Fix Transforms/IndVarsSimplify/2006-09-20-LFTR-Crash.ll
[oota-llvm.git] / lib / Transforms / Scalar / IndVarSimplify.cpp
index fa81f81f7435043d09ee438df62f8170c4202099..1059159aadcc2b238b408e3aa68bf2174dce1b60 100644 (file)
@@ -1,17 +1,17 @@
 //===- IndVarSimplify.cpp - Induction Variable Elimination ----------------===//
-// 
+//
 //                     The LLVM Compiler Infrastructure
 //
 // This file was developed by the LLVM research group and is distributed under
 // the University of Illinois Open Source License. See LICENSE.TXT for details.
-// 
+//
 //===----------------------------------------------------------------------===//
 //
 // This transformation analyzes and transforms the induction variables (and
 // computations derived from them) into simpler forms suitable for subsequent
 // analysis and transformation.
 //
-// This transformation make the following changes to each loop with an
+// This transformation makes the following changes to each loop with an
 // identifiable induction variable:
 //   1. All loops are transformed to have a SINGLE canonical induction variable
 //      which starts at zero and steps by one.
 #include "llvm/Constants.h"
 #include "llvm/Instructions.h"
 #include "llvm/Type.h"
-#include "llvm/Analysis/ScalarEvolutionExpressions.h"
+#include "llvm/Analysis/ScalarEvolutionExpander.h"
 #include "llvm/Analysis/LoopInfo.h"
 #include "llvm/Support/CFG.h"
+#include "llvm/Support/GetElementPtrTypeIterator.h"
 #include "llvm/Transforms/Utils/Local.h"
-#include "Support/CommandLine.h"
-#include "Support/Statistic.h"
+#include "llvm/Support/CommandLine.h"
+#include "llvm/ADT/Statistic.h"
 using namespace llvm;
 
 namespace {
@@ -78,26 +79,26 @@ namespace {
       AU.addRequired<ScalarEvolution>();
       AU.addRequired<LoopInfo>();
       AU.addPreservedID(LoopSimplifyID);
+      AU.addPreservedID(LCSSAID);
       AU.setPreservesCFG();
     }
   private:
     void runOnLoop(Loop *L);
     void EliminatePointerRecurrence(PHINode *PN, BasicBlock *Preheader,
                                     std::set<Instruction*> &DeadInsts);
-    void LinearFunctionTestReplace(Loop *L, SCEV *IterationCount,
-                                   ScalarEvolutionRewriter &RW);
+    Instruction *LinearFunctionTestReplace(Loop *L, SCEV *IterationCount,
+                                           SCEVExpander &RW);
     void RewriteLoopExitValues(Loop *L);
 
     void DeleteTriviallyDeadInstructions(std::set<Instruction*> &Insts);
   };
-  RegisterOpt<IndVarSimplify> X("indvars", "Canonicalize Induction Variables");
+  RegisterPass<IndVarSimplify> X("indvars", "Canonicalize Induction Variables");
 }
 
-Pass *llvm::createIndVarSimplifyPass() {
+FunctionPass *llvm::createIndVarSimplifyPass() {
   return new IndVarSimplify();
 }
 
-
 /// DeleteTriviallyDeadInstructions - If any of the instructions is the
 /// specified set are trivially dead, delete them and see if this makes any of
 /// their operands subsequently dead.
@@ -111,7 +112,7 @@ DeleteTriviallyDeadInstructions(std::set<Instruction*> &Insts) {
         if (Instruction *U = dyn_cast<Instruction>(I->getOperand(i)))
           Insts.insert(U);
       SE->deleteInstructionFromRecords(I);
-      I->getParent()->getInstList().erase(I);
+      I->eraseFromParent();
       Changed = true;
     }
   }
@@ -121,17 +122,17 @@ DeleteTriviallyDeadInstructions(std::set<Instruction*> &Insts) {
 /// EliminatePointerRecurrence - Check to see if this is a trivial GEP pointer
 /// recurrence.  If so, change it into an integer recurrence, permitting
 /// analysis by the SCEV routines.
-void IndVarSimplify::EliminatePointerRecurrence(PHINode *PN, 
+void IndVarSimplify::EliminatePointerRecurrence(PHINode *PN,
                                                 BasicBlock *Preheader,
                                             std::set<Instruction*> &DeadInsts) {
   assert(PN->getNumIncomingValues() == 2 && "Noncanonicalized loop!");
   unsigned PreheaderIdx = PN->getBasicBlockIndex(Preheader);
   unsigned BackedgeIdx = PreheaderIdx^1;
   if (GetElementPtrInst *GEPI =
-      dyn_cast<GetElementPtrInst>(PN->getIncomingValue(BackedgeIdx)))
+          dyn_cast<GetElementPtrInst>(PN->getIncomingValue(BackedgeIdx)))
     if (GEPI->getOperand(0) == PN) {
-      assert(GEPI->getNumOperands() == 2 && "GEP types must mismatch!");
-          
+      assert(GEPI->getNumOperands() == 2 && "GEP types must match!");
+
       // Okay, we found a pointer recurrence.  Transform this pointer
       // recurrence into an integer recurrence.  Compute the value that gets
       // added to the pointer at every iteration.
@@ -140,20 +141,47 @@ void IndVarSimplify::EliminatePointerRecurrence(PHINode *PN,
       // Insert a new integer PHI node into the top of the block.
       PHINode *NewPhi = new PHINode(AddedVal->getType(),
                                     PN->getName()+".rec", PN);
-      NewPhi->addIncoming(Constant::getNullValue(NewPhi->getType()),
-                          Preheader);
+      NewPhi->addIncoming(Constant::getNullValue(NewPhi->getType()), Preheader);
+
       // Create the new add instruction.
-      Value *NewAdd = BinaryOperator::create(Instruction::Add, NewPhi,
-                                             AddedVal,
-                                             GEPI->getName()+".rec", GEPI);
+      Value *NewAdd = BinaryOperator::createAdd(NewPhi, AddedVal,
+                                                GEPI->getName()+".rec", GEPI);
       NewPhi->addIncoming(NewAdd, PN->getIncomingBlock(BackedgeIdx));
-          
+
       // Update the existing GEP to use the recurrence.
       GEPI->setOperand(0, PN->getIncomingValue(PreheaderIdx));
-          
+
       // Update the GEP to use the new recurrence we just inserted.
       GEPI->setOperand(1, NewAdd);
 
+      // If the incoming value is a constant expr GEP, try peeling out the array
+      // 0 index if possible to make things simpler.
+      if (ConstantExpr *CE = dyn_cast<ConstantExpr>(GEPI->getOperand(0)))
+        if (CE->getOpcode() == Instruction::GetElementPtr) {
+          unsigned NumOps = CE->getNumOperands();
+          assert(NumOps > 1 && "CE folding didn't work!");
+          if (CE->getOperand(NumOps-1)->isNullValue()) {
+            // Check to make sure the last index really is an array index.
+            gep_type_iterator GTI = gep_type_begin(CE);
+            for (unsigned i = 1, e = CE->getNumOperands()-1;
+                 i != e; ++i, ++GTI)
+              /*empty*/;
+            if (isa<SequentialType>(*GTI)) {
+              // Pull the last index out of the constant expr GEP.
+              std::vector<Value*> CEIdxs(CE->op_begin()+1, CE->op_end()-1);
+              Constant *NCE = ConstantExpr::getGetElementPtr(CE->getOperand(0),
+                                                             CEIdxs);
+              GetElementPtrInst *NGEPI =
+                new GetElementPtrInst(NCE, Constant::getNullValue(Type::IntTy),
+                                      NewAdd, GEPI->getName(), GEPI);
+              GEPI->replaceAllUsesWith(NGEPI);
+              GEPI->eraseFromParent();
+              GEPI = NGEPI;
+            }
+          }
+        }
+
+
       // Finally, if there are any other users of the PHI node, we must
       // insert a new GEP instruction that uses the pre-incremented version
       // of the induction amount.
@@ -181,12 +209,18 @@ void IndVarSimplify::EliminatePointerRecurrence(PHINode *PN,
 /// variable.  This pass is able to rewrite the exit tests of any loop where the
 /// SCEV analysis can determine a loop-invariant trip count of the loop, which
 /// is actually a much broader range than just linear tests.
-void IndVarSimplify::LinearFunctionTestReplace(Loop *L, SCEV *IterationCount,
-                                               ScalarEvolutionRewriter &RW) {
+///
+/// This method returns a "potentially dead" instruction whose computation chain
+/// should be deleted when convenient.
+Instruction *IndVarSimplify::LinearFunctionTestReplace(Loop *L,
+                                                       SCEV *IterationCount,
+                                                       SCEVExpander &RW) {
   // Find the exit block for the loop.  We can currently only handle loops with
   // a single exit.
-  if (L->getExitBlocks().size() != 1) return;
-  BasicBlock *ExitBlock = L->getExitBlocks()[0];
+  std::vector<BasicBlock*> ExitBlocks;
+  L->getExitBlocks(ExitBlocks);
+  if (ExitBlocks.size() != 1) return 0;
+  BasicBlock *ExitBlock = ExitBlocks[0];
 
   // Make sure there is only one predecessor block in the loop.
   BasicBlock *ExitingBlock = 0;
@@ -196,19 +230,17 @@ void IndVarSimplify::LinearFunctionTestReplace(Loop *L, SCEV *IterationCount,
       if (ExitingBlock == 0)
         ExitingBlock = *PI;
       else
-        return;  // Multiple exits from loop to this block.
+        return 0;  // Multiple exits from loop to this block.
     }
   assert(ExitingBlock && "Loop info is broken");
 
   if (!isa<BranchInst>(ExitingBlock->getTerminator()))
-    return;  // Can't rewrite non-branch yet
+    return 0;  // Can't rewrite non-branch yet
   BranchInst *BI = cast<BranchInst>(ExitingBlock->getTerminator());
   assert(BI->isConditional() && "Must be conditional to be part of loop!");
 
-  std::set<Instruction*> InstructionsToDelete;
-  if (Instruction *Cond = dyn_cast<Instruction>(BI->getCondition()))
-    InstructionsToDelete.insert(Cond);
-
+  Instruction *PotentiallyDeadInst = dyn_cast<Instruction>(BI->getCondition());
+  
   // If the exiting block is not the same as the backedge block, we must compare
   // against the preincremented value, otherwise we prefer to compare against
   // the post-incremented value.
@@ -235,7 +267,7 @@ void IndVarSimplify::LinearFunctionTestReplace(Loop *L, SCEV *IterationCount,
 
   // Expand the code for the iteration count into the preheader of the loop.
   BasicBlock *Preheader = L->getLoopPreheader();
-  Value *ExitCnt = RW.ExpandCodeFor(TripCount, Preheader->getTerminator(),
+  Value *ExitCnt = RW.expandCodeFor(TripCount, Preheader->getTerminator(),
                                     IndVar->getType());
 
   // Insert a new setne or seteq instruction before the branch.
@@ -249,8 +281,7 @@ void IndVarSimplify::LinearFunctionTestReplace(Loop *L, SCEV *IterationCount,
   BI->setCondition(Cond);
   ++NumLFTR;
   Changed = true;
-
-  DeleteTriviallyDeadInstructions(InstructionsToDelete);
+  return PotentiallyDeadInst;
 }
 
 
@@ -264,57 +295,115 @@ void IndVarSimplify::RewriteLoopExitValues(Loop *L) {
 
   // Scan all of the instructions in the loop, looking at those that have
   // extra-loop users and which are recurrences.
-  ScalarEvolutionRewriter Rewriter(*SE, *LI);
+  SCEVExpander Rewriter(*SE, *LI);
 
   // We insert the code into the preheader of the loop if the loop contains
   // multiple exit blocks, or in the exit block if there is exactly one.
   BasicBlock *BlockToInsertInto;
-  if (L->getExitBlocks().size() == 1)
-    BlockToInsertInto = L->getExitBlocks()[0];
+  std::vector<BasicBlock*> ExitBlocks;
+  L->getExitBlocks(ExitBlocks);
+  if (ExitBlocks.size() == 1)
+    BlockToInsertInto = ExitBlocks[0];
   else
     BlockToInsertInto = Preheader;
   BasicBlock::iterator InsertPt = BlockToInsertInto->begin();
   while (isa<PHINode>(InsertPt)) ++InsertPt;
 
+  bool HasConstantItCount = isa<SCEVConstant>(SE->getIterationCount(L));
+
   std::set<Instruction*> InstructionsToDelete;
-  
+
   for (unsigned i = 0, e = L->getBlocks().size(); i != e; ++i)
     if (LI->getLoopFor(L->getBlocks()[i]) == L) {  // Not in a subloop...
       BasicBlock *BB = L->getBlocks()[i];
-      for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I)
+      for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E;) {
         if (I->getType()->isInteger()) {      // Is an integer instruction
           SCEVHandle SH = SE->getSCEV(I);
-          if (SH->hasComputableLoopEvolution(L)) {   // Varies predictably
+          if (SH->hasComputableLoopEvolution(L) ||    // Varies predictably
+              HasConstantItCount) {
             // Find out if this predictably varying value is actually used
             // outside of the loop.  "extra" as opposed to "intra".
-            std::vector<User*> ExtraLoopUsers;
+            std::vector<Instruction*> ExtraLoopUsers;
             for (Value::use_iterator UI = I->use_begin(), E = I->use_end();
-                 UI != E; ++UI)
-              if (!L->contains(cast<Instruction>(*UI)->getParent()))
-                ExtraLoopUsers.push_back(*UI);
+                 UI != E; ++UI) {
+              Instruction *User = cast<Instruction>(*UI);
+              if (!L->contains(User->getParent())) {
+                // If this is a PHI node in the exit block and we're inserting,
+                // into the exit block, it must have a single entry.  In this
+                // case, we can't insert the code after the PHI and have the PHI
+                // still use it.  Instead, don't insert the the PHI.
+                if (PHINode *PN = dyn_cast<PHINode>(User)) {
+                  // FIXME: This is a case where LCSSA pessimizes code, this
+                  // should be fixed better.
+                  if (PN->getNumOperands() == 2 && 
+                      PN->getParent() == BlockToInsertInto)
+                    continue;
+                }
+                ExtraLoopUsers.push_back(User);
+              }
+            }
+            
             if (!ExtraLoopUsers.empty()) {
               // Okay, this instruction has a user outside of the current loop
               // and varies predictably in this loop.  Evaluate the value it
               // contains when the loop exits, and insert code for it.
-              SCEVHandle ExitValue = SE->getSCEVAtScope(I,L->getParentLoop());
+              SCEVHandle ExitValue = SE->getSCEVAtScope(I, L->getParentLoop());
               if (!isa<SCEVCouldNotCompute>(ExitValue)) {
                 Changed = true;
                 ++NumReplaced;
-                Value *NewVal = Rewriter.ExpandCodeFor(ExitValue, InsertPt,
+                // Remember the next instruction.  The rewriter can move code
+                // around in some cases.
+                BasicBlock::iterator NextI = I; ++NextI;
+
+                Value *NewVal = Rewriter.expandCodeFor(ExitValue, InsertPt,
                                                        I->getType());
 
                 // Rewrite any users of the computed value outside of the loop
                 // with the newly computed value.
-                for (unsigned i = 0, e = ExtraLoopUsers.size(); i != e; ++i)
-                  ExtraLoopUsers[i]->replaceUsesOfWith(I, NewVal);
+                for (unsigned i = 0, e = ExtraLoopUsers.size(); i != e; ++i) {
+                  PHINode* PN = dyn_cast<PHINode>(ExtraLoopUsers[i]);
+                  if (PN && PN->getNumOperands() == 2 &&
+                      !L->contains(PN->getParent())) {
+                    // We're dealing with an LCSSA Phi.  Handle it specially.
+                    Instruction* LCSSAInsertPt = BlockToInsertInto->begin();
+                    
+                    Instruction* NewInstr = dyn_cast<Instruction>(NewVal);
+                    if (NewInstr && !isa<PHINode>(NewInstr) &&
+                        !L->contains(NewInstr->getParent()))
+                      for (unsigned j = 0; j < NewInstr->getNumOperands(); ++j){
+                        Instruction* PredI = 
+                                 dyn_cast<Instruction>(NewInstr->getOperand(j));
+                        if (PredI && L->contains(PredI->getParent())) {
+                          PHINode* NewLCSSA = new PHINode(PredI->getType(),
+                                                    PredI->getName() + ".lcssa",
+                                                    LCSSAInsertPt);
+                          NewLCSSA->addIncoming(PredI, 
+                                     BlockToInsertInto->getSinglePredecessor());
+                        
+                          NewInstr->replaceUsesOfWith(PredI, NewLCSSA);
+                        }
+                      }
+                    
+                    PN->replaceAllUsesWith(NewVal);
+                    PN->eraseFromParent();
+                  } else {
+                    ExtraLoopUsers[i]->replaceUsesOfWith(I, NewVal);
+                  }
+                }
 
                 // If this instruction is dead now, schedule it to be removed.
                 if (I->use_empty())
                   InstructionsToDelete.insert(I);
+                I = NextI;
+                continue;  // Skip the ++I
               }
             }
           }
         }
+
+        // Next instruction.  Continue instruction skips this.
+        ++I;
+      }
     }
 
   DeleteTriviallyDeadInstructions(InstructionsToDelete);
@@ -328,12 +417,13 @@ void IndVarSimplify::runOnLoop(Loop *L) {
   //
   BasicBlock *Header    = L->getHeader();
   BasicBlock *Preheader = L->getLoopPreheader();
-  
+
   std::set<Instruction*> DeadInsts;
-  for (BasicBlock::iterator I = Header->begin();
-       PHINode *PN = dyn_cast<PHINode>(I); ++I)
+  for (BasicBlock::iterator I = Header->begin(); isa<PHINode>(I); ++I) {
+    PHINode *PN = cast<PHINode>(I);
     if (isa<PointerType>(PN->getType()))
       EliminatePointerRecurrence(PN, Preheader, DeadInsts);
+  }
 
   if (!DeadInsts.empty())
     DeleteTriviallyDeadInstructions(DeadInsts);
@@ -357,14 +447,21 @@ void IndVarSimplify::runOnLoop(Loop *L) {
   // auxillary induction variables.
   std::vector<std::pair<PHINode*, SCEVHandle> > IndVars;
 
-  for (BasicBlock::iterator I = Header->begin();
-       PHINode *PN = dyn_cast<PHINode>(I); ++I)
+  for (BasicBlock::iterator I = Header->begin(); isa<PHINode>(I); ++I) {
+    PHINode *PN = cast<PHINode>(I);
     if (PN->getType()->isInteger()) {  // FIXME: when we have fast-math, enable!
       SCEVHandle SCEV = SE->getSCEV(PN);
       if (SCEV->hasComputableLoopEvolution(L))
-        if (SE->shouldSubstituteIndVar(SCEV))  // HACK!
-          IndVars.push_back(std::make_pair(PN, SCEV));
+        // FIXME: It is an extremely bad idea to indvar substitute anything more
+        // complex than affine induction variables.  Doing so will put expensive
+        // polynomial evaluations inside of the loop, and the str reduction pass
+        // currently can only reduce affine polynomials.  For now just disable
+        // indvar subst on anything more complex than an affine addrec.
+        if (SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(SCEV))
+          if (AR->isAffine())
+            IndVars.push_back(std::make_pair(PN, SCEV));
     }
+  }
 
   // If there are no induction variables in the loop, there is nothing more to
   // do.
@@ -372,10 +469,15 @@ void IndVarSimplify::runOnLoop(Loop *L) {
     // Actually, if we know how many times the loop iterates, lets insert a
     // canonical induction variable to help subsequent passes.
     if (!isa<SCEVCouldNotCompute>(IterationCount)) {
-      ScalarEvolutionRewriter Rewriter(*SE, *LI);
-      Rewriter.GetOrInsertCanonicalInductionVariable(L,
+      SCEVExpander Rewriter(*SE, *LI);
+      Rewriter.getOrInsertCanonicalInductionVariable(L,
                                                      IterationCount->getType());
-      LinearFunctionTestReplace(L, IterationCount, Rewriter);
+      if (Instruction *I = LinearFunctionTestReplace(L, IterationCount,
+                                                     Rewriter)) {
+        std::set<Instruction*> InstructionsToDelete;
+        InstructionsToDelete.insert(I);
+        DeleteTriviallyDeadInstructions(InstructionsToDelete);
+      }
     }
     return;
   }
@@ -392,29 +494,18 @@ void IndVarSimplify::runOnLoop(Loop *L) {
   }
 
   // Create a rewriter object which we'll use to transform the code with.
-  ScalarEvolutionRewriter Rewriter(*SE, *LI);
+  SCEVExpander Rewriter(*SE, *LI);
 
   // Now that we know the largest of of the induction variables in this loop,
   // insert a canonical induction variable of the largest size.
   LargestType = LargestType->getUnsignedVersion();
-  Value *IndVar = Rewriter.GetOrInsertCanonicalInductionVariable(L,LargestType);
+  Value *IndVar = Rewriter.getOrInsertCanonicalInductionVariable(L,LargestType);
   ++NumInserted;
   Changed = true;
 
   if (!isa<SCEVCouldNotCompute>(IterationCount))
-    LinearFunctionTestReplace(L, IterationCount, Rewriter);
-
-#if 0
-  // If there were induction variables of other sizes, cast the primary
-  // induction variable to the right size for them, avoiding the need for the
-  // code evaluation methods to insert induction variables of different sizes.
-  // FIXME!
-  if (DifferingSizes) {
-    std::map<unsigned, Value*> InsertedSizes;
-    for (unsigned i = 0, e = IndVars.size(); i != e; ++i) {
-    }    
-  }
-#endif
+    if (Instruction *DI = LinearFunctionTestReplace(L, IterationCount,Rewriter))
+      DeadInsts.insert(DI);
 
   // Now that we have a canonical induction variable, we can rewrite any
   // recurrences in terms of the induction variable.  Start with the auxillary
@@ -422,10 +513,35 @@ void IndVarSimplify::runOnLoop(Loop *L) {
   BasicBlock::iterator InsertPt = Header->begin();
   while (isa<PHINode>(InsertPt)) ++InsertPt;
 
+  // If there were induction variables of other sizes, cast the primary
+  // induction variable to the right size for them, avoiding the need for the
+  // code evaluation methods to insert induction variables of different sizes.
+  if (DifferingSizes) {
+    bool InsertedSizes[17] = { false };
+    InsertedSizes[LargestType->getPrimitiveSize()] = true;
+    for (unsigned i = 0, e = IndVars.size(); i != e; ++i)
+      if (!InsertedSizes[IndVars[i].first->getType()->getPrimitiveSize()]) {
+        PHINode *PN = IndVars[i].first;
+        InsertedSizes[PN->getType()->getPrimitiveSize()] = true;
+        Instruction *New = new CastInst(IndVar,
+                                        PN->getType()->getUnsignedVersion(),
+                                        "indvar", InsertPt);
+        Rewriter.addInsertedValue(New, SE->getSCEV(New));
+      }
+  }
+
+  // If there were induction variables of other sizes, cast the primary
+  // induction variable to the right size for them, avoiding the need for the
+  // code evaluation methods to insert induction variables of different sizes.
+  std::map<unsigned, Value*> InsertedSizes;
   while (!IndVars.empty()) {
     PHINode *PN = IndVars.back().first;
-    Value *NewVal = Rewriter.ExpandCodeFor(IndVars.back().second, InsertPt,
+    Value *NewVal = Rewriter.expandCodeFor(IndVars.back().second, InsertPt,
                                            PN->getType());
+    std::string Name = PN->getName();
+    PN->setName("");
+    NewVal->setName(Name);
+
     // Replace the old PHI Node with the inserted computation.
     PN->replaceAllUsesWith(NewVal);
     DeadInsts.insert(PN);
@@ -434,21 +550,34 @@ void IndVarSimplify::runOnLoop(Loop *L) {
     Changed = true;
   }
 
-  DeleteTriviallyDeadInstructions(DeadInsts);
-
-  // TODO: In the future we could replace all instructions in the loop body with
-  // simpler expressions.  It's not clear how useful this would be though or if
-  // the code expansion cost would be worth it!  We probably shouldn't do this
-  // until we have a way to reuse expressions already in the code.
 #if 0
+  // Now replace all derived expressions in the loop body with simpler
+  // expressions.
   for (unsigned i = 0, e = L->getBlocks().size(); i != e; ++i)
     if (LI->getLoopFor(L->getBlocks()[i]) == L) {  // Not in a subloop...
       BasicBlock *BB = L->getBlocks()[i];
       for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I)
         if (I->getType()->isInteger() &&      // Is an integer instruction
+            !I->use_empty() &&
             !Rewriter.isInsertedInstruction(I)) {
           SCEVHandle SH = SE->getSCEV(I);
+          Value *V = Rewriter.expandCodeFor(SH, I, I->getType());
+          if (V != I) {
+            if (isa<Instruction>(V)) {
+              std::string Name = I->getName();
+              I->setName("");
+              V->setName(Name);
+            }
+            I->replaceAllUsesWith(V);
+            DeadInsts.insert(I);
+            ++NumRemoved;
+            Changed = true;
+          }
         }
     }
 #endif
+
+  DeleteTriviallyDeadInstructions(DeadInsts);
+  
+  if (mustPreserveAnalysisID(LCSSAID)) assert(L->isLCSSAForm());
 }