[msan] Fix handling of va_arg overflow area on x86_64.
[oota-llvm.git] / lib / Transforms / Instrumentation / ThreadSanitizer.cpp
index af2e7b9544f044ff805d3f1b951cad12719d54f0..e19ceba4d1669963e9af84fd53204e3be7d1e624 100644 (file)
 #define DEBUG_TYPE "tsan"
 
 #include "llvm/Transforms/Instrumentation.h"
-#include "BlackList.h"
 #include "llvm/ADT/SmallSet.h"
 #include "llvm/ADT/SmallString.h"
 #include "llvm/ADT/SmallVector.h"
 #include "llvm/ADT/Statistic.h"
 #include "llvm/ADT/StringExtras.h"
-#include "llvm/DataLayout.h"
-#include "llvm/Function.h"
-#include "llvm/IRBuilder.h"
-#include "llvm/Intrinsics.h"
-#include "llvm/LLVMContext.h"
-#include "llvm/Metadata.h"
-#include "llvm/Module.h"
+#include "llvm/IR/DataLayout.h"
+#include "llvm/IR/Function.h"
+#include "llvm/IR/IRBuilder.h"
+#include "llvm/IR/IntrinsicInst.h"
+#include "llvm/IR/Intrinsics.h"
+#include "llvm/IR/LLVMContext.h"
+#include "llvm/IR/Metadata.h"
+#include "llvm/IR/Module.h"
+#include "llvm/IR/Type.h"
 #include "llvm/Support/CommandLine.h"
 #include "llvm/Support/Debug.h"
 #include "llvm/Support/MathExtras.h"
 #include "llvm/Support/raw_ostream.h"
 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
 #include "llvm/Transforms/Utils/ModuleUtils.h"
-#include "llvm/Type.h"
+#include "llvm/Transforms/Utils/SpecialCaseList.h"
 
 using namespace llvm;
 
@@ -56,6 +57,9 @@ static cl::opt<bool>  ClInstrumentFuncEntryExit(
 static cl::opt<bool>  ClInstrumentAtomics(
     "tsan-instrument-atomics", cl::init(true),
     cl::desc("Instrument atomics"), cl::Hidden);
+static cl::opt<bool>  ClInstrumentMemIntrinsics(
+    "tsan-instrument-memintrinsics", cl::init(true),
+    cl::desc("Instrument memintrinsics (memset/memcpy/memmove)"), cl::Hidden);
 
 STATISTIC(NumInstrumentedReads, "Number of instrumented reads");
 STATISTIC(NumInstrumentedWrites, "Number of instrumented writes");
@@ -63,6 +67,7 @@ STATISTIC(NumOmittedReadsBeforeWrite,
           "Number of reads ignored due to following writes");
 STATISTIC(NumAccessesWithBadSize, "Number of accesses with bad size");
 STATISTIC(NumInstrumentedVtableWrites, "Number of vtable ptr writes");
+STATISTIC(NumInstrumentedVtableReads, "Number of vtable ptr reads");
 STATISTIC(NumOmittedReadsFromConstantGlobals,
           "Number of reads from constant globals");
 STATISTIC(NumOmittedReadsFromVtable, "Number of vtable reads");
@@ -85,14 +90,16 @@ struct ThreadSanitizer : public FunctionPass {
   void initializeCallbacks(Module &M);
   bool instrumentLoadOrStore(Instruction *I);
   bool instrumentAtomic(Instruction *I);
+  bool instrumentMemIntrinsic(Instruction *I);
   void chooseInstructionsToInstrument(SmallVectorImpl<Instruction*> &Local,
                                       SmallVectorImpl<Instruction*> &All);
   bool addrPointsToConstantData(Value *Addr);
   int getMemoryAccessFuncIndex(Value *Addr);
 
   DataLayout *TD;
+  Type *IntptrTy;
   SmallString<64> BlacklistFile;
-  OwningPtr<BlackList> BL;
+  OwningPtr<SpecialCaseList> BL;
   IntegerType *OrdTy;
   // Callbacks to run-time library are computed in doInitialization.
   Function *TsanFuncEntry;
@@ -108,6 +115,8 @@ struct ThreadSanitizer : public FunctionPass {
   Function *TsanAtomicThreadFence;
   Function *TsanAtomicSignalFence;
   Function *TsanVptrUpdate;
+  Function *TsanVptrLoad;
+  Function *MemmoveFn, *MemcpyFn, *MemsetFn;
 };
 }  // namespace
 
@@ -196,20 +205,33 @@ void ThreadSanitizer::initializeCallbacks(Module &M) {
   TsanVptrUpdate = checkInterfaceFunction(M.getOrInsertFunction(
       "__tsan_vptr_update", IRB.getVoidTy(), IRB.getInt8PtrTy(),
       IRB.getInt8PtrTy(), NULL));
+  TsanVptrLoad = checkInterfaceFunction(M.getOrInsertFunction(
+      "__tsan_vptr_read", IRB.getVoidTy(), IRB.getInt8PtrTy(), NULL));
   TsanAtomicThreadFence = checkInterfaceFunction(M.getOrInsertFunction(
       "__tsan_atomic_thread_fence", IRB.getVoidTy(), OrdTy, NULL));
   TsanAtomicSignalFence = checkInterfaceFunction(M.getOrInsertFunction(
       "__tsan_atomic_signal_fence", IRB.getVoidTy(), OrdTy, NULL));
+
+  MemmoveFn = checkInterfaceFunction(M.getOrInsertFunction(
+    "memmove", IRB.getInt8PtrTy(), IRB.getInt8PtrTy(),
+    IRB.getInt8PtrTy(), IntptrTy, NULL));
+  MemcpyFn = checkInterfaceFunction(M.getOrInsertFunction(
+    "memcpy", IRB.getInt8PtrTy(), IRB.getInt8PtrTy(), IRB.getInt8PtrTy(),
+    IntptrTy, NULL));
+  MemsetFn = checkInterfaceFunction(M.getOrInsertFunction(
+    "memset", IRB.getInt8PtrTy(), IRB.getInt8PtrTy(), IRB.getInt32Ty(),
+    IntptrTy, NULL));
 }
 
 bool ThreadSanitizer::doInitialization(Module &M) {
   TD = getAnalysisIfAvailable<DataLayout>();
   if (!TD)
     return false;
-  BL.reset(new BlackList(BlacklistFile));
+  BL.reset(SpecialCaseList::createOrDie(BlacklistFile));
 
   // Always insert a call to __tsan_init into the module's CTORs.
   IRBuilder<> IRB(M.getContext());
+  IntptrTy = IRB.getIntPtrTy(TD);
   Value *TsanInit = M.getOrInsertFunction("__tsan_init",
                                           IRB.getVoidTy(), NULL);
   appendToGlobalCtors(M, cast<Function>(TsanInit), 0);
@@ -309,6 +331,7 @@ bool ThreadSanitizer::runOnFunction(Function &F) {
   SmallVector<Instruction*, 8> AllLoadsAndStores;
   SmallVector<Instruction*, 8> LocalLoadsAndStores;
   SmallVector<Instruction*, 8> AtomicAccesses;
+  SmallVector<Instruction*, 8> MemIntrinCalls;
   bool Res = false;
   bool HasCalls = false;
 
@@ -325,6 +348,8 @@ bool ThreadSanitizer::runOnFunction(Function &F) {
       else if (isa<ReturnInst>(BI))
         RetVec.push_back(BI);
       else if (isa<CallInst>(BI) || isa<InvokeInst>(BI)) {
+        if (isa<MemIntrinsic>(BI))
+          MemIntrinCalls.push_back(BI);
         HasCalls = true;
         chooseInstructionsToInstrument(LocalLoadsAndStores, AllLoadsAndStores);
       }
@@ -348,6 +373,11 @@ bool ThreadSanitizer::runOnFunction(Function &F) {
       Res |= instrumentAtomic(AtomicAccesses[i]);
     }
 
+  if (ClInstrumentMemIntrinsics)
+    for (size_t i = 0, n = MemIntrinCalls.size(); i < n; ++i) {
+      Res |= instrumentMemIntrinsic(MemIntrinCalls[i]);
+    }
+
   // Instrument function entry/exit points if there were instrumented accesses.
   if ((Res || HasCalls) && ClInstrumentFuncEntryExit) {
     IRBuilder<> IRB(F.getEntryBlock().getFirstNonPHI());
@@ -386,6 +416,12 @@ bool ThreadSanitizer::instrumentLoadOrStore(Instruction *I) {
     NumInstrumentedVtableWrites++;
     return true;
   }
+  if (!IsWrite && isVtableAccess(I)) {
+    IRB.CreateCall(TsanVptrLoad,
+                   IRB.CreatePointerCast(Addr, IRB.getInt8PtrTy()));
+    NumInstrumentedVtableReads++;
+    return true;
+  }
   Value *OnAccessFunc = IsWrite ? TsanWrite[Idx] : TsanRead[Idx];
   IRB.CreateCall(OnAccessFunc, IRB.CreatePointerCast(Addr, IRB.getInt8PtrTy()));
   if (IsWrite) NumInstrumentedWrites++;
@@ -423,6 +459,32 @@ static ConstantInt *createFailOrdering(IRBuilder<> *IRB, AtomicOrdering ord) {
   return IRB->getInt32(v);
 }
 
+// If a memset intrinsic gets inlined by the code gen, we will miss races on it.
+// So, we either need to ensure the intrinsic is not inlined, or instrument it.
+// We do not instrument memset/memmove/memcpy intrinsics (too complicated),
+// instead we simply replace them with regular function calls, which are then
+// intercepted by the run-time.
+// Since tsan is running after everyone else, the calls should not be
+// replaced back with intrinsics. If that becomes wrong at some point,
+// we will need to call e.g. __tsan_memset to avoid the intrinsics.
+bool ThreadSanitizer::instrumentMemIntrinsic(Instruction *I) {
+  IRBuilder<> IRB(I);
+  if (MemSetInst *M = dyn_cast<MemSetInst>(I)) {
+    IRB.CreateCall3(MemsetFn,
+      IRB.CreatePointerCast(M->getArgOperand(0), IRB.getInt8PtrTy()),
+      IRB.CreateIntCast(M->getArgOperand(1), IRB.getInt32Ty(), false),
+      IRB.CreateIntCast(M->getArgOperand(2), IntptrTy, false));
+    I->eraseFromParent();
+  } else if (MemTransferInst *M = dyn_cast<MemTransferInst>(I)) {
+    IRB.CreateCall3(isa<MemCpyInst>(M) ? MemcpyFn : MemmoveFn,
+      IRB.CreatePointerCast(M->getArgOperand(0), IRB.getInt8PtrTy()),
+      IRB.CreatePointerCast(M->getArgOperand(1), IRB.getInt8PtrTy()),
+      IRB.CreateIntCast(M->getArgOperand(2), IntptrTy, false));
+    I->eraseFromParent();
+  }
+  return false;
+}
+
 // Both llvm and ThreadSanitizer atomic operations are based on C++11/C1x
 // standards.  For background see C++11 standard.  A slightly older, publically
 // available draft of the standard (not entirely up-to-date, but close enough
@@ -517,7 +579,7 @@ int ThreadSanitizer::getMemoryAccessFuncIndex(Value *Addr) {
     // Ignore all unusual sizes.
     return -1;
   }
-  size_t Idx = CountTrailingZeros_32(TypeSize / 8);
+  size_t Idx = countTrailingZeros(TypeSize / 8);
   assert(Idx < kNumberOfAccessSizes);
   return Idx;
 }