 cpumask_var_t node_to_cpumask_map[MAX_NUMNODES];
51 struct pglist_data *node_data[MAX_NUMNODES];
52
53 EXPORT_SYMBOL(numa_cpu_lookup_table);
54 EXPORT_SYMBOL(node_to_cpumask_map);
55 EXPORT_SYMBOL(node_data);
56
57 static int min_common_depth;
58 static int n_mem_addr_cells, n_mem_size_cells;
59 static int form1_affinity;
60
61 #define MAX_DISTANCE_REF_POINTS 4
62 static int distance_ref_points_depth;
63 static const unsigned int *distance_ref_points;
64 static int distance_lookup_table[MAX_NUMNODES][MAX_DISTANCE_REF_POINTS];
65
66 /*
67  * Allocate node_to_cpumask_map based on number of available nodes
68  * Requires node_possible_map to be valid.
69  *
70  * Note: cpumask_of_node() is not valid until after this is done.
71  */
72 static void __init setup_node_to_cpumask_map(void)
73 {
74         unsigned int node;
75
76         /* setup nr_node_ids if not done yet */
77         if (nr_node_ids == MAX_NUMNODES)
78                 setup_nr_node_ids();
79
80         /* allocate the map */
81         for (node = 0; node < nr_node_ids; node++)
82                 alloc_bootmem_cpumask_var(&node_to_cpumask_map[node]);
83
84         /* cpumask_of_node() will now work */
85         dbg("Node to cpumask map for %d nodes\n", nr_node_ids);
86 }
87
88 static int __init fake_numa_create_new_node(unsigned long end_pfn,
89                                                 unsigned int *nid)
90 {
91         unsigned long long mem;
92         char *p = cmdline;
93         static unsigned int fake_nid;
94         static unsigned long long curr_boundary;
95
96         /*
97          * Modify node id, iff we started creating NUMA nodes
98          * We want to continue from where we left of the last time
99          */
100         if (fake_nid)
101                 *nid = fake_nid;
102         /*
103          * In case there are no more arguments to parse, the
104          * node_id should be the same as the last fake node id
105          * (we've handled this above).
106          */
107         if (!p)
108                 return 0;
109
110         mem = memparse(p, &p);
111         if (!mem)
112                 return 0;
113
114         if (mem < curr_boundary)
115                 return 0;
116
117         curr_boundary = mem;
118
119         if ((end_pfn << PAGE_SHIFT) > mem) {
120                 /*
121                  * Skip commas and spaces
122                  */
123                 while (*p == ',' || *p == ' ' || *p == '\t')
124                         p++;
125
126                 cmdline = p;
127                 fake_nid++;
128                 *nid = fake_nid;
129                 dbg("created new fake_node with id %d\n", fake_nid);
130                 return 1;
131         }
132         return 0;
133 }
134
135 /*
136  * get_node_active_region - Return active region containing pfn
137  * Active range returned is empty if none found.
138  * @pfn: The page to return the region for
139  * @node_ar: Returned set to the active region containing @pfn
140  */
141 static void __init get_node_active_region(unsigned long pfn,
142                                           struct node_active_region *node_ar)
143 {
144         unsigned long start_pfn, end_pfn;
145         int i, nid;
146
147         for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
148                 if (pfn >= start_pfn && pfn < end_pfn) {
149                         node_ar->nid = nid;
150                         node_ar->start_pfn = start_pfn;
151                         node_ar->end_pfn = end_pfn;
152                         break;
153                 }
154         }
155 }
156
157 static void reset_numa_cpu_lookup_table(void)
158 {
159         unsigned int cpu;
160
161         for_each_possible_cpu(cpu)
162                 numa_cpu_lookup_table[cpu] = -1;
163 }
164
165 static void update_numa_cpu_lookup_table(unsigned int cpu, int node)
166 {
167         numa_cpu_lookup_table[cpu] = node;
168 }
169
170 static void map_cpu_to_node(int cpu, int node)
171 {
172         update_numa_cpu_lookup_table(cpu, node);
173
174         dbg("adding cpu %d to node %d\n", cpu, node);
175
176         if (!(cpumask_test_cpu(cpu, node_to_cpumask_map[node])))
177                 cpumask_set_cpu(cpu, node_to_cpumask_map[node]);
178 }
179
180 #if defined(CONFIG_HOTPLUG_CPU) || defined(CONFIG_PPC_SPLPAR)
181 static void unmap_cpu_from_node(unsigned long cpu)
182 {
183         int node = numa_cpu_lookup_table[cpu];
184
185         dbg("removing cpu %lu from node %d\n", cpu, node);
186
187         if (cpumask_test_cpu(cpu, node_to_cpumask_map[node])) {
188                 cpumask_clear_cpu(cpu, node_to_cpumask_map[node]);
189         } else {
190                 printk(KERN_ERR "WARNING: cpu %lu not found in node %d\n",
191                        cpu, node);
192         }
193 }
194 #endif /* CONFIG_HOTPLUG_CPU || CONFIG_PPC_SPLPAR */
195
196 /* must hold reference to node during call */
197 static const int *of_get_associativity(struct device_node *dev)
198 {
199         return of_get_property(dev, "ibm,associativity", NULL);
200 }
201
202 /*
203  * Returns the property linux,drconf-usable-memory if
204  * it exists (the property exists only in kexec/kdump kernels,
205  * added by kexec-tools)
206  */
207 static const u32 *of_get_usable_memory(struct device_node *memory)
208 {
209         const u32 *prop;
210         u32 len;
211         prop = of_get_property(memory, "linux,drconf-usable-memory", &len);
212         if (!prop || len < sizeof(unsigned int))
213                 return 0;
214         return prop;
215 }
216
217 int __node_distance(int a, int b)
218 {
219         int i;
220         int distance = LOCAL_DISTANCE;
221
222         if (!form1_affinity)
223                 return ((a == b) ? LOCAL_DISTANCE : REMOTE_DISTANCE);
224
225         for (i = 0; i < distance_ref_points_depth; i++) {
226                 if (distance_lookup_table[a][i] == distance_lookup_table[b][i])
227                         break;
228
229                 /* Double the distance for each NUMA level */
230                 distance *= 2;
231         }
232
233         return distance;
234 }
235
236 static void initialize_distance_lookup_table(int nid,
237                 const unsigned int *associativity)
238 {
239         int i;
240
241         if (!form1_affinity)
242                 return;
243
244         for (i = 0; i < distance_ref_points_depth; i++) {
245                 distance_lookup_table[nid][i] =
246                         associativity[distance_ref_points[i]];
247         }
248 }
249
250 /* Returns nid in the range [0..MAX_NUMNODES-1], or -1 if no useful numa
251  * info is found.
252  */
253 static int associativity_to_nid(const unsigned int *associativity)
254 {
255         int nid = -1;
256
257         if (min_common_depth == -1)
258                 goto out;
259
260         if (associativity[0] >= min_common_depth)
261                 nid = associativity[min_common_depth];
262
263         /* POWER4 LPAR uses 0xffff as invalid node */
264         if (nid == 0xffff || nid >= MAX_NUMNODES)
265                 nid = -1;
266
267         if (nid > 0 && associativity[0] >= distance_ref_points_depth)
268                 initialize_distance_lookup_table(nid, associativity);
269
270 out:
271         return nid;
272 }
273
274 /* Returns the nid associated with the given device tree node,
275  * or -1 if not found.
276  */
277 static int of_node_to_nid_single(struct device_node *device)
278 {
279         int nid = -1;
280         const unsigned int *tmp;
281
282         tmp = of_get_associativity(device);
283         if (tmp)
284                 nid = associativity_to_nid(tmp);
285         return nid;
286 }
287
288 /* Walk the device tree upwards, looking for an associativity id */
289 int of_node_to_nid(struct device_node *device)
290 {
291         struct device_node *tmp;
292         int nid = -1;
293
294         of_node_get(device);
295         while (device) {
296                 nid = of_node_to_nid_single(device);
297                 if (nid != -1)
298                         break;
299
300                 tmp = device;
301                 device = of_get_parent(tmp);
302                 of_node_put(tmp);
303         }
304         of_node_put(device);
305
306         return nid;
307 }
308 EXPORT_SYMBOL_GPL(of_node_to_nid);
309
310 static int __init find_min_common_depth(void)
311 {
312         int depth;
313         struct device_node *root;
314
315         if (firmware_has_feature(FW_FEATURE_OPAL))
316                 root = of_find_node_by_path("/ibm,opal");
317         else
318                 root = of_find_node_by_path("/rtas");
319         if (!root)
320                 root = of_find_node_by_path("/");
321
322         /*
323          * This property is a set of 32-bit integers, each representing
324          * an index into the ibm,associativity nodes.
325          *
326          * With form 0 affinity the first integer is for an SMP configuration
327          * (should be all 0's) and the second is for a normal NUMA
328          * configuration. We have only one level of NUMA.
329          *
330          * With form 1 affinity the first integer is the most significant
331          * NUMA boundary and the following are progressively less significant
332          * boundaries. There can be more than one level of NUMA.
333          */
334         distance_ref_points = of_get_property(root,
335                                         "ibm,associativity-reference-points",
336                                         &distance_ref_points_depth);
337
338         if (!distance_ref_points) {
339                 dbg("NUMA: ibm,associativity-reference-points not found.\n");
340                 goto err;
341         }
342
343         distance_ref_points_depth /= sizeof(int);
344
345         if (firmware_has_feature(FW_FEATURE_OPAL) ||
346             firmware_has_feature(FW_FEATURE_TYPE1_AFFINITY)) {
347                 dbg("Using form 1 affinity\n");
348                 form1_affinity = 1;
349         }
350
351         if (form1_affinity) {
352                 depth = distance_ref_points[0];
353         } else {
354                 if (distance_ref_points_depth < 2) {
355                         printk(KERN_WARNING "NUMA: "
356                                 "short ibm,associativity-reference-points\n");
357                         goto err;
358                 }
359
360                 depth = distance_ref_points[1];
361         }
362
363         /*
364          * Warn and cap if the hardware supports more than
365          * MAX_DISTANCE_REF_POINTS domains.
366          */
367         if (distance_ref_points_depth > MAX_DISTANCE_REF_POINTS) {
368                 printk(KERN_WARNING "NUMA: distance array capped at "
369                         "%d entries\n", MAX_DISTANCE_REF_POINTS);
370                 distance_ref_points_depth = MAX_DISTANCE_REF_POINTS;
371         }
372
373         of_node_put(root);
374         return depth;
375
376 err:
377         of_node_put(root);
378         return -1;
379 }
380
381 static void __init get_n_mem_cells(int *n_addr_cells, int *n_size_cells)
382 {
383         struct device_node *memory = NULL;
384
385         memory = of_find_node_by_type(memory, "memory");
386         if (!memory)
387                 panic("numa.c: No memory nodes found!");
388
389         *n_addr_cells = of_n_addr_cells(memory);
390         *n_size_cells = of_n_size_cells(memory);
391         of_node_put(memory);
392 }
393
394 static unsigned long read_n_cells(int n, const unsigned int **buf)
395 {
396         unsigned long result = 0;
397
398         while (n--) {
399                 result = (result << 32) | **buf;
400                 (*buf)++;
401         }
402         return result;
403 }
404
405 /*
406  * Read the next memblock list entry from the ibm,dynamic-memory property
407  * and return the information in the provided of_drconf_cell structure.
408  */
409 static void read_drconf_cell(struct of_drconf_cell *drmem, const u32 **cellp)
410 {
411         const u32 *cp;
412
413         drmem->base_addr = read_n_cells(n_mem_addr_cells, cellp);
414
415         cp = *cellp;
416         drmem->drc_index = cp[0];
417         drmem->reserved = cp[1];
418         drmem->aa_index = cp[2];
419         drmem->flags = cp[3];
420
421         *cellp = cp + 4;
422 }
423
424 /*
425  * Retrieve and validate the ibm,dynamic-memory property of the device tree.
426  *
427  * The layout of the ibm,dynamic-memory property is a number N of memblock
428  * list entries followed by N memblock list entries.  Each memblock list entry
429  * contains information as laid out in the of_drconf_cell struct above.
430  */
431 static int of_get_drconf_memory(struct device_node *memory, const u32 **dm)
432 {
433         const u32 *prop;
434         u32 len, entries;
435
436         prop = of_get_property(memory, "ibm,dynamic-memory", &len);
437         if (!prop || len < sizeof(unsigned int))
438                 return 0;
439
440         entries = *prop++;
441
442         /* Now that we know the number of entries, revalidate the size
443          * of the property read in to ensure we have everything
444          */
445         if (len < (entries * (n_mem_addr_cells + 4) + 1) * sizeof(unsigned int))
446                 return 0;
447
448         *dm = prop;
449         return entries;
450 }
451
452 /*
453  * Retrieve and validate the ibm,lmb-size property for drconf memory
454  * from the device tree.
455  */
456 static u64 of_get_lmb_size(struct device_node *memory)
457 {
458         const u32 *prop;
459         u32 len;
460
461         prop = of_get_property(memory, "ibm,lmb-size", &len);
462         if (!prop || len < sizeof(unsigned int))
463                 return 0;
464
465         return read_n_cells(n_mem_size_cells, &prop);
466 }
467
468 struct assoc_arrays {
469         u32     n_arrays;
470         u32     array_sz;
471         const u32 *arrays;
472 };
473
474 /*
475  * Retrieve and validate the list of associativity arrays for drconf
476  * memory from the ibm,associativity-lookup-arrays property of the
477  * device tree..
478  *
479  * The layout of the ibm,associativity-lookup-arrays property is a number N
480  * indicating the number of associativity arrays, followed by a number M
481  * indicating the size of each associativity array, followed by a list
482  * of N associativity arrays.
483  */
484 static int of_get_assoc_arrays(struct device_node *memory,
485                                struct assoc_arrays *aa)
486 {
487         const u32 *prop;
488         u32 len;
489
490         prop = of_get_property(memory, "ibm,associativity-lookup-arrays", &len);
491         if (!prop || len < 2 * sizeof(unsigned int))
492                 return -1;
493
494         aa->n_arrays = *prop++;
495         aa->array_sz = *prop++;
496
497         /* Now that we know the number of arrays and size of each array,
498          * revalidate the size of the property read in.
499          */
500         if (len < (aa->n_arrays * aa->array_sz + 2) * sizeof(unsigned int))
501                 return -1;
502
503         aa->arrays = prop;
504         return 0;
505 }
506
507 /*
508  * This is like of_node_to_nid_single() for memory represented in the
509  * ibm,dynamic-reconfiguration-memory node.
510  */
511 static int of_drconf_to_nid_single(struct of_drconf_cell *drmem,
512                                    struct assoc_arrays *aa)
513 {
514         int default_nid = 0;
515         int nid = default_nid;
516         int index;
517
518         if (min_common_depth > 0 && min_common_depth <= aa->array_sz &&
519             !(drmem->flags & DRCONF_MEM_AI_INVALID) &&
520             drmem->aa_index < aa->n_arrays) {
521                 index = drmem->aa_index * aa->array_sz + min_common_depth - 1;
522                 nid = aa->arrays[index];
523
524                 if (nid == 0xffff || nid >= MAX_NUMNODES)
525                         nid = default_nid;
526         }
527
528         return nid;
529 }
530
531 /*
532  * Figure out to which domain a cpu belongs and stick it there.
533  * Return the id of the domain used.
534  */
535 static int __cpuinit numa_setup_cpu(unsigned long lcpu)
536 {
537         int nid;
538         struct device_node *cpu;
539
540         /*
541          * If a valid cpu-to-node mapping is already available, use it
542          * directly instead of querying the firmware, since it represents
543          * the most recent mapping notified to us by the platform (eg: VPHN).
544          */
545         if ((nid = numa_cpu_lookup_table[lcpu]) >= 0) {
546                 map_cpu_to_node(lcpu, nid);
547                 return nid;
548         }
549
550         cpu = of_get_cpu_node(lcpu, NULL);
551
552         if (!cpu) {
553                 WARN_ON(1);
554                 nid = 0;
555                 goto out;
556         }
557
558         nid = of_node_to_nid_single(cpu);
559
560         if (nid < 0 || !node_online(nid))
561                 nid = first_online_node;
562 out:
563         map_cpu_to_node(lcpu, nid);
564
565         of_node_put(cpu);
566
567         return nid;
568 }
569
570 static int __cpuinit cpu_numa_callback(struct notifier_block *nfb,
571                              unsigned long action,
572                              void *hcpu)
573 {
574         unsigned long lcpu = (unsigned long)hcpu;
575         int ret = NOTIFY_DONE;
576
577         switch (action) {
578         case CPU_UP_PREPARE:
579         case CPU_UP_PREPARE_FROZEN:
580                 numa_setup_cpu(lcpu);
581                 ret = NOTIFY_OK;
582                 break;
583 #ifdef CONFIG_HOTPLUG_CPU
584         case CPU_DEAD:
585         case CPU_DEAD_FROZEN:
586         case CPU_UP_CANCELED:
587         case CPU_UP_CANCELED_FROZEN:
588                 unmap_cpu_from_node(lcpu);
589                 break;
590                 ret = NOTIFY_OK;
591 #endif
592         }
593         return ret;
594 }
595
596 /*
597  * Check and possibly modify a memory region to enforce the memory limit.
598  *
599  * Returns the size the region should have to enforce the memory limit.
600  * This will either be the original value of size, a truncated value,
601  * or zero. If the returned value of size is 0 the region should be
602  * discarded as it lies wholly above the memory limit.
603  */
604 static unsigned long __init numa_enforce_memory_limit(unsigned long start,
605                                                       unsigned long size)
606 {
607         /*
608          * We use memblock_end_of_DRAM() in here instead of memory_limit because
609          * we've already adjusted it for the limit and it takes care of
610          * having memory holes below the limit.  Also, in the case of
611          * iommu_is_off, memory_limit is not set but is implicitly enforced.
612          */
613
614         if (start + size <= memblock_end_of_DRAM())
615                 return size;
616
617         if (start >= memblock_end_of_DRAM())
618                 return 0;
619
620         return memblock_end_of_DRAM() - start;
621 }
622
623 /*
624  * Reads the counter for a given entry in
625  * linux,drconf-usable-memory property
626  */
627 static inline int __init read_usm_ranges(const u32 **usm)
628 {
629         /*
630          * For each lmb in ibm,dynamic-memory a corresponding
631          * entry in linux,drconf-usable-memory property contains
632          * a counter followed by that many (base, size) duple.
633          * read the counter from linux,drconf-usable-memory
634          */
635         return read_n_cells(n_mem_size_cells, usm);
636 }
637
638 /*
639  * Extract NUMA information from the ibm,dynamic-reconfiguration-memory
640  * node.  This assumes n_mem_{addr,size}_cells have been set.
641  */
642 static void __init parse_drconf_memory(struct device_node *memory)
643 {
644         const u32 *uninitialized_var(dm), *usm;
645         unsigned int n, rc, ranges, is_kexec_kdump = 0;
646         unsigned long lmb_size, base, size, sz;
647         int nid;
648         struct assoc_arrays aa = { .arrays = NULL };
649
650         n = of_get_drconf_memory(memory, &dm);
651         if (!n)
652                 return;
653
654         lmb_size = of_get_lmb_size(memory);
655         if (!lmb_size)
656                 return;
657
658         rc = of_get_assoc_arrays(memory, &aa);
659         if (rc)
660                 return;
661
662         /* check if this is a kexec/kdump kernel */
663         usm = of_get_usable_memory(memory);
664         if (usm != NULL)
665                 is_kexec_kdump = 1;
666
667         for (; n != 0; --n) {
668                 struct of_drconf_cell drmem;
669
670                 read_drconf_cell(&drmem, &dm);
671
672                 /* skip this block if the reserved bit is set in flags (0x80)
673                    or if the block is not assigned to this partition (0x8) */
674                 if ((drmem.flags & DRCONF_MEM_RESERVED)
675                     || !(drmem.flags & DRCONF_MEM_ASSIGNED))
676                         continue;
677
678                 base = drmem.base_addr;
679                 size = lmb_size;
680                 ranges = 1;
681
682                 if (is_kexec_kdump) {
683                         ranges = read_usm_ranges(&usm);
684                         if (!ranges) /* there are no (base, size) duple */
685                                 continue;
686                 }
687                 do {
688                         if (is_kexec_kdump) {
689                                 base = read_n_cells(n_mem_addr_cells, &usm);
690                                 size = read_n_cells(n_mem_size_cells, &usm);
691                         }
692                         nid = of_drconf_to_nid_single(&drmem, &aa);
693                         fake_numa_create_new_node(
694                                 ((base + size) >> PAGE_SHIFT),
695                                            &nid);
696                         node_set_online(nid);
697                         sz = numa_enforce_memory_limit(base, size);
698                         if (sz)
699                                 memblock_set_node(base, sz, nid);
700                 } while (--ranges);
701         }
702 }
703
704 static int __init parse_numa_properties(void)
705 {
706         struct device_node *memory;
707         int default_nid = 0;
708         unsigned long i;
709
710         if (numa_enabled == 0) {
711                 printk(KERN_WARNING "NUMA disabled by user\n");
712                 return -1;
713         }
714
715         min_common_depth = find_min_common_depth();
716
717         if (min_common_depth < 0)
718                 return min_common_depth;
719
720         dbg("NUMA associativity depth for CPU/Memory: %d\n", min_common_depth);
721
722         /*
723          * Even though we connect cpus to numa domains later in SMP
724          * init, we need to know the node ids now. This is because
725          * each node to be onlined must have NODE_DATA etc backing it.
726          */
727         for_each_present_cpu(i) {
728                 struct device_node *cpu;
729                 int nid;
730
731                 cpu = of_get_cpu_node(i, NULL);
732                 BUG_ON(!cpu);
733                 nid = of_node_to_nid_single(cpu);
734                 of_node_put(cpu);
735
736                 /*
737                  * Don't fall back to default_nid yet -- we will plug
738                  * cpus into nodes once the memory scan has discovered
739                  * the topology.
740                  */
741                 if (nid < 0)
742                         continue;
743                 node_set_online(nid);
744         }
745
746         get_n_mem_cells(&n_mem_addr_cells, &n_mem_size_cells);
747
748         for_each_node_by_type(memory, "memory") {
749                 unsigned long start;
750                 unsigned long size;
751                 int nid;
752                 int ranges;
753                 const unsigned int *memcell_buf;
754                 unsigned int len;
755
756                 memcell_buf = of_get_property(memory,
757                         "linux,usable-memory", &len);
758                 if (!memcell_buf || len <= 0)
759                         memcell_buf = of_get_property(memory, "reg", &len);
760                 if (!memcell_buf || len <= 0)
761                         continue;
762
763                 /* ranges in cell */
764                 ranges = (len >> 2) / (n_mem_addr_cells + n_mem_size_cells);
765 new_range:
766                 /* these are order-sensitive, and modify the buffer pointer */
767                 start = read_n_cells(n_mem_addr_cells, &memcell_buf);
768                 size = read_n_cells(n_mem_size_cells, &memcell_buf);
769
770                 /*
771                  * Assumption: either all memory nodes or none will
772                  * have associativity properties.  If none, then
773                  * everything goes to default_nid.
774                  */
775                 nid = of_node_to_nid_single(memory);
776                 if (nid < 0)
777                         nid = default_nid;
778
779                 fake_numa_create_new_node(((start + size) >> PAGE_SHIFT), &nid);
780                 node_set_online(nid);
781
782                 if (!(size = numa_enforce_memory_limit(start, size))) {
783                         if (--ranges)
784                                 goto new_range;
785                         else
786                                 continue;
787                 }
788
789                 memblock_set_node(start, size, nid);
790
791                 if (--ranges)
792                         goto new_range;
793         }
794
795         /*
796          * Now do the same thing for each MEMBLOCK listed in the
797          * ibm,dynamic-memory property in the
798          * ibm,dynamic-reconfiguration-memory node.
799          */
800         memory = of_find_node_by_path("/ibm,dynamic-reconfiguration-memory");
801         if (memory)
802                 parse_drconf_memory(memory);
803
804         return 0;
805 }
806
807 static void __init setup_nonnuma(void)
808 {
809         unsigned long top_of_ram = memblock_end_of_DRAM();
810         unsigned long total_ram = memblock_phys_mem_size();
811         unsigned long start_pfn, end_pfn;
812         unsigned int nid = 0;
813         struct memblock_region *reg;
814
815         printk(KERN_DEBUG "Top of RAM: 0x%lx, Total RAM: 0x%lx\n",
816                top_of_ram, total_ram);
817         printk(KERN_DEBUG "Memory hole size: %ldMB\n",
818                (top_of_ram - total_ram) >> 20);
819
820         for_each_memblock(memory, reg) {
821                 start_pfn = memblock_region_memory_base_pfn(reg);
822                 end_pfn = memblock_region_memory_end_pfn(reg);
823
824                 fake_numa_create_new_node(end_pfn, &nid);
825                 memblock_set_node(PFN_PHYS(start_pfn),
826                                   PFN_PHYS(end_pfn - start_pfn), nid);
827                 node_set_online(nid);
828         }
829 }
830
831 void __init dump_numa_cpu_topology(void)
832 {
833         unsigned int node;
834         unsigned int cpu, count;
835
836         if (min_common_depth == -1 || !numa_enabled)
837                 return;
838
839         for_each_online_node(node) {
840                 printk(KERN_DEBUG "Node %d CPUs:", node);
841
842                 count = 0;
843                 /*
844                  * If we used a CPU iterator here we would miss printing
845                  * the holes in the cpumap.
846                  */
847                 for (cpu = 0; cpu < nr_cpu_ids; cpu++) {
848                         if (cpumask_test_cpu(cpu,
849                                         node_to_cpumask_map[node])) {
850                                 if (count == 0)
851                                         printk(" %u", cpu);
852                                 ++count;
853                         } else {
854                                 if (count > 1)
855                                         printk("-%u", cpu - 1);
856                                 count = 0;
857                         }
858                 }
859
860                 if (count > 1)
861                         printk("-%u", nr_cpu_ids - 1);
862                 printk("\n");
863         }
864 }
865
866 static void __init dump_numa_memory_topology(void)
867 {
868         unsigned int node;
869         unsigned int count;
870
871         if (min_common_depth == -1 || !numa_enabled)
872                 return;
873
874         for_each_online_node(node) {
875                 unsigned long i;
876
877                 printk(KERN_DEBUG "Node %d Memory:", node);
878
879                 count = 0;
880
881                 for (i = 0; i < memblock_end_of_DRAM();
882                      i += (1 << SECTION_SIZE_BITS)) {
883                         if (early_pfn_to_nid(i >> PAGE_SHIFT) == node) {
884                                 if (count == 0)
885                                         printk(" 0x%lx", i);
886                                 ++count;
887                         } else {
888                                 if (count > 0)
889                                         printk("-0x%lx", i);
890                                 count = 0;
891                         }
892                 }
893
894                 if (count > 0)
895                         printk("-0x%lx", i);
896                 printk("\n");
897         }
898 }
899
900 /*
901  * Allocate some memory, satisfying the memblock or bootmem allocator where
902  * required. nid is the preferred node and end is the physical address of
903  * the highest address in the node.
904  *
905  * Returns the virtual address of the memory.
906  */
907 static void __init *careful_zallocation(int nid, unsigned long size,
908                                        unsigned long align,
909                                        unsigned long end_pfn)
910 {
911         void *ret;
912         int new_nid;
913         unsigned long ret_paddr;
914
915         ret_paddr = __memblock_alloc_base(size, align, end_pfn << PAGE_SHIFT);
916
917         /* retry over all memory */
918         if (!ret_paddr)
919                 ret_paddr = __memblock_alloc_base(size, align, memblock_end_of_DRAM());
920
921         if (!ret_paddr)
922                 panic("numa.c: cannot allocate %lu bytes for node %d",
923                       size, nid);
924
925         ret = __va(ret_paddr);
926
927         /*
928          * We initialize the nodes in numeric order: 0, 1, 2...
929          * and hand over control from the MEMBLOCK allocator to the
930          * bootmem allocator.  If this function is called for
931          * node 5, then we know that all nodes <5 are using the
932          * bootmem allocator instead of the MEMBLOCK allocator.
933          *
934          * So, check the nid from which this allocation came
935          * and double check to see if we need to use bootmem
936          * instead of the MEMBLOCK.  We don't free the MEMBLOCK memory
937          * since it would be useless.
938          */
939         new_nid = early_pfn_to_nid(ret_paddr >> PAGE_SHIFT);
940         if (new_nid < nid) {
941                 ret = __alloc_bootmem_node(NODE_DATA(new_nid),
942                                 size, align, 0);
943
944                 dbg("alloc_bootmem %p %lx\n", ret, size);
945         }
946
947         memset(ret, 0, size);
948         return ret;
949 }
950
951 static struct notifier_block __cpuinitdata ppc64_numa_nb = {
952         .notifier_call = cpu_numa_callback,
953         .priority = 1 /* Must run before sched domains notifier. */
954 };
955
956 static void __init mark_reserved_regions_for_nid(int nid)
957 {
958         struct pglist_data *node = NODE_DATA(nid);
959         struct memblock_region *reg;
960
961         for_each_memblock(reserved, reg) {
962                 unsigned long physbase = reg->base;
963                 unsigned long size = reg->size;
964                 unsigned long start_pfn = physbase >> PAGE_SHIFT;
965                 unsigned long end_pfn = PFN_UP(physbase + size);
966                 struct node_active_region node_ar;
967                 unsigned long node_end_pfn = node->node_start_pfn +
968                                              node->node_spanned_pages;
969
970                 /*
971                  * Check to make sure that this memblock.reserved area is
972                  * within the bounds of the node that we care about.
973                  * Checking the nid of the start and end points is not
974                  * sufficient because the reserved area could span the
975                  * entire node.
976                  */
977                 if (end_pfn <= node->node_start_pfn ||
978                     start_pfn >= node_end_pfn)
979                         continue;
980
981                 get_node_active_region(start_pfn, &node_ar);
982                 while (start_pfn < end_pfn &&
983                         node_ar.start_pfn < node_ar.end_pfn) {
984                         unsigned long reserve_size = size;
985                         /*
986                          * if reserved region extends past active region
987                          * then trim size to active region
988                          */
989                         if (end_pfn > node_ar.end_pfn)
990                                 reserve_size = (node_ar.end_pfn << PAGE_SHIFT)
991                                         - physbase;
992                         /*
993                          * Only worry about *this* node, others may not
994                          * yet have valid NODE_DATA().
995                          */
996                         if (node_ar.nid == nid) {
997                                 dbg("reserve_bootmem %lx %lx nid=%d\n",
998                                         physbase, reserve_size, node_ar.nid);
999                                 reserve_bootmem_node(NODE_DATA(node_ar.nid),
1000                                                 physbase, reserve_size,
1001                                                 BOOTMEM_DEFAULT);
1002                         }
1003                         /*
1004                          * if reserved region is contained in the active region
1005                          * then done.
1006                          */
1007                         if (end_pfn <= node_ar.end_pfn)
1008                                 break;
1009
1010                         /*
1011                          * reserved region extends past the active region
1012                          *   get next active region that contains this
1013                          *   reserved region
1014                          */
1015                         start_pfn = node_ar.end_pfn;
1016                         physbase = start_pfn << PAGE_SHIFT;
1017                         size = size - reserve_size;
1018                         get_node_active_region(start_pfn, &node_ar);
1019                 }
1020         }
1021 }
1022
1023
1024 void __init do_init_bootmem(void)
1025 {
1026         int nid;
1027
1028         min_low_pfn = 0;
1029         max_low_pfn = memblock_end_of_DRAM() >> PAGE_SHIFT;
1030         max_pfn = max_low_pfn;
1031
1032         if (parse_numa_properties())
1033                 setup_nonnuma();
1034         else
1035                 dump_numa_memory_topology();
1036
1037         for_each_online_node(nid) {
1038                 unsigned long start_pfn, end_pfn;
1039                 void *bootmem_vaddr;
1040                 unsigned long bootmap_pages;
1041
1042                 get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
1043
1044                 /*
1045                  * Allocate the node structure node local if possible
1046                  *
1047                  * Be careful moving this around, as it relies on all
1048                  * previous nodes' bootmem to be initialized and have
1049                  * all reserved areas marked.
1050                  */
1051                 NODE_DATA(nid) = careful_zallocation(nid,
1052                                         sizeof(struct pglist_data),
1053                                         SMP_CACHE_BYTES, end_pfn);
1054
1055                 dbg("node %d\n", nid);
1056                 dbg("NODE_DATA() = %p\n", NODE_DATA(nid));
1057
1058                 NODE_DATA(nid)->bdata = &bootmem_node_data[nid];
1059                 NODE_DATA(nid)->node_start_pfn = start_pfn;
1060                 NODE_DATA(nid)->node_spanned_pages = end_pfn - start_pfn;
1061
1062                 if (NODE_DATA(nid)->node_spanned_pages == 0)
1063                         continue;
1064
1065                 dbg("start_paddr = %lx\n", start_pfn << PAGE_SHIFT);
1066                 dbg("end_paddr = %lx\n", end_pfn << PAGE_SHIFT);
1067
1068                 bootmap_pages = bootmem_bootmap_pages(end_pfn - start_pfn);
1069                 bootmem_vaddr = careful_zallocation(nid,
1070                                         bootmap_pages << PAGE_SHIFT,
1071                                         PAGE_SIZE, end_pfn);
1072
1073                 dbg("bootmap_vaddr = %p\n", bootmem_vaddr);
1074
1075                 init_bootmem_node(NODE_DATA(nid),
1076                                   __pa(bootmem_vaddr) >> PAGE_SHIFT,
1077                                   start_pfn, end_pfn);
1078
1079                 free_bootmem_with_active_regions(nid, end_pfn);
1080                 /*
1081                  * Be very careful about moving this around.  Future
1082                  * calls to careful_zallocation() depend on this getting
1083                  * done correctly.
1084                  */
1085                 mark_reserved_regions_for_nid(nid);
1086                 sparse_memory_present_with_active_regions(nid);
1087         }
1088
1089         init_bootmem_done = 1;
1090
1091         /*
1092          * Now bootmem is initialised we can create the node to cpumask
1093          * lookup tables and setup the cpu callback to populate them.
1094          */
1095         setup_node_to_cpumask_map();
1096
1097         reset_numa_cpu_lookup_table();
1098         register_cpu_notifier(&ppc64_numa_nb);
1099         cpu_numa_callback(&ppc64_numa_nb, CPU_UP_PREPARE,
1100                           (void *)(unsigned long)boot_cpuid);
1101 }
1102
1103 void __init paging_init(void)
1104 {
1105         unsigned long max_zone_pfns[MAX_NR_ZONES];
1106         memset(max_zone_pfns, 0, sizeof(max_zone_pfns));
1107         max_zone_pfns[ZONE_DMA] = memblock_end_of_DRAM() >> PAGE_SHIFT;
1108         free_area_init_nodes(max_zone_pfns);
1109 }
1110
1111 static int __init early_numa(char *p)
1112 {
1113         if (!p)
1114                 return 0;
1115
1116         if (strstr(p, "off"))
1117                 numa_enabled = 0;
1118
1119         if (strstr(p, "debug"))
1120                 numa_debug = 1;
1121
1122         p = strstr(p, "fake=");
1123         if (p)
1124                 cmdline = p + strlen("fake=");
1125
1126         return 0;
1127 }
1128 early_param("numa", early_numa);
1129
1130 #ifdef CONFIG_MEMORY_HOTPLUG
1131 /*
1132  * Find the node associated with a hot added memory section for
1133  * memory represented in the device tree by the property
1134  * ibm,dynamic-reconfiguration-memory/ibm,dynamic-memory.
1135  */
1136 static int hot_add_drconf_scn_to_nid(struct device_node *memory,
1137                                      unsigned long scn_addr)
1138 {
1139         const u32 *dm;
1140         unsigned int drconf_cell_cnt, rc;
1141         unsigned long lmb_size;
1142         struct assoc_arrays aa;
1143         int nid = -1;
1144
1145         drconf_cell_cnt = of_get_drconf_memory(memory, &dm);
1146         if (!drconf_cell_cnt)
1147                 return -1;
1148
1149         lmb_size = of_get_lmb_size(memory);
1150         if (!lmb_size)
1151                 return -1;
1152
1153         rc = of_get_assoc_arrays(memory, &aa);
1154         if (rc)
1155                 return -1;
1156
1157         for (; drconf_cell_cnt != 0; --drconf_cell_cnt) {
1158                 struct of_drconf_cell drmem;
1159
1160                 read_drconf_cell(&drmem, &dm);
1161
1162                 /* skip this block if it is reserved or not assigned to
1163                  * this partition */
1164                 if ((drmem.flags & DRCONF_MEM_RESERVED)
1165                     || !(drmem.flags & DRCONF_MEM_ASSIGNED))
1166                         continue;
1167
1168                 if ((scn_addr < drmem.base_addr)
1169                     || (scn_addr >= (drmem.base_addr + lmb_size)))
1170                         continue;
1171
1172                 nid = of_drconf_to_nid_single(&drmem, &aa);
1173                 break;
1174         }
1175
1176         return nid;
1177 }
1178
1179 /*
1180  * Find the node associated with a hot added memory section for memory
1181  * represented in the device tree as a node (i.e. memory@XXXX) for
1182  * each memblock.
1183  */
1184 int hot_add_node_scn_to_nid(unsigned long scn_addr)
1185 {
1186         struct device_node *memory;
1187         int nid = -1;
1188
1189         for_each_node_by_type(memory, "memory") {
1190                 unsigned long start, size;
1191                 int ranges;
1192                 const unsigned int *memcell_buf;
1193                 unsigned int len;
1194
1195                 memcell_buf = of_get_property(memory, "reg", &len);
1196                 if (!memcell_buf || len <= 0)
1197                         continue;
1198
1199                 /* ranges in cell */
1200                 ranges = (len >> 2) / (n_mem_addr_cells + n_mem_size_cells);
1201
1202                 while (ranges--) {
1203                         start = read_n_cells(n_mem_addr_cells, &memcell_buf);
1204                         size = read_n_cells(n_mem_size_cells, &memcell_buf);
1205
1206                         if ((scn_addr < start) || (scn_addr >= (start + size)))
1207                                 continue;
1208
1209                         nid = of_node_to_nid_single(memory);
1210                         break;
1211                 }
1212
1213                 if (nid >= 0)
1214                         break;
1215         }
1216
1217         of_node_put(memory);
1218
1219         return nid;
1220 }
1221
1222 /*
1223  * Find the node associated with a hot added memory section.  Section
1224  * corresponds to a SPARSEMEM section, not an MEMBLOCK.  It is assumed that
1225  * sections are fully contained within a single MEMBLOCK.
1226  */
1227 int hot_add_scn_to_nid(unsigned long scn_addr)
1228 {
1229         struct device_node *memory = NULL;
1230         int nid, found = 0;
1231
1232         if (!numa_enabled || (min_common_depth < 0))
1233                 return first_online_node;
1234
1235         memory = of_find_node_by_path("/ibm,dynamic-reconfiguration-memory");
1236         if (memory) {
1237                 nid = hot_add_drconf_scn_to_nid(memory, scn_addr);
1238                 of_node_put(memory);
1239         } else {
1240                 nid = hot_add_node_scn_to_nid(scn_addr);
1241         }
1242
1243         if (nid < 0 || !node_online(nid))
1244                 nid = first_online_node;
1245
1246         if (NODE_DATA(nid)->node_spanned_pages)
1247                 return nid;
1248
1249         for_each_online_node(nid) {
1250                 if (NODE_DATA(nid)->node_spanned_pages) {
1251                         found = 1;
1252                         break;
1253                 }
1254         }
1255
1256         BUG_ON(!found);
1257         return nid;
1258 }
1259
1260 static u64 hot_add_drconf_memory_max(void)
1261 {
1262         struct device_node *memory = NULL;
1263         unsigned int drconf_cell_cnt = 0;
1264         u64 lmb_size = 0;
1265         const u32 *dm = 0;
1266
1267         memory = of_find_node_by_path("/ibm,dynamic-reconfiguration-memory");
1268         if (memory) {
1269                 drconf_cell_cnt = of_get_drconf_memory(memory, &dm);
1270                 lmb_size = of_get_lmb_size(memory);
1271                 of_node_put(memory);
1272         }
1273         return lmb_size * drconf_cell_cnt;
1274 }
1275
1276 /*
1277  * memory_hotplug_max - return max address of memory that may be added
1278  *
1279  * This is currently only used on systems that support drconfig memory
1280  * hotplug.
1281  */
1282 u64 memory_hotplug_max(void)
1283 {
1284         return max(hot_add_drconf_memory_max(), memblock_end_of_DRAM());
1285 }
1286 #endif /* CONFIG_MEMORY_HOTPLUG */
1287
1288 /* Virtual Processor Home Node (VPHN) support */
1289 #ifdef CONFIG_PPC_SPLPAR
1290 struct topology_update_data {
1291         struct topology_update_data *next;
1292         unsigned int cpu;
1293         int old_nid;
1294         int new_nid;
1295 };
1296
1297 static u8 vphn_cpu_change_counts[NR_CPUS][MAX_DISTANCE_REF_POINTS];
1298 static cpumask_t cpu_associativity_changes_mask;
1299 static int vphn_enabled;
1300 static int prrn_enabled;
1301 static void reset_topology_timer(void);
1302
1303 /*
1304  * Store the current values of the associativity change counters in the
1305  * hypervisor.
1306  */
1307 static void setup_cpu_associativity_change_counters(void)
1308 {
1309         int cpu;
1310
1311         /* The VPHN feature supports a maximum of 8 reference points */
1312         BUILD_BUG_ON(MAX_DISTANCE_REF_POINTS > 8);
1313
1314         for_each_possible_cpu(cpu) {
1315                 int i;
1316                 u8 *counts = vphn_cpu_change_counts[cpu];
1317                 volatile u8 *hypervisor_counts = lppaca[cpu].vphn_assoc_counts;
1318
1319                 for (i = 0; i < distance_ref_points_depth; i++)
1320                         counts[i] = hypervisor_counts[i];
1321         }
1322 }
1323
1324 /*
1325  * The hypervisor maintains a set of 8 associativity change counters in
1326  * the VPA of each cpu that correspond to the associativity levels in the
1327  * ibm,associativity-reference-points property. When an associativity
1328  * level changes, the corresponding counter is incremented.
1329  *
1330  * Set a bit in cpu_associativity_changes_mask for each cpu whose home
1331  * node associativity levels have changed.
1332  *
1333  * Returns the number of cpus with unhandled associativity changes.
1334  */
1335 static int update_cpu_associativity_changes_mask(void)
1336 {
1337         int cpu;
1338         cpumask_t *changes = &cpu_associativity_changes_mask;
1339
1340         for_each_possible_cpu(cpu) {
1341                 int i, changed = 0;
1342                 u8 *counts = vphn_cpu_change_counts[cpu];
1343                 volatile u8 *hypervisor_counts = lppaca[cpu].vphn_assoc_counts;
1344
1345                 for (i = 0; i < distance_ref_points_depth; i++) {
1346                         if (hypervisor_counts[i] != counts[i]) {
1347                                 counts[i] = hypervisor_counts[i];
1348                                 changed = 1;
1349                         }
1350                 }
1351                 if (changed) {
1352                         cpumask_or(changes, changes, cpu_sibling_mask(cpu));
1353                         cpu = cpu_last_thread_sibling(cpu);
1354                 }
1355         }
1356
1357         return cpumask_weight(changes);
1358 }
1359
1360 /*
1361  * 6 64-bit registers unpacked into 12 32-bit associativity values. To form
1362  * the complete property we have to add the length in the first cell.
1363  */
1364 #define VPHN_ASSOC_BUFSIZE (6*sizeof(u64)/sizeof(u32) + 1)
1365
1366 /*
1367  * Convert the associativity domain numbers returned from the hypervisor
1368  * to the sequence they would appear in the ibm,associativity property.
1369  */
1370 static int vphn_unpack_associativity(const long *packed, unsigned int *unpacked)
1371 {
1372         int i, nr_assoc_doms = 0;
1373         const u16 *field = (const u16*) packed;
1374
1375 #define VPHN_FIELD_UNUSED       (0xffff)
1376 #define VPHN_FIELD_MSB          (0x8000)
1377 #define VPHN_FIELD_MASK         (~VPHN_FIELD_MSB)
1378
1379         for (i = 1; i < VPHN_ASSOC_BUFSIZE; i++) {
1380                 if (*field == VPHN_FIELD_UNUSED) {
1381                         /* All significant fields processed, and remaining
1382                          * fields contain the reserved value of all 1's.
1383                          * Just store them.
1384                          */
1385                         unpacked[i] = *((u32*)field);
1386                         field += 2;
1387                 } else if (*field & VPHN_FIELD_MSB) {
1388                         /* Data is in the lower 15 bits of this field */
1389                         unpacked[i] = *field & VPHN_FIELD_MASK;
1390                         field++;
1391                         nr_assoc_doms++;
1392                 } else {
1393                         /* Data is in the lower 15 bits of this field
1394                          * concatenated with the next 16 bit field
1395                          */
1396                         unpacked[i] = *((u32*)field);
1397                         field += 2;
1398                         nr_assoc_doms++;
1399                 }
1400         }
1401
1402         /* The first cell contains the length of the property */
1403         unpacked[0] = nr_assoc_doms;
1404
1405         return nr_assoc_doms;
1406 }
1407
1408 /*
1409  * Retrieve the new associativity information for a virtual processor's
1410  * home node.
1411  */
1412 static long hcall_vphn(unsigned long cpu, unsigned int *associativity)
1413 {
1414         long rc;
1415         long retbuf[PLPAR_HCALL9_BUFSIZE] = {0};
1416         u64 flags = 1;
1417         int hwcpu = get_hard_smp_processor_id(cpu);
1418
1419         rc = plpar_hcall9(H_HOME_NODE_ASSOCIATIVITY, retbuf, flags, hwcpu);
1420         vphn_unpack_associativity(retbuf, associativity);
1421
1422         return rc;
1423 }
1424
1425 static long vphn_get_associativity(unsigned long cpu,
1426                                         unsigned int *associativity)
1427 {
1428         long rc;
1429
1430         rc = hcall_vphn(cpu, associativity);
1431
1432         switch (rc) {
1433         case H_FUNCTION:
1434                 printk(KERN_INFO
1435                         "VPHN is not supported. Disabling polling...\n");
1436                 stop_topology_update();
1437                 break;
1438         case H_HARDWARE:
1439                 printk(KERN_ERR
1440                         "hcall_vphn() experienced a hardware fault "
1441                         "preventing VPHN. Disabling polling...\n");
1442                 stop_topology_update();
1443         }
1444
1445         return rc;
1446 }
1447
1448 /*
1449  * Update the CPU maps and sysfs entries for a single CPU when its NUMA
1450  * characteristics change. This function doesn't perform any locking and is
1451  * only safe to call from stop_machine().
1452  */
1453 static int update_cpu_topology(void *data)
1454 {
1455         struct topology_update_data *update;
1456         unsigned long cpu;
1457
1458         if (!data)
1459                 return -EINVAL;
1460
1461         cpu = smp_processor_id();
1462
1463         for (update = data; update; update = update->next) {
1464                 if (cpu != update->cpu)
1465                         continue;
1466
1467                 unmap_cpu_from_node(update->cpu);
1468                 map_cpu_to_node(update->cpu, update->new_nid);
1469                 vdso_getcpu_init();
1470         }
1471
1472         return 0;
1473 }
1474
1475 static int update_lookup_table(void *data)
1476 {
1477         struct topology_update_data *update;
1478
1479         if (!data)
1480                 return -EINVAL;
1481
1482         /*
1483          * Upon topology update, the numa-cpu lookup table needs to be updated
1484          * for all threads in the core, including offline CPUs, to ensure that
1485          * future hotplug operations respect the cpu-to-node associativity
1486          * properly.
1487          */
1488         for (update = data; update; update = update->next) {
1489                 int nid, base, j;
1490
1491                 nid = update->new_nid;
1492                 base = cpu_first_thread_sibling(update->cpu);
1493
1494                 for (j = 0; j < threads_per_core; j++) {
1495                         update_numa_cpu_lookup_table(base + j, nid);
1496                 }
1497         }
1498
1499         return 0;
1500 }
1501
1502 /*
1503  * Update the node maps and sysfs entries for each cpu whose home node
1504  * has changed. Returns 1 when the topology has changed, and 0 otherwise.
1505  */
1506 int arch_update_cpu_topology(void)
1507 {
1508         unsigned int cpu, sibling, changed = 0;
1509         struct topology_update_data *updates, *ud;
1510         unsigned int associativity[VPHN_ASSOC_BUFSIZE] = {0};
1511         cpumask_t updated_cpus;
1512         struct device *dev;
1513         int weight, new_nid, i = 0;
1514
1515         weight = cpumask_weight(&cpu_associativity_changes_mask);
1516         if (!weight)
1517                 return 0;
1518
1519         updates = kzalloc(weight * (sizeof(*updates)), GFP_KERNEL);
1520         if (!updates)
1521                 return 0;
1522
1523         cpumask_clear(&updated_cpus);
1524
1525         for_each_cpu(cpu, &cpu_associativity_changes_mask) {
1526                 /*
1527                  * If siblings aren't flagged for changes, updates list
1528                  * will be too short. Skip on this update and set for next
1529                  * update.
1530                  */
1531                 if (!cpumask_subset(cpu_sibling_mask(cpu),
1532                                         &cpu_associativity_changes_mask)) {
1533                         pr_info("Sibling bits not set for associativity "
1534                                         "change, cpu%d\n", cpu);
1535                         cpumask_or(&cpu_associativity_changes_mask,
1536                                         &cpu_associativity_changes_mask,
1537                                         cpu_sibling_mask(cpu));
1538                         cpu = cpu_last_thread_sibling(cpu);
1539                         continue;
1540                 }
1541
1542                 /* Use associativity from first thread for all siblings */
1543                 vphn_get_associativity(cpu, associativity);
1544                 new_nid = associativity_to_nid(associativity);
1545                 if (new_nid < 0 || !node_online(new_nid))
1546                         new_nid = first_online_node;
1547
1548                 if (new_nid == numa_cpu_lookup_table[cpu]) {
1549                         cpumask_andnot(&cpu_associativity_changes_mask,
1550                                         &cpu_associativity_changes_mask,
1551                                         cpu_sibling_mask(cpu));
1552                         cpu = cpu_last_thread_sibling(cpu);
1553                         continue;
1554                 }
1555
1556                 for_each_cpu(sibling, cpu_sibling_mask(cpu)) {
1557                         ud = &updates[i++];
1558                         ud->cpu = sibling;
1559                         ud->new_nid = new_nid;
1560                         ud->old_nid = numa_cpu_lookup_table[sibling];
1561                         cpumask_set_cpu(sibling, &updated_cpus);
1562                         if (i < weight)
1563                                 ud->next = &updates[i];
1564                 }
1565                 cpu = cpu_last_thread_sibling(cpu);
1566         }
1567
1568         stop_machine(update_cpu_topology, &updates[0], &updated_cpus);
1569
1570         /*
1571          * Update the numa-cpu lookup table with the new mappings, even for
1572          * offline CPUs. It is best to perform this update from the stop-
1573          * machine context.
1574          */
1575         stop_machine(update_lookup_table, &updates[0],
1576                                         cpumask_of(raw_smp_processor_id()));
1577
1578         for (ud = &updates[0]; ud; ud = ud->next) {
1579                 unregister_cpu_under_node(ud->cpu, ud->old_nid);
1580                 register_cpu_under_node(ud->cpu, ud->new_nid);
1581
1582                 dev = get_cpu_device(ud->cpu);
1583                 if (dev)
1584                         kobject_uevent(&dev->kobj, KOBJ_CHANGE);
1585                 cpumask_clear_cpu(ud->cpu, &cpu_associativity_changes_mask);
1586                 changed = 1;
1587         }
1588
1589         kfree(updates);
1590         return changed;
1591 }
1592
1593 static void topology_work_fn(struct work_struct *work)
1594 {
1595         rebuild_sched_domains();
1596 }
1597 static DECLARE_WORK(topology_work, topology_work_fn);
1598
1599 void topology_schedule_update(void)
1600 {
1601         schedule_work(&topology_work);
1602 }
1603
1604 static void topology_timer_fn(unsigned long ignored)
1605 {
1606         if (prrn_enabled && cpumask_weight(&cpu_associativity_changes_mask))
1607                 topology_schedule_update();
1608         else if (vphn_enabled) {
1609                 if (update_cpu_associativity_changes_mask() > 0)
1610                         topology_schedule_update();
1611                 reset_topology_timer();
1612         }
1613 }
1614 static struct timer_list topology_timer =
1615         TIMER_INITIALIZER(topology_timer_fn, 0, 0);
1616
1617 static void reset_topology_timer(void)
1618 {
1619         topology_timer.data = 0;
1620         topology_timer.expires = jiffies + 60 * HZ;
1621         mod_timer(&topology_timer, topology_timer.expires);
1622 }
1623
1624 #ifdef CONFIG_SMP
1625
1626 static void stage_topology_update(int core_id)
1627 {
1628         cpumask_or(&cpu_associativity_changes_mask,
1629                 &cpu_associativity_changes_mask, cpu_sibling_mask(core_id));
1630         reset_topology_timer();
1631 }
1632
1633 static int dt_update_callback(struct notifier_block *nb,
1634                                 unsigned long action, void *data)
1635 {
1636         struct of_prop_reconfig *update;
1637         int rc = NOTIFY_DONE;
1638
1639         switch (action) {
1640         case OF_RECONFIG_UPDATE_PROPERTY:
1641                 update = (struct of_prop_reconfig *)data;
1642                 if (!of_prop_cmp(update->dn->type, "cpu") &&
1643                     !of_prop_cmp(update->prop->name, "ibm,associativity")) {
1644                         u32 core_id;
1645                         of_property_read_u32(update->dn, "reg", &core_id);
1646                         stage_topology_update(core_id);
1647                         rc = NOTIFY_OK;
1648                 }
1649                 break;
1650         }
1651
1652         return rc;
1653 }
1654
1655 static struct notifier_block dt_update_nb = {
1656         .notifier_call = dt_update_callback,
1657 };
1658
1659 #endif
1660
1661 /*
1662  * Start polling for associativity changes.
1663  */
1664 int start_topology_update(void)
1665 {
1666         int rc = 0;
1667
1668         if (firmware_has_feature(FW_FEATURE_PRRN)) {
1669                 if (!prrn_enabled) {
1670                         prrn_enabled = 1;
1671                         vphn_enabled = 0;
1672 #ifdef CONFIG_SMP
1673                         rc = of_reconfig_notifier_register(&dt_update_nb);
1674 #endif
1675                 }
1676         } else if (firmware_has_feature(FW_FEATURE_VPHN) &&
1677                    get_lppaca()->shared_proc) {
1678                 if (!vphn_enabled) {
1679                         prrn_enabled = 0;
1680                         vphn_enabled = 1;
1681                         setup_cpu_associativity_change_counters();
1682                         init_timer_deferrable(&topology_timer);
1683                         reset_topology_timer();
1684                 }
1685         }
1686
1687         return rc;
1688 }
1689
1690 /*
1691  * Disable polling for VPHN associativity changes.
1692  */
1693 int stop_topology_update(void)
1694 {
1695         int rc = 0;
1696
1697         if (prrn_enabled) {
1698                 prrn_enabled = 0;
1699 #ifdef CONFIG_SMP
1700                 rc = of_reconfig_notifier_unregister(&dt_update_nb);
1701 #endif
1702         } else if (vphn_enabled) {
1703                 vphn_enabled = 0;
1704                 rc = del_timer_sync(&topology_timer);
1705         }
1706
1707         return rc;
1708 }
1709
1710 int prrn_is_enabled(void)
1711 {
1712         return prrn_enabled;
1713 }
1714
1715 static int topology_read(struct seq_file *file, void *v)
1716 {
1717         if (vphn_enabled || prrn_enabled)
1718                 seq_puts(file, "on\n");
1719         else
1720                 seq_puts(file, "off\n");
1721
1722         return 0;
1723 }
1724
1725 static int topology_open(struct inode *inode, struct file *file)
1726 {
1727         return single_open(file, topology_read, NULL);
1728 }
1729
1730 static ssize_t topology_write(struct file *file, const char __user *buf,
1731                               size_t count, loff_t *off)
1732 {
1733         char kbuf[4]; /* "on" or "off" plus null. */
1734         int read_len;
1735
1736         read_len = count < 3 ? count : 3;
1737         if (copy_from_user(kbuf, buf, read_len))
1738                 return -EINVAL;
1739
1740         kbuf[read_len] = '\0';
1741
1742         if (!strncmp(kbuf, "on", 2))
1743                 start_topology_update();
1744         else if (!strncmp(kbuf, "off", 3))
1745                 stop_topology_update();
1746         else
1747                 return -EINVAL;
1748
1749         return count;
1750 }
1751
1752 static const struct file_operations topology_ops = {
1753         .read = seq_read,
1754         .write = topology_write,
1755         .open = topology_open,
1756         .release = single_release
1757 };
1758
1759 static int topology_update_init(void)
1760 {
1761         start_topology_update();
1762         proc_create("powerpc/topology_updates", 644, NULL, &topology_ops);
1763
1764         return 0;
1765 }
1766 device_initcall(topology_update_init);
1767 #endif /* CONFIG_PPC_SPLPAR */