Merge remote-tracking branch 'lsk/v3.10/topic/gator' into linux-linaro-lsk
[firefly-linux-kernel-4.4.55.git] / arch / ia64 / kernel / efi.c
1 /*
2  * Extensible Firmware Interface
3  *
4  * Based on Extensible Firmware Interface Specification version 0.9
5  * April 30, 1999
6  *
7  * Copyright (C) 1999 VA Linux Systems
8  * Copyright (C) 1999 Walt Drummond <drummond@valinux.com>
9  * Copyright (C) 1999-2003 Hewlett-Packard Co.
10  *      David Mosberger-Tang <davidm@hpl.hp.com>
11  *      Stephane Eranian <eranian@hpl.hp.com>
12  * (c) Copyright 2006 Hewlett-Packard Development Company, L.P.
13  *      Bjorn Helgaas <bjorn.helgaas@hp.com>
14  *
15  * All EFI Runtime Services are not implemented yet as EFI only
16  * supports physical mode addressing on SoftSDV. This is to be fixed
17  * in a future version.  --drummond 1999-07-20
18  *
19  * Implemented EFI runtime services and virtual mode calls.  --davidm
20  *
21  * Goutham Rao: <goutham.rao@intel.com>
22  *      Skip non-WB memory and ignore empty memory ranges.
23  */
24 #include <linux/module.h>
25 #include <linux/bootmem.h>
26 #include <linux/crash_dump.h>
27 #include <linux/kernel.h>
28 #include <linux/init.h>
29 #include <linux/types.h>
30 #include <linux/slab.h>
31 #include <linux/time.h>
32 #include <linux/efi.h>
33 #include <linux/kexec.h>
34 #include <linux/mm.h>
35
36 #include <asm/io.h>
37 #include <asm/kregs.h>
38 #include <asm/meminit.h>
39 #include <asm/pgtable.h>
40 #include <asm/processor.h>
41 #include <asm/mca.h>
42 #include <asm/setup.h>
43 #include <asm/tlbflush.h>
44
45 #define EFI_DEBUG       0
46
47 static __initdata unsigned long palo_phys;
48
49 static __initdata efi_config_table_type_t arch_tables[] = {
50         {PROCESSOR_ABSTRACTION_LAYER_OVERWRITE_GUID, "PALO", &palo_phys},
51         {NULL_GUID, NULL, 0},
52 };
53
54 extern efi_status_t efi_call_phys (void *, ...);
55
56 static efi_runtime_services_t *runtime;
57 static u64 mem_limit = ~0UL, max_addr = ~0UL, min_addr = 0UL;
58
59 #define efi_call_virt(f, args...)       (*(f))(args)
60
61 #define STUB_GET_TIME(prefix, adjust_arg)                                      \
62 static efi_status_t                                                            \
63 prefix##_get_time (efi_time_t *tm, efi_time_cap_t *tc)                         \
64 {                                                                              \
65         struct ia64_fpreg fr[6];                                               \
66         efi_time_cap_t *atc = NULL;                                            \
67         efi_status_t ret;                                                      \
68                                                                                \
69         if (tc)                                                                \
70                 atc = adjust_arg(tc);                                          \
71         ia64_save_scratch_fpregs(fr);                                          \
72         ret = efi_call_##prefix((efi_get_time_t *) __va(runtime->get_time),    \
73                                 adjust_arg(tm), atc);                          \
74         ia64_load_scratch_fpregs(fr);                                          \
75         return ret;                                                            \
76 }
77
78 #define STUB_SET_TIME(prefix, adjust_arg)                                      \
79 static efi_status_t                                                            \
80 prefix##_set_time (efi_time_t *tm)                                             \
81 {                                                                              \
82         struct ia64_fpreg fr[6];                                               \
83         efi_status_t ret;                                                      \
84                                                                                \
85         ia64_save_scratch_fpregs(fr);                                          \
86         ret = efi_call_##prefix((efi_set_time_t *) __va(runtime->set_time),    \
87                                 adjust_arg(tm));                               \
88         ia64_load_scratch_fpregs(fr);                                          \
89         return ret;                                                            \
90 }
91
92 #define STUB_GET_WAKEUP_TIME(prefix, adjust_arg)                               \
93 static efi_status_t                                                            \
94 prefix##_get_wakeup_time (efi_bool_t *enabled, efi_bool_t *pending,            \
95                           efi_time_t *tm)                                      \
96 {                                                                              \
97         struct ia64_fpreg fr[6];                                               \
98         efi_status_t ret;                                                      \
99                                                                                \
100         ia64_save_scratch_fpregs(fr);                                          \
101         ret = efi_call_##prefix(                                               \
102                 (efi_get_wakeup_time_t *) __va(runtime->get_wakeup_time),      \
103                 adjust_arg(enabled), adjust_arg(pending), adjust_arg(tm));     \
104         ia64_load_scratch_fpregs(fr);                                          \
105         return ret;                                                            \
106 }
107
108 #define STUB_SET_WAKEUP_TIME(prefix, adjust_arg)                               \
109 static efi_status_t                                                            \
110 prefix##_set_wakeup_time (efi_bool_t enabled, efi_time_t *tm)                  \
111 {                                                                              \
112         struct ia64_fpreg fr[6];                                               \
113         efi_time_t *atm = NULL;                                                \
114         efi_status_t ret;                                                      \
115                                                                                \
116         if (tm)                                                                \
117                 atm = adjust_arg(tm);                                          \
118         ia64_save_scratch_fpregs(fr);                                          \
119         ret = efi_call_##prefix(                                               \
120                 (efi_set_wakeup_time_t *) __va(runtime->set_wakeup_time),      \
121                 enabled, atm);                                                 \
122         ia64_load_scratch_fpregs(fr);                                          \
123         return ret;                                                            \
124 }
125
126 #define STUB_GET_VARIABLE(prefix, adjust_arg)                                  \
127 static efi_status_t                                                            \
128 prefix##_get_variable (efi_char16_t *name, efi_guid_t *vendor, u32 *attr,      \
129                        unsigned long *data_size, void *data)                   \
130 {                                                                              \
131         struct ia64_fpreg fr[6];                                               \
132         u32 *aattr = NULL;                                                     \
133         efi_status_t ret;                                                      \
134                                                                                \
135         if (attr)                                                              \
136                 aattr = adjust_arg(attr);                                      \
137         ia64_save_scratch_fpregs(fr);                                          \
138         ret = efi_call_##prefix(                                               \
139                 (efi_get_variable_t *) __va(runtime->get_variable),            \
140                 adjust_arg(name), adjust_arg(vendor), aattr,                   \
141                 adjust_arg(data_size), adjust_arg(data));                      \
142         ia64_load_scratch_fpregs(fr);                                          \
143         return ret;                                                            \
144 }
145
146 #define STUB_GET_NEXT_VARIABLE(prefix, adjust_arg)                             \
147 static efi_status_t                                                            \
148 prefix##_get_next_variable (unsigned long *name_size, efi_char16_t *name,      \
149                             efi_guid_t *vendor)                                \
150 {                                                                              \
151         struct ia64_fpreg fr[6];                                               \
152         efi_status_t ret;                                                      \
153                                                                                \
154         ia64_save_scratch_fpregs(fr);                                          \
155         ret = efi_call_##prefix(                                               \
156                 (efi_get_next_variable_t *) __va(runtime->get_next_variable),  \
157                 adjust_arg(name_size), adjust_arg(name), adjust_arg(vendor));  \
158         ia64_load_scratch_fpregs(fr);                                          \
159         return ret;                                                            \
160 }
161
162 #define STUB_SET_VARIABLE(prefix, adjust_arg)                                  \
163 static efi_status_t                                                            \
164 prefix##_set_variable (efi_char16_t *name, efi_guid_t *vendor,                 \
165                        u32 attr, unsigned long data_size,                      \
166                        void *data)                                             \
167 {                                                                              \
168         struct ia64_fpreg fr[6];                                               \
169         efi_status_t ret;                                                      \
170                                                                                \
171         ia64_save_scratch_fpregs(fr);                                          \
172         ret = efi_call_##prefix(                                               \
173                 (efi_set_variable_t *) __va(runtime->set_variable),            \
174                 adjust_arg(name), adjust_arg(vendor), attr, data_size,         \
175                 adjust_arg(data));                                             \
176         ia64_load_scratch_fpregs(fr);                                          \
177         return ret;                                                            \
178 }
179
180 #define STUB_GET_NEXT_HIGH_MONO_COUNT(prefix, adjust_arg)                      \
181 static efi_status_t                                                            \
182 prefix##_get_next_high_mono_count (u32 *count)                                 \
183 {                                                                              \
184         struct ia64_fpreg fr[6];                                               \
185         efi_status_t ret;                                                      \
186                                                                                \
187         ia64_save_scratch_fpregs(fr);                                          \
188         ret = efi_call_##prefix((efi_get_next_high_mono_count_t *)             \
189                                 __va(runtime->get_next_high_mono_count),       \
190                                 adjust_arg(count));                            \
191         ia64_load_scratch_fpregs(fr);                                          \
192         return ret;                                                            \
193 }
194
195 #define STUB_RESET_SYSTEM(prefix, adjust_arg)                                  \
196 static void                                                                    \
197 prefix##_reset_system (int reset_type, efi_status_t status,                    \
198                        unsigned long data_size, efi_char16_t *data)            \
199 {                                                                              \
200         struct ia64_fpreg fr[6];                                               \
201         efi_char16_t *adata = NULL;                                            \
202                                                                                \
203         if (data)                                                              \
204                 adata = adjust_arg(data);                                      \
205                                                                                \
206         ia64_save_scratch_fpregs(fr);                                          \
207         efi_call_##prefix(                                                     \
208                 (efi_reset_system_t *) __va(runtime->reset_system),            \
209                 reset_type, status, data_size, adata);                         \
210         /* should not return, but just in case... */                           \
211         ia64_load_scratch_fpregs(fr);                                          \
212 }
213
214 #define phys_ptr(arg)   ((__typeof__(arg)) ia64_tpa(arg))
215
216 STUB_GET_TIME(phys, phys_ptr)
217 STUB_SET_TIME(phys, phys_ptr)
218 STUB_GET_WAKEUP_TIME(phys, phys_ptr)
219 STUB_SET_WAKEUP_TIME(phys, phys_ptr)
220 STUB_GET_VARIABLE(phys, phys_ptr)
221 STUB_GET_NEXT_VARIABLE(phys, phys_ptr)
222 STUB_SET_VARIABLE(phys, phys_ptr)
223 STUB_GET_NEXT_HIGH_MONO_COUNT(phys, phys_ptr)
224 STUB_RESET_SYSTEM(phys, phys_ptr)
225
226 #define id(arg) arg
227
228 STUB_GET_TIME(virt, id)
229 STUB_SET_TIME(virt, id)
230 STUB_GET_WAKEUP_TIME(virt, id)
231 STUB_SET_WAKEUP_TIME(virt, id)
232 STUB_GET_VARIABLE(virt, id)
233 STUB_GET_NEXT_VARIABLE(virt, id)
234 STUB_SET_VARIABLE(virt, id)
235 STUB_GET_NEXT_HIGH_MONO_COUNT(virt, id)
236 STUB_RESET_SYSTEM(virt, id)
237
238 void
239 efi_gettimeofday (struct timespec *ts)
240 {
241         efi_time_t tm;
242
243         if ((*efi.get_time)(&tm, NULL) != EFI_SUCCESS) {
244                 memset(ts, 0, sizeof(*ts));
245                 return;
246         }
247
248         ts->tv_sec = mktime(tm.year, tm.month, tm.day,
249                             tm.hour, tm.minute, tm.second);
250         ts->tv_nsec = tm.nanosecond;
251 }
252
253 static int
254 is_memory_available (efi_memory_desc_t *md)
255 {
256         if (!(md->attribute & EFI_MEMORY_WB))
257                 return 0;
258
259         switch (md->type) {
260               case EFI_LOADER_CODE:
261               case EFI_LOADER_DATA:
262               case EFI_BOOT_SERVICES_CODE:
263               case EFI_BOOT_SERVICES_DATA:
264               case EFI_CONVENTIONAL_MEMORY:
265                 return 1;
266         }
267         return 0;
268 }
269
270 typedef struct kern_memdesc {
271         u64 attribute;
272         u64 start;
273         u64 num_pages;
274 } kern_memdesc_t;
275
276 static kern_memdesc_t *kern_memmap;
277
278 #define efi_md_size(md) (md->num_pages << EFI_PAGE_SHIFT)
279
280 static inline u64
281 kmd_end(kern_memdesc_t *kmd)
282 {
283         return (kmd->start + (kmd->num_pages << EFI_PAGE_SHIFT));
284 }
285
286 static inline u64
287 efi_md_end(efi_memory_desc_t *md)
288 {
289         return (md->phys_addr + efi_md_size(md));
290 }
291
292 static inline int
293 efi_wb(efi_memory_desc_t *md)
294 {
295         return (md->attribute & EFI_MEMORY_WB);
296 }
297
298 static inline int
299 efi_uc(efi_memory_desc_t *md)
300 {
301         return (md->attribute & EFI_MEMORY_UC);
302 }
303
304 static void
305 walk (efi_freemem_callback_t callback, void *arg, u64 attr)
306 {
307         kern_memdesc_t *k;
308         u64 start, end, voff;
309
310         voff = (attr == EFI_MEMORY_WB) ? PAGE_OFFSET : __IA64_UNCACHED_OFFSET;
311         for (k = kern_memmap; k->start != ~0UL; k++) {
312                 if (k->attribute != attr)
313                         continue;
314                 start = PAGE_ALIGN(k->start);
315                 end = (k->start + (k->num_pages << EFI_PAGE_SHIFT)) & PAGE_MASK;
316                 if (start < end)
317                         if ((*callback)(start + voff, end + voff, arg) < 0)
318                                 return;
319         }
320 }
321
322 /*
323  * Walk the EFI memory map and call CALLBACK once for each EFI memory
324  * descriptor that has memory that is available for OS use.
325  */
326 void
327 efi_memmap_walk (efi_freemem_callback_t callback, void *arg)
328 {
329         walk(callback, arg, EFI_MEMORY_WB);
330 }
331
332 /*
333  * Walk the EFI memory map and call CALLBACK once for each EFI memory
334  * descriptor that has memory that is available for uncached allocator.
335  */
336 void
337 efi_memmap_walk_uc (efi_freemem_callback_t callback, void *arg)
338 {
339         walk(callback, arg, EFI_MEMORY_UC);
340 }
341
342 /*
343  * Look for the PAL_CODE region reported by EFI and map it using an
344  * ITR to enable safe PAL calls in virtual mode.  See IA-64 Processor
345  * Abstraction Layer chapter 11 in ADAG
346  */
347 void *
348 efi_get_pal_addr (void)
349 {
350         void *efi_map_start, *efi_map_end, *p;
351         efi_memory_desc_t *md;
352         u64 efi_desc_size;
353         int pal_code_count = 0;
354         u64 vaddr, mask;
355
356         efi_map_start = __va(ia64_boot_param->efi_memmap);
357         efi_map_end   = efi_map_start + ia64_boot_param->efi_memmap_size;
358         efi_desc_size = ia64_boot_param->efi_memdesc_size;
359
360         for (p = efi_map_start; p < efi_map_end; p += efi_desc_size) {
361                 md = p;
362                 if (md->type != EFI_PAL_CODE)
363                         continue;
364
365                 if (++pal_code_count > 1) {
366                         printk(KERN_ERR "Too many EFI Pal Code memory ranges, "
367                                "dropped @ %llx\n", md->phys_addr);
368                         continue;
369                 }
370                 /*
371                  * The only ITLB entry in region 7 that is used is the one
372                  * installed by __start().  That entry covers a 64MB range.
373                  */
374                 mask  = ~((1 << KERNEL_TR_PAGE_SHIFT) - 1);
375                 vaddr = PAGE_OFFSET + md->phys_addr;
376
377                 /*
378                  * We must check that the PAL mapping won't overlap with the
379                  * kernel mapping.
380                  *
381                  * PAL code is guaranteed to be aligned on a power of 2 between
382                  * 4k and 256KB and that only one ITR is needed to map it. This
383                  * implies that the PAL code is always aligned on its size,
384                  * i.e., the closest matching page size supported by the TLB.
385                  * Therefore PAL code is guaranteed never to cross a 64MB unless
386                  * it is bigger than 64MB (very unlikely!).  So for now the
387                  * following test is enough to determine whether or not we need
388                  * a dedicated ITR for the PAL code.
389                  */
390                 if ((vaddr & mask) == (KERNEL_START & mask)) {
391                         printk(KERN_INFO "%s: no need to install ITR for PAL code\n",
392                                __func__);
393                         continue;
394                 }
395
396                 if (efi_md_size(md) > IA64_GRANULE_SIZE)
397                         panic("Whoa!  PAL code size bigger than a granule!");
398
399 #if EFI_DEBUG
400                 mask  = ~((1 << IA64_GRANULE_SHIFT) - 1);
401
402                 printk(KERN_INFO "CPU %d: mapping PAL code "
403                        "[0x%lx-0x%lx) into [0x%lx-0x%lx)\n",
404                        smp_processor_id(), md->phys_addr,
405                        md->phys_addr + efi_md_size(md),
406                        vaddr & mask, (vaddr & mask) + IA64_GRANULE_SIZE);
407 #endif
408                 return __va(md->phys_addr);
409         }
410         printk(KERN_WARNING "%s: no PAL-code memory-descriptor found\n",
411                __func__);
412         return NULL;
413 }
414
415
416 static u8 __init palo_checksum(u8 *buffer, u32 length)
417 {
418         u8 sum = 0;
419         u8 *end = buffer + length;
420
421         while (buffer < end)
422                 sum = (u8) (sum + *(buffer++));
423
424         return sum;
425 }
426
427 /*
428  * Parse and handle PALO table which is published at:
429  * http://www.dig64.org/home/DIG64_PALO_R1_0.pdf
430  */
431 static void __init handle_palo(unsigned long phys_addr)
432 {
433         struct palo_table *palo = __va(phys_addr);
434         u8  checksum;
435
436         if (strncmp(palo->signature, PALO_SIG, sizeof(PALO_SIG) - 1)) {
437                 printk(KERN_INFO "PALO signature incorrect.\n");
438                 return;
439         }
440
441         checksum = palo_checksum((u8 *)palo, palo->length);
442         if (checksum) {
443                 printk(KERN_INFO "PALO checksum incorrect.\n");
444                 return;
445         }
446
447         setup_ptcg_sem(palo->max_tlb_purges, NPTCG_FROM_PALO);
448 }
449
450 void
451 efi_map_pal_code (void)
452 {
453         void *pal_vaddr = efi_get_pal_addr ();
454         u64 psr;
455
456         if (!pal_vaddr)
457                 return;
458
459         /*
460          * Cannot write to CRx with PSR.ic=1
461          */
462         psr = ia64_clear_ic();
463         ia64_itr(0x1, IA64_TR_PALCODE,
464                  GRANULEROUNDDOWN((unsigned long) pal_vaddr),
465                  pte_val(pfn_pte(__pa(pal_vaddr) >> PAGE_SHIFT, PAGE_KERNEL)),
466                  IA64_GRANULE_SHIFT);
467         paravirt_dv_serialize_data();
468         ia64_set_psr(psr);              /* restore psr */
469 }
470
471 void __init
472 efi_init (void)
473 {
474         void *efi_map_start, *efi_map_end;
475         efi_char16_t *c16;
476         u64 efi_desc_size;
477         char *cp, vendor[100] = "unknown";
478         int i;
479
480         set_bit(EFI_BOOT, &efi.flags);
481         set_bit(EFI_64BIT, &efi.flags);
482
483         /*
484          * It's too early to be able to use the standard kernel command line
485          * support...
486          */
487         for (cp = boot_command_line; *cp; ) {
488                 if (memcmp(cp, "mem=", 4) == 0) {
489                         mem_limit = memparse(cp + 4, &cp);
490                 } else if (memcmp(cp, "max_addr=", 9) == 0) {
491                         max_addr = GRANULEROUNDDOWN(memparse(cp + 9, &cp));
492                 } else if (memcmp(cp, "min_addr=", 9) == 0) {
493                         min_addr = GRANULEROUNDDOWN(memparse(cp + 9, &cp));
494                 } else {
495                         while (*cp != ' ' && *cp)
496                                 ++cp;
497                         while (*cp == ' ')
498                                 ++cp;
499                 }
500         }
501         if (min_addr != 0UL)
502                 printk(KERN_INFO "Ignoring memory below %lluMB\n",
503                        min_addr >> 20);
504         if (max_addr != ~0UL)
505                 printk(KERN_INFO "Ignoring memory above %lluMB\n",
506                        max_addr >> 20);
507
508         efi.systab = __va(ia64_boot_param->efi_systab);
509
510         /*
511          * Verify the EFI Table
512          */
513         if (efi.systab == NULL)
514                 panic("Whoa! Can't find EFI system table.\n");
515         if (efi.systab->hdr.signature != EFI_SYSTEM_TABLE_SIGNATURE)
516                 panic("Whoa! EFI system table signature incorrect\n");
517         if ((efi.systab->hdr.revision >> 16) == 0)
518                 printk(KERN_WARNING "Warning: EFI system table version "
519                        "%d.%02d, expected 1.00 or greater\n",
520                        efi.systab->hdr.revision >> 16,
521                        efi.systab->hdr.revision & 0xffff);
522
523         /* Show what we know for posterity */
524         c16 = __va(efi.systab->fw_vendor);
525         if (c16) {
526                 for (i = 0;i < (int) sizeof(vendor) - 1 && *c16; ++i)
527                         vendor[i] = *c16++;
528                 vendor[i] = '\0';
529         }
530
531         printk(KERN_INFO "EFI v%u.%.02u by %s:",
532                efi.systab->hdr.revision >> 16,
533                efi.systab->hdr.revision & 0xffff, vendor);
534
535         set_bit(EFI_SYSTEM_TABLES, &efi.flags);
536
537         palo_phys      = EFI_INVALID_TABLE_ADDR;
538
539         if (efi_config_init(arch_tables) != 0)
540                 return;
541
542         if (palo_phys != EFI_INVALID_TABLE_ADDR)
543                 handle_palo(palo_phys);
544
545         runtime = __va(efi.systab->runtime);
546         efi.get_time = phys_get_time;
547         efi.set_time = phys_set_time;
548         efi.get_wakeup_time = phys_get_wakeup_time;
549         efi.set_wakeup_time = phys_set_wakeup_time;
550         efi.get_variable = phys_get_variable;
551         efi.get_next_variable = phys_get_next_variable;
552         efi.set_variable = phys_set_variable;
553         efi.get_next_high_mono_count = phys_get_next_high_mono_count;
554         efi.reset_system = phys_reset_system;
555
556         efi_map_start = __va(ia64_boot_param->efi_memmap);
557         efi_map_end   = efi_map_start + ia64_boot_param->efi_memmap_size;
558         efi_desc_size = ia64_boot_param->efi_memdesc_size;
559
560 #if EFI_DEBUG
561         /* print EFI memory map: */
562         {
563                 efi_memory_desc_t *md;
564                 void *p;
565
566                 for (i = 0, p = efi_map_start; p < efi_map_end;
567                      ++i, p += efi_desc_size)
568                 {
569                         const char *unit;
570                         unsigned long size;
571
572                         md = p;
573                         size = md->num_pages << EFI_PAGE_SHIFT;
574
575                         if ((size >> 40) > 0) {
576                                 size >>= 40;
577                                 unit = "TB";
578                         } else if ((size >> 30) > 0) {
579                                 size >>= 30;
580                                 unit = "GB";
581                         } else if ((size >> 20) > 0) {
582                                 size >>= 20;
583                                 unit = "MB";
584                         } else {
585                                 size >>= 10;
586                                 unit = "KB";
587                         }
588
589                         printk("mem%02d: type=%2u, attr=0x%016lx, "
590                                "range=[0x%016lx-0x%016lx) (%4lu%s)\n",
591                                i, md->type, md->attribute, md->phys_addr,
592                                md->phys_addr + efi_md_size(md), size, unit);
593                 }
594         }
595 #endif
596
597         efi_map_pal_code();
598         efi_enter_virtual_mode();
599 }
600
601 void
602 efi_enter_virtual_mode (void)
603 {
604         void *efi_map_start, *efi_map_end, *p;
605         efi_memory_desc_t *md;
606         efi_status_t status;
607         u64 efi_desc_size;
608
609         efi_map_start = __va(ia64_boot_param->efi_memmap);
610         efi_map_end   = efi_map_start + ia64_boot_param->efi_memmap_size;
611         efi_desc_size = ia64_boot_param->efi_memdesc_size;
612
613         for (p = efi_map_start; p < efi_map_end; p += efi_desc_size) {
614                 md = p;
615                 if (md->attribute & EFI_MEMORY_RUNTIME) {
616                         /*
617                          * Some descriptors have multiple bits set, so the
618                          * order of the tests is relevant.
619                          */
620                         if (md->attribute & EFI_MEMORY_WB) {
621                                 md->virt_addr = (u64) __va(md->phys_addr);
622                         } else if (md->attribute & EFI_MEMORY_UC) {
623                                 md->virt_addr = (u64) ioremap(md->phys_addr, 0);
624                         } else if (md->attribute & EFI_MEMORY_WC) {
625 #if 0
626                                 md->virt_addr = ia64_remap(md->phys_addr,
627                                                            (_PAGE_A |
628                                                             _PAGE_P |
629                                                             _PAGE_D |
630                                                             _PAGE_MA_WC |
631                                                             _PAGE_PL_0 |
632                                                             _PAGE_AR_RW));
633 #else
634                                 printk(KERN_INFO "EFI_MEMORY_WC mapping\n");
635                                 md->virt_addr = (u64) ioremap(md->phys_addr, 0);
636 #endif
637                         } else if (md->attribute & EFI_MEMORY_WT) {
638 #if 0
639                                 md->virt_addr = ia64_remap(md->phys_addr,
640                                                            (_PAGE_A |
641                                                             _PAGE_P |
642                                                             _PAGE_D |
643                                                             _PAGE_MA_WT |
644                                                             _PAGE_PL_0 |
645                                                             _PAGE_AR_RW));
646 #else
647                                 printk(KERN_INFO "EFI_MEMORY_WT mapping\n");
648                                 md->virt_addr = (u64) ioremap(md->phys_addr, 0);
649 #endif
650                         }
651                 }
652         }
653
654         status = efi_call_phys(__va(runtime->set_virtual_address_map),
655                                ia64_boot_param->efi_memmap_size,
656                                efi_desc_size,
657                                ia64_boot_param->efi_memdesc_version,
658                                ia64_boot_param->efi_memmap);
659         if (status != EFI_SUCCESS) {
660                 printk(KERN_WARNING "warning: unable to switch EFI into "
661                        "virtual mode (status=%lu)\n", status);
662                 return;
663         }
664
665         set_bit(EFI_RUNTIME_SERVICES, &efi.flags);
666
667         /*
668          * Now that EFI is in virtual mode, we call the EFI functions more
669          * efficiently:
670          */
671         efi.get_time = virt_get_time;
672         efi.set_time = virt_set_time;
673         efi.get_wakeup_time = virt_get_wakeup_time;
674         efi.set_wakeup_time = virt_set_wakeup_time;
675         efi.get_variable = virt_get_variable;
676         efi.get_next_variable = virt_get_next_variable;
677         efi.set_variable = virt_set_variable;
678         efi.get_next_high_mono_count = virt_get_next_high_mono_count;
679         efi.reset_system = virt_reset_system;
680 }
681
682 /*
683  * Walk the EFI memory map looking for the I/O port range.  There can only be
684  * one entry of this type, other I/O port ranges should be described via ACPI.
685  */
686 u64
687 efi_get_iobase (void)
688 {
689         void *efi_map_start, *efi_map_end, *p;
690         efi_memory_desc_t *md;
691         u64 efi_desc_size;
692
693         efi_map_start = __va(ia64_boot_param->efi_memmap);
694         efi_map_end   = efi_map_start + ia64_boot_param->efi_memmap_size;
695         efi_desc_size = ia64_boot_param->efi_memdesc_size;
696
697         for (p = efi_map_start; p < efi_map_end; p += efi_desc_size) {
698                 md = p;
699                 if (md->type == EFI_MEMORY_MAPPED_IO_PORT_SPACE) {
700                         if (md->attribute & EFI_MEMORY_UC)
701                                 return md->phys_addr;
702                 }
703         }
704         return 0;
705 }
706
707 static struct kern_memdesc *
708 kern_memory_descriptor (unsigned long phys_addr)
709 {
710         struct kern_memdesc *md;
711
712         for (md = kern_memmap; md->start != ~0UL; md++) {
713                 if (phys_addr - md->start < (md->num_pages << EFI_PAGE_SHIFT))
714                          return md;
715         }
716         return NULL;
717 }
718
719 static efi_memory_desc_t *
720 efi_memory_descriptor (unsigned long phys_addr)
721 {
722         void *efi_map_start, *efi_map_end, *p;
723         efi_memory_desc_t *md;
724         u64 efi_desc_size;
725
726         efi_map_start = __va(ia64_boot_param->efi_memmap);
727         efi_map_end   = efi_map_start + ia64_boot_param->efi_memmap_size;
728         efi_desc_size = ia64_boot_param->efi_memdesc_size;
729
730         for (p = efi_map_start; p < efi_map_end; p += efi_desc_size) {
731                 md = p;
732
733                 if (phys_addr - md->phys_addr < efi_md_size(md))
734                          return md;
735         }
736         return NULL;
737 }
738
739 static int
740 efi_memmap_intersects (unsigned long phys_addr, unsigned long size)
741 {
742         void *efi_map_start, *efi_map_end, *p;
743         efi_memory_desc_t *md;
744         u64 efi_desc_size;
745         unsigned long end;
746
747         efi_map_start = __va(ia64_boot_param->efi_memmap);
748         efi_map_end   = efi_map_start + ia64_boot_param->efi_memmap_size;
749         efi_desc_size = ia64_boot_param->efi_memdesc_size;
750
751         end = phys_addr + size;
752
753         for (p = efi_map_start; p < efi_map_end; p += efi_desc_size) {
754                 md = p;
755                 if (md->phys_addr < end && efi_md_end(md) > phys_addr)
756                         return 1;
757         }
758         return 0;
759 }
760
761 u32
762 efi_mem_type (unsigned long phys_addr)
763 {
764         efi_memory_desc_t *md = efi_memory_descriptor(phys_addr);
765
766         if (md)
767                 return md->type;
768         return 0;
769 }
770
771 u64
772 efi_mem_attributes (unsigned long phys_addr)
773 {
774         efi_memory_desc_t *md = efi_memory_descriptor(phys_addr);
775
776         if (md)
777                 return md->attribute;
778         return 0;
779 }
780 EXPORT_SYMBOL(efi_mem_attributes);
781
782 u64
783 efi_mem_attribute (unsigned long phys_addr, unsigned long size)
784 {
785         unsigned long end = phys_addr + size;
786         efi_memory_desc_t *md = efi_memory_descriptor(phys_addr);
787         u64 attr;
788
789         if (!md)
790                 return 0;
791
792         /*
793          * EFI_MEMORY_RUNTIME is not a memory attribute; it just tells
794          * the kernel that firmware needs this region mapped.
795          */
796         attr = md->attribute & ~EFI_MEMORY_RUNTIME;
797         do {
798                 unsigned long md_end = efi_md_end(md);
799
800                 if (end <= md_end)
801                         return attr;
802
803                 md = efi_memory_descriptor(md_end);
804                 if (!md || (md->attribute & ~EFI_MEMORY_RUNTIME) != attr)
805                         return 0;
806         } while (md);
807         return 0;       /* never reached */
808 }
809
810 u64
811 kern_mem_attribute (unsigned long phys_addr, unsigned long size)
812 {
813         unsigned long end = phys_addr + size;
814         struct kern_memdesc *md;
815         u64 attr;
816
817         /*
818          * This is a hack for ioremap calls before we set up kern_memmap.
819          * Maybe we should do efi_memmap_init() earlier instead.
820          */
821         if (!kern_memmap) {
822                 attr = efi_mem_attribute(phys_addr, size);
823                 if (attr & EFI_MEMORY_WB)
824                         return EFI_MEMORY_WB;
825                 return 0;
826         }
827
828         md = kern_memory_descriptor(phys_addr);
829         if (!md)
830                 return 0;
831
832         attr = md->attribute;
833         do {
834                 unsigned long md_end = kmd_end(md);
835
836                 if (end <= md_end)
837                         return attr;
838
839                 md = kern_memory_descriptor(md_end);
840                 if (!md || md->attribute != attr)
841                         return 0;
842         } while (md);
843         return 0;       /* never reached */
844 }
845 EXPORT_SYMBOL(kern_mem_attribute);
846
847 int
848 valid_phys_addr_range (phys_addr_t phys_addr, unsigned long size)
849 {
850         u64 attr;
851
852         /*
853          * /dev/mem reads and writes use copy_to_user(), which implicitly
854          * uses a granule-sized kernel identity mapping.  It's really
855          * only safe to do this for regions in kern_memmap.  For more
856          * details, see Documentation/ia64/aliasing.txt.
857          */
858         attr = kern_mem_attribute(phys_addr, size);
859         if (attr & EFI_MEMORY_WB || attr & EFI_MEMORY_UC)
860                 return 1;
861         return 0;
862 }
863
864 int
865 valid_mmap_phys_addr_range (unsigned long pfn, unsigned long size)
866 {
867         unsigned long phys_addr = pfn << PAGE_SHIFT;
868         u64 attr;
869
870         attr = efi_mem_attribute(phys_addr, size);
871
872         /*
873          * /dev/mem mmap uses normal user pages, so we don't need the entire
874          * granule, but the entire region we're mapping must support the same
875          * attribute.
876          */
877         if (attr & EFI_MEMORY_WB || attr & EFI_MEMORY_UC)
878                 return 1;
879
880         /*
881          * Intel firmware doesn't tell us about all the MMIO regions, so
882          * in general we have to allow mmap requests.  But if EFI *does*
883          * tell us about anything inside this region, we should deny it.
884          * The user can always map a smaller region to avoid the overlap.
885          */
886         if (efi_memmap_intersects(phys_addr, size))
887                 return 0;
888
889         return 1;
890 }
891
892 pgprot_t
893 phys_mem_access_prot(struct file *file, unsigned long pfn, unsigned long size,
894                      pgprot_t vma_prot)
895 {
896         unsigned long phys_addr = pfn << PAGE_SHIFT;
897         u64 attr;
898
899         /*
900          * For /dev/mem mmap, we use user mappings, but if the region is
901          * in kern_memmap (and hence may be covered by a kernel mapping),
902          * we must use the same attribute as the kernel mapping.
903          */
904         attr = kern_mem_attribute(phys_addr, size);
905         if (attr & EFI_MEMORY_WB)
906                 return pgprot_cacheable(vma_prot);
907         else if (attr & EFI_MEMORY_UC)
908                 return pgprot_noncached(vma_prot);
909
910         /*
911          * Some chipsets don't support UC access to memory.  If
912          * WB is supported, we prefer that.
913          */
914         if (efi_mem_attribute(phys_addr, size) & EFI_MEMORY_WB)
915                 return pgprot_cacheable(vma_prot);
916
917         return pgprot_noncached(vma_prot);
918 }
919
920 int __init
921 efi_uart_console_only(void)
922 {
923         efi_status_t status;
924         char *s, name[] = "ConOut";
925         efi_guid_t guid = EFI_GLOBAL_VARIABLE_GUID;
926         efi_char16_t *utf16, name_utf16[32];
927         unsigned char data[1024];
928         unsigned long size = sizeof(data);
929         struct efi_generic_dev_path *hdr, *end_addr;
930         int uart = 0;
931
932         /* Convert to UTF-16 */
933         utf16 = name_utf16;
934         s = name;
935         while (*s)
936                 *utf16++ = *s++ & 0x7f;
937         *utf16 = 0;
938
939         status = efi.get_variable(name_utf16, &guid, NULL, &size, data);
940         if (status != EFI_SUCCESS) {
941                 printk(KERN_ERR "No EFI %s variable?\n", name);
942                 return 0;
943         }
944
945         hdr = (struct efi_generic_dev_path *) data;
946         end_addr = (struct efi_generic_dev_path *) ((u8 *) data + size);
947         while (hdr < end_addr) {
948                 if (hdr->type == EFI_DEV_MSG &&
949                     hdr->sub_type == EFI_DEV_MSG_UART)
950                         uart = 1;
951                 else if (hdr->type == EFI_DEV_END_PATH ||
952                           hdr->type == EFI_DEV_END_PATH2) {
953                         if (!uart)
954                                 return 0;
955                         if (hdr->sub_type == EFI_DEV_END_ENTIRE)
956                                 return 1;
957                         uart = 0;
958                 }
959                 hdr = (struct efi_generic_dev_path *)((u8 *) hdr + hdr->length);
960         }
961         printk(KERN_ERR "Malformed %s value\n", name);
962         return 0;
963 }
964
965 /*
966  * Look for the first granule aligned memory descriptor memory
967  * that is big enough to hold EFI memory map. Make sure this
968  * descriptor is atleast granule sized so it does not get trimmed
969  */
970 struct kern_memdesc *
971 find_memmap_space (void)
972 {
973         u64     contig_low=0, contig_high=0;
974         u64     as = 0, ae;
975         void *efi_map_start, *efi_map_end, *p, *q;
976         efi_memory_desc_t *md, *pmd = NULL, *check_md;
977         u64     space_needed, efi_desc_size;
978         unsigned long total_mem = 0;
979
980         efi_map_start = __va(ia64_boot_param->efi_memmap);
981         efi_map_end   = efi_map_start + ia64_boot_param->efi_memmap_size;
982         efi_desc_size = ia64_boot_param->efi_memdesc_size;
983
984         /*
985          * Worst case: we need 3 kernel descriptors for each efi descriptor
986          * (if every entry has a WB part in the middle, and UC head and tail),
987          * plus one for the end marker.
988          */
989         space_needed = sizeof(kern_memdesc_t) *
990                 (3 * (ia64_boot_param->efi_memmap_size/efi_desc_size) + 1);
991
992         for (p = efi_map_start; p < efi_map_end; pmd = md, p += efi_desc_size) {
993                 md = p;
994                 if (!efi_wb(md)) {
995                         continue;
996                 }
997                 if (pmd == NULL || !efi_wb(pmd) ||
998                     efi_md_end(pmd) != md->phys_addr) {
999                         contig_low = GRANULEROUNDUP(md->phys_addr);
1000                         contig_high = efi_md_end(md);
1001                         for (q = p + efi_desc_size; q < efi_map_end;
1002                              q += efi_desc_size) {
1003                                 check_md = q;
1004                                 if (!efi_wb(check_md))
1005                                         break;
1006                                 if (contig_high != check_md->phys_addr)
1007                                         break;
1008                                 contig_high = efi_md_end(check_md);
1009                         }
1010                         contig_high = GRANULEROUNDDOWN(contig_high);
1011                 }
1012                 if (!is_memory_available(md) || md->type == EFI_LOADER_DATA)
1013                         continue;
1014
1015                 /* Round ends inward to granule boundaries */
1016                 as = max(contig_low, md->phys_addr);
1017                 ae = min(contig_high, efi_md_end(md));
1018
1019                 /* keep within max_addr= and min_addr= command line arg */
1020                 as = max(as, min_addr);
1021                 ae = min(ae, max_addr);
1022                 if (ae <= as)
1023                         continue;
1024
1025                 /* avoid going over mem= command line arg */
1026                 if (total_mem + (ae - as) > mem_limit)
1027                         ae -= total_mem + (ae - as) - mem_limit;
1028
1029                 if (ae <= as)
1030                         continue;
1031
1032                 if (ae - as > space_needed)
1033                         break;
1034         }
1035         if (p >= efi_map_end)
1036                 panic("Can't allocate space for kernel memory descriptors");
1037
1038         return __va(as);
1039 }
1040
1041 /*
1042  * Walk the EFI memory map and gather all memory available for kernel
1043  * to use.  We can allocate partial granules only if the unavailable
1044  * parts exist, and are WB.
1045  */
1046 unsigned long
1047 efi_memmap_init(u64 *s, u64 *e)
1048 {
1049         struct kern_memdesc *k, *prev = NULL;
1050         u64     contig_low=0, contig_high=0;
1051         u64     as, ae, lim;
1052         void *efi_map_start, *efi_map_end, *p, *q;
1053         efi_memory_desc_t *md, *pmd = NULL, *check_md;
1054         u64     efi_desc_size;
1055         unsigned long total_mem = 0;
1056
1057         k = kern_memmap = find_memmap_space();
1058
1059         efi_map_start = __va(ia64_boot_param->efi_memmap);
1060         efi_map_end   = efi_map_start + ia64_boot_param->efi_memmap_size;
1061         efi_desc_size = ia64_boot_param->efi_memdesc_size;
1062
1063         for (p = efi_map_start; p < efi_map_end; pmd = md, p += efi_desc_size) {
1064                 md = p;
1065                 if (!efi_wb(md)) {
1066                         if (efi_uc(md) &&
1067                             (md->type == EFI_CONVENTIONAL_MEMORY ||
1068                              md->type == EFI_BOOT_SERVICES_DATA)) {
1069                                 k->attribute = EFI_MEMORY_UC;
1070                                 k->start = md->phys_addr;
1071                                 k->num_pages = md->num_pages;
1072                                 k++;
1073                         }
1074                         continue;
1075                 }
1076                 if (pmd == NULL || !efi_wb(pmd) ||
1077                     efi_md_end(pmd) != md->phys_addr) {
1078                         contig_low = GRANULEROUNDUP(md->phys_addr);
1079                         contig_high = efi_md_end(md);
1080                         for (q = p + efi_desc_size; q < efi_map_end;
1081                              q += efi_desc_size) {
1082                                 check_md = q;
1083                                 if (!efi_wb(check_md))
1084                                         break;
1085                                 if (contig_high != check_md->phys_addr)
1086                                         break;
1087                                 contig_high = efi_md_end(check_md);
1088                         }
1089                         contig_high = GRANULEROUNDDOWN(contig_high);
1090                 }
1091                 if (!is_memory_available(md))
1092                         continue;
1093
1094 #ifdef CONFIG_CRASH_DUMP
1095                 /* saved_max_pfn should ignore max_addr= command line arg */
1096                 if (saved_max_pfn < (efi_md_end(md) >> PAGE_SHIFT))
1097                         saved_max_pfn = (efi_md_end(md) >> PAGE_SHIFT);
1098 #endif
1099                 /*
1100                  * Round ends inward to granule boundaries
1101                  * Give trimmings to uncached allocator
1102                  */
1103                 if (md->phys_addr < contig_low) {
1104                         lim = min(efi_md_end(md), contig_low);
1105                         if (efi_uc(md)) {
1106                                 if (k > kern_memmap &&
1107                                     (k-1)->attribute == EFI_MEMORY_UC &&
1108                                     kmd_end(k-1) == md->phys_addr) {
1109                                         (k-1)->num_pages +=
1110                                                 (lim - md->phys_addr)
1111                                                 >> EFI_PAGE_SHIFT;
1112                                 } else {
1113                                         k->attribute = EFI_MEMORY_UC;
1114                                         k->start = md->phys_addr;
1115                                         k->num_pages = (lim - md->phys_addr)
1116                                                 >> EFI_PAGE_SHIFT;
1117                                         k++;
1118                                 }
1119                         }
1120                         as = contig_low;
1121                 } else
1122                         as = md->phys_addr;
1123
1124                 if (efi_md_end(md) > contig_high) {
1125                         lim = max(md->phys_addr, contig_high);
1126                         if (efi_uc(md)) {
1127                                 if (lim == md->phys_addr && k > kern_memmap &&
1128                                     (k-1)->attribute == EFI_MEMORY_UC &&
1129                                     kmd_end(k-1) == md->phys_addr) {
1130                                         (k-1)->num_pages += md->num_pages;
1131                                 } else {
1132                                         k->attribute = EFI_MEMORY_UC;
1133                                         k->start = lim;
1134                                         k->num_pages = (efi_md_end(md) - lim)
1135                                                 >> EFI_PAGE_SHIFT;
1136                                         k++;
1137                                 }
1138                         }
1139                         ae = contig_high;
1140                 } else
1141                         ae = efi_md_end(md);
1142
1143                 /* keep within max_addr= and min_addr= command line arg */
1144                 as = max(as, min_addr);
1145                 ae = min(ae, max_addr);
1146                 if (ae <= as)
1147                         continue;
1148
1149                 /* avoid going over mem= command line arg */
1150                 if (total_mem + (ae - as) > mem_limit)
1151                         ae -= total_mem + (ae - as) - mem_limit;
1152
1153                 if (ae <= as)
1154                         continue;
1155                 if (prev && kmd_end(prev) == md->phys_addr) {
1156                         prev->num_pages += (ae - as) >> EFI_PAGE_SHIFT;
1157                         total_mem += ae - as;
1158                         continue;
1159                 }
1160                 k->attribute = EFI_MEMORY_WB;
1161                 k->start = as;
1162                 k->num_pages = (ae - as) >> EFI_PAGE_SHIFT;
1163                 total_mem += ae - as;
1164                 prev = k++;
1165         }
1166         k->start = ~0L; /* end-marker */
1167
1168         /* reserve the memory we are using for kern_memmap */
1169         *s = (u64)kern_memmap;
1170         *e = (u64)++k;
1171
1172         return total_mem;
1173 }
1174
1175 void
1176 efi_initialize_iomem_resources(struct resource *code_resource,
1177                                struct resource *data_resource,
1178                                struct resource *bss_resource)
1179 {
1180         struct resource *res;
1181         void *efi_map_start, *efi_map_end, *p;
1182         efi_memory_desc_t *md;
1183         u64 efi_desc_size;
1184         char *name;
1185         unsigned long flags;
1186
1187         efi_map_start = __va(ia64_boot_param->efi_memmap);
1188         efi_map_end   = efi_map_start + ia64_boot_param->efi_memmap_size;
1189         efi_desc_size = ia64_boot_param->efi_memdesc_size;
1190
1191         res = NULL;
1192
1193         for (p = efi_map_start; p < efi_map_end; p += efi_desc_size) {
1194                 md = p;
1195
1196                 if (md->num_pages == 0) /* should not happen */
1197                         continue;
1198
1199                 flags = IORESOURCE_MEM | IORESOURCE_BUSY;
1200                 switch (md->type) {
1201
1202                         case EFI_MEMORY_MAPPED_IO:
1203                         case EFI_MEMORY_MAPPED_IO_PORT_SPACE:
1204                                 continue;
1205
1206                         case EFI_LOADER_CODE:
1207                         case EFI_LOADER_DATA:
1208                         case EFI_BOOT_SERVICES_DATA:
1209                         case EFI_BOOT_SERVICES_CODE:
1210                         case EFI_CONVENTIONAL_MEMORY:
1211                                 if (md->attribute & EFI_MEMORY_WP) {
1212                                         name = "System ROM";
1213                                         flags |= IORESOURCE_READONLY;
1214                                 } else if (md->attribute == EFI_MEMORY_UC)
1215                                         name = "Uncached RAM";
1216                                 else
1217                                         name = "System RAM";
1218                                 break;
1219
1220                         case EFI_ACPI_MEMORY_NVS:
1221                                 name = "ACPI Non-volatile Storage";
1222                                 break;
1223
1224                         case EFI_UNUSABLE_MEMORY:
1225                                 name = "reserved";
1226                                 flags |= IORESOURCE_DISABLED;
1227                                 break;
1228
1229                         case EFI_RESERVED_TYPE:
1230                         case EFI_RUNTIME_SERVICES_CODE:
1231                         case EFI_RUNTIME_SERVICES_DATA:
1232                         case EFI_ACPI_RECLAIM_MEMORY:
1233                         default:
1234                                 name = "reserved";
1235                                 break;
1236                 }
1237
1238                 if ((res = kzalloc(sizeof(struct resource),
1239                                    GFP_KERNEL)) == NULL) {
1240                         printk(KERN_ERR
1241                                "failed to allocate resource for iomem\n");
1242                         return;
1243                 }
1244
1245                 res->name = name;
1246                 res->start = md->phys_addr;
1247                 res->end = md->phys_addr + efi_md_size(md) - 1;
1248                 res->flags = flags;
1249
1250                 if (insert_resource(&iomem_resource, res) < 0)
1251                         kfree(res);
1252                 else {
1253                         /*
1254                          * We don't know which region contains
1255                          * kernel data so we try it repeatedly and
1256                          * let the resource manager test it.
1257                          */
1258                         insert_resource(res, code_resource);
1259                         insert_resource(res, data_resource);
1260                         insert_resource(res, bss_resource);
1261 #ifdef CONFIG_KEXEC
1262                         insert_resource(res, &efi_memmap_res);
1263                         insert_resource(res, &boot_param_res);
1264                         if (crashk_res.end > crashk_res.start)
1265                                 insert_resource(res, &crashk_res);
1266 #endif
1267                 }
1268         }
1269 }
1270
1271 #ifdef CONFIG_KEXEC
1272 /* find a block of memory aligned to 64M exclude reserved regions
1273    rsvd_regions are sorted
1274  */
1275 unsigned long __init
1276 kdump_find_rsvd_region (unsigned long size, struct rsvd_region *r, int n)
1277 {
1278         int i;
1279         u64 start, end;
1280         u64 alignment = 1UL << _PAGE_SIZE_64M;
1281         void *efi_map_start, *efi_map_end, *p;
1282         efi_memory_desc_t *md;
1283         u64 efi_desc_size;
1284
1285         efi_map_start = __va(ia64_boot_param->efi_memmap);
1286         efi_map_end   = efi_map_start + ia64_boot_param->efi_memmap_size;
1287         efi_desc_size = ia64_boot_param->efi_memdesc_size;
1288
1289         for (p = efi_map_start; p < efi_map_end; p += efi_desc_size) {
1290                 md = p;
1291                 if (!efi_wb(md))
1292                         continue;
1293                 start = ALIGN(md->phys_addr, alignment);
1294                 end = efi_md_end(md);
1295                 for (i = 0; i < n; i++) {
1296                         if (__pa(r[i].start) >= start && __pa(r[i].end) < end) {
1297                                 if (__pa(r[i].start) > start + size)
1298                                         return start;
1299                                 start = ALIGN(__pa(r[i].end), alignment);
1300                                 if (i < n-1 &&
1301                                     __pa(r[i+1].start) < start + size)
1302                                         continue;
1303                                 else
1304                                         break;
1305                         }
1306                 }
1307                 if (end > start + size)
1308                         return start;
1309         }
1310
1311         printk(KERN_WARNING
1312                "Cannot reserve 0x%lx byte of memory for crashdump\n", size);
1313         return ~0UL;
1314 }
1315 #endif
1316
1317 #ifdef CONFIG_CRASH_DUMP
1318 /* locate the size find a the descriptor at a certain address */
1319 unsigned long __init
1320 vmcore_find_descriptor_size (unsigned long address)
1321 {
1322         void *efi_map_start, *efi_map_end, *p;
1323         efi_memory_desc_t *md;
1324         u64 efi_desc_size;
1325         unsigned long ret = 0;
1326
1327         efi_map_start = __va(ia64_boot_param->efi_memmap);
1328         efi_map_end   = efi_map_start + ia64_boot_param->efi_memmap_size;
1329         efi_desc_size = ia64_boot_param->efi_memdesc_size;
1330
1331         for (p = efi_map_start; p < efi_map_end; p += efi_desc_size) {
1332                 md = p;
1333                 if (efi_wb(md) && md->type == EFI_LOADER_DATA
1334                     && md->phys_addr == address) {
1335                         ret = efi_md_size(md);
1336                         break;
1337                 }
1338         }
1339
1340         if (ret == 0)
1341                 printk(KERN_WARNING "Cannot locate EFI vmcore descriptor\n");
1342
1343         return ret;
1344 }
1345 #endif