arm64: dts: rockchip: amend usb-otg related nodes for rk3368-tb
[firefly-linux-kernel-4.4.55.git] / arch / arm64 / kernel / cpufeature.c
1 /*
2  * Contains CPU feature definitions
3  *
4  * Copyright (C) 2015 ARM Ltd.
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License version 2 as
8  * published by the Free Software Foundation.
9  *
10  * This program is distributed in the hope that it will be useful,
11  * but WITHOUT ANY WARRANTY; without even the implied warranty of
12  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
13  * GNU General Public License for more details.
14  *
15  * You should have received a copy of the GNU General Public License
16  * along with this program.  If not, see <http://www.gnu.org/licenses/>.
17  */
18
19 #define pr_fmt(fmt) "CPU features: " fmt
20
21 #include <linux/bsearch.h>
22 #include <linux/cpumask.h>
23 #include <linux/sort.h>
24 #include <linux/stop_machine.h>
25 #include <linux/types.h>
26 #include <asm/cpu.h>
27 #include <asm/cpufeature.h>
28 #include <asm/cpu_ops.h>
29 #include <asm/processor.h>
30 #include <asm/sysreg.h>
31 #include <asm/virt.h>
32
33 unsigned long elf_hwcap __read_mostly;
34 EXPORT_SYMBOL_GPL(elf_hwcap);
35
36 #ifdef CONFIG_COMPAT
37 #define COMPAT_ELF_HWCAP_DEFAULT        \
38                                 (COMPAT_HWCAP_HALF|COMPAT_HWCAP_THUMB|\
39                                  COMPAT_HWCAP_FAST_MULT|COMPAT_HWCAP_EDSP|\
40                                  COMPAT_HWCAP_TLS|COMPAT_HWCAP_VFP|\
41                                  COMPAT_HWCAP_VFPv3|COMPAT_HWCAP_VFPv4|\
42                                  COMPAT_HWCAP_NEON|COMPAT_HWCAP_IDIV|\
43                                  COMPAT_HWCAP_LPAE)
44 unsigned int compat_elf_hwcap __read_mostly = COMPAT_ELF_HWCAP_DEFAULT;
45 unsigned int compat_elf_hwcap2 __read_mostly;
46 #endif
47
48 DECLARE_BITMAP(cpu_hwcaps, ARM64_NCAPS);
49 EXPORT_SYMBOL(cpu_hwcaps);
50
51 #define __ARM64_FTR_BITS(SIGNED, STRICT, TYPE, SHIFT, WIDTH, SAFE_VAL) \
52         {                                               \
53                 .sign = SIGNED,                         \
54                 .strict = STRICT,                       \
55                 .type = TYPE,                           \
56                 .shift = SHIFT,                         \
57                 .width = WIDTH,                         \
58                 .safe_val = SAFE_VAL,                   \
59         }
60
61 /* Define a feature with signed values */
62 #define ARM64_FTR_BITS(STRICT, TYPE, SHIFT, WIDTH, SAFE_VAL) \
63         __ARM64_FTR_BITS(FTR_SIGNED, STRICT, TYPE, SHIFT, WIDTH, SAFE_VAL)
64
65 /* Define a feature with unsigned value */
66 #define U_ARM64_FTR_BITS(STRICT, TYPE, SHIFT, WIDTH, SAFE_VAL) \
67         __ARM64_FTR_BITS(FTR_UNSIGNED, STRICT, TYPE, SHIFT, WIDTH, SAFE_VAL)
68
69 #define ARM64_FTR_END                                   \
70         {                                               \
71                 .width = 0,                             \
72         }
73
74 /* meta feature for alternatives */
75 static bool __maybe_unused
76 cpufeature_pan_not_uao(const struct arm64_cpu_capabilities *entry);
77
78 static struct arm64_ftr_bits ftr_id_aa64isar0[] = {
79         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 32, 32, 0),
80         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64ISAR0_RDM_SHIFT, 4, 0),
81         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 24, 4, 0),
82         ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_ATOMICS_SHIFT, 4, 0),
83         ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_CRC32_SHIFT, 4, 0),
84         ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_SHA2_SHIFT, 4, 0),
85         ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_SHA1_SHIFT, 4, 0),
86         ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_AES_SHIFT, 4, 0),
87         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 0, 4, 0), /* RAZ */
88         ARM64_FTR_END,
89 };
90
91 static struct arm64_ftr_bits ftr_id_aa64pfr0[] = {
92         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 32, 32, 0),
93         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 28, 4, 0),
94         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64PFR0_GIC_SHIFT, 4, 0),
95         ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR0_ASIMD_SHIFT, 4, ID_AA64PFR0_ASIMD_NI),
96         ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR0_FP_SHIFT, 4, ID_AA64PFR0_FP_NI),
97         /* Linux doesn't care about the EL3 */
98         ARM64_FTR_BITS(FTR_NONSTRICT, FTR_EXACT, ID_AA64PFR0_EL3_SHIFT, 4, 0),
99         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64PFR0_EL2_SHIFT, 4, 0),
100         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64PFR0_EL1_SHIFT, 4, ID_AA64PFR0_EL1_64BIT_ONLY),
101         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64PFR0_EL0_SHIFT, 4, ID_AA64PFR0_EL0_64BIT_ONLY),
102         ARM64_FTR_END,
103 };
104
105 static struct arm64_ftr_bits ftr_id_aa64mmfr0[] = {
106         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 32, 32, 0),
107         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64MMFR0_TGRAN4_SHIFT, 4, ID_AA64MMFR0_TGRAN4_NI),
108         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64MMFR0_TGRAN64_SHIFT, 4, ID_AA64MMFR0_TGRAN64_NI),
109         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64MMFR0_TGRAN16_SHIFT, 4, ID_AA64MMFR0_TGRAN16_NI),
110         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64MMFR0_BIGENDEL0_SHIFT, 4, 0),
111         /* Linux shouldn't care about secure memory */
112         ARM64_FTR_BITS(FTR_NONSTRICT, FTR_EXACT, ID_AA64MMFR0_SNSMEM_SHIFT, 4, 0),
113         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64MMFR0_BIGENDEL_SHIFT, 4, 0),
114         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64MMFR0_ASID_SHIFT, 4, 0),
115         /*
116          * Differing PARange is fine as long as all peripherals and memory are mapped
117          * within the minimum PARange of all CPUs
118          */
119         U_ARM64_FTR_BITS(FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_PARANGE_SHIFT, 4, 0),
120         ARM64_FTR_END,
121 };
122
123 static struct arm64_ftr_bits ftr_id_aa64mmfr1[] = {
124         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 32, 32, 0),
125         ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_PAN_SHIFT, 4, 0),
126         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64MMFR1_LOR_SHIFT, 4, 0),
127         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64MMFR1_HPD_SHIFT, 4, 0),
128         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64MMFR1_VHE_SHIFT, 4, 0),
129         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64MMFR1_VMIDBITS_SHIFT, 4, 0),
130         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64MMFR1_HADBS_SHIFT, 4, 0),
131         ARM64_FTR_END,
132 };
133
134 static struct arm64_ftr_bits ftr_id_aa64mmfr2[] = {
135         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64MMFR2_UAO_SHIFT, 4, 0),
136         ARM64_FTR_END,
137 };
138
139 static struct arm64_ftr_bits ftr_ctr[] = {
140         U_ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 31, 1, 1),      /* RAO */
141         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 28, 3, 0),
142         U_ARM64_FTR_BITS(FTR_STRICT, FTR_HIGHER_SAFE, 24, 4, 0),        /* CWG */
143         U_ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, 20, 4, 0), /* ERG */
144         U_ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, 16, 4, 1), /* DminLine */
145         /*
146          * Linux can handle differing I-cache policies. Userspace JITs will
147          * make use of *minLine
148          */
149         U_ARM64_FTR_BITS(FTR_NONSTRICT, FTR_EXACT, 14, 2, 0),   /* L1Ip */
150         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 4, 10, 0),        /* RAZ */
151         U_ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, 0, 4, 0),  /* IminLine */
152         ARM64_FTR_END,
153 };
154
155 static struct arm64_ftr_bits ftr_id_mmfr0[] = {
156         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 28, 4, 0),        /* InnerShr */
157         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 24, 4, 0),        /* FCSE */
158         ARM64_FTR_BITS(FTR_NONSTRICT, FTR_LOWER_SAFE, 20, 4, 0),        /* AuxReg */
159         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 16, 4, 0),        /* TCM */
160         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 12, 4, 0),        /* ShareLvl */
161         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 8, 4, 0), /* OuterShr */
162         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 4, 4, 0), /* PMSA */
163         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 0, 4, 0), /* VMSA */
164         ARM64_FTR_END,
165 };
166
167 static struct arm64_ftr_bits ftr_id_aa64dfr0[] = {
168         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 32, 32, 0),
169         U_ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, ID_AA64DFR0_CTX_CMPS_SHIFT, 4, 0),
170         U_ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, ID_AA64DFR0_WRPS_SHIFT, 4, 0),
171         U_ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, ID_AA64DFR0_BRPS_SHIFT, 4, 0),
172         U_ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64DFR0_PMUVER_SHIFT, 4, 0),
173         U_ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64DFR0_TRACEVER_SHIFT, 4, 0),
174         U_ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64DFR0_DEBUGVER_SHIFT, 4, 0x6),
175         ARM64_FTR_END,
176 };
177
178 static struct arm64_ftr_bits ftr_mvfr2[] = {
179         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 8, 24, 0),        /* RAZ */
180         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 4, 4, 0),         /* FPMisc */
181         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 0, 4, 0),         /* SIMDMisc */
182         ARM64_FTR_END,
183 };
184
185 static struct arm64_ftr_bits ftr_dczid[] = {
186         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 5, 27, 0),        /* RAZ */
187         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 4, 1, 1),         /* DZP */
188         ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, 0, 4, 0),    /* BS */
189         ARM64_FTR_END,
190 };
191
192
193 static struct arm64_ftr_bits ftr_id_isar5[] = {
194         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_ISAR5_RDM_SHIFT, 4, 0),
195         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 20, 4, 0),        /* RAZ */
196         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_ISAR5_CRC32_SHIFT, 4, 0),
197         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_ISAR5_SHA2_SHIFT, 4, 0),
198         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_ISAR5_SHA1_SHIFT, 4, 0),
199         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_ISAR5_AES_SHIFT, 4, 0),
200         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_ISAR5_SEVL_SHIFT, 4, 0),
201         ARM64_FTR_END,
202 };
203
204 static struct arm64_ftr_bits ftr_id_mmfr4[] = {
205         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 8, 24, 0),        /* RAZ */
206         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 4, 4, 0),         /* ac2 */
207         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 0, 4, 0),         /* RAZ */
208         ARM64_FTR_END,
209 };
210
211 static struct arm64_ftr_bits ftr_id_pfr0[] = {
212         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 16, 16, 0),       /* RAZ */
213         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 12, 4, 0),        /* State3 */
214         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 8, 4, 0),         /* State2 */
215         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 4, 4, 0),         /* State1 */
216         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 0, 4, 0),         /* State0 */
217         ARM64_FTR_END,
218 };
219
220 /*
221  * Common ftr bits for a 32bit register with all hidden, strict
222  * attributes, with 4bit feature fields and a default safe value of
223  * 0. Covers the following 32bit registers:
224  * id_isar[0-4], id_mmfr[1-3], id_pfr1, mvfr[0-1]
225  */
226 static struct arm64_ftr_bits ftr_generic_32bits[] = {
227         ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, 28, 4, 0),
228         ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, 24, 4, 0),
229         ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, 20, 4, 0),
230         ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, 16, 4, 0),
231         ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, 12, 4, 0),
232         ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, 8, 4, 0),
233         ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, 4, 4, 0),
234         ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, 0, 4, 0),
235         ARM64_FTR_END,
236 };
237
238 static struct arm64_ftr_bits ftr_generic[] = {
239         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 0, 64, 0),
240         ARM64_FTR_END,
241 };
242
243 static struct arm64_ftr_bits ftr_generic32[] = {
244         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 0, 32, 0),
245         ARM64_FTR_END,
246 };
247
248 static struct arm64_ftr_bits ftr_aa64raz[] = {
249         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 0, 64, 0),
250         ARM64_FTR_END,
251 };
252
253 #define ARM64_FTR_REG(id, table)                \
254         {                                       \
255                 .sys_id = id,                   \
256                 .name = #id,                    \
257                 .ftr_bits = &((table)[0]),      \
258         }
259
260 static struct arm64_ftr_reg arm64_ftr_regs[] = {
261
262         /* Op1 = 0, CRn = 0, CRm = 1 */
263         ARM64_FTR_REG(SYS_ID_PFR0_EL1, ftr_id_pfr0),
264         ARM64_FTR_REG(SYS_ID_PFR1_EL1, ftr_generic_32bits),
265         ARM64_FTR_REG(SYS_ID_DFR0_EL1, ftr_generic_32bits),
266         ARM64_FTR_REG(SYS_ID_MMFR0_EL1, ftr_id_mmfr0),
267         ARM64_FTR_REG(SYS_ID_MMFR1_EL1, ftr_generic_32bits),
268         ARM64_FTR_REG(SYS_ID_MMFR2_EL1, ftr_generic_32bits),
269         ARM64_FTR_REG(SYS_ID_MMFR3_EL1, ftr_generic_32bits),
270
271         /* Op1 = 0, CRn = 0, CRm = 2 */
272         ARM64_FTR_REG(SYS_ID_ISAR0_EL1, ftr_generic_32bits),
273         ARM64_FTR_REG(SYS_ID_ISAR1_EL1, ftr_generic_32bits),
274         ARM64_FTR_REG(SYS_ID_ISAR2_EL1, ftr_generic_32bits),
275         ARM64_FTR_REG(SYS_ID_ISAR3_EL1, ftr_generic_32bits),
276         ARM64_FTR_REG(SYS_ID_ISAR4_EL1, ftr_generic_32bits),
277         ARM64_FTR_REG(SYS_ID_ISAR5_EL1, ftr_id_isar5),
278         ARM64_FTR_REG(SYS_ID_MMFR4_EL1, ftr_id_mmfr4),
279
280         /* Op1 = 0, CRn = 0, CRm = 3 */
281         ARM64_FTR_REG(SYS_MVFR0_EL1, ftr_generic_32bits),
282         ARM64_FTR_REG(SYS_MVFR1_EL1, ftr_generic_32bits),
283         ARM64_FTR_REG(SYS_MVFR2_EL1, ftr_mvfr2),
284
285         /* Op1 = 0, CRn = 0, CRm = 4 */
286         ARM64_FTR_REG(SYS_ID_AA64PFR0_EL1, ftr_id_aa64pfr0),
287         ARM64_FTR_REG(SYS_ID_AA64PFR1_EL1, ftr_aa64raz),
288
289         /* Op1 = 0, CRn = 0, CRm = 5 */
290         ARM64_FTR_REG(SYS_ID_AA64DFR0_EL1, ftr_id_aa64dfr0),
291         ARM64_FTR_REG(SYS_ID_AA64DFR1_EL1, ftr_generic),
292
293         /* Op1 = 0, CRn = 0, CRm = 6 */
294         ARM64_FTR_REG(SYS_ID_AA64ISAR0_EL1, ftr_id_aa64isar0),
295         ARM64_FTR_REG(SYS_ID_AA64ISAR1_EL1, ftr_aa64raz),
296
297         /* Op1 = 0, CRn = 0, CRm = 7 */
298         ARM64_FTR_REG(SYS_ID_AA64MMFR0_EL1, ftr_id_aa64mmfr0),
299         ARM64_FTR_REG(SYS_ID_AA64MMFR1_EL1, ftr_id_aa64mmfr1),
300         ARM64_FTR_REG(SYS_ID_AA64MMFR2_EL1, ftr_id_aa64mmfr2),
301
302         /* Op1 = 3, CRn = 0, CRm = 0 */
303         ARM64_FTR_REG(SYS_CTR_EL0, ftr_ctr),
304         ARM64_FTR_REG(SYS_DCZID_EL0, ftr_dczid),
305
306         /* Op1 = 3, CRn = 14, CRm = 0 */
307         ARM64_FTR_REG(SYS_CNTFRQ_EL0, ftr_generic32),
308 };
309
310 static int search_cmp_ftr_reg(const void *id, const void *regp)
311 {
312         return (int)(unsigned long)id - (int)((const struct arm64_ftr_reg *)regp)->sys_id;
313 }
314
315 /*
316  * get_arm64_ftr_reg - Lookup a feature register entry using its
317  * sys_reg() encoding. With the array arm64_ftr_regs sorted in the
318  * ascending order of sys_id , we use binary search to find a matching
319  * entry.
320  *
321  * returns - Upon success,  matching ftr_reg entry for id.
322  *         - NULL on failure. It is upto the caller to decide
323  *           the impact of a failure.
324  */
325 static struct arm64_ftr_reg *get_arm64_ftr_reg(u32 sys_id)
326 {
327         return bsearch((const void *)(unsigned long)sys_id,
328                         arm64_ftr_regs,
329                         ARRAY_SIZE(arm64_ftr_regs),
330                         sizeof(arm64_ftr_regs[0]),
331                         search_cmp_ftr_reg);
332 }
333
334 static u64 arm64_ftr_set_value(struct arm64_ftr_bits *ftrp, s64 reg, s64 ftr_val)
335 {
336         u64 mask = arm64_ftr_mask(ftrp);
337
338         reg &= ~mask;
339         reg |= (ftr_val << ftrp->shift) & mask;
340         return reg;
341 }
342
343 static s64 arm64_ftr_safe_value(struct arm64_ftr_bits *ftrp, s64 new, s64 cur)
344 {
345         s64 ret = 0;
346
347         switch (ftrp->type) {
348         case FTR_EXACT:
349                 ret = ftrp->safe_val;
350                 break;
351         case FTR_LOWER_SAFE:
352                 ret = new < cur ? new : cur;
353                 break;
354         case FTR_HIGHER_SAFE:
355                 ret = new > cur ? new : cur;
356                 break;
357         default:
358                 BUG();
359         }
360
361         return ret;
362 }
363
364 static int __init sort_cmp_ftr_regs(const void *a, const void *b)
365 {
366         return ((const struct arm64_ftr_reg *)a)->sys_id -
367                  ((const struct arm64_ftr_reg *)b)->sys_id;
368 }
369
370 static void __init swap_ftr_regs(void *a, void *b, int size)
371 {
372         struct arm64_ftr_reg tmp = *(struct arm64_ftr_reg *)a;
373         *(struct arm64_ftr_reg *)a = *(struct arm64_ftr_reg *)b;
374         *(struct arm64_ftr_reg *)b = tmp;
375 }
376
377 static void __init sort_ftr_regs(void)
378 {
379         /* Keep the array sorted so that we can do the binary search */
380         sort(arm64_ftr_regs,
381                 ARRAY_SIZE(arm64_ftr_regs),
382                 sizeof(arm64_ftr_regs[0]),
383                 sort_cmp_ftr_regs,
384                 swap_ftr_regs);
385 }
386
387 /*
388  * Initialise the CPU feature register from Boot CPU values.
389  * Also initiliases the strict_mask for the register.
390  */
391 static void __init init_cpu_ftr_reg(u32 sys_reg, u64 new)
392 {
393         u64 val = 0;
394         u64 strict_mask = ~0x0ULL;
395         struct arm64_ftr_bits *ftrp;
396         struct arm64_ftr_reg *reg = get_arm64_ftr_reg(sys_reg);
397
398         BUG_ON(!reg);
399
400         for (ftrp  = reg->ftr_bits; ftrp->width; ftrp++) {
401                 s64 ftr_new = arm64_ftr_value(ftrp, new);
402
403                 val = arm64_ftr_set_value(ftrp, val, ftr_new);
404                 if (!ftrp->strict)
405                         strict_mask &= ~arm64_ftr_mask(ftrp);
406         }
407         reg->sys_val = val;
408         reg->strict_mask = strict_mask;
409 }
410
411 void __init init_cpu_features(struct cpuinfo_arm64 *info)
412 {
413         /* Before we start using the tables, make sure it is sorted */
414         sort_ftr_regs();
415
416         init_cpu_ftr_reg(SYS_CTR_EL0, info->reg_ctr);
417         init_cpu_ftr_reg(SYS_DCZID_EL0, info->reg_dczid);
418         init_cpu_ftr_reg(SYS_CNTFRQ_EL0, info->reg_cntfrq);
419         init_cpu_ftr_reg(SYS_ID_AA64DFR0_EL1, info->reg_id_aa64dfr0);
420         init_cpu_ftr_reg(SYS_ID_AA64DFR1_EL1, info->reg_id_aa64dfr1);
421         init_cpu_ftr_reg(SYS_ID_AA64ISAR0_EL1, info->reg_id_aa64isar0);
422         init_cpu_ftr_reg(SYS_ID_AA64ISAR1_EL1, info->reg_id_aa64isar1);
423         init_cpu_ftr_reg(SYS_ID_AA64MMFR0_EL1, info->reg_id_aa64mmfr0);
424         init_cpu_ftr_reg(SYS_ID_AA64MMFR1_EL1, info->reg_id_aa64mmfr1);
425         init_cpu_ftr_reg(SYS_ID_AA64MMFR2_EL1, info->reg_id_aa64mmfr2);
426         init_cpu_ftr_reg(SYS_ID_AA64PFR0_EL1, info->reg_id_aa64pfr0);
427         init_cpu_ftr_reg(SYS_ID_AA64PFR1_EL1, info->reg_id_aa64pfr1);
428         init_cpu_ftr_reg(SYS_ID_DFR0_EL1, info->reg_id_dfr0);
429         init_cpu_ftr_reg(SYS_ID_ISAR0_EL1, info->reg_id_isar0);
430         init_cpu_ftr_reg(SYS_ID_ISAR1_EL1, info->reg_id_isar1);
431         init_cpu_ftr_reg(SYS_ID_ISAR2_EL1, info->reg_id_isar2);
432         init_cpu_ftr_reg(SYS_ID_ISAR3_EL1, info->reg_id_isar3);
433         init_cpu_ftr_reg(SYS_ID_ISAR4_EL1, info->reg_id_isar4);
434         init_cpu_ftr_reg(SYS_ID_ISAR5_EL1, info->reg_id_isar5);
435         init_cpu_ftr_reg(SYS_ID_MMFR0_EL1, info->reg_id_mmfr0);
436         init_cpu_ftr_reg(SYS_ID_MMFR1_EL1, info->reg_id_mmfr1);
437         init_cpu_ftr_reg(SYS_ID_MMFR2_EL1, info->reg_id_mmfr2);
438         init_cpu_ftr_reg(SYS_ID_MMFR3_EL1, info->reg_id_mmfr3);
439         init_cpu_ftr_reg(SYS_ID_PFR0_EL1, info->reg_id_pfr0);
440         init_cpu_ftr_reg(SYS_ID_PFR1_EL1, info->reg_id_pfr1);
441         init_cpu_ftr_reg(SYS_MVFR0_EL1, info->reg_mvfr0);
442         init_cpu_ftr_reg(SYS_MVFR1_EL1, info->reg_mvfr1);
443         init_cpu_ftr_reg(SYS_MVFR2_EL1, info->reg_mvfr2);
444 }
445
446 static void update_cpu_ftr_reg(struct arm64_ftr_reg *reg, u64 new)
447 {
448         struct arm64_ftr_bits *ftrp;
449
450         for (ftrp = reg->ftr_bits; ftrp->width; ftrp++) {
451                 s64 ftr_cur = arm64_ftr_value(ftrp, reg->sys_val);
452                 s64 ftr_new = arm64_ftr_value(ftrp, new);
453
454                 if (ftr_cur == ftr_new)
455                         continue;
456                 /* Find a safe value */
457                 ftr_new = arm64_ftr_safe_value(ftrp, ftr_new, ftr_cur);
458                 reg->sys_val = arm64_ftr_set_value(ftrp, reg->sys_val, ftr_new);
459         }
460
461 }
462
463 static int check_update_ftr_reg(u32 sys_id, int cpu, u64 val, u64 boot)
464 {
465         struct arm64_ftr_reg *regp = get_arm64_ftr_reg(sys_id);
466
467         BUG_ON(!regp);
468         update_cpu_ftr_reg(regp, val);
469         if ((boot & regp->strict_mask) == (val & regp->strict_mask))
470                 return 0;
471         pr_warn("SANITY CHECK: Unexpected variation in %s. Boot CPU: %#016llx, CPU%d: %#016llx\n",
472                         regp->name, boot, cpu, val);
473         return 1;
474 }
475
476 /*
477  * Update system wide CPU feature registers with the values from a
478  * non-boot CPU. Also performs SANITY checks to make sure that there
479  * aren't any insane variations from that of the boot CPU.
480  */
481 void update_cpu_features(int cpu,
482                          struct cpuinfo_arm64 *info,
483                          struct cpuinfo_arm64 *boot)
484 {
485         int taint = 0;
486
487         /*
488          * The kernel can handle differing I-cache policies, but otherwise
489          * caches should look identical. Userspace JITs will make use of
490          * *minLine.
491          */
492         taint |= check_update_ftr_reg(SYS_CTR_EL0, cpu,
493                                       info->reg_ctr, boot->reg_ctr);
494
495         /*
496          * Userspace may perform DC ZVA instructions. Mismatched block sizes
497          * could result in too much or too little memory being zeroed if a
498          * process is preempted and migrated between CPUs.
499          */
500         taint |= check_update_ftr_reg(SYS_DCZID_EL0, cpu,
501                                       info->reg_dczid, boot->reg_dczid);
502
503         /* If different, timekeeping will be broken (especially with KVM) */
504         taint |= check_update_ftr_reg(SYS_CNTFRQ_EL0, cpu,
505                                       info->reg_cntfrq, boot->reg_cntfrq);
506
507         /*
508          * The kernel uses self-hosted debug features and expects CPUs to
509          * support identical debug features. We presently need CTX_CMPs, WRPs,
510          * and BRPs to be identical.
511          * ID_AA64DFR1 is currently RES0.
512          */
513         taint |= check_update_ftr_reg(SYS_ID_AA64DFR0_EL1, cpu,
514                                       info->reg_id_aa64dfr0, boot->reg_id_aa64dfr0);
515         taint |= check_update_ftr_reg(SYS_ID_AA64DFR1_EL1, cpu,
516                                       info->reg_id_aa64dfr1, boot->reg_id_aa64dfr1);
517         /*
518          * Even in big.LITTLE, processors should be identical instruction-set
519          * wise.
520          */
521         taint |= check_update_ftr_reg(SYS_ID_AA64ISAR0_EL1, cpu,
522                                       info->reg_id_aa64isar0, boot->reg_id_aa64isar0);
523         taint |= check_update_ftr_reg(SYS_ID_AA64ISAR1_EL1, cpu,
524                                       info->reg_id_aa64isar1, boot->reg_id_aa64isar1);
525
526         /*
527          * Differing PARange support is fine as long as all peripherals and
528          * memory are mapped within the minimum PARange of all CPUs.
529          * Linux should not care about secure memory.
530          */
531         taint |= check_update_ftr_reg(SYS_ID_AA64MMFR0_EL1, cpu,
532                                       info->reg_id_aa64mmfr0, boot->reg_id_aa64mmfr0);
533         taint |= check_update_ftr_reg(SYS_ID_AA64MMFR1_EL1, cpu,
534                                       info->reg_id_aa64mmfr1, boot->reg_id_aa64mmfr1);
535         taint |= check_update_ftr_reg(SYS_ID_AA64MMFR2_EL1, cpu,
536                                       info->reg_id_aa64mmfr2, boot->reg_id_aa64mmfr2);
537
538         /*
539          * EL3 is not our concern.
540          * ID_AA64PFR1 is currently RES0.
541          */
542         taint |= check_update_ftr_reg(SYS_ID_AA64PFR0_EL1, cpu,
543                                       info->reg_id_aa64pfr0, boot->reg_id_aa64pfr0);
544         taint |= check_update_ftr_reg(SYS_ID_AA64PFR1_EL1, cpu,
545                                       info->reg_id_aa64pfr1, boot->reg_id_aa64pfr1);
546
547         /*
548          * If we have AArch32, we care about 32-bit features for compat. These
549          * registers should be RES0 otherwise.
550          */
551         taint |= check_update_ftr_reg(SYS_ID_DFR0_EL1, cpu,
552                                         info->reg_id_dfr0, boot->reg_id_dfr0);
553         taint |= check_update_ftr_reg(SYS_ID_ISAR0_EL1, cpu,
554                                         info->reg_id_isar0, boot->reg_id_isar0);
555         taint |= check_update_ftr_reg(SYS_ID_ISAR1_EL1, cpu,
556                                         info->reg_id_isar1, boot->reg_id_isar1);
557         taint |= check_update_ftr_reg(SYS_ID_ISAR2_EL1, cpu,
558                                         info->reg_id_isar2, boot->reg_id_isar2);
559         taint |= check_update_ftr_reg(SYS_ID_ISAR3_EL1, cpu,
560                                         info->reg_id_isar3, boot->reg_id_isar3);
561         taint |= check_update_ftr_reg(SYS_ID_ISAR4_EL1, cpu,
562                                         info->reg_id_isar4, boot->reg_id_isar4);
563         taint |= check_update_ftr_reg(SYS_ID_ISAR5_EL1, cpu,
564                                         info->reg_id_isar5, boot->reg_id_isar5);
565
566         /*
567          * Regardless of the value of the AuxReg field, the AIFSR, ADFSR, and
568          * ACTLR formats could differ across CPUs and therefore would have to
569          * be trapped for virtualization anyway.
570          */
571         taint |= check_update_ftr_reg(SYS_ID_MMFR0_EL1, cpu,
572                                         info->reg_id_mmfr0, boot->reg_id_mmfr0);
573         taint |= check_update_ftr_reg(SYS_ID_MMFR1_EL1, cpu,
574                                         info->reg_id_mmfr1, boot->reg_id_mmfr1);
575         taint |= check_update_ftr_reg(SYS_ID_MMFR2_EL1, cpu,
576                                         info->reg_id_mmfr2, boot->reg_id_mmfr2);
577         taint |= check_update_ftr_reg(SYS_ID_MMFR3_EL1, cpu,
578                                         info->reg_id_mmfr3, boot->reg_id_mmfr3);
579         taint |= check_update_ftr_reg(SYS_ID_PFR0_EL1, cpu,
580                                         info->reg_id_pfr0, boot->reg_id_pfr0);
581         taint |= check_update_ftr_reg(SYS_ID_PFR1_EL1, cpu,
582                                         info->reg_id_pfr1, boot->reg_id_pfr1);
583         taint |= check_update_ftr_reg(SYS_MVFR0_EL1, cpu,
584                                         info->reg_mvfr0, boot->reg_mvfr0);
585         taint |= check_update_ftr_reg(SYS_MVFR1_EL1, cpu,
586                                         info->reg_mvfr1, boot->reg_mvfr1);
587         taint |= check_update_ftr_reg(SYS_MVFR2_EL1, cpu,
588                                         info->reg_mvfr2, boot->reg_mvfr2);
589
590         /*
591          * Mismatched CPU features are a recipe for disaster. Don't even
592          * pretend to support them.
593          */
594         WARN_TAINT_ONCE(taint, TAINT_CPU_OUT_OF_SPEC,
595                         "Unsupported CPU feature variation.\n");
596 }
597
598 u64 read_system_reg(u32 id)
599 {
600         struct arm64_ftr_reg *regp = get_arm64_ftr_reg(id);
601
602         /* We shouldn't get a request for an unsupported register */
603         BUG_ON(!regp);
604         return regp->sys_val;
605 }
606
607 #include <linux/irqchip/arm-gic-v3.h>
608
609 static bool
610 feature_matches(u64 reg, const struct arm64_cpu_capabilities *entry)
611 {
612         int val = cpuid_feature_extract_field(reg, entry->field_pos);
613
614         return val >= entry->min_field_value;
615 }
616
617 static bool
618 has_cpuid_feature(const struct arm64_cpu_capabilities *entry)
619 {
620         u64 val;
621
622         val = read_system_reg(entry->sys_reg);
623         return feature_matches(val, entry);
624 }
625
626 static bool has_useable_gicv3_cpuif(const struct arm64_cpu_capabilities *entry)
627 {
628         bool has_sre;
629
630         if (!has_cpuid_feature(entry))
631                 return false;
632
633         has_sre = gic_enable_sre();
634         if (!has_sre)
635                 pr_warn_once("%s present but disabled by higher exception level\n",
636                              entry->desc);
637
638         return has_sre;
639 }
640
641 static bool has_no_hw_prefetch(const struct arm64_cpu_capabilities *entry)
642 {
643         u32 midr = read_cpuid_id();
644         u32 rv_min, rv_max;
645
646         /* Cavium ThunderX pass 1.x and 2.x */
647         rv_min = 0;
648         rv_max = (1 << MIDR_VARIANT_SHIFT) | MIDR_REVISION_MASK;
649
650         return MIDR_IS_CPU_MODEL_RANGE(midr, MIDR_THUNDERX, rv_min, rv_max);
651 }
652
653 static bool runs_at_el2(const struct arm64_cpu_capabilities *entry)
654 {
655         return is_kernel_in_hyp_mode();
656 }
657
658 static const struct arm64_cpu_capabilities arm64_features[] = {
659         {
660                 .desc = "GIC system register CPU interface",
661                 .capability = ARM64_HAS_SYSREG_GIC_CPUIF,
662                 .matches = has_useable_gicv3_cpuif,
663                 .sys_reg = SYS_ID_AA64PFR0_EL1,
664                 .field_pos = ID_AA64PFR0_GIC_SHIFT,
665                 .min_field_value = 1,
666         },
667 #ifdef CONFIG_ARM64_PAN
668         {
669                 .desc = "Privileged Access Never",
670                 .capability = ARM64_HAS_PAN,
671                 .matches = has_cpuid_feature,
672                 .sys_reg = SYS_ID_AA64MMFR1_EL1,
673                 .field_pos = ID_AA64MMFR1_PAN_SHIFT,
674                 .min_field_value = 1,
675                 .enable = cpu_enable_pan,
676         },
677 #endif /* CONFIG_ARM64_PAN */
678 #if defined(CONFIG_AS_LSE) && defined(CONFIG_ARM64_LSE_ATOMICS)
679         {
680                 .desc = "LSE atomic instructions",
681                 .capability = ARM64_HAS_LSE_ATOMICS,
682                 .matches = has_cpuid_feature,
683                 .sys_reg = SYS_ID_AA64ISAR0_EL1,
684                 .field_pos = ID_AA64ISAR0_ATOMICS_SHIFT,
685                 .min_field_value = 2,
686         },
687 #endif /* CONFIG_AS_LSE && CONFIG_ARM64_LSE_ATOMICS */
688         {
689                 .desc = "Software prefetching using PRFM",
690                 .capability = ARM64_HAS_NO_HW_PREFETCH,
691                 .matches = has_no_hw_prefetch,
692         },
693 #ifdef CONFIG_ARM64_UAO
694         {
695                 .desc = "User Access Override",
696                 .capability = ARM64_HAS_UAO,
697                 .matches = has_cpuid_feature,
698                 .sys_reg = SYS_ID_AA64MMFR2_EL1,
699                 .field_pos = ID_AA64MMFR2_UAO_SHIFT,
700                 .min_field_value = 1,
701                 .enable = cpu_enable_uao,
702         },
703 #endif /* CONFIG_ARM64_UAO */
704 #ifdef CONFIG_ARM64_PAN
705         {
706                 .capability = ARM64_ALT_PAN_NOT_UAO,
707                 .matches = cpufeature_pan_not_uao,
708         },
709 #endif /* CONFIG_ARM64_PAN */
710         {
711                 .desc = "Virtualization Host Extensions",
712                 .capability = ARM64_HAS_VIRT_HOST_EXTN,
713                 .matches = runs_at_el2,
714         },
715         {},
716 };
717
718 #define HWCAP_CAP(reg, field, min_value, type, cap)             \
719         {                                                       \
720                 .desc = #cap,                                   \
721                 .matches = has_cpuid_feature,                   \
722                 .sys_reg = reg,                                 \
723                 .field_pos = field,                             \
724                 .min_field_value = min_value,                   \
725                 .hwcap_type = type,                             \
726                 .hwcap = cap,                                   \
727         }
728
729 static const struct arm64_cpu_capabilities arm64_hwcaps[] = {
730         HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_AES_SHIFT, 2, CAP_HWCAP, HWCAP_PMULL),
731         HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_AES_SHIFT, 1, CAP_HWCAP, HWCAP_AES),
732         HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_SHA1_SHIFT, 1, CAP_HWCAP, HWCAP_SHA1),
733         HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_SHA2_SHIFT, 1, CAP_HWCAP, HWCAP_SHA2),
734         HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_CRC32_SHIFT, 1, CAP_HWCAP, HWCAP_CRC32),
735         HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_ATOMICS_SHIFT, 2, CAP_HWCAP, HWCAP_ATOMICS),
736         HWCAP_CAP(SYS_ID_AA64PFR0_EL1, ID_AA64PFR0_FP_SHIFT, 0, CAP_HWCAP, HWCAP_FP),
737         HWCAP_CAP(SYS_ID_AA64PFR0_EL1, ID_AA64PFR0_ASIMD_SHIFT, 0, CAP_HWCAP, HWCAP_ASIMD),
738 #ifdef CONFIG_COMPAT
739         HWCAP_CAP(SYS_ID_ISAR5_EL1, ID_ISAR5_AES_SHIFT, 2, CAP_COMPAT_HWCAP2, COMPAT_HWCAP2_PMULL),
740         HWCAP_CAP(SYS_ID_ISAR5_EL1, ID_ISAR5_AES_SHIFT, 1, CAP_COMPAT_HWCAP2, COMPAT_HWCAP2_AES),
741         HWCAP_CAP(SYS_ID_ISAR5_EL1, ID_ISAR5_SHA1_SHIFT, 1, CAP_COMPAT_HWCAP2, COMPAT_HWCAP2_SHA1),
742         HWCAP_CAP(SYS_ID_ISAR5_EL1, ID_ISAR5_SHA2_SHIFT, 1, CAP_COMPAT_HWCAP2, COMPAT_HWCAP2_SHA2),
743         HWCAP_CAP(SYS_ID_ISAR5_EL1, ID_ISAR5_CRC32_SHIFT, 1, CAP_COMPAT_HWCAP2, COMPAT_HWCAP2_CRC32),
744 #endif
745         {},
746 };
747
748 static void __init cap_set_hwcap(const struct arm64_cpu_capabilities *cap)
749 {
750         switch (cap->hwcap_type) {
751         case CAP_HWCAP:
752                 elf_hwcap |= cap->hwcap;
753                 break;
754 #ifdef CONFIG_COMPAT
755         case CAP_COMPAT_HWCAP:
756                 compat_elf_hwcap |= (u32)cap->hwcap;
757                 break;
758         case CAP_COMPAT_HWCAP2:
759                 compat_elf_hwcap2 |= (u32)cap->hwcap;
760                 break;
761 #endif
762         default:
763                 WARN_ON(1);
764                 break;
765         }
766 }
767
768 /* Check if we have a particular HWCAP enabled */
769 static bool __maybe_unused cpus_have_hwcap(const struct arm64_cpu_capabilities *cap)
770 {
771         bool rc;
772
773         switch (cap->hwcap_type) {
774         case CAP_HWCAP:
775                 rc = (elf_hwcap & cap->hwcap) != 0;
776                 break;
777 #ifdef CONFIG_COMPAT
778         case CAP_COMPAT_HWCAP:
779                 rc = (compat_elf_hwcap & (u32)cap->hwcap) != 0;
780                 break;
781         case CAP_COMPAT_HWCAP2:
782                 rc = (compat_elf_hwcap2 & (u32)cap->hwcap) != 0;
783                 break;
784 #endif
785         default:
786                 WARN_ON(1);
787                 rc = false;
788         }
789
790         return rc;
791 }
792
793 static void __init setup_cpu_hwcaps(void)
794 {
795         int i;
796         const struct arm64_cpu_capabilities *hwcaps = arm64_hwcaps;
797
798         for (i = 0; hwcaps[i].matches; i++)
799                 if (hwcaps[i].matches(&hwcaps[i]))
800                         cap_set_hwcap(&hwcaps[i]);
801 }
802
803 void update_cpu_capabilities(const struct arm64_cpu_capabilities *caps,
804                             const char *info)
805 {
806         int i;
807
808         for (i = 0; caps[i].matches; i++) {
809                 if (!caps[i].matches(&caps[i]))
810                         continue;
811
812                 if (!cpus_have_cap(caps[i].capability) && caps[i].desc)
813                         pr_info("%s %s\n", info, caps[i].desc);
814                 cpus_set_cap(caps[i].capability);
815         }
816 }
817
818 /*
819  * Run through the enabled capabilities and enable() it on all active
820  * CPUs
821  */
822 static void __init
823 enable_cpu_capabilities(const struct arm64_cpu_capabilities *caps)
824 {
825         int i;
826
827         for (i = 0; caps[i].matches; i++)
828                 if (caps[i].enable && cpus_have_cap(caps[i].capability))
829                         /*
830                          * Use stop_machine() as it schedules the work allowing
831                          * us to modify PSTATE, instead of on_each_cpu() which
832                          * uses an IPI, giving us a PSTATE that disappears when
833                          * we return.
834                          */
835                         stop_machine(caps[i].enable, NULL, cpu_online_mask);
836 }
837
838 #ifdef CONFIG_HOTPLUG_CPU
839
840 /*
841  * Flag to indicate if we have computed the system wide
842  * capabilities based on the boot time active CPUs. This
843  * will be used to determine if a new booting CPU should
844  * go through the verification process to make sure that it
845  * supports the system capabilities, without using a hotplug
846  * notifier.
847  */
848 static bool sys_caps_initialised;
849
850 static inline void set_sys_caps_initialised(void)
851 {
852         sys_caps_initialised = true;
853 }
854
855 /*
856  * __raw_read_system_reg() - Used by a STARTING cpu before cpuinfo is populated.
857  */
858 static u64 __raw_read_system_reg(u32 sys_id)
859 {
860         switch (sys_id) {
861         case SYS_ID_PFR0_EL1:           return read_cpuid(SYS_ID_PFR0_EL1);
862         case SYS_ID_PFR1_EL1:           return read_cpuid(SYS_ID_PFR1_EL1);
863         case SYS_ID_DFR0_EL1:           return read_cpuid(SYS_ID_DFR0_EL1);
864         case SYS_ID_MMFR0_EL1:          return read_cpuid(SYS_ID_MMFR0_EL1);
865         case SYS_ID_MMFR1_EL1:          return read_cpuid(SYS_ID_MMFR1_EL1);
866         case SYS_ID_MMFR2_EL1:          return read_cpuid(SYS_ID_MMFR2_EL1);
867         case SYS_ID_MMFR3_EL1:          return read_cpuid(SYS_ID_MMFR3_EL1);
868         case SYS_ID_ISAR0_EL1:          return read_cpuid(SYS_ID_ISAR0_EL1);
869         case SYS_ID_ISAR1_EL1:          return read_cpuid(SYS_ID_ISAR1_EL1);
870         case SYS_ID_ISAR2_EL1:          return read_cpuid(SYS_ID_ISAR2_EL1);
871         case SYS_ID_ISAR3_EL1:          return read_cpuid(SYS_ID_ISAR3_EL1);
872         case SYS_ID_ISAR4_EL1:          return read_cpuid(SYS_ID_ISAR4_EL1);
873         case SYS_ID_ISAR5_EL1:          return read_cpuid(SYS_ID_ISAR4_EL1);
874         case SYS_MVFR0_EL1:             return read_cpuid(SYS_MVFR0_EL1);
875         case SYS_MVFR1_EL1:             return read_cpuid(SYS_MVFR1_EL1);
876         case SYS_MVFR2_EL1:             return read_cpuid(SYS_MVFR2_EL1);
877
878         case SYS_ID_AA64PFR0_EL1:       return read_cpuid(SYS_ID_AA64PFR0_EL1);
879         case SYS_ID_AA64PFR1_EL1:       return read_cpuid(SYS_ID_AA64PFR0_EL1);
880         case SYS_ID_AA64DFR0_EL1:       return read_cpuid(SYS_ID_AA64DFR0_EL1);
881         case SYS_ID_AA64DFR1_EL1:       return read_cpuid(SYS_ID_AA64DFR0_EL1);
882         case SYS_ID_AA64MMFR0_EL1:      return read_cpuid(SYS_ID_AA64MMFR0_EL1);
883         case SYS_ID_AA64MMFR1_EL1:      return read_cpuid(SYS_ID_AA64MMFR1_EL1);
884         case SYS_ID_AA64MMFR2_EL1:      return read_cpuid(SYS_ID_AA64MMFR2_EL1);
885         case SYS_ID_AA64ISAR0_EL1:      return read_cpuid(SYS_ID_AA64ISAR0_EL1);
886         case SYS_ID_AA64ISAR1_EL1:      return read_cpuid(SYS_ID_AA64ISAR1_EL1);
887
888         case SYS_CNTFRQ_EL0:            return read_cpuid(SYS_CNTFRQ_EL0);
889         case SYS_CTR_EL0:               return read_cpuid(SYS_CTR_EL0);
890         case SYS_DCZID_EL0:             return read_cpuid(SYS_DCZID_EL0);
891         default:
892                 BUG();
893                 return 0;
894         }
895 }
896
897 /*
898  * Park the CPU which doesn't have the capability as advertised
899  * by the system.
900  */
901 static void fail_incapable_cpu(char *cap_type,
902                                  const struct arm64_cpu_capabilities *cap)
903 {
904         int cpu = smp_processor_id();
905
906         pr_crit("CPU%d: missing %s : %s\n", cpu, cap_type, cap->desc);
907         /* Mark this CPU absent */
908         set_cpu_present(cpu, 0);
909
910         /* Check if we can park ourselves */
911         if (cpu_ops[cpu] && cpu_ops[cpu]->cpu_die)
912                 cpu_ops[cpu]->cpu_die(cpu);
913         asm(
914         "1:     wfe\n"
915         "       wfi\n"
916         "       b       1b");
917 }
918
919 /*
920  * Run through the enabled system capabilities and enable() it on this CPU.
921  * The capabilities were decided based on the available CPUs at the boot time.
922  * Any new CPU should match the system wide status of the capability. If the
923  * new CPU doesn't have a capability which the system now has enabled, we
924  * cannot do anything to fix it up and could cause unexpected failures. So
925  * we park the CPU.
926  */
927 void verify_local_cpu_capabilities(void)
928 {
929         int i;
930         const struct arm64_cpu_capabilities *caps;
931
932         /*
933          * If we haven't computed the system capabilities, there is nothing
934          * to verify.
935          */
936         if (!sys_caps_initialised)
937                 return;
938
939         caps = arm64_features;
940         for (i = 0; caps[i].matches; i++) {
941                 if (!cpus_have_cap(caps[i].capability) || !caps[i].sys_reg)
942                         continue;
943                 /*
944                  * If the new CPU misses an advertised feature, we cannot proceed
945                  * further, park the cpu.
946                  */
947                 if (!feature_matches(__raw_read_system_reg(caps[i].sys_reg), &caps[i]))
948                         fail_incapable_cpu("arm64_features", &caps[i]);
949                 if (caps[i].enable)
950                         caps[i].enable(NULL);
951         }
952
953         for (i = 0, caps = arm64_hwcaps; caps[i].matches; i++) {
954                 if (!cpus_have_hwcap(&caps[i]))
955                         continue;
956                 if (!feature_matches(__raw_read_system_reg(caps[i].sys_reg), &caps[i]))
957                         fail_incapable_cpu("arm64_hwcaps", &caps[i]);
958         }
959 }
960
961 #else   /* !CONFIG_HOTPLUG_CPU */
962
963 static inline void set_sys_caps_initialised(void)
964 {
965 }
966
967 #endif  /* CONFIG_HOTPLUG_CPU */
968
969 static void __init setup_feature_capabilities(void)
970 {
971         update_cpu_capabilities(arm64_features, "detected feature:");
972         enable_cpu_capabilities(arm64_features);
973 }
974
975 void __init setup_cpu_features(void)
976 {
977         u32 cwg;
978         int cls;
979
980         /* Set the CPU feature capabilies */
981         setup_feature_capabilities();
982         setup_cpu_hwcaps();
983
984         /* Advertise that we have computed the system capabilities */
985         set_sys_caps_initialised();
986
987         /*
988          * Check for sane CTR_EL0.CWG value.
989          */
990         cwg = cache_type_cwg();
991         cls = cache_line_size();
992         if (!cwg)
993                 pr_warn("No Cache Writeback Granule information, assuming cache line size %d\n",
994                         cls);
995         if (L1_CACHE_BYTES < cls)
996                 pr_warn("L1_CACHE_BYTES smaller than the Cache Writeback Granule (%d < %d)\n",
997                         L1_CACHE_BYTES, cls);
998 }
999
1000 static bool __maybe_unused
1001 cpufeature_pan_not_uao(const struct arm64_cpu_capabilities *entry)
1002 {
1003         return (cpus_have_cap(ARM64_HAS_PAN) && !cpus_have_cap(ARM64_HAS_UAO));
1004 }