R600/SI: Add support for llvm.convert.{to|from}.fp16
[oota-llvm.git] / lib / Transforms / Scalar / JumpThreading.cpp
index 27bd6687bf3362ed84889fb76dfb1655270c0768..6e50d3331df6b7e7383f3cbe97d57a4f855725e2 100644 (file)
 //
 //===----------------------------------------------------------------------===//
 
-#define DEBUG_TYPE "jump-threading"
 #include "llvm/Transforms/Scalar.h"
-#include "llvm/IntrinsicInst.h"
-#include "llvm/LLVMContext.h"
-#include "llvm/Pass.h"
-#include "llvm/Analysis/InstructionSimplify.h"
-#include "llvm/Analysis/LazyValueInfo.h"
-#include "llvm/Analysis/Loads.h"
-#include "llvm/Transforms/Utils/BasicBlockUtils.h"
-#include "llvm/Transforms/Utils/Local.h"
-#include "llvm/Transforms/Utils/SSAUpdater.h"
-#include "llvm/Target/TargetData.h"
 #include "llvm/ADT/DenseMap.h"
 #include "llvm/ADT/DenseSet.h"
-#include "llvm/ADT/Statistic.h"
 #include "llvm/ADT/STLExtras.h"
 #include "llvm/ADT/SmallPtrSet.h"
 #include "llvm/ADT/SmallSet.h"
+#include "llvm/ADT/Statistic.h"
+#include "llvm/Analysis/CFG.h"
+#include "llvm/Analysis/ConstantFolding.h"
+#include "llvm/Analysis/InstructionSimplify.h"
+#include "llvm/Analysis/LazyValueInfo.h"
+#include "llvm/Analysis/Loads.h"
+#include "llvm/IR/DataLayout.h"
+#include "llvm/IR/IntrinsicInst.h"
+#include "llvm/IR/LLVMContext.h"
+#include "llvm/IR/ValueHandle.h"
+#include "llvm/Pass.h"
 #include "llvm/Support/CommandLine.h"
 #include "llvm/Support/Debug.h"
-#include "llvm/Support/ValueHandle.h"
 #include "llvm/Support/raw_ostream.h"
+#include "llvm/Target/TargetLibraryInfo.h"
+#include "llvm/Transforms/Utils/BasicBlockUtils.h"
+#include "llvm/Transforms/Utils/Local.h"
+#include "llvm/Transforms/Utils/SSAUpdater.h"
 using namespace llvm;
 
+#define DEBUG_TYPE "jump-threading"
+
 STATISTIC(NumThreads, "Number of jumps threaded");
 STATISTIC(NumFolds,   "Number of terminators folded");
 STATISTIC(NumDupes,   "Number of branch blocks duplicated to eliminate phi");
@@ -73,7 +77,8 @@ namespace {
   /// revectored to the false side of the second if.
   ///
   class JumpThreading : public FunctionPass {
-    TargetData *TD;
+    const DataLayout *DL;
+    TargetLibraryInfo *TLI;
     LazyValueInfo *LVI;
 #ifdef NDEBUG
     SmallPtrSet<BasicBlock*, 16> LoopHeaders;
@@ -101,11 +106,12 @@ namespace {
       initializeJumpThreadingPass(*PassRegistry::getPassRegistry());
     }
 
-    bool runOnFunction(Function &F);
+    bool runOnFunction(Function &F) override;
 
-    virtual void getAnalysisUsage(AnalysisUsage &AU) const {
+    void getAnalysisUsage(AnalysisUsage &AU) const override {
       AU.addRequired<LazyValueInfo>();
       AU.addPreserved<LazyValueInfo>();
+      AU.addRequired<TargetLibraryInfo>();
     }
 
     void FindLoopHeaders(Function &F);
@@ -121,14 +127,11 @@ namespace {
     bool ProcessThreadableEdges(Value *Cond, BasicBlock *BB,
                                 ConstantPreference Preference);
 
-
-    bool ProcessBranchOnDuplicateCond(BasicBlock *PredBB, BasicBlock *DestBB);
-    bool ProcessSwitchOnDuplicateCond(BasicBlock *PredBB, BasicBlock *DestBB);
-
     bool ProcessBranchOnPHI(PHINode *PN);
     bool ProcessBranchOnXOR(BinaryOperator *BO);
 
     bool SimplifyPartiallyRedundantLoad(LoadInst *LI);
+    bool TryToUnfoldSelect(CmpInst *CondCmp, BasicBlock *BB);
   };
 }
 
@@ -136,6 +139,7 @@ char JumpThreading::ID = 0;
 INITIALIZE_PASS_BEGIN(JumpThreading, "jump-threading",
                 "Jump Threading", false, false)
 INITIALIZE_PASS_DEPENDENCY(LazyValueInfo)
+INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfo)
 INITIALIZE_PASS_END(JumpThreading, "jump-threading",
                 "Jump Threading", false, false)
 
@@ -145,10 +149,24 @@ FunctionPass *llvm::createJumpThreadingPass() { return new JumpThreading(); }
 /// runOnFunction - Top level algorithm.
 ///
 bool JumpThreading::runOnFunction(Function &F) {
+  if (skipOptnoneFunction(F))
+    return false;
+
   DEBUG(dbgs() << "Jump threading on function '" << F.getName() << "'\n");
-  TD = getAnalysisIfAvailable<TargetData>();
+  DataLayoutPass *DLP = getAnalysisIfAvailable<DataLayoutPass>();
+  DL = DLP ? &DLP->getDataLayout() : nullptr;
+  TLI = &getAnalysis<TargetLibraryInfo>();
   LVI = &getAnalysis<LazyValueInfo>();
 
+  // Remove unreachable blocks from function as they may result in infinite
+  // loop. We do threading if we found something profitable. Jump threading a
+  // branch can create other opportunities. If these opportunities form a cycle
+  // i.e. if any jump treading is undoing previous threading in the path, then
+  // we will loop forever. We take care of this issue by not jump threading for
+  // back edges. This works for normal cases but not for unreachable blocks as
+  // they may have cycle with no back edge.
+  removeUnreachableBlocks(F);
+
   FindLoopHeaders(F);
 
   bool Changed, EverChanged = false;
@@ -172,40 +190,38 @@ bool JumpThreading::runOnFunction(Function &F) {
         LVI->eraseBlock(BB);
         DeleteDeadBlock(BB);
         Changed = true;
-      } else if (BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator())) {
-        // Can't thread an unconditional jump, but if the block is "almost
-        // empty", we can replace uses of it with uses of the successor and make
-        // this dead.
-        if (BI->isUnconditional() &&
-            BB != &BB->getParent()->getEntryBlock()) {
-          BasicBlock::iterator BBI = BB->getFirstNonPHI();
-          // Ignore dbg intrinsics.
-          while (isa<DbgInfoIntrinsic>(BBI))
-            ++BBI;
+        continue;
+      }
+
+      BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator());
+
+      // Can't thread an unconditional jump, but if the block is "almost
+      // empty", we can replace uses of it with uses of the successor and make
+      // this dead.
+      if (BI && BI->isUnconditional() &&
+          BB != &BB->getParent()->getEntryBlock() &&
           // If the terminator is the only non-phi instruction, try to nuke it.
-          if (BBI->isTerminator()) {
-            // Since TryToSimplifyUncondBranchFromEmptyBlock may delete the
-            // block, we have to make sure it isn't in the LoopHeaders set.  We
-            // reinsert afterward if needed.
-            bool ErasedFromLoopHeaders = LoopHeaders.erase(BB);
-            BasicBlock *Succ = BI->getSuccessor(0);
-
-            // FIXME: It is always conservatively correct to drop the info
-            // for a block even if it doesn't get erased.  This isn't totally
-            // awesome, but it allows us to use AssertingVH to prevent nasty
-            // dangling pointer issues within LazyValueInfo.
-            LVI->eraseBlock(BB);
-            if (TryToSimplifyUncondBranchFromEmptyBlock(BB)) {
-              Changed = true;
-              // If we deleted BB and BB was the header of a loop, then the
-              // successor is now the header of the loop.
-              BB = Succ;
-            }
-
-            if (ErasedFromLoopHeaders)
-              LoopHeaders.insert(BB);
-          }
+          BB->getFirstNonPHIOrDbg()->isTerminator()) {
+        // Since TryToSimplifyUncondBranchFromEmptyBlock may delete the
+        // block, we have to make sure it isn't in the LoopHeaders set.  We
+        // reinsert afterward if needed.
+        bool ErasedFromLoopHeaders = LoopHeaders.erase(BB);
+        BasicBlock *Succ = BI->getSuccessor(0);
+
+        // FIXME: It is always conservatively correct to drop the info
+        // for a block even if it doesn't get erased.  This isn't totally
+        // awesome, but it allows us to use AssertingVH to prevent nasty
+        // dangling pointer issues within LazyValueInfo.
+        LVI->eraseBlock(BB);
+        if (TryToSimplifyUncondBranchFromEmptyBlock(BB)) {
+          Changed = true;
+          // If we deleted BB and BB was the header of a loop, then the
+          // successor is now the header of the loop.
+          BB = Succ;
         }
+
+        if (ErasedFromLoopHeaders)
+          LoopHeaders.insert(BB);
       }
     }
     EverChanged |= Changed;
@@ -216,19 +232,24 @@ bool JumpThreading::runOnFunction(Function &F) {
 }
 
 /// getJumpThreadDuplicationCost - Return the cost of duplicating this block to
-/// thread across it.
-static unsigned getJumpThreadDuplicationCost(const BasicBlock *BB) {
+/// thread across it. Stop scanning the block when passing the threshold.
+static unsigned getJumpThreadDuplicationCost(const BasicBlock *BB,
+                                             unsigned Threshold) {
   /// Ignore PHI nodes, these will be flattened when duplication happens.
   BasicBlock::const_iterator I = BB->getFirstNonPHI();
 
   // FIXME: THREADING will delete values that are just used to compute the
   // branch, so they shouldn't count against the duplication cost.
 
-
   // Sum up the cost of each instruction until we get to the terminator.  Don't
   // include the terminator because the copy won't include it.
   unsigned Size = 0;
   for (; !isa<TerminatorInst>(I); ++I) {
+
+    // Stop scanning the block if we've reached the threshold.
+    if (Size > Threshold)
+      return Size;
+
     // Debugger intrinsics don't incur code size.
     if (isa<DbgInfoIntrinsic>(I)) continue;
 
@@ -244,7 +265,11 @@ static unsigned getJumpThreadDuplicationCost(const BasicBlock *BB) {
     // as having cost of 2 total, and if they are a vector intrinsic, we model
     // them as having cost 1.
     if (const CallInst *CI = dyn_cast<CallInst>(I)) {
-      if (!isa<IntrinsicInst>(CI))
+      if (CI->cannotDuplicate())
+        // Blocks with NoDuplicate are modelled as having infinite cost, so they
+        // are never duplicated.
+        return ~0U;
+      else if (!isa<IntrinsicInst>(CI))
         Size += 3;
       else if (!CI->getType()->isVectorTy())
         Size += 1;
@@ -293,7 +318,7 @@ void JumpThreading::FindLoopHeaders(Function &F) {
 /// Returns null if Val is null or not an appropriate constant.
 static Constant *getKnownConstant(Value *Val, ConstantPreference Preference) {
   if (!Val)
-    return 0;
+    return nullptr;
 
   // Undef is "known" enough.
   if (UndefValue *U = dyn_cast<UndefValue>(Val))
@@ -337,7 +362,7 @@ ComputeValueKnownInPredecessors(Value *V, BasicBlock *BB, PredValueInfo &Result,
   // If V is a non-instruction value, or an instruction in a different block,
   // then it can't be derived from a PHI.
   Instruction *I = dyn_cast<Instruction>(V);
-  if (I == 0 || I->getParent() != BB) {
+  if (!I || I->getParent() != BB) {
 
     // Okay, if this is a live-in value, see if it has a known value at the end
     // of any of our predecessors.
@@ -479,8 +504,8 @@ ComputeValueKnownInPredecessors(Value *V, BasicBlock *BB, PredValueInfo &Result,
         Value *LHS = PN->getIncomingValue(i);
         Value *RHS = Cmp->getOperand(1)->DoPHITranslation(BB, PredBB);
 
-        Value *Res = SimplifyCmpInst(Cmp->getPredicate(), LHS, RHS, TD);
-        if (Res == 0) {
+        Value *Res = SimplifyCmpInst(Cmp->getPredicate(), LHS, RHS, DL);
+        if (!Res) {
           if (!isa<Constant>(RHS))
             continue;
 
@@ -544,6 +569,40 @@ ComputeValueKnownInPredecessors(Value *V, BasicBlock *BB, PredValueInfo &Result,
     }
   }
 
+  if (SelectInst *SI = dyn_cast<SelectInst>(I)) {
+    // Handle select instructions where at least one operand is a known constant
+    // and we can figure out the condition value for any predecessor block.
+    Constant *TrueVal = getKnownConstant(SI->getTrueValue(), Preference);
+    Constant *FalseVal = getKnownConstant(SI->getFalseValue(), Preference);
+    PredValueInfoTy Conds;
+    if ((TrueVal || FalseVal) &&
+        ComputeValueKnownInPredecessors(SI->getCondition(), BB, Conds,
+                                        WantInteger)) {
+      for (unsigned i = 0, e = Conds.size(); i != e; ++i) {
+        Constant *Cond = Conds[i].first;
+
+        // Figure out what value to use for the condition.
+        bool KnownCond;
+        if (ConstantInt *CI = dyn_cast<ConstantInt>(Cond)) {
+          // A known boolean.
+          KnownCond = CI->isOne();
+        } else {
+          assert(isa<UndefValue>(Cond) && "Unexpected condition value");
+          // Either operand will do, so be sure to pick the one that's a known
+          // constant.
+          // FIXME: Do this more cleverly if both values are known constants?
+          KnownCond = (TrueVal != nullptr);
+        }
+
+        // See if the select has a known constant value for this predecessor.
+        if (Constant *Val = KnownCond ? TrueVal : FalseVal)
+          Result.push_back(std::make_pair(Val, Conds[i].second));
+      }
+
+      return !Result.empty();
+    }
+  }
+
   // If all else fails, see if LVI can figure out a constant value for us.
   Constant *CI = LVI->getConstant(V, BB);
   if (Constant *KC = getKnownConstant(CI, Preference)) {
@@ -571,13 +630,25 @@ static unsigned GetBestDestForJumpOnUndef(BasicBlock *BB) {
   for (unsigned i = 1, e = BBTerm->getNumSuccessors(); i != e; ++i) {
     TestBB = BBTerm->getSuccessor(i);
     unsigned NumPreds = std::distance(pred_begin(TestBB), pred_end(TestBB));
-    if (NumPreds < MinNumPreds)
+    if (NumPreds < MinNumPreds) {
       MinSucc = i;
+      MinNumPreds = NumPreds;
+    }
   }
 
   return MinSucc;
 }
 
+static bool hasAddressTakenAndUsed(BasicBlock *BB) {
+  if (!BB->hasAddressTaken()) return false;
+
+  // If the block has its address taken, it may be a tree of dead constants
+  // hanging off of it.  These shouldn't keep the block alive.
+  BlockAddress *BA = BlockAddress::get(BB);
+  BA->removeDeadConstantUsers();
+  return !BA->use_empty();
+}
+
 /// ProcessBlock - If there are any predecessors whose control can be threaded
 /// through to a successor, transform them now.
 bool JumpThreading::ProcessBlock(BasicBlock *BB) {
@@ -593,7 +664,7 @@ bool JumpThreading::ProcessBlock(BasicBlock *BB) {
   // predecessors of our predecessor block.
   if (BasicBlock *SinglePred = BB->getSinglePredecessor()) {
     if (SinglePred->getTerminator()->getNumSuccessors() == 1 &&
-        SinglePred != BB) {
+        SinglePred != BB && !hasAddressTakenAndUsed(BB)) {
       // If SinglePred was a loop header, BB becomes one.
       if (LoopHeaders.erase(SinglePred))
         LoopHeaders.insert(BB);
@@ -624,12 +695,25 @@ bool JumpThreading::ProcessBlock(BasicBlock *BB) {
   } else if (SwitchInst *SI = dyn_cast<SwitchInst>(Terminator)) {
     Condition = SI->getCondition();
   } else if (IndirectBrInst *IB = dyn_cast<IndirectBrInst>(Terminator)) {
+    // Can't thread indirect branch with no successors.
+    if (IB->getNumSuccessors() == 0) return false;
     Condition = IB->getAddress()->stripPointerCasts();
     Preference = WantBlockAddress;
   } else {
     return false; // Must be an invoke.
   }
 
+  // Run constant folding to see if we can reduce the condition to a simple
+  // constant.
+  if (Instruction *I = dyn_cast<Instruction>(Condition)) {
+    Value *SimpleVal = ConstantFoldInstruction(I, DL, TLI);
+    if (SimpleVal) {
+      I->replaceAllUsesWith(SimpleVal);
+      I->eraseFromParent();
+      Condition = SimpleVal;
+    }
+  }
+
   // If the terminator is branching on an undef, we can pick any of the
   // successors to branch to.  Let GetBestDestForJumpOnUndef decide.
   if (isa<UndefValue>(Condition)) {
@@ -656,14 +740,14 @@ bool JumpThreading::ProcessBlock(BasicBlock *BB) {
     DEBUG(dbgs() << "  In block '" << BB->getName()
           << "' folding terminator: " << *BB->getTerminator() << '\n');
     ++NumFolds;
-    ConstantFoldTerminator(BB);
+    ConstantFoldTerminator(BB, true);
     return true;
   }
 
   Instruction *CondInst = dyn_cast<Instruction>(Condition);
 
   // All the rest of our checks depend on the condition being an instruction.
-  if (CondInst == 0) {
+  if (!CondInst) {
     // FIXME: Unify this with code below.
     if (ProcessThreadableEdges(Condition, BB, Preference))
       return true;
@@ -707,7 +791,11 @@ bool JumpThreading::ProcessBlock(BasicBlock *BB) {
           return true;
         }
       }
+
     }
+
+    if (CondBr && CondConst && TryToUnfoldSelect(CondCmp, BB))
+      return true;
   }
 
   // Check for some cases that are worth simplifying.  Right now we want to look
@@ -753,151 +841,13 @@ bool JumpThreading::ProcessBlock(BasicBlock *BB) {
   return false;
 }
 
-/// ProcessBranchOnDuplicateCond - We found a block and a predecessor of that
-/// block that jump on exactly the same condition.  This means that we almost
-/// always know the direction of the edge in the DESTBB:
-///  PREDBB:
-///     br COND, DESTBB, BBY
-///  DESTBB:
-///     br COND, BBZ, BBW
-///
-/// If DESTBB has multiple predecessors, we can't just constant fold the branch
-/// in DESTBB, we have to thread over it.
-bool JumpThreading::ProcessBranchOnDuplicateCond(BasicBlock *PredBB,
-                                                 BasicBlock *BB) {
-  BranchInst *PredBI = cast<BranchInst>(PredBB->getTerminator());
-
-  // If both successors of PredBB go to DESTBB, we don't know anything.  We can
-  // fold the branch to an unconditional one, which allows other recursive
-  // simplifications.
-  bool BranchDir;
-  if (PredBI->getSuccessor(1) != BB)
-    BranchDir = true;
-  else if (PredBI->getSuccessor(0) != BB)
-    BranchDir = false;
-  else {
-    DEBUG(dbgs() << "  In block '" << PredBB->getName()
-          << "' folding terminator: " << *PredBB->getTerminator() << '\n');
-    ++NumFolds;
-    ConstantFoldTerminator(PredBB);
-    return true;
-  }
-
-  BranchInst *DestBI = cast<BranchInst>(BB->getTerminator());
-
-  // If the dest block has one predecessor, just fix the branch condition to a
-  // constant and fold it.
-  if (BB->getSinglePredecessor()) {
-    DEBUG(dbgs() << "  In block '" << BB->getName()
-          << "' folding condition to '" << BranchDir << "': "
-          << *BB->getTerminator() << '\n');
-    ++NumFolds;
-    Value *OldCond = DestBI->getCondition();
-    DestBI->setCondition(ConstantInt::get(Type::getInt1Ty(BB->getContext()),
-                                          BranchDir));
-    // Delete dead instructions before we fold the branch.  Folding the branch
-    // can eliminate edges from the CFG which can end up deleting OldCond.
-    RecursivelyDeleteTriviallyDeadInstructions(OldCond);
-    ConstantFoldTerminator(BB);
-    return true;
-  }
-
-
-  // Next, figure out which successor we are threading to.
-  BasicBlock *SuccBB = DestBI->getSuccessor(!BranchDir);
-
-  SmallVector<BasicBlock*, 2> Preds;
-  Preds.push_back(PredBB);
-
-  // Ok, try to thread it!
-  return ThreadEdge(BB, Preds, SuccBB);
-}
-
-/// ProcessSwitchOnDuplicateCond - We found a block and a predecessor of that
-/// block that switch on exactly the same condition.  This means that we almost
-/// always know the direction of the edge in the DESTBB:
-///  PREDBB:
-///     switch COND [... DESTBB, BBY ... ]
-///  DESTBB:
-///     switch COND [... BBZ, BBW ]
-///
-/// Optimizing switches like this is very important, because simplifycfg builds
-/// switches out of repeated 'if' conditions.
-bool JumpThreading::ProcessSwitchOnDuplicateCond(BasicBlock *PredBB,
-                                                 BasicBlock *DestBB) {
-  // Can't thread edge to self.
-  if (PredBB == DestBB)
-    return false;
-
-  SwitchInst *PredSI = cast<SwitchInst>(PredBB->getTerminator());
-  SwitchInst *DestSI = cast<SwitchInst>(DestBB->getTerminator());
-
-  // There are a variety of optimizations that we can potentially do on these
-  // blocks: we order them from most to least preferable.
-
-  // If DESTBB *just* contains the switch, then we can forward edges from PREDBB
-  // directly to their destination.  This does not introduce *any* code size
-  // growth.  Skip debug info first.
-  BasicBlock::iterator BBI = DestBB->begin();
-  while (isa<DbgInfoIntrinsic>(BBI))
-    BBI++;
-
-  // FIXME: Thread if it just contains a PHI.
-  if (isa<SwitchInst>(BBI)) {
-    bool MadeChange = false;
-    // Ignore the default edge for now.
-    for (unsigned i = 1, e = DestSI->getNumSuccessors(); i != e; ++i) {
-      ConstantInt *DestVal = DestSI->getCaseValue(i);
-      BasicBlock *DestSucc = DestSI->getSuccessor(i);
-
-      // Okay, DestSI has a case for 'DestVal' that goes to 'DestSucc'.  See if
-      // PredSI has an explicit case for it.  If so, forward.  If it is covered
-      // by the default case, we can't update PredSI.
-      unsigned PredCase = PredSI->findCaseValue(DestVal);
-      if (PredCase == 0) continue;
-
-      // If PredSI doesn't go to DestBB on this value, then it won't reach the
-      // case on this condition.
-      if (PredSI->getSuccessor(PredCase) != DestBB &&
-          DestSI->getSuccessor(i) != DestBB)
-        continue;
-
-      // Do not forward this if it already goes to this destination, this would
-      // be an infinite loop.
-      if (PredSI->getSuccessor(PredCase) == DestSucc)
-        continue;
-
-      // Otherwise, we're safe to make the change.  Make sure that the edge from
-      // DestSI to DestSucc is not critical and has no PHI nodes.
-      DEBUG(dbgs() << "FORWARDING EDGE " << *DestVal << "   FROM: " << *PredSI);
-      DEBUG(dbgs() << "THROUGH: " << *DestSI);
-
-      // If the destination has PHI nodes, just split the edge for updating
-      // simplicity.
-      if (isa<PHINode>(DestSucc->begin()) && !DestSucc->getSinglePredecessor()){
-        SplitCriticalEdge(DestSI, i, this);
-        DestSucc = DestSI->getSuccessor(i);
-      }
-      FoldSingleEntryPHINodes(DestSucc);
-      PredSI->setSuccessor(PredCase, DestSucc);
-      MadeChange = true;
-    }
-
-    if (MadeChange)
-      return true;
-  }
-
-  return false;
-}
-
-
 /// SimplifyPartiallyRedundantLoad - If LI is an obviously partially redundant
 /// load instruction, eliminate it by replacing it with a PHI node.  This is an
 /// important optimization that encourages jump threading, and needs to be run
 /// interlaced with other jump threading tasks.
 bool JumpThreading::SimplifyPartiallyRedundantLoad(LoadInst *LI) {
-  // Don't hack volatile loads.
-  if (LI->isVolatile()) return false;
+  // Don't hack volatile/atomic loads.
+  if (!LI->isSimple()) return false;
 
   // If the load is defined in a block with exactly one predecessor, it can't be
   // partially redundant.
@@ -905,6 +855,12 @@ bool JumpThreading::SimplifyPartiallyRedundantLoad(LoadInst *LI) {
   if (LoadBB->getSinglePredecessor())
     return false;
 
+  // If the load is defined in a landing pad, it can't be partially redundant,
+  // because the edges between the invoke and the landing pad cannot have other
+  // instructions between them.
+  if (LoadBB->isLandingPad())
+    return false;
+
   Value *LoadedPtr = LI->getOperand(0);
 
   // If the loaded operand is defined in the LoadBB, it can't be available.
@@ -937,11 +893,14 @@ bool JumpThreading::SimplifyPartiallyRedundantLoad(LoadInst *LI) {
   if (BBIt != LoadBB->begin())
     return false;
 
+  // If all of the loads and stores that feed the value have the same TBAA tag,
+  // then we can propagate it onto any newly inserted loads.
+  MDNode *TBAATag = LI->getMetadata(LLVMContext::MD_tbaa);
 
   SmallPtrSet<BasicBlock*, 8> PredsScanned;
   typedef SmallVector<std::pair<BasicBlock*, Value*>, 8> AvailablePredsTy;
   AvailablePredsTy AvailablePreds;
-  BasicBlock *OneUnavailablePred = 0;
+  BasicBlock *OneUnavailablePred = nullptr;
 
   // If we got here, the loaded value is transparent through to the start of the
   // block.  Check to see if it is available in any of the predecessor blocks.
@@ -955,12 +914,17 @@ bool JumpThreading::SimplifyPartiallyRedundantLoad(LoadInst *LI) {
 
     // Scan the predecessor to see if the value is available in the pred.
     BBIt = PredBB->end();
-    Value *PredAvailable = FindAvailableLoadedValue(LoadedPtr, PredBB, BBIt, 6);
+    MDNode *ThisTBAATag = nullptr;
+    Value *PredAvailable = FindAvailableLoadedValue(LoadedPtr, PredBB, BBIt, 6,
+                                                    nullptr, &ThisTBAATag);
     if (!PredAvailable) {
       OneUnavailablePred = PredBB;
       continue;
     }
 
+    // If tbaa tags disagree or are not present, forget about them.
+    if (TBAATag != ThisTBAATag) TBAATag = nullptr;
+
     // If so, this load is partially redundant.  Remember this info so that we
     // can create a PHI node.
     AvailablePreds.push_back(std::make_pair(PredBB, PredAvailable));
@@ -975,7 +939,7 @@ bool JumpThreading::SimplifyPartiallyRedundantLoad(LoadInst *LI) {
   // predecessor, we want to insert a merge block for those common predecessors.
   // This ensures that we only have to insert one reload, thus not increasing
   // code size.
-  BasicBlock *UnavailablePred = 0;
+  BasicBlock *UnavailablePred = nullptr;
 
   // If there is exactly one predecessor where the value is unavailable, the
   // already computed 'OneUnavailablePred' block is it.  If it ends in an
@@ -1006,8 +970,7 @@ bool JumpThreading::SimplifyPartiallyRedundantLoad(LoadInst *LI) {
 
     // Split them out to their own block.
     UnavailablePred =
-      SplitBlockPredecessors(LoadBB, &PredsToSplit[0], PredsToSplit.size(),
-                             "thread-pre-split", this);
+      SplitBlockPredecessors(LoadBB, PredsToSplit, "thread-pre-split", this);
   }
 
   // If the value isn't available in all predecessors, then there will be
@@ -1016,9 +979,13 @@ bool JumpThreading::SimplifyPartiallyRedundantLoad(LoadInst *LI) {
   if (UnavailablePred) {
     assert(UnavailablePred->getTerminator()->getNumSuccessors() == 1 &&
            "Can't handle critical edge here!");
-    Value *NewVal = new LoadInst(LoadedPtr, LI->getName()+".pr", false,
+    LoadInst *NewVal = new LoadInst(LoadedPtr, LI->getName()+".pr", false,
                                  LI->getAlignment(),
                                  UnavailablePred->getTerminator());
+    NewVal->setDebugLoc(LI->getDebugLoc());
+    if (TBAATag)
+      NewVal->setMetadata(LLVMContext::MD_tbaa, TBAATag);
+
     AvailablePreds.push_back(std::make_pair(UnavailablePred, NewVal));
   }
 
@@ -1027,17 +994,19 @@ bool JumpThreading::SimplifyPartiallyRedundantLoad(LoadInst *LI) {
   array_pod_sort(AvailablePreds.begin(), AvailablePreds.end());
 
   // Create a PHI node at the start of the block for the PRE'd load value.
-  PHINode *PN = PHINode::Create(LI->getType(), "", LoadBB->begin());
+  pred_iterator PB = pred_begin(LoadBB), PE = pred_end(LoadBB);
+  PHINode *PN = PHINode::Create(LI->getType(), std::distance(PB, PE), "",
+                                LoadBB->begin());
   PN->takeName(LI);
+  PN->setDebugLoc(LI->getDebugLoc());
 
   // Insert new entries into the PHI for each predecessor.  A single block may
   // have multiple entries here.
-  for (pred_iterator PI = pred_begin(LoadBB), E = pred_end(LoadBB); PI != E;
-       ++PI) {
+  for (pred_iterator PI = PB; PI != PE; ++PI) {
     BasicBlock *P = *PI;
     AvailablePredsTy::iterator I =
       std::lower_bound(AvailablePreds.begin(), AvailablePreds.end(),
-                       std::make_pair(P, (Value*)0));
+                       std::make_pair(P, (Value*)nullptr));
 
     assert(I != AvailablePreds.end() && I->first == P &&
            "Didn't find entry for predecessor!");
@@ -1093,7 +1062,7 @@ FindMostPopularDest(BasicBlock *BB,
     }
   }
 
-  // Okay, now we know the most popular destination.  If there is more than
+  // Okay, now we know the most popular destination.  If there is more than one
   // destination, we need to determine one.  This is arbitrary, but we need
   // to make a deterministic decision.  Pick the first one that appears in the
   // successor list.
@@ -1144,7 +1113,7 @@ bool JumpThreading::ProcessThreadableEdges(Value *Cond, BasicBlock *BB,
   SmallPtrSet<BasicBlock*, 16> SeenPreds;
   SmallVector<std::pair<BasicBlock*, BasicBlock*>, 16> PredToDestList;
 
-  BasicBlock *OnlyDest = 0;
+  BasicBlock *OnlyDest = nullptr;
   BasicBlock *MultipleDestSentinel = (BasicBlock*)(intptr_t)~0ULL;
 
   for (unsigned i = 0, e = PredValues.size(); i != e; ++i) {
@@ -1161,19 +1130,19 @@ bool JumpThreading::ProcessThreadableEdges(Value *Cond, BasicBlock *BB,
 
     BasicBlock *DestBB;
     if (isa<UndefValue>(Val))
-      DestBB = 0;
+      DestBB = nullptr;
     else if (BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator()))
       DestBB = BI->getSuccessor(cast<ConstantInt>(Val)->isZero());
-    else if (SwitchInst *SI = dyn_cast<SwitchInst>(BB->getTerminator()))
-      DestBB = SI->getSuccessor(SI->findCaseValue(cast<ConstantInt>(Val)));
-    else {
+    else if (SwitchInst *SI = dyn_cast<SwitchInst>(BB->getTerminator())) {
+      DestBB = SI->findCaseValue(cast<ConstantInt>(Val)).getCaseSuccessor();
+    else {
       assert(isa<IndirectBrInst>(BB->getTerminator())
               && "Unexpected terminator");
       DestBB = cast<BlockAddress>(Val)->getBasicBlock();
     }
 
     // If we have exactly one destination, remember it for efficiency below.
-    if (i == 0)
+    if (PredToDestList.empty())
       OnlyDest = DestBB;
     else if (OnlyDest != DestBB)
       OnlyDest = MultipleDestSentinel;
@@ -1212,7 +1181,7 @@ bool JumpThreading::ProcessThreadableEdges(Value *Cond, BasicBlock *BB,
 
   // If the threadable edges are branching on an undefined value, we get to pick
   // the destination that these predecessors should get to.
-  if (MostPopularDest == 0)
+  if (!MostPopularDest)
     MostPopularDest = BB->getTerminator()->
                             getSuccessor(GetBestDestForJumpOnUndef(BB));
 
@@ -1314,7 +1283,7 @@ bool JumpThreading::ProcessBranchOnXOR(BinaryOperator *BO) {
   }
 
   // Determine which value to split on, true, false, or undef if neither.
-  ConstantInt *SplitVal = 0;
+  ConstantInt *SplitVal = nullptr;
   if (NumTrue > NumFalse)
     SplitVal = ConstantInt::getTrue(BB->getContext());
   else if (NumTrue != 0 || NumFalse != 0)
@@ -1335,7 +1304,7 @@ bool JumpThreading::ProcessBranchOnXOR(BinaryOperator *BO) {
   // help us.  However, we can just replace the LHS or RHS with the constant.
   if (BlocksToFoldInto.size() ==
       cast<PHINode>(BB->front()).getNumIncomingValues()) {
-    if (SplitVal == 0) {
+    if (!SplitVal) {
       // If all preds provide undef, just nuke the xor, because it is undef too.
       BO->replaceAllUsesWith(UndefValue::get(BO->getType()));
       BO->eraseFromParent();
@@ -1402,7 +1371,7 @@ bool JumpThreading::ThreadEdge(BasicBlock *BB,
     return false;
   }
 
-  unsigned JumpThreadCost = getJumpThreadDuplicationCost(BB);
+  unsigned JumpThreadCost = getJumpThreadDuplicationCost(BB, Threshold);
   if (JumpThreadCost > Threshold) {
     DEBUG(dbgs() << "  Not threading BB '" << BB->getName()
           << "' - Cost is too high: " << JumpThreadCost << "\n");
@@ -1416,8 +1385,7 @@ bool JumpThreading::ThreadEdge(BasicBlock *BB,
   else {
     DEBUG(dbgs() << "  Factoring out " << PredBBs.size()
           << " common predecessors.\n");
-    PredBB = SplitBlockPredecessors(BB, &PredBBs[0], PredBBs.size(),
-                                    ".thr_comm", this);
+    PredBB = SplitBlockPredecessors(BB, PredBBs, ".thr_comm", this);
   }
 
   // And finally, do it!
@@ -1461,7 +1429,8 @@ bool JumpThreading::ThreadEdge(BasicBlock *BB,
 
   // We didn't copy the terminator from BB over to NewBB, because there is now
   // an unconditional jump to SuccBB.  Insert the unconditional jump.
-  BranchInst::Create(SuccBB, NewBB);
+  BranchInst *NewBI =BranchInst::Create(SuccBB, NewBB);
+  NewBI->setDebugLoc(BB->getTerminator()->getDebugLoc());
 
   // Check to see if SuccBB has PHI nodes. If so, we need to add entries to the
   // PHI nodes for NewBB now.
@@ -1476,16 +1445,15 @@ bool JumpThreading::ThreadEdge(BasicBlock *BB,
   for (BasicBlock::iterator I = BB->begin(); I != BB->end(); ++I) {
     // Scan all uses of this instruction to see if it is used outside of its
     // block, and if so, record them in UsesToRename.
-    for (Value::use_iterator UI = I->use_begin(), E = I->use_end(); UI != E;
-         ++UI) {
-      Instruction *User = cast<Instruction>(*UI);
+    for (Use &U : I->uses()) {
+      Instruction *User = cast<Instruction>(U.getUser());
       if (PHINode *UserPN = dyn_cast<PHINode>(User)) {
-        if (UserPN->getIncomingBlock(UI) == BB)
+        if (UserPN->getIncomingBlock(U) == BB)
           continue;
       } else if (User->getParent() == BB)
         continue;
 
-      UsesToRename.push_back(&UI.getUse());
+      UsesToRename.push_back(&U);
     }
 
     // If there are no uses outside the block, we're done with this instruction.
@@ -1520,7 +1488,7 @@ bool JumpThreading::ThreadEdge(BasicBlock *BB,
   // At this point, the IR is fully up to date and consistent.  Do a quick scan
   // over the new instructions and zap any that are constants or dead.  This
   // frequently happens because of phi translation.
-  SimplifyInstructionsInBlock(NewBB, TD);
+  SimplifyInstructionsInBlock(NewBB, DL, TLI);
 
   // Threaded an edge!
   ++NumThreads;
@@ -1546,7 +1514,7 @@ bool JumpThreading::DuplicateCondBranchOnPHIIntoPred(BasicBlock *BB,
     return false;
   }
 
-  unsigned DuplicationCost = getJumpThreadDuplicationCost(BB);
+  unsigned DuplicationCost = getJumpThreadDuplicationCost(BB, Threshold);
   if (DuplicationCost > Threshold) {
     DEBUG(dbgs() << "  Not duplicating BB '" << BB->getName()
           << "' - Cost is too high: " << DuplicationCost << "\n");
@@ -1560,8 +1528,7 @@ bool JumpThreading::DuplicateCondBranchOnPHIIntoPred(BasicBlock *BB,
   else {
     DEBUG(dbgs() << "  Factoring out " << PredBBs.size()
           << " common predecessors.\n");
-    PredBB = SplitBlockPredecessors(BB, &PredBBs[0], PredBBs.size(),
-                                    ".thr_comm", this);
+    PredBB = SplitBlockPredecessors(BB, PredBBs, ".thr_comm", this);
   }
 
   // Okay, we decided to do this!  Clone all the instructions in BB onto the end
@@ -1574,7 +1541,7 @@ bool JumpThreading::DuplicateCondBranchOnPHIIntoPred(BasicBlock *BB,
   // can just clone the bits from BB into the end of the new PredBB.
   BranchInst *OldPredBranch = dyn_cast<BranchInst>(PredBB->getTerminator());
 
-  if (OldPredBranch == 0 || !OldPredBranch->isUnconditional()) {
+  if (!OldPredBranch || !OldPredBranch->isUnconditional()) {
     PredBB = SplitEdge(PredBB, BB, this);
     OldPredBranch = cast<BranchInst>(PredBB->getTerminator());
   }
@@ -1603,7 +1570,7 @@ bool JumpThreading::DuplicateCondBranchOnPHIIntoPred(BasicBlock *BB,
     // If this instruction can be simplified after the operands are updated,
     // just use the simplified value instead.  This frequently happens due to
     // phi translation.
-    if (Value *IV = SimplifyInstruction(New, TD)) {
+    if (Value *IV = SimplifyInstruction(New, DL)) {
       delete New;
       ValueMapping[BI] = IV;
     } else {
@@ -1631,16 +1598,15 @@ bool JumpThreading::DuplicateCondBranchOnPHIIntoPred(BasicBlock *BB,
   for (BasicBlock::iterator I = BB->begin(); I != BB->end(); ++I) {
     // Scan all uses of this instruction to see if it is used outside of its
     // block, and if so, record them in UsesToRename.
-    for (Value::use_iterator UI = I->use_begin(), E = I->use_end(); UI != E;
-         ++UI) {
-      Instruction *User = cast<Instruction>(*UI);
+    for (Use &U : I->uses()) {
+      Instruction *User = cast<Instruction>(U.getUser());
       if (PHINode *UserPN = dyn_cast<PHINode>(User)) {
-        if (UserPN->getIncomingBlock(UI) == BB)
+        if (UserPN->getIncomingBlock(U) == BB)
           continue;
       } else if (User->getParent() == BB)
         continue;
 
-      UsesToRename.push_back(&UI.getUse());
+      UsesToRename.push_back(&U);
     }
 
     // If there are no uses outside the block, we're done with this instruction.
@@ -1672,4 +1638,80 @@ bool JumpThreading::DuplicateCondBranchOnPHIIntoPred(BasicBlock *BB,
   return true;
 }
 
+/// TryToUnfoldSelect - Look for blocks of the form
+/// bb1:
+///   %a = select
+///   br bb
+///
+/// bb2:
+///   %p = phi [%a, %bb] ...
+///   %c = icmp %p
+///   br i1 %c
+///
+/// And expand the select into a branch structure if one of its arms allows %c
+/// to be folded. This later enables threading from bb1 over bb2.
+bool JumpThreading::TryToUnfoldSelect(CmpInst *CondCmp, BasicBlock *BB) {
+  BranchInst *CondBr = dyn_cast<BranchInst>(BB->getTerminator());
+  PHINode *CondLHS = dyn_cast<PHINode>(CondCmp->getOperand(0));
+  Constant *CondRHS = cast<Constant>(CondCmp->getOperand(1));
+
+  if (!CondBr || !CondBr->isConditional() || !CondLHS ||
+      CondLHS->getParent() != BB)
+    return false;
+
+  for (unsigned I = 0, E = CondLHS->getNumIncomingValues(); I != E; ++I) {
+    BasicBlock *Pred = CondLHS->getIncomingBlock(I);
+    SelectInst *SI = dyn_cast<SelectInst>(CondLHS->getIncomingValue(I));
 
+    // Look if one of the incoming values is a select in the corresponding
+    // predecessor.
+    if (!SI || SI->getParent() != Pred || !SI->hasOneUse())
+      continue;
+
+    BranchInst *PredTerm = dyn_cast<BranchInst>(Pred->getTerminator());
+    if (!PredTerm || !PredTerm->isUnconditional())
+      continue;
+
+    // Now check if one of the select values would allow us to constant fold the
+    // terminator in BB. We don't do the transform if both sides fold, those
+    // cases will be threaded in any case.
+    LazyValueInfo::Tristate LHSFolds =
+        LVI->getPredicateOnEdge(CondCmp->getPredicate(), SI->getOperand(1),
+                                CondRHS, Pred, BB);
+    LazyValueInfo::Tristate RHSFolds =
+        LVI->getPredicateOnEdge(CondCmp->getPredicate(), SI->getOperand(2),
+                                CondRHS, Pred, BB);
+    if ((LHSFolds != LazyValueInfo::Unknown ||
+         RHSFolds != LazyValueInfo::Unknown) &&
+        LHSFolds != RHSFolds) {
+      // Expand the select.
+      //
+      // Pred --
+      //  |    v
+      //  |  NewBB
+      //  |    |
+      //  |-----
+      //  v
+      // BB
+      BasicBlock *NewBB = BasicBlock::Create(BB->getContext(), "select.unfold",
+                                             BB->getParent(), BB);
+      // Move the unconditional branch to NewBB.
+      PredTerm->removeFromParent();
+      NewBB->getInstList().insert(NewBB->end(), PredTerm);
+      // Create a conditional branch and update PHI nodes.
+      BranchInst::Create(NewBB, BB, SI->getCondition(), Pred);
+      CondLHS->setIncomingValue(I, SI->getFalseValue());
+      CondLHS->addIncoming(SI->getTrueValue(), NewBB);
+      // The select is now dead.
+      SI->eraseFromParent();
+
+      // Update any other PHI nodes in BB.
+      for (BasicBlock::iterator BI = BB->begin();
+           PHINode *Phi = dyn_cast<PHINode>(BI); ++BI)
+        if (Phi != CondLHS)
+          Phi->addIncoming(Phi->getIncomingValueForBlock(Pred), NewBB);
+      return true;
+    }
+  }
+  return false;
+}