don't build bzip2 for now
[oota-llvm.git] / lib / Support / APInt.cpp
index e13778609bbd35b8d33f29f67c130b82027f65a6..4142c6ec8bc4a495f9178617ad61871737d8d3c0 100644 (file)
@@ -2,9 +2,8 @@
 //
 //                     The LLVM Compiler Infrastructure
 //
-// This file was developed by Sheng Zhou and Reid Spencer and is distributed 
-// under the // University of Illinois Open Source License. See LICENSE.TXT 
-// for details.
+// This file was developed by Sheng Zhou and is distributed under the 
+// University of Illinois Open Source License. See LICENSE.TXT for details.
 //
 //===----------------------------------------------------------------------===//
 //
@@ -18,6 +17,8 @@
 #include "llvm/DerivedTypes.h"
 #include "llvm/Support/Debug.h"
 #include "llvm/Support/MathExtras.h"
+#include <math.h>
+#include <limits>
 #include <cstring>
 #include <cstdlib>
 #ifndef NDEBUG
@@ -43,7 +44,7 @@ inline static uint64_t* getMemory(uint32_t numWords) {
   return result;
 }
 
-APInt::APInt(uint32_t numBits, uint64_t val)
+APInt::APInt(uint32_t numBits, uint64_t val, bool isSigned) 
   : BitWidth(numBits), VAL(0) {
   assert(BitWidth >= IntegerType::MIN_INT_BITS && "bitwidth too small");
   assert(BitWidth <= IntegerType::MAX_INT_BITS && "bitwidth too large");
@@ -52,6 +53,9 @@ APInt::APInt(uint32_t numBits, uint64_t val)
   else {
     pVal = getClearedMemory(getNumWords());
     pVal[0] = val;
+    if (isSigned && int64_t(val) < 0) 
+      for (unsigned i = 1; i < getNumWords(); ++i)
+        pVal[i] = -1ULL;
   }
   clearUnusedBits();
 }
@@ -99,16 +103,43 @@ APInt::APInt(const APInt& that)
 
 APInt::~APInt() {
   if (!isSingleWord() && pVal) 
-    delete[] pVal;
+    delete [] pVal;
 }
 
 APInt& APInt::operator=(const APInt& RHS) {
-  assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
-  if (isSingleWord()) 
+  // Don't do anything for X = X
+  if (this == &RHS)
+    return *this;
+
+  // If the bitwidths are the same, we can avoid mucking with memory
+  if (BitWidth == RHS.getBitWidth()) {
+    if (isSingleWord()) 
+      VAL = RHS.VAL;
+    else
+      memcpy(pVal, RHS.pVal, getNumWords() * APINT_WORD_SIZE);
+    return *this;
+  }
+
+  if (isSingleWord())
+    if (RHS.isSingleWord())
+      VAL = RHS.VAL;
+    else {
+      VAL = 0;
+      pVal = getMemory(RHS.getNumWords());
+      memcpy(pVal, RHS.pVal, RHS.getNumWords() * APINT_WORD_SIZE);
+    }
+  else if (getNumWords() == RHS.getNumWords()) 
+    memcpy(pVal, RHS.pVal, RHS.getNumWords() * APINT_WORD_SIZE);
+  else if (RHS.isSingleWord()) {
+    delete [] pVal;
     VAL = RHS.VAL;
-  else
-    memcpy(pVal, RHS.pVal, getNumWords() * APINT_WORD_SIZE);
-  return *this;
+  } else {
+    delete [] pVal;
+    pVal = getMemory(RHS.getNumWords());
+    memcpy(pVal, RHS.pVal, RHS.getNumWords() * APINT_WORD_SIZE);
+  }
+  BitWidth = RHS.BitWidth;
+  return clearUnusedBits();
 }
 
 APInt& APInt::operator=(uint64_t RHS) {
@@ -118,7 +149,7 @@ APInt& APInt::operator=(uint64_t RHS) {
     pVal[0] = RHS;
     memset(pVal+1, 0, (getNumWords() - 1) * APINT_WORD_SIZE);
   }
-  return *this;
+  return clearUnusedBits();
 }
 
 /// add_1 - This function adds a single "digit" integer, y, to the multiple 
@@ -403,7 +434,7 @@ APInt APInt::operator|(const APInt& RHS) const {
 APInt APInt::operator^(const APInt& RHS) const {
   assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
   if (isSingleWord())
-    return APInt(BitWidth, VAL ^ RHS.VAL).clearUnusedBits();
+    return APInt(BitWidth, VAL ^ RHS.VAL);
 
   uint32_t numWords = getNumWords();
   uint64_t *val = getMemory(numWords);
@@ -427,7 +458,7 @@ bool APInt::operator !() const {
 APInt APInt::operator*(const APInt& RHS) const {
   assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
   if (isSingleWord())
-    return APInt(BitWidth, VAL * RHS.VAL).clearUnusedBits();
+    return APInt(BitWidth, VAL * RHS.VAL);
   APInt Result(*this);
   Result *= RHS;
   return Result.clearUnusedBits();
@@ -436,7 +467,7 @@ APInt APInt::operator*(const APInt& RHS) const {
 APInt APInt::operator+(const APInt& RHS) const {
   assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
   if (isSingleWord())
-    return APInt(BitWidth, VAL + RHS.VAL).clearUnusedBits();
+    return APInt(BitWidth, VAL + RHS.VAL);
   APInt Result(BitWidth, 0);
   add(Result.pVal, this->pVal, RHS.pVal, getNumWords());
   return Result.clearUnusedBits();
@@ -445,7 +476,7 @@ APInt APInt::operator+(const APInt& RHS) const {
 APInt APInt::operator-(const APInt& RHS) const {
   assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
   if (isSingleWord())
-    return APInt(BitWidth, VAL - RHS.VAL).clearUnusedBits();
+    return APInt(BitWidth, VAL - RHS.VAL);
   APInt Result(BitWidth, 0);
   sub(Result.pVal, this->pVal, RHS.pVal, getNumWords());
   return Result.clearUnusedBits();
@@ -457,6 +488,7 @@ bool APInt::operator[](uint32_t bitPosition) const {
 }
 
 bool APInt::operator==(const APInt& RHS) const {
+  assert(BitWidth == RHS.BitWidth && "Comparison requires equal bit widths");
   if (isSingleWord())
     return VAL == RHS.VAL;
 
@@ -512,7 +544,8 @@ bool APInt::ult(const APInt& RHS) const {
     return pVal[0] < RHS.pVal[0];
 
   // Otherwise, compare all words
-  for (int i = whichWord(n1 - 1); i >= 0; --i) {
+  uint32_t topWord = whichWord(std::max(n1,n2)-1);
+  for (int i = topWord; i >= 0; --i) {
     if (pVal[i] > RHS.pVal[i]) 
       return false;
     if (pVal[i] < RHS.pVal[i]) 
@@ -530,30 +563,28 @@ bool APInt::slt(const APInt& RHS) const {
   }
 
   APInt lhs(*this);
-  APInt rhs(*this);
-  bool lhsNegative = false;
-  bool rhsNegative = false;
-  if (lhs[BitWidth-1]) {
-    // Sign bit is set so make a note of it and perform two's complement
-    lhsNegative = true;
+  APInt rhs(RHS);
+  bool lhsNeg = isNegative();
+  bool rhsNeg = rhs.isNegative();
+  if (lhsNeg) {
+    // Sign bit is set so perform two's complement to make it positive
     lhs.flip();
     lhs++;
   }
-  if (rhs[BitWidth-1]) {
-    // Sign bit is set so make a note of it and perform two's complement
-    rhsNegative = true;
+  if (rhsNeg) {
+    // Sign bit is set so perform two's complement to make it positive
     rhs.flip();
     rhs++;
   }
 
   // Now we have unsigned values to compare so do the comparison if necessary
   // based on the negativeness of the values.
-  if (lhsNegative)
-    if (rhsNegative)
-      return !lhs.ult(rhs);
+  if (lhsNeg)
+    if (rhsNeg)
+      return lhs.ugt(rhs);
     else
       return true;
-  else if (rhsNegative)
+  else if (rhsNeg)
     return false;
   else 
     return lhs.ult(rhs);
@@ -574,7 +605,7 @@ APInt& APInt::set() {
   }
 
   // Set all the bits in all the words.
-  for (uint32_t i = 0; i < getNumWords() - 1; ++i)
+  for (uint32_t i = 0; i < getNumWords(); ++i)
     pVal[i] = -1ULL;
   // Clear the unused ones
   return clearUnusedBits();
@@ -602,19 +633,19 @@ APInt& APInt::clear() {
 /// @brief Bitwise NOT operator. Performs a bitwise logical NOT operation on
 /// this APInt.
 APInt APInt::operator~() const {
-  APInt API(*this);
-  API.flip();
-  return API;
+  APInt Result(*this);
+  Result.flip();
+  return Result;
 }
 
 /// @brief Toggle every bit to its opposite value.
 APInt& APInt::flip() {
   if (isSingleWord()) {
-    VAL = ~VAL;
+    VAL ^= -1ULL;
     return clearUnusedBits();
   }
   for (uint32_t i = 0; i < getNumWords(); ++i)
-    pVal[i] = ~pVal[i];
+    pVal[i] ^= -1ULL;
   return clearUnusedBits();
 }
 
@@ -628,37 +659,54 @@ APInt& APInt::flip(uint32_t bitPosition) {
   return *this;
 }
 
-/// getMaxValue - This function returns the largest value
-/// for an APInt of the specified bit-width and if isSign == true,
-/// it should be largest signed value, otherwise unsigned value.
-APInt APInt::getMaxValue(uint32_t numBits, bool isSign) {
-  APInt Result(numBits, 0);
-  Result.set();
-  if (isSign) 
-    Result.clear(numBits - 1);
-  return Result;
-}
+uint32_t APInt::getBitsNeeded(const char* str, uint32_t slen, uint8_t radix) {
+  assert(str != 0 && "Invalid value string");
+  assert(slen > 0 && "Invalid string length");
 
-/// getMinValue - This function returns the smallest value for
-/// an APInt of the given bit-width and if isSign == true,
-/// it should be smallest signed value, otherwise zero.
-APInt APInt::getMinValue(uint32_t numBits, bool isSign) {
-  APInt Result(numBits, 0);
-  if (isSign) 
-    Result.set(numBits - 1);
-  return Result;
-}
+  // Each computation below needs to know if its negative
+  uint32_t isNegative = str[0] == '-';
+  if (isNegative) {
+    slen--;
+    str++;
+  }
+  // For radixes of power-of-two values, the bits required is accurately and
+  // easily computed
+  if (radix == 2)
+    return slen + isNegative;
+  if (radix == 8)
+    return slen * 3 + isNegative;
+  if (radix == 16)
+    return slen * 4 + isNegative;
+
+  // Otherwise it must be radix == 10, the hard case
+  assert(radix == 10 && "Invalid radix");
+
+  // This is grossly inefficient but accurate. We could probably do something
+  // with a computation of roughly slen*64/20 and then adjust by the value of
+  // the first few digits. But, I'm not sure how accurate that could be.
 
-/// getAllOnesValue - This function returns an all-ones value for
-/// an APInt of the specified bit-width.
-APInt APInt::getAllOnesValue(uint32_t numBits) {
-  return getMaxValue(numBits, false);
+  // Compute a sufficient number of bits that is always large enough but might
+  // be too large. This avoids the assertion in the constructor.
+  uint32_t sufficient = slen*64/18;
+
+  // Convert to the actual binary value.
+  APInt tmp(sufficient, str, slen, radix);
+
+  // Compute how many bits are required.
+  return isNegative + tmp.logBase2() + 1;
 }
 
-/// getNullValue - This function creates an '0' value for an
-/// APInt of the specified bit-width.
-APInt APInt::getNullValue(uint32_t numBits) {
-  return getMinValue(numBits, false);
+uint64_t APInt::getHashValue() const {
+  // Put the bit width into the low order bits.
+  uint64_t hash = BitWidth;
+
+  // Add the sum of the words to the hash.
+  if (isSingleWord())
+    hash += VAL << 6; // clear separation of up to 64 bits
+  else
+    for (uint32_t i = 0; i < getNumWords(); ++i)
+      hash += pVal[i] << 6; // clear sepration of up to 64 bits
+  return hash;
 }
 
 /// HiBits - This function returns the high "numBits" bits of this APInt.
@@ -696,11 +744,48 @@ uint32_t APInt::countLeadingZeros() const {
   return Count;
 }
 
+static uint32_t countLeadingOnes_64(uint64_t V, uint32_t skip) {
+  uint32_t Count = 0;
+  if (skip)
+    V <<= skip;
+  while (V && (V & (1ULL << 63))) {
+    Count++;
+    V <<= 1;
+  }
+  return Count;
+}
+
+uint32_t APInt::countLeadingOnes() const {
+  if (isSingleWord())
+    return countLeadingOnes_64(VAL, APINT_BITS_PER_WORD - BitWidth);
+
+  uint32_t highWordBits = BitWidth % APINT_BITS_PER_WORD;
+  uint32_t shift = (highWordBits == 0 ? 0 : APINT_BITS_PER_WORD - highWordBits);
+  int i = getNumWords() - 1;
+  uint32_t Count = countLeadingOnes_64(pVal[i], shift);
+  if (Count == highWordBits) {
+    for (i--; i >= 0; --i) {
+      if (pVal[i] == -1ULL)
+        Count += APINT_BITS_PER_WORD;
+      else {
+        Count += countLeadingOnes_64(pVal[i], 0);
+        break;
+      }
+    }
+  }
+  return Count;
+}
+
 uint32_t APInt::countTrailingZeros() const {
   if (isSingleWord())
     return CountTrailingZeros_64(VAL);
-  APInt Tmp( ~(*this) & ((*this) - APInt(BitWidth,1)) );
-  return getNumWords() * APINT_BITS_PER_WORD - Tmp.countLeadingZeros();
+  uint32_t Count = 0;
+  uint32_t i = 0;
+  for (; i < getNumWords() && pVal[i] == 0; ++i)
+    Count += APINT_BITS_PER_WORD;
+  if (i < getNumWords())
+    Count += CountTrailingZeros_64(pVal[i]);
+  return Count;
 }
 
 uint32_t APInt::countPopulation() const {
@@ -715,17 +800,15 @@ uint32_t APInt::countPopulation() const {
 APInt APInt::byteSwap() const {
   assert(BitWidth >= 16 && BitWidth % 16 == 0 && "Cannot byteswap!");
   if (BitWidth == 16)
-    return APInt(BitWidth, ByteSwap_16(VAL));
+    return APInt(BitWidth, ByteSwap_16(uint16_t(VAL)));
   else if (BitWidth == 32)
-    return APInt(BitWidth, ByteSwap_32(VAL));
+    return APInt(BitWidth, ByteSwap_32(uint32_t(VAL)));
   else if (BitWidth == 48) {
-    uint64_t Tmp1 = ((VAL >> 32) << 16) | (VAL & 0xFFFF);
+    uint32_t Tmp1 = uint32_t(VAL >> 16);
     Tmp1 = ByteSwap_32(Tmp1);
-    uint64_t Tmp2 = (VAL >> 16) & 0xFFFF;
+    uint16_t Tmp2 = uint16_t(VAL);
     Tmp2 = ByteSwap_16(Tmp2);
-    return 
-      APInt(BitWidth, 
-            (Tmp1 & 0xff) | ((Tmp1<<16) & 0xffff00000000ULL) | (Tmp2 << 16));
+    return APInt(BitWidth, (uint64_t(Tmp2) << 32) | Tmp1);
   } else if (BitWidth == 64)
     return APInt(BitWidth, ByteSwap_64(VAL));
   else {
@@ -751,21 +834,38 @@ APInt llvm::APIntOps::GreatestCommonDivisor(const APInt& API1,
   return A;
 }
 
-APInt llvm::APIntOps::RoundDoubleToAPInt(double Double) {
+APInt llvm::APIntOps::RoundDoubleToAPInt(double Double, uint32_t width) {
   union {
     double D;
     uint64_t I;
   } T;
   T.D = Double;
+
+  // Get the sign bit from the highest order bit
   bool isNeg = T.I >> 63;
+
+  // Get the 11-bit exponent and adjust for the 1023 bit bias
   int64_t exp = ((T.I >> 52) & 0x7ff) - 1023;
+
+  // If the exponent is negative, the value is < 0 so just return 0.
   if (exp < 0)
-    return APInt(64ull, 0u);
-  uint64_t mantissa = ((T.I << 12) >> 12) | (1ULL << 52);
+    return APInt(width, 0u);
+
+  // Extract the mantissa by clearing the top 12 bits (sign + exponent).
+  uint64_t mantissa = (T.I & (~0ULL >> 12)) | 1ULL << 52;
+
+  // If the exponent doesn't shift all bits out of the mantissa
   if (exp < 52)
-    return isNeg ? -APInt(64u, mantissa >> (52 - exp)) : 
-                    APInt(64u, mantissa >> (52 - exp));
-  APInt Tmp(exp + 1, mantissa);
+    return isNeg ? -APInt(width, mantissa >> (52 - exp)) : 
+                    APInt(width, mantissa >> (52 - exp));
+
+  // If the client didn't provide enough bits for us to shift the mantissa into
+  // then the result is undefined, just return 0
+  if (width <= exp - 52)
+    return APInt(width, 0);
+
+  // Otherwise, we have to shift the mantissa bits up to the right location
+  APInt Tmp(width, mantissa);
   Tmp = Tmp.shl(exp - 52);
   return isNeg ? -Tmp : Tmp;
 }
@@ -805,9 +905,9 @@ double APInt::roundToDouble(bool isSigned) const {
   // Return infinity for exponent overflow
   if (exp > 1023) {
     if (!isSigned || !isNeg)
-      return double(1.0E300 * 1.0E300); // positive infinity
+      return std::numeric_limits<double>::infinity();
     else 
-      return double(-1.0E300 * 1.0E300); // negative infinity
+      return -std::numeric_limits<double>::infinity();
   }
   exp += 1023; // Increment for 1023 bias
 
@@ -837,7 +937,7 @@ double APInt::roundToDouble(bool isSigned) const {
 }
 
 // Truncate to new width.
-void APInt::trunc(uint32_t width) {
+APInt &APInt::trunc(uint32_t width) {
   assert(width < BitWidth && "Invalid APInt Truncate request");
   assert(width >= IntegerType::MIN_INT_BITS && "Can't truncate to 0 bits");
   uint32_t wordsBefore = getNumWords();
@@ -847,27 +947,26 @@ void APInt::trunc(uint32_t width) {
     if (wordsAfter == 1) {
       uint64_t *tmp = pVal;
       VAL = pVal[0];
-      delete tmp;
+      delete [] tmp;
     } else {
       uint64_t *newVal = getClearedMemory(wordsAfter);
       for (uint32_t i = 0; i < wordsAfter; ++i)
         newVal[i] = pVal[i];
-      delete pVal;
+      delete [] pVal;
       pVal = newVal;
     }
   }
-  clearUnusedBits();
+  return clearUnusedBits();
 }
 
 // Sign extend to a new width.
-void APInt::sext(uint32_t width) {
+APInt &APInt::sext(uint32_t width) {
   assert(width > BitWidth && "Invalid APInt SignExtend request");
   assert(width <= IntegerType::MAX_INT_BITS && "Too many bits");
-  bool isNegative = (*this)[BitWidth-1];
   // If the sign bit isn't set, this is the same as zext.
-  if (!isNegative) {
+  if (!isNegative()) {
     zext(width);
-    return;
+    return *this;
   }
 
   // The sign bit is set. First, get some facts
@@ -880,13 +979,15 @@ void APInt::sext(uint32_t width) {
   if (wordsBefore == wordsAfter) {
     uint32_t newWordBits = width % APINT_BITS_PER_WORD;
     // The extension is contained to the wordsBefore-1th word.
-    uint64_t mask = (~0ULL >> (APINT_BITS_PER_WORD - newWordBits)) <<  wordBits;
+    uint64_t mask = ~0ULL;
+    if (newWordBits)
+      mask >>= APINT_BITS_PER_WORD - newWordBits;
+    mask <<= wordBits;
     if (wordsBefore == 1)
       VAL |= mask;
     else
       pVal[wordsBefore-1] |= mask;
-    clearUnusedBits();
-    return;
+    return clearUnusedBits();
   }
 
   uint64_t mask = wordBits == 0 ? 0 : ~0ULL << wordBits;
@@ -901,13 +1002,13 @@ void APInt::sext(uint32_t width) {
   for (uint32_t i = wordsBefore; i < wordsAfter; i++)
     newVal[i] = -1ULL;
   if (wordsBefore != 1)
-    delete pVal;
+    delete [] pVal;
   pVal = newVal;
-  clearUnusedBits();
+  return clearUnusedBits();
 }
 
 //  Zero extend to a new width.
-void APInt::zext(uint32_t width) {
+APInt &APInt::zext(uint32_t width) {
   assert(width > BitWidth && "Invalid APInt ZeroExtend request");
   assert(width <= IntegerType::MAX_INT_BITS && "Too many bits");
   uint32_t wordsBefore = getNumWords();
@@ -921,70 +1022,165 @@ void APInt::zext(uint32_t width) {
       for (uint32_t i = 0; i < wordsBefore; ++i)
         newVal[i] = pVal[i];
     if (wordsBefore != 1)
-      delete pVal;
+      delete [] pVal;
     pVal = newVal;
   }
+  return *this;
+}
+
+APInt &APInt::zextOrTrunc(uint32_t width) {
+  if (BitWidth < width)
+    return zext(width);
+  if (BitWidth > width)
+    return trunc(width);
+  return *this;
+}
+
+APInt &APInt::sextOrTrunc(uint32_t width) {
+  if (BitWidth < width)
+    return sext(width);
+  if (BitWidth > width)
+    return trunc(width);
+  return *this;
 }
 
 /// Arithmetic right-shift this APInt by shiftAmt.
 /// @brief Arithmetic right-shift function.
 APInt APInt::ashr(uint32_t shiftAmt) const {
+  assert(shiftAmt <= BitWidth && "Invalid shift amount");
+  // Handle a degenerate case
+  if (shiftAmt == 0)
+    return *this;
+
+  // Handle single word shifts with built-in ashr
   if (isSingleWord()) {
     if (shiftAmt == BitWidth)
+      return APInt(BitWidth, 0); // undefined
+    else {
+      uint32_t SignBit = APINT_BITS_PER_WORD - BitWidth;
+      return APInt(BitWidth, 
+        (((int64_t(VAL) << SignBit) >> SignBit) >> shiftAmt));
+    }
+  }
+
+  // If all the bits were shifted out, the result is, technically, undefined.
+  // We return -1 if it was negative, 0 otherwise. We check this early to avoid
+  // issues in the algorithm below.
+  if (shiftAmt == BitWidth) {
+    if (isNegative())
       return APInt(BitWidth, -1ULL);
     else
-      return APInt(BitWidth, 
-        (((int64_t(VAL) << (APINT_BITS_PER_WORD - BitWidth)) >> 
-            (APINT_BITS_PER_WORD - BitWidth)) >> shiftAmt)).clearUnusedBits();
+      return APInt(BitWidth, 0);
   }
 
-  APInt Result(*this);
-  if (shiftAmt >= BitWidth) {
-    memset(Result.pVal, Result[BitWidth-1] ? 1 : 0, 
-           (getNumWords()-1) * APINT_WORD_SIZE);
-    return Result.clearUnusedBits();
-  } 
+  // Create some space for the result.
+  uint64_t * val = new uint64_t[getNumWords()];
 
-  // FIXME: bit-at-a-time shift is really slow.
-  uint32_t i = 0;
-  for (; i < BitWidth - shiftAmt; ++i)
-    if (Result[i+shiftAmt]) 
-      Result.set(i);
-    else
-      Result.clear(i);
-  for (; i < BitWidth; ++i)
-    if (Result[BitWidth-1]) 
-      Result.set(i);
-    else 
-      Result.clear(i);
-  return Result;
+  // Compute some values needed by the following shift algorithms
+  uint32_t wordShift = shiftAmt % APINT_BITS_PER_WORD; // bits to shift per word
+  uint32_t offset = shiftAmt / APINT_BITS_PER_WORD; // word offset for shift
+  uint32_t breakWord = getNumWords() - 1 - offset; // last word affected
+  uint32_t bitsInWord = whichBit(BitWidth); // how many bits in last word?
+  if (bitsInWord == 0)
+    bitsInWord = APINT_BITS_PER_WORD;
+
+  // If we are shifting whole words, just move whole words
+  if (wordShift == 0) {
+    // Move the words containing significant bits
+    for (uint32_t i = 0; i <= breakWord; ++i) 
+      val[i] = pVal[i+offset]; // move whole word
+
+    // Adjust the top significant word for sign bit fill, if negative
+    if (isNegative())
+      if (bitsInWord < APINT_BITS_PER_WORD)
+        val[breakWord] |= ~0ULL << bitsInWord; // set high bits
+  } else {
+    // Shift the low order words 
+    for (uint32_t i = 0; i < breakWord; ++i) {
+      // This combines the shifted corresponding word with the low bits from
+      // the next word (shifted into this word's high bits).
+      val[i] = (pVal[i+offset] >> wordShift) | 
+               (pVal[i+offset+1] << (APINT_BITS_PER_WORD - wordShift));
+    }
+
+    // Shift the break word. In this case there are no bits from the next word
+    // to include in this word.
+    val[breakWord] = pVal[breakWord+offset] >> wordShift;
+
+    // Deal with sign extenstion in the break word, and possibly the word before
+    // it.
+    if (isNegative()) {
+      if (wordShift > bitsInWord) {
+        if (breakWord > 0)
+          val[breakWord-1] |= 
+            ~0ULL << (APINT_BITS_PER_WORD - (wordShift - bitsInWord));
+        val[breakWord] |= ~0ULL;
+      } else 
+        val[breakWord] |= (~0ULL << (bitsInWord - wordShift));
+    }
+  }
+
+  // Remaining words are 0 or -1, just assign them.
+  uint64_t fillValue = (isNegative() ? -1ULL : 0);
+  for (uint32_t i = breakWord+1; i < getNumWords(); ++i)
+    val[i] = fillValue;
+  return APInt(val, BitWidth).clearUnusedBits();
 }
 
 /// Logical right-shift this APInt by shiftAmt.
 /// @brief Logical right-shift function.
 APInt APInt::lshr(uint32_t shiftAmt) const {
-  if (isSingleWord())
+  if (isSingleWord()) {
     if (shiftAmt == BitWidth)
       return APInt(BitWidth, 0);
     else 
       return APInt(BitWidth, this->VAL >> shiftAmt);
+  }
 
-  APInt Result(*this);
-  if (shiftAmt >= BitWidth) {
-    Result.clear();
-    return Result;
+  // If all the bits were shifted out, the result is 0. This avoids issues
+  // with shifting by the size of the integer type, which produces undefined
+  // results. We define these "undefined results" to always be 0.
+  if (shiftAmt == BitWidth)
+    return APInt(BitWidth, 0);
+
+  // Create some space for the result.
+  uint64_t * val = new uint64_t[getNumWords()];
+
+  // If we are shifting less than a word, compute the shift with a simple carry
+  if (shiftAmt < APINT_BITS_PER_WORD) {
+    uint64_t carry = 0;
+    for (int i = getNumWords()-1; i >= 0; --i) {
+      val[i] = (pVal[i] >> shiftAmt) | carry;
+      carry = pVal[i] << (APINT_BITS_PER_WORD - shiftAmt);
+    }
+    return APInt(val, BitWidth).clearUnusedBits();
   }
 
-  // FIXME: bit at a time shift is really slow
-  uint32_t i = 0;
-  for (i = 0; i < Result.BitWidth - shiftAmt; ++i)
-    if (Result[i+shiftAmt]) 
-      Result.set(i);
-    else 
-      Result.clear(i);
-  for (; i < Result.BitWidth; ++i)
-    Result.clear(i);
-  return Result;
+  // Compute some values needed by the remaining shift algorithms
+  uint32_t wordShift = shiftAmt % APINT_BITS_PER_WORD;
+  uint32_t offset = shiftAmt / APINT_BITS_PER_WORD;
+
+  // If we are shifting whole words, just move whole words
+  if (wordShift == 0) {
+    for (uint32_t i = 0; i < getNumWords() - offset; ++i) 
+      val[i] = pVal[i+offset];
+    for (uint32_t i = getNumWords()-offset; i < getNumWords(); i++)
+      val[i] = 0;
+    return APInt(val,BitWidth).clearUnusedBits();
+  }
+
+  // Shift the low order words 
+  uint32_t breakWord = getNumWords() - offset -1;
+  for (uint32_t i = 0; i < breakWord; ++i)
+    val[i] = (pVal[i+offset] >> wordShift) |
+             (pVal[i+offset+1] << (APINT_BITS_PER_WORD - wordShift));
+  // Shift the break word.
+  val[breakWord] = pVal[breakWord+offset] >> wordShift;
+
+  // Remaining words are 0
+  for (uint32_t i = breakWord+1; i < getNumWords(); ++i)
+    val[i] = 0;
+  return APInt(val, BitWidth).clearUnusedBits();
 }
 
 /// Left-shift this APInt by shiftAmt.
@@ -994,7 +1190,7 @@ APInt APInt::shl(uint32_t shiftAmt) const {
   if (isSingleWord()) {
     if (shiftAmt == BitWidth)
       return APInt(BitWidth, 0); // avoid undefined shift results
-    return APInt(BitWidth, VAL << shiftAmt).clearUnusedBits();
+    return APInt(BitWidth, VAL << shiftAmt);
   }
 
   // If all the bits were shifted out, the result is 0. This avoids issues
@@ -1009,7 +1205,6 @@ APInt APInt::shl(uint32_t shiftAmt) const {
   // If we are shifting less than a word, do it the easy way
   if (shiftAmt < APINT_BITS_PER_WORD) {
     uint64_t carry = 0;
-    shiftAmt %= APINT_BITS_PER_WORD;
     for (uint32_t i = 0; i < getNumWords(); i++) {
       val[i] = pVal[i] << shiftAmt | carry;
       carry = pVal[i] >> (APINT_BITS_PER_WORD - shiftAmt);
@@ -1041,6 +1236,97 @@ APInt APInt::shl(uint32_t shiftAmt) const {
   return APInt(val, BitWidth).clearUnusedBits();
 }
 
+
+// Square Root - this method computes and returns the square root of "this".
+// Three mechanisms are used for computation. For small values (<= 5 bits),
+// a table lookup is done. This gets some performance for common cases. For
+// values using less than 52 bits, the value is converted to double and then
+// the libc sqrt function is called. The result is rounded and then converted
+// back to a uint64_t which is then used to construct the result. Finally,
+// the Babylonian method for computing square roots is used. 
+APInt APInt::sqrt() const {
+
+  // Determine the magnitude of the value.
+  uint32_t magnitude = getActiveBits();
+
+  // Use a fast table for some small values. This also gets rid of some
+  // rounding errors in libc sqrt for small values.
+  if (magnitude <= 5) {
+    static const uint8_t results[32] = {
+      /*     0 */ 0,
+      /*  1- 2 */ 1, 1,
+      /*  3- 6 */ 2, 2, 2, 2, 
+      /*  7-12 */ 3, 3, 3, 3, 3, 3,
+      /* 13-20 */ 4, 4, 4, 4, 4, 4, 4, 4,
+      /* 21-30 */ 5, 5, 5, 5, 5, 5, 5, 5, 5, 5,
+      /*    31 */ 6
+    };
+    return APInt(BitWidth, results[ (isSingleWord() ? VAL : pVal[0]) ]);
+  }
+
+  // If the magnitude of the value fits in less than 52 bits (the precision of
+  // an IEEE double precision floating point value), then we can use the
+  // libc sqrt function which will probably use a hardware sqrt computation.
+  // This should be faster than the algorithm below.
+  if (magnitude < 52) {
+#ifdef _MSC_VER
+    // Amazingly, VC++ doesn't have round().
+    return APInt(BitWidth, 
+                 uint64_t(::sqrt(double(isSingleWord()?VAL:pVal[0]))) + 0.5);
+#else
+    return APInt(BitWidth, 
+                 uint64_t(::round(::sqrt(double(isSingleWord()?VAL:pVal[0])))));
+#endif
+  }
+
+  // Okay, all the short cuts are exhausted. We must compute it. The following
+  // is a classical Babylonian method for computing the square root. This code
+  // was adapted to APINt from a wikipedia article on such computations.
+  // See http://www.wikipedia.org/ and go to the page named
+  // Calculate_an_integer_square_root. 
+  uint32_t nbits = BitWidth, i = 4;
+  APInt testy(BitWidth, 16);
+  APInt x_old(BitWidth, 1);
+  APInt x_new(BitWidth, 0);
+  APInt two(BitWidth, 2);
+
+  // Select a good starting value using binary logarithms.
+  for (;; i += 2, testy = testy.shl(2)) 
+    if (i >= nbits || this->ule(testy)) {
+      x_old = x_old.shl(i / 2);
+      break;
+    }
+
+  // Use the Babylonian method to arrive at the integer square root: 
+  for (;;) {
+    x_new = (this->udiv(x_old) + x_old).udiv(two);
+    if (x_old.ule(x_new))
+      break;
+    x_old = x_new;
+  }
+
+  // Make sure we return the closest approximation
+  // NOTE: The rounding calculation below is correct. It will produce an 
+  // off-by-one discrepancy with results from pari/gp. That discrepancy has been
+  // determined to be a rounding issue with pari/gp as it begins to use a 
+  // floating point representation after 192 bits. There are no discrepancies
+  // between this algorithm and pari/gp for bit widths < 192 bits.
+  APInt square(x_old * x_old);
+  APInt nextSquare((x_old + 1) * (x_old +1));
+  if (this->ult(square))
+    return x_old;
+  else if (this->ule(nextSquare)) {
+    APInt midpoint((nextSquare - square).udiv(two));
+    APInt offset(*this - square);
+    if (offset.ult(midpoint))
+      return x_old;
+    else
+      return x_old + 1;
+  } else
+    assert(0 && "Error in APInt::sqrt computation");
+  return x_old + 1;
+}
+
 /// Implementation of Knuth's Algorithm D (Division of nonnegative integers)
 /// from "Art of Computer Programming, Volume 2", section 4.3.1, p. 272. The
 /// variables here have the same names as in the algorithm. Comments explain
@@ -1121,7 +1407,7 @@ static void KnuthDiv(uint32_t *u, uint32_t *v, uint32_t *q, uint32_t* r,
     // (u[j+n]u[j+n-1]..u[j]) - qp * (v[n-1]...v[1]v[0]). This computation
     // consists of a simple multiplication by a one-place number, combined with
     // a subtraction. 
-    bool isNegative = false;
+    bool isNeg = false;
     for (uint32_t i = 0; i < n; ++i) {
       uint64_t u_tmp = uint64_t(u[j+i]) | (uint64_t(u[j+i+1]) << 32);
       uint64_t subtrahend = uint64_t(qp) * uint64_t(v[i]);
@@ -1139,7 +1425,7 @@ static void KnuthDiv(uint32_t *u, uint32_t *v, uint32_t *q, uint32_t* r,
         u[k]--;
         k++;
       }
-      isNegative |= borrow;
+      isNeg |= borrow;
       DEBUG(cerr << "KnuthDiv: u[j+i] == " << u[j+i] << ",  u[j+i+1] == " << 
                     u[j+i+1] << '\n'); 
     }
@@ -1151,7 +1437,7 @@ static void KnuthDiv(uint32_t *u, uint32_t *v, uint32_t *q, uint32_t* r,
     // true value plus b**(n+1), namely as the b's complement of
     // the true value, and a "borrow" to the left should be remembered.
     //
-    if (isNegative) {
+    if (isNeg) {
       bool carry = true;  // true because b's complement is "complement + 1"
       for (uint32_t i = 0; i <= m+n; ++i) {
         u[i] = ~u[i] + carry; // b's complement
@@ -1165,7 +1451,7 @@ static void KnuthDiv(uint32_t *u, uint32_t *v, uint32_t *q, uint32_t* r,
     // D5. [Test remainder.] Set q[j] = qp. If the result of step D4 was 
     // negative, go to step D6; otherwise go on to step D7.
     q[j] = qp;
-    if (isNegative) {
+    if (isNeg) {
       // D6. [Add back]. The probability that this step is necessary is very 
       // small, on the order of only 2/b. Make sure that test data accounts for
       // this possibility. Decrease q[j] by 1 
@@ -1330,7 +1616,7 @@ void APInt::divide(const APInt LHS, uint32_t lhsWords,
       if (Quotient->isSingleWord())
         Quotient->VAL = 0;
       else
-        delete Quotient->pVal;
+        delete [] Quotient->pVal;
       Quotient->BitWidth = LHS.BitWidth;
       if (!Quotient->isSingleWord())
         Quotient->pVal = getClearedMemory(Quotient->getNumWords());
@@ -1361,7 +1647,7 @@ void APInt::divide(const APInt LHS, uint32_t lhsWords,
       if (Remainder->isSingleWord())
         Remainder->VAL = 0;
       else
-        delete Remainder->pVal;
+        delete [] Remainder->pVal;
       Remainder->BitWidth = RHS.BitWidth;
       if (!Remainder->isSingleWord())
         Remainder->pVal = getClearedMemory(Remainder->getNumWords());
@@ -1474,13 +1760,13 @@ void APInt::fromString(uint32_t numbits, const char *str, uint32_t slen,
   assert((radix == 10 || radix == 8 || radix == 16 || radix == 2) &&
          "Radix should be 2, 8, 10, or 16!");
   assert(str && "String is null?");
-  bool isNegative = str[0] == '-';
-  if (isNegative)
+  bool isNeg = str[0] == '-';
+  if (isNeg)
     str++, slen--;
-  assert(slen <= numbits || radix != 2 && "Insufficient bit width");
-  assert(slen*3 <= numbits || radix != 8 && "Insufficient bit width");
-  assert(slen*4 <= numbits || radix != 16 && "Insufficient bit width");
-  assert((slen*64)/20 <= numbits || radix != 10 && "Insufficient bit width");
+  assert((slen <= numbits || radix != 2) && "Insufficient bit width");
+  assert((slen*3 <= numbits || radix != 8) && "Insufficient bit width");
+  assert((slen*4 <= numbits || radix != 16) && "Insufficient bit width");
+  assert(((slen*64)/22 <= numbits || radix != 10) && "Insufficient bit width");
 
   // Allocate memory
   if (!isSingleWord())
@@ -1525,9 +1811,9 @@ void APInt::fromString(uint32_t numbits, const char *str, uint32_t slen,
     *this += apdigit;
   }
   // If its negative, put it in two's complement form
-  if (isNegative) {
+  if (isNeg) {
+    (*this)--;
     this->flip();
-    (*this)++;
   }
 }
 
@@ -1598,7 +1884,7 @@ std::string APInt::toString(uint8_t radix, bool wantSigned) const {
     APInt tmp2(tmp.getBitWidth(), 0);
     divide(tmp, tmp.getNumWords(), divisor, divisor.getNumWords(), &tmp2, 
            &APdigit);
-    uint32_t digit = APdigit.getValue();
+    uint32_t digit = APdigit.getZExtValue();
     assert(digit < radix && "divide failed");
     result.insert(insert_at,digits[digit]);
     tmp = tmp2;
@@ -1616,6 +1902,7 @@ void APInt::dump() const
   else for (unsigned i = getNumWords(); i > 0; i--) {
     cerr << pVal[i-1] << " ";
   }
-  cerr << " (" << this->toString(10, false) << ")\n" << std::setbase(10);
+  cerr << " U(" << this->toString(10) << ") S(" << this->toStringSigned(10)
+       << ")\n" << std::setbase(10);
 }
 #endif