spi: mediatek: single device does not require cs_gpios
[firefly-linux-kernel-4.4.55.git] / arch / parisc / mm / init.c
1 /*
2  *  linux/arch/parisc/mm/init.c
3  *
4  *  Copyright (C) 1995  Linus Torvalds
5  *  Copyright 1999 SuSE GmbH
6  *    changed by Philipp Rumpf
7  *  Copyright 1999 Philipp Rumpf (prumpf@tux.org)
8  *  Copyright 2004 Randolph Chung (tausq@debian.org)
9  *  Copyright 2006-2007 Helge Deller (deller@gmx.de)
10  *
11  */
12
13
14 #include <linux/module.h>
15 #include <linux/mm.h>
16 #include <linux/bootmem.h>
17 #include <linux/gfp.h>
18 #include <linux/delay.h>
19 #include <linux/init.h>
20 #include <linux/pci.h>          /* for hppa_dma_ops and pcxl_dma_ops */
21 #include <linux/initrd.h>
22 #include <linux/swap.h>
23 #include <linux/unistd.h>
24 #include <linux/nodemask.h>     /* for node_online_map */
25 #include <linux/pagemap.h>      /* for release_pages and page_cache_release */
26 #include <linux/compat.h>
27
28 #include <asm/pgalloc.h>
29 #include <asm/pgtable.h>
30 #include <asm/tlb.h>
31 #include <asm/pdc_chassis.h>
32 #include <asm/mmzone.h>
33 #include <asm/sections.h>
34 #include <asm/msgbuf.h>
35
36 extern int  data_start;
37 extern void parisc_kernel_start(void);  /* Kernel entry point in head.S */
38
39 #if CONFIG_PGTABLE_LEVELS == 3
40 /* NOTE: This layout exactly conforms to the hybrid L2/L3 page table layout
41  * with the first pmd adjacent to the pgd and below it. gcc doesn't actually
42  * guarantee that global objects will be laid out in memory in the same order
43  * as the order of declaration, so put these in different sections and use
44  * the linker script to order them. */
45 pmd_t pmd0[PTRS_PER_PMD] __attribute__ ((__section__ (".data..vm0.pmd"), aligned(PAGE_SIZE)));
46 #endif
47
48 pgd_t swapper_pg_dir[PTRS_PER_PGD] __attribute__ ((__section__ (".data..vm0.pgd"), aligned(PAGE_SIZE)));
49 pte_t pg0[PT_INITIAL * PTRS_PER_PTE] __attribute__ ((__section__ (".data..vm0.pte"), aligned(PAGE_SIZE)));
50
51 #ifdef CONFIG_DISCONTIGMEM
52 struct node_map_data node_data[MAX_NUMNODES] __read_mostly;
53 signed char pfnnid_map[PFNNID_MAP_MAX] __read_mostly;
54 #endif
55
56 static struct resource data_resource = {
57         .name   = "Kernel data",
58         .flags  = IORESOURCE_BUSY | IORESOURCE_MEM,
59 };
60
61 static struct resource code_resource = {
62         .name   = "Kernel code",
63         .flags  = IORESOURCE_BUSY | IORESOURCE_MEM,
64 };
65
66 static struct resource pdcdata_resource = {
67         .name   = "PDC data (Page Zero)",
68         .start  = 0,
69         .end    = 0x9ff,
70         .flags  = IORESOURCE_BUSY | IORESOURCE_MEM,
71 };
72
73 static struct resource sysram_resources[MAX_PHYSMEM_RANGES] __read_mostly;
74
75 /* The following array is initialized from the firmware specific
76  * information retrieved in kernel/inventory.c.
77  */
78
79 physmem_range_t pmem_ranges[MAX_PHYSMEM_RANGES] __read_mostly;
80 int npmem_ranges __read_mostly;
81
82 #ifdef CONFIG_64BIT
83 #define MAX_MEM         (~0UL)
84 #else /* !CONFIG_64BIT */
85 #define MAX_MEM         (3584U*1024U*1024U)
86 #endif /* !CONFIG_64BIT */
87
88 static unsigned long mem_limit __read_mostly = MAX_MEM;
89
90 static void __init mem_limit_func(void)
91 {
92         char *cp, *end;
93         unsigned long limit;
94
95         /* We need this before __setup() functions are called */
96
97         limit = MAX_MEM;
98         for (cp = boot_command_line; *cp; ) {
99                 if (memcmp(cp, "mem=", 4) == 0) {
100                         cp += 4;
101                         limit = memparse(cp, &end);
102                         if (end != cp)
103                                 break;
104                         cp = end;
105                 } else {
106                         while (*cp != ' ' && *cp)
107                                 ++cp;
108                         while (*cp == ' ')
109                                 ++cp;
110                 }
111         }
112
113         if (limit < mem_limit)
114                 mem_limit = limit;
115 }
116
117 #define MAX_GAP (0x40000000UL >> PAGE_SHIFT)
118
119 static void __init setup_bootmem(void)
120 {
121         unsigned long bootmap_size;
122         unsigned long mem_max;
123         unsigned long bootmap_pages;
124         unsigned long bootmap_start_pfn;
125         unsigned long bootmap_pfn;
126 #ifndef CONFIG_DISCONTIGMEM
127         physmem_range_t pmem_holes[MAX_PHYSMEM_RANGES - 1];
128         int npmem_holes;
129 #endif
130         int i, sysram_resource_count;
131
132         disable_sr_hashing(); /* Turn off space register hashing */
133
134         /*
135          * Sort the ranges. Since the number of ranges is typically
136          * small, and performance is not an issue here, just do
137          * a simple insertion sort.
138          */
139
140         for (i = 1; i < npmem_ranges; i++) {
141                 int j;
142
143                 for (j = i; j > 0; j--) {
144                         unsigned long tmp;
145
146                         if (pmem_ranges[j-1].start_pfn <
147                             pmem_ranges[j].start_pfn) {
148
149                                 break;
150                         }
151                         tmp = pmem_ranges[j-1].start_pfn;
152                         pmem_ranges[j-1].start_pfn = pmem_ranges[j].start_pfn;
153                         pmem_ranges[j].start_pfn = tmp;
154                         tmp = pmem_ranges[j-1].pages;
155                         pmem_ranges[j-1].pages = pmem_ranges[j].pages;
156                         pmem_ranges[j].pages = tmp;
157                 }
158         }
159
160 #ifndef CONFIG_DISCONTIGMEM
161         /*
162          * Throw out ranges that are too far apart (controlled by
163          * MAX_GAP).
164          */
165
166         for (i = 1; i < npmem_ranges; i++) {
167                 if (pmem_ranges[i].start_pfn -
168                         (pmem_ranges[i-1].start_pfn +
169                          pmem_ranges[i-1].pages) > MAX_GAP) {
170                         npmem_ranges = i;
171                         printk("Large gap in memory detected (%ld pages). "
172                                "Consider turning on CONFIG_DISCONTIGMEM\n",
173                                pmem_ranges[i].start_pfn -
174                                (pmem_ranges[i-1].start_pfn +
175                                 pmem_ranges[i-1].pages));
176                         break;
177                 }
178         }
179 #endif
180
181         if (npmem_ranges > 1) {
182
183                 /* Print the memory ranges */
184
185                 printk(KERN_INFO "Memory Ranges:\n");
186
187                 for (i = 0; i < npmem_ranges; i++) {
188                         unsigned long start;
189                         unsigned long size;
190
191                         size = (pmem_ranges[i].pages << PAGE_SHIFT);
192                         start = (pmem_ranges[i].start_pfn << PAGE_SHIFT);
193                         printk(KERN_INFO "%2d) Start 0x%016lx End 0x%016lx Size %6ld MB\n",
194                                 i,start, start + (size - 1), size >> 20);
195                 }
196         }
197
198         sysram_resource_count = npmem_ranges;
199         for (i = 0; i < sysram_resource_count; i++) {
200                 struct resource *res = &sysram_resources[i];
201                 res->name = "System RAM";
202                 res->start = pmem_ranges[i].start_pfn << PAGE_SHIFT;
203                 res->end = res->start + (pmem_ranges[i].pages << PAGE_SHIFT)-1;
204                 res->flags = IORESOURCE_MEM | IORESOURCE_BUSY;
205                 request_resource(&iomem_resource, res);
206         }
207
208         /*
209          * For 32 bit kernels we limit the amount of memory we can
210          * support, in order to preserve enough kernel address space
211          * for other purposes. For 64 bit kernels we don't normally
212          * limit the memory, but this mechanism can be used to
213          * artificially limit the amount of memory (and it is written
214          * to work with multiple memory ranges).
215          */
216
217         mem_limit_func();       /* check for "mem=" argument */
218
219         mem_max = 0;
220         for (i = 0; i < npmem_ranges; i++) {
221                 unsigned long rsize;
222
223                 rsize = pmem_ranges[i].pages << PAGE_SHIFT;
224                 if ((mem_max + rsize) > mem_limit) {
225                         printk(KERN_WARNING "Memory truncated to %ld MB\n", mem_limit >> 20);
226                         if (mem_max == mem_limit)
227                                 npmem_ranges = i;
228                         else {
229                                 pmem_ranges[i].pages =   (mem_limit >> PAGE_SHIFT)
230                                                        - (mem_max >> PAGE_SHIFT);
231                                 npmem_ranges = i + 1;
232                                 mem_max = mem_limit;
233                         }
234                         break;
235                 }
236                 mem_max += rsize;
237         }
238
239         printk(KERN_INFO "Total Memory: %ld MB\n",mem_max >> 20);
240
241 #ifndef CONFIG_DISCONTIGMEM
242         /* Merge the ranges, keeping track of the holes */
243
244         {
245                 unsigned long end_pfn;
246                 unsigned long hole_pages;
247
248                 npmem_holes = 0;
249                 end_pfn = pmem_ranges[0].start_pfn + pmem_ranges[0].pages;
250                 for (i = 1; i < npmem_ranges; i++) {
251
252                         hole_pages = pmem_ranges[i].start_pfn - end_pfn;
253                         if (hole_pages) {
254                                 pmem_holes[npmem_holes].start_pfn = end_pfn;
255                                 pmem_holes[npmem_holes++].pages = hole_pages;
256                                 end_pfn += hole_pages;
257                         }
258                         end_pfn += pmem_ranges[i].pages;
259                 }
260
261                 pmem_ranges[0].pages = end_pfn - pmem_ranges[0].start_pfn;
262                 npmem_ranges = 1;
263         }
264 #endif
265
266         bootmap_pages = 0;
267         for (i = 0; i < npmem_ranges; i++)
268                 bootmap_pages += bootmem_bootmap_pages(pmem_ranges[i].pages);
269
270         bootmap_start_pfn = PAGE_ALIGN(__pa((unsigned long) &_end)) >> PAGE_SHIFT;
271
272 #ifdef CONFIG_DISCONTIGMEM
273         for (i = 0; i < MAX_PHYSMEM_RANGES; i++) {
274                 memset(NODE_DATA(i), 0, sizeof(pg_data_t));
275                 NODE_DATA(i)->bdata = &bootmem_node_data[i];
276         }
277         memset(pfnnid_map, 0xff, sizeof(pfnnid_map));
278
279         for (i = 0; i < npmem_ranges; i++) {
280                 node_set_state(i, N_NORMAL_MEMORY);
281                 node_set_online(i);
282         }
283 #endif
284
285         /*
286          * Initialize and free the full range of memory in each range.
287          * Note that the only writing these routines do are to the bootmap,
288          * and we've made sure to locate the bootmap properly so that they
289          * won't be writing over anything important.
290          */
291
292         bootmap_pfn = bootmap_start_pfn;
293         max_pfn = 0;
294         for (i = 0; i < npmem_ranges; i++) {
295                 unsigned long start_pfn;
296                 unsigned long npages;
297
298                 start_pfn = pmem_ranges[i].start_pfn;
299                 npages = pmem_ranges[i].pages;
300
301                 bootmap_size = init_bootmem_node(NODE_DATA(i),
302                                                 bootmap_pfn,
303                                                 start_pfn,
304                                                 (start_pfn + npages) );
305                 free_bootmem_node(NODE_DATA(i),
306                                   (start_pfn << PAGE_SHIFT),
307                                   (npages << PAGE_SHIFT) );
308                 bootmap_pfn += (bootmap_size + PAGE_SIZE - 1) >> PAGE_SHIFT;
309                 if ((start_pfn + npages) > max_pfn)
310                         max_pfn = start_pfn + npages;
311         }
312
313         /* IOMMU is always used to access "high mem" on those boxes
314          * that can support enough mem that a PCI device couldn't
315          * directly DMA to any physical addresses.
316          * ISA DMA support will need to revisit this.
317          */
318         max_low_pfn = max_pfn;
319
320         /* bootmap sizing messed up? */
321         BUG_ON((bootmap_pfn - bootmap_start_pfn) != bootmap_pages);
322
323         /* reserve PAGE0 pdc memory, kernel text/data/bss & bootmap */
324
325 #define PDC_CONSOLE_IO_IODC_SIZE 32768
326
327         reserve_bootmem_node(NODE_DATA(0), 0UL,
328                         (unsigned long)(PAGE0->mem_free +
329                                 PDC_CONSOLE_IO_IODC_SIZE), BOOTMEM_DEFAULT);
330         reserve_bootmem_node(NODE_DATA(0), __pa(KERNEL_BINARY_TEXT_START),
331                         (unsigned long)(_end - KERNEL_BINARY_TEXT_START),
332                         BOOTMEM_DEFAULT);
333         reserve_bootmem_node(NODE_DATA(0), (bootmap_start_pfn << PAGE_SHIFT),
334                         ((bootmap_pfn - bootmap_start_pfn) << PAGE_SHIFT),
335                         BOOTMEM_DEFAULT);
336
337 #ifndef CONFIG_DISCONTIGMEM
338
339         /* reserve the holes */
340
341         for (i = 0; i < npmem_holes; i++) {
342                 reserve_bootmem_node(NODE_DATA(0),
343                                 (pmem_holes[i].start_pfn << PAGE_SHIFT),
344                                 (pmem_holes[i].pages << PAGE_SHIFT),
345                                 BOOTMEM_DEFAULT);
346         }
347 #endif
348
349 #ifdef CONFIG_BLK_DEV_INITRD
350         if (initrd_start) {
351                 printk(KERN_INFO "initrd: %08lx-%08lx\n", initrd_start, initrd_end);
352                 if (__pa(initrd_start) < mem_max) {
353                         unsigned long initrd_reserve;
354
355                         if (__pa(initrd_end) > mem_max) {
356                                 initrd_reserve = mem_max - __pa(initrd_start);
357                         } else {
358                                 initrd_reserve = initrd_end - initrd_start;
359                         }
360                         initrd_below_start_ok = 1;
361                         printk(KERN_INFO "initrd: reserving %08lx-%08lx (mem_max %08lx)\n", __pa(initrd_start), __pa(initrd_start) + initrd_reserve, mem_max);
362
363                         reserve_bootmem_node(NODE_DATA(0), __pa(initrd_start),
364                                         initrd_reserve, BOOTMEM_DEFAULT);
365                 }
366         }
367 #endif
368
369         data_resource.start =  virt_to_phys(&data_start);
370         data_resource.end = virt_to_phys(_end) - 1;
371         code_resource.start = virt_to_phys(_text);
372         code_resource.end = virt_to_phys(&data_start)-1;
373
374         /* We don't know which region the kernel will be in, so try
375          * all of them.
376          */
377         for (i = 0; i < sysram_resource_count; i++) {
378                 struct resource *res = &sysram_resources[i];
379                 request_resource(res, &code_resource);
380                 request_resource(res, &data_resource);
381         }
382         request_resource(&sysram_resources[0], &pdcdata_resource);
383 }
384
385 static int __init parisc_text_address(unsigned long vaddr)
386 {
387         static unsigned long head_ptr __initdata;
388
389         if (!head_ptr)
390                 head_ptr = PAGE_MASK & (unsigned long)
391                         dereference_function_descriptor(&parisc_kernel_start);
392
393         return core_kernel_text(vaddr) || vaddr == head_ptr;
394 }
395
396 static void __init map_pages(unsigned long start_vaddr,
397                              unsigned long start_paddr, unsigned long size,
398                              pgprot_t pgprot, int force)
399 {
400         pgd_t *pg_dir;
401         pmd_t *pmd;
402         pte_t *pg_table;
403         unsigned long end_paddr;
404         unsigned long start_pmd;
405         unsigned long start_pte;
406         unsigned long tmp1;
407         unsigned long tmp2;
408         unsigned long address;
409         unsigned long vaddr;
410         unsigned long ro_start;
411         unsigned long ro_end;
412         unsigned long fv_addr;
413         unsigned long gw_addr;
414         extern const unsigned long fault_vector_20;
415         extern void * const linux_gateway_page;
416
417         ro_start = __pa((unsigned long)_text);
418         ro_end   = __pa((unsigned long)&data_start);
419         fv_addr  = __pa((unsigned long)&fault_vector_20) & PAGE_MASK;
420         gw_addr  = __pa((unsigned long)&linux_gateway_page) & PAGE_MASK;
421
422         end_paddr = start_paddr + size;
423
424         pg_dir = pgd_offset_k(start_vaddr);
425
426 #if PTRS_PER_PMD == 1
427         start_pmd = 0;
428 #else
429         start_pmd = ((start_vaddr >> PMD_SHIFT) & (PTRS_PER_PMD - 1));
430 #endif
431         start_pte = ((start_vaddr >> PAGE_SHIFT) & (PTRS_PER_PTE - 1));
432
433         address = start_paddr;
434         vaddr = start_vaddr;
435         while (address < end_paddr) {
436 #if PTRS_PER_PMD == 1
437                 pmd = (pmd_t *)__pa(pg_dir);
438 #else
439                 pmd = (pmd_t *)pgd_address(*pg_dir);
440
441                 /*
442                  * pmd is physical at this point
443                  */
444
445                 if (!pmd) {
446                         pmd = (pmd_t *) alloc_bootmem_low_pages_node(NODE_DATA(0), PAGE_SIZE << PMD_ORDER);
447                         pmd = (pmd_t *) __pa(pmd);
448                 }
449
450                 pgd_populate(NULL, pg_dir, __va(pmd));
451 #endif
452                 pg_dir++;
453
454                 /* now change pmd to kernel virtual addresses */
455
456                 pmd = (pmd_t *)__va(pmd) + start_pmd;
457                 for (tmp1 = start_pmd; tmp1 < PTRS_PER_PMD; tmp1++, pmd++) {
458
459                         /*
460                          * pg_table is physical at this point
461                          */
462
463                         pg_table = (pte_t *)pmd_address(*pmd);
464                         if (!pg_table) {
465                                 pg_table = (pte_t *)
466                                         alloc_bootmem_low_pages_node(NODE_DATA(0), PAGE_SIZE);
467                                 pg_table = (pte_t *) __pa(pg_table);
468                         }
469
470                         pmd_populate_kernel(NULL, pmd, __va(pg_table));
471
472                         /* now change pg_table to kernel virtual addresses */
473
474                         pg_table = (pte_t *) __va(pg_table) + start_pte;
475                         for (tmp2 = start_pte; tmp2 < PTRS_PER_PTE; tmp2++, pg_table++) {
476                                 pte_t pte;
477
478                                 /*
479                                  * Map the fault vector writable so we can
480                                  * write the HPMC checksum.
481                                  */
482                                 if (force)
483                                         pte =  __mk_pte(address, pgprot);
484                                 else if (parisc_text_address(vaddr) &&
485                                          address != fv_addr)
486                                         pte = __mk_pte(address, PAGE_KERNEL_EXEC);
487                                 else
488 #if defined(CONFIG_PARISC_PAGE_SIZE_4KB)
489                                 if (address >= ro_start && address < ro_end
490                                                         && address != fv_addr
491                                                         && address != gw_addr)
492                                         pte = __mk_pte(address, PAGE_KERNEL_RO);
493                                 else
494 #endif
495                                         pte = __mk_pte(address, pgprot);
496
497                                 if (address >= end_paddr) {
498                                         if (force)
499                                                 break;
500                                         else
501                                                 pte_val(pte) = 0;
502                                 }
503
504                                 set_pte(pg_table, pte);
505
506                                 address += PAGE_SIZE;
507                                 vaddr += PAGE_SIZE;
508                         }
509                         start_pte = 0;
510
511                         if (address >= end_paddr)
512                             break;
513                 }
514                 start_pmd = 0;
515         }
516 }
517
518 void free_initmem(void)
519 {
520         unsigned long init_begin = (unsigned long)__init_begin;
521         unsigned long init_end = (unsigned long)__init_end;
522
523         /* The init text pages are marked R-X.  We have to
524          * flush the icache and mark them RW-
525          *
526          * This is tricky, because map_pages is in the init section.
527          * Do a dummy remap of the data section first (the data
528          * section is already PAGE_KERNEL) to pull in the TLB entries
529          * for map_kernel */
530         map_pages(init_begin, __pa(init_begin), init_end - init_begin,
531                   PAGE_KERNEL_RWX, 1);
532         /* now remap at PAGE_KERNEL since the TLB is pre-primed to execute
533          * map_pages */
534         map_pages(init_begin, __pa(init_begin), init_end - init_begin,
535                   PAGE_KERNEL, 1);
536
537         /* force the kernel to see the new TLB entries */
538         __flush_tlb_range(0, init_begin, init_end);
539         /* Attempt to catch anyone trying to execute code here
540          * by filling the page with BRK insns.
541          */
542         memset((void *)init_begin, 0x00, init_end - init_begin);
543         /* finally dump all the instructions which were cached, since the
544          * pages are no-longer executable */
545         flush_icache_range(init_begin, init_end);
546         
547         free_initmem_default(-1);
548
549         /* set up a new led state on systems shipped LED State panel */
550         pdc_chassis_send_status(PDC_CHASSIS_DIRECT_BCOMPLETE);
551 }
552
553
554 #ifdef CONFIG_DEBUG_RODATA
555 void mark_rodata_ro(void)
556 {
557         /* rodata memory was already mapped with KERNEL_RO access rights by
558            pagetable_init() and map_pages(). No need to do additional stuff here */
559         printk (KERN_INFO "Write protecting the kernel read-only data: %luk\n",
560                 (unsigned long)(__end_rodata - __start_rodata) >> 10);
561 }
562 #endif
563
564
565 /*
566  * Just an arbitrary offset to serve as a "hole" between mapping areas
567  * (between top of physical memory and a potential pcxl dma mapping
568  * area, and below the vmalloc mapping area).
569  *
570  * The current 32K value just means that there will be a 32K "hole"
571  * between mapping areas. That means that  any out-of-bounds memory
572  * accesses will hopefully be caught. The vmalloc() routines leaves
573  * a hole of 4kB between each vmalloced area for the same reason.
574  */
575
576  /* Leave room for gateway page expansion */
577 #if KERNEL_MAP_START < GATEWAY_PAGE_SIZE
578 #error KERNEL_MAP_START is in gateway reserved region
579 #endif
580 #define MAP_START (KERNEL_MAP_START)
581
582 #define VM_MAP_OFFSET  (32*1024)
583 #define SET_MAP_OFFSET(x) ((void *)(((unsigned long)(x) + VM_MAP_OFFSET) \
584                                      & ~(VM_MAP_OFFSET-1)))
585
586 void *parisc_vmalloc_start __read_mostly;
587 EXPORT_SYMBOL(parisc_vmalloc_start);
588
589 #ifdef CONFIG_PA11
590 unsigned long pcxl_dma_start __read_mostly;
591 #endif
592
593 void __init mem_init(void)
594 {
595         /* Do sanity checks on IPC (compat) structures */
596         BUILD_BUG_ON(sizeof(struct ipc64_perm) != 48);
597 #ifndef CONFIG_64BIT
598         BUILD_BUG_ON(sizeof(struct semid64_ds) != 80);
599         BUILD_BUG_ON(sizeof(struct msqid64_ds) != 104);
600         BUILD_BUG_ON(sizeof(struct shmid64_ds) != 104);
601 #endif
602 #ifdef CONFIG_COMPAT
603         BUILD_BUG_ON(sizeof(struct compat_ipc64_perm) != sizeof(struct ipc64_perm));
604         BUILD_BUG_ON(sizeof(struct compat_semid64_ds) != 80);
605         BUILD_BUG_ON(sizeof(struct compat_msqid64_ds) != 104);
606         BUILD_BUG_ON(sizeof(struct compat_shmid64_ds) != 104);
607 #endif
608
609         /* Do sanity checks on page table constants */
610         BUILD_BUG_ON(PTE_ENTRY_SIZE != sizeof(pte_t));
611         BUILD_BUG_ON(PMD_ENTRY_SIZE != sizeof(pmd_t));
612         BUILD_BUG_ON(PGD_ENTRY_SIZE != sizeof(pgd_t));
613         BUILD_BUG_ON(PAGE_SHIFT + BITS_PER_PTE + BITS_PER_PMD + BITS_PER_PGD
614                         > BITS_PER_LONG);
615
616         high_memory = __va((max_pfn << PAGE_SHIFT));
617         set_max_mapnr(page_to_pfn(virt_to_page(high_memory - 1)) + 1);
618         free_all_bootmem();
619
620 #ifdef CONFIG_PA11
621         if (hppa_dma_ops == &pcxl_dma_ops) {
622                 pcxl_dma_start = (unsigned long)SET_MAP_OFFSET(MAP_START);
623                 parisc_vmalloc_start = SET_MAP_OFFSET(pcxl_dma_start
624                                                 + PCXL_DMA_MAP_SIZE);
625         } else {
626                 pcxl_dma_start = 0;
627                 parisc_vmalloc_start = SET_MAP_OFFSET(MAP_START);
628         }
629 #else
630         parisc_vmalloc_start = SET_MAP_OFFSET(MAP_START);
631 #endif
632
633         mem_init_print_info(NULL);
634 #ifdef CONFIG_DEBUG_KERNEL /* double-sanity-check paranoia */
635         printk("virtual kernel memory layout:\n"
636                "    vmalloc : 0x%p - 0x%p   (%4ld MB)\n"
637                "    memory  : 0x%p - 0x%p   (%4ld MB)\n"
638                "      .init : 0x%p - 0x%p   (%4ld kB)\n"
639                "      .data : 0x%p - 0x%p   (%4ld kB)\n"
640                "      .text : 0x%p - 0x%p   (%4ld kB)\n",
641
642                (void*)VMALLOC_START, (void*)VMALLOC_END,
643                (VMALLOC_END - VMALLOC_START) >> 20,
644
645                __va(0), high_memory,
646                ((unsigned long)high_memory - (unsigned long)__va(0)) >> 20,
647
648                __init_begin, __init_end,
649                ((unsigned long)__init_end - (unsigned long)__init_begin) >> 10,
650
651                _etext, _edata,
652                ((unsigned long)_edata - (unsigned long)_etext) >> 10,
653
654                _text, _etext,
655                ((unsigned long)_etext - (unsigned long)_text) >> 10);
656 #endif
657 }
658
659 unsigned long *empty_zero_page __read_mostly;
660 EXPORT_SYMBOL(empty_zero_page);
661
662 void show_mem(unsigned int filter)
663 {
664         int total = 0,reserved = 0;
665         pg_data_t *pgdat;
666
667         printk(KERN_INFO "Mem-info:\n");
668         show_free_areas(filter);
669
670         for_each_online_pgdat(pgdat) {
671                 unsigned long flags;
672                 int zoneid;
673
674                 pgdat_resize_lock(pgdat, &flags);
675                 for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) {
676                         struct zone *zone = &pgdat->node_zones[zoneid];
677                         if (!populated_zone(zone))
678                                 continue;
679
680                         total += zone->present_pages;
681                         reserved = zone->present_pages - zone->managed_pages;
682                 }
683                 pgdat_resize_unlock(pgdat, &flags);
684         }
685
686         printk(KERN_INFO "%d pages of RAM\n", total);
687         printk(KERN_INFO "%d reserved pages\n", reserved);
688
689 #ifdef CONFIG_DISCONTIGMEM
690         {
691                 struct zonelist *zl;
692                 int i, j;
693
694                 for (i = 0; i < npmem_ranges; i++) {
695                         zl = node_zonelist(i, 0);
696                         for (j = 0; j < MAX_NR_ZONES; j++) {
697                                 struct zoneref *z;
698                                 struct zone *zone;
699
700                                 printk("Zone list for zone %d on node %d: ", j, i);
701                                 for_each_zone_zonelist(zone, z, zl, j)
702                                         printk("[%d/%s] ", zone_to_nid(zone),
703                                                                 zone->name);
704                                 printk("\n");
705                         }
706                 }
707         }
708 #endif
709 }
710
711 /*
712  * pagetable_init() sets up the page tables
713  *
714  * Note that gateway_init() places the Linux gateway page at page 0.
715  * Since gateway pages cannot be dereferenced this has the desirable
716  * side effect of trapping those pesky NULL-reference errors in the
717  * kernel.
718  */
719 static void __init pagetable_init(void)
720 {
721         int range;
722
723         /* Map each physical memory range to its kernel vaddr */
724
725         for (range = 0; range < npmem_ranges; range++) {
726                 unsigned long start_paddr;
727                 unsigned long end_paddr;
728                 unsigned long size;
729
730                 start_paddr = pmem_ranges[range].start_pfn << PAGE_SHIFT;
731                 end_paddr = start_paddr + (pmem_ranges[range].pages << PAGE_SHIFT);
732                 size = pmem_ranges[range].pages << PAGE_SHIFT;
733
734                 map_pages((unsigned long)__va(start_paddr), start_paddr,
735                           size, PAGE_KERNEL, 0);
736         }
737
738 #ifdef CONFIG_BLK_DEV_INITRD
739         if (initrd_end && initrd_end > mem_limit) {
740                 printk(KERN_INFO "initrd: mapping %08lx-%08lx\n", initrd_start, initrd_end);
741                 map_pages(initrd_start, __pa(initrd_start),
742                           initrd_end - initrd_start, PAGE_KERNEL, 0);
743         }
744 #endif
745
746         empty_zero_page = alloc_bootmem_pages(PAGE_SIZE);
747 }
748
749 static void __init gateway_init(void)
750 {
751         unsigned long linux_gateway_page_addr;
752         /* FIXME: This is 'const' in order to trick the compiler
753            into not treating it as DP-relative data. */
754         extern void * const linux_gateway_page;
755
756         linux_gateway_page_addr = LINUX_GATEWAY_ADDR & PAGE_MASK;
757
758         /*
759          * Setup Linux Gateway page.
760          *
761          * The Linux gateway page will reside in kernel space (on virtual
762          * page 0), so it doesn't need to be aliased into user space.
763          */
764
765         map_pages(linux_gateway_page_addr, __pa(&linux_gateway_page),
766                   PAGE_SIZE, PAGE_GATEWAY, 1);
767 }
768
769 void __init paging_init(void)
770 {
771         int i;
772
773         setup_bootmem();
774         pagetable_init();
775         gateway_init();
776         flush_cache_all_local(); /* start with known state */
777         flush_tlb_all_local(NULL);
778
779         for (i = 0; i < npmem_ranges; i++) {
780                 unsigned long zones_size[MAX_NR_ZONES] = { 0, };
781
782                 zones_size[ZONE_NORMAL] = pmem_ranges[i].pages;
783
784 #ifdef CONFIG_DISCONTIGMEM
785                 /* Need to initialize the pfnnid_map before we can initialize
786                    the zone */
787                 {
788                     int j;
789                     for (j = (pmem_ranges[i].start_pfn >> PFNNID_SHIFT);
790                          j <= ((pmem_ranges[i].start_pfn + pmem_ranges[i].pages) >> PFNNID_SHIFT);
791                          j++) {
792                         pfnnid_map[j] = i;
793                     }
794                 }
795 #endif
796
797                 free_area_init_node(i, zones_size,
798                                 pmem_ranges[i].start_pfn, NULL);
799         }
800 }
801
802 #ifdef CONFIG_PA20
803
804 /*
805  * Currently, all PA20 chips have 18 bit protection IDs, which is the
806  * limiting factor (space ids are 32 bits).
807  */
808
809 #define NR_SPACE_IDS 262144
810
811 #else
812
813 /*
814  * Currently we have a one-to-one relationship between space IDs and
815  * protection IDs. Older parisc chips (PCXS, PCXT, PCXL, PCXL2) only
816  * support 15 bit protection IDs, so that is the limiting factor.
817  * PCXT' has 18 bit protection IDs, but only 16 bit spaceids, so it's
818  * probably not worth the effort for a special case here.
819  */
820
821 #define NR_SPACE_IDS 32768
822
823 #endif  /* !CONFIG_PA20 */
824
825 #define RECYCLE_THRESHOLD (NR_SPACE_IDS / 2)
826 #define SID_ARRAY_SIZE  (NR_SPACE_IDS / (8 * sizeof(long)))
827
828 static unsigned long space_id[SID_ARRAY_SIZE] = { 1 }; /* disallow space 0 */
829 static unsigned long dirty_space_id[SID_ARRAY_SIZE];
830 static unsigned long space_id_index;
831 static unsigned long free_space_ids = NR_SPACE_IDS - 1;
832 static unsigned long dirty_space_ids = 0;
833
834 static DEFINE_SPINLOCK(sid_lock);
835
836 unsigned long alloc_sid(void)
837 {
838         unsigned long index;
839
840         spin_lock(&sid_lock);
841
842         if (free_space_ids == 0) {
843                 if (dirty_space_ids != 0) {
844                         spin_unlock(&sid_lock);
845                         flush_tlb_all(); /* flush_tlb_all() calls recycle_sids() */
846                         spin_lock(&sid_lock);
847                 }
848                 BUG_ON(free_space_ids == 0);
849         }
850
851         free_space_ids--;
852
853         index = find_next_zero_bit(space_id, NR_SPACE_IDS, space_id_index);
854         space_id[index >> SHIFT_PER_LONG] |= (1L << (index & (BITS_PER_LONG - 1)));
855         space_id_index = index;
856
857         spin_unlock(&sid_lock);
858
859         return index << SPACEID_SHIFT;
860 }
861
862 void free_sid(unsigned long spaceid)
863 {
864         unsigned long index = spaceid >> SPACEID_SHIFT;
865         unsigned long *dirty_space_offset;
866
867         dirty_space_offset = dirty_space_id + (index >> SHIFT_PER_LONG);
868         index &= (BITS_PER_LONG - 1);
869
870         spin_lock(&sid_lock);
871
872         BUG_ON(*dirty_space_offset & (1L << index)); /* attempt to free space id twice */
873
874         *dirty_space_offset |= (1L << index);
875         dirty_space_ids++;
876
877         spin_unlock(&sid_lock);
878 }
879
880
881 #ifdef CONFIG_SMP
882 static void get_dirty_sids(unsigned long *ndirtyptr,unsigned long *dirty_array)
883 {
884         int i;
885
886         /* NOTE: sid_lock must be held upon entry */
887
888         *ndirtyptr = dirty_space_ids;
889         if (dirty_space_ids != 0) {
890             for (i = 0; i < SID_ARRAY_SIZE; i++) {
891                 dirty_array[i] = dirty_space_id[i];
892                 dirty_space_id[i] = 0;
893             }
894             dirty_space_ids = 0;
895         }
896
897         return;
898 }
899
900 static void recycle_sids(unsigned long ndirty,unsigned long *dirty_array)
901 {
902         int i;
903
904         /* NOTE: sid_lock must be held upon entry */
905
906         if (ndirty != 0) {
907                 for (i = 0; i < SID_ARRAY_SIZE; i++) {
908                         space_id[i] ^= dirty_array[i];
909                 }
910
911                 free_space_ids += ndirty;
912                 space_id_index = 0;
913         }
914 }
915
916 #else /* CONFIG_SMP */
917
918 static void recycle_sids(void)
919 {
920         int i;
921
922         /* NOTE: sid_lock must be held upon entry */
923
924         if (dirty_space_ids != 0) {
925                 for (i = 0; i < SID_ARRAY_SIZE; i++) {
926                         space_id[i] ^= dirty_space_id[i];
927                         dirty_space_id[i] = 0;
928                 }
929
930                 free_space_ids += dirty_space_ids;
931                 dirty_space_ids = 0;
932                 space_id_index = 0;
933         }
934 }
935 #endif
936
937 /*
938  * flush_tlb_all() calls recycle_sids(), since whenever the entire tlb is
939  * purged, we can safely reuse the space ids that were released but
940  * not flushed from the tlb.
941  */
942
943 #ifdef CONFIG_SMP
944
945 static unsigned long recycle_ndirty;
946 static unsigned long recycle_dirty_array[SID_ARRAY_SIZE];
947 static unsigned int recycle_inuse;
948
949 void flush_tlb_all(void)
950 {
951         int do_recycle;
952
953         __inc_irq_stat(irq_tlb_count);
954         do_recycle = 0;
955         spin_lock(&sid_lock);
956         if (dirty_space_ids > RECYCLE_THRESHOLD) {
957             BUG_ON(recycle_inuse);  /* FIXME: Use a semaphore/wait queue here */
958             get_dirty_sids(&recycle_ndirty,recycle_dirty_array);
959             recycle_inuse++;
960             do_recycle++;
961         }
962         spin_unlock(&sid_lock);
963         on_each_cpu(flush_tlb_all_local, NULL, 1);
964         if (do_recycle) {
965             spin_lock(&sid_lock);
966             recycle_sids(recycle_ndirty,recycle_dirty_array);
967             recycle_inuse = 0;
968             spin_unlock(&sid_lock);
969         }
970 }
971 #else
972 void flush_tlb_all(void)
973 {
974         __inc_irq_stat(irq_tlb_count);
975         spin_lock(&sid_lock);
976         flush_tlb_all_local(NULL);
977         recycle_sids();
978         spin_unlock(&sid_lock);
979 }
980 #endif
981
982 #ifdef CONFIG_BLK_DEV_INITRD
983 void free_initrd_mem(unsigned long start, unsigned long end)
984 {
985         free_reserved_area((void *)start, (void *)end, -1, "initrd");
986 }
987 #endif