I was convinced that it's ok to allow a second i8 return value
[oota-llvm.git] / lib / Target / X86 / X86CallingConv.td
index 3206e183eb7bbaf0426c9e77ffae0499e501dbb0..7f99203a83331c005bce08a7c965033850c0e70c 100644 (file)
@@ -22,20 +22,27 @@ class CCIfSubtarget<string F, CCAction A>
 
 // Return-value conventions common to all X86 CC's.
 def RetCC_X86Common : CallingConv<[
-  // Scalar values are returned in AX first, then DX.
-  CCIfType<[i8] , CCAssignToReg<[AL]>>,
-  CCIfType<[i16], CCAssignToReg<[AX]>>,
+  // Scalar values are returned in AX first, then DX.  For i8, the ABI
+  // requires the values to be in AL and AH, however this code uses AL and DL
+  // instead. This is because using AH for the second register conflicts with
+  // the way LLVM does multiple return values -- a return of {i16,i8} would end
+  // up in AX and AH, which overlap. Front-ends wishing to conform to the ABI
+  // for functions that return two i8 values are currently expected to pack the
+  // values into an i16 (which uses AX, and thus AL:AH).
+  CCIfType<[i8] , CCAssignToReg<[AL, DL]>>,
+  CCIfType<[i16], CCAssignToReg<[AX, DX]>>,
   CCIfType<[i32], CCAssignToReg<[EAX, EDX]>>,
   CCIfType<[i64], CCAssignToReg<[RAX, RDX]>>,
   
-  // Vector types are returned in XMM0 and XMM1, when they fit.  If the target
-  // doesn't have XMM registers, it won't have vector types.
+  // Vector types are returned in XMM0 and XMM1, when they fit.  XMMM2 and XMM3
+  // can only be used by ABI non-compliant code. If the target doesn't have XMM
+  // registers, it won't have vector types.
   CCIfType<[v16i8, v8i16, v4i32, v2i64, v4f32, v2f64],
-            CCAssignToReg<[XMM0,XMM1]>>,
+            CCAssignToReg<[XMM0,XMM1,XMM2,XMM3]>>,
 
   // MMX vector types are always returned in MM0. If the target doesn't have
   // MM0, it doesn't support these vector types.
-  CCIfType<[v8i8, v4i16, v2i32, v1i64], CCAssignToReg<[MM0]>>,
+  CCIfType<[v8i8, v4i16, v2i32, v1i64, v2f32], CCAssignToReg<[MM0]>>,
 
   // Long double types are always returned in ST0 (even with SSE).
   CCIfType<[f80], CCAssignToReg<[ST0, ST1]>>
@@ -43,10 +50,14 @@ def RetCC_X86Common : CallingConv<[
 
 // X86-32 C return-value convention.
 def RetCC_X86_32_C : CallingConv<[
-  // The X86-32 calling convention returns FP values in ST0, otherwise it is the
-  // same as the common X86 calling conv.
-  CCIfType<[f32], CCAssignToReg<[ST0, ST1]>>,
-  CCIfType<[f64], CCAssignToReg<[ST0, ST1]>>,
+  // The X86-32 calling convention returns FP values in ST0, unless marked
+  // with "inreg" (used here to distinguish one kind of reg from another,
+  // weirdly; this is really the sse-regparm calling convention) in which
+  // case they use XMM0, otherwise it is the same as the common X86 calling
+  // conv.
+  CCIfInReg<CCIfSubtarget<"hasSSE2()",
+    CCIfType<[f32, f64], CCAssignToReg<[XMM0,XMM1,XMM2]>>>>,
+  CCIfType<[f32,f64], CCAssignToReg<[ST0, ST1]>>,
   CCDelegateTo<RetCC_X86Common>
 ]>;
 
@@ -61,29 +72,30 @@ def RetCC_X86_32_Fast : CallingConv<[
   CCDelegateTo<RetCC_X86Common>
 ]>;
 
-// X86-32 SSEregparm return-value convention.
-def RetCC_X86_32_SSE : CallingConv<[
-  // The X86-32 sseregparm calling convention returns FP values in XMM0 if the
-  // target has SSE2, otherwise it is the C calling convention.
-  CCIfType<[f32], CCIfSubtarget<"hasSSE2()", CCAssignToReg<[XMM0]>>>,
-  CCIfType<[f64], CCIfSubtarget<"hasSSE2()", CCAssignToReg<[XMM0]>>>,
-  CCDelegateTo<RetCC_X86Common>
-]>;
-
 // X86-64 C return-value convention.
 def RetCC_X86_64_C : CallingConv<[
   // The X86-64 calling convention always returns FP values in XMM0.
-  CCIfType<[f32], CCAssignToReg<[XMM0]>>,
-  CCIfType<[f64], CCAssignToReg<[XMM0]>>,
+  CCIfType<[f32], CCAssignToReg<[XMM0, XMM1]>>,
+  CCIfType<[f64], CCAssignToReg<[XMM0, XMM1]>>,
+
+  // MMX vector types are always returned in XMM0 except for v1i64 which is
+  // returned in RAX. This disagrees with ABI documentation but is bug
+  // compatible with gcc.
+  CCIfType<[v1i64], CCAssignToReg<[RAX]>>,
+  CCIfType<[v8i8, v4i16, v2i32, v2f32], CCAssignToReg<[XMM0, XMM1]>>,
   CCDelegateTo<RetCC_X86Common>
 ]>;
 
 // X86-Win64 C return-value convention.
 def RetCC_X86_Win64_C : CallingConv<[
-  // The X86-Win64 calling convention always returns __m64 values in RAX
+  // The X86-Win64 calling convention always returns __m64 values in RAX.
   CCIfType<[v8i8, v4i16, v2i32, v1i64], CCAssignToReg<[RAX]>>,
 
-  // Otherwise, everything is the same as 'norma' X86-64 C CC
+  // And FP in XMM0 only.
+  CCIfType<[f32], CCAssignToReg<[XMM0]>>,
+  CCIfType<[f64], CCAssignToReg<[XMM0]>>,
+
+  // Otherwise, everything is the same as 'normal' X86-64 C CC.
   CCDelegateTo<RetCC_X86_64_C>
 ]>;
 
@@ -92,8 +104,6 @@ def RetCC_X86_Win64_C : CallingConv<[
 def RetCC_X86_32 : CallingConv<[
   // If FastCC, use RetCC_X86_32_Fast.
   CCIfCC<"CallingConv::Fast", CCDelegateTo<RetCC_X86_32_Fast>>,
-  // If SSECC, use RetCC_X86_32_SSE.
-  CCIfCC<"CallingConv::X86_SSECall", CCDelegateTo<RetCC_X86_32_SSE>>,
   // Otherwise, use RetCC_X86_32_C.
   CCDelegateTo<RetCC_X86_32_C>
 ]>;
@@ -101,8 +111,7 @@ def RetCC_X86_32 : CallingConv<[
 // This is the root return-value convention for the X86-64 backend.
 def RetCC_X86_64 : CallingConv<[
   // Mingw64 and native Win64 use Win64 CC
-  CCIfSubtarget<"isTargetMingw()", CCDelegateTo<RetCC_X86_Win64_C>>,
-  CCIfSubtarget<"isTargetWindows()", CCDelegateTo<RetCC_X86_Win64_C>>,
+  CCIfSubtarget<"isTargetWin64()", CCDelegateTo<RetCC_X86_Win64_C>>,
 
   // Otherwise, drop to normal X86-64 CC
   CCDelegateTo<RetCC_X86_64_C>
@@ -134,12 +143,21 @@ def CC_X86_64_C : CallingConv<[
   
   // The first 8 FP/Vector arguments are passed in XMM registers.
   CCIfType<[f32, f64, v16i8, v8i16, v4i32, v2i64, v4f32, v2f64],
-              CCAssignToReg<[XMM0, XMM1, XMM2, XMM3, XMM4, XMM5, XMM6, XMM7]>>,
-
-  // The first 8 MMX vector arguments are passed in GPRs.
-  CCIfType<[v8i8, v4i16, v2i32, v1i64],
-              CCAssignToReg<[RDI, RSI, RDX, RCX, R8 , R9 ]>>,
-
+            CCIfSubtarget<"hasSSE1()",
+            CCAssignToReg<[XMM0, XMM1, XMM2, XMM3, XMM4, XMM5, XMM6, XMM7]>>>,
+
+  // The first 8 MMX (except for v1i64) vector arguments are passed in XMM
+  // registers on Darwin.
+  CCIfType<[v8i8, v4i16, v2i32, v2f32],
+            CCIfSubtarget<"isTargetDarwin()",
+            CCIfSubtarget<"hasSSE2()",
+            CCAssignToReg<[XMM0, XMM1, XMM2, XMM3, XMM4, XMM5, XMM6, XMM7]>>>>,
+
+  // The first 8 v1i64 vector arguments are passed in GPRs on Darwin.
+  CCIfType<[v1i64],
+            CCIfSubtarget<"isTargetDarwin()",
+            CCAssignToReg<[RDI, RSI, RDX, RCX, R8]>>>,
   // Integer/FP values get stored in stack slots that are 8 bytes in size and
   // 8-byte aligned if there are no more registers to hold them.
   CCIfType<[i32, i64, f32, f64], CCAssignToStack<8, 8>>,
@@ -152,33 +170,44 @@ def CC_X86_64_C : CallingConv<[
   CCIfType<[v16i8, v8i16, v4i32, v2i64, v4f32, v2f64], CCAssignToStack<16, 16>>,
 
   // __m64 vectors get 8-byte stack slots that are 8-byte aligned.
-  CCIfType<[v8i8, v4i16, v2i32, v1i64], CCAssignToStack<8, 8>>
+  CCIfType<[v8i8, v4i16, v2i32, v1i64, v2f32], CCAssignToStack<8, 8>>
 ]>;
 
 // Calling convention used on Win64
 def CC_X86_Win64_C : CallingConv<[
-  // FIXME: Handle byval stuff
-  // FIXME: Handle fp80
-  // FIXME: Handle shadowed arguments
+  // FIXME: Handle byval stuff.
+  // FIXME: Handle varargs.
 
   // Promote i8/i16 arguments to i32.
   CCIfType<[i8, i16], CCPromoteToType<i32>>,
 
+  // The 'nest' parameter, if any, is passed in R10.
+  CCIfNest<CCAssignToReg<[R10]>>,
+
   // The first 4 integer arguments are passed in integer registers.
-  CCIfType<[i32], CCAssignToReg<[ECX, EDX, R8D, R9D]>>,
-  CCIfType<[i64], CCAssignToReg<[RCX, RDX, R8 , R9 ]>>,
+  CCIfType<[i32], CCAssignToRegWithShadow<[ECX , EDX , R8D , R9D ],
+                                          [XMM0, XMM1, XMM2, XMM3]>>,
+  CCIfType<[i64], CCAssignToRegWithShadow<[RCX , RDX , R8  , R9  ],
+                                          [XMM0, XMM1, XMM2, XMM3]>>,
 
   // The first 4 FP/Vector arguments are passed in XMM registers.
   CCIfType<[f32, f64, v16i8, v8i16, v4i32, v2i64, v4f32, v2f64],
-              CCAssignToReg<[XMM0, XMM1, XMM2, XMM3]>>,
+           CCAssignToRegWithShadow<[XMM0, XMM1, XMM2, XMM3],
+                                   [RCX , RDX , R8  , R9  ]>>,
 
   // The first 4 MMX vector arguments are passed in GPRs.
-  CCIfType<[v8i8, v4i16, v2i32, v1i64], CCAssignToReg<[RCX, RDX, R8, R9]>>,
+  CCIfType<[v8i8, v4i16, v2i32, v1i64, v2f32],
+           CCAssignToRegWithShadow<[RCX , RDX , R8  , R9  ],
+                                   [XMM0, XMM1, XMM2, XMM3]>>,
 
   // Integer/FP values get stored in stack slots that are 8 bytes in size and
   // 16-byte aligned if there are no more registers to hold them.
   CCIfType<[i32, i64, f32, f64], CCAssignToStack<8, 16>>,
 
+  // Long doubles get stack slots whose size and alignment depends on the
+  // subtarget.
+  CCIfType<[f80], CCAssignToStack<0, 0>>,
+
   // Vectors get 16-byte stack slots that are 16-byte aligned.
   CCIfType<[v16i8, v8i16, v4i32, v2i64, v4f32, v2f64], CCAssignToStack<16, 16>>,
 
@@ -204,12 +233,20 @@ def CC_X86_64_TailCall : CallingConv<[
   
   // The first 8 FP/Vector arguments are passed in XMM registers.
   CCIfType<[f32, f64, v16i8, v8i16, v4i32, v2i64, v4f32, v2f64],
-              CCAssignToReg<[XMM0, XMM1, XMM2, XMM3, XMM4, XMM5, XMM6, XMM7]>>,
-
-  // The first 8 MMX vector arguments are passed in GPRs.
-  CCIfType<[v8i8, v4i16, v2i32, v1i64],
-              CCAssignToReg<[RDI, RSI, RDX, RCX, R8]>>,
-
+            CCIfSubtarget<"hasSSE1()",
+            CCAssignToReg<[XMM0, XMM1, XMM2, XMM3, XMM4, XMM5, XMM6, XMM7]>>>,
+
+  // The first 8 MMX (except for v1i64) vector arguments are passed in XMM
+  // registers on Darwin.
+  CCIfType<[v8i8, v4i16, v2i32, v2f32],
+            CCIfSubtarget<"isTargetDarwin()",
+            CCAssignToReg<[XMM0, XMM1, XMM2, XMM3, XMM4, XMM5, XMM6, XMM7]>>>,
+  // The first 8 v1i64 vector arguments are passed in GPRs on Darwin.
+  CCIfType<[v1i64],
+            CCIfSubtarget<"isTargetDarwin()",
+            CCAssignToReg<[RDI, RSI, RDX, RCX, R8]>>>,
   // Integer/FP values get stored in stack slots that are 8 bytes in size and
   // 8-byte aligned if there are no more registers to hold them.
   CCIfType<[i32, i64, f32, f64], CCAssignToStack<8, 8>>,
@@ -235,9 +272,15 @@ def CC_X86_32_Common : CallingConv<[
 
   // The first 3 float or double arguments, if marked 'inreg' and if the call
   // is not a vararg call and if SSE2 is available, are passed in SSE registers.
-  CCIfNotVarArg<CCIfInReg<CCIfType<[f32,f64], CCIfSubtarget<"hasSSE2()",
+  CCIfNotVarArg<CCIfInReg<CCIfType<[f32,f64],
+                CCIfSubtarget<"hasSSE2()",
                 CCAssignToReg<[XMM0,XMM1,XMM2]>>>>>,
 
+  // The first 3 __m64 (except for v1i64) vector arguments are passed in mmx
+  // registers if the call is not a vararg call.
+  CCIfNotVarArg<CCIfType<[v8i8, v4i16, v2i32, v2f32],
+                CCAssignToReg<[MM0, MM1, MM2]>>>,
+
   // Integer/Float values get stored in stack slots that are 4 bytes in
   // size and 4-byte aligned.
   CCIfType<[i32, f32], CCAssignToStack<4, 4>>,
@@ -257,8 +300,7 @@ def CC_X86_32_Common : CallingConv<[
 
   // __m64 vectors get 8-byte stack slots that are 4-byte aligned. They are
   // passed in the parameter area.
-  CCIfType<[v8i8, v4i16, v2i32, v1i64], CCAssignToStack<8, 4>>
-]>;
+  CCIfType<[v8i8, v4i16, v2i32, v1i64], CCAssignToStack<8, 4>>]>;
 
 def CC_X86_32_C : CallingConv<[
   // Promote i8/i16 arguments to i32.
@@ -275,23 +317,26 @@ def CC_X86_32_C : CallingConv<[
   CCDelegateTo<CC_X86_32_Common>
 ]>;
 
-/// Same as C calling convention except for non-free ECX which is used for storing 
-/// a potential pointer to the tail called function.
-def CC_X86_32_TailCall : CallingConv<[
+def CC_X86_32_FastCall : CallingConv<[
   // Promote i8/i16 arguments to i32.
   CCIfType<[i8, i16], CCPromoteToType<i32>>,
 
-  // Nested function trampolines are currently not supported by fastcc.
-  
-  // The first 3 integer arguments, if marked 'inreg' and if the call is not
-  // a vararg call, are passed in integer registers.
-  CCIfNotVarArg<CCIfInReg<CCIfType<[i32], CCAssignToReg<[EAX, EDX]>>>>,
+  // The 'nest' parameter, if any, is passed in EAX.
+  CCIfNest<CCAssignToReg<[EAX]>>,
+
+  // The first 2 integer arguments are passed in ECX/EDX
+  CCIfType<[i32], CCAssignToReg<[ECX, EDX]>>,
 
   // Otherwise, same as everything else.
   CCDelegateTo<CC_X86_32_Common>
 ]>;
 
-def CC_X86_32_FastCall : CallingConv<[
+def CC_X86_32_FastCC : CallingConv<[
+  // Handles byval parameters.  Note that we can't rely on the delegation
+  // to CC_X86_32_Common for this because that happens after code that
+  // puts arguments in registers.
+  CCIfByVal<CCPassByVal<4, 4>>,
+
   // Promote i8/i16 arguments to i32.
   CCIfType<[i8, i16], CCPromoteToType<i32>>,
 
@@ -301,6 +346,15 @@ def CC_X86_32_FastCall : CallingConv<[
   // The first 2 integer arguments are passed in ECX/EDX
   CCIfType<[i32], CCAssignToReg<[ECX, EDX]>>,
 
+  // The first 3 float or double arguments, if the call is not a vararg
+  // call and if SSE2 is available, are passed in SSE registers.
+  CCIfNotVarArg<CCIfType<[f32,f64],
+                CCIfSubtarget<"hasSSE2()",
+                CCAssignToReg<[XMM0,XMM1,XMM2]>>>>,
+
+  // Doubles get 8-byte slots that are 8-byte aligned.
+  CCIfType<[f64], CCAssignToStack<8, 8>>,
+
   // Otherwise, same as everything else.
   CCDelegateTo<CC_X86_32_Common>
 ]>;