Start using the AsmPrinter shared SwitchSection code. This allows the X86
[oota-llvm.git] / lib / Target / X86 / X86AsmPrinter.cpp
index 23cf78d83bc7074771c71cf475f007e1a956f439..dc12d87d96b0bf7eddee0af2d7b23aee781fe954 100644 (file)
-//===-- X86AsmPrinter.cpp - Convert X86 LLVM code to Intel assembly -------===//
-// 
+//===-- X86AsmPrinter.cpp - Convert X86 LLVM IR to X86 assembly -----------===//
+//
 //                     The LLVM Compiler Infrastructure
 //
 // This file was developed by the LLVM research group and is distributed under
 // the University of Illinois Open Source License. See LICENSE.TXT for details.
-// 
+//
 //===----------------------------------------------------------------------===//
 //
-// This file contains a printer that converts from our internal representation
-// of machine-dependent LLVM code to Intel-format assembly language. This
-// printer is the output mechanism used by `llc' and `lli -print-machineinstrs'
-// on X86.
+// This file the shared super class printer that converts from our internal
+// representation of machine-dependent LLVM code to Intel and AT&T format
+// assembly language.
+// This printer is the output mechanism used by `llc'.
 //
 //===----------------------------------------------------------------------===//
 
+#include "X86ATTAsmPrinter.h"
+#include "X86IntelAsmPrinter.h"
 #include "X86.h"
-#include "X86InstrInfo.h"
-#include "X86TargetMachine.h"
-#include "llvm/Constants.h"
-#include "llvm/DerivedTypes.h"
 #include "llvm/Module.h"
+#include "llvm/Type.h"
 #include "llvm/Assembly/Writer.h"
-#include "llvm/CodeGen/MachineCodeEmitter.h"
 #include "llvm/CodeGen/MachineConstantPool.h"
-#include "llvm/CodeGen/MachineFunctionPass.h"
-#include "llvm/CodeGen/MachineInstr.h"
-#include "llvm/CodeGen/ValueTypes.h"
-#include "llvm/Target/TargetMachine.h"
 #include "llvm/Support/Mangler.h"
-#include "Support/Statistic.h"
-#include "Support/StringExtras.h"
-#include "Support/CommandLine.h"
+#include "llvm/Support/CommandLine.h"
 using namespace llvm;
-
-namespace {
-  Statistic<> EmittedInsts("asm-printer", "Number of machine instrs printed");
-
-  // FIXME: This should be automatically picked up by autoconf from the C
-  // frontend
-  cl::opt<bool> EmitCygwin("enable-cygwin-compatible-output", cl::Hidden,
-         cl::desc("Emit X86 assembly code suitable for consumption by cygwin"));
-
-  struct GasBugWorkaroundEmitter : public MachineCodeEmitter {
-    GasBugWorkaroundEmitter(std::ostream& o) 
-      : O(o), OldFlags(O.flags()), firstByte(true) {
-      O << std::hex;
-    }
-
-    ~GasBugWorkaroundEmitter() {
-      O.flags(OldFlags);
-    }
-
-    virtual void emitByte(unsigned char B) {
-      if (!firstByte) O << "\n\t";
-      firstByte = false;
-      O << ".byte 0x" << (unsigned) B;
-    }
-
-    // These should never be called
-    virtual void emitWord(unsigned W) { assert(0); }
-    virtual uint64_t getGlobalValueAddress(GlobalValue *V) { abort(); }
-    virtual uint64_t getGlobalValueAddress(const std::string &Name) { abort(); }
-    virtual uint64_t getConstantPoolEntryAddress(unsigned Index) { abort(); }
-    virtual uint64_t getCurrentPCValue() { abort(); }
-    virtual uint64_t forceCompilationOf(Function *F) { abort(); }
-
-  private:
-    std::ostream& O;
-    std::ios::fmtflags OldFlags;
-    bool firstByte;
-  };
-
-  struct X86AsmPrinter : public MachineFunctionPass {
-    /// Output stream on which we're printing assembly code.
-    ///
-    std::ostream &O;
-
-    /// Target machine description which we query for reg. names, data
-    /// layout, etc.
-    ///
-    TargetMachine &TM;
-
-    /// Name-mangler for global names.
-    ///
-    Mangler *Mang;
-
-    X86AsmPrinter(std::ostream &o, TargetMachine &tm) : O(o), TM(tm) { }
-
-    /// Cache of mangled name for current function. This is
-    /// recalculated at the beginning of each call to
-    /// runOnMachineFunction().
-    ///
-    std::string CurrentFnName;
-
-    virtual const char *getPassName() const {
-      return "X86 Assembly Printer";
-    }
-
-    /// printInstruction - This method is automatically generated by tablegen
-    /// from the instruction set description.  This method returns true if the
-    /// machine instruction was sufficiently described to print it, otherwise it
-    /// returns false.
-    bool printInstruction(const MachineInstr *MI);
-
-    // This method is used by the tablegen'erated instruction printer.
-    void printOperand(const MachineInstr *MI, unsigned OpNo, MVT::ValueType VT) {
-      const MachineOperand &MO = MI->getOperand(OpNo);
-      if (MO.getType() == MachineOperand::MO_MachineRegister) {
-        assert(MRegisterInfo::isPhysicalRegister(MO.getReg())&&"Not physref??");
-        // Bug Workaround: See note in Printer::doInitialization about %.
-        O << "%" << TM.getRegisterInfo()->get(MO.getReg()).Name;
-      } else {
-        printOp(MO);
-      }
-    }
-
-    void printCallOperand(const MachineInstr *MI, unsigned OpNo, MVT::ValueType VT) {
-      printOp(MI->getOperand(OpNo), true); // Don't print "OFFSET".
-    }
-
-    void printMemoryOperand(const MachineInstr *MI, unsigned OpNo,
-                            MVT::ValueType VT) {
-      switch (VT) {
-      default: assert(0 && "Unknown arg size!");
-      case MVT::i8:   O << "BYTE PTR "; break;
-      case MVT::i16:  O << "WORD PTR "; break;
-      case MVT::i32:
-      case MVT::f32:  O << "DWORD PTR "; break;
-      case MVT::i64:
-      case MVT::f64:  O << "QWORD PTR "; break;
-      case MVT::f80:  O << "XWORD PTR "; break;
-      }
-      printMemReference(MI, OpNo);
-    }
-
-    void printMachineInstruction(const MachineInstr *MI);
-    void printOp(const MachineOperand &MO, bool elideOffsetKeyword = false);
-    void printMemReference(const MachineInstr *MI, unsigned Op);
-    void printConstantPool(MachineConstantPool *MCP);
-    bool runOnMachineFunction(MachineFunction &F);    
-    bool doInitialization(Module &M);
-    bool doFinalization(Module &M);
-    void emitGlobalConstant(const Constant* CV);
-    void emitConstantValueOnly(const Constant *CV);
-  };
-} // end of anonymous namespace
-
-/// createX86CodePrinterPass - Returns a pass that prints the X86
-/// assembly code for a MachineFunction to the given output stream,
-/// using the given target machine description.  This should work
-/// regardless of whether the function is in SSA form.
-///
-FunctionPass *llvm::createX86CodePrinterPass(std::ostream &o,TargetMachine &tm){
-  return new X86AsmPrinter(o, tm);
-}
-
-
-// Include the auto-generated portion of the assembly writer.
-#include "X86GenAsmWriter.inc"
-
-
-/// toOctal - Convert the low order bits of X into an octal digit.
-///
-static inline char toOctal(int X) {
-  return (X&7)+'0';
-}
-
-/// getAsCString - Return the specified array as a C compatible
-/// string, only if the predicate isStringCompatible is true.
-///
-static void printAsCString(std::ostream &O, const ConstantArray *CVA) {
-  assert(CVA->isString() && "Array is not string compatible!");
-
-  O << "\"";
-  for (unsigned i = 0; i != CVA->getNumOperands(); ++i) {
-    unsigned char C = cast<ConstantInt>(CVA->getOperand(i))->getRawValue();
-
-    if (C == '"') {
-      O << "\\\"";
-    } else if (C == '\\') {
-      O << "\\\\";
-    } else if (isprint(C)) {
-      O << C;
-    } else {
-      switch(C) {
-      case '\b': O << "\\b"; break;
-      case '\f': O << "\\f"; break;
-      case '\n': O << "\\n"; break;
-      case '\r': O << "\\r"; break;
-      case '\t': O << "\\t"; break;
-      default:
-        O << '\\';
-        O << toOctal(C >> 6);
-        O << toOctal(C >> 3);
-        O << toOctal(C >> 0);
-        break;
-      }
-    }
+using namespace x86;
+
+Statistic<> llvm::x86::EmittedInsts("asm-printer",
+                                    "Number of machine instrs printed");
+
+enum AsmWriterFlavorTy { att, intel };
+cl::opt<AsmWriterFlavorTy>
+AsmWriterFlavor("x86-asm-syntax",
+                cl::desc("Choose style of code to emit from X86 backend:"),
+                cl::values(
+                           clEnumVal(att,   "  Emit AT&T-style assembly"),
+                           clEnumVal(intel, "  Emit Intel-style assembly"),
+                           clEnumValEnd),
+                cl::init(att));
+
+/// doInitialization
+bool X86SharedAsmPrinter::doInitialization(Module& M) {
+  bool leadingUnderscore = false;
+  forCygwin = false;
+  const std::string& TT = M.getTargetTriple();
+  if (TT.length() > 5) {
+    forCygwin = TT.find("cygwin") != std::string::npos ||
+                TT.find("mingw")  != std::string::npos;
+    forDarwin = TT.find("darwin") != std::string::npos;
+  } else if (TT.empty()) {
+#if defined(__CYGWIN__) || defined(__MINGW32__)
+    forCygwin = true;
+#elif defined(__APPLE__)
+    forDarwin = true;
+#elif defined(_WIN32)
+    leadingUnderscore = true;
+#else
+    leadingUnderscore = false;
+#endif
   }
-  O << "\"";
-}
 
-// Print out the specified constant, without a storage class.  Only the
-// constants valid in constant expressions can occur here.
-void X86AsmPrinter::emitConstantValueOnly(const Constant *CV) {
-  if (CV->isNullValue())
-    O << "0";
-  else if (const ConstantBool *CB = dyn_cast<ConstantBool>(CV)) {
-    assert(CB == ConstantBool::True);
-    O << "1";
-  } else if (const ConstantSInt *CI = dyn_cast<ConstantSInt>(CV))
-    if (((CI->getValue() << 32) >> 32) == CI->getValue())
-      O << CI->getValue();
-    else
-      O << (unsigned long long)CI->getValue();
-  else if (const ConstantUInt *CI = dyn_cast<ConstantUInt>(CV))
-    O << CI->getValue();
-  else if (const GlobalValue *GV = dyn_cast<GlobalValue>(CV))
-    // This is a constant address for a global variable or function.  Use the
-    // name of the variable or function as the address value.
-    O << Mang->getValueName(GV);
-  else if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(CV)) {
-    const TargetData &TD = TM.getTargetData();
-    switch(CE->getOpcode()) {
-    case Instruction::GetElementPtr: {
-      // generate a symbolic expression for the byte address
-      const Constant *ptrVal = CE->getOperand(0);
-      std::vector<Value*> idxVec(CE->op_begin()+1, CE->op_end());
-      if (unsigned Offset = TD.getIndexedOffset(ptrVal->getType(), idxVec)) {
-        O << "(";
-        emitConstantValueOnly(ptrVal);
-        O << ") + " << Offset;
-      } else {
-        emitConstantValueOnly(ptrVal);
-      }
-      break;
-    }
-    case Instruction::Cast: {
-      // Support only non-converting or widening casts for now, that is, ones
-      // that do not involve a change in value.  This assertion is really gross,
-      // and may not even be a complete check.
-      Constant *Op = CE->getOperand(0);
-      const Type *OpTy = Op->getType(), *Ty = CE->getType();
+  if (leadingUnderscore || forCygwin || forDarwin)
+    GlobalPrefix = "_";
 
-      // Remember, kids, pointers on x86 can be losslessly converted back and
-      // forth into 32-bit or wider integers, regardless of signedness. :-P
-      assert(((isa<PointerType>(OpTy)
-               && (Ty == Type::LongTy || Ty == Type::ULongTy
-                   || Ty == Type::IntTy || Ty == Type::UIntTy))
-              || (isa<PointerType>(Ty)
-                  && (OpTy == Type::LongTy || OpTy == Type::ULongTy
-                      || OpTy == Type::IntTy || OpTy == Type::UIntTy))
-              || (((TD.getTypeSize(Ty) >= TD.getTypeSize(OpTy))
-                   && OpTy->isLosslesslyConvertibleTo(Ty))))
-             && "FIXME: Don't yet support this kind of constant cast expr");
-      O << "(";
-      emitConstantValueOnly(Op);
-      O << ")";
-      break;
-    }
-    case Instruction::Add:
-      O << "(";
-      emitConstantValueOnly(CE->getOperand(0));
-      O << ") + (";
-      emitConstantValueOnly(CE->getOperand(1));
-      O << ")";
-      break;
-    default:
-      assert(0 && "Unsupported operator!");
-    }
-  } else {
-    assert(0 && "Unknown constant value!");
-  }
-}
-
-// Print a constant value or values, with the appropriate storage class as a
-// prefix.
-void X86AsmPrinter::emitGlobalConstant(const Constant *CV) {  
-  const TargetData &TD = TM.getTargetData();
-
-  if (CV->isNullValue()) {
-    O << "\t.zero\t " << TD.getTypeSize(CV->getType()) << "\n";      
-    return;
-  } else if (const ConstantArray *CVA = dyn_cast<ConstantArray>(CV)) {
-    if (CVA->isString()) {
-      O << "\t.ascii\t";
-      printAsCString(O, CVA);
-      O << "\n";
-    } else { // Not a string.  Print the values in successive locations
-      for (unsigned i = 0, e = CVA->getNumOperands(); i != e; ++i)
-        emitGlobalConstant(CVA->getOperand(i));
-    }
-    return;
-  } else if (const ConstantStruct *CVS = dyn_cast<ConstantStruct>(CV)) {
-    // Print the fields in successive locations. Pad to align if needed!
-    const StructLayout *cvsLayout = TD.getStructLayout(CVS->getType());
-    unsigned sizeSoFar = 0;
-    for (unsigned i = 0, e = CVS->getNumOperands(); i != e; ++i) {
-      const Constant* field = CVS->getOperand(i);
-
-      // Check if padding is needed and insert one or more 0s.
-      unsigned fieldSize = TD.getTypeSize(field->getType());
-      unsigned padSize = ((i == e-1? cvsLayout->StructSize
-                           : cvsLayout->MemberOffsets[i+1])
-                          - cvsLayout->MemberOffsets[i]) - fieldSize;
-      sizeSoFar += fieldSize + padSize;
-
-      // Now print the actual field value
-      emitGlobalConstant(field);
-
-      // Insert the field padding unless it's zero bytes...
-      if (padSize)
-        O << "\t.zero\t " << padSize << "\n";      
-    }
-    assert(sizeSoFar == cvsLayout->StructSize &&
-           "Layout of constant struct may be incorrect!");
-    return;
-  } else if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CV)) {
-    // FP Constants are printed as integer constants to avoid losing
-    // precision...
-    double Val = CFP->getValue();
-    switch (CFP->getType()->getTypeID()) {
-    default: assert(0 && "Unknown floating point type!");
-    case Type::FloatTyID: {
-      union FU {                            // Abide by C TBAA rules
-        float FVal;
-        unsigned UVal;
-      } U;
-      U.FVal = Val;
-      O << ".long\t" << U.UVal << "\t# float " << Val << "\n";
-      return;
-    }
-    case Type::DoubleTyID: {
-      union DU {                            // Abide by C TBAA rules
-        double FVal;
-        uint64_t UVal;
-      } U;
-      U.FVal = Val;
-      O << ".quad\t" << U.UVal << "\t# double " << Val << "\n";
-      return;
-    }
-    }
+  if (forDarwin) {
+    AlignmentIsInBytes = false;
+    Data64bitsDirective = 0;       // we can't emit a 64-bit unit
+    ZeroDirective = "\t.space\t";  // ".space N" emits N zeros.
+    PrivateGlobalPrefix = "L";     // Marker for constant pool idxs
   }
 
-  const Type *type = CV->getType();
-  O << "\t";
-  switch (type->getTypeID()) {
-  case Type::BoolTyID: case Type::UByteTyID: case Type::SByteTyID:
-    O << ".byte";
-    break;
-  case Type::UShortTyID: case Type::ShortTyID:
-    O << ".word";
-    break;
-  case Type::FloatTyID: case Type::PointerTyID:
-  case Type::UIntTyID: case Type::IntTyID:
-    O << ".long";
-    break;
-  case Type::DoubleTyID:
-  case Type::ULongTyID: case Type::LongTyID:
-    O << ".quad";
-    break;
-  default:
-    assert (0 && "Can't handle printing this type of thing");
-    break;
-  }
-  O << "\t";
-  emitConstantValueOnly(CV);
-  O << "\n";
+  return AsmPrinter::doInitialization(M);
 }
 
 /// printConstantPool - Print to the current output stream assembly
@@ -374,278 +78,69 @@ void X86AsmPrinter::emitGlobalConstant(const Constant *CV) {
 /// used to print out constants which have been "spilled to memory" by
 /// the code generator.
 ///
-void X86AsmPrinter::printConstantPool(MachineConstantPool *MCP) {
+void X86SharedAsmPrinter::printConstantPool(MachineConstantPool *MCP) {
   const std::vector<Constant*> &CP = MCP->getConstants();
   const TargetData &TD = TM.getTargetData();
+
   if (CP.empty()) return;
 
-  for (unsigned i = 0, e = CP.size(); i != e; ++i) {
+  if (forDarwin) {
+    O << "\t.const\n";
+  } else {
     O << "\t.section .rodata\n";
-    O << "\t.align " << (unsigned)TD.getTypeAlignment(CP[i]->getType())
-      << "\n";
-    O << ".CPI" << CurrentFnName << "_" << i << ":\t\t\t\t\t#"
-      << *CP[i] << "\n";
-    emitGlobalConstant(CP[i]);
   }
-}
-
-/// runOnMachineFunction - This uses the printMachineInstruction()
-/// method to print assembly for each instruction.
-///
-bool X86AsmPrinter::runOnMachineFunction(MachineFunction &MF) {
-  O << "\n\n";
-  // What's my mangled name?
-  CurrentFnName = Mang->getValueName(MF.getFunction());
-
-  // Print out constants referenced by the function
-  printConstantPool(MF.getConstantPool());
-
-  // Print out labels for the function.
-  O << "\t.text\n";
-  O << "\t.align 16\n";
-  O << "\t.globl\t" << CurrentFnName << "\n";
-  if (!EmitCygwin)
-    O << "\t.type\t" << CurrentFnName << ", @function\n";
-  O << CurrentFnName << ":\n";
-
-  // Print out code for the function.
-  for (MachineFunction::const_iterator I = MF.begin(), E = MF.end();
-       I != E; ++I) {
-    // Print a label for the basic block.
-    O << ".LBB" << CurrentFnName << "_" << I->getNumber() << ":\t# "
-      << I->getBasicBlock()->getName() << "\n";
-    for (MachineBasicBlock::const_iterator II = I->begin(), E = I->end();
-         II != E; ++II) {
-      // Print the assembly for the instruction.
-      O << "\t";
-      printMachineInstruction(II);
-    }
-  }
-
-  // We didn't modify anything.
-  return false;
-}
-
-static bool isScale(const MachineOperand &MO) {
-  return MO.isImmediate() &&
-    (MO.getImmedValue() == 1 || MO.getImmedValue() == 2 ||
-     MO.getImmedValue() == 4 || MO.getImmedValue() == 8);
-}
-
-static bool isMem(const MachineInstr *MI, unsigned Op) {
-  if (MI->getOperand(Op).isFrameIndex()) return true;
-  if (MI->getOperand(Op).isConstantPoolIndex()) return true;
-  return Op+4 <= MI->getNumOperands() &&
-    MI->getOperand(Op  ).isRegister() && isScale(MI->getOperand(Op+1)) &&
-    MI->getOperand(Op+2).isRegister() && MI->getOperand(Op+3).isImmediate();
-}
-
-
-
-void X86AsmPrinter::printOp(const MachineOperand &MO,
-                            bool elideOffsetKeyword /* = false */) {
-  const MRegisterInfo &RI = *TM.getRegisterInfo();
-  switch (MO.getType()) {
-  case MachineOperand::MO_VirtualRegister:
-    if (Value *V = MO.getVRegValueOrNull()) {
-      O << "<" << V->getName() << ">";
-      return;
-    }
-    // FALLTHROUGH
-  case MachineOperand::MO_MachineRegister:
-    if (MRegisterInfo::isPhysicalRegister(MO.getReg()))
-      // Bug Workaround: See note in Printer::doInitialization about %.
-      O << "%" << RI.get(MO.getReg()).Name;
+  
+  for (unsigned i = 0, e = CP.size(); i != e; ++i) {
+    // FIXME: force doubles to be naturally aligned.  We should handle this
+    // more correctly in the future.
+    if (CP[i]->getType() == Type::DoubleTy)
+      emitAlignment(3);
     else
-      O << "%reg" << MO.getReg();
-    return;
-
-  case MachineOperand::MO_SignExtendedImmed:
-  case MachineOperand::MO_UnextendedImmed:
-    O << (int)MO.getImmedValue();
-    return;
-  case MachineOperand::MO_MachineBasicBlock: {
-    MachineBasicBlock *MBBOp = MO.getMachineBasicBlock();
-    O << ".LBB" << Mang->getValueName(MBBOp->getParent()->getFunction())
-      << "_" << MBBOp->getNumber () << "\t# "
-      << MBBOp->getBasicBlock ()->getName ();
-    return;
-  }
-  case MachineOperand::MO_PCRelativeDisp:
-    std::cerr << "Shouldn't use addPCDisp() when building X86 MachineInstrs";
-    abort ();
-    return;
-  case MachineOperand::MO_GlobalAddress:
-    if (!elideOffsetKeyword)
-      O << "OFFSET ";
-    O << Mang->getValueName(MO.getGlobal());
-    return;
-  case MachineOperand::MO_ExternalSymbol:
-    O << MO.getSymbolName();
-    return;
-  default:
-    O << "<unknown operand type>"; return;    
-  }
-}
-
-void X86AsmPrinter::printMemReference(const MachineInstr *MI, unsigned Op) {
-  assert(isMem(MI, Op) && "Invalid memory reference!");
-
-  if (MI->getOperand(Op).isFrameIndex()) {
-    O << "[frame slot #" << MI->getOperand(Op).getFrameIndex();
-    if (MI->getOperand(Op+3).getImmedValue())
-      O << " + " << MI->getOperand(Op+3).getImmedValue();
-    O << "]";
-    return;
-  } else if (MI->getOperand(Op).isConstantPoolIndex()) {
-    O << "[.CPI" << CurrentFnName << "_"
-      << MI->getOperand(Op).getConstantPoolIndex();
-    if (MI->getOperand(Op+3).getImmedValue())
-      O << " + " << MI->getOperand(Op+3).getImmedValue();
-    O << "]";
-    return;
-  }
-
-  const MachineOperand &BaseReg  = MI->getOperand(Op);
-  int ScaleVal                   = MI->getOperand(Op+1).getImmedValue();
-  const MachineOperand &IndexReg = MI->getOperand(Op+2);
-  int DispVal                    = MI->getOperand(Op+3).getImmedValue();
-
-  O << "[";
-  bool NeedPlus = false;
-  if (BaseReg.getReg()) {
-    printOp(BaseReg);
-    NeedPlus = true;
-  }
-
-  if (IndexReg.getReg()) {
-    if (NeedPlus) O << " + ";
-    if (ScaleVal != 1)
-      O << ScaleVal << "*";
-    printOp(IndexReg);
-    NeedPlus = true;
-  }
-
-  if (DispVal) {
-    if (NeedPlus)
-      if (DispVal > 0)
-        O << " + ";
-      else {
-        O << " - ";
-        DispVal = -DispVal;
-      }
-    O << DispVal;
-  }
-  O << "]";
-}
-
-
-/// printMachineInstruction -- Print out a single X86 LLVM instruction
-/// MI in Intel syntax to the current output stream.
-///
-void X86AsmPrinter::printMachineInstruction(const MachineInstr *MI) {
-  ++EmittedInsts;
-
-  // gas bugs:
-  //
-  // The 80-bit FP store-pop instruction "fstp XWORD PTR [...]"  is misassembled
-  // by gas in intel_syntax mode as its 32-bit equivalent "fstp DWORD PTR
-  // [...]". Workaround: Output the raw opcode bytes instead of the instruction.
-  //
-  // The 80-bit FP load instruction "fld XWORD PTR [...]" is misassembled by gas
-  // in intel_syntax mode as its 32-bit equivalent "fld DWORD PTR
-  // [...]". Workaround: Output the raw opcode bytes instead of the instruction.
-  //
-  // gas intel_syntax mode treats "fild QWORD PTR [...]" as an invalid opcode,
-  // saying "64 bit operations are only supported in 64 bit modes." libopcodes
-  // disassembles it as "fild DWORD PTR [...]", which is wrong. Workaround:
-  // Output the raw opcode bytes instead of the instruction.
-  //
-  // gas intel_syntax mode treats "fistp QWORD PTR [...]" as an invalid opcode,
-  // saying "64 bit operations are only supported in 64 bit modes." libopcodes
-  // disassembles it as "fistpll DWORD PTR [...]", which is wrong. Workaround:
-  // Output the raw opcode bytes instead of the instruction.
-  switch (MI->getOpcode()) {
-  case X86::FSTP80m:
-  case X86::FLD80m:
-  case X86::FILD64m:
-  case X86::FISTP64m:
-    GasBugWorkaroundEmitter gwe(O);
-    X86::emitInstruction(gwe, (X86InstrInfo&)*TM.getInstrInfo(), *MI);
-    O << "\t# ";
-  }
-
-  // Call the autogenerated instruction printer routines.
-  bool Handled = printInstruction(MI);
-  if (!Handled) {
-    MI->dump();
-    assert(0 && "Do not know how to print this instruction!");
-    abort();
-  }
-}
-
-bool X86AsmPrinter::doInitialization(Module &M) {
-  // Tell gas we are outputting Intel syntax (not AT&T syntax) assembly.
-  //
-  // Bug: gas in `intel_syntax noprefix' mode interprets the symbol `Sp' in an
-  // instruction as a reference to the register named sp, and if you try to
-  // reference a symbol `Sp' (e.g. `mov ECX, OFFSET Sp') then it gets lowercased
-  // before being looked up in the symbol table. This creates spurious
-  // `undefined symbol' errors when linking. Workaround: Do not use `noprefix'
-  // mode, and decorate all register names with percent signs.
-  O << "\t.intel_syntax\n";
-  Mang = new Mangler(M, EmitCygwin);
-  return false; // success
-}
-
-// SwitchSection - Switch to the specified section of the executable if we are
-// not already in it!
-//
-static void SwitchSection(std::ostream &OS, std::string &CurSection,
-                          const char *NewSection) {
-  if (CurSection != NewSection) {
-    CurSection = NewSection;
-    if (!CurSection.empty())
-      OS << "\t" << NewSection << "\n";
+      emitAlignment(TD.getTypeAlignmentShift(CP[i]->getType()));
+    O << PrivateGlobalPrefix << "CPI" << CurrentFnName << "_" << i
+      << ":\t\t\t\t\t" << CommentString << *CP[i] << "\n";
+    emitGlobalConstant(CP[i]);
   }
 }
 
-bool X86AsmPrinter::doFinalization(Module &M) {
+bool X86SharedAsmPrinter::doFinalization(Module &M) {
   const TargetData &TD = TM.getTargetData();
-  std::string CurSection;
 
   // Print out module-level global variables here.
-  for (Module::const_giterator I = M.gbegin(), E = M.gend(); I != E; ++I)
+  for (Module::const_global_iterator I = M.global_begin(),
+         E = M.global_end(); I != E; ++I)
     if (I->hasInitializer()) {   // External global require no code
       O << "\n\n";
       std::string name = Mang->getValueName(I);
       Constant *C = I->getInitializer();
       unsigned Size = TD.getTypeSize(C->getType());
-      unsigned Align = TD.getTypeAlignment(C->getType());
+      unsigned Align = TD.getTypeAlignmentShift(C->getType());
 
-      if (C->isNullValue() && 
+      if (C->isNullValue() &&
           (I->hasLinkOnceLinkage() || I->hasInternalLinkage() ||
            I->hasWeakLinkage() /* FIXME: Verify correct */)) {
-        SwitchSection(O, CurSection, ".data");
-        if (I->hasInternalLinkage())
+        SwitchSection(".data", I);
+        if (!forCygwin && !forDarwin && I->hasInternalLinkage())
           O << "\t.local " << name << "\n";
-        
-        O << "\t.comm " << name << "," << TD.getTypeSize(C->getType())
-          << "," << (unsigned)TD.getTypeAlignment(C->getType());
+        if (forDarwin && I->hasInternalLinkage())
+          O << "\t.lcomm " << name << "," << Size << "," << Align;
+        else
+          O << "\t.comm " << name << "," << Size;
+        if (!forCygwin && !forDarwin)
+          O << "," << (1 << Align);
         O << "\t\t# ";
         WriteAsOperand(O, I, true, true, &M);
         O << "\n";
       } else {
         switch (I->getLinkage()) {
+        default: assert(0 && "Unknown linkage type!");
         case GlobalValue::LinkOnceLinkage:
         case GlobalValue::WeakLinkage:   // FIXME: Verify correct for weak.
           // Nonnull linkonce -> weak
           O << "\t.weak " << name << "\n";
-          SwitchSection(O, CurSection, "");
           O << "\t.section\t.llvm.linkonce.d." << name << ",\"aw\",@progbits\n";
+          SwitchSection("", I);
           break;
-        
         case GlobalValue::AppendingLinkage:
           // FIXME: appending linkage variables should go into a section of
           // their name or something.  For now, just emit them as external.
@@ -654,16 +149,15 @@ bool X86AsmPrinter::doFinalization(Module &M) {
           O << "\t.globl " << name << "\n";
           // FALL THROUGH
         case GlobalValue::InternalLinkage:
-          if (C->isNullValue())
-            SwitchSection(O, CurSection, ".bss");
-          else
-            SwitchSection(O, CurSection, ".data");
+          SwitchSection(C->isNullValue() ? ".bss" : ".data", I);
           break;
         }
 
-        O << "\t.align " << Align << "\n";
-        O << "\t.type " << name << ",@object\n";
-        O << "\t.size " << name << "," << Size << "\n";
+        emitAlignment(Align);
+        if (!forCygwin && !forDarwin) {
+          O << "\t.type " << name << ",@object\n";
+          O << "\t.size " << name << "," << Size << "\n";
+        }
         O << name << ":\t\t\t\t# ";
         WriteAsOperand(O, I, true, true, &M);
         O << " = ";
@@ -673,6 +167,61 @@ bool X86AsmPrinter::doFinalization(Module &M) {
       }
     }
 
-  delete Mang;
+  if (forDarwin) {
+    // Output stubs for external global variables
+    if (GVStubs.begin() != GVStubs.end())
+      O << "\t.non_lazy_symbol_pointer\n";
+    for (std::set<std::string>::iterator i = GVStubs.begin(), e = GVStubs.end();
+         i != e; ++i) {
+      O << "L" << *i << "$non_lazy_ptr:\n";
+      O << "\t.indirect_symbol " << *i << "\n";
+      O << "\t.long\t0\n";
+    }
+
+    // Output stubs for dynamically-linked functions
+    unsigned j = 1;
+    for (std::set<std::string>::iterator i = FnStubs.begin(), e = FnStubs.end();
+         i != e; ++i, ++j) {
+      O << "\t.symbol_stub\n";
+      O << "L" << *i << "$stub:\n";
+      O << "\t.indirect_symbol " << *i << "\n";
+      O << "\tjmp\t*L" << j << "$lz\n";
+      O << "L" << *i << "$stub_binder:\n";
+      O << "\tpushl\t$L" << j << "$lz\n";
+      O << "\tjmp\tdyld_stub_binding_helper\n";
+      O << "\t.section __DATA, __la_sym_ptr3,lazy_symbol_pointers\n";
+      O << "L" << j << "$lz:\n";
+      O << "\t.indirect_symbol " << *i << "\n";
+      O << "\t.long\tL" << *i << "$stub_binder\n";
+    }
+
+    O << "\n";
+
+    // Output stubs for link-once variables
+    if (LinkOnceStubs.begin() != LinkOnceStubs.end())
+      O << ".data\n.align 2\n";
+    for (std::set<std::string>::iterator i = LinkOnceStubs.begin(),
+         e = LinkOnceStubs.end(); i != e; ++i) {
+      O << "L" << *i << "$non_lazy_ptr:\n"
+        << "\t.long\t" << *i << '\n';
+    }
+  }
+
+  AsmPrinter::doFinalization(M);
   return false; // success
 }
+
+/// createX86CodePrinterPass - Returns a pass that prints the X86 assembly code
+/// for a MachineFunction to the given output stream, using the given target
+/// machine description.
+///
+FunctionPass *llvm::createX86CodePrinterPass(std::ostream &o,TargetMachine &tm){
+  switch (AsmWriterFlavor) {
+  default:
+    assert(0 && "Unknown asm flavor!");
+  case intel:
+    return new X86IntelAsmPrinter(o, tm);
+  case att:
+    return new X86ATTAsmPrinter(o, tm);
+  }
+}