KVM: arm-vgic: Support KVM_CREATE_DEVICE for VGIC
[firefly-linux-kernel-4.4.55.git] / arch / arm / kvm / arm.c
1 /*
2  * Copyright (C) 2012 - Virtual Open Systems and Columbia University
3  * Author: Christoffer Dall <c.dall@virtualopensystems.com>
4  *
5  * This program is free software; you can redistribute it and/or modify
6  * it under the terms of the GNU General Public License, version 2, as
7  * published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope that it will be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program; if not, write to the Free Software
16  * Foundation, 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301, USA.
17  */
18
19 #include <linux/cpu.h>
20 #include <linux/cpu_pm.h>
21 #include <linux/errno.h>
22 #include <linux/err.h>
23 #include <linux/kvm_host.h>
24 #include <linux/module.h>
25 #include <linux/vmalloc.h>
26 #include <linux/fs.h>
27 #include <linux/mman.h>
28 #include <linux/sched.h>
29 #include <linux/kvm.h>
30 #include <trace/events/kvm.h>
31
32 #define CREATE_TRACE_POINTS
33 #include "trace.h"
34
35 #include <asm/uaccess.h>
36 #include <asm/ptrace.h>
37 #include <asm/mman.h>
38 #include <asm/tlbflush.h>
39 #include <asm/cacheflush.h>
40 #include <asm/virt.h>
41 #include <asm/kvm_arm.h>
42 #include <asm/kvm_asm.h>
43 #include <asm/kvm_mmu.h>
44 #include <asm/kvm_emulate.h>
45 #include <asm/kvm_coproc.h>
46 #include <asm/kvm_psci.h>
47
48 #ifdef REQUIRES_VIRT
49 __asm__(".arch_extension        virt");
50 #endif
51
52 static DEFINE_PER_CPU(unsigned long, kvm_arm_hyp_stack_page);
53 static kvm_cpu_context_t __percpu *kvm_host_cpu_state;
54 static unsigned long hyp_default_vectors;
55
56 /* Per-CPU variable containing the currently running vcpu. */
57 static DEFINE_PER_CPU(struct kvm_vcpu *, kvm_arm_running_vcpu);
58
59 /* The VMID used in the VTTBR */
60 static atomic64_t kvm_vmid_gen = ATOMIC64_INIT(1);
61 static u8 kvm_next_vmid;
62 static DEFINE_SPINLOCK(kvm_vmid_lock);
63
64 static bool vgic_present;
65
66 static void kvm_arm_set_running_vcpu(struct kvm_vcpu *vcpu)
67 {
68         BUG_ON(preemptible());
69         __get_cpu_var(kvm_arm_running_vcpu) = vcpu;
70 }
71
72 /**
73  * kvm_arm_get_running_vcpu - get the vcpu running on the current CPU.
74  * Must be called from non-preemptible context
75  */
76 struct kvm_vcpu *kvm_arm_get_running_vcpu(void)
77 {
78         BUG_ON(preemptible());
79         return __get_cpu_var(kvm_arm_running_vcpu);
80 }
81
82 /**
83  * kvm_arm_get_running_vcpus - get the per-CPU array of currently running vcpus.
84  */
85 struct kvm_vcpu __percpu **kvm_get_running_vcpus(void)
86 {
87         return &kvm_arm_running_vcpu;
88 }
89
90 int kvm_arch_hardware_enable(void *garbage)
91 {
92         return 0;
93 }
94
95 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
96 {
97         return kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE;
98 }
99
100 void kvm_arch_hardware_disable(void *garbage)
101 {
102 }
103
104 int kvm_arch_hardware_setup(void)
105 {
106         return 0;
107 }
108
109 void kvm_arch_hardware_unsetup(void)
110 {
111 }
112
113 void kvm_arch_check_processor_compat(void *rtn)
114 {
115         *(int *)rtn = 0;
116 }
117
118 void kvm_arch_sync_events(struct kvm *kvm)
119 {
120 }
121
122 /**
123  * kvm_arch_init_vm - initializes a VM data structure
124  * @kvm:        pointer to the KVM struct
125  */
126 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
127 {
128         int ret = 0;
129
130         if (type)
131                 return -EINVAL;
132
133         ret = kvm_alloc_stage2_pgd(kvm);
134         if (ret)
135                 goto out_fail_alloc;
136
137         ret = create_hyp_mappings(kvm, kvm + 1);
138         if (ret)
139                 goto out_free_stage2_pgd;
140
141         kvm_timer_init(kvm);
142
143         /* Mark the initial VMID generation invalid */
144         kvm->arch.vmid_gen = 0;
145
146         return ret;
147 out_free_stage2_pgd:
148         kvm_free_stage2_pgd(kvm);
149 out_fail_alloc:
150         return ret;
151 }
152
153 int kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
154 {
155         return VM_FAULT_SIGBUS;
156 }
157
158 void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *free,
159                            struct kvm_memory_slot *dont)
160 {
161 }
162
163 int kvm_arch_create_memslot(struct kvm *kvm, struct kvm_memory_slot *slot,
164                             unsigned long npages)
165 {
166         return 0;
167 }
168
169 /**
170  * kvm_arch_destroy_vm - destroy the VM data structure
171  * @kvm:        pointer to the KVM struct
172  */
173 void kvm_arch_destroy_vm(struct kvm *kvm)
174 {
175         int i;
176
177         kvm_free_stage2_pgd(kvm);
178
179         for (i = 0; i < KVM_MAX_VCPUS; ++i) {
180                 if (kvm->vcpus[i]) {
181                         kvm_arch_vcpu_free(kvm->vcpus[i]);
182                         kvm->vcpus[i] = NULL;
183                 }
184         }
185 }
186
187 int kvm_dev_ioctl_check_extension(long ext)
188 {
189         int r;
190         switch (ext) {
191         case KVM_CAP_IRQCHIP:
192                 r = vgic_present;
193                 break;
194         case KVM_CAP_DEVICE_CTRL:
195         case KVM_CAP_USER_MEMORY:
196         case KVM_CAP_SYNC_MMU:
197         case KVM_CAP_DESTROY_MEMORY_REGION_WORKS:
198         case KVM_CAP_ONE_REG:
199         case KVM_CAP_ARM_PSCI:
200                 r = 1;
201                 break;
202         case KVM_CAP_COALESCED_MMIO:
203                 r = KVM_COALESCED_MMIO_PAGE_OFFSET;
204                 break;
205         case KVM_CAP_ARM_SET_DEVICE_ADDR:
206                 r = 1;
207                 break;
208         case KVM_CAP_NR_VCPUS:
209                 r = num_online_cpus();
210                 break;
211         case KVM_CAP_MAX_VCPUS:
212                 r = KVM_MAX_VCPUS;
213                 break;
214         default:
215                 r = kvm_arch_dev_ioctl_check_extension(ext);
216                 break;
217         }
218         return r;
219 }
220
221 long kvm_arch_dev_ioctl(struct file *filp,
222                         unsigned int ioctl, unsigned long arg)
223 {
224         return -EINVAL;
225 }
226
227 void kvm_arch_memslots_updated(struct kvm *kvm)
228 {
229 }
230
231 int kvm_arch_prepare_memory_region(struct kvm *kvm,
232                                    struct kvm_memory_slot *memslot,
233                                    struct kvm_userspace_memory_region *mem,
234                                    enum kvm_mr_change change)
235 {
236         return 0;
237 }
238
239 void kvm_arch_commit_memory_region(struct kvm *kvm,
240                                    struct kvm_userspace_memory_region *mem,
241                                    const struct kvm_memory_slot *old,
242                                    enum kvm_mr_change change)
243 {
244 }
245
246 void kvm_arch_flush_shadow_all(struct kvm *kvm)
247 {
248 }
249
250 void kvm_arch_flush_shadow_memslot(struct kvm *kvm,
251                                    struct kvm_memory_slot *slot)
252 {
253 }
254
255 struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm, unsigned int id)
256 {
257         int err;
258         struct kvm_vcpu *vcpu;
259
260         vcpu = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
261         if (!vcpu) {
262                 err = -ENOMEM;
263                 goto out;
264         }
265
266         err = kvm_vcpu_init(vcpu, kvm, id);
267         if (err)
268                 goto free_vcpu;
269
270         err = create_hyp_mappings(vcpu, vcpu + 1);
271         if (err)
272                 goto vcpu_uninit;
273
274         return vcpu;
275 vcpu_uninit:
276         kvm_vcpu_uninit(vcpu);
277 free_vcpu:
278         kmem_cache_free(kvm_vcpu_cache, vcpu);
279 out:
280         return ERR_PTR(err);
281 }
282
283 int kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
284 {
285         return 0;
286 }
287
288 void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu)
289 {
290         kvm_mmu_free_memory_caches(vcpu);
291         kvm_timer_vcpu_terminate(vcpu);
292         kmem_cache_free(kvm_vcpu_cache, vcpu);
293 }
294
295 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
296 {
297         kvm_arch_vcpu_free(vcpu);
298 }
299
300 int kvm_cpu_has_pending_timer(struct kvm_vcpu *vcpu)
301 {
302         return 0;
303 }
304
305 int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
306 {
307         int ret;
308
309         /* Force users to call KVM_ARM_VCPU_INIT */
310         vcpu->arch.target = -1;
311
312         /* Set up VGIC */
313         ret = kvm_vgic_vcpu_init(vcpu);
314         if (ret)
315                 return ret;
316
317         /* Set up the timer */
318         kvm_timer_vcpu_init(vcpu);
319
320         return 0;
321 }
322
323 void kvm_arch_vcpu_uninit(struct kvm_vcpu *vcpu)
324 {
325 }
326
327 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
328 {
329         vcpu->cpu = cpu;
330         vcpu->arch.host_cpu_context = this_cpu_ptr(kvm_host_cpu_state);
331
332         /*
333          * Check whether this vcpu requires the cache to be flushed on
334          * this physical CPU. This is a consequence of doing dcache
335          * operations by set/way on this vcpu. We do it here to be in
336          * a non-preemptible section.
337          */
338         if (cpumask_test_and_clear_cpu(cpu, &vcpu->arch.require_dcache_flush))
339                 flush_cache_all(); /* We'd really want v7_flush_dcache_all() */
340
341         kvm_arm_set_running_vcpu(vcpu);
342 }
343
344 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
345 {
346         kvm_arm_set_running_vcpu(NULL);
347 }
348
349 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
350                                         struct kvm_guest_debug *dbg)
351 {
352         return -EINVAL;
353 }
354
355
356 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
357                                     struct kvm_mp_state *mp_state)
358 {
359         return -EINVAL;
360 }
361
362 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
363                                     struct kvm_mp_state *mp_state)
364 {
365         return -EINVAL;
366 }
367
368 /**
369  * kvm_arch_vcpu_runnable - determine if the vcpu can be scheduled
370  * @v:          The VCPU pointer
371  *
372  * If the guest CPU is not waiting for interrupts or an interrupt line is
373  * asserted, the CPU is by definition runnable.
374  */
375 int kvm_arch_vcpu_runnable(struct kvm_vcpu *v)
376 {
377         return !!v->arch.irq_lines || kvm_vgic_vcpu_pending_irq(v);
378 }
379
380 /* Just ensure a guest exit from a particular CPU */
381 static void exit_vm_noop(void *info)
382 {
383 }
384
385 void force_vm_exit(const cpumask_t *mask)
386 {
387         smp_call_function_many(mask, exit_vm_noop, NULL, true);
388 }
389
390 /**
391  * need_new_vmid_gen - check that the VMID is still valid
392  * @kvm: The VM's VMID to checkt
393  *
394  * return true if there is a new generation of VMIDs being used
395  *
396  * The hardware supports only 256 values with the value zero reserved for the
397  * host, so we check if an assigned value belongs to a previous generation,
398  * which which requires us to assign a new value. If we're the first to use a
399  * VMID for the new generation, we must flush necessary caches and TLBs on all
400  * CPUs.
401  */
402 static bool need_new_vmid_gen(struct kvm *kvm)
403 {
404         return unlikely(kvm->arch.vmid_gen != atomic64_read(&kvm_vmid_gen));
405 }
406
407 /**
408  * update_vttbr - Update the VTTBR with a valid VMID before the guest runs
409  * @kvm The guest that we are about to run
410  *
411  * Called from kvm_arch_vcpu_ioctl_run before entering the guest to ensure the
412  * VM has a valid VMID, otherwise assigns a new one and flushes corresponding
413  * caches and TLBs.
414  */
415 static void update_vttbr(struct kvm *kvm)
416 {
417         phys_addr_t pgd_phys;
418         u64 vmid;
419
420         if (!need_new_vmid_gen(kvm))
421                 return;
422
423         spin_lock(&kvm_vmid_lock);
424
425         /*
426          * We need to re-check the vmid_gen here to ensure that if another vcpu
427          * already allocated a valid vmid for this vm, then this vcpu should
428          * use the same vmid.
429          */
430         if (!need_new_vmid_gen(kvm)) {
431                 spin_unlock(&kvm_vmid_lock);
432                 return;
433         }
434
435         /* First user of a new VMID generation? */
436         if (unlikely(kvm_next_vmid == 0)) {
437                 atomic64_inc(&kvm_vmid_gen);
438                 kvm_next_vmid = 1;
439
440                 /*
441                  * On SMP we know no other CPUs can use this CPU's or each
442                  * other's VMID after force_vm_exit returns since the
443                  * kvm_vmid_lock blocks them from reentry to the guest.
444                  */
445                 force_vm_exit(cpu_all_mask);
446                 /*
447                  * Now broadcast TLB + ICACHE invalidation over the inner
448                  * shareable domain to make sure all data structures are
449                  * clean.
450                  */
451                 kvm_call_hyp(__kvm_flush_vm_context);
452         }
453
454         kvm->arch.vmid_gen = atomic64_read(&kvm_vmid_gen);
455         kvm->arch.vmid = kvm_next_vmid;
456         kvm_next_vmid++;
457
458         /* update vttbr to be used with the new vmid */
459         pgd_phys = virt_to_phys(kvm->arch.pgd);
460         vmid = ((u64)(kvm->arch.vmid) << VTTBR_VMID_SHIFT) & VTTBR_VMID_MASK;
461         kvm->arch.vttbr = pgd_phys & VTTBR_BADDR_MASK;
462         kvm->arch.vttbr |= vmid;
463
464         spin_unlock(&kvm_vmid_lock);
465 }
466
467 static int kvm_vcpu_first_run_init(struct kvm_vcpu *vcpu)
468 {
469         int ret;
470
471         if (likely(vcpu->arch.has_run_once))
472                 return 0;
473
474         vcpu->arch.has_run_once = true;
475
476         /*
477          * Initialize the VGIC before running a vcpu the first time on
478          * this VM.
479          */
480         if (unlikely(!vgic_initialized(vcpu->kvm))) {
481                 ret = kvm_vgic_init(vcpu->kvm);
482                 if (ret)
483                         return ret;
484         }
485
486         return 0;
487 }
488
489 static void vcpu_pause(struct kvm_vcpu *vcpu)
490 {
491         wait_queue_head_t *wq = kvm_arch_vcpu_wq(vcpu);
492
493         wait_event_interruptible(*wq, !vcpu->arch.pause);
494 }
495
496 static int kvm_vcpu_initialized(struct kvm_vcpu *vcpu)
497 {
498         return vcpu->arch.target >= 0;
499 }
500
501 /**
502  * kvm_arch_vcpu_ioctl_run - the main VCPU run function to execute guest code
503  * @vcpu:       The VCPU pointer
504  * @run:        The kvm_run structure pointer used for userspace state exchange
505  *
506  * This function is called through the VCPU_RUN ioctl called from user space. It
507  * will execute VM code in a loop until the time slice for the process is used
508  * or some emulation is needed from user space in which case the function will
509  * return with return value 0 and with the kvm_run structure filled in with the
510  * required data for the requested emulation.
511  */
512 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *run)
513 {
514         int ret;
515         sigset_t sigsaved;
516
517         if (unlikely(!kvm_vcpu_initialized(vcpu)))
518                 return -ENOEXEC;
519
520         ret = kvm_vcpu_first_run_init(vcpu);
521         if (ret)
522                 return ret;
523
524         if (run->exit_reason == KVM_EXIT_MMIO) {
525                 ret = kvm_handle_mmio_return(vcpu, vcpu->run);
526                 if (ret)
527                         return ret;
528         }
529
530         if (vcpu->sigset_active)
531                 sigprocmask(SIG_SETMASK, &vcpu->sigset, &sigsaved);
532
533         ret = 1;
534         run->exit_reason = KVM_EXIT_UNKNOWN;
535         while (ret > 0) {
536                 /*
537                  * Check conditions before entering the guest
538                  */
539                 cond_resched();
540
541                 update_vttbr(vcpu->kvm);
542
543                 if (vcpu->arch.pause)
544                         vcpu_pause(vcpu);
545
546                 kvm_vgic_flush_hwstate(vcpu);
547                 kvm_timer_flush_hwstate(vcpu);
548
549                 local_irq_disable();
550
551                 /*
552                  * Re-check atomic conditions
553                  */
554                 if (signal_pending(current)) {
555                         ret = -EINTR;
556                         run->exit_reason = KVM_EXIT_INTR;
557                 }
558
559                 if (ret <= 0 || need_new_vmid_gen(vcpu->kvm)) {
560                         local_irq_enable();
561                         kvm_timer_sync_hwstate(vcpu);
562                         kvm_vgic_sync_hwstate(vcpu);
563                         continue;
564                 }
565
566                 /**************************************************************
567                  * Enter the guest
568                  */
569                 trace_kvm_entry(*vcpu_pc(vcpu));
570                 kvm_guest_enter();
571                 vcpu->mode = IN_GUEST_MODE;
572
573                 ret = kvm_call_hyp(__kvm_vcpu_run, vcpu);
574
575                 vcpu->mode = OUTSIDE_GUEST_MODE;
576                 vcpu->arch.last_pcpu = smp_processor_id();
577                 kvm_guest_exit();
578                 trace_kvm_exit(*vcpu_pc(vcpu));
579                 /*
580                  * We may have taken a host interrupt in HYP mode (ie
581                  * while executing the guest). This interrupt is still
582                  * pending, as we haven't serviced it yet!
583                  *
584                  * We're now back in SVC mode, with interrupts
585                  * disabled.  Enabling the interrupts now will have
586                  * the effect of taking the interrupt again, in SVC
587                  * mode this time.
588                  */
589                 local_irq_enable();
590
591                 /*
592                  * Back from guest
593                  *************************************************************/
594
595                 kvm_timer_sync_hwstate(vcpu);
596                 kvm_vgic_sync_hwstate(vcpu);
597
598                 ret = handle_exit(vcpu, run, ret);
599         }
600
601         if (vcpu->sigset_active)
602                 sigprocmask(SIG_SETMASK, &sigsaved, NULL);
603         return ret;
604 }
605
606 static int vcpu_interrupt_line(struct kvm_vcpu *vcpu, int number, bool level)
607 {
608         int bit_index;
609         bool set;
610         unsigned long *ptr;
611
612         if (number == KVM_ARM_IRQ_CPU_IRQ)
613                 bit_index = __ffs(HCR_VI);
614         else /* KVM_ARM_IRQ_CPU_FIQ */
615                 bit_index = __ffs(HCR_VF);
616
617         ptr = (unsigned long *)&vcpu->arch.irq_lines;
618         if (level)
619                 set = test_and_set_bit(bit_index, ptr);
620         else
621                 set = test_and_clear_bit(bit_index, ptr);
622
623         /*
624          * If we didn't change anything, no need to wake up or kick other CPUs
625          */
626         if (set == level)
627                 return 0;
628
629         /*
630          * The vcpu irq_lines field was updated, wake up sleeping VCPUs and
631          * trigger a world-switch round on the running physical CPU to set the
632          * virtual IRQ/FIQ fields in the HCR appropriately.
633          */
634         kvm_vcpu_kick(vcpu);
635
636         return 0;
637 }
638
639 int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_level,
640                           bool line_status)
641 {
642         u32 irq = irq_level->irq;
643         unsigned int irq_type, vcpu_idx, irq_num;
644         int nrcpus = atomic_read(&kvm->online_vcpus);
645         struct kvm_vcpu *vcpu = NULL;
646         bool level = irq_level->level;
647
648         irq_type = (irq >> KVM_ARM_IRQ_TYPE_SHIFT) & KVM_ARM_IRQ_TYPE_MASK;
649         vcpu_idx = (irq >> KVM_ARM_IRQ_VCPU_SHIFT) & KVM_ARM_IRQ_VCPU_MASK;
650         irq_num = (irq >> KVM_ARM_IRQ_NUM_SHIFT) & KVM_ARM_IRQ_NUM_MASK;
651
652         trace_kvm_irq_line(irq_type, vcpu_idx, irq_num, irq_level->level);
653
654         switch (irq_type) {
655         case KVM_ARM_IRQ_TYPE_CPU:
656                 if (irqchip_in_kernel(kvm))
657                         return -ENXIO;
658
659                 if (vcpu_idx >= nrcpus)
660                         return -EINVAL;
661
662                 vcpu = kvm_get_vcpu(kvm, vcpu_idx);
663                 if (!vcpu)
664                         return -EINVAL;
665
666                 if (irq_num > KVM_ARM_IRQ_CPU_FIQ)
667                         return -EINVAL;
668
669                 return vcpu_interrupt_line(vcpu, irq_num, level);
670         case KVM_ARM_IRQ_TYPE_PPI:
671                 if (!irqchip_in_kernel(kvm))
672                         return -ENXIO;
673
674                 if (vcpu_idx >= nrcpus)
675                         return -EINVAL;
676
677                 vcpu = kvm_get_vcpu(kvm, vcpu_idx);
678                 if (!vcpu)
679                         return -EINVAL;
680
681                 if (irq_num < VGIC_NR_SGIS || irq_num >= VGIC_NR_PRIVATE_IRQS)
682                         return -EINVAL;
683
684                 return kvm_vgic_inject_irq(kvm, vcpu->vcpu_id, irq_num, level);
685         case KVM_ARM_IRQ_TYPE_SPI:
686                 if (!irqchip_in_kernel(kvm))
687                         return -ENXIO;
688
689                 if (irq_num < VGIC_NR_PRIVATE_IRQS ||
690                     irq_num > KVM_ARM_IRQ_GIC_MAX)
691                         return -EINVAL;
692
693                 return kvm_vgic_inject_irq(kvm, 0, irq_num, level);
694         }
695
696         return -EINVAL;
697 }
698
699 static int kvm_arch_vcpu_ioctl_vcpu_init(struct kvm_vcpu *vcpu,
700                                          struct kvm_vcpu_init *init)
701 {
702         int ret;
703
704         ret = kvm_vcpu_set_target(vcpu, init);
705         if (ret)
706                 return ret;
707
708         /*
709          * Handle the "start in power-off" case by marking the VCPU as paused.
710          */
711         if (__test_and_clear_bit(KVM_ARM_VCPU_POWER_OFF, vcpu->arch.features))
712                 vcpu->arch.pause = true;
713
714         return 0;
715 }
716
717 long kvm_arch_vcpu_ioctl(struct file *filp,
718                          unsigned int ioctl, unsigned long arg)
719 {
720         struct kvm_vcpu *vcpu = filp->private_data;
721         void __user *argp = (void __user *)arg;
722
723         switch (ioctl) {
724         case KVM_ARM_VCPU_INIT: {
725                 struct kvm_vcpu_init init;
726
727                 if (copy_from_user(&init, argp, sizeof(init)))
728                         return -EFAULT;
729
730                 return kvm_arch_vcpu_ioctl_vcpu_init(vcpu, &init);
731         }
732         case KVM_SET_ONE_REG:
733         case KVM_GET_ONE_REG: {
734                 struct kvm_one_reg reg;
735
736                 if (unlikely(!kvm_vcpu_initialized(vcpu)))
737                         return -ENOEXEC;
738
739                 if (copy_from_user(&reg, argp, sizeof(reg)))
740                         return -EFAULT;
741                 if (ioctl == KVM_SET_ONE_REG)
742                         return kvm_arm_set_reg(vcpu, &reg);
743                 else
744                         return kvm_arm_get_reg(vcpu, &reg);
745         }
746         case KVM_GET_REG_LIST: {
747                 struct kvm_reg_list __user *user_list = argp;
748                 struct kvm_reg_list reg_list;
749                 unsigned n;
750
751                 if (unlikely(!kvm_vcpu_initialized(vcpu)))
752                         return -ENOEXEC;
753
754                 if (copy_from_user(&reg_list, user_list, sizeof(reg_list)))
755                         return -EFAULT;
756                 n = reg_list.n;
757                 reg_list.n = kvm_arm_num_regs(vcpu);
758                 if (copy_to_user(user_list, &reg_list, sizeof(reg_list)))
759                         return -EFAULT;
760                 if (n < reg_list.n)
761                         return -E2BIG;
762                 return kvm_arm_copy_reg_indices(vcpu, user_list->reg);
763         }
764         default:
765                 return -EINVAL;
766         }
767 }
768
769 int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log)
770 {
771         return -EINVAL;
772 }
773
774 static int kvm_vm_ioctl_set_device_addr(struct kvm *kvm,
775                                         struct kvm_arm_device_addr *dev_addr)
776 {
777         unsigned long dev_id, type;
778
779         dev_id = (dev_addr->id & KVM_ARM_DEVICE_ID_MASK) >>
780                 KVM_ARM_DEVICE_ID_SHIFT;
781         type = (dev_addr->id & KVM_ARM_DEVICE_TYPE_MASK) >>
782                 KVM_ARM_DEVICE_TYPE_SHIFT;
783
784         switch (dev_id) {
785         case KVM_ARM_DEVICE_VGIC_V2:
786                 if (!vgic_present)
787                         return -ENXIO;
788                 return kvm_vgic_set_addr(kvm, type, dev_addr->addr);
789         default:
790                 return -ENODEV;
791         }
792 }
793
794 long kvm_arch_vm_ioctl(struct file *filp,
795                        unsigned int ioctl, unsigned long arg)
796 {
797         struct kvm *kvm = filp->private_data;
798         void __user *argp = (void __user *)arg;
799
800         switch (ioctl) {
801         case KVM_CREATE_IRQCHIP: {
802                 if (vgic_present)
803                         return kvm_vgic_create(kvm);
804                 else
805                         return -ENXIO;
806         }
807         case KVM_ARM_SET_DEVICE_ADDR: {
808                 struct kvm_arm_device_addr dev_addr;
809
810                 if (copy_from_user(&dev_addr, argp, sizeof(dev_addr)))
811                         return -EFAULT;
812                 return kvm_vm_ioctl_set_device_addr(kvm, &dev_addr);
813         }
814         case KVM_ARM_PREFERRED_TARGET: {
815                 int err;
816                 struct kvm_vcpu_init init;
817
818                 err = kvm_vcpu_preferred_target(&init);
819                 if (err)
820                         return err;
821
822                 if (copy_to_user(argp, &init, sizeof(init)))
823                         return -EFAULT;
824
825                 return 0;
826         }
827         default:
828                 return -EINVAL;
829         }
830 }
831
832 static void cpu_init_hyp_mode(void *dummy)
833 {
834         phys_addr_t boot_pgd_ptr;
835         phys_addr_t pgd_ptr;
836         unsigned long hyp_stack_ptr;
837         unsigned long stack_page;
838         unsigned long vector_ptr;
839
840         /* Switch from the HYP stub to our own HYP init vector */
841         __hyp_set_vectors(kvm_get_idmap_vector());
842
843         boot_pgd_ptr = kvm_mmu_get_boot_httbr();
844         pgd_ptr = kvm_mmu_get_httbr();
845         stack_page = __get_cpu_var(kvm_arm_hyp_stack_page);
846         hyp_stack_ptr = stack_page + PAGE_SIZE;
847         vector_ptr = (unsigned long)__kvm_hyp_vector;
848
849         __cpu_init_hyp_mode(boot_pgd_ptr, pgd_ptr, hyp_stack_ptr, vector_ptr);
850 }
851
852 static int hyp_init_cpu_notify(struct notifier_block *self,
853                                unsigned long action, void *cpu)
854 {
855         switch (action) {
856         case CPU_STARTING:
857         case CPU_STARTING_FROZEN:
858                 cpu_init_hyp_mode(NULL);
859                 break;
860         }
861
862         return NOTIFY_OK;
863 }
864
865 static struct notifier_block hyp_init_cpu_nb = {
866         .notifier_call = hyp_init_cpu_notify,
867 };
868
869 #ifdef CONFIG_CPU_PM
870 static int hyp_init_cpu_pm_notifier(struct notifier_block *self,
871                                     unsigned long cmd,
872                                     void *v)
873 {
874         if (cmd == CPU_PM_EXIT) {
875                 cpu_init_hyp_mode(NULL);
876                 return NOTIFY_OK;
877         }
878
879         return NOTIFY_DONE;
880 }
881
882 static struct notifier_block hyp_init_cpu_pm_nb = {
883         .notifier_call = hyp_init_cpu_pm_notifier,
884 };
885
886 static void __init hyp_cpu_pm_init(void)
887 {
888         cpu_pm_register_notifier(&hyp_init_cpu_pm_nb);
889 }
890 #else
891 static inline void hyp_cpu_pm_init(void)
892 {
893 }
894 #endif
895
896 /**
897  * Inits Hyp-mode on all online CPUs
898  */
899 static int init_hyp_mode(void)
900 {
901         int cpu;
902         int err = 0;
903
904         /*
905          * Allocate Hyp PGD and setup Hyp identity mapping
906          */
907         err = kvm_mmu_init();
908         if (err)
909                 goto out_err;
910
911         /*
912          * It is probably enough to obtain the default on one
913          * CPU. It's unlikely to be different on the others.
914          */
915         hyp_default_vectors = __hyp_get_vectors();
916
917         /*
918          * Allocate stack pages for Hypervisor-mode
919          */
920         for_each_possible_cpu(cpu) {
921                 unsigned long stack_page;
922
923                 stack_page = __get_free_page(GFP_KERNEL);
924                 if (!stack_page) {
925                         err = -ENOMEM;
926                         goto out_free_stack_pages;
927                 }
928
929                 per_cpu(kvm_arm_hyp_stack_page, cpu) = stack_page;
930         }
931
932         /*
933          * Map the Hyp-code called directly from the host
934          */
935         err = create_hyp_mappings(__kvm_hyp_code_start, __kvm_hyp_code_end);
936         if (err) {
937                 kvm_err("Cannot map world-switch code\n");
938                 goto out_free_mappings;
939         }
940
941         /*
942          * Map the Hyp stack pages
943          */
944         for_each_possible_cpu(cpu) {
945                 char *stack_page = (char *)per_cpu(kvm_arm_hyp_stack_page, cpu);
946                 err = create_hyp_mappings(stack_page, stack_page + PAGE_SIZE);
947
948                 if (err) {
949                         kvm_err("Cannot map hyp stack\n");
950                         goto out_free_mappings;
951                 }
952         }
953
954         /*
955          * Map the host CPU structures
956          */
957         kvm_host_cpu_state = alloc_percpu(kvm_cpu_context_t);
958         if (!kvm_host_cpu_state) {
959                 err = -ENOMEM;
960                 kvm_err("Cannot allocate host CPU state\n");
961                 goto out_free_mappings;
962         }
963
964         for_each_possible_cpu(cpu) {
965                 kvm_cpu_context_t *cpu_ctxt;
966
967                 cpu_ctxt = per_cpu_ptr(kvm_host_cpu_state, cpu);
968                 err = create_hyp_mappings(cpu_ctxt, cpu_ctxt + 1);
969
970                 if (err) {
971                         kvm_err("Cannot map host CPU state: %d\n", err);
972                         goto out_free_context;
973                 }
974         }
975
976         /*
977          * Execute the init code on each CPU.
978          */
979         on_each_cpu(cpu_init_hyp_mode, NULL, 1);
980
981         /*
982          * Init HYP view of VGIC
983          */
984         err = kvm_vgic_hyp_init();
985         if (err)
986                 goto out_free_context;
987
988 #ifdef CONFIG_KVM_ARM_VGIC
989                 vgic_present = true;
990 #endif
991
992         /*
993          * Init HYP architected timer support
994          */
995         err = kvm_timer_hyp_init();
996         if (err)
997                 goto out_free_mappings;
998
999 #ifndef CONFIG_HOTPLUG_CPU
1000         free_boot_hyp_pgd();
1001 #endif
1002
1003         kvm_perf_init();
1004
1005         kvm_info("Hyp mode initialized successfully\n");
1006
1007         return 0;
1008 out_free_context:
1009         free_percpu(kvm_host_cpu_state);
1010 out_free_mappings:
1011         free_hyp_pgds();
1012 out_free_stack_pages:
1013         for_each_possible_cpu(cpu)
1014                 free_page(per_cpu(kvm_arm_hyp_stack_page, cpu));
1015 out_err:
1016         kvm_err("error initializing Hyp mode: %d\n", err);
1017         return err;
1018 }
1019
1020 static void check_kvm_target_cpu(void *ret)
1021 {
1022         *(int *)ret = kvm_target_cpu();
1023 }
1024
1025 /**
1026  * Initialize Hyp-mode and memory mappings on all CPUs.
1027  */
1028 int kvm_arch_init(void *opaque)
1029 {
1030         int err;
1031         int ret, cpu;
1032
1033         if (!is_hyp_mode_available()) {
1034                 kvm_err("HYP mode not available\n");
1035                 return -ENODEV;
1036         }
1037
1038         for_each_online_cpu(cpu) {
1039                 smp_call_function_single(cpu, check_kvm_target_cpu, &ret, 1);
1040                 if (ret < 0) {
1041                         kvm_err("Error, CPU %d not supported!\n", cpu);
1042                         return -ENODEV;
1043                 }
1044         }
1045
1046         err = init_hyp_mode();
1047         if (err)
1048                 goto out_err;
1049
1050         err = register_cpu_notifier(&hyp_init_cpu_nb);
1051         if (err) {
1052                 kvm_err("Cannot register HYP init CPU notifier (%d)\n", err);
1053                 goto out_err;
1054         }
1055
1056         hyp_cpu_pm_init();
1057
1058         kvm_coproc_table_init();
1059         return 0;
1060 out_err:
1061         return err;
1062 }
1063
1064 /* NOP: Compiling as a module not supported */
1065 void kvm_arch_exit(void)
1066 {
1067         kvm_perf_teardown();
1068 }
1069
1070 static int arm_init(void)
1071 {
1072         int rc = kvm_init(NULL, sizeof(struct kvm_vcpu), 0, THIS_MODULE);
1073         return rc;
1074 }
1075
1076 module_init(arm_init);