Type safety for Constants.cpp! Some of this is temporary, as I'm planning to push...
[oota-llvm.git] / lib / VMCore / Type.cpp
index 3a9ea582f112efb088d357bd55f48f55f133986e..b815eec665b3c1b45a778dbd1fefcac3d2f99a26 100644 (file)
 
 #include "llvm/DerivedTypes.h"
 #include "llvm/Constants.h"
+#include "llvm/Assembly/Writer.h"
 #include "llvm/ADT/DepthFirstIterator.h"
 #include "llvm/ADT/StringExtras.h"
 #include "llvm/ADT/SCCIterator.h"
 #include "llvm/ADT/STLExtras.h"
-#include "llvm/Support/MathExtras.h"
 #include "llvm/Support/Compiler.h"
-#include "llvm/Support/ManagedStatic.h"
 #include "llvm/Support/Debug.h"
+#include "llvm/Support/ManagedStatic.h"
+#include "llvm/Support/MathExtras.h"
+#include "llvm/Support/raw_ostream.h"
+#include "llvm/Support/Threading.h"
+#include "llvm/System/Mutex.h"
+#include "llvm/System/RWMutex.h"
 #include <algorithm>
 #include <cstdarg>
 using namespace llvm;
@@ -35,32 +40,21 @@ AbstractTypeUser::~AbstractTypeUser() {}
 
 
 //===----------------------------------------------------------------------===//
-//                         Type PATypeHolder Implementation
+//                         Type Class Implementation
 //===----------------------------------------------------------------------===//
 
-/// get - This implements the forwarding part of the union-find algorithm for
-/// abstract types.  Before every access to the Type*, we check to see if the
-/// type we are pointing to is forwarding to a new type.  If so, we drop our
-/// reference to the type.
-///
-Type* PATypeHolder::get() const {
-  const Type *NewTy = Ty->getForwardedType();
-  if (!NewTy) return const_cast<Type*>(Ty);
-  return *const_cast<PATypeHolder*>(this) = NewTy;
-}
+// Reader/writer lock used for guarding access to the type maps.
+static ManagedStatic<sys::RWMutex> TypeMapLock;
 
-//===----------------------------------------------------------------------===//
-//                         Type Class Implementation
-//===----------------------------------------------------------------------===//
+// Recursive lock used for guarding access to AbstractTypeUsers.
+static ManagedStatic<sys::Mutex> AbstractTypeUsersLock;
 
 // Concrete/Abstract TypeDescriptions - We lazily calculate type descriptions
 // for types as they are needed.  Because resolution of types must invalidate
 // all of the abstract type descriptions, we keep them in a seperate map to make
 // this easy.
-static ManagedStatic<std::map<const Type*, 
-                              std::string> > ConcreteTypeDescriptions;
-static ManagedStatic<std::map<const Type*,
-                              std::string> > AbstractTypeDescriptions;
+static ManagedStatic<TypePrinting> ConcreteTypeDescriptions;
+static ManagedStatic<TypePrinting> AbstractTypeDescriptions;
 
 /// Because of the way Type subclasses are allocated, this function is necessary
 /// to use the correct kind of "delete" operator to deallocate the Type object.
@@ -84,13 +78,13 @@ void Type::destroy() const {
     // Now call the destructor for the subclass directly because we're going
     // to delete this as an array of char.
     if (isa<FunctionType>(this))
-      ((FunctionType*)this)->FunctionType::~FunctionType();
+      static_cast<const FunctionType*>(this)->FunctionType::~FunctionType();
     else
-      ((StructType*)this)->StructType::~StructType();
+      static_cast<const StructType*>(this)->StructType::~StructType();
 
     // Finally, remove the memory as an array deallocation of the chars it was
     // constructed from.
-    delete [] reinterpret_cast<const char*>(this); 
+    operator delete(const_cast<Type *>(this));
 
     return;
   }
@@ -112,6 +106,7 @@ const Type *Type::getPrimitiveType(TypeID IDNumber) {
   case FP128TyID     : return FP128Ty;
   case PPC_FP128TyID : return PPC_FP128Ty;
   case LabelTyID     : return LabelTy;
+  case MetadataTyID  : return MetadataTy;
   default:
     return 0;
   }
@@ -126,6 +121,14 @@ const Type *Type::getVAArgsPromotedType() const {
     return this;
 }
 
+/// getScalarType - If this is a vector type, return the element type,
+/// otherwise return this.
+const Type *Type::getScalarType() const {
+  if (const VectorType *VTy = dyn_cast<VectorType>(this))
+    return VTy->getElementType();
+  return this;
+}
+
 /// isIntOrIntVector - Return true if this is an integer type or a vector of
 /// integer types.
 ///
@@ -149,8 +152,8 @@ bool Type::isFPOrFPVector() const {
   return cast<VectorType>(this)->getElementType()->isFloatingPoint();
 }
 
-// canLosslesllyBitCastTo - Return true if this type can be converted to
-// 'Ty' without any reinterpretation of bits.  For example, uint to int.
+// canLosslesslyBitCastTo - Return true if this type can be converted to
+// 'Ty' without any reinterpretation of bits.  For example, i8* to i32*.
 //
 bool Type::canLosslesslyBitCastTo(const Type *Ty) const {
   // Identity cast means no change so return true
@@ -188,6 +191,28 @@ unsigned Type::getPrimitiveSizeInBits() const {
   }
 }
 
+/// getScalarSizeInBits - If this is a vector type, return the
+/// getPrimitiveSizeInBits value for the element type. Otherwise return the
+/// getPrimitiveSizeInBits value for this type.
+unsigned Type::getScalarSizeInBits() const {
+  return getScalarType()->getPrimitiveSizeInBits();
+}
+
+/// getFPMantissaWidth - Return the width of the mantissa of this type.  This
+/// is only valid on floating point types.  If the FP type does not
+/// have a stable mantissa (e.g. ppc long double), this method returns -1.
+int Type::getFPMantissaWidth() const {
+  if (const VectorType *VTy = dyn_cast<VectorType>(this))
+    return VTy->getElementType()->getFPMantissaWidth();
+  assert(isFloatingPoint() && "Not a floating point type!");
+  if (ID == FloatTyID) return 24;
+  if (ID == DoubleTyID) return 53;
+  if (ID == X86_FP80TyID) return 64;
+  if (ID == FP128TyID) return 113;
+  assert(ID == PPC_FP128TyID && "unknown fp type");
+  return -1;
+}
+
 /// isSizedDerivedType - Derived types like structures and arrays are sized
 /// iff all of the members of the type are sized as well.  Since asking for
 /// their size is relatively uncommon, move this operation out of line.
@@ -244,151 +269,14 @@ void Type::typeBecameConcrete(const DerivedType *AbsTy) {
 }
 
 
-// getTypeDescription - This is a recursive function that walks a type hierarchy
-// calculating the description for a type.
-//
-static std::string getTypeDescription(const Type *Ty,
-                                      std::vector<const Type *> &TypeStack) {
-  if (isa<OpaqueType>(Ty)) {                     // Base case for the recursion
-    std::map<const Type*, std::string>::iterator I =
-      AbstractTypeDescriptions->lower_bound(Ty);
-    if (I != AbstractTypeDescriptions->end() && I->first == Ty)
-      return I->second;
-    std::string Desc = "opaque";
-    AbstractTypeDescriptions->insert(std::make_pair(Ty, Desc));
-    return Desc;
-  }
-
-  if (!Ty->isAbstract()) {                       // Base case for the recursion
-    std::map<const Type*, std::string>::iterator I =
-      ConcreteTypeDescriptions->find(Ty);
-    if (I != ConcreteTypeDescriptions->end()) 
-      return I->second;
-    
-    if (Ty->isPrimitiveType()) {
-      switch (Ty->getTypeID()) {
-      default: assert(0 && "Unknown prim type!");
-      case Type::VoidTyID:   return (*ConcreteTypeDescriptions)[Ty] = "void";
-      case Type::FloatTyID:  return (*ConcreteTypeDescriptions)[Ty] = "float";
-      case Type::DoubleTyID: return (*ConcreteTypeDescriptions)[Ty] = "double";
-      case Type::X86_FP80TyID: 
-            return (*ConcreteTypeDescriptions)[Ty] = "x86_fp80";
-      case Type::FP128TyID: return (*ConcreteTypeDescriptions)[Ty] = "fp128";
-      case Type::PPC_FP128TyID: 
-          return (*ConcreteTypeDescriptions)[Ty] = "ppc_fp128";
-      case Type::LabelTyID:  return (*ConcreteTypeDescriptions)[Ty] = "label";
-      }
-    }
-  }
-
-  // Check to see if the Type is already on the stack...
-  unsigned Slot = 0, CurSize = TypeStack.size();
-  while (Slot < CurSize && TypeStack[Slot] != Ty) ++Slot; // Scan for type
-
-  // This is another base case for the recursion.  In this case, we know
-  // that we have looped back to a type that we have previously visited.
-  // Generate the appropriate upreference to handle this.
-  //
-  if (Slot < CurSize)
-    return "\\" + utostr(CurSize-Slot);         // Here's the upreference
-
-  // Recursive case: derived types...
-  std::string Result;
-  TypeStack.push_back(Ty);    // Add us to the stack..
-
-  switch (Ty->getTypeID()) {
-  case Type::IntegerTyID: {
-    const IntegerType *ITy = cast<IntegerType>(Ty);
-    Result = "i" + utostr(ITy->getBitWidth());
-    break;
-  }
-  case Type::FunctionTyID: {
-    const FunctionType *FTy = cast<FunctionType>(Ty);
-    if (!Result.empty())
-      Result += " ";
-    Result += getTypeDescription(FTy->getReturnType(), TypeStack) + " (";
-    for (FunctionType::param_iterator I = FTy->param_begin(),
-         E = FTy->param_end(); I != E; ++I) {
-      if (I != FTy->param_begin())
-        Result += ", ";
-      Result += getTypeDescription(*I, TypeStack);
-    }
-    if (FTy->isVarArg()) {
-      if (FTy->getNumParams()) Result += ", ";
-      Result += "...";
-    }
-    Result += ")";
-    break;
-  }
-  case Type::StructTyID: {
-    const StructType *STy = cast<StructType>(Ty);
-    if (STy->isPacked())
-      Result = "<{ ";
-    else
-      Result = "{ ";
-    for (StructType::element_iterator I = STy->element_begin(),
-           E = STy->element_end(); I != E; ++I) {
-      if (I != STy->element_begin())
-        Result += ", ";
-      Result += getTypeDescription(*I, TypeStack);
-    }
-    Result += " }";
-    if (STy->isPacked())
-      Result += ">";
-    break;
-  }
-  case Type::PointerTyID: {
-    const PointerType *PTy = cast<PointerType>(Ty);
-    Result = getTypeDescription(PTy->getElementType(), TypeStack);
-    if (unsigned AddressSpace = PTy->getAddressSpace())
-      Result += " addrspace(" + utostr(AddressSpace) + ")";
-    Result += " *";
-    break;
-  }
-  case Type::ArrayTyID: {
-    const ArrayType *ATy = cast<ArrayType>(Ty);
-    unsigned NumElements = ATy->getNumElements();
-    Result = "[";
-    Result += utostr(NumElements) + " x ";
-    Result += getTypeDescription(ATy->getElementType(), TypeStack) + "]";
-    break;
-  }
-  case Type::VectorTyID: {
-    const VectorType *PTy = cast<VectorType>(Ty);
-    unsigned NumElements = PTy->getNumElements();
-    Result = "<";
-    Result += utostr(NumElements) + " x ";
-    Result += getTypeDescription(PTy->getElementType(), TypeStack) + ">";
-    break;
-  }
-  default:
-    Result = "<error>";
-    assert(0 && "Unhandled type in getTypeDescription!");
-  }
-
-  TypeStack.pop_back();       // Remove self from stack...
-
-  return Result;
-}
-
-
-
-static const std::string &getOrCreateDesc(std::map<const Type*,std::string>&Map,
-                                          const Type *Ty) {
-  std::map<const Type*, std::string>::iterator I = Map.find(Ty);
-  if (I != Map.end()) return I->second;
-
-  std::vector<const Type *> TypeStack;
-  std::string Result = getTypeDescription(Ty, TypeStack);
-  return Map[Ty] = Result;
-}
-
-
-const std::string &Type::getDescription() const {
-  if (isAbstract())
-    return getOrCreateDesc(*AbstractTypeDescriptions, this);
-  else
-    return getOrCreateDesc(*ConcreteTypeDescriptions, this);
+std::string Type::getDescription() const {
+  TypePrinting &Map =
+    isAbstract() ? *AbstractTypeDescriptions : *ConcreteTypeDescriptions;
+  
+  std::string DescStr;
+  raw_string_ostream DescOS(DescStr);
+  Map.print(this, DescOS);
+  return DescOS.str();
 }
 
 
@@ -428,10 +316,11 @@ const Type *Type::X86_FP80Ty   = new Type(Type::X86_FP80TyID);
 const Type *Type::FP128Ty      = new Type(Type::FP128TyID);
 const Type *Type::PPC_FP128Ty  = new Type(Type::PPC_FP128TyID);
 const Type *Type::LabelTy      = new Type(Type::LabelTyID);
+const Type *Type::MetadataTy   = new Type(Type::MetadataTyID);
 
 namespace {
   struct BuiltinIntegerType : public IntegerType {
-    BuiltinIntegerType(unsigned W) : IntegerType(W) {}
+    explicit BuiltinIntegerType(unsigned W) : IntegerType(W) {}
   };
 }
 const IntegerType *Type::Int1Ty  = new BuiltinIntegerType(1);
@@ -440,7 +329,6 @@ const IntegerType *Type::Int16Ty = new BuiltinIntegerType(16);
 const IntegerType *Type::Int32Ty = new BuiltinIntegerType(32);
 const IntegerType *Type::Int64Ty = new BuiltinIntegerType(64);
 
-
 //===----------------------------------------------------------------------===//
 //                          Derived Type Constructors
 //===----------------------------------------------------------------------===//
@@ -448,9 +336,13 @@ const IntegerType *Type::Int64Ty = new BuiltinIntegerType(64);
 /// isValidReturnType - Return true if the specified type is valid as a return
 /// type.
 bool FunctionType::isValidReturnType(const Type *RetTy) {
-  if (RetTy->isFirstClassType())
+  if (RetTy->isFirstClassType()) {
+    if (const PointerType *PTy = dyn_cast<PointerType>(RetTy))
+      return PTy->getElementType() != Type::MetadataTy;
     return true;
-  if (RetTy == Type::VoidTy || isa<OpaqueType>(RetTy))
+  }
+  if (RetTy == Type::VoidTy || RetTy == Type::MetadataTy ||
+      isa<OpaqueType>(RetTy))
     return true;
   
   // If this is a multiple return case, verify that each return is a first class
@@ -465,6 +357,17 @@ bool FunctionType::isValidReturnType(const Type *RetTy) {
   return true;
 }
 
+/// isValidArgumentType - Return true if the specified type is valid as an
+/// argument type.
+bool FunctionType::isValidArgumentType(const Type *ArgTy) {
+  if ((!ArgTy->isFirstClassType() && !isa<OpaqueType>(ArgTy)) ||
+      (isa<PointerType>(ArgTy) &&
+       cast<PointerType>(ArgTy)->getElementType() == Type::MetadataTy))
+    return false;
+
+  return true;
+}
+
 FunctionType::FunctionType(const Type *Result,
                            const std::vector<const Type*> &Params,
                            bool IsVarArgs)
@@ -472,15 +375,15 @@ FunctionType::FunctionType(const Type *Result,
   ContainedTys = reinterpret_cast<PATypeHandle*>(this+1);
   NumContainedTys = Params.size() + 1; // + 1 for result type
   assert(isValidReturnType(Result) && "invalid return type for function");
-    
-    
+
+
   bool isAbstract = Result->isAbstract();
   new (&ContainedTys[0]) PATypeHandle(Result, this);
 
   for (unsigned i = 0; i != Params.size(); ++i) {
-    assert((Params[i]->isFirstClassType() || isa<OpaqueType>(Params[i])) &&
-           "Function arguments must be value types!");
-    new (&ContainedTys[i+1]) PATypeHandle(Params[i],this);
+    assert(isValidArgumentType(Params[i]) &&
+           "Not a valid type for function argument!");
+    new (&ContainedTys[i+1]) PATypeHandle(Params[i], this);
     isAbstract |= Params[i]->isAbstract();
   }
 
@@ -495,8 +398,10 @@ StructType::StructType(const std::vector<const Type*> &Types, bool isPacked)
   setSubclassData(isPacked);
   bool isAbstract = false;
   for (unsigned i = 0; i < Types.size(); ++i) {
-    assert(Types[i] != Type::VoidTy && "Void type for structure field!!");
-     new (&ContainedTys[i]) PATypeHandle(Types[i], this);
+    assert(Types[i] && "<null> type for structure field!");
+    assert(isValidElementType(Types[i]) &&
+           "Invalid type for structure element!");
+    new (&ContainedTys[i]) PATypeHandle(Types[i], this);
     isAbstract |= Types[i]->isAbstract();
   }
 
@@ -517,8 +422,7 @@ VectorType::VectorType(const Type *ElType, unsigned NumEl)
   NumElements = NumEl;
   setAbstract(ElType->isAbstract());
   assert(NumEl > 0 && "NumEl of a VectorType must be greater than 0");
-  assert((ElType->isInteger() || ElType->isFloatingPoint() || 
-          isa<OpaqueType>(ElType)) && 
+  assert(isValidElementType(ElType) &&
          "Elements of a VectorType must be a primitive type");
 
 }
@@ -538,6 +442,10 @@ OpaqueType::OpaqueType() : DerivedType(OpaqueTyID) {
 #endif
 }
 
+void PATypeHolder::destroy() {
+  Ty = 0;
+}
+
 // dropAllTypeUses - When this (abstract) type is resolved to be equal to
 // another (more concrete) type, we must eliminate all references to other
 // types, to avoid some circular reference problems.
@@ -655,8 +563,8 @@ static bool TypesEqual(const Type *Ty, const Type *Ty2,
   if (isa<OpaqueType>(Ty))
     return false;  // Two unequal opaque types are never equal
 
-  std::map<const Type*, const Type*>::iterator It = EqTypes.lower_bound(Ty);
-  if (It != EqTypes.end() && It->first == Ty)
+  std::map<const Type*, const Type*>::iterator It = EqTypes.find(Ty);
+  if (It != EqTypes.end())
     return It->second == Ty2;    // Looping back on a type, check for equality
 
   // Otherwise, add the mapping to the table to make sure we don't get
@@ -816,6 +724,27 @@ protected:
   std::multimap<unsigned, PATypeHolder> TypesByHash;
 
 public:
+  ~TypeMapBase() {
+    // PATypeHolder won't destroy non-abstract types.
+    // We can't destroy them by simply iterating, because
+    // they may contain references to each-other.
+#if 0
+    for (std::multimap<unsigned, PATypeHolder>::iterator I
+         = TypesByHash.begin(), E = TypesByHash.end(); I != E; ++I) {
+      Type *Ty = const_cast<Type*>(I->second.Ty);
+      I->second.destroy();
+      // We can't invoke destroy or delete, because the type may
+      // contain references to already freed types.
+      // So we have to destruct the object the ugly way.
+      if (Ty) {
+        Ty->AbstractTypeUsers.clear();
+        static_cast<const Type*>(Ty)->Type::~Type();
+        operator delete(Ty);
+      }
+    }
+#endif
+  }
+
   void RemoveFromTypesByHash(unsigned Hash, const Type *Ty) {
     std::multimap<unsigned, PATypeHolder>::iterator I =
       TypesByHash.lower_bound(Hash);
@@ -928,7 +857,7 @@ public:
         // We already have this type in the table.  Get rid of the newly refined
         // type.
         TypeClass *NewTy = cast<TypeClass>((Type*)I->second.get());
-        Ty->refineAbstractTypeTo(NewTy);
+        Ty->unlockedRefineAbstractTypeTo(NewTy);
         return;
       }
     } else {
@@ -964,7 +893,7 @@ public:
               }
               TypesByHash.erase(Entry);
             }
-            Ty->refineAbstractTypeTo(NewTy);
+            Ty->unlockedRefineAbstractTypeTo(NewTy);
             return;
           }
         }
@@ -1048,15 +977,40 @@ const IntegerType *IntegerType::get(unsigned NumBits) {
     default: 
       break;
   }
-
+  
   IntegerValType IVT(NumBits);
-  IntegerType *ITy = IntegerTypes->get(IVT);
-  if (ITy) return ITy;           // Found a match, return it!
-
-  // Value not found.  Derive a new type!
-  ITy = new IntegerType(NumBits);
-  IntegerTypes->add(IVT, ITy);
+  IntegerType *ITy = 0;
+  if (llvm_is_multithreaded()) {
+    // First, see if the type is already in the table, for which
+    // a reader lock suffices.
+    TypeMapLock->reader_acquire();
+    ITy = IntegerTypes->get(IVT);
+    TypeMapLock->reader_release();
+    
+    if (!ITy) {
+      // OK, not in the table, get a writer lock.
+      TypeMapLock->writer_acquire();
+      ITy = IntegerTypes->get(IVT);
+      
+      // We need to _recheck_ the table in case someone
+      // put it in between when we released the reader lock
+      // and when we gained the writer lock!
+      if (!ITy) {
+        // Value not found.  Derive a new type!
+        ITy = new IntegerType(NumBits);
+        IntegerTypes->add(IVT, ITy);
+      }
+      
+      TypeMapLock->writer_release();
+    }
+  } else {
+    ITy = IntegerTypes->get(IVT);
+    if (ITy) return ITy;           // Found a match, return it!
 
+    // Value not found.  Derive a new type!
+    ITy = new IntegerType(NumBits);
+    IntegerTypes->add(IVT, ITy);
+  }
 #ifdef DEBUG_MERGE_TYPES
   DOUT << "Derived new type: " << *ITy << "\n";
 #endif
@@ -1120,15 +1074,39 @@ FunctionType *FunctionType::get(const Type *ReturnType,
                                 const std::vector<const Type*> &Params,
                                 bool isVarArg) {
   FunctionValType VT(ReturnType, Params, isVarArg);
-  FunctionType *FT = FunctionTypes->get(VT);
-  if (FT)
-    return FT;
-
-  FT = (FunctionType*) new char[sizeof(FunctionType) + 
-                                sizeof(PATypeHandle)*(Params.size()+1)];
-  new (FT) FunctionType(ReturnType, Params, isVarArg);
-  FunctionTypes->add(VT, FT);
-
+  FunctionType *FT = 0;
+  
+  if (llvm_is_multithreaded()) {
+    TypeMapLock->reader_acquire();
+    FT = FunctionTypes->get(VT);
+    TypeMapLock->reader_release();
+    
+    if (!FT) {
+      TypeMapLock->writer_acquire();
+      
+      // Have to check again here, because it might have
+      // been inserted between when we release the reader
+      // lock and when we acquired the writer lock.
+      FT = FunctionTypes->get(VT);
+      if (!FT) {
+        FT = (FunctionType*) operator new(sizeof(FunctionType) +
+                                        sizeof(PATypeHandle)*(Params.size()+1));
+        new (FT) FunctionType(ReturnType, Params, isVarArg);
+        FunctionTypes->add(VT, FT);
+      }
+      TypeMapLock->writer_release();
+    }
+  } else {
+    FT = FunctionTypes->get(VT);
+    if (FT)
+      return FT;
+
+    FT = (FunctionType*) operator new(sizeof(FunctionType) +
+                                      sizeof(PATypeHandle)*(Params.size()+1));
+    new (FT) FunctionType(ReturnType, Params, isVarArg);
+    FunctionTypes->add(VT, FT);
+  }
+  
 #ifdef DEBUG_MERGE_TYPES
   DOUT << "Derived new type: " << FT << "\n";
 #endif
@@ -1159,25 +1137,57 @@ public:
   }
 };
 }
-static ManagedStatic<TypeMap<ArrayValType, ArrayType> > ArrayTypes;
 
+static ManagedStatic<TypeMap<ArrayValType, ArrayType> > ArrayTypes;
 
 ArrayType *ArrayType::get(const Type *ElementType, uint64_t NumElements) {
-  assert(ElementType && "Can't get array of null types!");
+  assert(ElementType && "Can't get array of <null> types!");
+  assert(isValidElementType(ElementType) && "Invalid type for array element!");
 
   ArrayValType AVT(ElementType, NumElements);
-  ArrayType *AT = ArrayTypes->get(AVT);
-  if (AT) return AT;           // Found a match, return it!
-
-  // Value not found.  Derive a new type!
-  ArrayTypes->add(AVT, AT = new ArrayType(ElementType, NumElements));
-
+  ArrayType *AT = 0;
+  
+  if (llvm_is_multithreaded()) {
+    TypeMapLock->reader_acquire();
+    AT = ArrayTypes->get(AVT);
+    TypeMapLock->reader_release();
+    
+    if (!AT) {
+      TypeMapLock->writer_acquire();
+      
+      // Recheck.  Might have changed between release and acquire.
+      AT = ArrayTypes->get(AVT);
+      if (!AT) {
+        // Value not found.  Derive a new type!
+        ArrayTypes->add(AVT, AT = new ArrayType(ElementType, NumElements));
+      }
+      TypeMapLock->writer_release();
+    }
+  } else {
+    AT = ArrayTypes->get(AVT);
+    if (AT) return AT;           // Found a match, return it!
+    
+    // Value not found.  Derive a new type!
+    ArrayTypes->add(AVT, AT = new ArrayType(ElementType, NumElements));
+  }
 #ifdef DEBUG_MERGE_TYPES
   DOUT << "Derived new type: " << *AT << "\n";
 #endif
   return AT;
 }
 
+bool ArrayType::isValidElementType(const Type *ElemTy) {
+  if (ElemTy == Type::VoidTy || ElemTy == Type::LabelTy ||
+      ElemTy == Type::MetadataTy)
+    return false;
+
+  if (const PointerType *PTy = dyn_cast<PointerType>(ElemTy))
+    if (PTy->getElementType() == Type::MetadataTy)
+      return false;
+
+  return true;
+}
+
 
 //===----------------------------------------------------------------------===//
 // Vector Type Factory...
@@ -1203,25 +1213,50 @@ public:
   }
 };
 }
-static ManagedStatic<TypeMap<VectorValType, VectorType> > VectorTypes;
 
+static ManagedStatic<TypeMap<VectorValType, VectorType> > VectorTypes;
 
 VectorType *VectorType::get(const Type *ElementType, unsigned NumElements) {
-  assert(ElementType && "Can't get vector of null types!");
+  assert(ElementType && "Can't get vector of <null> types!");
 
   VectorValType PVT(ElementType, NumElements);
-  VectorType *PT = VectorTypes->get(PVT);
-  if (PT) return PT;           // Found a match, return it!
-
-  // Value not found.  Derive a new type!
-  VectorTypes->add(PVT, PT = new VectorType(ElementType, NumElements));
-
+  VectorType *PT = 0;
+  
+  if (llvm_is_multithreaded()) {
+    TypeMapLock->reader_acquire();
+    PT = VectorTypes->get(PVT);
+    TypeMapLock->reader_release();
+    
+    if (!PT) {
+      TypeMapLock->writer_acquire();
+      PT = VectorTypes->get(PVT);
+      // Recheck.  Might have changed between release and acquire.
+      if (!PT) {
+        VectorTypes->add(PVT, PT = new VectorType(ElementType, NumElements));
+      }
+      TypeMapLock->writer_acquire();
+    }
+  } else {
+    PT = VectorTypes->get(PVT);
+    if (PT) return PT;           // Found a match, return it!
+    
+    // Value not found.  Derive a new type!
+    VectorTypes->add(PVT, PT = new VectorType(ElementType, NumElements));
+  }
 #ifdef DEBUG_MERGE_TYPES
   DOUT << "Derived new type: " << *PT << "\n";
 #endif
   return PT;
 }
 
+bool VectorType::isValidElementType(const Type *ElemTy) {
+  if (ElemTy->isInteger() || ElemTy->isFloatingPoint() ||
+      isa<OpaqueType>(ElemTy))
+    return true;
+
+  return false;
+}
+
 //===----------------------------------------------------------------------===//
 // Struct Type Factory...
 //
@@ -1262,15 +1297,36 @@ static ManagedStatic<TypeMap<StructValType, StructType> > StructTypes;
 StructType *StructType::get(const std::vector<const Type*> &ETypes, 
                             bool isPacked) {
   StructValType STV(ETypes, isPacked);
-  StructType *ST = StructTypes->get(STV);
-  if (ST) return ST;
-
-  // Value not found.  Derive a new type!
-  ST = (StructType*) new char[sizeof(StructType) + 
-                              sizeof(PATypeHandle) * ETypes.size()];
-  new (ST) StructType(ETypes, isPacked);
-  StructTypes->add(STV, ST);
-
+  StructType *ST = 0;
+  
+  if (llvm_is_multithreaded()) {
+    TypeMapLock->reader_acquire();
+    ST = StructTypes->get(STV);
+    TypeMapLock->reader_release();
+    
+    if (!ST) {
+      TypeMapLock->writer_acquire();
+      ST = StructTypes->get(STV);
+      // Recheck.  Might have changed between release and acquire.
+      if (!ST) {
+        // Value not found.  Derive a new type!
+        ST = (StructType*) operator new(sizeof(StructType) +
+                                        sizeof(PATypeHandle) * ETypes.size());
+        new (ST) StructType(ETypes, isPacked);
+        StructTypes->add(STV, ST);
+      }
+      TypeMapLock->writer_release();
+    }
+  } else {
+    ST = StructTypes->get(STV);
+    if (ST) return ST;
+    
+    // Value not found.  Derive a new type!
+    ST = (StructType*) operator new(sizeof(StructType) +
+                                    sizeof(PATypeHandle) * ETypes.size());
+    new (ST) StructType(ETypes, isPacked);
+    StructTypes->add(STV, ST);
+  }
 #ifdef DEBUG_MERGE_TYPES
   DOUT << "Derived new type: " << *ST << "\n";
 #endif
@@ -1288,6 +1344,17 @@ StructType *StructType::get(const Type *type, ...) {
   return llvm::StructType::get(StructFields);
 }
 
+bool StructType::isValidElementType(const Type *ElemTy) {
+  if (ElemTy == Type::VoidTy || ElemTy == Type::LabelTy ||
+      ElemTy == Type::MetadataTy)
+    return false;
+
+  if (const PointerType *PTy = dyn_cast<PointerType>(ElemTy))
+    if (PTy->getElementType() == Type::MetadataTy)
+      return false;
+
+  return true;
+}
 
 
 //===----------------------------------------------------------------------===//
@@ -1323,32 +1390,82 @@ static ManagedStatic<TypeMap<PointerValType, PointerType> > PointerTypes;
 PointerType *PointerType::get(const Type *ValueType, unsigned AddressSpace) {
   assert(ValueType && "Can't get a pointer to <null> type!");
   assert(ValueType != Type::VoidTy &&
-         "Pointer to void is not valid, use sbyte* instead!");
-  assert(ValueType != Type::LabelTy && "Pointer to label is not valid!");
+         "Pointer to void is not valid, use i8* instead!");
+  assert(isValidElementType(ValueType) && "Invalid type for pointer element!");
   PointerValType PVT(ValueType, AddressSpace);
 
-  PointerType *PT = PointerTypes->get(PVT);
-  if (PT) return PT;
-
-  // Value not found.  Derive a new type!
-  PointerTypes->add(PVT, PT = new PointerType(ValueType, AddressSpace));
-
+  PointerType *PT = 0;
+  
+  if (llvm_is_multithreaded()) {
+    TypeMapLock->reader_acquire();
+    PT = PointerTypes->get(PVT);
+    TypeMapLock->reader_release();
+    
+    if (!PT) {
+      TypeMapLock->writer_acquire();
+      PT = PointerTypes->get(PVT);
+      // Recheck.  Might have changed between release and acquire.
+      if (!PT) {
+        // Value not found.  Derive a new type!
+        PointerTypes->add(PVT, PT = new PointerType(ValueType, AddressSpace));
+      }
+      TypeMapLock->writer_release();
+    }
+  } else {
+    PT = PointerTypes->get(PVT);
+    if (PT) return PT;
+    
+    // Value not found.  Derive a new type!
+    PointerTypes->add(PVT, PT = new PointerType(ValueType, AddressSpace));
+  }
 #ifdef DEBUG_MERGE_TYPES
   DOUT << "Derived new type: " << *PT << "\n";
 #endif
   return PT;
 }
 
+PointerType *Type::getPointerTo(unsigned addrs) const {
+  return PointerType::get(this, addrs);
+}
+
+bool PointerType::isValidElementType(const Type *ElemTy) {
+  if (ElemTy == Type::VoidTy || ElemTy == Type::LabelTy)
+    return false;
+
+  if (const PointerType *PTy = dyn_cast<PointerType>(ElemTy))
+    if (PTy->getElementType() == Type::MetadataTy)
+      return false;
+
+  return true;
+}
+
+
 //===----------------------------------------------------------------------===//
 //                     Derived Type Refinement Functions
 //===----------------------------------------------------------------------===//
 
+// addAbstractTypeUser - Notify an abstract type that there is a new user of
+// it.  This function is called primarily by the PATypeHandle class.
+void Type::addAbstractTypeUser(AbstractTypeUser *U) const {
+  assert(isAbstract() && "addAbstractTypeUser: Current type not abstract!");
+  if (llvm_is_multithreaded()) {
+    AbstractTypeUsersLock->acquire();
+    AbstractTypeUsers.push_back(U);
+    AbstractTypeUsersLock->release();
+  } else {
+    AbstractTypeUsers.push_back(U);
+  }
+}
+
+
 // removeAbstractTypeUser - Notify an abstract type that a user of the class
 // no longer has a handle to the type.  This function is called primarily by
 // the PATypeHandle class.  When there are no users of the abstract type, it
 // is annihilated, because there is no way to get a reference to it ever again.
 //
 void Type::removeAbstractTypeUser(AbstractTypeUser *U) const {
+  if (llvm_is_multithreaded()) AbstractTypeUsersLock->acquire();
+  
   // Search from back to front because we will notify users from back to
   // front.  Also, it is likely that there will be a stack like behavior to
   // users that register and unregister users.
@@ -1372,22 +1489,27 @@ void Type::removeAbstractTypeUser(AbstractTypeUser *U) const {
     DOUT << "DELETEing unused abstract type: <" << *this
          << ">[" << (void*)this << "]" << "\n";
 #endif
-    this->destroy();
+  
+  this->destroy();
   }
+  
+  if (llvm_is_multithreaded()) AbstractTypeUsersLock->release();
 }
 
-// refineAbstractTypeTo - This function is used when it is discovered that
-// the 'this' abstract type is actually equivalent to the NewType specified.
-// This causes all users of 'this' to switch to reference the more concrete type
-// NewType and for 'this' to be deleted.
+// unlockedRefineAbstractTypeTo - This function is used when it is discovered
+// that the 'this' abstract type is actually equivalent to the NewType
+// specified. This causes all users of 'this' to switch to reference the more 
+// concrete type NewType and for 'this' to be deleted.  Only used for internal
+// callers.
 //
-void DerivedType::refineAbstractTypeTo(const Type *NewType) {
+void DerivedType::unlockedRefineAbstractTypeTo(const Type *NewType) {
   assert(isAbstract() && "refineAbstractTypeTo: Current type is not abstract!");
   assert(this != NewType && "Can't refine to myself!");
   assert(ForwardType == 0 && "This type has already been refined!");
 
   // The descriptions may be out of date.  Conservatively clear them all!
-  AbstractTypeDescriptions->clear();
+  if (AbstractTypeDescriptions.isConstructed())
+    AbstractTypeDescriptions->clear();
 
 #ifdef DEBUG_MERGE_TYPES
   DOUT << "REFINING abstract type [" << (void*)this << " "
@@ -1399,8 +1521,7 @@ void DerivedType::refineAbstractTypeTo(const Type *NewType) {
   // refined, that we will not continue using a dead reference...
   //
   PATypeHolder NewTy(NewType);
-
-  // Any PATypeHolders referring to this type will now automatically forward to
+  // Any PATypeHolders referring to this type will now automatically forward o
   // the type we are resolved to.
   ForwardType = NewType;
   if (NewType->isAbstract())
@@ -1423,6 +1544,7 @@ void DerivedType::refineAbstractTypeTo(const Type *NewType) {
   // will not cause users to drop off of the use list.  If we resolve to ourself
   // we succeed!
   //
+  if (llvm_is_multithreaded()) AbstractTypeUsersLock->acquire();
   while (!AbstractTypeUsers.empty() && NewTy != this) {
     AbstractTypeUser *User = AbstractTypeUsers.back();
 
@@ -1438,6 +1560,7 @@ void DerivedType::refineAbstractTypeTo(const Type *NewType) {
     assert(AbstractTypeUsers.size() != OldSize &&
            "AbsTyUser did not remove self from user list!");
   }
+  if (llvm_is_multithreaded()) AbstractTypeUsersLock->release();
 
   // If we were successful removing all users from the type, 'this' will be
   // deleted when the last PATypeHolder is destroyed or updated from this type.
@@ -1445,6 +1568,21 @@ void DerivedType::refineAbstractTypeTo(const Type *NewType) {
   // destroyed.
 }
 
+// refineAbstractTypeTo - This function is used by external callers to notify
+// us that this abstract type is equivalent to another type.
+//
+void DerivedType::refineAbstractTypeTo(const Type *NewType) {
+  if (llvm_is_multithreaded()) {
+    // All recursive calls will go through unlockedRefineAbstractTypeTo,
+    // to avoid deadlock problems.
+    TypeMapLock->writer_acquire();
+    unlockedRefineAbstractTypeTo(NewType);
+    TypeMapLock->writer_release();
+  } else {
+    unlockedRefineAbstractTypeTo(NewType);
+  }
+}
+
 // notifyUsesThatTypeBecameConcrete - Notify AbstractTypeUsers of this type that
 // the current type has transitioned from being abstract to being concrete.
 //
@@ -1453,6 +1591,7 @@ void DerivedType::notifyUsesThatTypeBecameConcrete() {
   DOUT << "typeIsREFINED type: " << (void*)this << " " << *this << "\n";
 #endif
 
+  if (llvm_is_multithreaded()) AbstractTypeUsersLock->acquire();
   unsigned OldSize = AbstractTypeUsers.size(); OldSize=OldSize;
   while (!AbstractTypeUsers.empty()) {
     AbstractTypeUser *ATU = AbstractTypeUsers.back();
@@ -1461,6 +1600,7 @@ void DerivedType::notifyUsesThatTypeBecameConcrete() {
     assert(AbstractTypeUsers.size() < OldSize-- &&
            "AbstractTypeUser did not remove itself from the use list!");
   }
+  if (llvm_is_multithreaded()) AbstractTypeUsersLock->release();
 }
 
 // refineAbstractType - Called when a contained type is found to be more
@@ -1530,8 +1670,8 @@ void PointerType::typeBecameConcrete(const DerivedType *AbsTy) {
 }
 
 bool SequentialType::indexValid(const Value *V) const {
-  if (const IntegerType *IT = dyn_cast<IntegerType>(V->getType())) 
-    return IT->getBitWidth() == 32 || IT->getBitWidth() == 64;
+  if (isa<IntegerType>(V->getType())) 
+    return true;
   return false;
 }
 
@@ -1548,4 +1688,9 @@ std::ostream &operator<<(std::ostream &OS, const Type &T) {
   T.print(OS);
   return OS;
 }
+
+raw_ostream &operator<<(raw_ostream &OS, const Type &T) {
+  T.print(OS);
+  return OS;
+}
 }