add Value::getNameStart/getNameLen() accessors.
[oota-llvm.git] / lib / VMCore / Constants.cpp
index 992159f867c6c45b9567013bd1a73dfc4b4d37ea..eadfe39afa6a4c59d6c30a710ec18ccafe2e6822 100644 (file)
@@ -12,7 +12,7 @@
 //===----------------------------------------------------------------------===//
 
 #include "llvm/Constants.h"
-#include "ConstantFolding.h"
+#include "ConstantFold.h"
 #include "llvm/DerivedTypes.h"
 #include "llvm/GlobalValue.h"
 #include "llvm/Instructions.h"
@@ -22,6 +22,8 @@
 #include "llvm/Support/Debug.h"
 #include "llvm/Support/ManagedStatic.h"
 #include "llvm/Support/MathExtras.h"
+#include "llvm/ADT/DenseMap.h"
+#include "llvm/ADT/SmallVector.h"
 #include <algorithm>
 #include <map>
 using namespace llvm;
@@ -88,45 +90,28 @@ bool Constant::canTrap() const {
   }
 }
 
+/// ContaintsRelocations - Return true if the constant value contains
+/// relocations which cannot be resolved at compile time.
+bool Constant::ContainsRelocations() const {
+  if (isa<GlobalValue>(this))
+    return true;
+  for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
+    if (getOperand(i)->ContainsRelocations())
+      return true;
+  return false;
+}
 
 // Static constructor to create a '0' constant of arbitrary type...
 Constant *Constant::getNullValue(const Type *Ty) {
   switch (Ty->getTypeID()) {
-  case Type::IntegerTyID: {
-    const IntegerType *ITy = dyn_cast<IntegerType>(Ty);
-    switch (ITy->getBitWidth()) {
-    case 1: {
-      static Constant *NullBool = ConstantInt::get(Ty, false);
-      return NullBool;
-    } 
-    case 8: {
-      static Constant *NullInt8 = ConstantInt::get(Ty, 0);
-      return NullInt8;
-    } 
-    case 16: {
-      static Constant *NullInt16 = ConstantInt::get(Ty, 0);
-      return NullInt16;
-    } 
-    case 32: {
-      static Constant *NullInt32 = ConstantInt::get(Ty, 0);
-      return NullInt32;
-    } 
-    case 64: {
-      static Constant *NullInt64 = ConstantInt::get(Ty, 0);
-      return NullInt64;
-    }
-    default:
-      return ConstantInt::get(Ty, 0);
-    }
-  }
-  case Type::FloatTyID: {
-    static Constant *NullFloat = ConstantFP::get(Type::FloatTy, 0);
-    return NullFloat;
-  }
-  case Type::DoubleTyID: {
-    static Constant *NullDouble = ConstantFP::get(Type::DoubleTy, 0);
-    return NullDouble;
-  }
+  case Type::IntegerTyID:
+    return ConstantInt::get(Ty, 0);
+  case Type::FloatTyID:
+  case Type::DoubleTyID:
+  case Type::X86_FP80TyID:
+  case Type::PPC_FP128TyID:
+  case Type::FP128TyID:
+    return ConstantFP::get(Ty, 0.0);
   case Type::PointerTyID:
     return ConstantPointerNull::get(cast<PointerType>(Ty));
   case Type::StructTyID:
@@ -140,50 +125,192 @@ Constant *Constant::getNullValue(const Type *Ty) {
   }
 }
 
+Constant *Constant::getAllOnesValue(const Type *Ty) {
+  if (const IntegerType* ITy = dyn_cast<IntegerType>(Ty))
+    return ConstantInt::get(APInt::getAllOnesValue(ITy->getBitWidth()));
+  return ConstantVector::getAllOnesValue(cast<VectorType>(Ty));
+}
 
 // Static constructor to create an integral constant with all bits set
 ConstantInt *ConstantInt::getAllOnesValue(const Type *Ty) {
   if (const IntegerType* ITy = dyn_cast<IntegerType>(Ty))
-    if (ITy->getBitWidth() == 1)
-      return ConstantInt::getTrue();
-    else
-      return ConstantInt::get(Ty, int64_t(-1));
+    return ConstantInt::get(APInt::getAllOnesValue(ITy->getBitWidth()));
   return 0;
 }
 
-/// @returns the value for an packed integer constant of the given type that
+/// @returns the value for a vector integer constant of the given type that
 /// has all its bits set to true.
 /// @brief Get the all ones value
 ConstantVector *ConstantVector::getAllOnesValue(const VectorType *Ty) {
   std::vector<Constant*> Elts;
   Elts.resize(Ty->getNumElements(),
               ConstantInt::getAllOnesValue(Ty->getElementType()));
-  assert(Elts[0] && "Not a packed integer type!");
+  assert(Elts[0] && "Not a vector integer type!");
   return cast<ConstantVector>(ConstantVector::get(Elts));
 }
 
 
 //===----------------------------------------------------------------------===//
-//                            ConstantXXX Classes
+//                                ConstantInt
 //===----------------------------------------------------------------------===//
 
-//===----------------------------------------------------------------------===//
-//                             Normal Constructors
+ConstantInt::ConstantInt(const IntegerType *Ty, const APInt& V)
+  : Constant(Ty, ConstantIntVal, 0, 0), Val(V) {
+  assert(V.getBitWidth() == Ty->getBitWidth() && "Invalid constant for type");
+}
+
+ConstantInt *ConstantInt::TheTrueVal = 0;
+ConstantInt *ConstantInt::TheFalseVal = 0;
+
+namespace llvm {
+  void CleanupTrueFalse(void *) {
+    ConstantInt::ResetTrueFalse();
+  }
+}
+
+static ManagedCleanup<llvm::CleanupTrueFalse> TrueFalseCleanup;
+
+ConstantInt *ConstantInt::CreateTrueFalseVals(bool WhichOne) {
+  assert(TheTrueVal == 0 && TheFalseVal == 0);
+  TheTrueVal  = get(Type::Int1Ty, 1);
+  TheFalseVal = get(Type::Int1Ty, 0);
+  
+  // Ensure that llvm_shutdown nulls out TheTrueVal/TheFalseVal.
+  TrueFalseCleanup.Register();
+  
+  return WhichOne ? TheTrueVal : TheFalseVal;
+}
+
 
-ConstantInt::ConstantInt(bool V) 
-  : Constant(Type::Int1Ty, ConstantIntVal, 0, 0), Val(uint64_t(V)) {
+namespace {
+  struct DenseMapAPIntKeyInfo {
+    struct KeyTy {
+      APInt val;
+      const Type* type;
+      KeyTy(const APInt& V, const Type* Ty) : val(V), type(Ty) {}
+      KeyTy(const KeyTy& that) : val(that.val), type(that.type) {}
+      bool operator==(const KeyTy& that) const {
+        return type == that.type && this->val == that.val;
+      }
+      bool operator!=(const KeyTy& that) const {
+        return !this->operator==(that);
+      }
+    };
+    static inline KeyTy getEmptyKey() { return KeyTy(APInt(1,0), 0); }
+    static inline KeyTy getTombstoneKey() { return KeyTy(APInt(1,1), 0); }
+    static unsigned getHashValue(const KeyTy &Key) {
+      return DenseMapKeyInfo<void*>::getHashValue(Key.type) ^ 
+        Key.val.getHashValue();
+    }
+    static bool isPod() { return true; }
+  };
+}
+
+
+typedef DenseMap<DenseMapAPIntKeyInfo::KeyTy, ConstantInt*, 
+                 DenseMapAPIntKeyInfo> IntMapTy;
+static ManagedStatic<IntMapTy> IntConstants;
+
+ConstantInt *ConstantInt::get(const Type *Ty, uint64_t V, bool isSigned) {
+  const IntegerType *ITy = cast<IntegerType>(Ty);
+  return get(APInt(ITy->getBitWidth(), V, isSigned));
 }
 
-ConstantInt::ConstantInt(const Type *Ty, uint64_t V)
-  : Constant(Ty, ConstantIntVal, 0, 0), Val(Ty == Type::Int1Ty ? bool(V) : V) {
+// Get a ConstantInt from an APInt. Note that the value stored in the DenseMap 
+// as the key, is a DensMapAPIntKeyInfo::KeyTy which has provided the
+// operator== and operator!= to ensure that the DenseMap doesn't attempt to
+// compare APInt's of different widths, which would violate an APInt class
+// invariant which generates an assertion.
+ConstantInt *ConstantInt::get(const APInt& V) {
+  // Get the corresponding integer type for the bit width of the value.
+  const IntegerType *ITy = IntegerType::get(V.getBitWidth());
+  // get an existing value or the insertion position
+  DenseMapAPIntKeyInfo::KeyTy Key(V, ITy);
+  ConstantInt *&Slot = (*IntConstants)[Key]; 
+  // if it exists, return it.
+  if (Slot)
+    return Slot;
+  // otherwise create a new one, insert it, and return it.
+  return Slot = new ConstantInt(ITy, V);
 }
 
+//===----------------------------------------------------------------------===//
+//                                ConstantFP
+//===----------------------------------------------------------------------===//
+
+
 ConstantFP::ConstantFP(const Type *Ty, double V)
   : Constant(Ty, ConstantFPVal, 0, 0) {
-  assert(isValueValidForType(Ty, V) && "Value too large for type!");
   Val = V;
 }
 
+bool ConstantFP::isNullValue() const {
+  return DoubleToBits(Val) == 0;
+}
+
+bool ConstantFP::isExactlyValue(double V) const {
+  return DoubleToBits(V) == DoubleToBits(Val);
+}
+
+
+namespace {
+  struct DenseMapInt64KeyInfo {
+    typedef std::pair<uint64_t, const Type*> KeyTy;
+    static inline KeyTy getEmptyKey() { return KeyTy(0, 0); }
+    static inline KeyTy getTombstoneKey() { return KeyTy(1, 0); }
+    static unsigned getHashValue(const KeyTy &Key) {
+      return DenseMapKeyInfo<void*>::getHashValue(Key.second) ^ Key.first;
+    }
+    static bool isPod() { return true; }
+  };
+  struct DenseMapInt32KeyInfo {
+    typedef std::pair<uint32_t, const Type*> KeyTy;
+    static inline KeyTy getEmptyKey() { return KeyTy(0, 0); }
+    static inline KeyTy getTombstoneKey() { return KeyTy(1, 0); }
+    static unsigned getHashValue(const KeyTy &Key) {
+      return DenseMapKeyInfo<void*>::getHashValue(Key.second) ^ Key.first;
+    }
+    static bool isPod() { return true; }
+  };
+}
+
+//---- ConstantFP::get() implementation...
+//
+typedef DenseMap<DenseMapInt32KeyInfo::KeyTy, ConstantFP*, 
+                 DenseMapInt32KeyInfo> FloatMapTy;
+typedef DenseMap<DenseMapInt64KeyInfo::KeyTy, ConstantFP*, 
+                 DenseMapInt64KeyInfo> DoubleMapTy;
+
+static ManagedStatic<FloatMapTy> FloatConstants;
+static ManagedStatic<DoubleMapTy> DoubleConstants;
+
+ConstantFP *ConstantFP::get(const Type *Ty, double V) {
+  if (Ty == Type::FloatTy) {
+    uint32_t IntVal = FloatToBits((float)V);
+    
+    ConstantFP *&Slot = (*FloatConstants)[std::make_pair(IntVal, Ty)];
+    if (Slot) return Slot;
+    return Slot = new ConstantFP(Ty, (float)V);
+  } else if (Ty == Type::DoubleTy) { 
+    uint64_t IntVal = DoubleToBits(V);
+    ConstantFP *&Slot = (*DoubleConstants)[std::make_pair(IntVal, Ty)];
+    if (Slot) return Slot;
+    return Slot = new ConstantFP(Ty, V);
+  // FIXME:  Make long double constants work.
+  } else if (Ty == Type::X86_FP80Ty ||
+             Ty == Type::PPC_FP128Ty || Ty == Type::FP128Ty) {
+    assert(0 && "Long double constants not handled yet.");
+  } else {
+    assert(0 && "Unknown FP Type!");
+  }
+}
+
+
+//===----------------------------------------------------------------------===//
+//                            ConstantXXX Classes
+//===----------------------------------------------------------------------===//
+
+
 ConstantArray::ConstantArray(const ArrayType *T,
                              const std::vector<Constant*> &V)
   : Constant(T, ConstantArrayVal, new Use[V.size()], V.size()) {
@@ -239,7 +366,7 @@ ConstantVector::ConstantVector(const VectorType *T,
       assert((C->getType() == T->getElementType() ||
             (T->isAbstract() &&
              C->getType()->getTypeID() == T->getElementType()->getTypeID())) &&
-           "Initializer for packed element doesn't match packed element type!");
+           "Initializer for vector element doesn't match vector element type!");
     OL->init(C, this);
   }
 }
@@ -482,13 +609,14 @@ ConstantExpr::getWithOperandReplaced(unsigned OpNo, Constant *Op) const {
     Op2 = (OpNo == 2) ? Op : getOperand(2);
     return ConstantExpr::getShuffleVector(Op0, Op1, Op2);
   case Instruction::GetElementPtr: {
-    std::vector<Constant*> Ops;
+    SmallVector<Constant*, 8> Ops;
+    Ops.resize(getNumOperands());
     for (unsigned i = 1, e = getNumOperands(); i != e; ++i)
-      Ops.push_back(getOperand(i));
+      Ops[i] = getOperand(i);
     if (OpNo == 0)
-      return ConstantExpr::getGetElementPtr(Op, Ops);
+      return ConstantExpr::getGetElementPtr(Op, &Ops[0], Ops.size());
     Ops[OpNo-1] = Op;
-    return ConstantExpr::getGetElementPtr(getOperand(0), Ops);
+    return ConstantExpr::getGetElementPtr(getOperand(0), &Ops[0], Ops.size());
   }
   default:
     assert(getNumOperands() == 2 && "Must be binary operator?");
@@ -535,10 +663,8 @@ getWithOperands(const std::vector<Constant*> &Ops) const {
     return ConstantExpr::getExtractElement(Ops[0], Ops[1]);
   case Instruction::ShuffleVector:
     return ConstantExpr::getShuffleVector(Ops[0], Ops[1], Ops[2]);
-  case Instruction::GetElementPtr: {
-    std::vector<Constant*> ActualOps(Ops.begin()+1, Ops.end());
-    return ConstantExpr::getGetElementPtr(Ops[0], ActualOps);
-  }
+  case Instruction::GetElementPtr:
+    return ConstantExpr::getGetElementPtr(Ops[0], &Ops[1], Ops.size()-1);
   case Instruction::ICmp:
   case Instruction::FCmp:
     return ConstantExpr::getCompare(getPredicate(), Ops[0], Ops[1]);
@@ -578,10 +704,13 @@ bool ConstantFP::isValueValidForType(const Type *Ty, double Val) {
   default:
     return false;         // These can't be represented as floating point!
 
-    // TODO: Figure out how to test if a double can be cast to a float!
+    // TODO: Figure out how to test if we can use a shorter type instead!
   case Type::FloatTyID:
   case Type::DoubleTyID:
-    return true;          // This is the largest type...
+  case Type::X86_FP80TyID:
+  case Type::PPC_FP128TyID:
+  case Type::FP128TyID:
+    return true;
   }
 }
 
@@ -633,15 +762,6 @@ namespace llvm {
     ///
     AbstractTypeMapTy AbstractTypeMap;
 
-  private:
-    void clear(std::vector<Constant *> &Constants) {
-      for(typename MapTy::iterator I = Map.begin(); I != Map.end(); ++I)
-        Constants.push_back(I->second);
-      Map.clear();
-      AbstractTypeMap.clear();
-      InverseMap.clear();
-    }
-
   public:
     typename MapTy::iterator map_end() { return Map.end(); }
     
@@ -831,64 +951,6 @@ public:
 }
 
 
-//---- ConstantInt::get() implementations...
-//
-static ManagedStatic<ValueMap<uint64_t, Type, ConstantInt> > IntConstants;
-
-// Get a ConstantInt from an int64_t. Note here that we canoncialize the value
-// to a uint64_t value that has been zero extended down to the size of the
-// integer type of the ConstantInt. This allows the getZExtValue method to 
-// just return the stored value while getSExtValue has to convert back to sign
-// extended. getZExtValue is more common in LLVM than getSExtValue().
-ConstantInt *ConstantInt::get(const Type *Ty, int64_t V) {
-  if (Ty == Type::Int1Ty) 
-    if (V & 1)
-      return getTrue();
-    else
-      return getFalse();
-  return IntConstants->getOrCreate(Ty, V & cast<IntegerType>(Ty)->getBitMask());
-}
-
-//---- ConstantFP::get() implementation...
-//
-namespace llvm {
-  template<>
-  struct ConstantCreator<ConstantFP, Type, uint64_t> {
-    static ConstantFP *create(const Type *Ty, uint64_t V) {
-      assert(Ty == Type::DoubleTy);
-      return new ConstantFP(Ty, BitsToDouble(V));
-    }
-  };
-  template<>
-  struct ConstantCreator<ConstantFP, Type, uint32_t> {
-    static ConstantFP *create(const Type *Ty, uint32_t V) {
-      assert(Ty == Type::FloatTy);
-      return new ConstantFP(Ty, BitsToFloat(V));
-    }
-  };
-}
-
-static ManagedStatic<ValueMap<uint64_t, Type, ConstantFP> > DoubleConstants;
-static ManagedStatic<ValueMap<uint32_t, Type, ConstantFP> > FloatConstants;
-
-bool ConstantFP::isNullValue() const {
-  return DoubleToBits(Val) == 0;
-}
-
-bool ConstantFP::isExactlyValue(double V) const {
-  return DoubleToBits(V) == DoubleToBits(Val);
-}
-
-
-ConstantFP *ConstantFP::get(const Type *Ty, double V) {
-  if (Ty == Type::FloatTy) {
-    // Force the value through memory to normalize it.
-    return FloatConstants->getOrCreate(Ty, FloatToBits(V));
-  } else {
-    assert(Ty == Type::DoubleTy);
-    return DoubleConstants->getOrCreate(Ty, DoubleToBits(V));
-  }
-}
 
 //---- ConstantAggregateZero::get() implementation...
 //
@@ -1135,18 +1197,18 @@ static std::vector<Constant*> getValType(ConstantVector *CP) {
 }
 
 static ManagedStatic<ValueMap<std::vector<Constant*>, VectorType,
-                              ConstantVector> > PackedConstants;
+                              ConstantVector> > VectorConstants;
 
 Constant *ConstantVector::get(const VectorType *Ty,
                               const std::vector<Constant*> &V) {
-  // If this is an all-zero packed, return a ConstantAggregateZero object
+  // If this is an all-zero vector, return a ConstantAggregateZero object
   if (!V.empty()) {
     Constant *C = V[0];
     if (!C->isNullValue())
-      return PackedConstants->getOrCreate(Ty, V);
+      return VectorConstants->getOrCreate(Ty, V);
     for (unsigned i = 1, e = V.size(); i != e; ++i)
       if (V[i] != C)
-        return PackedConstants->getOrCreate(Ty, V);
+        return VectorConstants->getOrCreate(Ty, V);
   }
   return ConstantAggregateZero::get(Ty);
 }
@@ -1159,11 +1221,11 @@ Constant *ConstantVector::get(const std::vector<Constant*> &V) {
 // destroyConstant - Remove the constant from the constant table...
 //
 void ConstantVector::destroyConstant() {
-  PackedConstants->remove(this);
+  VectorConstants->remove(this);
   destroyConstantImpl();
 }
 
-/// This function will return true iff every element in this packed constant
+/// This function will return true iff every element in this vector constant
 /// is set to all ones.
 /// @returns true iff this constant's emements are all set to all ones.
 /// @brief Determine if the value is all ones.
@@ -1578,16 +1640,10 @@ Constant *ConstantExpr::getBitCast(Constant *C, const Type *DstTy) {
 
 Constant *ConstantExpr::getSizeOf(const Type *Ty) {
   // sizeof is implemented as: (ulong) gep (Ty*)null, 1
-  return getCast(Instruction::PtrToInt, getGetElementPtr(getNullValue(
-    PointerType::get(Ty)), std::vector<Constant*>(1, 
-    ConstantInt::get(Type::Int32Ty, 1))), Type::Int64Ty);
-}
-
-Constant *ConstantExpr::getPtrPtrFromArrayPtr(Constant *C) {
-  // pointer from array is implemented as: getelementptr arr ptr, 0, 0
-  static std::vector<Constant*> Indices(2, ConstantInt::get(Type::Int32Ty, 0));
-
-  return ConstantExpr::getGetElementPtr(C, Indices);
+  Constant *GEPIdx = ConstantInt::get(Type::Int32Ty, 1);
+  Constant *GEP =
+    getGetElementPtr(getNullValue(PointerType::get(Ty)), &GEPIdx, 1);
+  return getCast(Instruction::PtrToInt, GEP, Type::Int64Ty);
 }
 
 Constant *ConstantExpr::getTy(const Type *ReqTy, unsigned Opcode,
@@ -1793,7 +1849,7 @@ Constant *ConstantExpr::getExtractElementTy(const Type *ReqTy, Constant *Val,
 
 Constant *ConstantExpr::getExtractElement(Constant *Val, Constant *Idx) {
   assert(isa<VectorType>(Val->getType()) &&
-         "Tried to create extractelement operation on non-packed type!");
+         "Tried to create extractelement operation on non-vector type!");
   assert(Idx->getType() == Type::Int32Ty &&
          "Extractelement index must be i32 type!");
   return getExtractElementTy(cast<VectorType>(Val->getType())->getElementType(),
@@ -1815,7 +1871,7 @@ Constant *ConstantExpr::getInsertElementTy(const Type *ReqTy, Constant *Val,
 Constant *ConstantExpr::getInsertElement(Constant *Val, Constant *Elt, 
                                          Constant *Idx) {
   assert(isa<VectorType>(Val->getType()) &&
-         "Tried to create insertelement operation on non-packed type!");
+         "Tried to create insertelement operation on non-vector type!");
   assert(Elt->getType() == cast<VectorType>(Val->getType())->getElementType()
          && "Insertelement types must match!");
   assert(Idx->getType() == Type::Int32Ty &&
@@ -2029,7 +2085,7 @@ void ConstantExpr::replaceUsesOfWithOnConstant(Value *From, Value *ToV,
   
   Constant *Replacement = 0;
   if (getOpcode() == Instruction::GetElementPtr) {
-    std::vector<Constant*> Indices;
+    SmallVector<Constant*, 8> Indices;
     Constant *Pointer = getOperand(0);
     Indices.reserve(getNumOperands()-1);
     if (Pointer == From) Pointer = To;
@@ -2039,7 +2095,8 @@ void ConstantExpr::replaceUsesOfWithOnConstant(Value *From, Value *ToV,
       if (Val == From) Val = To;
       Indices.push_back(Val);
     }
-    Replacement = ConstantExpr::getGetElementPtr(Pointer, Indices);
+    Replacement = ConstantExpr::getGetElementPtr(Pointer,
+                                                 &Indices[0], Indices.size());
   } else if (isCast()) {
     assert(getOperand(0) == From && "Cast only has one use!");
     Replacement = ConstantExpr::getCast(getOpcode(), To, getType());