enable the instrumentation of non-atomic loads and stores
[c11llvm.git] / CDSPass.cpp
1 //===-- CDSPass.cpp - xxx -------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 // This file is distributed under the University of Illinois Open Source
7 // License. See LICENSE.TXT for details.
8 //
9 //===----------------------------------------------------------------------===//
10 //
11 // This file is a modified version of ThreadSanitizer.cpp, a part of a race detector.
12 //
13 // The tool is under development, for the details about previous versions see
14 // http://code.google.com/p/data-race-test
15 //
16 // The instrumentation phase is quite simple:
17 //   - Insert calls to run-time library before every memory access.
18 //      - Optimizations may apply to avoid instrumenting some of the accesses.
19 //   - Insert calls at function entry/exit.
20 // The rest is handled by the run-time library.
21 //===----------------------------------------------------------------------===//
22
23 #include "llvm/ADT/Statistic.h"
24 #include "llvm/ADT/StringExtras.h"
25 #include "llvm/ADT/SmallString.h"
26 #include "llvm/Analysis/ValueTracking.h"
27 #include "llvm/Analysis/CaptureTracking.h"
28 #include "llvm/IR/BasicBlock.h"
29 #include "llvm/IR/Function.h"
30 #include "llvm/IR/IRBuilder.h"
31 #include "llvm/IR/Instructions.h"
32 #include "llvm/IR/LLVMContext.h"
33 #include "llvm/IR/LegacyPassManager.h"
34 #include "llvm/IR/Module.h"
35 #include "llvm/IR/PassManager.h"
36 #include "llvm/Pass.h"
37 #include "llvm/ProfileData/InstrProf.h"
38 #include "llvm/Support/raw_ostream.h"
39 #include "llvm/Support/AtomicOrdering.h"
40 #include "llvm/Support/Debug.h"
41 #include "llvm/Transforms/Scalar.h"
42 #include "llvm/Transforms/Utils/Local.h"
43 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
44 #include "llvm/Transforms/IPO/PassManagerBuilder.h"
45 #include "llvm/Transforms/Utils/EscapeEnumerator.h"
46 #include <vector>
47
48 using namespace llvm;
49
50 #define DEBUG_TYPE "CDS"
51 #include <llvm/IR/DebugLoc.h>
52
53 Value *getPosition( Instruction * I, IRBuilder <> IRB, bool print = false)
54 {
55         const DebugLoc & debug_location = I->getDebugLoc ();
56         std::string position_string;
57         {
58                 llvm::raw_string_ostream position_stream (position_string);
59                 debug_location . print (position_stream);
60         }
61
62         if (print) {
63                 errs() << position_string;
64         }
65
66         return IRB.CreateGlobalStringPtr (position_string);
67 }
68
69 STATISTIC(NumInstrumentedReads, "Number of instrumented reads");
70 STATISTIC(NumInstrumentedWrites, "Number of instrumented writes");
71 STATISTIC(NumAccessesWithBadSize, "Number of accesses with bad size");
72 // STATISTIC(NumInstrumentedVtableWrites, "Number of vtable ptr writes");
73 // STATISTIC(NumInstrumentedVtableReads, "Number of vtable ptr reads");
74
75 STATISTIC(NumOmittedReadsBeforeWrite,
76           "Number of reads ignored due to following writes");
77 STATISTIC(NumOmittedReadsFromConstantGlobals,
78           "Number of reads from constant globals");
79 STATISTIC(NumOmittedReadsFromVtable, "Number of vtable reads");
80 STATISTIC(NumOmittedNonCaptured, "Number of accesses ignored due to capturing");
81
82 Type * OrdTy;
83
84 Type * Int8PtrTy;
85 Type * Int16PtrTy;
86 Type * Int32PtrTy;
87 Type * Int64PtrTy;
88
89 Type * VoidTy;
90
91 static const size_t kNumberOfAccessSizes = 4;
92
93 int getAtomicOrderIndex(AtomicOrdering order){
94         switch (order) {
95                 case AtomicOrdering::Monotonic: 
96                         return (int)AtomicOrderingCABI::relaxed;
97                 //  case AtomicOrdering::Consume:         // not specified yet
98                 //    return AtomicOrderingCABI::consume;
99                 case AtomicOrdering::Acquire: 
100                         return (int)AtomicOrderingCABI::acquire;
101                 case AtomicOrdering::Release: 
102                         return (int)AtomicOrderingCABI::release;
103                 case AtomicOrdering::AcquireRelease: 
104                         return (int)AtomicOrderingCABI::acq_rel;
105                 case AtomicOrdering::SequentiallyConsistent: 
106                         return (int)AtomicOrderingCABI::seq_cst;
107                 default:
108                         // unordered or Not Atomic
109                         return -1;
110         }
111 }
112
113 namespace {
114         struct CDSPass : public FunctionPass {
115                 static char ID;
116                 CDSPass() : FunctionPass(ID) {}
117                 bool runOnFunction(Function &F) override; 
118
119         private:
120                 void initializeCallbacks(Module &M);
121                 bool instrumentLoadOrStore(Instruction *I, const DataLayout &DL);
122                 bool isAtomicCall(Instruction *I);
123                 bool instrumentAtomic(Instruction *I, const DataLayout &DL);
124                 bool instrumentAtomicCall(CallInst *CI, const DataLayout &DL);
125                 void chooseInstructionsToInstrument(SmallVectorImpl<Instruction *> &Local,
126                                                                                         SmallVectorImpl<Instruction *> &All,
127                                                                                         const DataLayout &DL);
128                 bool addrPointsToConstantData(Value *Addr);
129                 int getMemoryAccessFuncIndex(Value *Addr, const DataLayout &DL);
130
131                 // Callbacks to run-time library are computed in doInitialization.
132                 Constant * CDSFuncEntry;
133                 Constant * CDSFuncExit;
134
135                 Constant * CDSLoad[kNumberOfAccessSizes];
136                 Constant * CDSStore[kNumberOfAccessSizes];
137                 Constant * CDSAtomicInit[kNumberOfAccessSizes];
138                 Constant * CDSAtomicLoad[kNumberOfAccessSizes];
139                 Constant * CDSAtomicStore[kNumberOfAccessSizes];
140                 Constant * CDSAtomicRMW[AtomicRMWInst::LAST_BINOP + 1][kNumberOfAccessSizes];
141                 Constant * CDSAtomicCAS_V1[kNumberOfAccessSizes];
142                 Constant * CDSAtomicCAS_V2[kNumberOfAccessSizes];
143                 Constant * CDSAtomicThreadFence;
144
145                 std::vector<StringRef> AtomicFuncNames;
146                 std::vector<StringRef> PartialAtomicFuncNames;
147         };
148 }
149
150 static bool isVtableAccess(Instruction *I) {
151         if (MDNode *Tag = I->getMetadata(LLVMContext::MD_tbaa))
152                 return Tag->isTBAAVtableAccess();
153         return false;
154 }
155
156 void CDSPass::initializeCallbacks(Module &M) {
157         LLVMContext &Ctx = M.getContext();
158
159         Type * Int1Ty = Type::getInt1Ty(Ctx);
160         OrdTy = Type::getInt32Ty(Ctx);
161
162         Int8PtrTy  = Type::getInt8PtrTy(Ctx);
163         Int16PtrTy = Type::getInt16PtrTy(Ctx);
164         Int32PtrTy = Type::getInt32PtrTy(Ctx);
165         Int64PtrTy = Type::getInt64PtrTy(Ctx);
166
167         VoidTy = Type::getVoidTy(Ctx);
168
169         CDSFuncEntry = M.getOrInsertFunction("cds_func_entry", 
170                                                                 VoidTy, Int8PtrTy);
171         CDSFuncExit = M.getOrInsertFunction("cds_func_exit", 
172                                                                 VoidTy, Int8PtrTy);
173
174         // Get the function to call from our untime library.
175         for (unsigned i = 0; i < kNumberOfAccessSizes; i++) {
176                 const unsigned ByteSize = 1U << i;
177                 const unsigned BitSize = ByteSize * 8;
178
179                 std::string ByteSizeStr = utostr(ByteSize);
180                 std::string BitSizeStr = utostr(BitSize);
181
182                 Type *Ty = Type::getIntNTy(Ctx, BitSize);
183                 Type *PtrTy = Ty->getPointerTo();
184
185                 // uint8_t cds_atomic_load8 (void * obj, int atomic_index)
186                 // void cds_atomic_store8 (void * obj, int atomic_index, uint8_t val)
187                 SmallString<32> LoadName("cds_load" + BitSizeStr);
188                 SmallString<32> StoreName("cds_store" + BitSizeStr);
189                 SmallString<32> AtomicInitName("cds_atomic_init" + BitSizeStr);
190                 SmallString<32> AtomicLoadName("cds_atomic_load" + BitSizeStr);
191                 SmallString<32> AtomicStoreName("cds_atomic_store" + BitSizeStr);
192
193                 CDSLoad[i]  = M.getOrInsertFunction(LoadName, VoidTy, PtrTy);
194                 CDSStore[i] = M.getOrInsertFunction(StoreName, VoidTy, PtrTy);
195                 CDSAtomicInit[i] = M.getOrInsertFunction(AtomicInitName, 
196                                                                 VoidTy, PtrTy, Ty, Int8PtrTy);
197                 CDSAtomicLoad[i]  = M.getOrInsertFunction(AtomicLoadName, 
198                                                                 Ty, PtrTy, OrdTy, Int8PtrTy);
199                 CDSAtomicStore[i] = M.getOrInsertFunction(AtomicStoreName, 
200                                                                 VoidTy, PtrTy, Ty, OrdTy, Int8PtrTy);
201
202                 for (int op = AtomicRMWInst::FIRST_BINOP; 
203                         op <= AtomicRMWInst::LAST_BINOP; ++op) {
204                         CDSAtomicRMW[op][i] = nullptr;
205                         std::string NamePart;
206
207                         if (op == AtomicRMWInst::Xchg)
208                                 NamePart = "_exchange";
209                         else if (op == AtomicRMWInst::Add) 
210                                 NamePart = "_fetch_add";
211                         else if (op == AtomicRMWInst::Sub)
212                                 NamePart = "_fetch_sub";
213                         else if (op == AtomicRMWInst::And)
214                                 NamePart = "_fetch_and";
215                         else if (op == AtomicRMWInst::Or)
216                                 NamePart = "_fetch_or";
217                         else if (op == AtomicRMWInst::Xor)
218                                 NamePart = "_fetch_xor";
219                         else
220                                 continue;
221
222                         SmallString<32> AtomicRMWName("cds_atomic" + NamePart + BitSizeStr);
223                         CDSAtomicRMW[op][i] = M.getOrInsertFunction(AtomicRMWName, 
224                                                                                 Ty, PtrTy, Ty, OrdTy, Int8PtrTy);
225                 }
226
227                 // only supportes strong version
228                 SmallString<32> AtomicCASName_V1("cds_atomic_compare_exchange" + BitSizeStr + "_v1");
229                 SmallString<32> AtomicCASName_V2("cds_atomic_compare_exchange" + BitSizeStr + "_v2");
230                 CDSAtomicCAS_V1[i] = M.getOrInsertFunction(AtomicCASName_V1, 
231                                                                 Ty, PtrTy, Ty, Ty, OrdTy, OrdTy, Int8PtrTy);
232                 CDSAtomicCAS_V2[i] = M.getOrInsertFunction(AtomicCASName_V2, 
233                                                                 Int1Ty, PtrTy, PtrTy, Ty, OrdTy, OrdTy, Int8PtrTy);
234         }
235
236         CDSAtomicThreadFence = M.getOrInsertFunction("cds_atomic_thread_fence", 
237                                                                                                         VoidTy, OrdTy, Int8PtrTy);
238 }
239
240 static bool shouldInstrumentReadWriteFromAddress(const Module *M, Value *Addr) {
241         // Peel off GEPs and BitCasts.
242         Addr = Addr->stripInBoundsOffsets();
243
244         if (GlobalVariable *GV = dyn_cast<GlobalVariable>(Addr)) {
245                 if (GV->hasSection()) {
246                         StringRef SectionName = GV->getSection();
247                         // Check if the global is in the PGO counters section.
248                         auto OF = Triple(M->getTargetTriple()).getObjectFormat();
249                         if (SectionName.endswith(
250                               getInstrProfSectionName(IPSK_cnts, OF, /*AddSegmentInfo=*/false)))
251                                 return false;
252                 }
253
254                 // Check if the global is private gcov data.
255                 if (GV->getName().startswith("__llvm_gcov") ||
256                 GV->getName().startswith("__llvm_gcda"))
257                 return false;
258         }
259
260         // Do not instrument acesses from different address spaces; we cannot deal
261         // with them.
262         if (Addr) {
263                 Type *PtrTy = cast<PointerType>(Addr->getType()->getScalarType());
264                 if (PtrTy->getPointerAddressSpace() != 0)
265                         return false;
266         }
267
268         return true;
269 }
270
271 bool CDSPass::addrPointsToConstantData(Value *Addr) {
272         // If this is a GEP, just analyze its pointer operand.
273         if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Addr))
274                 Addr = GEP->getPointerOperand();
275
276         if (GlobalVariable *GV = dyn_cast<GlobalVariable>(Addr)) {
277                 if (GV->isConstant()) {
278                         // Reads from constant globals can not race with any writes.
279                         NumOmittedReadsFromConstantGlobals++;
280                         return true;
281                 }
282         } else if (LoadInst *L = dyn_cast<LoadInst>(Addr)) {
283                 if (isVtableAccess(L)) {
284                         // Reads from a vtable pointer can not race with any writes.
285                         NumOmittedReadsFromVtable++;
286                         return true;
287                 }
288         }
289         return false;
290 }
291
292 bool CDSPass::runOnFunction(Function &F) {
293         if (F.getName() == "main") {
294                 F.setName("user_main");
295                 errs() << "main replaced by user_main\n";
296         }
297
298         if (true) {
299                 initializeCallbacks( *F.getParent() );
300
301                 AtomicFuncNames = 
302                 {
303                         "atomic_init", "atomic_load", "atomic_store", 
304                         "atomic_fetch_", "atomic_exchange", "atomic_compare_exchange_"
305                 };
306
307                 PartialAtomicFuncNames = 
308                 { 
309                         "load", "store", "fetch", "exchange", "compare_exchange_" 
310                 };
311
312                 SmallVector<Instruction*, 8> AllLoadsAndStores;
313                 SmallVector<Instruction*, 8> LocalLoadsAndStores;
314                 SmallVector<Instruction*, 8> AtomicAccesses;
315
316                 std::vector<Instruction *> worklist;
317
318                 bool Res = false;
319                 bool HasAtomic = false;
320                 const DataLayout &DL = F.getParent()->getDataLayout();
321
322                 // errs() << "--- " << F.getName() << "---\n";
323
324                 for (auto &B : F) {
325                         for (auto &I : B) {
326                                 if ( (&I)->isAtomic() || isAtomicCall(&I) ) {
327                                         AtomicAccesses.push_back(&I);
328                                         HasAtomic = true;
329                                 } else if (isa<LoadInst>(I) || isa<StoreInst>(I)) {
330                                         LocalLoadsAndStores.push_back(&I);
331                                 } else if (isa<CallInst>(I) || isa<InvokeInst>(I)) {
332                                         // not implemented yet
333                                 }
334                         }
335
336                         chooseInstructionsToInstrument(LocalLoadsAndStores, AllLoadsAndStores, DL);
337                 }
338
339                 for (auto Inst : AllLoadsAndStores) {
340                         Res |= instrumentLoadOrStore(Inst, DL);
341                 }
342
343                 for (auto Inst : AtomicAccesses) {
344                         Res |= instrumentAtomic(Inst, DL);
345                 }
346
347                 // only instrument functions that contain atomics
348                 if (Res && HasAtomic) {
349                         IRBuilder<> IRB(F.getEntryBlock().getFirstNonPHI());
350                         /* Unused for now
351                         Value *ReturnAddress = IRB.CreateCall(
352                                 Intrinsic::getDeclaration(F.getParent(), Intrinsic::returnaddress),
353                                 IRB.getInt32(0));
354                         */
355
356                         Value * FuncName = IRB.CreateGlobalStringPtr(F.getName());
357                         IRB.CreateCall(CDSFuncEntry, FuncName);
358
359                         EscapeEnumerator EE(F, "cds_cleanup", true);
360                         while (IRBuilder<> *AtExit = EE.Next()) {
361                           AtExit->CreateCall(CDSFuncExit, FuncName);
362                         }
363
364                         Res = true;
365                 }
366         }
367
368         return false;
369 }
370
371 void CDSPass::chooseInstructionsToInstrument(
372         SmallVectorImpl<Instruction *> &Local, SmallVectorImpl<Instruction *> &All,
373         const DataLayout &DL) {
374         SmallPtrSet<Value*, 8> WriteTargets;
375         // Iterate from the end.
376         for (Instruction *I : reverse(Local)) {
377                 if (StoreInst *Store = dyn_cast<StoreInst>(I)) {
378                         Value *Addr = Store->getPointerOperand();
379                         if (!shouldInstrumentReadWriteFromAddress(I->getModule(), Addr))
380                                 continue;
381                         WriteTargets.insert(Addr);
382                 } else {
383                         LoadInst *Load = cast<LoadInst>(I);
384                         Value *Addr = Load->getPointerOperand();
385                         if (!shouldInstrumentReadWriteFromAddress(I->getModule(), Addr))
386                                 continue;
387                         if (WriteTargets.count(Addr)) {
388                                 // We will write to this temp, so no reason to analyze the read.
389                                 NumOmittedReadsBeforeWrite++;
390                                 continue;
391                         }
392                         if (addrPointsToConstantData(Addr)) {
393                                 // Addr points to some constant data -- it can not race with any writes.
394                                 continue;
395                         }
396                 }
397                 Value *Addr = isa<StoreInst>(*I)
398                         ? cast<StoreInst>(I)->getPointerOperand()
399                         : cast<LoadInst>(I)->getPointerOperand();
400                 if (isa<AllocaInst>(GetUnderlyingObject(Addr, DL)) &&
401                                 !PointerMayBeCaptured(Addr, true, true)) {
402                         // The variable is addressable but not captured, so it cannot be
403                         // referenced from a different thread and participate in a data race
404                         // (see llvm/Analysis/CaptureTracking.h for details).
405                         NumOmittedNonCaptured++;
406                         continue;
407                 }
408                 All.push_back(I);
409         }
410         Local.clear();
411 }
412
413
414 bool CDSPass::instrumentLoadOrStore(Instruction *I,
415                                                                         const DataLayout &DL) {
416         IRBuilder<> IRB(I);
417         bool IsWrite = isa<StoreInst>(*I);
418         Value *Addr = IsWrite
419                 ? cast<StoreInst>(I)->getPointerOperand()
420                 : cast<LoadInst>(I)->getPointerOperand();
421
422         // swifterror memory addresses are mem2reg promoted by instruction selection.
423         // As such they cannot have regular uses like an instrumentation function and
424         // it makes no sense to track them as memory.
425         if (Addr->isSwiftError())
426         return false;
427
428         int Idx = getMemoryAccessFuncIndex(Addr, DL);
429
430 //  not supported by CDS yet
431 /*  if (IsWrite && isVtableAccess(I)) {
432     LLVM_DEBUG(dbgs() << "  VPTR : " << *I << "\n");
433     Value *StoredValue = cast<StoreInst>(I)->getValueOperand();
434     // StoredValue may be a vector type if we are storing several vptrs at once.
435     // In this case, just take the first element of the vector since this is
436     // enough to find vptr races.
437     if (isa<VectorType>(StoredValue->getType()))
438       StoredValue = IRB.CreateExtractElement(
439           StoredValue, ConstantInt::get(IRB.getInt32Ty(), 0));
440     if (StoredValue->getType()->isIntegerTy())
441       StoredValue = IRB.CreateIntToPtr(StoredValue, IRB.getInt8PtrTy());
442     // Call TsanVptrUpdate.
443     IRB.CreateCall(TsanVptrUpdate,
444                    {IRB.CreatePointerCast(Addr, IRB.getInt8PtrTy()),
445                     IRB.CreatePointerCast(StoredValue, IRB.getInt8PtrTy())});
446     NumInstrumentedVtableWrites++;
447     return true;
448   }
449
450   if (!IsWrite && isVtableAccess(I)) {
451     IRB.CreateCall(TsanVptrLoad,
452                    IRB.CreatePointerCast(Addr, IRB.getInt8PtrTy()));
453     NumInstrumentedVtableReads++;
454     return true;
455   }
456 */
457
458         Value *OnAccessFunc = nullptr;
459         OnAccessFunc = IsWrite ? CDSStore[Idx] : CDSLoad[Idx];
460
461         Type *ArgType = IRB.CreatePointerCast(Addr, Addr->getType())->getType();
462
463         if ( ArgType != Int8PtrTy && ArgType != Int16PtrTy && 
464                         ArgType != Int32PtrTy && ArgType != Int64PtrTy ) {
465                 // if other types of load or stores are passed in
466                 return false;   
467         }
468         IRB.CreateCall(OnAccessFunc, IRB.CreatePointerCast(Addr, Addr->getType()));
469         if (IsWrite) NumInstrumentedWrites++;
470         else         NumInstrumentedReads++;
471         return true;
472 }
473
474 bool CDSPass::instrumentAtomic(Instruction * I, const DataLayout &DL) {
475         IRBuilder<> IRB(I);
476
477         // errs() << "instrumenting: " << *I << "\n";
478
479         if (auto *CI = dyn_cast<CallInst>(I)) {
480                 return instrumentAtomicCall(CI, DL);
481         }
482
483         Value *position = getPosition(I, IRB);
484
485         if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
486                 Value *Addr = LI->getPointerOperand();
487                 int Idx=getMemoryAccessFuncIndex(Addr, DL);
488                 int atomic_order_index = getAtomicOrderIndex(LI->getOrdering());
489                 Value *order = ConstantInt::get(OrdTy, atomic_order_index);
490                 Value *args[] = {Addr, order, position};
491                 Instruction* funcInst=CallInst::Create(CDSAtomicLoad[Idx], args);
492                 ReplaceInstWithInst(LI, funcInst);
493         } else if (StoreInst *SI = dyn_cast<StoreInst>(I)) {
494                 Value *Addr = SI->getPointerOperand();
495                 int Idx=getMemoryAccessFuncIndex(Addr, DL);
496                 int atomic_order_index = getAtomicOrderIndex(SI->getOrdering());
497                 Value *val = SI->getValueOperand();
498                 Value *order = ConstantInt::get(OrdTy, atomic_order_index);
499                 Value *args[] = {Addr, val, order, position};
500                 Instruction* funcInst=CallInst::Create(CDSAtomicStore[Idx], args);
501                 ReplaceInstWithInst(SI, funcInst);
502         } else if (AtomicRMWInst *RMWI = dyn_cast<AtomicRMWInst>(I)) {
503                 Value *Addr = RMWI->getPointerOperand();
504                 int Idx=getMemoryAccessFuncIndex(Addr, DL);
505                 int atomic_order_index = getAtomicOrderIndex(RMWI->getOrdering());
506                 Value *val = RMWI->getValOperand();
507                 Value *order = ConstantInt::get(OrdTy, atomic_order_index);
508                 Value *args[] = {Addr, val, order, position};
509                 Instruction* funcInst = CallInst::Create(CDSAtomicRMW[RMWI->getOperation()][Idx], args);
510                 ReplaceInstWithInst(RMWI, funcInst);
511         } else if (AtomicCmpXchgInst *CASI = dyn_cast<AtomicCmpXchgInst>(I)) {
512                 IRBuilder<> IRB(CASI);
513
514                 Value *Addr = CASI->getPointerOperand();
515                 int Idx=getMemoryAccessFuncIndex(Addr, DL);
516
517                 const unsigned ByteSize = 1U << Idx;
518                 const unsigned BitSize = ByteSize * 8;
519                 Type *Ty = Type::getIntNTy(IRB.getContext(), BitSize);
520                 Type *PtrTy = Ty->getPointerTo();
521
522                 Value *CmpOperand = IRB.CreateBitOrPointerCast(CASI->getCompareOperand(), Ty);
523                 Value *NewOperand = IRB.CreateBitOrPointerCast(CASI->getNewValOperand(), Ty);
524
525                 int atomic_order_index_succ = getAtomicOrderIndex(CASI->getSuccessOrdering());
526                 int atomic_order_index_fail = getAtomicOrderIndex(CASI->getFailureOrdering());
527                 Value *order_succ = ConstantInt::get(OrdTy, atomic_order_index_succ);
528                 Value *order_fail = ConstantInt::get(OrdTy, atomic_order_index_fail);
529
530                 Value *Args[] = {IRB.CreatePointerCast(Addr, PtrTy),
531                                                  CmpOperand, NewOperand,
532                                                  order_succ, order_fail, position};
533
534                 CallInst *funcInst = IRB.CreateCall(CDSAtomicCAS_V1[Idx], Args);
535                 Value *Success = IRB.CreateICmpEQ(funcInst, CmpOperand);
536
537                 Value *OldVal = funcInst;
538                 Type *OrigOldValTy = CASI->getNewValOperand()->getType();
539                 if (Ty != OrigOldValTy) {
540                         // The value is a pointer, so we need to cast the return value.
541                         OldVal = IRB.CreateIntToPtr(funcInst, OrigOldValTy);
542                 }
543
544                 Value *Res =
545                   IRB.CreateInsertValue(UndefValue::get(CASI->getType()), OldVal, 0);
546                 Res = IRB.CreateInsertValue(Res, Success, 1);
547
548                 I->replaceAllUsesWith(Res);
549                 I->eraseFromParent();
550         } else if (FenceInst *FI = dyn_cast<FenceInst>(I)) {
551                 int atomic_order_index = getAtomicOrderIndex(FI->getOrdering());
552                 Value *order = ConstantInt::get(OrdTy, atomic_order_index);
553                 Value *Args[] = {order, position};
554
555                 CallInst *funcInst = CallInst::Create(CDSAtomicThreadFence, Args);
556                 ReplaceInstWithInst(FI, funcInst);
557                 // errs() << "Thread Fences replaced\n";
558         }
559         return true;
560 }
561
562 bool CDSPass::isAtomicCall(Instruction *I) {
563         if ( auto *CI = dyn_cast<CallInst>(I) ) {
564                 Function *fun = CI->getCalledFunction();
565                 if (fun == NULL)
566                         return false;
567
568                 StringRef funName = fun->getName();
569
570                 // todo: come up with better rules for function name checking
571                 for (StringRef name : AtomicFuncNames) {
572                         if ( funName.contains(name) ) 
573                                 return true;
574                 }
575                 
576                 for (StringRef PartialName : PartialAtomicFuncNames) {
577                         if (funName.contains(PartialName) && 
578                                         funName.contains("atomic") )
579                                 return true;
580                 }
581         }
582
583         return false;
584 }
585
586 bool CDSPass::instrumentAtomicCall(CallInst *CI, const DataLayout &DL) {
587         IRBuilder<> IRB(CI);
588         Function *fun = CI->getCalledFunction();
589         StringRef funName = fun->getName();
590         std::vector<Value *> parameters;
591
592         User::op_iterator begin = CI->arg_begin();
593         User::op_iterator end = CI->arg_end();
594         for (User::op_iterator it = begin; it != end; ++it) {
595                 Value *param = *it;
596                 parameters.push_back(param);
597         }
598
599         // obtain source line number of the CallInst
600         Value *position = getPosition(CI, IRB);
601
602         // the pointer to the address is always the first argument
603         Value *OrigPtr = parameters[0];
604
605         int Idx = getMemoryAccessFuncIndex(OrigPtr, DL);
606         if (Idx < 0)
607                 return false;
608
609         const unsigned ByteSize = 1U << Idx;
610         const unsigned BitSize = ByteSize * 8;
611         Type *Ty = Type::getIntNTy(IRB.getContext(), BitSize);
612         Type *PtrTy = Ty->getPointerTo();
613
614         // atomic_init; args = {obj, order}
615         if (funName.contains("atomic_init")) {
616                 Value *ptr = IRB.CreatePointerCast(OrigPtr, PtrTy);
617                 Value *val = IRB.CreateBitOrPointerCast(parameters[1], Ty);
618                 Value *args[] = {ptr, val, position};
619
620                 Instruction* funcInst = CallInst::Create(CDSAtomicInit[Idx], args);
621                 ReplaceInstWithInst(CI, funcInst);
622
623                 return true;
624         }
625
626         // atomic_load; args = {obj, order}
627         if (funName.contains("atomic_load")) {
628                 bool isExplicit = funName.contains("atomic_load_explicit");
629
630                 Value *ptr = IRB.CreatePointerCast(OrigPtr, PtrTy);
631                 Value *order;
632                 if (isExplicit)
633                         order = IRB.CreateBitOrPointerCast(parameters[1], OrdTy);
634                 else 
635                         order = ConstantInt::get(OrdTy, 
636                                                         (int) AtomicOrderingCABI::seq_cst);
637                 Value *args[] = {ptr, order, position};
638                 
639                 Instruction* funcInst = CallInst::Create(CDSAtomicLoad[Idx], args);
640                 ReplaceInstWithInst(CI, funcInst);
641
642                 return true;
643         } else if (funName.contains("atomic") && 
644                                         funName.contains("load") ) {
645                 // does this version of call always have an atomic order as an argument?
646                 Value *ptr = IRB.CreatePointerCast(OrigPtr, PtrTy);
647                 Value *order = IRB.CreateBitOrPointerCast(parameters[1], OrdTy);
648                 Value *args[] = {ptr, order, position};
649
650                 if (!CI->getType()->isPointerTy()) {
651                         return false;   
652                 } 
653
654                 CallInst *funcInst = IRB.CreateCall(CDSAtomicLoad[Idx], args);
655                 Value *RetVal = IRB.CreateIntToPtr(funcInst, CI->getType());
656
657                 CI->replaceAllUsesWith(RetVal);
658                 CI->eraseFromParent();
659
660                 return true;
661         }
662
663         // atomic_store; args = {obj, val, order}
664         if (funName.contains("atomic_store")) {
665                 bool isExplicit = funName.contains("atomic_store_explicit");
666                 Value *OrigVal = parameters[1];
667
668                 Value *ptr = IRB.CreatePointerCast(OrigPtr, PtrTy);
669                 Value *val = IRB.CreatePointerCast(OrigVal, Ty);
670                 Value *order;
671                 if (isExplicit)
672                         order = IRB.CreateBitOrPointerCast(parameters[2], OrdTy);
673                 else 
674                         order = ConstantInt::get(OrdTy, 
675                                                         (int) AtomicOrderingCABI::seq_cst);
676                 Value *args[] = {ptr, val, order, position};
677                 
678                 Instruction* funcInst = CallInst::Create(CDSAtomicStore[Idx], args);
679                 ReplaceInstWithInst(CI, funcInst);
680
681                 return true;
682         } else if (funName.contains("atomic") && 
683                                         funName.contains("EEEE5store") ) {
684                 // does this version of call always have an atomic order as an argument?
685                 Value *OrigVal = parameters[1];
686
687                 Value *ptr = IRB.CreatePointerCast(OrigPtr, PtrTy);
688                 Value *val = IRB.CreatePointerCast(OrigVal, Ty);
689                 Value *order = IRB.CreateBitOrPointerCast(parameters[1], OrdTy);
690                 Value *args[] = {ptr, val, order, position};
691
692                 Instruction* funcInst = CallInst::Create(CDSAtomicStore[Idx], args);
693                 ReplaceInstWithInst(CI, funcInst);
694
695                 return true;
696         }
697
698         // atomic_fetch_*; args = {obj, val, order}
699         if (funName.contains("atomic_fetch_") || 
700                         funName.contains("atomic_exchange") ) {
701                 bool isExplicit = funName.contains("_explicit");
702                 Value *OrigVal = parameters[1];
703
704                 int op;
705                 if ( funName.contains("_fetch_add") )
706                         op = AtomicRMWInst::Add;
707                 else if ( funName.contains("_fetch_sub") )
708                         op = AtomicRMWInst::Sub;
709                 else if ( funName.contains("_fetch_and") )
710                         op = AtomicRMWInst::And;
711                 else if ( funName.contains("_fetch_or") )
712                         op = AtomicRMWInst::Or;
713                 else if ( funName.contains("_fetch_xor") )
714                         op = AtomicRMWInst::Xor;
715                 else if ( funName.contains("atomic_exchange") )
716                         op = AtomicRMWInst::Xchg;
717                 else {
718                         errs() << "Unknown atomic read-modify-write operation\n";
719                         return false;
720                 }
721
722                 Value *ptr = IRB.CreatePointerCast(OrigPtr, PtrTy);
723                 Value *val = IRB.CreatePointerCast(OrigVal, Ty);
724                 Value *order;
725                 if (isExplicit)
726                         order = IRB.CreateBitOrPointerCast(parameters[2], OrdTy);
727                 else 
728                         order = ConstantInt::get(OrdTy, 
729                                                         (int) AtomicOrderingCABI::seq_cst);
730                 Value *args[] = {ptr, val, order, position};
731                 
732                 Instruction* funcInst = CallInst::Create(CDSAtomicRMW[op][Idx], args);
733                 ReplaceInstWithInst(CI, funcInst);
734
735                 return true;
736         } else if (funName.contains("fetch")) {
737                 errs() << "atomic exchange captured. Not implemented yet. ";
738                 errs() << "See source file :";
739                 getPosition(CI, IRB, true);
740         } else if (funName.contains("exchange") &&
741                         !funName.contains("compare_exchange") ) {
742                 errs() << "atomic exchange captured. Not implemented yet. ";
743                 errs() << "See source file :";
744                 getPosition(CI, IRB, true);
745         }
746
747         /* atomic_compare_exchange_*; 
748            args = {obj, expected, new value, order1, order2}
749         */
750         if ( funName.contains("atomic_compare_exchange_") ) {
751                 bool isExplicit = funName.contains("_explicit");
752
753                 Value *Addr = IRB.CreatePointerCast(OrigPtr, PtrTy);
754                 Value *CmpOperand = IRB.CreatePointerCast(parameters[1], PtrTy);
755                 Value *NewOperand = IRB.CreateBitOrPointerCast(parameters[2], Ty);
756
757                 Value *order_succ, *order_fail;
758                 if (isExplicit) {
759                         order_succ = IRB.CreateBitOrPointerCast(parameters[3], OrdTy);
760                         order_fail = IRB.CreateBitOrPointerCast(parameters[4], OrdTy);
761                 } else  {
762                         order_succ = ConstantInt::get(OrdTy, 
763                                                         (int) AtomicOrderingCABI::seq_cst);
764                         order_fail = ConstantInt::get(OrdTy, 
765                                                         (int) AtomicOrderingCABI::seq_cst);
766                 }
767
768                 Value *args[] = {Addr, CmpOperand, NewOperand, 
769                                                         order_succ, order_fail, position};
770                 
771                 Instruction* funcInst = CallInst::Create(CDSAtomicCAS_V2[Idx], args);
772                 ReplaceInstWithInst(CI, funcInst);
773
774                 return true;
775         } else if ( funName.contains("compare_exchange_strong") ||
776                                 funName.contains("compare_exchange_weak") ) {
777                 Value *Addr = IRB.CreatePointerCast(OrigPtr, PtrTy);
778                 Value *CmpOperand = IRB.CreatePointerCast(parameters[1], PtrTy);
779                 Value *NewOperand = IRB.CreateBitOrPointerCast(parameters[2], Ty);
780
781                 Value *order_succ, *order_fail;
782                 order_succ = IRB.CreateBitOrPointerCast(parameters[3], OrdTy);
783                 order_fail = IRB.CreateBitOrPointerCast(parameters[4], OrdTy);
784
785                 Value *args[] = {Addr, CmpOperand, NewOperand, 
786                                                         order_succ, order_fail, position};
787                 Instruction* funcInst = CallInst::Create(CDSAtomicCAS_V2[Idx], args);
788                 ReplaceInstWithInst(CI, funcInst);
789
790                 return true;
791         }
792
793         return false;
794 }
795
796 int CDSPass::getMemoryAccessFuncIndex(Value *Addr,
797                                                                                 const DataLayout &DL) {
798         Type *OrigPtrTy = Addr->getType();
799         Type *OrigTy = cast<PointerType>(OrigPtrTy)->getElementType();
800         assert(OrigTy->isSized());
801         uint32_t TypeSize = DL.getTypeStoreSizeInBits(OrigTy);
802         if (TypeSize != 8  && TypeSize != 16 &&
803                 TypeSize != 32 && TypeSize != 64 && TypeSize != 128) {
804                 NumAccessesWithBadSize++;
805                 // Ignore all unusual sizes.
806                 return -1;
807         }
808         size_t Idx = countTrailingZeros(TypeSize / 8);
809         assert(Idx < kNumberOfAccessSizes);
810         return Idx;
811 }
812
813
814 char CDSPass::ID = 0;
815
816 // Automatically enable the pass.
817 static void registerCDSPass(const PassManagerBuilder &,
818                                                         legacy::PassManagerBase &PM) {
819         PM.add(new CDSPass());
820 }
821 static RegisterStandardPasses 
822         RegisterMyPass(PassManagerBuilder::EP_OptimizerLast,
823 registerCDSPass);