Fix batch of converting RegisterPass<> to INTIALIZE_PASS().
[oota-llvm.git] / lib / VMCore / Dominators.cpp
index d6483423eb63f00a724d316876735ccddd70e351..4a6c5e80250b15c318ef7b2e29ca3cb44134172f 100644 (file)
-//===- DominatorSet.cpp - Dominator Set Calculation --------------*- C++ -*--=//
+//===- Dominators.cpp - Dominator Calculation -----------------------------===//
 //
-// This file provides a simple class to calculate the dominator set of a method.
+//                     The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file implements simple dominator construction algorithms for finding
+// forward dominators.  Postdominators are available in libanalysis, but are not
+// included in libvmcore, because it's not needed.  Forward dominators are
+// needed to support the Verifier pass.
 //
 //===----------------------------------------------------------------------===//
 
 #include "llvm/Analysis/Dominators.h"
-#include "llvm/CFG.h"
-#include "llvm/Tools/STLExtras.h"
+#include "llvm/Support/CFG.h"
+#include "llvm/Support/Compiler.h"
+#include "llvm/Support/Debug.h"
+#include "llvm/ADT/DepthFirstIterator.h"
+#include "llvm/ADT/SetOperations.h"
+#include "llvm/ADT/SmallPtrSet.h"
+#include "llvm/ADT/SmallVector.h"
+#include "llvm/Analysis/DominatorInternals.h"
+#include "llvm/Instructions.h"
+#include "llvm/Support/raw_ostream.h"
+#include "llvm/Support/CommandLine.h"
 #include <algorithm>
+using namespace llvm;
+
+// Always verify dominfo if expensive checking is enabled.
+#ifdef XDEBUG
+static bool VerifyDomInfo = true;
+#else
+static bool VerifyDomInfo = false;
+#endif
+static cl::opt<bool,true>
+VerifyDomInfoX("verify-dom-info", cl::location(VerifyDomInfo),
+               cl::desc("Verify dominator info (time consuming)"));
 
 //===----------------------------------------------------------------------===//
-//  Helper Template
+//  DominatorTree Implementation
 //===----------------------------------------------------------------------===//
-
-// set_intersect - Identical to set_intersection, except that it works on 
-// set<>'s and is nicer to use.  Functionally, this iterates through S1, 
-// removing elements that are not contained in S2.
 //
-template <class Ty, class Ty2>
-void set_intersect(set<Ty> &S1, const set<Ty2> &S2) {
-  for (typename set<Ty>::iterator I = S1.begin(); I != S1.end();) {
-    const Ty &E = *I;
-    ++I;
-    if (!S2.count(E)) S1.erase(E);   // Erase element if not in S2
-  }
-}
-
-
-//===----------------------------------------------------------------------===//
-//  DominatorSet Implementation
+// Provide public access to DominatorTree information.  Implementation details
+// can be found in DominatorCalculation.h.
+//
 //===----------------------------------------------------------------------===//
 
-// DominatorSet ctor - Build either the dominator set or the post-dominator
-// set for a method...
-//
-cfg::DominatorSet::DominatorSet(const Method *M, bool PostDomSet)
-  : Root(M->front()) {
-  assert(Root && M && "Can't build dominator set of null method!");
-  bool Changed;
-  do {
-    Changed = false;
-
-    DomSetType WorkingSet;
-    df_const_iterator It = df_begin(M), End = df_end(M);
-    for ( ; It != End; ++It) {
-      const BasicBlock *BB = *It;
-      pred_const_iterator PI = pred_begin(BB), PEnd = pred_end(BB);
-      if (PI != PEnd) {                // Is there SOME predecessor?
-       // Loop until we get to a predecessor that has had it's dom set filled
-       // in at least once.  We are guaranteed to have this because we are
-       // traversing the graph in DFO and have handled start nodes specially.
-       //
-       while (Doms[*PI].size() == 0) ++PI;
-       WorkingSet = Doms[*PI];
-
-       for (++PI; PI != PEnd; ++PI) { // Intersect all of the predecessor sets
-         DomSetType &PredSet = Doms[*PI];
-         if (PredSet.size())
-           set_intersect(WorkingSet, PredSet);
-       }
-      }
-       
-      WorkingSet.insert(BB);           // A block always dominates itself
-      DomSetType &BBSet = Doms[BB];
-      if (BBSet != WorkingSet) {
-       BBSet.swap(WorkingSet);        // Constant time operation!
-       Changed = true;                // The sets changed.
-      }
-      WorkingSet.clear();              // Clear out the set for next iteration
-    }
-  } while (Changed);
+TEMPLATE_INSTANTIATION(class llvm::DomTreeNodeBase<BasicBlock>);
+TEMPLATE_INSTANTIATION(class llvm::DominatorTreeBase<BasicBlock>);
+
+char DominatorTree::ID = 0;
+INITIALIZE_PASS(DominatorTree, "domtree",
+                "Dominator Tree Construction", true, true);
 
+bool DominatorTree::runOnFunction(Function &F) {
+  DT->recalculate(F);
+  return false;
 }
 
+void DominatorTree::verifyAnalysis() const {
+  if (!VerifyDomInfo) return;
 
-//===----------------------------------------------------------------------===//
-//  ImmediateDominators Implementation
-//===----------------------------------------------------------------------===//
+  Function &F = *getRoot()->getParent();
 
-// calcIDoms - Calculate the immediate dominator mapping, given a set of
-// dominators for every basic block.
-void cfg::ImmediateDominators::calcIDoms(const DominatorSet &DS) {
-  // Loop over all of the nodes that have dominators... figuring out the IDOM
-  // for each node...
-  //
-  for (DominatorSet::const_iterator DI = DS.begin(), DEnd = DS.end(); 
-       DI != DEnd; ++DI) {
-    const BasicBlock *BB = DI->first;
-    const DominatorSet::DomSetType &Dominators = DI->second;
-    unsigned DomSetSize = Dominators.size();
-    if (DomSetSize == 1) continue;  // Root node... IDom = null
-
-    // Loop over all dominators of this node.  This corresponds to looping over
-    // nodes in the dominator chain, looking for a node whose dominator set is
-    // equal to the current nodes, except that the current node does not exist
-    // in it.  This means that it is one level higher in the dom chain than the
-    // current node, and it is our idom!
-    //
-    DominatorSet::DomSetType::const_iterator I = Dominators.begin();
-    DominatorSet::DomSetType::const_iterator End = Dominators.end();
-    for (; I != End; ++I) {   // Iterate over dominators...
-      // All of our dominators should form a chain, where the number of elements
-      // in the dominator set indicates what level the node is at in the chain.
-      // We want the node immediately above us, so it will have an identical 
-      // dominator set, except that BB will not dominate it... therefore it's
-      // dominator set size will be one less than BB's...
-      //
-      if (DS.getDominators(*I).size() == DomSetSize - 1) {
-       IDoms[BB] = *I;
-       break;
-      }
-    }
-  }
+  DominatorTree OtherDT;
+  OtherDT.getBase().recalculate(F);
+  assert(!compare(OtherDT) && "Invalid DominatorTree info!");
+}
+
+void DominatorTree::print(raw_ostream &OS, const Module *) const {
+  DT->print(OS);
+}
+
+// dominates - Return true if A dominates a use in B. This performs the
+// special checks necessary if A and B are in the same basic block.
+bool DominatorTree::dominates(const Instruction *A, const Instruction *B) const{
+  const BasicBlock *BBA = A->getParent(), *BBB = B->getParent();
+  
+  // If A is an invoke instruction, its value is only available in this normal
+  // successor block.
+  if (const InvokeInst *II = dyn_cast<InvokeInst>(A))
+    BBA = II->getNormalDest();
+  
+  if (BBA != BBB) return dominates(BBA, BBB);
+  
+  // It is not possible to determine dominance between two PHI nodes 
+  // based on their ordering.
+  if (isa<PHINode>(A) && isa<PHINode>(B)) 
+    return false;
+  
+  // Loop through the basic block until we find A or B.
+  BasicBlock::const_iterator I = BBA->begin();
+  for (; &*I != A && &*I != B; ++I)
+    /*empty*/;
+  
+  return &*I == A;
 }
 
 
+
 //===----------------------------------------------------------------------===//
-//  DominatorTree Implementation
+//  DominanceFrontier Implementation
 //===----------------------------------------------------------------------===//
 
-// DominatorTree dtor - Free all of the tree node memory.
-//
-cfg::DominatorTree::~DominatorTree() { 
-  for (NodeMapType::iterator I = Nodes.begin(), E = Nodes.end(); I != E; ++I)
-    delete I->second;
-}
+char DominanceFrontier::ID = 0;
+INITIALIZE_PASS(DominanceFrontier, "domfrontier",
+                "Dominance Frontier Construction", true, true);
 
+void DominanceFrontier::verifyAnalysis() const {
+  if (!VerifyDomInfo) return;
 
-cfg::DominatorTree::DominatorTree(const ImmediateDominators &IDoms) 
-  : Root(IDoms.getRoot()) {
-  assert(Root && Root->getParent() && "No method for IDoms?");
-  const Method *M = Root->getParent();
+  DominatorTree &DT = getAnalysis<DominatorTree>();
 
-  Nodes[Root] = new Node(Root, 0);   // Add a node for the root...
+  DominanceFrontier OtherDF;
+  const std::vector<BasicBlock*> &DTRoots = DT.getRoots();
+  OtherDF.calculate(DT, DT.getNode(DTRoots[0]));
+  assert(!compare(OtherDF) && "Invalid DominanceFrontier info!");
+}
 
-  // Iterate over all nodes in depth first order...
-  for (df_const_iterator I = df_begin(M), E = df_end(M); I != E; ++I) {
-    const BasicBlock *BB = *I, *IDom = IDoms[*I];
+// NewBB is split and now it has one successor. Update dominance frontier to
+// reflect this change.
+void DominanceFrontier::splitBlock(BasicBlock *NewBB) {
+  assert(NewBB->getTerminator()->getNumSuccessors() == 1
+         && "NewBB should have a single successor!");
+  BasicBlock *NewBBSucc = NewBB->getTerminator()->getSuccessor(0);
+
+  SmallVector<BasicBlock*, 8> PredBlocks;
+  for (pred_iterator PI = pred_begin(NewBB), PE = pred_end(NewBB);
+       PI != PE; ++PI)
+    PredBlocks.push_back(*PI);  
+
+  if (PredBlocks.empty())
+    // If NewBB does not have any predecessors then it is a entry block.
+    // In this case, NewBB and its successor NewBBSucc dominates all
+    // other blocks.
+    return;
+
+  // NewBBSucc inherits original NewBB frontier.
+  DominanceFrontier::iterator NewBBI = find(NewBB);
+  if (NewBBI != end()) {
+    DominanceFrontier::DomSetType NewBBSet = NewBBI->second;
+    DominanceFrontier::DomSetType NewBBSuccSet;
+    NewBBSuccSet.insert(NewBBSet.begin(), NewBBSet.end());
+    addBasicBlock(NewBBSucc, NewBBSuccSet);
+  }
 
-    if (IDom != 0) {   // Ignore the root node and other nasty nodes
-      // We know that the immediate dominator should already have a node, 
-      // because we are traversing the CFG in depth first order!
-      //
-      assert(Nodes[IDom] && "No node for IDOM?");
-      Node *IDomNode = Nodes[IDom];
+  // If NewBB dominates NewBBSucc, then DF(NewBB) is now going to be the
+  // DF(NewBBSucc) without the stuff that the new block does not dominate
+  // a predecessor of.
+  DominatorTree &DT = getAnalysis<DominatorTree>();
+  if (DT.dominates(NewBB, NewBBSucc)) {
+    DominanceFrontier::iterator DFI = find(NewBBSucc);
+    if (DFI != end()) {
+      DominanceFrontier::DomSetType Set = DFI->second;
+      // Filter out stuff in Set that we do not dominate a predecessor of.
+      for (DominanceFrontier::DomSetType::iterator SetI = Set.begin(),
+             E = Set.end(); SetI != E;) {
+        bool DominatesPred = false;
+        for (pred_iterator PI = pred_begin(*SetI), E = pred_end(*SetI);
+             PI != E; ++PI)
+          if (DT.dominates(NewBB, *PI))
+            DominatesPred = true;
+        if (!DominatesPred)
+          Set.erase(SetI++);
+        else
+          ++SetI;
+      }
 
-      // Add a new tree node for this BasicBlock, and link it as a child of
-      // IDomNode
-      Nodes[BB] = IDomNode->addChild(new Node(BB, IDomNode));
+      if (NewBBI != end()) {
+        for (DominanceFrontier::DomSetType::iterator SetI = Set.begin(),
+               E = Set.end(); SetI != E; ++SetI) {
+          BasicBlock *SB = *SetI;
+          addToFrontier(NewBBI, SB);
+        }
+      } else 
+        addBasicBlock(NewBB, Set);
     }
+    
+  } else {
+    // DF(NewBB) is {NewBBSucc} because NewBB does not strictly dominate
+    // NewBBSucc, but it does dominate itself (and there is an edge (NewBB ->
+    // NewBBSucc)).  NewBBSucc is the single successor of NewBB.
+    DominanceFrontier::DomSetType NewDFSet;
+    NewDFSet.insert(NewBBSucc);
+    addBasicBlock(NewBB, NewDFSet);
   }
-}
-
-void cfg::DominatorTree::calculate(const DominatorSet &DS) {
-  Root = DS.getRoot();
-  assert(Root && Root->getParent() && "No method for IDoms?");
-  const Method *M = Root->getParent();
-  Nodes[Root] = new Node(Root, 0);   // Add a node for the root...
-
-  // Iterate over all nodes in depth first order...
-  for (df_const_iterator I = df_begin(M), E = df_end(M); I != E; ++I) {
-    const BasicBlock *BB = *I;
-    const DominatorSet::DomSetType &Dominators = DS.getDominators(BB);
-    unsigned DomSetSize = Dominators.size();
-    if (DomSetSize == 1) continue;  // Root node... IDom = null
-
-    // Loop over all dominators of this node.  This corresponds to looping over
-    // nodes in the dominator chain, looking for a node whose dominator set is
-    // equal to the current nodes, except that the current node does not exist
-    // in it.  This means that it is one level higher in the dom chain than the
-    // current node, and it is our idom!  We know that we have already added
-    // a DominatorTree node for our idom, because the idom must be a
-    // predecessor in the depth first order that we are iterating through the
-    // method.
-    //
-    DominatorSet::DomSetType::const_iterator I = Dominators.begin();
-    DominatorSet::DomSetType::const_iterator End = Dominators.end();
-    for (; I != End; ++I) {   // Iterate over dominators...
-      // All of our dominators should form a chain, where the number of elements
-      // in the dominator set indicates what level the node is at in the chain.
-      // We want the node immediately above us, so it will have an identical 
-      // dominator set, except that BB will not dominate it... therefore it's
-      // dominator set size will be one less than BB's...
-      //
-      if (DS.getDominators(*I).size() == DomSetSize - 1) {
-       // We know that the immediate dominator should already have a node, 
-       // because we are traversing the CFG in depth first order!
-       //
-       Node *IDomNode = Nodes[*I];
-       assert(Nodes[*I] && "No node for IDOM?");
-       
-       // Add a new tree node for this BasicBlock, and link it as a child of
-       // IDomNode
-       Nodes[BB] = IDomNode->addChild(new Node(BB, IDomNode));
-       break;
+  
+  // Now we must loop over all of the dominance frontiers in the function,
+  // replacing occurrences of NewBBSucc with NewBB in some cases.  All
+  // blocks that dominate a block in PredBlocks and contained NewBBSucc in
+  // their dominance frontier must be updated to contain NewBB instead.
+  //
+  for (Function::iterator FI = NewBB->getParent()->begin(),
+         FE = NewBB->getParent()->end(); FI != FE; ++FI) {
+    DominanceFrontier::iterator DFI = find(FI);
+    if (DFI == end()) continue;  // unreachable block.
+    
+    // Only consider nodes that have NewBBSucc in their dominator frontier.
+    if (!DFI->second.count(NewBBSucc)) continue;
+
+    // Verify whether this block dominates a block in predblocks.  If not, do
+    // not update it.
+    bool BlockDominatesAny = false;
+    for (SmallVectorImpl<BasicBlock*>::const_iterator BI = PredBlocks.begin(), 
+           BE = PredBlocks.end(); BI != BE; ++BI) {
+      if (DT.dominates(FI, *BI)) {
+        BlockDominatesAny = true;
+        break;
       }
     }
+
+    // If NewBBSucc should not stay in our dominator frontier, remove it.
+    // We remove it unless there is a predecessor of NewBBSucc that we
+    // dominate, but we don't strictly dominate NewBBSucc.
+    bool ShouldRemove = true;
+    if ((BasicBlock*)FI == NewBBSucc || !DT.dominates(FI, NewBBSucc)) {
+      // Okay, we know that PredDom does not strictly dominate NewBBSucc.
+      // Check to see if it dominates any predecessors of NewBBSucc.
+      for (pred_iterator PI = pred_begin(NewBBSucc),
+           E = pred_end(NewBBSucc); PI != E; ++PI)
+        if (DT.dominates(FI, *PI)) {
+          ShouldRemove = false;
+          break;
+        }
+    }
+    
+    if (ShouldRemove)
+      removeFromFrontier(DFI, NewBBSucc);
+    if (BlockDominatesAny && (&*FI == NewBB || !DT.dominates(FI, NewBB)))
+      addToFrontier(DFI, NewBB);
   }
 }
 
+namespace {
+  class DFCalculateWorkObject {
+  public:
+    DFCalculateWorkObject(BasicBlock *B, BasicBlock *P, 
+                          const DomTreeNode *N,
+                          const DomTreeNode *PN)
+    : currentBB(B), parentBB(P), Node(N), parentNode(PN) {}
+    BasicBlock *currentBB;
+    BasicBlock *parentBB;
+    const DomTreeNode *Node;
+    const DomTreeNode *parentNode;
+  };
+}
 
+const DominanceFrontier::DomSetType &
+DominanceFrontier::calculate(const DominatorTree &DT,
+                             const DomTreeNode *Node) {
+  BasicBlock *BB = Node->getBlock();
+  DomSetType *Result = NULL;
 
-//===----------------------------------------------------------------------===//
-//  DominanceFrontier Implementation
-//===----------------------------------------------------------------------===//
+  std::vector<DFCalculateWorkObject> workList;
+  SmallPtrSet<BasicBlock *, 32> visited;
 
-const cfg::DominanceFrontier::DomSetType &
-cfg::DominanceFrontier::calcDomFrontier(const DominatorTree &DT, 
-                                       const DominatorTree::Node *Node) {
-  // Loop over CFG successors to calculate DFlocal[Node]
-  const BasicBlock *BB = Node->getNode();
-  DomSetType &S = Frontiers[BB];       // The new set to fill in...
-
-  for (succ_const_iterator SI = succ_begin(BB), SE = succ_end(BB); 
-       SI != SE; ++SI) {
-    // Does Node immediately dominate this successor?
-    if (DT[*SI]->getIDom() != Node)
-      S.insert(*SI);
-  }
+  workList.push_back(DFCalculateWorkObject(BB, NULL, Node, NULL));
+  do {
+    DFCalculateWorkObject *currentW = &workList.back();
+    assert (currentW && "Missing work object.");
+
+    BasicBlock *currentBB = currentW->currentBB;
+    BasicBlock *parentBB = currentW->parentBB;
+    const DomTreeNode *currentNode = currentW->Node;
+    const DomTreeNode *parentNode = currentW->parentNode;
+    assert (currentBB && "Invalid work object. Missing current Basic Block");
+    assert (currentNode && "Invalid work object. Missing current Node");
+    DomSetType &S = Frontiers[currentBB];
+
+    // Visit each block only once.
+    if (visited.count(currentBB) == 0) {
+      visited.insert(currentBB);
+
+      // Loop over CFG successors to calculate DFlocal[currentNode]
+      for (succ_iterator SI = succ_begin(currentBB), SE = succ_end(currentBB);
+           SI != SE; ++SI) {
+        // Does Node immediately dominate this successor?
+        if (DT[*SI]->getIDom() != currentNode)
+          S.insert(*SI);
+      }
+    }
 
-  // At this point, S is DFlocal.  Now we union in DFup's of our children...
-  // Loop through and visit the nodes that Node immediately dominates (Node's
-  // children in the IDomTree)
-  //
-  for (DominatorTree::Node::const_iterator NI = Node->begin(), NE = Node->end();
-       NI != NE; ++NI) {
-    DominatorTree::Node *IDominee = *NI;
-    const DomSetType &ChildDF = calcDomFrontier(DT, IDominee);
-
-    DomSetType::const_iterator CDFI = ChildDF.begin(), CDFE = ChildDF.end();
-    for (; CDFI != CDFE; ++CDFI) {
-      if (!Node->dominates(DT[*CDFI]))
-       S.insert(*CDFI);
+    // At this point, S is DFlocal.  Now we union in DFup's of our children...
+    // Loop through and visit the nodes that Node immediately dominates (Node's
+    // children in the IDomTree)
+    bool visitChild = false;
+    for (DomTreeNode::const_iterator NI = currentNode->begin(), 
+           NE = currentNode->end(); NI != NE; ++NI) {
+      DomTreeNode *IDominee = *NI;
+      BasicBlock *childBB = IDominee->getBlock();
+      if (visited.count(childBB) == 0) {
+        workList.push_back(DFCalculateWorkObject(childBB, currentBB,
+                                                 IDominee, currentNode));
+        visitChild = true;
+      }
+    }
+
+    // If all children are visited or there is any child then pop this block
+    // from the workList.
+    if (!visitChild) {
+
+      if (!parentBB) {
+        Result = &S;
+        break;
+      }
+
+      DomSetType::const_iterator CDFI = S.begin(), CDFE = S.end();
+      DomSetType &parentSet = Frontiers[parentBB];
+      for (; CDFI != CDFE; ++CDFI) {
+        if (!DT.properlyDominates(parentNode, DT[*CDFI]))
+          parentSet.insert(*CDFI);
+      }
+      workList.pop_back();
+    }
+
+  } while (!workList.empty());
+
+  return *Result;
+}
+
+void DominanceFrontierBase::print(raw_ostream &OS, const Module* ) const {
+  for (const_iterator I = begin(), E = end(); I != E; ++I) {
+    OS << "  DomFrontier for BB ";
+    if (I->first)
+      WriteAsOperand(OS, I->first, false);
+    else
+      OS << " <<exit node>>";
+    OS << " is:\t";
+    
+    const std::set<BasicBlock*> &BBs = I->second;
+    
+    for (std::set<BasicBlock*>::const_iterator I = BBs.begin(), E = BBs.end();
+         I != E; ++I) {
+      OS << ' ';
+      if (*I)
+        WriteAsOperand(OS, *I, false);
+      else
+        OS << "<<exit node>>";
     }
+    OS << "\n";
   }
+}
 
-  return S;
+void DominanceFrontierBase::dump() const {
+  print(dbgs());
 }
+