spi: mediatek: single device does not require cs_gpios
[firefly-linux-kernel-4.4.55.git] / arch / powerpc / kernel / process.c
1 /*
2  *  Derived from "arch/i386/kernel/process.c"
3  *    Copyright (C) 1995  Linus Torvalds
4  *
5  *  Updated and modified by Cort Dougan (cort@cs.nmt.edu) and
6  *  Paul Mackerras (paulus@cs.anu.edu.au)
7  *
8  *  PowerPC version
9  *    Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org)
10  *
11  *  This program is free software; you can redistribute it and/or
12  *  modify it under the terms of the GNU General Public License
13  *  as published by the Free Software Foundation; either version
14  *  2 of the License, or (at your option) any later version.
15  */
16
17 #include <linux/errno.h>
18 #include <linux/sched.h>
19 #include <linux/kernel.h>
20 #include <linux/mm.h>
21 #include <linux/smp.h>
22 #include <linux/stddef.h>
23 #include <linux/unistd.h>
24 #include <linux/ptrace.h>
25 #include <linux/slab.h>
26 #include <linux/user.h>
27 #include <linux/elf.h>
28 #include <linux/prctl.h>
29 #include <linux/init_task.h>
30 #include <linux/export.h>
31 #include <linux/kallsyms.h>
32 #include <linux/mqueue.h>
33 #include <linux/hardirq.h>
34 #include <linux/utsname.h>
35 #include <linux/ftrace.h>
36 #include <linux/kernel_stat.h>
37 #include <linux/personality.h>
38 #include <linux/random.h>
39 #include <linux/hw_breakpoint.h>
40 #include <linux/uaccess.h>
41
42 #include <asm/pgtable.h>
43 #include <asm/io.h>
44 #include <asm/processor.h>
45 #include <asm/mmu.h>
46 #include <asm/prom.h>
47 #include <asm/machdep.h>
48 #include <asm/time.h>
49 #include <asm/runlatch.h>
50 #include <asm/syscalls.h>
51 #include <asm/switch_to.h>
52 #include <asm/tm.h>
53 #include <asm/debug.h>
54 #ifdef CONFIG_PPC64
55 #include <asm/firmware.h>
56 #endif
57 #include <asm/code-patching.h>
58 #include <linux/kprobes.h>
59 #include <linux/kdebug.h>
60
61 /* Transactional Memory debug */
62 #ifdef TM_DEBUG_SW
63 #define TM_DEBUG(x...) printk(KERN_INFO x)
64 #else
65 #define TM_DEBUG(x...) do { } while(0)
66 #endif
67
68 extern unsigned long _get_SP(void);
69
70 #ifndef CONFIG_SMP
71 struct task_struct *last_task_used_math = NULL;
72 struct task_struct *last_task_used_altivec = NULL;
73 struct task_struct *last_task_used_vsx = NULL;
74 struct task_struct *last_task_used_spe = NULL;
75 #endif
76
77 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
78 void giveup_fpu_maybe_transactional(struct task_struct *tsk)
79 {
80         /*
81          * If we are saving the current thread's registers, and the
82          * thread is in a transactional state, set the TIF_RESTORE_TM
83          * bit so that we know to restore the registers before
84          * returning to userspace.
85          */
86         if (tsk == current && tsk->thread.regs &&
87             MSR_TM_ACTIVE(tsk->thread.regs->msr) &&
88             !test_thread_flag(TIF_RESTORE_TM)) {
89                 tsk->thread.ckpt_regs.msr = tsk->thread.regs->msr;
90                 set_thread_flag(TIF_RESTORE_TM);
91         }
92
93         giveup_fpu(tsk);
94 }
95
96 void giveup_altivec_maybe_transactional(struct task_struct *tsk)
97 {
98         /*
99          * If we are saving the current thread's registers, and the
100          * thread is in a transactional state, set the TIF_RESTORE_TM
101          * bit so that we know to restore the registers before
102          * returning to userspace.
103          */
104         if (tsk == current && tsk->thread.regs &&
105             MSR_TM_ACTIVE(tsk->thread.regs->msr) &&
106             !test_thread_flag(TIF_RESTORE_TM)) {
107                 tsk->thread.ckpt_regs.msr = tsk->thread.regs->msr;
108                 set_thread_flag(TIF_RESTORE_TM);
109         }
110
111         giveup_altivec(tsk);
112 }
113
114 #else
115 #define giveup_fpu_maybe_transactional(tsk)     giveup_fpu(tsk)
116 #define giveup_altivec_maybe_transactional(tsk) giveup_altivec(tsk)
117 #endif /* CONFIG_PPC_TRANSACTIONAL_MEM */
118
119 #ifdef CONFIG_PPC_FPU
120 /*
121  * Make sure the floating-point register state in the
122  * the thread_struct is up to date for task tsk.
123  */
124 void flush_fp_to_thread(struct task_struct *tsk)
125 {
126         if (tsk->thread.regs) {
127                 /*
128                  * We need to disable preemption here because if we didn't,
129                  * another process could get scheduled after the regs->msr
130                  * test but before we have finished saving the FP registers
131                  * to the thread_struct.  That process could take over the
132                  * FPU, and then when we get scheduled again we would store
133                  * bogus values for the remaining FP registers.
134                  */
135                 preempt_disable();
136                 if (tsk->thread.regs->msr & MSR_FP) {
137 #ifdef CONFIG_SMP
138                         /*
139                          * This should only ever be called for current or
140                          * for a stopped child process.  Since we save away
141                          * the FP register state on context switch on SMP,
142                          * there is something wrong if a stopped child appears
143                          * to still have its FP state in the CPU registers.
144                          */
145                         BUG_ON(tsk != current);
146 #endif
147                         giveup_fpu_maybe_transactional(tsk);
148                 }
149                 preempt_enable();
150         }
151 }
152 EXPORT_SYMBOL_GPL(flush_fp_to_thread);
153 #endif /* CONFIG_PPC_FPU */
154
155 void enable_kernel_fp(void)
156 {
157         WARN_ON(preemptible());
158
159 #ifdef CONFIG_SMP
160         if (current->thread.regs && (current->thread.regs->msr & MSR_FP))
161                 giveup_fpu_maybe_transactional(current);
162         else
163                 giveup_fpu(NULL);       /* just enables FP for kernel */
164 #else
165         giveup_fpu_maybe_transactional(last_task_used_math);
166 #endif /* CONFIG_SMP */
167 }
168 EXPORT_SYMBOL(enable_kernel_fp);
169
170 #ifdef CONFIG_ALTIVEC
171 void enable_kernel_altivec(void)
172 {
173         WARN_ON(preemptible());
174
175 #ifdef CONFIG_SMP
176         if (current->thread.regs && (current->thread.regs->msr & MSR_VEC))
177                 giveup_altivec_maybe_transactional(current);
178         else
179                 giveup_altivec_notask();
180 #else
181         giveup_altivec_maybe_transactional(last_task_used_altivec);
182 #endif /* CONFIG_SMP */
183 }
184 EXPORT_SYMBOL(enable_kernel_altivec);
185
186 /*
187  * Make sure the VMX/Altivec register state in the
188  * the thread_struct is up to date for task tsk.
189  */
190 void flush_altivec_to_thread(struct task_struct *tsk)
191 {
192         if (tsk->thread.regs) {
193                 preempt_disable();
194                 if (tsk->thread.regs->msr & MSR_VEC) {
195 #ifdef CONFIG_SMP
196                         BUG_ON(tsk != current);
197 #endif
198                         giveup_altivec_maybe_transactional(tsk);
199                 }
200                 preempt_enable();
201         }
202 }
203 EXPORT_SYMBOL_GPL(flush_altivec_to_thread);
204 #endif /* CONFIG_ALTIVEC */
205
206 #ifdef CONFIG_VSX
207 void enable_kernel_vsx(void)
208 {
209         WARN_ON(preemptible());
210
211 #ifdef CONFIG_SMP
212         if (current->thread.regs && (current->thread.regs->msr & MSR_VSX))
213                 giveup_vsx(current);
214         else
215                 giveup_vsx(NULL);       /* just enable vsx for kernel - force */
216 #else
217         giveup_vsx(last_task_used_vsx);
218 #endif /* CONFIG_SMP */
219 }
220 EXPORT_SYMBOL(enable_kernel_vsx);
221
222 void giveup_vsx(struct task_struct *tsk)
223 {
224         giveup_fpu_maybe_transactional(tsk);
225         giveup_altivec_maybe_transactional(tsk);
226         __giveup_vsx(tsk);
227 }
228 EXPORT_SYMBOL(giveup_vsx);
229
230 void flush_vsx_to_thread(struct task_struct *tsk)
231 {
232         if (tsk->thread.regs) {
233                 preempt_disable();
234                 if (tsk->thread.regs->msr & MSR_VSX) {
235 #ifdef CONFIG_SMP
236                         BUG_ON(tsk != current);
237 #endif
238                         giveup_vsx(tsk);
239                 }
240                 preempt_enable();
241         }
242 }
243 EXPORT_SYMBOL_GPL(flush_vsx_to_thread);
244 #endif /* CONFIG_VSX */
245
246 #ifdef CONFIG_SPE
247
248 void enable_kernel_spe(void)
249 {
250         WARN_ON(preemptible());
251
252 #ifdef CONFIG_SMP
253         if (current->thread.regs && (current->thread.regs->msr & MSR_SPE))
254                 giveup_spe(current);
255         else
256                 giveup_spe(NULL);       /* just enable SPE for kernel - force */
257 #else
258         giveup_spe(last_task_used_spe);
259 #endif /* __SMP __ */
260 }
261 EXPORT_SYMBOL(enable_kernel_spe);
262
263 void flush_spe_to_thread(struct task_struct *tsk)
264 {
265         if (tsk->thread.regs) {
266                 preempt_disable();
267                 if (tsk->thread.regs->msr & MSR_SPE) {
268 #ifdef CONFIG_SMP
269                         BUG_ON(tsk != current);
270 #endif
271                         tsk->thread.spefscr = mfspr(SPRN_SPEFSCR);
272                         giveup_spe(tsk);
273                 }
274                 preempt_enable();
275         }
276 }
277 #endif /* CONFIG_SPE */
278
279 #ifndef CONFIG_SMP
280 /*
281  * If we are doing lazy switching of CPU state (FP, altivec or SPE),
282  * and the current task has some state, discard it.
283  */
284 void discard_lazy_cpu_state(void)
285 {
286         preempt_disable();
287         if (last_task_used_math == current)
288                 last_task_used_math = NULL;
289 #ifdef CONFIG_ALTIVEC
290         if (last_task_used_altivec == current)
291                 last_task_used_altivec = NULL;
292 #endif /* CONFIG_ALTIVEC */
293 #ifdef CONFIG_VSX
294         if (last_task_used_vsx == current)
295                 last_task_used_vsx = NULL;
296 #endif /* CONFIG_VSX */
297 #ifdef CONFIG_SPE
298         if (last_task_used_spe == current)
299                 last_task_used_spe = NULL;
300 #endif
301         preempt_enable();
302 }
303 #endif /* CONFIG_SMP */
304
305 #ifdef CONFIG_PPC_ADV_DEBUG_REGS
306 void do_send_trap(struct pt_regs *regs, unsigned long address,
307                   unsigned long error_code, int signal_code, int breakpt)
308 {
309         siginfo_t info;
310
311         current->thread.trap_nr = signal_code;
312         if (notify_die(DIE_DABR_MATCH, "dabr_match", regs, error_code,
313                         11, SIGSEGV) == NOTIFY_STOP)
314                 return;
315
316         /* Deliver the signal to userspace */
317         info.si_signo = SIGTRAP;
318         info.si_errno = breakpt;        /* breakpoint or watchpoint id */
319         info.si_code = signal_code;
320         info.si_addr = (void __user *)address;
321         force_sig_info(SIGTRAP, &info, current);
322 }
323 #else   /* !CONFIG_PPC_ADV_DEBUG_REGS */
324 void do_break (struct pt_regs *regs, unsigned long address,
325                     unsigned long error_code)
326 {
327         siginfo_t info;
328
329         current->thread.trap_nr = TRAP_HWBKPT;
330         if (notify_die(DIE_DABR_MATCH, "dabr_match", regs, error_code,
331                         11, SIGSEGV) == NOTIFY_STOP)
332                 return;
333
334         if (debugger_break_match(regs))
335                 return;
336
337         /* Clear the breakpoint */
338         hw_breakpoint_disable();
339
340         /* Deliver the signal to userspace */
341         info.si_signo = SIGTRAP;
342         info.si_errno = 0;
343         info.si_code = TRAP_HWBKPT;
344         info.si_addr = (void __user *)address;
345         force_sig_info(SIGTRAP, &info, current);
346 }
347 #endif  /* CONFIG_PPC_ADV_DEBUG_REGS */
348
349 static DEFINE_PER_CPU(struct arch_hw_breakpoint, current_brk);
350
351 #ifdef CONFIG_PPC_ADV_DEBUG_REGS
352 /*
353  * Set the debug registers back to their default "safe" values.
354  */
355 static void set_debug_reg_defaults(struct thread_struct *thread)
356 {
357         thread->debug.iac1 = thread->debug.iac2 = 0;
358 #if CONFIG_PPC_ADV_DEBUG_IACS > 2
359         thread->debug.iac3 = thread->debug.iac4 = 0;
360 #endif
361         thread->debug.dac1 = thread->debug.dac2 = 0;
362 #if CONFIG_PPC_ADV_DEBUG_DVCS > 0
363         thread->debug.dvc1 = thread->debug.dvc2 = 0;
364 #endif
365         thread->debug.dbcr0 = 0;
366 #ifdef CONFIG_BOOKE
367         /*
368          * Force User/Supervisor bits to b11 (user-only MSR[PR]=1)
369          */
370         thread->debug.dbcr1 = DBCR1_IAC1US | DBCR1_IAC2US |
371                         DBCR1_IAC3US | DBCR1_IAC4US;
372         /*
373          * Force Data Address Compare User/Supervisor bits to be User-only
374          * (0b11 MSR[PR]=1) and set all other bits in DBCR2 register to be 0.
375          */
376         thread->debug.dbcr2 = DBCR2_DAC1US | DBCR2_DAC2US;
377 #else
378         thread->debug.dbcr1 = 0;
379 #endif
380 }
381
382 static void prime_debug_regs(struct debug_reg *debug)
383 {
384         /*
385          * We could have inherited MSR_DE from userspace, since
386          * it doesn't get cleared on exception entry.  Make sure
387          * MSR_DE is clear before we enable any debug events.
388          */
389         mtmsr(mfmsr() & ~MSR_DE);
390
391         mtspr(SPRN_IAC1, debug->iac1);
392         mtspr(SPRN_IAC2, debug->iac2);
393 #if CONFIG_PPC_ADV_DEBUG_IACS > 2
394         mtspr(SPRN_IAC3, debug->iac3);
395         mtspr(SPRN_IAC4, debug->iac4);
396 #endif
397         mtspr(SPRN_DAC1, debug->dac1);
398         mtspr(SPRN_DAC2, debug->dac2);
399 #if CONFIG_PPC_ADV_DEBUG_DVCS > 0
400         mtspr(SPRN_DVC1, debug->dvc1);
401         mtspr(SPRN_DVC2, debug->dvc2);
402 #endif
403         mtspr(SPRN_DBCR0, debug->dbcr0);
404         mtspr(SPRN_DBCR1, debug->dbcr1);
405 #ifdef CONFIG_BOOKE
406         mtspr(SPRN_DBCR2, debug->dbcr2);
407 #endif
408 }
409 /*
410  * Unless neither the old or new thread are making use of the
411  * debug registers, set the debug registers from the values
412  * stored in the new thread.
413  */
414 void switch_booke_debug_regs(struct debug_reg *new_debug)
415 {
416         if ((current->thread.debug.dbcr0 & DBCR0_IDM)
417                 || (new_debug->dbcr0 & DBCR0_IDM))
418                         prime_debug_regs(new_debug);
419 }
420 EXPORT_SYMBOL_GPL(switch_booke_debug_regs);
421 #else   /* !CONFIG_PPC_ADV_DEBUG_REGS */
422 #ifndef CONFIG_HAVE_HW_BREAKPOINT
423 static void set_debug_reg_defaults(struct thread_struct *thread)
424 {
425         thread->hw_brk.address = 0;
426         thread->hw_brk.type = 0;
427         set_breakpoint(&thread->hw_brk);
428 }
429 #endif /* !CONFIG_HAVE_HW_BREAKPOINT */
430 #endif  /* CONFIG_PPC_ADV_DEBUG_REGS */
431
432 #ifdef CONFIG_PPC_ADV_DEBUG_REGS
433 static inline int __set_dabr(unsigned long dabr, unsigned long dabrx)
434 {
435         mtspr(SPRN_DAC1, dabr);
436 #ifdef CONFIG_PPC_47x
437         isync();
438 #endif
439         return 0;
440 }
441 #elif defined(CONFIG_PPC_BOOK3S)
442 static inline int __set_dabr(unsigned long dabr, unsigned long dabrx)
443 {
444         mtspr(SPRN_DABR, dabr);
445         if (cpu_has_feature(CPU_FTR_DABRX))
446                 mtspr(SPRN_DABRX, dabrx);
447         return 0;
448 }
449 #else
450 static inline int __set_dabr(unsigned long dabr, unsigned long dabrx)
451 {
452         return -EINVAL;
453 }
454 #endif
455
456 static inline int set_dabr(struct arch_hw_breakpoint *brk)
457 {
458         unsigned long dabr, dabrx;
459
460         dabr = brk->address | (brk->type & HW_BRK_TYPE_DABR);
461         dabrx = ((brk->type >> 3) & 0x7);
462
463         if (ppc_md.set_dabr)
464                 return ppc_md.set_dabr(dabr, dabrx);
465
466         return __set_dabr(dabr, dabrx);
467 }
468
469 static inline int set_dawr(struct arch_hw_breakpoint *brk)
470 {
471         unsigned long dawr, dawrx, mrd;
472
473         dawr = brk->address;
474
475         dawrx  = (brk->type & (HW_BRK_TYPE_READ | HW_BRK_TYPE_WRITE)) \
476                                    << (63 - 58); //* read/write bits */
477         dawrx |= ((brk->type & (HW_BRK_TYPE_TRANSLATE)) >> 2) \
478                                    << (63 - 59); //* translate */
479         dawrx |= (brk->type & (HW_BRK_TYPE_PRIV_ALL)) \
480                                    >> 3; //* PRIM bits */
481         /* dawr length is stored in field MDR bits 48:53.  Matches range in
482            doublewords (64 bits) baised by -1 eg. 0b000000=1DW and
483            0b111111=64DW.
484            brk->len is in bytes.
485            This aligns up to double word size, shifts and does the bias.
486         */
487         mrd = ((brk->len + 7) >> 3) - 1;
488         dawrx |= (mrd & 0x3f) << (63 - 53);
489
490         if (ppc_md.set_dawr)
491                 return ppc_md.set_dawr(dawr, dawrx);
492         mtspr(SPRN_DAWR, dawr);
493         mtspr(SPRN_DAWRX, dawrx);
494         return 0;
495 }
496
497 void __set_breakpoint(struct arch_hw_breakpoint *brk)
498 {
499         memcpy(this_cpu_ptr(&current_brk), brk, sizeof(*brk));
500
501         if (cpu_has_feature(CPU_FTR_DAWR))
502                 set_dawr(brk);
503         else
504                 set_dabr(brk);
505 }
506
507 void set_breakpoint(struct arch_hw_breakpoint *brk)
508 {
509         preempt_disable();
510         __set_breakpoint(brk);
511         preempt_enable();
512 }
513
514 #ifdef CONFIG_PPC64
515 DEFINE_PER_CPU(struct cpu_usage, cpu_usage_array);
516 #endif
517
518 static inline bool hw_brk_match(struct arch_hw_breakpoint *a,
519                               struct arch_hw_breakpoint *b)
520 {
521         if (a->address != b->address)
522                 return false;
523         if (a->type != b->type)
524                 return false;
525         if (a->len != b->len)
526                 return false;
527         return true;
528 }
529
530 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
531 static void tm_reclaim_thread(struct thread_struct *thr,
532                               struct thread_info *ti, uint8_t cause)
533 {
534         unsigned long msr_diff = 0;
535
536         /*
537          * If FP/VSX registers have been already saved to the
538          * thread_struct, move them to the transact_fp array.
539          * We clear the TIF_RESTORE_TM bit since after the reclaim
540          * the thread will no longer be transactional.
541          */
542         if (test_ti_thread_flag(ti, TIF_RESTORE_TM)) {
543                 msr_diff = thr->ckpt_regs.msr & ~thr->regs->msr;
544                 if (msr_diff & MSR_FP)
545                         memcpy(&thr->transact_fp, &thr->fp_state,
546                                sizeof(struct thread_fp_state));
547                 if (msr_diff & MSR_VEC)
548                         memcpy(&thr->transact_vr, &thr->vr_state,
549                                sizeof(struct thread_vr_state));
550                 clear_ti_thread_flag(ti, TIF_RESTORE_TM);
551                 msr_diff &= MSR_FP | MSR_VEC | MSR_VSX | MSR_FE0 | MSR_FE1;
552         }
553
554         tm_reclaim(thr, thr->regs->msr, cause);
555
556         /* Having done the reclaim, we now have the checkpointed
557          * FP/VSX values in the registers.  These might be valid
558          * even if we have previously called enable_kernel_fp() or
559          * flush_fp_to_thread(), so update thr->regs->msr to
560          * indicate their current validity.
561          */
562         thr->regs->msr |= msr_diff;
563 }
564
565 void tm_reclaim_current(uint8_t cause)
566 {
567         tm_enable();
568         tm_reclaim_thread(&current->thread, current_thread_info(), cause);
569 }
570
571 static inline void tm_reclaim_task(struct task_struct *tsk)
572 {
573         /* We have to work out if we're switching from/to a task that's in the
574          * middle of a transaction.
575          *
576          * In switching we need to maintain a 2nd register state as
577          * oldtask->thread.ckpt_regs.  We tm_reclaim(oldproc); this saves the
578          * checkpointed (tbegin) state in ckpt_regs and saves the transactional
579          * (current) FPRs into oldtask->thread.transact_fpr[].
580          *
581          * We also context switch (save) TFHAR/TEXASR/TFIAR in here.
582          */
583         struct thread_struct *thr = &tsk->thread;
584
585         if (!thr->regs)
586                 return;
587
588         if (!MSR_TM_ACTIVE(thr->regs->msr))
589                 goto out_and_saveregs;
590
591         /* Stash the original thread MSR, as giveup_fpu et al will
592          * modify it.  We hold onto it to see whether the task used
593          * FP & vector regs.  If the TIF_RESTORE_TM flag is set,
594          * ckpt_regs.msr is already set.
595          */
596         if (!test_ti_thread_flag(task_thread_info(tsk), TIF_RESTORE_TM))
597                 thr->ckpt_regs.msr = thr->regs->msr;
598
599         TM_DEBUG("--- tm_reclaim on pid %d (NIP=%lx, "
600                  "ccr=%lx, msr=%lx, trap=%lx)\n",
601                  tsk->pid, thr->regs->nip,
602                  thr->regs->ccr, thr->regs->msr,
603                  thr->regs->trap);
604
605         tm_reclaim_thread(thr, task_thread_info(tsk), TM_CAUSE_RESCHED);
606
607         TM_DEBUG("--- tm_reclaim on pid %d complete\n",
608                  tsk->pid);
609
610 out_and_saveregs:
611         /* Always save the regs here, even if a transaction's not active.
612          * This context-switches a thread's TM info SPRs.  We do it here to
613          * be consistent with the restore path (in recheckpoint) which
614          * cannot happen later in _switch().
615          */
616         tm_save_sprs(thr);
617 }
618
619 extern void __tm_recheckpoint(struct thread_struct *thread,
620                               unsigned long orig_msr);
621
622 void tm_recheckpoint(struct thread_struct *thread,
623                      unsigned long orig_msr)
624 {
625         unsigned long flags;
626
627         /* We really can't be interrupted here as the TEXASR registers can't
628          * change and later in the trecheckpoint code, we have a userspace R1.
629          * So let's hard disable over this region.
630          */
631         local_irq_save(flags);
632         hard_irq_disable();
633
634         /* The TM SPRs are restored here, so that TEXASR.FS can be set
635          * before the trecheckpoint and no explosion occurs.
636          */
637         tm_restore_sprs(thread);
638
639         __tm_recheckpoint(thread, orig_msr);
640
641         local_irq_restore(flags);
642 }
643
644 static inline void tm_recheckpoint_new_task(struct task_struct *new)
645 {
646         unsigned long msr;
647
648         if (!cpu_has_feature(CPU_FTR_TM))
649                 return;
650
651         /* Recheckpoint the registers of the thread we're about to switch to.
652          *
653          * If the task was using FP, we non-lazily reload both the original and
654          * the speculative FP register states.  This is because the kernel
655          * doesn't see if/when a TM rollback occurs, so if we take an FP
656          * unavoidable later, we are unable to determine which set of FP regs
657          * need to be restored.
658          */
659         if (!new->thread.regs)
660                 return;
661
662         if (!MSR_TM_ACTIVE(new->thread.regs->msr)){
663                 tm_restore_sprs(&new->thread);
664                 return;
665         }
666         msr = new->thread.ckpt_regs.msr;
667         /* Recheckpoint to restore original checkpointed register state. */
668         TM_DEBUG("*** tm_recheckpoint of pid %d "
669                  "(new->msr 0x%lx, new->origmsr 0x%lx)\n",
670                  new->pid, new->thread.regs->msr, msr);
671
672         /* This loads the checkpointed FP/VEC state, if used */
673         tm_recheckpoint(&new->thread, msr);
674
675         /* This loads the speculative FP/VEC state, if used */
676         if (msr & MSR_FP) {
677                 do_load_up_transact_fpu(&new->thread);
678                 new->thread.regs->msr |=
679                         (MSR_FP | new->thread.fpexc_mode);
680         }
681 #ifdef CONFIG_ALTIVEC
682         if (msr & MSR_VEC) {
683                 do_load_up_transact_altivec(&new->thread);
684                 new->thread.regs->msr |= MSR_VEC;
685         }
686 #endif
687         /* We may as well turn on VSX too since all the state is restored now */
688         if (msr & MSR_VSX)
689                 new->thread.regs->msr |= MSR_VSX;
690
691         TM_DEBUG("*** tm_recheckpoint of pid %d complete "
692                  "(kernel msr 0x%lx)\n",
693                  new->pid, mfmsr());
694 }
695
696 static inline void __switch_to_tm(struct task_struct *prev)
697 {
698         if (cpu_has_feature(CPU_FTR_TM)) {
699                 tm_enable();
700                 tm_reclaim_task(prev);
701         }
702 }
703
704 /*
705  * This is called if we are on the way out to userspace and the
706  * TIF_RESTORE_TM flag is set.  It checks if we need to reload
707  * FP and/or vector state and does so if necessary.
708  * If userspace is inside a transaction (whether active or
709  * suspended) and FP/VMX/VSX instructions have ever been enabled
710  * inside that transaction, then we have to keep them enabled
711  * and keep the FP/VMX/VSX state loaded while ever the transaction
712  * continues.  The reason is that if we didn't, and subsequently
713  * got a FP/VMX/VSX unavailable interrupt inside a transaction,
714  * we don't know whether it's the same transaction, and thus we
715  * don't know which of the checkpointed state and the transactional
716  * state to use.
717  */
718 void restore_tm_state(struct pt_regs *regs)
719 {
720         unsigned long msr_diff;
721
722         clear_thread_flag(TIF_RESTORE_TM);
723         if (!MSR_TM_ACTIVE(regs->msr))
724                 return;
725
726         msr_diff = current->thread.ckpt_regs.msr & ~regs->msr;
727         msr_diff &= MSR_FP | MSR_VEC | MSR_VSX;
728         if (msr_diff & MSR_FP) {
729                 fp_enable();
730                 load_fp_state(&current->thread.fp_state);
731                 regs->msr |= current->thread.fpexc_mode;
732         }
733         if (msr_diff & MSR_VEC) {
734                 vec_enable();
735                 load_vr_state(&current->thread.vr_state);
736         }
737         regs->msr |= msr_diff;
738 }
739
740 #else
741 #define tm_recheckpoint_new_task(new)
742 #define __switch_to_tm(prev)
743 #endif /* CONFIG_PPC_TRANSACTIONAL_MEM */
744
745 struct task_struct *__switch_to(struct task_struct *prev,
746         struct task_struct *new)
747 {
748         struct thread_struct *new_thread, *old_thread;
749         struct task_struct *last;
750 #ifdef CONFIG_PPC_BOOK3S_64
751         struct ppc64_tlb_batch *batch;
752 #endif
753
754         WARN_ON(!irqs_disabled());
755
756         /* Back up the TAR and DSCR across context switches.
757          * Note that the TAR is not available for use in the kernel.  (To
758          * provide this, the TAR should be backed up/restored on exception
759          * entry/exit instead, and be in pt_regs.  FIXME, this should be in
760          * pt_regs anyway (for debug).)
761          * Save the TAR and DSCR here before we do treclaim/trecheckpoint as
762          * these will change them.
763          */
764         save_early_sprs(&prev->thread);
765
766         __switch_to_tm(prev);
767
768 #ifdef CONFIG_SMP
769         /* avoid complexity of lazy save/restore of fpu
770          * by just saving it every time we switch out if
771          * this task used the fpu during the last quantum.
772          *
773          * If it tries to use the fpu again, it'll trap and
774          * reload its fp regs.  So we don't have to do a restore
775          * every switch, just a save.
776          *  -- Cort
777          */
778         if (prev->thread.regs && (prev->thread.regs->msr & MSR_FP))
779                 giveup_fpu(prev);
780 #ifdef CONFIG_ALTIVEC
781         /*
782          * If the previous thread used altivec in the last quantum
783          * (thus changing altivec regs) then save them.
784          * We used to check the VRSAVE register but not all apps
785          * set it, so we don't rely on it now (and in fact we need
786          * to save & restore VSCR even if VRSAVE == 0).  -- paulus
787          *
788          * On SMP we always save/restore altivec regs just to avoid the
789          * complexity of changing processors.
790          *  -- Cort
791          */
792         if (prev->thread.regs && (prev->thread.regs->msr & MSR_VEC))
793                 giveup_altivec(prev);
794 #endif /* CONFIG_ALTIVEC */
795 #ifdef CONFIG_VSX
796         if (prev->thread.regs && (prev->thread.regs->msr & MSR_VSX))
797                 /* VMX and FPU registers are already save here */
798                 __giveup_vsx(prev);
799 #endif /* CONFIG_VSX */
800 #ifdef CONFIG_SPE
801         /*
802          * If the previous thread used spe in the last quantum
803          * (thus changing spe regs) then save them.
804          *
805          * On SMP we always save/restore spe regs just to avoid the
806          * complexity of changing processors.
807          */
808         if ((prev->thread.regs && (prev->thread.regs->msr & MSR_SPE)))
809                 giveup_spe(prev);
810 #endif /* CONFIG_SPE */
811
812 #else  /* CONFIG_SMP */
813 #ifdef CONFIG_ALTIVEC
814         /* Avoid the trap.  On smp this this never happens since
815          * we don't set last_task_used_altivec -- Cort
816          */
817         if (new->thread.regs && last_task_used_altivec == new)
818                 new->thread.regs->msr |= MSR_VEC;
819 #endif /* CONFIG_ALTIVEC */
820 #ifdef CONFIG_VSX
821         if (new->thread.regs && last_task_used_vsx == new)
822                 new->thread.regs->msr |= MSR_VSX;
823 #endif /* CONFIG_VSX */
824 #ifdef CONFIG_SPE
825         /* Avoid the trap.  On smp this this never happens since
826          * we don't set last_task_used_spe
827          */
828         if (new->thread.regs && last_task_used_spe == new)
829                 new->thread.regs->msr |= MSR_SPE;
830 #endif /* CONFIG_SPE */
831
832 #endif /* CONFIG_SMP */
833
834 #ifdef CONFIG_PPC_ADV_DEBUG_REGS
835         switch_booke_debug_regs(&new->thread.debug);
836 #else
837 /*
838  * For PPC_BOOK3S_64, we use the hw-breakpoint interfaces that would
839  * schedule DABR
840  */
841 #ifndef CONFIG_HAVE_HW_BREAKPOINT
842         if (unlikely(!hw_brk_match(this_cpu_ptr(&current_brk), &new->thread.hw_brk)))
843                 __set_breakpoint(&new->thread.hw_brk);
844 #endif /* CONFIG_HAVE_HW_BREAKPOINT */
845 #endif
846
847
848         new_thread = &new->thread;
849         old_thread = &current->thread;
850
851 #ifdef CONFIG_PPC64
852         /*
853          * Collect processor utilization data per process
854          */
855         if (firmware_has_feature(FW_FEATURE_SPLPAR)) {
856                 struct cpu_usage *cu = this_cpu_ptr(&cpu_usage_array);
857                 long unsigned start_tb, current_tb;
858                 start_tb = old_thread->start_tb;
859                 cu->current_tb = current_tb = mfspr(SPRN_PURR);
860                 old_thread->accum_tb += (current_tb - start_tb);
861                 new_thread->start_tb = current_tb;
862         }
863 #endif /* CONFIG_PPC64 */
864
865 #ifdef CONFIG_PPC_BOOK3S_64
866         batch = this_cpu_ptr(&ppc64_tlb_batch);
867         if (batch->active) {
868                 current_thread_info()->local_flags |= _TLF_LAZY_MMU;
869                 if (batch->index)
870                         __flush_tlb_pending(batch);
871                 batch->active = 0;
872         }
873 #endif /* CONFIG_PPC_BOOK3S_64 */
874
875         /*
876          * We can't take a PMU exception inside _switch() since there is a
877          * window where the kernel stack SLB and the kernel stack are out
878          * of sync. Hard disable here.
879          */
880         hard_irq_disable();
881
882         tm_recheckpoint_new_task(new);
883
884         last = _switch(old_thread, new_thread);
885
886 #ifdef CONFIG_PPC_BOOK3S_64
887         if (current_thread_info()->local_flags & _TLF_LAZY_MMU) {
888                 current_thread_info()->local_flags &= ~_TLF_LAZY_MMU;
889                 batch = this_cpu_ptr(&ppc64_tlb_batch);
890                 batch->active = 1;
891         }
892 #endif /* CONFIG_PPC_BOOK3S_64 */
893
894         return last;
895 }
896
897 static int instructions_to_print = 16;
898
899 static void show_instructions(struct pt_regs *regs)
900 {
901         int i;
902         unsigned long pc = regs->nip - (instructions_to_print * 3 / 4 *
903                         sizeof(int));
904
905         printk("Instruction dump:");
906
907         for (i = 0; i < instructions_to_print; i++) {
908                 int instr;
909
910                 if (!(i % 8))
911                         printk("\n");
912
913 #if !defined(CONFIG_BOOKE)
914                 /* If executing with the IMMU off, adjust pc rather
915                  * than print XXXXXXXX.
916                  */
917                 if (!(regs->msr & MSR_IR))
918                         pc = (unsigned long)phys_to_virt(pc);
919 #endif
920
921                 if (!__kernel_text_address(pc) ||
922                      probe_kernel_address((unsigned int __user *)pc, instr)) {
923                         printk(KERN_CONT "XXXXXXXX ");
924                 } else {
925                         if (regs->nip == pc)
926                                 printk(KERN_CONT "<%08x> ", instr);
927                         else
928                                 printk(KERN_CONT "%08x ", instr);
929                 }
930
931                 pc += sizeof(int);
932         }
933
934         printk("\n");
935 }
936
937 static struct regbit {
938         unsigned long bit;
939         const char *name;
940 } msr_bits[] = {
941 #if defined(CONFIG_PPC64) && !defined(CONFIG_BOOKE)
942         {MSR_SF,        "SF"},
943         {MSR_HV,        "HV"},
944 #endif
945         {MSR_VEC,       "VEC"},
946         {MSR_VSX,       "VSX"},
947 #ifdef CONFIG_BOOKE
948         {MSR_CE,        "CE"},
949 #endif
950         {MSR_EE,        "EE"},
951         {MSR_PR,        "PR"},
952         {MSR_FP,        "FP"},
953         {MSR_ME,        "ME"},
954 #ifdef CONFIG_BOOKE
955         {MSR_DE,        "DE"},
956 #else
957         {MSR_SE,        "SE"},
958         {MSR_BE,        "BE"},
959 #endif
960         {MSR_IR,        "IR"},
961         {MSR_DR,        "DR"},
962         {MSR_PMM,       "PMM"},
963 #ifndef CONFIG_BOOKE
964         {MSR_RI,        "RI"},
965         {MSR_LE,        "LE"},
966 #endif
967         {0,             NULL}
968 };
969
970 static void printbits(unsigned long val, struct regbit *bits)
971 {
972         const char *sep = "";
973
974         printk("<");
975         for (; bits->bit; ++bits)
976                 if (val & bits->bit) {
977                         printk("%s%s", sep, bits->name);
978                         sep = ",";
979                 }
980         printk(">");
981 }
982
983 #ifdef CONFIG_PPC64
984 #define REG             "%016lx"
985 #define REGS_PER_LINE   4
986 #define LAST_VOLATILE   13
987 #else
988 #define REG             "%08lx"
989 #define REGS_PER_LINE   8
990 #define LAST_VOLATILE   12
991 #endif
992
993 void show_regs(struct pt_regs * regs)
994 {
995         int i, trap;
996
997         show_regs_print_info(KERN_DEFAULT);
998
999         printk("NIP: "REG" LR: "REG" CTR: "REG"\n",
1000                regs->nip, regs->link, regs->ctr);
1001         printk("REGS: %p TRAP: %04lx   %s  (%s)\n",
1002                regs, regs->trap, print_tainted(), init_utsname()->release);
1003         printk("MSR: "REG" ", regs->msr);
1004         printbits(regs->msr, msr_bits);
1005         printk("  CR: %08lx  XER: %08lx\n", regs->ccr, regs->xer);
1006         trap = TRAP(regs);
1007         if ((regs->trap != 0xc00) && cpu_has_feature(CPU_FTR_CFAR))
1008                 printk("CFAR: "REG" ", regs->orig_gpr3);
1009         if (trap == 0x200 || trap == 0x300 || trap == 0x600)
1010 #if defined(CONFIG_4xx) || defined(CONFIG_BOOKE)
1011                 printk("DEAR: "REG" ESR: "REG" ", regs->dar, regs->dsisr);
1012 #else
1013                 printk("DAR: "REG" DSISR: %08lx ", regs->dar, regs->dsisr);
1014 #endif
1015 #ifdef CONFIG_PPC64
1016         printk("SOFTE: %ld ", regs->softe);
1017 #endif
1018 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1019         if (MSR_TM_ACTIVE(regs->msr))
1020                 printk("\nPACATMSCRATCH: %016llx ", get_paca()->tm_scratch);
1021 #endif
1022
1023         for (i = 0;  i < 32;  i++) {
1024                 if ((i % REGS_PER_LINE) == 0)
1025                         printk("\nGPR%02d: ", i);
1026                 printk(REG " ", regs->gpr[i]);
1027                 if (i == LAST_VOLATILE && !FULL_REGS(regs))
1028                         break;
1029         }
1030         printk("\n");
1031 #ifdef CONFIG_KALLSYMS
1032         /*
1033          * Lookup NIP late so we have the best change of getting the
1034          * above info out without failing
1035          */
1036         printk("NIP ["REG"] %pS\n", regs->nip, (void *)regs->nip);
1037         printk("LR ["REG"] %pS\n", regs->link, (void *)regs->link);
1038 #endif
1039         show_stack(current, (unsigned long *) regs->gpr[1]);
1040         if (!user_mode(regs))
1041                 show_instructions(regs);
1042 }
1043
1044 void exit_thread(void)
1045 {
1046         discard_lazy_cpu_state();
1047 }
1048
1049 void flush_thread(void)
1050 {
1051         discard_lazy_cpu_state();
1052
1053 #ifdef CONFIG_HAVE_HW_BREAKPOINT
1054         flush_ptrace_hw_breakpoint(current);
1055 #else /* CONFIG_HAVE_HW_BREAKPOINT */
1056         set_debug_reg_defaults(&current->thread);
1057 #endif /* CONFIG_HAVE_HW_BREAKPOINT */
1058 }
1059
1060 void
1061 release_thread(struct task_struct *t)
1062 {
1063 }
1064
1065 /*
1066  * this gets called so that we can store coprocessor state into memory and
1067  * copy the current task into the new thread.
1068  */
1069 int arch_dup_task_struct(struct task_struct *dst, struct task_struct *src)
1070 {
1071         flush_fp_to_thread(src);
1072         flush_altivec_to_thread(src);
1073         flush_vsx_to_thread(src);
1074         flush_spe_to_thread(src);
1075         /*
1076          * Flush TM state out so we can copy it.  __switch_to_tm() does this
1077          * flush but it removes the checkpointed state from the current CPU and
1078          * transitions the CPU out of TM mode.  Hence we need to call
1079          * tm_recheckpoint_new_task() (on the same task) to restore the
1080          * checkpointed state back and the TM mode.
1081          */
1082         __switch_to_tm(src);
1083         tm_recheckpoint_new_task(src);
1084
1085         *dst = *src;
1086
1087         clear_task_ebb(dst);
1088
1089         return 0;
1090 }
1091
1092 static void setup_ksp_vsid(struct task_struct *p, unsigned long sp)
1093 {
1094 #ifdef CONFIG_PPC_STD_MMU_64
1095         unsigned long sp_vsid;
1096         unsigned long llp = mmu_psize_defs[mmu_linear_psize].sllp;
1097
1098         if (mmu_has_feature(MMU_FTR_1T_SEGMENT))
1099                 sp_vsid = get_kernel_vsid(sp, MMU_SEGSIZE_1T)
1100                         << SLB_VSID_SHIFT_1T;
1101         else
1102                 sp_vsid = get_kernel_vsid(sp, MMU_SEGSIZE_256M)
1103                         << SLB_VSID_SHIFT;
1104         sp_vsid |= SLB_VSID_KERNEL | llp;
1105         p->thread.ksp_vsid = sp_vsid;
1106 #endif
1107 }
1108
1109 /*
1110  * Copy a thread..
1111  */
1112
1113 /*
1114  * Copy architecture-specific thread state
1115  */
1116 int copy_thread(unsigned long clone_flags, unsigned long usp,
1117                 unsigned long kthread_arg, struct task_struct *p)
1118 {
1119         struct pt_regs *childregs, *kregs;
1120         extern void ret_from_fork(void);
1121         extern void ret_from_kernel_thread(void);
1122         void (*f)(void);
1123         unsigned long sp = (unsigned long)task_stack_page(p) + THREAD_SIZE;
1124
1125         /* Copy registers */
1126         sp -= sizeof(struct pt_regs);
1127         childregs = (struct pt_regs *) sp;
1128         if (unlikely(p->flags & PF_KTHREAD)) {
1129                 /* kernel thread */
1130                 struct thread_info *ti = (void *)task_stack_page(p);
1131                 memset(childregs, 0, sizeof(struct pt_regs));
1132                 childregs->gpr[1] = sp + sizeof(struct pt_regs);
1133                 /* function */
1134                 if (usp)
1135                         childregs->gpr[14] = ppc_function_entry((void *)usp);
1136 #ifdef CONFIG_PPC64
1137                 clear_tsk_thread_flag(p, TIF_32BIT);
1138                 childregs->softe = 1;
1139 #endif
1140                 childregs->gpr[15] = kthread_arg;
1141                 p->thread.regs = NULL;  /* no user register state */
1142                 ti->flags |= _TIF_RESTOREALL;
1143                 f = ret_from_kernel_thread;
1144         } else {
1145                 /* user thread */
1146                 struct pt_regs *regs = current_pt_regs();
1147                 CHECK_FULL_REGS(regs);
1148                 *childregs = *regs;
1149                 if (usp)
1150                         childregs->gpr[1] = usp;
1151                 p->thread.regs = childregs;
1152                 childregs->gpr[3] = 0;  /* Result from fork() */
1153                 if (clone_flags & CLONE_SETTLS) {
1154 #ifdef CONFIG_PPC64
1155                         if (!is_32bit_task())
1156                                 childregs->gpr[13] = childregs->gpr[6];
1157                         else
1158 #endif
1159                                 childregs->gpr[2] = childregs->gpr[6];
1160                 }
1161
1162                 f = ret_from_fork;
1163         }
1164         sp -= STACK_FRAME_OVERHEAD;
1165
1166         /*
1167          * The way this works is that at some point in the future
1168          * some task will call _switch to switch to the new task.
1169          * That will pop off the stack frame created below and start
1170          * the new task running at ret_from_fork.  The new task will
1171          * do some house keeping and then return from the fork or clone
1172          * system call, using the stack frame created above.
1173          */
1174         ((unsigned long *)sp)[0] = 0;
1175         sp -= sizeof(struct pt_regs);
1176         kregs = (struct pt_regs *) sp;
1177         sp -= STACK_FRAME_OVERHEAD;
1178         p->thread.ksp = sp;
1179 #ifdef CONFIG_PPC32
1180         p->thread.ksp_limit = (unsigned long)task_stack_page(p) +
1181                                 _ALIGN_UP(sizeof(struct thread_info), 16);
1182 #endif
1183 #ifdef CONFIG_HAVE_HW_BREAKPOINT
1184         p->thread.ptrace_bps[0] = NULL;
1185 #endif
1186
1187         p->thread.fp_save_area = NULL;
1188 #ifdef CONFIG_ALTIVEC
1189         p->thread.vr_save_area = NULL;
1190 #endif
1191
1192         setup_ksp_vsid(p, sp);
1193
1194 #ifdef CONFIG_PPC64 
1195         if (cpu_has_feature(CPU_FTR_DSCR)) {
1196                 p->thread.dscr_inherit = current->thread.dscr_inherit;
1197                 p->thread.dscr = current->thread.dscr;
1198         }
1199         if (cpu_has_feature(CPU_FTR_HAS_PPR))
1200                 p->thread.ppr = INIT_PPR;
1201 #endif
1202         kregs->nip = ppc_function_entry(f);
1203         return 0;
1204 }
1205
1206 /*
1207  * Set up a thread for executing a new program
1208  */
1209 void start_thread(struct pt_regs *regs, unsigned long start, unsigned long sp)
1210 {
1211 #ifdef CONFIG_PPC64
1212         unsigned long load_addr = regs->gpr[2]; /* saved by ELF_PLAT_INIT */
1213 #endif
1214
1215         /*
1216          * If we exec out of a kernel thread then thread.regs will not be
1217          * set.  Do it now.
1218          */
1219         if (!current->thread.regs) {
1220                 struct pt_regs *regs = task_stack_page(current) + THREAD_SIZE;
1221                 current->thread.regs = regs - 1;
1222         }
1223
1224         memset(regs->gpr, 0, sizeof(regs->gpr));
1225         regs->ctr = 0;
1226         regs->link = 0;
1227         regs->xer = 0;
1228         regs->ccr = 0;
1229         regs->gpr[1] = sp;
1230
1231         /*
1232          * We have just cleared all the nonvolatile GPRs, so make
1233          * FULL_REGS(regs) return true.  This is necessary to allow
1234          * ptrace to examine the thread immediately after exec.
1235          */
1236         regs->trap &= ~1UL;
1237
1238 #ifdef CONFIG_PPC32
1239         regs->mq = 0;
1240         regs->nip = start;
1241         regs->msr = MSR_USER;
1242 #else
1243         if (!is_32bit_task()) {
1244                 unsigned long entry;
1245
1246                 if (is_elf2_task()) {
1247                         /* Look ma, no function descriptors! */
1248                         entry = start;
1249
1250                         /*
1251                          * Ulrich says:
1252                          *   The latest iteration of the ABI requires that when
1253                          *   calling a function (at its global entry point),
1254                          *   the caller must ensure r12 holds the entry point
1255                          *   address (so that the function can quickly
1256                          *   establish addressability).
1257                          */
1258                         regs->gpr[12] = start;
1259                         /* Make sure that's restored on entry to userspace. */
1260                         set_thread_flag(TIF_RESTOREALL);
1261                 } else {
1262                         unsigned long toc;
1263
1264                         /* start is a relocated pointer to the function
1265                          * descriptor for the elf _start routine.  The first
1266                          * entry in the function descriptor is the entry
1267                          * address of _start and the second entry is the TOC
1268                          * value we need to use.
1269                          */
1270                         __get_user(entry, (unsigned long __user *)start);
1271                         __get_user(toc, (unsigned long __user *)start+1);
1272
1273                         /* Check whether the e_entry function descriptor entries
1274                          * need to be relocated before we can use them.
1275                          */
1276                         if (load_addr != 0) {
1277                                 entry += load_addr;
1278                                 toc   += load_addr;
1279                         }
1280                         regs->gpr[2] = toc;
1281                 }
1282                 regs->nip = entry;
1283                 regs->msr = MSR_USER64;
1284         } else {
1285                 regs->nip = start;
1286                 regs->gpr[2] = 0;
1287                 regs->msr = MSR_USER32;
1288         }
1289 #endif
1290         discard_lazy_cpu_state();
1291 #ifdef CONFIG_VSX
1292         current->thread.used_vsr = 0;
1293 #endif
1294         memset(&current->thread.fp_state, 0, sizeof(current->thread.fp_state));
1295         current->thread.fp_save_area = NULL;
1296 #ifdef CONFIG_ALTIVEC
1297         memset(&current->thread.vr_state, 0, sizeof(current->thread.vr_state));
1298         current->thread.vr_state.vscr.u[3] = 0x00010000; /* Java mode disabled */
1299         current->thread.vr_save_area = NULL;
1300         current->thread.vrsave = 0;
1301         current->thread.used_vr = 0;
1302 #endif /* CONFIG_ALTIVEC */
1303 #ifdef CONFIG_SPE
1304         memset(current->thread.evr, 0, sizeof(current->thread.evr));
1305         current->thread.acc = 0;
1306         current->thread.spefscr = 0;
1307         current->thread.used_spe = 0;
1308 #endif /* CONFIG_SPE */
1309 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1310         if (cpu_has_feature(CPU_FTR_TM))
1311                 regs->msr |= MSR_TM;
1312         current->thread.tm_tfhar = 0;
1313         current->thread.tm_texasr = 0;
1314         current->thread.tm_tfiar = 0;
1315 #endif /* CONFIG_PPC_TRANSACTIONAL_MEM */
1316 }
1317 EXPORT_SYMBOL(start_thread);
1318
1319 #define PR_FP_ALL_EXCEPT (PR_FP_EXC_DIV | PR_FP_EXC_OVF | PR_FP_EXC_UND \
1320                 | PR_FP_EXC_RES | PR_FP_EXC_INV)
1321
1322 int set_fpexc_mode(struct task_struct *tsk, unsigned int val)
1323 {
1324         struct pt_regs *regs = tsk->thread.regs;
1325
1326         /* This is a bit hairy.  If we are an SPE enabled  processor
1327          * (have embedded fp) we store the IEEE exception enable flags in
1328          * fpexc_mode.  fpexc_mode is also used for setting FP exception
1329          * mode (asyn, precise, disabled) for 'Classic' FP. */
1330         if (val & PR_FP_EXC_SW_ENABLE) {
1331 #ifdef CONFIG_SPE
1332                 if (cpu_has_feature(CPU_FTR_SPE)) {
1333                         /*
1334                          * When the sticky exception bits are set
1335                          * directly by userspace, it must call prctl
1336                          * with PR_GET_FPEXC (with PR_FP_EXC_SW_ENABLE
1337                          * in the existing prctl settings) or
1338                          * PR_SET_FPEXC (with PR_FP_EXC_SW_ENABLE in
1339                          * the bits being set).  <fenv.h> functions
1340                          * saving and restoring the whole
1341                          * floating-point environment need to do so
1342                          * anyway to restore the prctl settings from
1343                          * the saved environment.
1344                          */
1345                         tsk->thread.spefscr_last = mfspr(SPRN_SPEFSCR);
1346                         tsk->thread.fpexc_mode = val &
1347                                 (PR_FP_EXC_SW_ENABLE | PR_FP_ALL_EXCEPT);
1348                         return 0;
1349                 } else {
1350                         return -EINVAL;
1351                 }
1352 #else
1353                 return -EINVAL;
1354 #endif
1355         }
1356
1357         /* on a CONFIG_SPE this does not hurt us.  The bits that
1358          * __pack_fe01 use do not overlap with bits used for
1359          * PR_FP_EXC_SW_ENABLE.  Additionally, the MSR[FE0,FE1] bits
1360          * on CONFIG_SPE implementations are reserved so writing to
1361          * them does not change anything */
1362         if (val > PR_FP_EXC_PRECISE)
1363                 return -EINVAL;
1364         tsk->thread.fpexc_mode = __pack_fe01(val);
1365         if (regs != NULL && (regs->msr & MSR_FP) != 0)
1366                 regs->msr = (regs->msr & ~(MSR_FE0|MSR_FE1))
1367                         | tsk->thread.fpexc_mode;
1368         return 0;
1369 }
1370
1371 int get_fpexc_mode(struct task_struct *tsk, unsigned long adr)
1372 {
1373         unsigned int val;
1374
1375         if (tsk->thread.fpexc_mode & PR_FP_EXC_SW_ENABLE)
1376 #ifdef CONFIG_SPE
1377                 if (cpu_has_feature(CPU_FTR_SPE)) {
1378                         /*
1379                          * When the sticky exception bits are set
1380                          * directly by userspace, it must call prctl
1381                          * with PR_GET_FPEXC (with PR_FP_EXC_SW_ENABLE
1382                          * in the existing prctl settings) or
1383                          * PR_SET_FPEXC (with PR_FP_EXC_SW_ENABLE in
1384                          * the bits being set).  <fenv.h> functions
1385                          * saving and restoring the whole
1386                          * floating-point environment need to do so
1387                          * anyway to restore the prctl settings from
1388                          * the saved environment.
1389                          */
1390                         tsk->thread.spefscr_last = mfspr(SPRN_SPEFSCR);
1391                         val = tsk->thread.fpexc_mode;
1392                 } else
1393                         return -EINVAL;
1394 #else
1395                 return -EINVAL;
1396 #endif
1397         else
1398                 val = __unpack_fe01(tsk->thread.fpexc_mode);
1399         return put_user(val, (unsigned int __user *) adr);
1400 }
1401
1402 int set_endian(struct task_struct *tsk, unsigned int val)
1403 {
1404         struct pt_regs *regs = tsk->thread.regs;
1405
1406         if ((val == PR_ENDIAN_LITTLE && !cpu_has_feature(CPU_FTR_REAL_LE)) ||
1407             (val == PR_ENDIAN_PPC_LITTLE && !cpu_has_feature(CPU_FTR_PPC_LE)))
1408                 return -EINVAL;
1409
1410         if (regs == NULL)
1411                 return -EINVAL;
1412
1413         if (val == PR_ENDIAN_BIG)
1414                 regs->msr &= ~MSR_LE;
1415         else if (val == PR_ENDIAN_LITTLE || val == PR_ENDIAN_PPC_LITTLE)
1416                 regs->msr |= MSR_LE;
1417         else
1418                 return -EINVAL;
1419
1420         return 0;
1421 }
1422
1423 int get_endian(struct task_struct *tsk, unsigned long adr)
1424 {
1425         struct pt_regs *regs = tsk->thread.regs;
1426         unsigned int val;
1427
1428         if (!cpu_has_feature(CPU_FTR_PPC_LE) &&
1429             !cpu_has_feature(CPU_FTR_REAL_LE))
1430                 return -EINVAL;
1431
1432         if (regs == NULL)
1433                 return -EINVAL;
1434
1435         if (regs->msr & MSR_LE) {
1436                 if (cpu_has_feature(CPU_FTR_REAL_LE))
1437                         val = PR_ENDIAN_LITTLE;
1438                 else
1439                         val = PR_ENDIAN_PPC_LITTLE;
1440         } else
1441                 val = PR_ENDIAN_BIG;
1442
1443         return put_user(val, (unsigned int __user *)adr);
1444 }
1445
1446 int set_unalign_ctl(struct task_struct *tsk, unsigned int val)
1447 {
1448         tsk->thread.align_ctl = val;
1449         return 0;
1450 }
1451
1452 int get_unalign_ctl(struct task_struct *tsk, unsigned long adr)
1453 {
1454         return put_user(tsk->thread.align_ctl, (unsigned int __user *)adr);
1455 }
1456
1457 static inline int valid_irq_stack(unsigned long sp, struct task_struct *p,
1458                                   unsigned long nbytes)
1459 {
1460         unsigned long stack_page;
1461         unsigned long cpu = task_cpu(p);
1462
1463         /*
1464          * Avoid crashing if the stack has overflowed and corrupted
1465          * task_cpu(p), which is in the thread_info struct.
1466          */
1467         if (cpu < NR_CPUS && cpu_possible(cpu)) {
1468                 stack_page = (unsigned long) hardirq_ctx[cpu];
1469                 if (sp >= stack_page + sizeof(struct thread_struct)
1470                     && sp <= stack_page + THREAD_SIZE - nbytes)
1471                         return 1;
1472
1473                 stack_page = (unsigned long) softirq_ctx[cpu];
1474                 if (sp >= stack_page + sizeof(struct thread_struct)
1475                     && sp <= stack_page + THREAD_SIZE - nbytes)
1476                         return 1;
1477         }
1478         return 0;
1479 }
1480
1481 int validate_sp(unsigned long sp, struct task_struct *p,
1482                        unsigned long nbytes)
1483 {
1484         unsigned long stack_page = (unsigned long)task_stack_page(p);
1485
1486         if (sp >= stack_page + sizeof(struct thread_struct)
1487             && sp <= stack_page + THREAD_SIZE - nbytes)
1488                 return 1;
1489
1490         return valid_irq_stack(sp, p, nbytes);
1491 }
1492
1493 EXPORT_SYMBOL(validate_sp);
1494
1495 unsigned long get_wchan(struct task_struct *p)
1496 {
1497         unsigned long ip, sp;
1498         int count = 0;
1499
1500         if (!p || p == current || p->state == TASK_RUNNING)
1501                 return 0;
1502
1503         sp = p->thread.ksp;
1504         if (!validate_sp(sp, p, STACK_FRAME_OVERHEAD))
1505                 return 0;
1506
1507         do {
1508                 sp = *(unsigned long *)sp;
1509                 if (!validate_sp(sp, p, STACK_FRAME_OVERHEAD))
1510                         return 0;
1511                 if (count > 0) {
1512                         ip = ((unsigned long *)sp)[STACK_FRAME_LR_SAVE];
1513                         if (!in_sched_functions(ip))
1514                                 return ip;
1515                 }
1516         } while (count++ < 16);
1517         return 0;
1518 }
1519
1520 static int kstack_depth_to_print = CONFIG_PRINT_STACK_DEPTH;
1521
1522 void show_stack(struct task_struct *tsk, unsigned long *stack)
1523 {
1524         unsigned long sp, ip, lr, newsp;
1525         int count = 0;
1526         int firstframe = 1;
1527 #ifdef CONFIG_FUNCTION_GRAPH_TRACER
1528         int curr_frame = current->curr_ret_stack;
1529         extern void return_to_handler(void);
1530         unsigned long rth = (unsigned long)return_to_handler;
1531 #endif
1532
1533         sp = (unsigned long) stack;
1534         if (tsk == NULL)
1535                 tsk = current;
1536         if (sp == 0) {
1537                 if (tsk == current)
1538                         sp = current_stack_pointer();
1539                 else
1540                         sp = tsk->thread.ksp;
1541         }
1542
1543         lr = 0;
1544         printk("Call Trace:\n");
1545         do {
1546                 if (!validate_sp(sp, tsk, STACK_FRAME_OVERHEAD))
1547                         return;
1548
1549                 stack = (unsigned long *) sp;
1550                 newsp = stack[0];
1551                 ip = stack[STACK_FRAME_LR_SAVE];
1552                 if (!firstframe || ip != lr) {
1553                         printk("["REG"] ["REG"] %pS", sp, ip, (void *)ip);
1554 #ifdef CONFIG_FUNCTION_GRAPH_TRACER
1555                         if ((ip == rth) && curr_frame >= 0) {
1556                                 printk(" (%pS)",
1557                                        (void *)current->ret_stack[curr_frame].ret);
1558                                 curr_frame--;
1559                         }
1560 #endif
1561                         if (firstframe)
1562                                 printk(" (unreliable)");
1563                         printk("\n");
1564                 }
1565                 firstframe = 0;
1566
1567                 /*
1568                  * See if this is an exception frame.
1569                  * We look for the "regshere" marker in the current frame.
1570                  */
1571                 if (validate_sp(sp, tsk, STACK_INT_FRAME_SIZE)
1572                     && stack[STACK_FRAME_MARKER] == STACK_FRAME_REGS_MARKER) {
1573                         struct pt_regs *regs = (struct pt_regs *)
1574                                 (sp + STACK_FRAME_OVERHEAD);
1575                         lr = regs->link;
1576                         printk("--- interrupt: %lx at %pS\n    LR = %pS\n",
1577                                regs->trap, (void *)regs->nip, (void *)lr);
1578                         firstframe = 1;
1579                 }
1580
1581                 sp = newsp;
1582         } while (count++ < kstack_depth_to_print);
1583 }
1584
1585 #ifdef CONFIG_PPC64
1586 /* Called with hard IRQs off */
1587 void notrace __ppc64_runlatch_on(void)
1588 {
1589         struct thread_info *ti = current_thread_info();
1590         unsigned long ctrl;
1591
1592         ctrl = mfspr(SPRN_CTRLF);
1593         ctrl |= CTRL_RUNLATCH;
1594         mtspr(SPRN_CTRLT, ctrl);
1595
1596         ti->local_flags |= _TLF_RUNLATCH;
1597 }
1598
1599 /* Called with hard IRQs off */
1600 void notrace __ppc64_runlatch_off(void)
1601 {
1602         struct thread_info *ti = current_thread_info();
1603         unsigned long ctrl;
1604
1605         ti->local_flags &= ~_TLF_RUNLATCH;
1606
1607         ctrl = mfspr(SPRN_CTRLF);
1608         ctrl &= ~CTRL_RUNLATCH;
1609         mtspr(SPRN_CTRLT, ctrl);
1610 }
1611 #endif /* CONFIG_PPC64 */
1612
1613 unsigned long arch_align_stack(unsigned long sp)
1614 {
1615         if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space)
1616                 sp -= get_random_int() & ~PAGE_MASK;
1617         return sp & ~0xf;
1618 }
1619
1620 static inline unsigned long brk_rnd(void)
1621 {
1622         unsigned long rnd = 0;
1623
1624         /* 8MB for 32bit, 1GB for 64bit */
1625         if (is_32bit_task())
1626                 rnd = (long)(get_random_int() % (1<<(23-PAGE_SHIFT)));
1627         else
1628                 rnd = (long)(get_random_int() % (1<<(30-PAGE_SHIFT)));
1629
1630         return rnd << PAGE_SHIFT;
1631 }
1632
1633 unsigned long arch_randomize_brk(struct mm_struct *mm)
1634 {
1635         unsigned long base = mm->brk;
1636         unsigned long ret;
1637
1638 #ifdef CONFIG_PPC_STD_MMU_64
1639         /*
1640          * If we are using 1TB segments and we are allowed to randomise
1641          * the heap, we can put it above 1TB so it is backed by a 1TB
1642          * segment. Otherwise the heap will be in the bottom 1TB
1643          * which always uses 256MB segments and this may result in a
1644          * performance penalty.
1645          */
1646         if (!is_32bit_task() && (mmu_highuser_ssize == MMU_SEGSIZE_1T))
1647                 base = max_t(unsigned long, mm->brk, 1UL << SID_SHIFT_1T);
1648 #endif
1649
1650         ret = PAGE_ALIGN(base + brk_rnd());
1651
1652         if (ret < mm->brk)
1653                 return mm->brk;
1654
1655         return ret;
1656 }
1657